
Exact Algorithms for the Maximum Planar
Subgraph Problem: New Models and Experiments
Markus Chimani1

Theoretical Computer Science, Osnabrück University, Germany
markus.chimani@uni-osnabrueck.de

https://orcid.org/0000-0002-4681-5550

Ivo Hedtke
Data Strategy & Analytics, Schenker AG, Essen, Germany
ivo.hedtke@dbschenker.com

https://orcid.org/0000-0003-0335-7825

Tilo Wiedera1

Theoretical Computer Science, Osnabrück University, Germany
tilo.wiedera@uni-osnabrueck.de

https://orcid.org/0000-0002-5923-4114

Abstract
Given a graph G, the NP-hard Maximum Planar Subgraph problem asks for a planar subgraph
of G with the maximum number of edges. The only known non-trivial exact algorithm utilizes
Kuratowski’s famous planarity criterion and can be formulated as an integer linear program (ILP)
or a pseudo-boolean satisfiability problem (PBS). We examine three alternative characterizations
of planarity regarding their applicability to model maximum planar subgraphs. For each, we
consider both ILP and PBS variants, investigate diverse formulation aspects, and evaluate their
practical performance.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases maximum planar subgraph, integer linear programming, pseudo boolean
satisfiability, graph drawing, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.22

1 Introduction

The NP-hard Maximum Planar Subgraph Problem (MPS) is a long known problem in graph
theory, already discussed in the classical textbook by Garey and Johnson [16,24]. Given a
graph G = (V,E), we ask for a largest edge subset F ⊆ E such that the graph induced by
F is planar. The closely related maximal planar subgraph problem asks for a set of edges
that we cannot extend without violating planarity and is trivially solvable in polynomial
time. Sometimes, the inverse measure skewness skew(G) is considered, where we ask for the
minimum number of edges to delete until obtaining planarity. MPS has received significant
attention for diverse reasons. Firstly, skewness is considered a very natural measure of
non-planarity and resides among the most common ones (such as crossing number and
genus). Secondly, determining a large planar subgraph is the foundation of the planarization
method [1,8] that is heavily employed in graph drawing: during planarization, one draws a
large – favorably maximum – planar subgraph and re-inserts the deleted edges, usually to

1 Supported by the German Research Foundation (DFG) project CH 897/2-1.

© Markus Chimani, Ivo Hedtke, and Tilo Wiedera;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:markus.chimani@uni-osnabrueck.de
https://orcid.org/0000-0002-4681-5550
mailto:ivo.hedtke@dbschenker.com
https://orcid.org/0000-0003-0335-7825
mailto:tilo.wiedera@uni-osnabrueck.de
https://orcid.org/0000-0002-5923-4114
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Exact Algorithms for Maximum Planar Subgraph

obtain a low number of overall crossings. In fact, this gives an approximation algorithm with
ratio roughly O (∆ · skew(G)) [10], where ∆ denotes the maximum node degree. Thirdly,
there are graph problems that become easier when the skewness of the input is small or
constant. E.g., we can compute a maximum flow in time O

(
skew(G)3 · |V | log |V |

)
[19], i.e.,

for constant skewness we obtain the same runtime complexity as on planar graphs.
On the positive side, we know that a spanning tree already approximates MPS by

1/3. The best known approximation algorithm is due to Călinescu et al., achieving an
approximation ratio of 4/9 [4]. On the downside, Călinescu et al. also show that the problem
is MaxSNP-hard, i.e., there is an upper bound < 1 on the obtainable approximation ratio
unless P = NP. Just recently, a new algorithm with approximation ratio 13/33 [6] was
discovered. The only non-trivial algorithm in literature for exactly computing a maximum
planar subgraph is based on integer linear programming and Kuratowski’s characterization
of planarity [26]. Since its inception over two decades ago, no other exact algorithm has been
proposed, and only few related algorithmic advances improved its performance, see [11].

Besides this famous K5-K3,3-subdivision criteria by Kuratowski [22] (see Section 2) there
is an abundance of planarity criteria. A (non-complete) list can be found in [23, 31]. In
this paper, we aim at evaluating planarity criteria regarding their usefulness in ILP/PBS
formulations to obtain new, alternative exact MPS algorithms. Naturally, we restrict ourselves
to a subset of criteria that we deem promising for this investigation. We hope to pinpoint
new possible ways of considering the problem, to gain new insight into the structure of the
MPS, and to lay the groundwork for developing faster exact algorithms. We present our three
new models in Sections 3–5. For each of the possible formulations, there are several options
and parameter choices. We report on algorithmic and experimental decisions thereto directly
after their description, based on pilot studies2. In Section 6 we present a full comparison of
the best parameterization for each formulation.

2 Preliminaries

In Linear Programming (LP), one is given a vector c ∈ Rd, a set of linear inequalities that
define a polyhedron P in Rd, and asked to find an element x ∈ P that maximizes cᵀx.
Integer Linear Programming (ILP) additionally requires the components of x to be integral.
Closely related is the concept of Pseudo Boolean Satisfiability (PBS), sometimes referred to
as 0-1-integer linear programming (a special form of ILP: the given polyhedron is a subset
of [0, 1]d), but typically described as a generalization of SAT: its describing constraints are
called clauses and usually have the form of first order Boolean formulae. Modern solvers
directly support clauses that require a certain number of literals (instead of just one) to be
true. The main difference between PBS and 0-1-ILP is the solution strategy: the first uses
fast enumeration and clause learning, whereas the latter employs LP-relaxations. We use
these concepts to design models for MPS that can be solved by arbitrary ILP/PBS solvers.

It often is beneficial to not add all constraints to a program but instead identify a relevant
subset of constraints in the solving process. This is usually referred to as the Cutting-Plane
Method. We utilize it in branch-and-cut-based ILP solving either on fractional or integral
solutions. In PBS solvers, one has to rely on a less sophisticated approach that iteratively
solves the PBS formula, adds new constraints as appropriate, and re-solves the extended
formula while maintaining some information from the previous runs. We refer to clauses that
are added iteratively to a PBS formula as lazy constraints.

2 The experimental setting is the same as discussed in Section 6.

M. Chimani, I. Hedtke, and T. Wiedera 22:3

2.1 Notation

Throughout this paper, our input graph G = (V,E) is undirected and simple with n := |V |
andm := |E|. For general graphs H, we refer to its nodes as V (H) and its edges as E(H). For
a directed graph H ′ we denote the arcs by A(H ′) and may write E(H ′) whenever considering
H ′ undirected. For any k ∈ N, we denote the set {0, 1, . . . , k − 1} by [k] and operations on
the members are to be understood modulo k. For any edge e of G, let V e := V \ e denote
the nodes that are not incident with e. Given a node v, its neighbors are denoted by N(v).
In a directed graph, we refer to the outgoing (incoming) arcs of a node v as δ+(v) (δ−(v),
respectively). For any two nodes u and v, we denote an arc from u to v by uv. If unambiguous,
we might also refer to an undirected edge {u, v} as uv. We denote the undirected counterpart
of an arc a as e(a). Given an arc a = uv, we define its reversal rev(a) := vu. Given a set X,
the set of all ordered k-tuples (all k-cardinality subsets) consisting of elements from X is
referred to as X(k) (X{k}, respectively). We abbreviate pairwise different by p.d.

2.2 Common Foundation of Models

We assume our input graph G to be biconnected non-planar, with edge weights w : E(G)→ N
and minimum node degree 3. This can be achieved in linear time using the Non-Planar Core
reduction [7] as a preprocessing, without changing the graph’s skewness.

All models are presented as ILPs. Since the PBS counterparts directly map to the
ILPs where clauses naturally correspond to constraints, we do not explicitly list the PBS
formulations. We highlight optional constraints that we include in the hope to help quickly
finding strong dual bounds with the symbol ?. We use solution variables se ∈ {0, 1} (for all
e ∈ E(G)) that are 1 if and only if edge e is in the planar subgraph. The objective is given by

max
∑

e∈E(G)
w(e) · se.

We always use Euler’s bound on the number of edges in planar graphs:∑
e∈E(G)

se ≤ 3n− 6.

2.3 Known Formulation: Kuratowski Subdivisions

I Theorem 1 (Kuratowski’s Theorem [22]). A graph is planar if and only if it neither contains
a subdivision of a K5 nor that of a K3,3.

Hence, it suffices to ask for any member of the (exponentially sized) set K(G) of all Kuratowski
subdivisions that at least one of its edges is deleted:∑

e∈E(K)
se ≤ |E(K)| − 1 ∀K ∈ K(G).

This formulation is due to Mutzel [26]. Later, Jünger and Mutzel showed that these constraints
form facets of the planar subgraph polytope [20]. Clearly, we cannot solve the model by
writing down every constraint explicitly. Instead, a sufficiently large but in many practical
cases small subset of constraints is identified by a (heuristic) separation procedure. Over the
years, the performance of this approach was improved by strong preprocessing [7], finding
multiple violated constraints in linear time [12], and good heuristics [11].

SEA 2018

22:4 Exact Algorithms for Maximum Planar Subgraph

Algorithm engineering and preliminary benchmarks. Using an ILP solver, we separate on
LP-solutions by rounding the computed fractional values, thus obtaining a graph H ⊂ G

and extracting Kuratowski subdivisions from H. Our experiments indicate that rounding
down values that are smaller than 0.99 (and 0.9 in a second round), yields locally optimal
(w.r.t. the algorithm’s parameter space) results. We use a heap to collect 50 most violated
constraints per LP-solution while maintaining linear runtime for the extraction of up to 250
Kuratowski subdivisions. For the PBS solver, we iteratively search for satisfying variable
assignments and check each for planarity, adding up to 50 lazy Kuratowski constraints each.

3 Facial Walks

For any connected planar graph, there is an embedding Π, i.e., a cyclic order of edges around
the nodes while the graph is drawn planarly. The regions bounded by the edges are the faces
of Π. The facial walk model is based on an idea developed in [2] for computing the genus of
a graph; it constitutes the only known model for the latter problem. It simulates the face
tracing algorithm that visits each face, traversing their borders in clockwise order. Let f̄ be
an upper bound on the number of attainable faces. Let A denote the bidirected counterpart
of the undirected edges of G. We add the following binary variables:

xi ∀i ∈ [f̄] Has value 1 iff face i exists.
cia ∀a ∈ A, i ∈ [f̄] Has value 1 iff arc a bounds face i: traversing i in clockiwse

order visits e(a) in the orientation of a.
pvu,w ∀v ∈ V, u, w ∈ N(v) Has value 1 iff w is the direct successor of u in the cyclic

order around v.
We define the following short-hand notations:

pv(U ×W) :=
∑
u∈U

∑
w∈W pvu,w, x(I) :=

∑
i∈I xi,

sv(W) :=
∑
w∈W svw, cI(J) :=

∑
i∈I
∑
j∈J c

i
j .

We then complete our model with the constraints below:

n+ x([f̄]) = 2 +
∑
e∈E se (1a)

xi = 1 ∀i ∈ [3] ? (1b)
xi ≥ xi+1 ∀i ∈ [f̄ − 1] ? (1c)

xi ≤ c{i}(A)/3 ∀i ∈ [f̄] (1d)
cia ≤ xi ∀a ∈ A, i ∈ [f̄]] (1e)

c[f̄](a) = se(a) ∀a ∈ A (1f)

c{i}(δ−(v)) = c{i}(δ+(v)) ∀i ∈ [f̄], v ∈ V (1g)
civw ≥ ciuv + pvu,w − 1 ∀i ∈ [f̄], v ∈ V, u, w ∈ N(v) (1h)
ciuv ≥ civw + pvu,w − 1 ∀i ∈ [f̄], v ∈ V, u, w ∈ N(v) (1i)

pv(u×N(v)) = svu ∀vu ∈ A (1j)
pv(N(v)× w) = svw ∀vw ∈ A (1k)

pv(U ×N(v)\U) ≥ sv({u, ũ})− 1 ∀v ∈ V, ∅6=U(N(v), u ∈ U, ũ ∈ N(v)\U (1l)

Inequality (1a) ensures that the number of nodes, faces, and edges satisfy Euler’s polyhedron
formula. Constraints (1d) account for the fact that each face needs at least three arcs.
Conversely, for any arc to be assigned to a face, the face needs to exists (→1e). For any arc
whose edge is in the planar subgraph there must exist exactly one face that contains the

M. Chimani, I. Hedtke, and T. Wiedera 22:5

arc (→1f). Constraints (1g) ensure that the number of inbound arcs equals the number of
outbound arcs at a fixed node in a fixed face. By adding constraints (1h,1i), we make sure
to respect the successor-variables. Constraints (1j,1k) ensure there are successor variables
selected for any edge that is in the solution. The exponentially large set of cut constraints (1l)
prohibits multiple cycles in the successor relation. Optionally, we can force the use of at least
the first 3 faces (→1b), otherwise the solution is outerplanar and thus not maximal; and we
can use faces in order of their indices (→1c) to break symmetries.

Special variables/constraints for degree-3 nodes. Consider any degree-3 node v with
neighbors uv0, uv1, uv2. If all its incident edges are in the solution, we have two possible
cyclic orders. Otherwise, the cyclic order is even unique. Thus, instead of introducing six
successor-variables pv... and constraints (1h–1l), we can use a single binary variable pv, and
straight-forwardly simplified constraints, for all i ∈ [f̄], j ∈ [3], and all degree-3 nodes v:

civuv
j+1
≥ ciuv

j
v + (pv−1) + (svuv

j+1
−1) civuv

j+2
≥ ciuv

j
v + (pv−1) + (svuv

j+2
−1)− svuv

j+1

ciuv
j
v ≥ civuv

j+1
+ (pv−1) + (suv

j
v−1) ciuv

j
v ≥ civuv

j+2
+ (pv−1) + (suv

j
v−1)− svuv

j+1

civuv
j
≥ ciuv

j+1v
− pv + (svuv

j
−1) civuv

j
≥ ciuv

j+2v
− pv + (svuv

j
−1)− svuv

j+1

ciuv
j+1v
≥ civuv

j
− pv + (suv

j+1v
−1) ciuv

j+2v
≥ civuv

j
− pv + (svuv

j+2
−1)− svuv

j+1

It can be easily verified by a case analysis that the above inequalities cover every possible
configuration of neighbors, where we might assume that there is at least one neighbor since
every maximal solution must be connected.

Algorithm engineering and preliminary benchmarks. In our experiments, the special
degree-3 node model did not solve more instances but resulted in a marginal reduction
(0.8%) of runtime; so we use it. The PBS variant on the other hand suffers from the special
degree-3 model, solving 9.38% less instances. An ILP variant where we eliminate the solution
variables se (directly using the containment variables cia instead) solved 3.29% less instances.
We refrain from testing polynomially sized models (betweenness- and index-based instead of
constraints (1h–1l)) as our exact genus experiments suggest this does not pay off [2].

4 Schnyder Orders

A partially ordered set (poset) is a pair P = (S,≺) where ≺ is a strict partial order (transitive,
irreflexive, binary relation) over the elements of S. Every poset has a realizer, i.e., a set R
of total orders (transitive, antisymmetric, total, binary relation) on S whose intersection
is ≺ [30]. This means that x ≺ y if and only if x <i y for all <i ∈ R. The Dushnik-Miller
dimension dimP of P is the minimum cardinality over all realizers of P [15]. We associate
a poset PG = (V ∪ E,≺G) to G such that x ≺G y if and only if y = {v, w} ∈ E and x ∈ y.
The dimension of G is defined as the Dushnik-Miller dimension of PG. We have

I Theorem 2 (Schnyder’s Theorem, 4.1 and 6.2 of [28]). A graph is planar if and only if its
dimension is at most three.

In fact, a graph with dimension 1 (2) is an isolated node (path, respectively). Therefore,
we propose a model to check for dimension three. While we could directly use the above
criterion for an ILP, Schnyder provides another, related and favorable, characterization:

I Lemma 3 (Lemma 2.1 of [28]). A graph G = (V,E) has dimension at most d if and only
if there exists a set of total orders <1, . . . , <d on V such that

SEA 2018

22:6 Exact Algorithms for Maximum Planar Subgraph

1. the intersection of <1, . . . , <d is empty; and
2. for each edge {x, y} ∈ E and each node z /∈ {x, y} of G, there is at least one order <i

such that x <i z and y <i z.

To use this criterion, we add (additionally to se, ∀e ∈ E) the following binary variables:
tiu,v ∀i ∈ [3],∀u, v ∈ V : u 6= v Has value 1 iff u <i v.
aie,v ∀i ∈ [3], e ∈ E, v ∈ V e Can have value 1 only if u <i v ∀u ∈ e.

We are now able to complete the Schnyder orders ILP by adding:

se ≤
∑2
i=0 a

i
e,v ∀e ∈ E, v ∈ V e (2a)

aie,v ≤ tiu,v ∀i ∈ [3], e ∈ E, u ∈ e, v ∈ V e (2b)∑2
i=0 t

i
u,v ≤ 2 ∀u, v ∈ V : u 6= v ? (2c)

tiu,v + tiv,w − 1 ≤ tiu,w ∀i ∈ [3], p.d. u, v, w ∈ V (2d)
tiu,v + tiv,u = 1 ∀i ∈ [3], u, v ∈ V : u 6= v (2e)

Constraints (2a) ensure that for any edge in the solution the Schnyder-property for any
non-incident node is satisfied by at least one of the three orders. By inequalities (2b), we
make sure that the second requirement of the Schnyder-property is respected. Transitivity of
the total orders is obtained by (2d). Finally, we require totality by adding (2e).

As Schnyder states [28], we may omit the intersection criterion (2c) as this is satisfied by
any non-trivial solution. Note that for any two adjacent edges uv, vw in the solution and any
i ∈ [3], we cannot have aiuv,w = aivw,u = 1, since the orders induced by the a-variables are
conflicting. Hence, we might pick a single triangle T = {e1, e2, e3} in the input graph and
assign realizing orders to each edge; thereby vi denotes the node incident to both of T \ {ei}:∑

j∈[3]\{i} a
j
ei,vi

= 0 ∀i ∈ [3] ? (2f)

Analogously, we might apply the same symmetry breaking constraint to two adjacent edges if
the graph is triangle-free. (Then e3 /∈ E, we let i ∈ [2] but retain the subscript at the sum.)

Algorithm engineering and preliminary benchmarks. We tested omitting the symmetry
breaking constraints (2f) (9.12% less solved instances), omitting intersection constraints (2c)
(0.85% less), manually separating the transitivity constraints (which does not change the
overall number of solved instances but increases runtime by 4.00%), and using Theorem 2
– the partial order on V ∪ E – instead (leading to a related but different model that we
do not describe here), where we solve 39.89% fewer instances (each when using an ILP
solver). Employing the PBS solver, we obtain similar results for omitting symmetry breaking
constraints (9.37% less) and for omitting intersection constraints (0.79% less). In contrast to
above, using lazy transitivity constraints leads to 5.24% fewer solved instances. We did not
investigate a PBS variant based on Theorem 2 as the ILP performance was already strikingly
underwhelming. We did consider a variant where we use betweenness variables [5] to describe
each of the three total orders. This allows us to omit the a-variables, but it did not yield
satisfactory runtime already on rather trivial instances.

5 Left-Right Edge Coloring

A Trémaux tree T is a rooted tree in a graph H such that for any cotree edge {u, v} ∈ ETH :=
E(H) \ E(T), we can traverse the nodes of the tree-path between u and v, such that the
levels of the nodes (i.e., their distances in T to the root) are strictly increasing. Any DFS-tree

M. Chimani, I. Hedtke, and T. Wiedera 22:7

(depth-first-search-tree), rooted at the start node, is a Trémaux tree. For any edge e we refer
to the node closer to the root of T as ◦

e and the other one as

e (this is unique by the Trémaux
property). Any Trémaux tree T defines a partial order on the nodes: for each edge e ∈ E(T)
we set ◦

e ≺

e, the partial order is obtained by extending this relationship to its transitive hull.

I Definition 4 (T -alike and T -opposite relations). We denote the meet (closest common
ancestor) of two nodes u, v in ≺ by u ∧ v. De Fraysseix and Rosenstiehl [13] define binary
relations between cotree edges as follows:
P1. For any α, β, γ ∈ ETH such that ◦

γ ≺ ◦
α ≤

◦
β ≺

α ∧

β ∧

γ ≺

α ∧

β, α and β are T -alike.
P2. For any α, β, γ ∈ ETH such that ◦

γ ≺ ◦
α ≺

◦
β ≺

α ∧

β ∧

γ ≺

β ∧

γ, α and β are T -opposite.
P3. For any α, β, γ, δ ∈ ETH such that ◦

γ =
◦
δ ≺ ◦

α =
◦
β ≺

α ∧

β ≺

α ∧

γ, and

α ∧

β ≺

β ∧

γ, α
and β are T -opposite.

I Theorem 5 (Section 2 of [13]). A connected graph H with a Trémaux tree T is planar if
and only if there exists a partition of ETH into two classes, such that any two edges which are
T -alike (T -opposite) belong to the same class (different classes, respectively).

Using this characterization, we design a model that describes a Trémaux tree with a
feasible bicoloring of cotree edges for any connected, planar subgraph. We introduce the
following set of binary variables, additionally to se for all e ∈ E:

td ∀d ∈ A Has value 1 iff arc d is in the Trémaux tree T .
`uv ∀u, v ∈ V Has value 1 iff node u lies on the path from the root to node v in T .

Always true for u = v and whenever u is the root of T .
Models the partial Trémaux ordering u ≺ v ⇐⇒ `uv = 1.

re ∀e ∈ E Has value 1 iff edge e is colored red (otherwise colored blue).

First, we establish a Trémaux tree. It has n − 1 edges (→3a), chosen from the planar
subgraph (→3b). Its edges seed the partial order on the nodes (→3c). To make sure the
order described by the `-variables is exactly the transitive hull of the tree, we need that
nodes with the same parent in the tree are not comparable (→3d). Whenever two nodes u, v
are smaller than a third one, u must be comparable to v (→3e). Constraints (3f), (3h), and
(3g) model transitivity, reflexity, and antisymmetry, respectively. Finally, the Trémaux tree
property – any edge of the planar solution being incident with two comparable nodes – is
enforced by constraints (3i). Note that the t-variables will always describe a tree, i.e., there
are no cycles as this would conflict with the induced partial order by (3c,3f,3g).∑

d∈A td = |V | − 1 (3a)
td ≤ se(d) ∀d ∈ A (3b)
td ≤ `d ∀d ∈ A (3c)

`vw + `wv + tuv + tuw ≤ 2 ∀u ∈ V, {uv, uw} ∈ A{2} (3d)

`uw + `vw ≤ 1 + `uv + `vu ∀(u, v, w) ∈ V (3) (3e)

`uv + `vw ≤ `uw + 1 ∀(u, v, w) ∈ V (3) (3f)

`uv + `vu ≤ 1 ∀{u, v} ∈ V {2} (3g)
`vv = 1 ∀v ∈ V (3h)
se ≤ `

e + `◦
e ∀e ∈ E (3i)

SEA 2018

22:8 Exact Algorithms for Maximum Planar Subgraph

Aiming at cutting off some symmetrical solutions, we may demand that tree edges and
deleted edges are colored blue:

t◦
e

e + t

e
◦
e + re ≤ 1 ∀e ∈ E ? (3j)

re ≤ se ∀e ∈ E ? (3k)

We may also enforce a unique Trémaux tree for each given assignment of s-variables: pick
an arbitrary root node r ∈ V , set its incoming arcs to 0 and those of every other node
to 1 (→3l,3m). Let <π denote a fixed non-cyclic order on the adjacency entries for each
node. We may demand that the first feasible edge in this order is always picked for the tree,
thus obtaining a distinct feasible DFS-tree for each assignment of s-variables (→3n).∑

wr∈A twv = 0 ? (3l)∑
wv∈A twv = 1 ∀v ∈ V \ {r} ? (3m)

tuw + `wv + suv ≤ 2 ∀uv <π uw ∈ A ? (3n)

We now establish a feasible bicoloring of the cotree edges. We define Ru,vα,β,γ := C{α,β,γ} +
`◦
γ

◦
α + `uv − 2, where CF :=

∑
d∈F

(
`d + se(d) − td − trev(d) − 2

)
for any F ⊆ A.

P 1
α,β(γ, u, v) := Ru,vα,β,γ + `◦

α
◦
β

+ ` ◦
βu

+ `u

γ − `v

γ + `v

α + `
v

β
− 5,

P 2
α,β(γ, u, v) := Ru,vα,β,γ + `◦

α
◦
β

+ ` ◦
βu

+ `u

α − `v

α + `
v

β
+ `v

γ − 5,

P 3
α,β(γ, δ, u, v, w) := Ru,vα,β,γ + C{δ} + `◦

αu + `uv + `uw + `u

α + `
u

β

+ `v

α − `v

β
+ `v

γ − `v

δ
− `w

α + `
w

β
− `w

γ + `
w

δ
− 9.

We model coloring restrictions of type P1 (T -alike), P2 (T -opposite by one other cotree
edge), and P3 (T -opposite by two other cotree edges) by constraints (3o–3q), respectively:

re(α) − re(β) ≥ P 1
α,β(γ, u, v)

re(β) − re(α) ≥ P 1
α,β(γ, u, v)

∀ arcs α, β, γ ∈ A of p.d. edges,
u 6= v ∈ V : ◦

γ 6= ◦
α ∧

◦
β 6= u

(3o)

re(α) + re(β) ≥ 1 + P 2
α,β(γ, u, v)

re(α) + re(β) ≤ 1− P 2
α,β(γ, u, v)

∀ arcs α, β, γ ∈ A of p.d. edges,
u 6= v ∈ V : ◦

γ 6= ◦
α 6=

◦
β 6= u

(3p)

re(α) + re(β) ≥ 1 + P 3
α,β(γ, δ, u, v, w)

re(α) + re(β) ≤ 1− P 3
α,β(γ, δ, u, v, w)

∀ arcs α, β, γ, δ ∈ A of p.d. edges,
u, v, w ∈ V : v 6= w and
◦
α =

◦
β ∧ ◦

γ =
◦
δ ∧ ◦

γ 6= ◦
α 6= u

(3q)

To comprehend the latter three constraint classes (3o–3q), one first needs to understand that
for any F ⊆ A : − CF ∈ N by definition (for any feasible variable assignment) and CF = 0
if and only if each arc of F is a cotree edge of the subgraph induced by the s-variables
and directed from the smaller to the larger node. Following this pattern, we define the
terms P 1

α,β(γ, u, v), P 2
α,β(γ, u, v), P 3

α,β(γ, δ, u, v, w) each equal to 0 if and only if we have a
configuration of type P1, P2, or P3, respectively, and smaller than or equal to −1 otherwise.
Using these terms we can enforce T -alike- and T -oppositeness for any pair α, β as given by
constraints (3o–3q); see Figure 1 for the selection of nodes u, v, and w.

DFS-based branching rule. Apart from a traditional automatic selection of branching
variables by the ILP solver, we consider a more specialized scheme. Given a vertex in the
branch-and-bound (B&B) tree, we traverse the locally non-deleted edges of G (i.e., the edges

M. Chimani, I. Hedtke, and T. Wiedera 22:9

...

...

...

...

γ

β

α

}
}u

v

α ∧

β

(a) type P1

...

...

...

...

γ

β

α

}
}u

v

β ∧

γ

(b) type P2

...

...

...
...

γ δ

α β}

} }

u

v

w

α ∧

γ

β ∧

δ

(c) type P3

Figure 1 Schematics of configurations inducing T -alike and T -opposite with ranges to pick
nodes u, v, w from, such that constraints (3o–3q) are tight. Nodes at the bottom are (closest to) the
root. Tree paths are straight (cotree edges are bent), partially dotted lines. Subgraphs of arbitrary
structure (possibly just a single node) are shaded in gray.

that have a local upper bound of 1) in their unique DFS order until we find an edge e that is
not yet chosen to be in the DFS-tree (i.e., the lower bound of the respective arc variable is
not 1). We spawn two new B&B subproblems, where e either is deleted or in the DFS-tree,
respectively. While we lose the potential benefit of always branching on a strongly fractional
value, we can fix two instead of just one free variable in both new B&B branches.

Algorithm engineering and preliminary benchmarks. Since we cannot hope to explicitly
write down all coloring constraints (3o–3q), we separate on integral ILP solutions and use
lazy constraints in the PBS variant. We use a simple O(n4) routine that identifies all violated
bicoloring constraints for a given non-planar subgraph. We can terminate this routine
prematurely if we consider the set of identified constraints to be locally sufficient.

We evaluated ILP variants where we omitted the symmetry breaking constraints (3l–3n)
(49.91% less solved instances), use our custom branch rule while limiting its application
to B&B-depth at most 6 (13.22% more) as well as without this limit (32.40% more), and
increased the limit of added constraints per LP run from the default of 100 to 1000 (0.93%
more). Using the PBS solver, we obtain similar results when omitting symmetry breaking
constraints (65.74% less). Furthermore, we investigated a separation routine based on directed
cuts3 to cut off infeasible t-variable assignments; this does not seem to be beneficial.

6 Experimental Evaluation

Setup. All our programs are implemented in C++, compiled with GCC 6.3.0, and use the
OGDF (version based on snapshot 2017-07-23) [9]. We use SCIP 4.0.1 for solving ILPs with
CPLEX 12.7.1 as the underlying LP solver [25]. For PBS-based algorithms, we utilize Clasp
3.3.3 [17]. Each MPS-computation uses a single physical core of a Xeon Gold 6134 CPU
(3.2 GHz) with a memory speed of 2666 MHz. We apply a time limit of 20 minutes and
a memory limit of 8 GB per computation. Our instances and results, giving runtime and
skewness (if solved), are available for download at http://tcs.uos.de/research/mps.

3 Directed cut constraints of the form
∑

w∈W,v∈V \W
twv ≥ 1 for all W with {r} ⊆W (V.

SEA 2018

http://tcs.uos.de/research/mps

22:10 Exact Algorithms for Maximum Planar Subgraph

Table 1 Ratios of solved instances. The Kuratowski ILP dominates all other algorithms.

Rome North Expanders SteinLib
instances 8249 423 480 105

ILP Kuratowski 85.70% 73.75% 22.75% 9.52%
ILP Facial Walks 17.82% 29.78% 4.31% 2.85%
ILP Schnyder Orders 21.69% 48.22% 8.96% 3.80%
ILP Left-Right Coloring 36.64% 60.75% 12.93% 3.80%

PBS Kuratowski 77.43% 69.73% 10.34% 9.52%
PBS Facial Walks 15.21% 30.02% 0.68% 0.95%
PBS Schnyder Orders 46.24% 61.93% 6.89% 5.71%
PBS Left-Right Coloring 65.07% 66.43% 10.00% 7.61%

Instances and configurations. We use the non-planar graphs of the established benchmark
sets North [27], Rome [14, Section 3.2], and a subset of the SteinLib [21] all of which include
real-world instances. In addition, we generated a set of random regular [29] graphs that are
expander graphs with high probability. In [11] it was observed that such graphs seem to be
especially hard at least for the Kuratowski formulation. For formulations that allow multiple
configurations, we determined the most promising one in a preliminary benchmark on a set
of 1224 Rome and North graphs, as reported in the previous sections. This fixed subset of
instances was sampled by partitioning the instances into buckets based on the number of
nodes and choosing a fixed number of graphs from each bucket with uniform probability.

For parameters where we had a non-binary choice (e.g., heap size in ILP separation) we
rely mostly on the values identified in [18].

Our algorithms use strong primal heuristics, whose common foundation is a maximal
planar subgraph algorithm based on the simpler cactus algorithm by Călinescu et al., with
approximation ratio 7/18, that was identified in [11, denoted by C+] to be among the
practically best heuristics.

Results. Table 1 summarizes the ratios of solved instances. Evidently, the Kuratowski ILP
dominates all implementations. To our surprise, the rather intricate left-right edge coloring
model constitutes the most successful one among the new variants. The facial walk model
falls behind all other formulations. A similar picture is obtained from a more detailed look at
the success rates. In Figure 2a (2b), we show the relative number of solved instances among
the Rome graphs over the nodes in the input (resp. number of edges in the non-planar core),
clustered to the nearest multiple of five. As expected, the more edges there are in the core,
the harder the instance is in practice. This is particularly clear on the Rome graphs and
becomes a little distorted on the North graphs, see Figures 2c and 2d, that include some
instances where we have to delete very few edges to obtain a (near) triangulation with an
(almost) trivial upper bound. Figures 2e and 2f show the number of solved instances over our
total runtime. The runtime is represented logarithmically. Again, the Kuratowski ILP is the
clear winner and solves more instances than any other variant at any point in time. While
the number of solved instances for all algorithms skyrockets in the first milliseconds and
only very slowly increases over the course of 20 minutes, we can see that some algorithms
gain more than others from an increase in runtime. Surprisingly, the Schnyder orders ILP
seems to benefit only on the considerably harder North graphs from increasing the runtime.
In most cases, particularly on the Rome and North instances, the PBS variant is stronger

M. Chimani, I. Hedtke, and T. Wiedera 22:11

ILP Kuratowski PBS Kuratowski

ILP Facial Walks PBS Facial Walks

ILP Schnyder Orders PBS Schnyder Orders

ILP Left-Right Coloring PBS Left-Right Coloring

0

500

1000

in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100
0%

50%

100%

nodes of input

so
lv
ed

(a) solved Rome graphs by input nodes

0

200

400

600

800

in
st
an

ce
s

10 20 30 40 50 60 70 80 > 85
0%

50%

100%

edges of NPC

so
lv
ed

(b) solved Rome graphs by NPC edges

0

20

40

60

80

50 100
0%

50%

100%

nodes of input

so
lv
ed

(c) solved North graphs by input nodes

0

50

100

in
st
an

ce
s

20 40 60 80 > 90
0%

50%

100%

edges of NPC

(d) solved North graphs by NPC edges

103 104 105 106

2000

4000

6000

runtime [ms]

so
lv
ed

(t
ot
al
)

(e) solved Rome graphs by time

103 104 105 106

100

200

300

runtime [ms]

so
lv
ed

(t
ot
al
)

(f) solved North graphs by time

Figure 2 Success rate and runtime.

SEA 2018

22:12 Exact Algorithms for Maximum Planar Subgraph

0

500

1000

1500

1 3 5 7 9 > 10
0%

50%

100%

best upper bound on skewness

so
lv
ed

(a) solved Rome graphs by primal bound

0

50

100

in
st
an

ce
s

1 3 5 7 9 11 > 12
0%

50%

100%

best upper bound on skewness

(b) solved North graphs by primal bound

Figure 3 Relation of skewness (bounds) and success rate on Rome graphs. The same legend as
in Figure 2 applies.

than its ILP counterpart, with a clear exception for the Kuratowski model. Finally, Figure 3
relates upper bounds on the skewness with the number of solved instances. We can see that
there is little success on graphs with a skewness larger than 12, on both the Rome and North
set. The same holds, although not as clear cut, for the other instance sets.

7 Findings and Conclusion

The main goal of this paper was to investigate novel ways of approaching the MPS problem,
after over two decades of no progress w.r.t. exact models. We succeeded in the sense that we
showed that there are indeed viable alternatives. However, we also showed experimentally
that a modern implementation of the old Kuratowski formulation remains the strongest
option to solve MPS in practice. Although negative, this is an interesting observation.

We should keep in mind that the thereby required efficient separation builds upon years
of algorithmic development [3,12], and it is the only ILP where we currently know how to
(heuristically) separate on fractional solutions. Equipped with similar tools, i.e., a sensible
rounding scheme and a linear time separation routine (a modified left-right planarity test),
the left-right edge coloring formulation might yield very competitive performance. This, in
fact, may be a reasonable target for future research.

For the genus problem, a facial walk model similar to our MPS formulation is the only
known feasible approach. However, we clearly see that it is not favorable for MPS as we have
stronger and more direct options at our disposal. The facial walk model optimizes over all
possible embeddings (there are exponentially many already for a fixed subgraph) of all planar
subgraphs, which might help explain its underwhelming performance. The Schnyder orders
model does not perform very well in practice despite its very elegant characterization. This
might be due to the fact that in contrast to the left-right edge coloring, we search for three
feasible orders on the planar subgraph instead of just one (the partial order corresponding
to the Trémaux tree). To solve the Schnyder orders model efficiently, a fast solver for
linear ordering problems seems to be required. The Schnyder and left-right edge coloring
PBS formulations usually beat their ILP counterparts, indicating that their LP relaxations
are rather weak. As expected, the expander graphs constitute a particularly hard class of
instances and may be a good starting point for tuning and extending our algorithms.

Finally, the strong performance of the Kuratowski model (in particular the ILP variant)
is a clear indication that it deserves more attention in the future. The fact that no additional
strong constraint classes have been identified for more than two decades is provocative.

M. Chimani, I. Hedtke, and T. Wiedera 22:13

References

1 Carlo Batini, Maurizio Talamo, and Roberto Tamassia. Computer aided layout of entity
relationship diagrams. Journal of Systems and Software, 4(2-3):163–173, 1984. doi:10.
1016/0164-1212(84)90006-2.

2 Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbčík. A Practical Method
for the Minimum Genus of a Graph: Models and Experiments. In Andrew V. Gold-
berg and Alexander S. Kulikov, editors, Experimental Algorithms - 15th International
Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings, volume
9685 of Lecture Notes in Computer Science, pages 75–88. Springer, 2016. doi:10.1007/
978-3-319-38851-9_6.

3 John M. Boyer and Wendy J. Myrvold. On the Cutting Edge: Simplified O(n) Planarity
by Edge Addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.
doi:10.7155/jgaa.00091.

4 Gruia Călinescu, Cristina Gomes Fernandes, Ulrich Finkler, and Howard Karloff. A Better
Approximation Algorithm for Finding Planar Subgraphs. Journal of Algorithms. Cogni-
tion, Informatics and Logic, 27(2):269–302, 1998. 7th Annual ACM-SIAM Symposium on
Discrete Algorithms (Atlanta, GA, 1996). doi:10.1006/jagm.1997.0920.

5 Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and Emiliano Traversi.
Optimal linear arrangements using betweenness variables. Mathematical Programming
Computation, 3(3):261–280, 2011. doi:10.1007/s12532-011-0027-7.

6 Parinya Chalermsook and Andreas Schmid. Finding triangles for maximum planar
subgraphs. In Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors,
WALCOM: Algorithms and Computation, 11th International Conference and Workshops,
WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings., volume 10167 of
Lecture Notes in Computer Science, pages 373–384. Springer, 2017. doi:10.1007/
978-3-319-53925-6_29.

7 Markus Chimani and Carsten Gutwenger. Non-planar core reduction of graphs. Discrete
Mathematics, 309(7):1838–1855, 2009. doi:10.1016/j.disc.2007.12.078.

8 Markus Chimani and Carsten Gutwenger. Advances in the planarization method: effective
mutiple edge insertions. Journal of Graph Algorithms and Applications, 16(3):729–757,
2012. doi:10.7155/jgaa.00264.

9 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein,
and Petra Mutzel. The Open Graph Drawing Framework (OGDF). In Roberto Tamassia,
editor, Handbook on Graph Drawing and Visualization, pages 543–569. Chapman and Hal-
l/CRC, 2013. URL: crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/
Tamassia/9781584884125.

10 Markus Chimani and Petr Hlinený. A tighter insertion-based approximation of the crossing
number. Journal of Combinatorial Optimization, 33(4):1183–1225, 2017. doi:10.1007/
s10878-016-0030-z.

11 Markus Chimani, Karsten Klein, and Tilo Wiedera. A Note on the Practicality of Maximal
Planar Subgraph Algorithms. In Yifan Hu and Martin Nöllenburg, editors, Proceedings
of the 24th International Symposium on Graph Drawing and Network Visualization (GD
2016), volume abs/1609.02443. CoRR, 2016.

12 Markus Chimani, Petra Mutzel, and Jens M. Schmidt. Efficient extraction of multiple
kuratowski subdivisions. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph
Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September 24-26,
2007. Revised Papers, volume 4875 of Lecture Notes in Computer Science, pages 159–170.
Springer, 2007. doi:10.1007/978-3-540-77537-9_17.

SEA 2018

http://dx.doi.org/10.1016/0164-1212(84)90006-2
http://dx.doi.org/10.1016/0164-1212(84)90006-2
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.7155/jgaa.00091
http://dx.doi.org/10.1006/jagm.1997.0920
http://dx.doi.org/10.1007/s12532-011-0027-7
http://dx.doi.org/10.1007/978-3-319-53925-6_29
http://dx.doi.org/10.1007/978-3-319-53925-6_29
http://dx.doi.org/10.1016/j.disc.2007.12.078
http://dx.doi.org/10.7155/jgaa.00264
crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
http://dx.doi.org/10.1007/s10878-016-0030-z
http://dx.doi.org/10.1007/s10878-016-0030-z
http://dx.doi.org/10.1007/978-3-540-77537-9_17

22:14 Exact Algorithms for Maximum Planar Subgraph

13 H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by Trémaux
orders. Combinatorica. An International Journal of the János Bolyai Mathematical Society,
5(2):127–135, 1985. doi:10.1007/BF02579375.

14 Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassi-
nari, and Francesco Vargiu. An experimental comparison of four graph drawing algo-
rithms. Computational Geometry. Theory and Applications, 7(5-6):303–325, 1997. 11th
ACM Symposium on Computational Geometry (Vancouver, BC, 1995). doi:10.1016/
S0925-7721(96)00005-3.

15 Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathematics,
63:600–610, 1941. doi:10.2307/2371374.

16 Michael R. Garey and David S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W. H. Freeman and Co., San Francisco, Calif., 1979.

17 Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider. Potassco: The potsdam answer set solving collection. AI
Communications, 24(2):107–124, 2011. doi:10.3233/AIC-2011-0491.

18 Ivo Hedtke. Minimum Genus and Maximum Planar Subgraph: Exact Algorithms and Gen-
eral Limits of Approximation Algorithms. PhD thesis, Osnabrück University, 2017. URL:
repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212.

19 Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(kn logn)
time. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Or-
leans, Louisiana, USA, January 7-9, 2007, pages 843–847. SIAM, 2007. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283473.

20 Michael Jünger and Petra Mutzel. Maximum Planar Subgraphs and Nice Embeddings:
Practical Layout Tools. Algorithmica. An International Journal in Computer Science,
16(1):33–59, 1996. doi:10.1007/s004539900036.

21 T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on steiner tree problems in
graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Takustr. 7, Berlin, 2000. URL: http://elib.zib.de/steinlib.

22 Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

23 Charles H. C. Little and G. Sanjith. Another characterisation of planar graphs. Electronic
Journal of Combinatorics, 17(1):Note 15, 7, 2010.

24 P. C. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a graph. In
Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), Congress. Numer., XXIII–
XXIV, pages 727–738. Utilitas Math., Winnipeg, Man., 1979.

25 Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias Mil-
tenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebas-
tian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger, Jonas T.
Witt, and Jakob Witzig. The SCIP Optimization Suite 4.0. Technical Report 17-12, ZIB,
Takustr. 7, 14195 Berlin, 2017.

26 Petra Mutzel. The maximum planar subgraph problem. PhD thesis, Köln University, 1994.
27 Stephen C. North. 5114 directed graphs, 1995. Manuscript.
28 Walter Schnyder. Planar Graphs and Poset Dimension. Order. A Journal on the Theory

of Ordered Sets and its Applications, 5(4):323–343, 1989. doi:10.1007/BF00353652.
29 A. Steger and N. C. Wormald. Generating random regular graphs quickly. Combinatorics,

Probability and Computing, 8(4):377–396, 1999. Random graphs and combinatorial struc-
tures (Oberwolfach, 1997). doi:10.1017/S0963548399003867.

http://dx.doi.org/10.1007/BF02579375
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://dx.doi.org/10.2307/2371374
http://dx.doi.org/10.3233/AIC-2011-0491
repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212
http://dl.acm.org/citation.cfm?id=1283383.1283473
http://dl.acm.org/citation.cfm?id=1283383.1283473
http://dx.doi.org/10.1007/s004539900036
http://elib.zib.de/steinlib
http://dx.doi.org/10.1007/BF00353652
http://dx.doi.org/10.1017/S0963548399003867

M. Chimani, I. Hedtke, and T. Wiedera 22:15

30 Edward Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16(1):386–
389, 1930. URL: http://eudml.org/doc/212499.

31 Carsten Thomassen. Planarity and Duality of Finite and Infinite Graphs. Journal of Com-
binatorial Theory. Series B, 29(2):244–271, 1980. doi:10.1016/0095-8956(80)90083-0.

SEA 2018

http://eudml.org/doc/212499
http://dx.doi.org/10.1016/0095-8956(80)90083-0

	Introduction
	Preliminaries
	Notation
	Common Foundation of Models
	Known Formulation: Kuratowski Subdivisions

	Facial Walks
	Schnyder Orders
	Left-Right Edge Coloring
	Experimental Evaluation
	Findings and Conclusion

