
Small Normalized Boolean Circuits for
Semi-disjoint Bilinear Forms Require Logarithmic
Conjunction-depth
Andrzej Lingas1

Department of Computer Science, Lund University
Box 118, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract
We consider normalized Boolean circuits that use binary operations of disjunction and conjunc-
tion, and unary negation, with the restriction that negation can be only applied to input variables.
We derive a lower bound trade-off between the size of normalized Boolean circuits computing
Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of
and-gates on a directed path to an output gate). In particular, we show that any normalized
Boolean circuit of at most ε logn conjunction-depth computing the n-dimensional Boolean vec-
tor convolution has Ω(n2−4ε) and-gates. Analogously, any normalized Boolean circuit of at most
ε logn conjunction-depth computing the n× n Boolean matrix product has Ω(n3−4ε) and-gates.
We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by
the known fast algebraic algorithms.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Boolean circuits, semi-disjoint bilinear form, Boolean vector convolution,
Boolean matrix product

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.26

Acknowledgements The author is grateful to Mike Paterson and the anonymous conference
reviewers for valuable comments/suggestions and to Mia Persson for valuable discussions on
different versions of this paper.

1 Introduction

1.1 Background
A set F of polynomials over a semi-ring is a form (in case of the Boolean semi-ring, just a
set of monotone Boolean functions). F is a semi-disjoint bilinear form if it defined on the
set of variables X ∪ Y and the following properties hold.
1. For each polynomial Q in F and each variable z ∈ X ∪ Y, there is at most one monomial

(in the Boolean case, called a prime implicant [24]) of Q containing z.
2. Each monomial of a polynomial in F consists of exactly one variable in X and one variable

in Y.
3. The sets of monomials of polynomials in F are pairwise disjoint.

The n-dimensional vector convolution and the n× n matrix product are important and
popular examples of semi-disjoint bilinear forms (for the convolution, |X| = |Y | = n and

1 Research supported in part by VR grant 2017-03750.

© Andrzej Lingas;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 26; pp. 26:1–26:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Andrzej.Lingas@cs.lth.se
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Small Normalized Boolean Circuits

|F | = 2n−1 while for the matrix product, |X| = |Y | = |F | = n2). Both semi-disjoint bilinear
forms in the arithmetic and Boolean case have a wide range of fundamental applications, for
instance, in stringology (see, e.g., [6]) and graph algorithms (see, e.g., [27]).

Two n× n integer matrices can be arithmetically multiplied using O(n3) additions and
multiplications following the definition of matrix product. This is optimal if neither other
operations nor negative constants are allowed [13, 16, 20]. If additionally subtraction or
negative constants are allowed then the so-called fast matrix multiplication algorithms can
be implemented using O(nω) operations [7, 22, 26], where ω < 3. They rely on algebraic
equations following from the possibility of term cancellation (for a study on the power of
arithmetic term cancellation see [23]). Le Gall and Vassilevska Williams have recently shown
the exponent ω of fast matrix multiplication to be smaller than 2.373 in [7, 26]. The fast
arithmetic algorithms run on 0− 1 matrices yield the same asymptotic upper time bounds for
n× n Boolean matrix multiplication. On the other hand, Raz proved that if only addition,
multiplication and products with constants of absolute value not exceeding one are allowed
then n× n matrix multiplication requires Ω(n2 logn) operations [17].

Similarly, the arithmetic convolution of two n-dimensional vectors can be computed using
O(n2) additions and multiplications. Next, the convolution of two n-dimensional vectors
over a commutative ring with the so-called principal n-th root of unity can be computed via
Fast Fourier Transform using O(n logn) operations of the ring. The n-dimensional Boolean
vector convolution admits an algorithm using O(n log2 n log logn) Boolean operations by
reduction to the fast integer multiplication algorithm from [21] in turn relying on Fast Fourier
Transform [6].

It is well known that for uniform problems, their Boolean circuit complexity corresponds
up to logarithmic factors to their Turing complexity [24]. Unfortunately, until today no
super-linear lower bounds on the size of circuits using binary and unary Boolean operations
forming a complete Boolean basis are known for natural problems [24]. On the other hand,
such lower bounds are known in case of monotone Boolean circuits that use only the binary
operations of disjunction and conjunction [1, 2, 3, 11, 13, 14, 15, 16, 18, 24, 25]. In particular,
Alon and Boppana showed by refining Razborov’s breakthrough method [18] that the (m, s)-
clique, i.e., the problem of determining if a graph on m vertices includes a complete subgraph
on s vertices, requires monotone Boolean circuits of 2

√
m size [1].

There exist interesting connections between the general Boolean circuit complexity and
the monotone one [4]. In particular, any Boolean circuit using disjunctions, conjunctions
and negations can be easily transformed into a Boolean circuit using the same operations,
where negations are applied solely to input variables. The transformations follows from de
Morgan’s laws and keep the circuit size within a factor 2. In other words, one can see such
Boolean circuits as monotone Boolean circuits with respect to the input literals, i.e., input
variables and their negations. We shall term Boolean circuits in the latter form normalized.

In case of n × n Boolean matrix product, almost tight or even tight lower bounds of
the form Ω(n3) for the monotone circuit complexity were presented in a series of papers
[13, 14, 16] more than three decades ago. The best known (in the literature) lower bound
on monotone Boolean circuit complexity for n-dimensional Boolean vector convolution is
Ω(n2/ log6 n) due to Grinchuk and Sergeev [8]. It improves on the previously best n3/2 lower
bound due to Weiss [25] and an earlier best n4/3 lower bound due to Blum [3]. The lower
bounds of Weiss, Grinchuk and Sergeev are on the number of disjunctions while that of Blum
is on the number of conjunctions.

Furthermore, Lingas studied the complexity of monotone Boolean circuits for Boolean semi-
disjoint bilinear forms under various monotone circuit restrictions in [12]. In particular, he



A. Lingas 26:3

Table 1 Lower bounds on the monotone Boolean circuit complexity for n-dimensional Boolean
vector convolution in a historical perspective.

author year lower bound

N. Pippinger and L.G. Valiant [15] 1976 Ω(n log n)
E.A. Lamagna [11] 1979 Ω(n log n)

N. Blum [3] 1980 n4/3 conjunctions
R. Weiss [25] 1981 n3/2 disjunctions

M.I. Grinchuk and I.S. Sergeev [8] 2011 Ω(n2/ log6 n) disjunctions

considered monotone Boolean circuits of bounded conjunction-depth, i.e., bounded maximum
number of and-gates on any single directed path to an output gate in the monotone circuit.
He showed that any monotone Boolean circuit of conjunction-depth at most d computing
a Boolean semi-disjoint form with p prime implicants has to have at least p/22d and-gates.
As a corollary, he obtained the Ω(n2−2ε) lower bound on the size of any monotone Boolean
circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean vector
convolution.

1.2 Our contributions
Surprisingly enough, we can derive a lower-bound trade-off between the circuit size and its
conjunction-depth for normalized Boolean circuits computing semi-disjoint bilinear forms
similar to that for monotone Boolean circuits from [12].

More exactly, we show that any normalized Boolean circuit of conjunction-depth at most
d computing a Boolean semi-disjoint form with p prime implicants has to have Ω(p/24d)
and-gates. As a corollary, we obtain the Ω(n2−4ε) lower bound on the size of any normalized
Boolean circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean
vector convolution, and an analogous Ω(n3−4ε) lower bound for the n× n Boolean matrix
product.

We complete our lower-bound trade-offs with upper-bounds trade-offs of similar form
yielded by the aforementioned fast algebraic algorithms. We observe that there is a positive
constant c ≤ 1 such that for any ε ∈ (0, 1

c ), the n-dimensional Boolean vector convolution
can be computed by a normalized Boolean circuit of ε logn-bounded conjunction-depth and
O(n2−cε + n log2 n log logn) size. Similarly, there is a positive constant c ≤ 1 such that for
any ε ∈ (0, 1

c ), the n× n Boolean matrix product can be computed by a normalized Boolean
circuit of ε logn-bounded conjunction-depth and O(n3−(3−ω)cε) size.

1.3 Motivations
Our primary motivation is the very weak progress in deriving non-trivial lower bounds on the
size of Boolean circuits using disjunctions, conjunctions and negations to compute explicit
Boolean functions computable in polynomial time, since the 70s (from 3n [19] to almost
5n [9, 10]). For this reason, trade-offs between structural parameters and the size for the
aforementioned circuits computing explicit functions should be of interest.

We believe that the conjunction-depth of a normalized Boolean circuit computing a
Boolean form whose prime implicants (see Preliminaries) consist of relatively few literals is
an interesting structural characteristic. (For not-necessarily normalized Boolean circuit using
disjunctions, conjunctions and negations, the concept of conjunction-depth does not make

CCC 2018



26:4 Small Normalized Boolean Circuits

sense since conjunctions can be eliminated by composing negations with disjunctions via de
Morgan’s laws. Also, there are trivial examples of Boolean functions that require a large
conjunction-depth in normalized circuits. E.g., the function given by ¬

∨n
i=1 xi ≡

∧n
i=1 x̄i

obviously requires logn conjunction-depth. The reason is that it has a prime implicant
consisting of n literals.)

Observe that each prime implicant of the functions occurring in semi-disjoint bilinear forms
consists solely of two literals. Hence, any semi-disjoint bilinear form admits a normalized
(in fact, monotone) Boolean circuit having conjunction-depth 1 and the number of gates
proportional to the total number of prime implicants (see also Fact 1).

Our lower-bound trade-offs showing that in order to decrease the size of normalized
Boolean circuits computing a semi-disjoint bilinear form one has to increase their conjunction-
depth should be of interest. Our upper-bound trade-offs imply that normalized Boolean
circuits of even sub-logarithmic conjunction-depth for Boolean vector convolution or Boolean
matrix product have substantially smaller size than their monotone counterparts of unbounded
conjunction-depth.

1.4 Paper structure
In Preliminaries, we introduce basic definitions and notation. In Section 3, we present three
lemmata on restricted normalized circuits computing a Boolean form. In Section 4, we show
our lower-bound trade-offs for semi-disjoint bilinear forms which constitute our main results.
In Section 5, we present our upper-bound trade-offs. We conclude with final remarks.

2 Preliminaries

For two Boolean n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1), their convo-
lution is a vector c = (c0, ..., c2n−2), where ci =

∨min{i,n−1}
l=max{i−n+1,0} al ∧ bi−l for i = 0, ..., 2n− 2.

A literal is a variable or the negation of a variable.

A (Boolean) circuit is a finite directed acyclic graph with the following properties:
1. The indegree of each vertex (termed gate) is either 0, 1 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are labeled by

elements in some set of literals, i.e., variables and their negations, and the Boolean
constants 0, 1.

3. The vertices of indegree 2 are labeled by elements of the set {and, or} and termed
and-gates and or-gates, respectively.

4. The vertices of indegree 1 are labeled by negation and termed negation-gates.

A Boolean circuit is normalized if it does not use negation-gates. A Boolean circuit is
monotone if it is normalized and it does not use negated variables.

The size of a Boolean circuit C is the total number of non-input gates in C while the depth
of C is the maximum length of a directed path in C. Furthermore, C is of conjunction-depth
d if the number of and-gates on any directed path in C does not exceed d.

With each gate g of a normalized Boolean circuit, we associate a set T (g) of terms in
a natural way. Thus, with each input gate, we associate the singleton set consisting of the
corresponding variable, negated variable or constant. Next, with an or-gate, we associate
the union of the sets associated with its direct predecessors. Finally, with an and-gate g,
we associate the set of concatenations t1t2 of all pairs of terms t1, t2, where ti ∈ T (gi)
and gi stands for the i-th direct predecessor of g for i = 1, 2. The function computed at



A. Lingas 26:5

the gate g is the disjunction of the functions (called monoms) represented by the terms in
T (g). The monom represented by a term t is obtained by replacing concatenations in t with
conjunctions, respectively. A term in T (g) is a zero-term if it contains the Boolean constant
0 or a variable and its negation. Clearly, a zero-term represents the Boolean constant 0.

A form composed of k Boolean functions is computed by a Boolean circuit if there are k
distinguished gates (called output gates) computing the k functions.

A term (an output term, respectively) of a circuit C is a term in T (g) for some gate
(output gate, respectively) g of C.

An implicant of a Boolean form F is a conjunction of some variables and/or some negated
variables of F and/or Boolean constants (monom) such that there is a function belonging to
F which is true whenever the conjunction is true. If the conjunction includes the Boolean 0
or a variable x and its negation x̄ then it is a trivial implicant of (any) F.

A non-trivial implicant of F that is minimal with respect to included literals is a prime
implicant of F.

The following upper bound is straight-forward.

I Fact 1. [12] Each Boolean semi-disjoint bilinear form composed of l functions on x0, ..., xn−1
and y0, ..., yn−1 with p prime implicants in total can be computed by a monotone Boolean
circuit of conjunction-depth 1 with p ≤ n2 and-gates and p− l or-gates.

Proof. First, we use p and-gates to compute each prime implicant xiyj separately. Then,
we form l disjoint or-unions of the prime implicants corresponding to the l functions of the
bilinear form using p− l or-gates. J

3 Lemmata on Normalized Circuits

Recall that the monom represented by a term t is obtained by replacing concatenations in
t with conjunctions, respectively. We shall say that an implicant (in particular, a prime
implicant) of a function fg computed at the gate g is represented by a single term in T (g) if
there is a term t ∈ T (g) such that the monom represented by t is equivalent to the implicant.

In the following two lemmata, we shall show that if the output terms of a normalized
circuit computing a form contain a bounded number of different literals, we can obtain a
situation somewhat similar to that in monotone circuits, where each prime implicant of an
output function has to be represented by a single output term. Namely, we can zero some
part of variables such that in the resulting circuit, a large part of the prime implicants of the
form is represented by single output terms.

I Lemma 2. Let C be a normalized Boolean circuit computing a form F. For each prime
implicant of the function fo ∈ F computed at the output gate o of C, there is a term in T (o)
representing the (whole) prime implicant or a conjunction of the prime implicant with solely
negated variables.

Proof. Consider a prime implicant of fo. Assign the Boolean 1 to the variables in the prime
implicant and the Boolean 0 to all remaining variables in F. Under this assignment, the value
of fo should be 1. Hence, since each term in T (o) has to represent an implicant of fo, there
must exist a term in T (o) representing the whole prime implicant or a conjunction of the
prime implicant with solely negated variables. J

CCC 2018



26:6 Small Normalized Boolean Circuits

I Lemma 3. Let C be a normalized Boolean circuit computing a form F with p prime
implicants. Suppose that each prime implicant of F is composed of q (not negated) variables
and each output term of C contains at most k distinct literals. Let 0 < β < 1. There is a
subset of the set of variables of F such that after setting them to the Boolean 0 there are at
least pβq(1−β)k−q prime implicants of F represented by single output terms of the circuit C ′
resulting from C. Note that the circuit C ′ computes a form F ′ whose set of prime implicants
is a subset of that of F.

Proof. Set each variable of F to the Boolean constant 0 with probability 1− β uniformly at
random. Consider any prime implicant xi1 ...xiq of F. The probability that none of xi1 , ..., xiq
is set to 0 is βq. By Lemma 2, there is a set of 0 ≤ l ≤ k − q negated variables whose
conjunction with xi1 ...xiq is represented by an output term of C. The probability that each
of these negated l variables is set to 0 is at least (1− β)k−q. Hence, the expected number of
prime implicants of the form computed by the resulting circuit represented by single output
terms in this circuit is at least pβq(1− β)k−q. It follows that there is a subset of the set of
variables satisfying the requirements of the lemma. J

The final lemma in this section is pretty obvious.

I Lemma 4. Let C be a normalized Boolean circuit of d-bounded conjunction-depth computing
a form F. Each term, in particular, each output term of C includes at most 2d literals.

Proof. An and-gate can at most double the number of literals in single terms while an
or-gate does not increase it. Hence, by induction on the maximum number d of and-gates on
a path from an input gate to a gate g in C, any term in T (g) includes at most 2d literals. J

4 Lower-bound Trade-offs (main results)

In monotone circuits, where negation is not used, each prime implicant of a function computed
at a gate h has to be represented by a single term in T (h) (there might be several such terms
and many other terms having subterms representing the prime implicant). This is not the
case in normalized circuits generally. There, we can associate to a prime implicant of the
function the set of all terms in T (g) representing a conjunction of the prime implicant with
an additional conjunction of literals (e.g., xiyj could be represented by {xiyjxk, xiyj x̄k}).
Interestingly, the disjunction of the aforementioned additional conjunctions does not have to
be always true (e.g., x ∨ y could be computed by xȳ ∨ y so the prime implicant x would be
represented just by {xȳ}).

First, we shall show how a restriction on the maximum number of distinct literals which
occur in an output term of a normalized Boolean circuit computing a Boolean semi-disjoint
form can be used to derive a non-trivial lower bound on the number of and-gates in the
circuit.

I Lemma 5. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear form
F on the variables x0, ..., xn−1 and y0, ..., yn−1. Suppose that for each output gate o in C,
each term in T (o) contains at most k different literals. Let h be a gate connected by directed
paths with some output gates in C such that the function computed at h has prime implicants
zq1 , ..., zql(h) which are single (not negated) variables represented by single terms in T (h), and
possibly some other prime implicants. The inequality l(h) ≤ k holds or h can be replaced by
the Boolean constant 1.



A. Lingas 26:7

Proof. Consider a directed path P connecting h with some output gate o in C. At the output
gate o, for each zqr

, 1 ≤ r ≤ l(h), any single term t(zqr
) ∈ T (h) representing zqr

has to
appear in terms t1t(zqr

)t2 in the associated set T (o) (see Preliminaries) such that t1t2 is a
concatenation (i.e., conjunction) of some terms added by subsequent and-gates on P and
t1t(zqr

)t2 represents an implicant of the function fo computed at o. In general, t(zqr
) may

include several occurrences of zqr and the Boolean 1, for simplicity we may assume w.l.o.g.
that t(zqr

) = zqr
. (The reason of having t1, t2 instead of a single term t is that syntactically

the concatenations can come from both sides.)
Suppose that there is such a t1t2, where t1zt2 ∈ T (o) for some z ∈ {zqr

|1 ≤ r ≤ l(h)},
which does not represent an implicant of fo. It follows from the definition of t1t2 that for any
z ∈ {zqr |1 ≤ r ≤ l(h)}, the term t1zt2 also appears in the set T (o) of terms associated with
the output gate o and consequently it has to represent an implicant of fo as well. Therefore,
for each such a z, either t1t2 contains z̄ or t1t2 contains the unique "mate" variable z′ for
which zz′ is a prime implicant of fo. Note that if z is an x-variable then z′ is a y-variable
and vice versa. Set H to {zq1 , ..., zql(h)}. E.g., the case that t1t2 contains z̄ could happen if
there were some other variables z” ∈ H for which t1z”t2 are not trivial implicants of fo but
t1zt2 becomes a trivial implicant because it contains both z and z̄.

Consider the mapping of each z ∈ H either to the z′ in t1t2 (which must be the unique
"mate" among the prime implicants of fo) or to the z̄ ∈ t1t2. Clearly, all the z̄ for z ∈ H are
distinct negated variables. Because no two elements of H have the same mate among the
prime implicants of fo, no two of the z′ for z ∈ H can be the same. Finally, the mates z′
are single not negated variables. It follows that the mapping is one-to-one. We infer that
l(h) ≤ k.

On the contrary, if each such term t = t1t2 for each path P connecting h with any output
gate o, represents an implicant of fo then on each P we could connect the successor of the
start vertex h with the Boolean constant 1 instead of h and the output gate o still would
output fo. To see this observe that then each u ∈ T (h) is a part of the terms of the form
t1ut2 in T (o), where t1t2 represents an implicant of the function fo. Since this holds for each
successor of h, this gate can be replaced by the constant 1. J

For an and-gate g in a normalized Boolean circuit C computing a semi-disjoint bilinear
form F, Sg will denote the set of prime implicants s of F such that:
1. s is a prime implicant of the function computed at g that is represented by a single term

in T (g),
2. s is not a prime implicant of the function computed at either of the two direct predecessors

h of g that is represented by a single term in T (h), and
3. there is a directed path connecting g with the output gate computing the function whose

prime implicant is s.

I Lemma 6. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F. Suppose that for each output gate o in C, each term in T (o) contains at most k
different literals. Next, suppose that C does not contain any and-gate that could be replaced
by the Boolean 1 so the resulting circuit would still compute F. For any and-gate g in C, the
inequality |Sg| ≤ k2 holds.

Proof. We may assume w.l.o.g. |Sg| ≥ 1. It follows that at least for one of the direct
predecessor gates h of g, the function computed at h has at least

√
|Sg| single variable prime

implicants represented by single terms in T (h). By Lemma 5, we infer that either
√
|Sg| ≤ k

or the gate h can be replaced by the constant 1. The latter possibility contradicts the lemma
assumptions. J

CCC 2018



26:8 Small Normalized Boolean Circuits

I Theorem 7. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F with p prime implicants. Suppose that each output term of C contains at most k
distinct literals. The circuit C has at least p

k4 (1− 1
k )k−2 and-gates.

Proof. We shall apply Lemma 3 with β = 1
k and q = 2 to the circuit C. Let C ′ be the

circuit resulting from C by zeroing the subset of variables specified in this lemma. Note
that the output terms of C ′ still contain at most k different literals, and that C ′ computes
a semi-disjoint bilinear form F ′ whose prime implicants are prime implicants of F. Among
the prime implicants of F ′, at least p

k2 (1− 1
k )k−2 are represented by single output terms by

Lemma 3.
Iterate the following steps starting from the circuit C ′. Whenever the current circuit

contains an and-gate or an or-gate h that can be replaced by the Boolean constant 1 without
affecting the functions computed at the output gates, replace h by 1. By induction on the
number of iterations, the new circuit still computes the same bilinear form F ′. Also, the
number of prime implicants of F ′ represented by single output terms does not drop and each
output term of the new circuit contains at most k literals.

Since the circuit C ′ is finite and each iteration eliminates at least one gate, after a finite
number of iterations, we obtain a circuit C ′′ sharing the aforementioned properties, not
containing any and-gate or or-gate that could be replaced by 1, and still computing F ′. It
follows from Lemma 5 that C ′′ does not have any gate h such that the function computed at
h contains more than k single-variable prime implicants represented by single terms in T (h).

Let S be the set of at least p
k2 (1− 1

k )k−2 prime implicants of F ′ represented by single
output terms of C ′′. Recall the definition of the set Sg of prime implicants of a form for an
and-gate g given before Lemma 6. For each s ∈ S, there must be at least one and-gate g
of C ′′ such that s ∈ Sg. (To find such a gate g start from the output gate computing the
function of F ′ for which s is a prime implicant represented by a single term and iterate the
following steps: check if the current gate g satisfies s ∈ Sg, if not go to the direct predecessor
of g that computes a function having s as a prime implicant represented by a single term.)
By the latter lemma, we have |Sg| ≤ k2. Hence, C ′′ has at least |S|/k2 ≥ p

k2 (1− 1
k )k−2/k2 ≥

p
k4 (1− 1

k )k−2 and-gates since |S| ≥ p
k2 (1− 1

k )k−2. J

By combining Theorem 7 with Lemma 4, we obtain our main result.

I Theorem 8. Let C be a normalized Boolean circuit of conjunction-depth at most d
computing a semi-disjoint bilinear form F with p prime implicants. The circuit C has at
least p

24d (1− 1
2d )2d−2 and-gates.

Observe that the n-dimensional Boolean vector convolution has Θ(n2) prime implicants
while the n× n Boolean matrix product has Θ(n3) prime implicants.

I Corollary 9. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-depth
that computes the n-dimensional Boolean vector convolution has Ω(n2−4ε) and-gates.

I Corollary 10. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-
depth that computes the n× n Boolean matrix product has Ω(n3−4ε) and-gates.



A. Lingas 26:9

5 Upper-bound Trade-offs

The fast algebraic algorithms for arithmetic matrix multiplication [7, 22, 26] yield normalized
Boolean circuits for the n× n Boolean matrix product of O(nω) size and O(logn) depth (see
[5]). Similarly, the fast algorithm for integer multiplication [21] yields normalized Boolean
circuits for the n-dimensional Boolean vector convolution of O(n log2 n log logn) size and
O(logn) depth [6, 5]. We can use these facts to derive the following upper-bound trade-offs
analogous to our lower-bound trade-offs for these two problems.

I Proposition 11. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1
c ), the

n-dimensional Boolean vector convolution can be computed by a normalized Boolean circuit
of ε logn-bounded conjunction-depth and O(n2−cεn log2 n log logn) size.

Proof. By the aforementioned facts, for some positive constant c ≤ 1, an ncε-dimensional
Boolean vector convolution can be computed by a normalized Boolean circuit of ε logn-
bounded conjunction-depth and O(ncε log2 n log logn) size. On the other hand, since cε < 1,
the n-dimensional Boolean vector convolution can be easily reduced to n2−2cε ncε-dimensional
Boolean vector convolutions using just disjunctions. The resulting normalized Boolean circuit
has still ε logn-bounded conjunction-depth and O(n2−cε log2 n log logn) size. J

I Proposition 12. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1
c ), the n× n

Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(n3−(3−ω)cε)) size.

Proof. By the aforementioned facts, there is a positive constant c ≤ 1 such that an ncε× ncε
Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(nωcε) size. On the other hand, since cε < 1, the n × n Boolean
matrix product can be easily reduced to n3−3cε ncε×ncε Boolean matrix products using just
disjunctions. The resulting normalized Boolean circuit has still ε logn-bounded conjunction-
depth and O(n3−(3−ω)cε) size. J

6 Final Remarks

The disjointness of the sets of prime implicants of the Boolean functions forming a bilinear
form is not essential in the proofs of Theorems 7, 8. Hence, these theorems hold even
for Boolean bilinear forms satisfying only the two remaining conditions (see Introduction)
provided that p denotes the number of distinct prime implicants of the form.

Our main results are the lower-bound trade-offs between the number of and-gates and
conjunction-depth in normalized Boolean circuits computing semi-disjoint bilinear forms
(Section 4). They rely on the analysis of output terms containing bounded numbers of literals
because of the assumed bound on the conjunction-depth (Lemma 4, note that this lemma
wouldn’t hold if the fan-in of and-gates wasn’t bounded).

References
1 N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions. Com-

binatorica, 7(1):1–22, 1987.
2 A. E. Andreev. On one method of obtaining constructive lower bounds for the monotone

circuit size. Algebra and Logics, 26(1):3–26, 1987.
3 N. Blum. An ω(n4/3) lower bound on the monotone network complexity of the n-th degree

convolution. Theoretical Computer Science, 36:59–69, 1985.
4 N. Blum. On negations in boolean networks. In Efficient Algorithms, volume 5760 of

Lecture Notes in Computer Science, pages 18–29. Springer-Verlag, 2009.

CCC 2018



26:10 Small Normalized Boolean Circuits

5 J. H. Reif (editor). Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers, San
Mateo, 1993.

6 M. J. Fisher and M. S. Paterson. String-matching and other products. In Proceedings of
the 7th SIAM-AMS Complexity of Computation, pages 113–125, 1974.

7 F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, Lecture Notes in Com-
puter Science, pages 296–303. Springer-Verlag, 2014.

8 M. I. Grinchuk and I. S. Sergeev. Thin circulant matrices and lower bounds on the com-
plexity of some boolean operations. Diskretn. Anal. Issled. Oper., 18:35–53, 2011.

9 K. Iwama and H. Morizumi. An explicit lower bound of 5n− o(n) for boolean circuits. In
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, pages
353–364. Springer-Verlag, 2002.

10 O. Lachish and R. Raz. Explicit lower bound of 4.5n−o(n) for boolen circuits. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, pages 399–408. ACM, 2001.

11 E. A. Lamagna. The complexity of monotone networks for certain bilinear forms, routing
problems, sorting, and merging. IEEE Transactions on Computers, c-28(10), 1979.

12 A. Lingas. Towards an almost quadratic lower bound on the monotone circuit complexity
of the boolean convolution. In Theory and Applications of Models of Computation, Lecture
Notes in Computer Science, pages 401–411. Springer-Verlag, 2017.

13 K. Mehlhorn and Z. Galil. Monotone switching circuits and boolean matrix product. Com-
puting, 16:99–111, 1976.

14 M. Paterson. Complexity of monotone networks for boolean matrix product. Theoretical
Computer Science, 1(1):13–20, 1975.

15 N. Pippenger and L.G. Valiant. Shifting graphs and their applications. Journal of the
ACM, 23(3):423–432, 1976.

16 R. Pratt. The power of negative thinking in multiplying boolean matrices. SIAM J. Com-
put., 4(3):326–330, 1975.

17 R. Raz. On the complexity of matrix product. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pages 144–151. ACM, 2002.

18 A. A. Razborov. Lower bounds on the monotone complexity of some boolean functions.
Doklady Akademii Nauk, 281(4):798–801, 1985.

19 C. P. Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktionen.
Computing, 13(2):155–171, 1974.

20 C. P. Schnorr. A lower bound on the number of additions in monotone computations.
Theoretical Computer Science, 2(3):305–315, 1976.

21 A. Schönhage and V. Strassen. Schnelle multiplikation grober zahlen. Computing, 7:281–
292, 1971.

22 V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969.

23 L.G. Valiant. Negation can be exponentially powerfull. Theoretical Computer Science,
12:303–314, 1980.

24 I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in Computer
Science, New York, Stuggart, 1987.

25 J. Weiss. An n3/2 lower bound on the monotone network complexity of the boolean convo-
lution. Information and Control, 59:184–188, 1983.

26 V. Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Pro-
ceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 807–898.
ACM, 2012.

27 U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, 2002.


	Introduction
	Background
	Our contributions
	Motivations
	Paper structure

	Preliminaries
	Lemmata on Normalized Circuits
	Lower-bound Trade-offs (main results)
	Upper-bound Trade-offs
	Final Remarks

