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Abstract
Computing the matching statistics of a string S with respect to a string T on an alphabet of size
σ is a fundamental primitive for a number of large-scale string analysis applications, including the
comparison of entire genomes, for which space is a pressing issue. This paper takes from theory
to practice an existing algorithm that uses just O(|T | log σ) bits of space, and that computes a
compact encoding of the matching statistics array in O(|S| log σ) time. The techniques used to
speed up the algorithm are of general interest, since they optimize queries on the existence of
a Weiner link from a node of the suffix tree, and parent operations after unsuccessful Weiner
links. Thus, they can be applied to other matching statistics algorithms, as well as to any suffix
tree traversal that relies on such calls. Some of our optimizations yield a matching statistics
implementation that is up to three times faster than a plain version of the algorithm, depending
on the similarity between S and T . In genomic datasets of practical significance we achieve
speedups of up to 1.8, but our fastest implementations take on average twice the time of an
existing code based on the LCP array. The key advantage is that our implementations need
between one half and one fifth of the competitor’s memory, and they approach comparable
running times when S and T are very similar.

2012 ACM Subject Classification Theory of computation→Data structures design and analysis,
Theory of computation → Pattern matching

Keywords and phrases Matching statistics, maximal repeat, Burrows-Wheeler transform, wave-
let tree, suffix tree topology

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.17

Supplement Material Source code at https://github.com/odenas/indexed_ms.

Acknowledgements We thank German Tischler for help with adapting the implementation in
[15]. We thank Oscar Gonzalez and Peter Steinbach for help setting up the experiments on the
MPI-CBG cluster.

1 Introduction

The matching statistics of a string S, called the query, with respect to another string T ,
called the text, is an array MSS,T [1..|S|] such that MSS,T [i] is the length of the longest prefix
of S[i..|S|] that occurs in T . MS is almost as old as the suffix tree itself, with applications
that include file transmission [26], the detection of sequencing errors and single-nucleotide
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17:2 Fast matching statistics in small space

variations in read collections [17], the computation of substring kernels between two sequences
by indexing just one of them [15, 22], and the construction of whole-genome phylogenies
[5, 25] using the average value of MS as a proxy for the cross-entropy of random sources [6].
The effectiveness of matching statistics in alignment-free phylogenetics has also motivated
variants that allow for a user-specified number of mismatches (see e.g. [1, 11, 18, 23, 24] and
references therein). Despite the typical input being of genomic scale, however, few of these
methods are explicitly designed for space efficiency.

Computing MSS,T is a classical problem in string processing. In most practical cases, a
large number of queries S are asked to a constant T , motivating the construction of an index
on T . The textbook solution scans S from left to right while traversing suffix links and child
links in the suffix tree of T , spending a total O(|S| log σ) time 1. Symmetrically, S can be
scanned from right to left, while taking Weiner links and parent links in the (compressed)
suffix tree of T [15]. Both ways require access to the string depth of a suffix tree node, which
can be encoded implicitly in Θ(|T | log |T |) bits of total space in the longest common prefix
(LCP) array of T , and decoded in constant time per node using range-minimum queries on
the array [15]. In some practical datasets, most LCP values are small and can be encoded in
less than one byte. Alternatively, each depth value can be extracted from a compressed suffix
array. If such array is encoded in O(|T | log σ) bits, the best known time complexity for this
operation is O(logε |T |), which is often fast enough in practice [19]. Asymptotic complexity
increases when the compressed suffix array is encoded in |T | log σ+o(|T |)+O(min(σ, |T | log σ))
bits or in |T | log σ(1 + o(1)) +O(min(σ, |T | log σ)) bits. A third approach does not require
access to string depths at all, and achieves O(|T | log σ) bits of peak space while keeping
running time to O(|S| log σ) given the indexes [3]. Such asymptotic performance is attractive
for datasets, like whole genomes or collections of genomes, with large overall size and long
repeats. The algorithm in [3] has an additional feature that is useful for large datasets: it
does not output MSS,T itself, which takes |S| log |S| bits, but an encoding that takes just
2|S| bits, and that allows one to later retrieve MS[i] in constant time for any i, using just
o(|S|) more bits.

This paper studies a number of practical variants of the algorithm described in [3], which
use the same data structures as in the original paper, but improve on its speed. As customary,
since indexing T is performed only once and requires standard data structures, we disregard
index construction and focus just on the time for computing MSS,T given the indexes.

2 Preliminaries

2.1 Strings
Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let T = [1..σ]n−1#
be a string. Given a string W ∈ [1..σ]k, we call the reverse of W the string W obtained
by reading W from right to left. For a string W ∈ [1..σ]k# we abuse notation, denoting
by W the string W [1..k]#. We call repeat a substring W of T that occurs more than once
in T , and we call left-extensions (respectively, right-extensions) of W the set of distinct
characters that precede (respectively, follow) the occurrences of W in T . A repeat W is
left-maximal (respectively, right-maximal) iff it has more than one left-extension (respectively,
right-extension). A maximal repeat of T is a repeat that is both left- and right-maximal.

1 Here σ denotes the size of the alphabet from which strings S and T are drawn. We assume throughout
this paper that σ is at most polynomial in max(|T |, |S|).
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For reasons of space we assume the reader to be familiar with the notion of suffix tree
STT = (V,E) of T , which we do not define here. We denote by `(v) the string label of node
v ∈ V . It is well known that a substring W of T is right-maximal iff W = `(v) for some
internal node v of the suffix tree. It is also known that the maximal repeats of T form a
subset of the internal nodes of STT that is closed under ancestor operation, in the sense
that if the label of an internal node v is a maximal repeat of T , then the labels of all the
ancestors of v are also maximal repeats of T . We assume the reader to be familiar with the
notion of suffix link connecting a node v with `(v) = aW for some a ∈ [0..σ], to a node w
with `(w) = W . Here we just recall that inverting the direction of all suffix links yields the
so-called explicit Weiner links. Given an internal node v of STT and a symbol a ∈ [0..σ], it
might happen that string a`(v) does occur in T , but that it is not right-maximal, i.e. it is
not the label of any internal node: all such left extensions of internal nodes that end in the
middle of an edge or at a leaf are called implicit Weiner links. Note that an internal node
of STT can have more than one outgoing Weiner link, and that all such Weiner links have
distinct labels.

We assume the reader to be familiar also with the Burrows-Wheeler transform of T
(denoted BWTT in what follows), including the notions of lexicographic interval of the label
of a node of STT , backward step, rank and select queries on bitvectors, wavelet trees, and
rank queries on wavelet trees. Finally, we call suffix tree topology any data structure that
supports the following operations on STT : parent(id(v)), which returns the identifier of the
parent of a node v with identifier id(v); lca(id(u), id(v)), which returns the identifier of the
lowest common ancestor of nodes u and v; leftmostLeaf(id(v)) and rightmostLeaf(id(v)),
which compute the identifier of the leftmost (respectively, rightmost) leaf in the subtree
rooted at node v; selectLeaf(i), which returns the identifier of the i-th leaf in preorder
traversal; leafRank(id(v)), which computes the number of leaves that occur before leaf v in
preorder traversal; isAncestor(id(u), id(v)), which tells whether u is an ancestor of v. For
brevity, we write just v rather than id(v) in all such operations in what follows. It is known
that the topology of an ordered tree with n nodes can be represented using 2n+ o(n) bits
as a sequence of 2n balanced parentheses, and that 2n+ o(n) more bits suffice to support
the operations described above in constant time [12, 21]. We drop subscripts whenever the
reference strings are clear from the context.

2.2 Matching statistics in small space
MSS,T can be represented as a bitvector ms of 2|S| or 2|S|−1 bits, which is built by appending,
for each i ∈ [0..|S| − 1] in increasing order, MSS,T [i]−MSS,T [i− 1] + 1 zeros followed by a
one [3] (MSS,T [−1] is set to one for convenience). Since the number of zeros before the i-th
one in ms equals i+ MSS,T [i], one can compute MSS,T [i] for any i ∈ [0..|S| − 1] using select
operations on ms. The algorithm described in [3] computes ms using both a backward and
a forward scan over S, and it needs in each scan just BWTT with rank support, and the
topology of STT , or just BWTT with rank support, and the topology of STT . The two phases
are connected via a bitvector runs[1..|T | − 1], such that runs[i] = 1 iff MS[i] = MS[i− 1]− 1,
i.e. iff there is no zero between the i-th and the (i− 1)-th ones in ms.

First, we scan S from right to left, using BWTT with rank support, and the suffix tree
topology of T , to determine the runs of consecutive ones in ms. Assume that we know the
interval [i..j] in BWTT that corresponds to substring W = S[k..k + MS[k]− 1], as well as
the identifier of the proper locus v of W in the topology of STT . We try to perform a
backward step using character a = S[k − 1]: if the resulting interval [i′..j′] is nonempty, we
set runs[k] = 1 and we reset [i..j] to [i′..j′]. Otherwise, we set runs[k] = 0, we update the
BWT interval to the interval of parent(v) using the topology, and we try another backward
step with character a.
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In the second phase we scan S from left to right, using BWTT with rank support, a
representation of the suffix tree topology of T , and bitvector runs, to build ms. Assume that
we know the interval [i..j] in BWTT that corresponds to substring W = S[k..h− 1] such that
MS[k − 1] = h− k but MS[k] ≥ h− k. We try to perform a backward step with character
S[h]: if the backward step succeeds, we continue issuing backward steps with the following
characters of S, until we reach a position h∗ in S such that a backward step with character
S[h∗] from the interval [i∗..j∗] of substring W ∗ = S[k..h∗ − 1] in BWTT fails. At this point
we know that MS[k] = h∗ − k, so we append h∗ − k −MS[k − 1] + 1 = h∗ − h+ 1 zeros and
a one to ms. Moreover, we iteratively reset the current interval in BWTT to the interval of
parent(v∗), where v∗ is the proper locus of W ∗ in STT , and we try another backward step
with character S[h∗], until we reach an interval [i′..j′] for which the backward step succeeds.
Let this interval correspond to substringW ′ = S[k′..h∗−1]. Note that MS[k′] > MS[k′−1]−1
and MS[x] = MS[x− 1]− 1 for all x ∈ [k + 1..k′ − 1], thus k′ is the position of the first zero
to the right of position k in runs, and we can append k′ − k − 1 ones to ms. Finally, we
repeat the whole process from substring S[k′..h∗] and its interval in BWTT .

Note that S is read sequentially in both phases, runs and ms are built by iteratively
appending bits at one of their ends, and runs is read sequentially in the second phase. Thus,
there is no need to keep any of these vectors fully in memory, and they can be streamed to
or from disk in practice.

3 Fast matching statistics in small space

We assume that each BWT is represented as a wavelet tree, and that each suffix tree topology
is represented as a sequence of balanced parentheses. Thus, a node of a suffix tree is described
by two intervals: its interval in the BWT, and the pair of open and closed parentheses in
the sequence of balanced parentheses. We can derive the identifier in the topology from the
BWT interval, by issuing two selectLeaf operations followed by one lca operation. Vice
versa, we can derive the BWT interval from the identifier in the topology, by issuing one
leftmostLeaf and one rightmostLeaf operation, followed by two leafRank operations. As
a baseline, we consider an implementation of the algorithm in Section 2.2 in which both
the BWT interval and the identifier in the topology are updated at every step; in such
implementation, taking a Weiner link from a node involves calling nine functions provided
by the wavelet tree or the topology.

The two phases of the algorithm in Section 2.2 are symmetrical, thus the optimizations
described in this section apply equally to both and have similar effects in practice.

3.1 Faster Weiner links
Following a Weiner link with label c from a node v of the suffix tree requires issuing two
rank queries, for the same character, on the BWT interval [i..j] of v. Such queries traverse
the same nodes of the wavelet tree and, in the bitvector of each node, they access positions
whose distance is at most j − i, and potentially decreases as the search goes deeper in the
wavelet tree. Our first optimization consists in merging the two rank queries into a single
doubleRank query, which, when the distance between its arguments is small, invokes just
once some instructions (like counting the number of ones in some memory words) that would
be executed twice by two distinct rank calls.

Note that the algorithm uses rank queries on the BWT interval of v also to decide whether
a Weiner link with character c starts from v or not. The other advantage of merging the
two rank queries is that we can detect whether the current interval is empty at each level
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of the wavelet tree, and if so we can quit the traversal immediately. We call this further
optimization doubleRankAndFail.

If node v has indeed a Weiner link labeled by c, we need to derive, from the BWT interval
that results from taking such Weiner link, the identifier of the corresponding node v′ in the
suffix tree topology. However, the identifier of v′ in the topology is used by our algorithm only
if, in the following iteration, we need to move to the parent of v′, and in turn this happens
only when taking a Weiner link from v′ fails. In other words, inside a maximal sequence of
successful Weiner links, we need just to update one BWT interval per iteration, and this costs
just one doubleRank operation per iteration; we call this optimization lazyWeinerLink.

Knowing the repeat structure of T allows one to optimize Weiner links even further.
Specifically, if v is not a maximal repeat of T , its BWT interval contains exactly one distinct
character, thus it suffices to check whether e.g. the last position of the interval is equal to
c, and if so to issue just one rank operation. We call this optimization maxrepWeinerLink.
Even more aggressively, we can implement a rankAndCheck query which, in a single operation,
checks whether the last position of the BWT interval matches c, stops the traversal of the
wavelet tree as soon as it detects an empty interval, and returns the rank in case of success.
The same optimization can be applied to intervals of size one. We detect whether a node
is a maximal repeat by building a bitvector marked[1..|T |], where we set marked[i] = 1
and marked[j] = 1 for every interval [i..j] of a maximal repeat of T . We build marked by
traversing the suffix tree topology depth-first, avoiding to explore the subtree of a node that
is not a maximal repeat since it cannot contain other maximal repeats. To determine whether
a given interval [i..j] with j > i corresponds to a maximal repeat, we just check whether
marked[i] = 1 and marked[j] = 1. Recall that, if a node of the suffix tree is a maximal
repeat, then all its ancestors in the suffix tree are also maximal repeats. This implies that
the interval of a node that is not a maximal repeat is properly contained inside the interval
of a maximal repeat, and it does not contain the interval of any maximal repeat, thus it
must have either its first bit or its last bit equal to zero. If i = j, the interval is not a repeat.

3.2 Faster parent operations
Recall that, when a Weiner link labeled by character c fails from a node v, we iteratively
issue a parent operation on the topology, we convert the node identifier in the topology to
its BWT interval, and we check whether c occurs inside such interval. Knowing whether a
node is a maximal repeat or not enables once again a number of optimizations. First, if v is
not a maximal repeat, then none of its ancestors that are not themselves maximal repeats
have a Weiner link labeled with character c, so we can avoid trying the Weiner link from
an ancestor of v that is not a maximal repeat. Moreover, as soon as an ancestor u of v is
a maximal repeat, every one of the ancestors of u is a maximal repeat as well, so we do
not need to check whether the current node is a maximal repeat after the following parent
operations, if any.

Even more aggressively, when a Weiner link fails, we could directly move from node v
with BWT interval [i..j], to its lowest ancestor that is a maximal repeat, by taking the LCA
between the rightmost one up to i in the marked bitvector, and the leftmost one starting
from j. A further step along this line consists in moving directly to the lowest ancestor vc
of v whose BWT interval contains c: such ancestor, if any, is necessarily a maximal repeat.
This technique, which we call parentShortcut, can be implemented as follows. We move
to the rightmost occurrence of c before the interval of v (if any), by issuing a rank and a
select query on the BWT, then we move to the corresponding leaf w of the suffix tree by
issuing a selectLeaf query on the topology, and we compute the identifier of the ancestor
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p = lca(v, w) of v. We do the same for the leftmost occurrence of c to the right of the
interval of v (if any), computing the identifier of an ancestor q of v. Finally, we set vc to
the lowest of p and q, by issuing one isAncestor query provided by the topology. The
implementation of parentShortcut can be further optimized in practice. For example, if the
interval of p ends at the same position as the interval of v, we don’t even need to compute
the leftmost occurrence of c after the interval of v. And if the interval of p does not contain
the leftmost occurrence of c after the interval of v, we can just return p.

We briefly note that, in addition to being useful in practice, the parentShortcut technique
implies also an on-line algorithm for matching statistics:

I Lemma 1. There is an online algorithm that computes MSS,T in O(log σ) time per
character of S, and in |T | log σ(1 + o(1)) +O(min(σ, |T | log σ)) bits of space, by scanning S
from right to left.

Proof. The algorithm has the same structure as the one described in [15], but it spends a
bounded amount of time per character of S. Recall that rank queries can be implemented in
O(log σ) time with a wavelet tree, that select queries can be implemented in O(log σ) time
as well using additional |T |o(log σ) bits, and that parentShortcut takes constant time in
addition to select queries. Since the node reached by parentShortcut is a maximal repeat,
we just need to compute the string depth of maximal repeats throughout the algorithm. This
can be done in constant time, by storing also the topology of the suffix-link tree of T and
suitable bitvectors to commute between maximal repeats in the two topologies, as described
in [4, Section 6]. J

3.2.1 Selecting the next occurrence of a character
Selecting the previous or the next occurrence of a character from a given position of the BWT
of T lies at the core of the parentShortcut operation of Section 3.2, and it is a primitive
of independent interest. We implement a generalization selectNextT (i, j, c), which returns
the j-th occurrence of character c strictly to the right of position i, in a string T that is
assumed to be represented as a wavelet tree. For brevity we focus here just on the case in
which T [i] = c, since the case in which T [i] 6= c can be handled similarly.

We move from the root of the wavelet tree to a leaf, as in the rank operation at position
i, remembering the position ik that we reach in the bitvector of each level k. We invoke
jk = selectNext(ik, j, ck) on the bitvector of the leaf, where ck is the k-th bit in the
binary representation of c, then we move up to the bitvector of the parent and we invoke
jk−1 = selectNext(ik−1, jk − ik, ck−1); we continue in this way until we reach the root. A
version of selectNext for bitvectors that uses a sequential, word-based scan, was already
described in [9]. We take a similar approach, issuing a select operation on the bits of the
computer word that contains position ik, and on the following word if necessary (using class
bits in SDSL). In case such selects fail, we issue a standard select operation on the whole
bitvector. Note that the number of words that we check explicitly, in addition to the one
containing ik, could be bigger for bitvectors that are closer to the root of the wavelet tree:
we leave such variant to the full version of the paper.

A more advanced strategy could consist in dividing the bitvector of length |T | into blocks
of size B each, keeping an auxiliary bitvector pure[1..|T |/B] to mark the blocks that contain
just one distinct bit. Given a position i in the original bitvector, we could compute the
block b that contains it, and we could check pure[b] to see if such block is pure. If this is
the case we could return i + 1, or keep scanning pure[b + 1..|T |/B] until we find either a
pure block with the correct value, or an impure block. If block b is impure, we could scan it



D. Belazzougui, F. Cunial, and O. Denas 17:7

starting from position i and, in case of failure, we could continue as above. To speed up the
search even further, we could introduce block clusters of size B2, storing for each cluster the
position of the next pure cluster and of the next impure cluster. We leave the study of these
and other variants to the full version of the paper.

Recall that we use selectNext when a Weiner link fails from a BWT interval [i..j]. Thus,
one could create a doubleRankAndSelectNext operation that reuses the work performed by
doubleRank when going down the wavelet tree in selectNext. Specifically, the only overhead
of this operation, compared to a successful doubleRankAndFail, is saving the positions to
which i and j are projected in each bitvector. In case of failure, the procedure does not
abort but keeps going down to a leaf, from which it finally moves up, selecting both the next
occurrence (from j) and the previous occurrence (from i). As with doubleRank, performing
both selections at each level might save time by executing some instructions common to
them only once. In case of success, the bottom-up phase is not executed. For reasons of time,
we leave a full experimental study of doubleRankAndSelectNext to the full version of the
paper.

Finally, note that a fast implementation of selectNext can be useful for answering range
matching statistics queries on bitvector ms, i.e. queries that ask for all MS[k] values for k in
a user-specified [i..j], or for the average or maximum of such values, since one could replace
j − i+ 1 select operations with one select operation and j − i selectNext operations. We
leave the experimental study of range MS queries to the full version of the paper.

4 Implementation

Our C++ implementation, available at https://github.com/odenas/indexed_ms, is based
on the SDSL library [8], which we adapt to our purposes. Specifically, we modify the following
parts of SDSL: (1) the rank data structure rank_support_v; (2) the implementation wt_pc of
the wavelet tree for byte sequences (using other wavelet tree variants, e.g. Huffman-shaped, is
beyond the scope of this paper); (3) the implementation csa_wt of the compressed suffix array
based on a wavelet tree; (4) the code for select operations on bitvectors select_support_mcl.
We build the BWT with dbwt [16], and the other parts of the index by using csa_wt to
represent a compressed suffix array without samples, and by stripping down the compressed
suffix tree code in cst_sct3 (among other things, by removing the LCP array). We represent
the suffix tree topology explicitly with balanced parentheses, using a simplified version of
bp_support_sada that supports just the parent operation. Recall that bp_support_sada
is based on [20, 21], and that SDSL provides other representations bp_support_gg and
bp_support_g based instead on [7, 14]. We use bp_support_sada because it turned out to
be the fastest in preliminary experiments. We use cst_sct3, based on [13], rather than the
other compressed suffix tree representation provided by SDSL, because its topology takes
less space (3|T | bits, rather than 4|T | bits of e.g. cst_sada), at the cost of slower parent
operations. One could use more efficient algorithms to build the indexes, for example [2] for
the suffix tree topology; we do not try to optimize construction in this paper.

5 Experimental results

5.1 Artificial strings
We use a number of artificial strings to evaluate the effect of the optimizations in Section 3.
We resort to artificial strings because our optimizations are not designed for a particular class
of inputs, and because the magnitude of their speedups might be affected by the similarity
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between S and T , by the repetitiveness of T , and by the alphabet size, over which we need
control. In Section 5.2 we study performance on a dataset that approximates a real use case
in phylogeny reconstruction by average matching statistics. Since our artificial strings do not
cover the space of all possible input classes, the speedups we report should not be interpreted
as upper bounds.

To measure the effect of the Weiner link optimizations in Section 3.1, we consider four
types of (S, T ) pairs, corresponding to repetitive or random T , and to a query S that is either
similar to T or random (by random we mean a string generated by a source that assigns
uniform probability to every character of the alphabet). A repetitive string is generated as
follows: we take an initial random string W of length 104, and we concatenate it with 104

copies of itself, containing each 10 random positions that mismatch with W . We create a
string S that is similar to T by introducing mismatches in 5 · 103 random positions of a copy
of T , and by taking a prefix of such copy of length 5 · 105, and we experiment with alphabet
size 4 and 20. We measure the total time to compute ms and runs on a machine with one
Intel Core i7-6600U processor with two cores. Its L3 cache is 4MB, thus T does not fit in
cache. Throughout the section we call speedup the ratio between the time to build the ms and
runs bitvectors with a baseline implementation that is clear from the context, and the time
to build the same vectors with an implementation with specific optimizations turned on.

The doubleRank optimization tends to give median speedups smaller than 1.05 with
respect to an implementation that uses two rank operations per Weiner link, both for small
and for large alphabet, and it rarely degrades performance. Using doubleRankAndFail
gives further speedups between 1.01 and 1.02 with respect to doubleRank, mostly when S is
not similar to T ; when S is similar to T instead, performance tends to degrade by similar
amounts. This is expected, since this optimization targets cases in which Weiner link calls
are unsuccessful, and this is more likely to happen when S is not similar to T . If a Weiner
link is successful, doubleRankAndFail is actually introducing an overhead. The early failure
strategy might also be useful for representations in which the wavelet tree is not full, e.g.
when it has a Huffman shape: we leave this study to the full version of the paper.

As expected, lazyWeinerLink is most effective when S is similar to T , since it optimizes
successful Weiner links. When the alphabet is small, we observe median speedups of 3.2 for
repetitive T and of 2.4 for random T (Figure 1). For large alphabets the median speedups
become approximately 2.4 and 1.6, respectively. When S is not similar to T , the speedups
are approximately equal to 1.1 and never smaller than one.

Conversely, it turns out that exploiting maximal repeat information in Weiner links
is beneficial when S is not similar to T , and especially so when the alphabet is large.
maxrepWeinerLink provides median speedups of 2.1 and 2.6 when T is repetitive (depending
on alphabet size), and of 1.7 and 2.2 when T is random (Figure 2), compared to an
implementation with just doubleRankAndFail. If S is similar to T , maxrepWeinerLink tends
to degrade performance, and the median speedup can drop down to approximately 0.8. With
respect to maxrepWeinerLink, rankAndCheck provides median speedups of approximately
1.01 when T is repetitive, and of 1.04 and 1.07 when T is random, depending on alphabet
size, but only when S is not similar to T . The fact that maximal repeats are not useful when
S is similar to T might be explained by the fact that the overhead of checking whether a
node is a maximal repeat or not is compensated by a faster fail when a Weiner link is not
successful, but it is not compensated in case of a successful Weiner link. One might try to
reduce the cost of accessing the marked bitvector by interleaving it with the bitvector of the
root of the wavelet tree: we leave such extension to the full version of the paper.
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Figure 1 Speedup of lazyWeinerLink with respect to an implementation with no optimization,
for different input types (horizontal axis). Gray points are single measurements. Black points are
medians. Black bars indicate the first and third quartiles of ten experiments.
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Figure 2 Speedup of doubleRankAndFail and maxrepWeinerLink, with respect to an implement-
ation with just doubleRankAndFail. The plots follow the conventions of Figure 1.
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Figure 3 Speedup of parentShortcut with respect to a baseline with all optimizations turned
off (vertical axis), for different settings of k (horizontal axis). The plot follows the conventions of
Figure 1.

To measure the effect of the parentShortcut optimization of Section 3.2, we create pairs
(S, T ) in which the baseline algorithm is forced to issue long sequences of parent operations.
Specifically, we build a repetitive T as described above, starting from a random string W of
length 200 on alphabet size 6, and concatenating to it 5000− 1 copies of itself, containing
each k random positions that mismatch with W . The resulting T takes 10MB and does not
fit in cache. We build T repetitive to have nodes with large tree depth in STT and STT . We
build S by concatenating labels of nodes of STT with large tree depth (at least 10) but not
too large string length (at most 170), separated by a character that does not occur in T , to
enforce enough parent operations per successful Weiner link. We experiment with values
of k ranging from one to 200, and at low values of k a large fraction of parent sequences
has indeed large length. Using parentShortcut gives overall speedups between 1.8 and 2.3,
depending on the value of k, with respect to an implementation with no optimization (Figure
3).

5.2 Biological strings

We use a dataset of 24 eukaryotic species with relatively large genomes that has been used
for whole-genome phylogeny reconstruction by average matching statistics before [5]. The
dataset contains both pairs of very similar and of very different genomes2. We experiment
with both genomes and proteomes to study the effect of alphabet size (4 and 20, respectively).

2 We download the latest assemblies from NCBI, and we concatenate all sequences that belong to the
genome or proteome of the same species using a separator character not in the alphabet, replacing runs
of undetermined characters with a single occurrence of the separator. We run our experiments on a
machine with 256GB of RAM and with one Intel Xeon E5-2680v3 processor, which has two sockets
and 12 cores per socket. We pin our sequential program to a single socket using numactl -N0 -m0.
The L3 cache of the processor is 30MB, and its L2 cache is 256KB, thus the indexes for genomes and
bacteria do not fit in cache, the indexes for proteomes do not fit in the L2 cache, and the indexes of
some proteomes can fit in the L3 cache. We measure wall clock time with standard C++ methods, and
we measure peak memory by reading the maximum resident set size reported by /usr/bin/time.
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The resulting genome files range from approximately 87 million to 5.8 billion characters,
and proteome files range from approximately 4 million to 74 million characters. For reasons
of time, we compute the matching statistics just between the genome of a fixed species,
chosen arbitrarily (Oryzias latipes), and every other genome, and just between the proteome
of a fixed species, chosen arbitrarily (Homo sapiens), and every other proteome. We call
this setup Experiment 1. We also study the performance of our algorithms when T is
repetitive and S is similar to T . Specifically, we download the genomes and proteomes of all
the 8658 bacteria currently in NCBI: we build a query that consists of the concatenation
of the genomes (respectively, proteomes) of 839 bacteria randomly sampled from the set,
and a text that consists of the concatenation of the genomes (respectively, proteomes) of
all remaining bacteria. The resulting text files contain approximately 30 and 8.5 billion
characters, respectively, and the resulting query files contain approximately 3 billion and 980
million characters, respectively. We call this setup Experiment 2. As customary, we measure
peak memory and running time just for computing matching statistics given the indexes. We
define speedup as in Section 5.1, with respect to a version of our code with no optimization.

It turns out that lazyWeinerLink is the most effective optimization in both Experiment 1
and Experiment 2, providing approximately a 1.25 speedup for both genomes and proteomes
in the first case, and a 1.75 speedup for genomes and a 1.5 speedup for proteomes in the second
case. Using doubleRankAndFail in addition to lazyWeinerLink yields minor improvements
and the fastest implementation. Speedups are greater when S is similar to T , with the largest
speedups observed in Experiment 2 and for the pair of proteomes Homo sapiens and Pan
troglodytes (see Figure 4).

We compare our implementations to the one described in [15], which builds essentially the
same compressed suffix tree as SDSL’s cst_sct3, with csa_wt representing the compressed
suffix array, but which includes a compressed LCP array3 storing all values that are at most
254 in one byte, and longer values in log |T | bits [10]. As expected, our implementation is
more space-efficient, taking from approximately half to one-fifth of the space of the competitor
in both genomes and proteomes (Figure 5). Not surprisingly, however, our implementation
is also slower than the competitor, taking e.g. approximately twice its time for proteomes
(Figure 5). Recall that the fact that the algorithm in [15] performs just one pass over S
might contribute to this slowdown. However, for approximately half of the pairs of genomes
in Experiment 1, and for the pair of genomes in Experiment 2, our implementation is faster
than the competitor, with speedups up to 1.4.

The eight pairs of sibling leaves4 in the phylogenetic tree of [5, Figure 1] correspond to
similar species with short divergence times, and we observed before that our implementation
gives larger speedups for similar strings. We call Experiment 3 the comparison of our
implementation with doubleRankAndFail and lazyWeinerLink enabled, to the one in [15],
limited to such pairs. It turns out that our implementation is faster than or as fast as the
competitor for all but one such pairs of genomes, with speedups up to two, while still taking
between one fourth and one fifth of the competitor’s space (Figure 5). For pairs of proteomes,
however, our implementation remains slower.

3 The index contains also (unused) samples of the suffix array of T and of T , but the sampling rate
(104) makes their space negligible in practice. The code of [15] does not work with long strings, thus
we take prefixes of length 800 million of the strings it cannot handle. We use a version of the two
implementations in which they do not write any output. For each (S, T ) pair, we compare the fastest of
our implementations to the competitor.

4 Arabidopsis lyrata-Arabidopsis thaliana; Zea mays-Oryza sativa; Rattus norvegicus-Mus musculus; Gallus
gallus-Taeniopygia guttata; Brugia malayi-Caenorhabditis elegans; Drosophila melanogaster-Anopheles
gambiae.
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Figure 4 Effect of our optimizations (horizontal axis) on Experiment 1 (gray circles) and on
Experiment 2 (red circles). DR: doubleRank, F_DR: doubleRankAndFail, M: maxrepWeinerLink,
MC: rankAndCheck, LZ: lazyWeinerLink, P: parentShortcut. The largest speedups in the plot on
the right correspond to pair Homo sapiens and Pan troglodytes.
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Figure 5 The fastest of our implementations, compared to the implementation in [15]. “Genome”,
“Proteome”: Experiment 1 (gray circles) and Experiment 2 (red circles). “Genome similar”, “Proteome
similar”: Experiment 3. The plot follows the conventions of Figure 1.
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