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Abstract
Computing high-quality graph partitions is a challenging problem with numerous applications.
In this paper, we present a novel meta-heuristic for the balanced graph partitioning problem. Our
approach is based on integer linear programs that solve the partitioning problem to optimality.
However, since those programs typically do not scale to large inputs, we adapt them to heurist-
ically improve a given partition. We do so by defining a much smaller model that allows us to
use symmetry breaking and other techniques that make the approach scalable. For example, in
Walshaw’s well-known benchmark tables we are able to improve roughly half of all entries when
the number of blocks is high.
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1 Introduction

Balanced graph partitioning is an important problem in computer science and engineering
with an abundant amount of application domains, such as VLSI circuit design, data mining
and distributed systems [38]. It is well known that this problem is NP-complete [8] and
that no approximation algorithm with a constant ratio factor exists for general graphs
unless P=NP [8]. Still, there is a large amount of literature on methods (with worst-case
exponential time) that solve the graph partitioning problem to optimality. This includes
methods dedicated to the bipartitioning case [3, 4, 12, 13, 14, 15, 24, 21, 30, 39] and some
methods that solve the general graph partitioning problem [16, 40]. Most of these methods
rely on the branch-and-bound framework [28]. However, these methods can typically solve
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4:2 ILP-based Local Search for Graph Partitioning

only very small problems as their running time grows exponentially, or if they can solve
large bipartitioning instances using a moderate amount of time [12, 13], the running time
highly depends on the bisection width of the graph. Methods that solve the general graph
partitioning problem [16, 40] have huge running times for graphs with up to a few hundred
vertices. Thus in practice mostly heuristic algorithms are used.

Typically the graph partitioning problem asks for a partition of a graph into k blocks of
about equal size such that there are few edges between them. Here, we focus on the case
when the bounds on the size are very strict, including the case of perfect balance when the
maximal block size has to equal the average block size.

Our focus in this paper is on solution quality, i.e. minimize the number of edges that run
between blocks. During the past two decades there have been numerous researchers trying to
improve the best graph partitions in Walshaw’s well-known partitioning benchmark [41, 42].
Overall there have been more than forty different approaches that participated in this
benchmark. Indeed, high solution quality is of major importance in applications such as
VLSI Design [1, 2] where even minor improvements in the objective can have a large impact
on the production costs and quality of a chip. High-quality solutions are also favorable
in applications where the graph needs to be partitioned only once and then the partition
is used over and over again, implying that the running time of the graph partitioning
algorithms is of a minor concern [11, 18, 27, 29, 32, 31]. Thirdly, high-quality solutions
are even important in areas in which the running time overhead is paramount [41], such as
finite element computations [37] or the direct solution of sparse linear systems [20]. Here,
high-quality graph partitions can be useful for benchmarking purposes, i.e. measuring how
much more running time can be saved by higher quality solutions.

In order to compute high-quality solutions, state-of-the-art local search algorithms
exchange vertices between blocks of the partition trying to decrease the cut size while
also maintaining balance. This highly restricts the set of possible improvements. Recently, we
introduced new techniques that relax the balance constraint for vertex movements but globally
maintain balance by combining multiple local searches [36]. This was done by reducing this
combination problem to finding negative cycles in a graph. In this paper, we extend the
neighborhood of the combination problem by employing integer linear programming. This
enables us to find even more complex combinations and hence to further improve solutions.
More precisely, our approach is based on integer linear programs that solve the partitioning
problem to optimality. However, out of the box those programs typically do not scale to
large inputs, in particular because the graph partitioning problem has a very large amount
of symmetry – given a partition of the graph, each permutation of the block IDs gives a
solution having the same objective and balance. Hence, we adapt the integer linear program
to improve a given input partition. We do so by defining a much smaller graph, called model,
and solve the graph partitioning problem on the model to optimality by the integer linear
program. More specifically, we select vertices close to the cut of the given input partition for
potential movement and contract all remaining vertices of a block into a single vertex. A
feasible partition of this model corresponds to a partition of the input graph having the same
balance and objective. Moreover, this model enables us to use symmetry breaking, which
allows us to scale to much larger inputs. To make the approach even faster, we combine it
with initial bounds on the objective provided by the input partition, as well as providing the
input partition to the integer linear program solver. Overall, we arrive at a system that is
able to improve more than half of all entries in Walshaw’s benchmark when the number of
blocks is high.

The rest of the paper is organized as follows. We begin in Section 2 by introducing
basic concepts. After presenting some related work in Section 3 we outline the integer linear



A. Henzinger, A. Noe, and C. Schulz 4:3

program as well as our novel local search algorithm in Section 4. Here, we start by explaining
the very basic idea that allows us to find combinations of simple vertex movements. We
then explain our strategies to improve the running time of the solver and strategies to
select vertices for movement. A summary of extensive experiments done to evaluate the
performance of our algorithms is presented in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Basic concepts
Let G = (V = {0, . . . , n− 1}, E) be an undirected graph. We consider positive, real-valued
edge and vertex weight functions ω resp. c and extend them to sets, i.e., ω(E′) :=

∑
x∈E′ ω(x)

and c(V ′) :=
∑
x∈V ′ c(x). Let N(v) := {u : {v, u} ∈ E} denote the neighbors of v. The

degree of a vertex v is d(v) := |N(v)|. A vertex is a boundary vertex if it is incident to at
least one vertex in a different block. We are looking for disjoint blocks of vertices V1,. . . ,Vk
that partition V ; i.e., V1 ∪ · · · ∪ Vk = V . The balancing constraint demands that each block
has weight c(Vi) ≤ (1 + ε)d c(V )

k e =: Lmax for some imbalance parameter ε. We call a block Vi
overloaded if its weight exceeds Lmax. The objective of the problem is to minimize the total
cut ω(E ∩

⋃
i<j Vi × Vj) subject to the balancing constraints. We define the gain of a vertex

as the maximum decrease in the cut value when moving it to a different block.

3 Related Work

There has been a huge amount of research on graph partitioning and we refer the reader to the
surveys given in [6, 9, 37, 43] for most of the material. Here, we focus on issues closely related to
our main contributions. All general-purpose methods that are able to obtain good partitions
for large real-world graphs are based on the multi-level principle. Well-known software
packages based on this approach include Jostle [43], KaHIP [34], Metis [25] and Scotch [33].

Chris Walshaw’s well-known benchmark archive has been established in 2001 [41, 42].
Overall it contains 816 instances (34 graphs, 4 values of imbalance, and 6 values of k).
In this benchmark, the running time of the participating algorithms is not measured or
reported. Submitted partitions will be validated and added to the archive if they improve on
a particular result. This can either be an improvement in the number of cut edges or, if they
match the current best cut size, an improvement in the weight of the largest block. Most
entries in the benchmark have as of Feb. 2018 been obtained by Galinier et al. [19] (more
precisely an implementation of that approach by Frank Schneider), Hein and Seitzer [22] and
the Karlsruhe High-Quality Graph Partitioning (KaHIP) framework [36]. More precisely,
Galinier et al. [19] use a memetic algorithm that is combined with tabu search to compute
solutions and Hein and Seitzer [22] solve the graph partitioning problem by providing tight
relaxations of a semi-definite program into a continuous problem.

The Karlsruhe High-Quality Graph Partitioning (KaHIP) framework implements many
different algorithms, for example flow-based methods and more-localized local searches, as
well as several coarse-grained parallel and sequential meta-heuristics. KaBaPE [36] is a
coarse-grained parallel evolutionary algorithm, i.e. each processor has its own population
(set of partitions) and a copy of the graph. After initially creating the local population, each
processor performs multi-level combine and mutation operations on the local population.
This is combined with a meta-heuristic that combines local searches that individually violate
the balance constraint into a more global feasible improvement. For more details, we refer
the reader to [36].
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4:4 ILP-based Local Search for Graph Partitioning

4 Local Search based on Integer Linear Programming

We now explain our algorithm that combines integer linear programming and local search.
We start by explaining the integer linear program that can solve the graph partitioning
problem to optimality. However, out-of-the-box this program does not scale to large inputs,
in particular because the graph partitioning problem has a very large amount of symmetry.
Thus, we reduce the size of the graph by first computing a partition using an existing
heuristic and based on it collapsing parts of the graph. Roughly speaking, we compute a
small graph, called model, in which we only keep a small number of selected vertices for
potential movement and perform graph contractions on the remaining ones. A partition of
the model corresponds to a partition of the input network having the same objective and
balance. The computed model is then solved to optimality using the integer linear program.
As we will see this process enables us to use symmetry breaking in the linear program, which
in turn drastically speeds up computation times.

4.1 Integer Linear Program for the Graph Partitioning Problem

We now introduce a generalization of an integer linear program formulation for balanced
bipartitioning [7] to the general graph partitioning problem. First, we introduce binary
decision variables for all edges and vertices of the graph. More precisely, for each edge
e = {u, v} ∈ E, we introduce the variable euv ∈ {0, 1} which is one if e is a cut edge and zero
otherwise. Moreover, for each v ∈ V and block k, we introduce the variable xv,k ∈ {0, 1}
which is one if v is in block k and zero otherwise. Hence, we have a total of |E| + k|V |
variables. We use the following constraints to ensure that the result is a valid k-partition:

∀{u, v} ∈ E,∀k : euv ≥ xu,k − xv,k (1)
∀{u, v} ∈ E,∀k : euv ≥ xv,k − xu,k (2)

∀k :
∑
v∈V

xv,kc(v) ≤ Lmax (3)

∀v ∈ V :
∑
k

xv,k = 1 (4)

The first two constraints ensure that euv is set to one if the vertices u and v are in
different blocks. For an edge {u, v} ∈ E and a block k, the right-hand side in this equation is
one if one of the vertices u and v is in block k and the other one is not. If both vertices are
in the same block then the right-hand side is zero for all values of k. Hence, the variable can
either be zero or one in this case. However, since the variable participates in the objective
function and the problem is a minimization problem, it will be zero in an optimum solution.

The third constraint ensures that the balance constraint is satisfied for each partition.
And finally, the last constraint ensures that each vertex is assigned to exactly one block.
To sum up, our program has 2k|E| + k + |V | constraints and k · (6|E| + 2|V |) non-zeros.
Since we want to minimize the weight of cut edges, the objective function of our program
is written as:

min
∑

{u,v}∈E

euv · ω({u, v}) (5)
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4.2 Local Search

The graph partitioning problem has a large amount of symmetry – each permutation of the
block IDs gives a solution with equal objective and balance. Hence, the integer linear program
described above will scan many branches that contain essentially the same solutions so that
the program does not scale to large instances. Moreover, it is not immediately clear how to
improve the scalability of the program by using symmetry breaking or other techniques.

Our goal in this section is to develop a local search algorithm using the integer linear
program above. Given a partition as input to be improved, our main idea is to contract
vertices “that are far away” from the cut of the partition. In other words, we want to
keep vertices close to the cut and contract all remaining vertices into one vertex for each
block of the input partition. This ensures that a partition of the contracted graph yields a
partition of the input graph with the same objective and balance. Hence, we apply the integer
linear program to the model and solve the partitioning problem on it to optimality. Note,
however, that due to the performed contractions this does not imply an optimal solution
on the input graph.

We now outline the details of the algorithm. Our local algorithm has two inputs, a
graph G and a partition V1, . . . , Vk of its vertices. For now assume that we have a set of
vertices K ⊂ V which we want to keep in the coarse model, i.e. a set of vertices which we
do not want to contract. We outline in Section 4.4 which strategies we have to select the
vertices K. For the purpose of contraction we define k sets Vi := Vi \ K. We obtain our
coarse model by contracting each of these vertex sets. The contraction of a vertex set Vi
works as follows: the set of vertices is contracted into a single vertex µi. The weight of µi is
set to the sum of the weight of all vertices in the set that is contracted. There is an edge
between two vertices µi and v in the contracted graph if there is an edge between a vertex of
the set and v in the original graph G. The weight of an edge (µi, v) is set to the sum of the
weight of edges that run between the vertices of the set and v. After all contractions have
been performed the coarse model contains k + |K| vertices, and potentially much less edges
than the input graph. Figure 1 gives an abstract example of our model.

There are two things that are important to see: first, due to the way we perform
contraction, the given partition of the input network yields a partition of our coarse model
that has the same objective and balance simply by putting µi into block i and keeping the
block of the input for the vertices in K. Moreover, if we compute a new partition of our
coarse model, we can build a partition in the original graph with the same properties by
putting the vertices Vi into the block of their coarse representative µi together with the
vertices of K that are in this block. Hence, we can solve the integer linear program on the
coarse model to compute a partition for the input graph. After the solver terminates, i.e.
found an optimum solution of our mode or has reached a predefined time limit T , we transfer
the best solution to the original graph. Note that the latter is possible since an integer linear
program solver typically computes intermediate solutions that may not be optimal.

4.3 Optimizations

Independent of the vertices K that are selected to be kept in the coarse model, the approach
above allows us to define optimizations to solve our integer linear program faster. We apply
four strategies: (i) symmetry breaking, (ii) providing a start solution to the solver, (iii) add
the objective of the input as a constraint as well as (iv) using the parallel solving facilities of
the underlying solver. We outline the first three strategies in greater detail:

SEA 2018
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V1

V2

V3

V4

V1 \ K

V2 \ K

V3 \ K

V4 \ K

K K

Figure 1 From left to right: a graph that is partitioned into four blocks, the set K close to
the boundary that will stay in the model, and lastly the model in which the sets Vi \ K have
been contracted.

Symmetry Breaking. If the set K is small, then the solver will find a solution much faster.
Typically, our algorithms selects the vertices K such that c(µi) + c(µj) > Lmax. In other
words, no two contracted vertices can be clustered in one block. We can use this to break
symmetry in our integer linear programming by adding constraints that fix the block of µi
to block i, i.e. we set xµi,i = 1 and xµi,j = 0 for i 6= j. Moreover, for those vertices we can
remove the constraint which ensures that the vertex is assigned to a single unique block –
since we assigned those vertices to a block using the new additional constraints.

Providing a Start Solution to the Solver. The integer linear program performs a significant
amount of work in branches which correspond to solutions that are worse than the input
partitioning. Only very few - if any - solutions are better than the given partition. However,
we already know a fairly good partition (the given partition from the input) and give this
partition to the solver by setting according initial values for all variables. This ensures that
the integer linear program solver can omit many branches and hence speeds up the time
needed to solve the integer linear program.

Solution Quality as a Constraint. Since we are only interested in improved partitions, we
can add an additional constraint that disallows solutions which have a worse objective than
the input partition. Indeed, the objective function of the linear program is linear, and hence
the additional constraint is also linear. Depending on the objective value, this reduces the
number of branches that the linear program solver needs to look at. However, note that this
comes at the cost of an additional constraint that needs to be evaluated.

4.4 Vertex Selection Strategies
The algorithm above works for different vertex sets K that should be kept in the coarse
model. There is an obvious trade-off: on the one hand, the set K should not be too large,
otherwise the coarse model would be large and hence the linear programming solver needs a
large amount of time to find a solution. On the other hand, the set should also not be too
small, since this restricts the amount of possible vertex movements, and hence the approach
is unlikely to find an improved solution. We now explain different strategies to select the
vertex set K. In any case, while we add vertices to the set K, we compute the number of
non-zeros in the corresponding ILP. We stop to add vertices when the number of non-zeros
in the corresponding ILP is larger than a parameter N .

Vertices Close to Input Cut. The intuition of the first strategy, Boundary, is that changes
or improvements of the partition will occur reasonable close to the input partition. In
this simple strategy our algorithm tries to use all boundary vertices as the set K. In order
to adhere to the constraint on the number of non-zeros in the ILP, we add the vertices
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of the boundary uniformly at random and stop if the number of non-zeros N is reached.
If the algorithm managed to add all boundary vertices whilst not exceeding the specified
number of non-zeros, we do the following extension: we perform a breadth-first search that is
initialized with a random permutation of the boundary vertices. All additional vertices that
are reached by the BFS are added to K. As soon as the number of non-zeros N is reached,
the algorithm stops.

Start at Promising Vertices. Especially for high values of k the boundary contains many
vertices. The Boundary strategy quickly adds a lot of random vertices while ignoring vertices
that have high gain. However, note that even in good partitions it is possible that vertices
with positive gain exist but cannot be moved due to the balance constraint.

Hence, our second strategy, Gainρ, tries to fix this issue by starting a breadth-first search
initialized with only high gain vertices. More precisely, we initialize the BFS with each vertex
having gain ≥ ρ where ρ is a tuning parameter. Our last strategy, TopVerticesδ, starts by
sorting the boundary vertices by their gain. We break ties uniformly at random. Vertices
are then traversed in decreasing order (highest gain vertices first) and for each start vertex v
our algorithm adds all vertices with distance ≤ δ to the model. The algorithm stops as soon
as the number of non-zeros exceeds N .

Early gain-based local search heuristics for the ε-balanced graph partitioning problem
searched for pairwise swaps with positive gain [17, 26]. More recent algorithms generalized
this idea to also search for cycles or paths with positive total gain [36]. An important
advantage of our new approach is that we solve the combination problem to optimality, i.e.
our algorithm finds the best combination of vertex movements of the vertices in K w.r.t to the
input partition of the original graph. Therefore we can also find more complex optimizations
that cannot be reduced to positive gain cycles and paths.

5 Experiments

5.1 Experimental Setup and Methodology
We implemented the algorithms using C++-17 and compiled all codes using g++-7.2.0 with
full optimization (-O3). We use Gurobi 7.5.2 as an ILP solver and always use its parallel
version. All of our experiments were conducted on a machine with two Haswell Xeon E5-2697
v3 processors. The machine has 28 cores at 2.6GHz as well as 64GB of main memory and runs
the SUSE Linux Enterprise Server (SLES) operating system. Unless otherwise mentioned,
our approach uses the shared-memory parallel variant of Gurobi using all 28 cores. In general,
we perform five repetitions per instance and report the average running time as well as
cut. Unless otherwise mentioned, we use a time limit for the integer linear program. When
the time limit is passed, the integer linear program solver outputs the best solution that
has currently been discovered. This solution does not have to be optimal. Note that we
do not perform experiments with Metis [25] and Scotch [33] in here, since previous papers,
e.g. [34, 35], have already shown that solution quality obtained is much worse than results
achieved in the Walshaw benchmark. When averaging over multiple instances, we use the
geometric mean in order to give every instance the same influence on the final score.

Performance Plots. These plots relate the fastest running time to the running time of each
other ILP-based local search algorithm on a per-instance basis. For each algorithm, these
ratios are sorted in increasing order. The plots show the ratio tbest/talgorithm on the y-axis
to highlight the instances in which each algorithm performs badly. For plots in which we
measure solution quality, the y-axis shows the ratio cutbest/cutalgorithm. A point close to
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Table 1 Basic properties of the benchmark instances.

Graph n m Graph n m

Walshaw Graphs (Set B) Walshaw Graphs (Set B)
add20 2 395 7 462 wing 62 032 ≈ 121K
data 2 851 15 093 brack2 62 631 ≈ 366K
3elt 4 720 13 722 finan512 74 752 ≈ 261K
uk 4 824 6 837 fe_tooth 78 136 ≈ 452K
add32 4 960 9 462 fe_rotor 99 617 ≈ 662K
bcsstk33 8 738 ≈ 291K 598a 110 971 ≈ 741K
whitaker3 9 800 28 989 fe_ocean 143 437 ≈ 409K
crack 10 240 30 380 144 144 649 ≈ 1.1M
wing_nodal 10 937 75 488 wave 156 317 ≈ 1.1M
fe_4elt2 11 143 32 818 m14b 214 765 ≈ 1.7M
vibrobox 12 328 ≈ 165K auto 448 695 ≈ 3.3M
bcsstk29 13 992 ≈ 302K
4elt 15 606 45 878 Parameter Tuning (Set A)
fe_sphere 16 386 49 152 delaunay_n15 32 768 98 274
cti 16 840 48 232 rgg_15 32 768 ≈ 160K
memplus 17 758 54 196 2cubes_sphere 101 492 ≈ 772K
cs4 22 499 43 858 cfd2 123 440 ≈ 1.5M
bcsstk30 28 924 ≈ 1.0M boneS01 127 224 ≈ 3.3M
bcsstk31 35 588 ≈ 572K Dubcova3 146 689 ≈ 1.7M
fe_pwt 36 519 ≈ 144K G2_circuit 150 102 ≈ 288K
bcsstk32 44 609 ≈ 985K thermal2 1 227 087 ≈ 3.7M
fe_body 45 087 ≈ 163K as365 3 799 275 ≈ 11.4M
t60k 60 005 89 440 adaptive 6 815 744 ≈ 13.6M

zero indicates that the running time/quality of the algorithm was considerably worse than
the fastest/best algorithm on the same instance. A value of one therefore indicates that
the corresponding algorithm was one of the fastest/best algorithms to compute the solution.
Thus an algorithm is considered to outperform another algorithm if its corresponding ratio
values are above those of the other algorithm. In order to include instances that hit the time
limit, we set the corresponding values to a negative value for ratio computations.

Instances. We perform experiments on two sets of instances. Set A is used to determine the
performance of the integer linear programming optimizations and to tune the algorithm. We
obtained these instances from the Florida Sparse Matrix collection [10] and the 10th DIMACS
Implementation Challenge [5] to test our algorithm. Set B are all graphs from Chris
Walshaw’s graph partitioning benchmark archive [41, 42]. This archive is a collection of
instances from finite-element applications, VLSI design and is one of the default benchmarking
sets for graph partitioning.

Table 1 gives basic properties of the graphs from both benchmark sets. We ran the
unoptimized integer linear program that solves the graph partitioning problem to optimality
from Section 4.1 on the five smallest instances from the Walshaw benchmark set. With a
time limit of 30 minutes, the solver has only been able to compute a solution for the graphs
uk and add32 with k = 2. For higher values of k the solver was unable to find any solution in
the time limit. Even giving a starting solution does not increase the number of ILPs solved.
Hence, we omit further experiments in which we run an ILP solver on the full graph.

5.2 Impact of Optimizations
We now evaluate the impact of the optimization strategies for the ILP that we presented in
Section 4.3. In this section, we use the variant of our local search algorithm in which K is



A. Henzinger, A. Noe, and C. Schulz 4:9

0 50 100 150 200 250 300
# Instances

Timeout
0     0.2        0.4
0.6

0.8

1
t b

es
t/t

al
go

103 104 105 106

Non-zeros

10 1

100

101

102

103

t a
lg

o[s
]

0 50 100 150 200 250 300
# Instances

Timeout

00.2   
0.4

0.6

0.8

1

t b
es

t/t
al

go

BasicSymSSol
BSSSConst=

BasicSym
BSSSConst<

Basic

Figure 2 Left: performance plot for five variants of our algorithm: Basic does not contain
any optimizations; BasicSym enables symmetry breaking; BasicSymSSol additionally gives the
input partitioning to the ILP solver. The two variants BSSSConst= and BSSSConst< are the same
as BasicSymSSol with additional constraints: BSSSConst= has the additional constraint that the
objective has to be smaller or equal to the start solution, BSSSConst< has the constraint that the
solution must be better than the start solution. Right: performance of the slowest (Basic) and
fastest ILPs (BasicSymSSol) depending on the number of non-zeros in the ILP.

obtained by starting depth-one breadth-first search at the 25 highest gain vertices, and set
the limit on the non-zeros in the ILP to N =∞. However, due to preliminary experiments
we expect the results in terms of speedup to be similar for different vertex selection strategies.
To evaluate the ILP performance, we run KaFFPa using the strong preconfiguration on each
of the graphs from set A using ε = 0 and k ∈ {2, 4, 8, 16, 32, 64} and then use the computed
partition as input to each ILP (with the different optimizations). As the optimizations do
not change the objective value achieved in the ILP, we only report running times of our
different approaches. We set the time limit of the ILP solver to 30 minutes.

We use five variants of our algorithm: Basic does not contain any optimizations; BasicSym
enables symmetry breaking; BasicSymSSol additionally gives the input partitioning to the
ILP solver. The two variants BSSSConst= and BSSSConst< are the same as BasicSymSSol
with additional constraints: BSSSConst= has the additional constraint that the objective
has to be smaller or equal to the start solution, BSSSConst< has the constraint that the
objective value of a solution must be better than the objective value of the start solution.
Figure 2 summarises the results.

In our experiments, the basic configuration reaches the time limit in 95 out of the 300
runs. Overall, enabling symmetry breaking drastically speeds up computations. On all
of the instances which the Basic configuration could solve within the time limit, each
other configuration is faster than the Basic configuration. Symmetry breaking speeds up
computations by a factor of 41 in the geometric mean on those instances. The largest
obtained speedup on those instances was a factor of 5663 on the graph adaptive for k = 32.
The configuration solves all but the two instances (boneS01, k = 32) and (Dubcova3, k = 16)
within the time limit. Additionally providing the start solution (BasicSymSSol) gives an
addition speedup of 22% on average. Over the Basic configuration, the average speedup
is 50 with the largest speedup being 6495 and the smallest speedup being 47%. This
configuration can solve all instances within the time limit except the instance boneS01 for
k = 32. Providing the objective function as a constraint (or strictly smaller constraint) does
not further reduce the running time of the solver. Instead, the additional constraints even
increase the running time. We attribute this to the fact that the solver has to do additional
work to evaluate the constraint. We conclude that BasicSymSSol is the fastest configuration
of the ILP. Hence, we use this configuration in all the following experiments. Moreover, from
Figure 2 we can see that this configuration can solve most of the instance within the time
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Table 2 From top to bottom: Number of improvements found by different vertex selection rules
relative to the total number of instances, average running time of the strategy on the subset of
instances (graph, k) in which all strategies finished within the time limit, and the relative number of
instances in which the strategy computed the lowest cut. Best values are highlighted in bold.

Gain TopVertices Boundary
k ρ = 0 ρ = −1 ρ = −2 δ = 1 δ = 2 δ = 3

Relative Number of Improvements
2 70% 70% 70% 50% 70% 70% 70%
4 50% 60% 80% 70% 70% 70% 80%
8 50% 60% 78% 60% 60% 60% 48%
16 30% 50% 70% 40% 30% 30% 40%
32 60% 60% 46% 50% 50% 20% 20%
64 70% 70% 50% 30% 20% 20% 0%

Average Running Time
2 189.943s 292.573s 357.145s 34.045s 61.152s 92.452s 684.198s
4 996.934s 628.950s 428.353s 87.357s 255.223s 558.578s 1467.595s
8 552.183s 244.470s 244.046s 105.737s 167.164s 340.900s 96.763s
16 118.532s 52.547s 90.363s 53.385s 141.814s 243.957s 34.790s
32 40.300s 24.607s 94.146s 27.156s 80.252s 116.023s 7.596s
64 15.866s 21.908s 24.253s 14.627s 30.558s 44.813s 4.187s

Relative Number Best Algorithm
2 20% 60% 50% 10% 10% 0% 60%
4 10% 0% 50% 10% 0% 0% 30%
8 0% 20% 30% 10% 10% 10% 26%
16 0% 10% 54% 10% 0% 10% 20%
32 0% 8% 38% 0% 0% 0% 4%
64 0% 16% 36% 0% 0% 0% 0%

limit if the number of non-zeros in the ILP is below 106. Hence, we set the parameter N
to 106 in the following section.

5.3 Vertex Selection Rules
We now evaluate the vertex selection strategies to find the set of vertices K that model
the ILP. We look at all strategies described in Section 4.4, i.e. Boundary, Gainρ with the
parameter ρ ∈ {−2,−1, 0} as well as TopVerticesδ for δ ∈ {1, 2, 3}. To evaluate the different
selection strategies, we use the best of five runs of KaFFPa strong on each of the graphs
from set A using ε = 0 and k ∈ {2, 4, 8, 16, 32, 64} and then use the computed partition as
input to the ILP (with different sets K). Table 2 summarizes the results of the experiment,
i.e. the number of cases in which our algorithm was able to improve the result, the average
running time in seconds for these selection strategies as well as the number of cases in which
the strategy computed the best result (the partition having the lowest cut). We set the time
limit to 2 days to be able to finish almost all runs without running into timeout. For the
average running time we exclude all graphs in which at least one algorithm did not finish in
2 days (rgg_15 k = 16, delaunay_n15 k = 4, G2_circuit k = 4, 8). If multiple runs share the
best result, they are all counted. However, when no algorithm improves the input partition
on a graph, we do not count them.

Looking at the number of improvements, the Boundary strategy is able to improve the
input for small values of k, but with increasing number of blocks k improvements decrease
to no improvement in all runs with k = 64. Because of the limit on the number of non-zeros,
the ILP contains only random boundary vertices for large values of k in this case. Hence,
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Figure 3 Left: performance plot for all vertex selection strategies Right: cut value of vertex
selection strategies in comparison to the best result given by any strategy.

there are not sufficiently many high gain vertices in the model and fewer improvements for
large values of k are expected. For small values of k ∈ {2, 4}, the Boundary strategy can
improve as many as the Gainρ=−2 strategy but the average running times are higher.

For k = {2, 4, 8, 16}, the strategy Gainρ=−2 has the highest number of improvements, for
k = {32, 64} it is surpassed by the strategy Gainρ=−1. However, the strategy Gainρ=−2 finds
the best cuts in most cases among all tested strategies. Due to the way these strategies are
designed, they are able to put a lot of high gain vertices into the model as well as vertices
that can be used to balance vertex movements. The TopVertices strategies are overall also
able to find a large number of improvements. However, the found improvements are typically
smaller than the Gain strategies. This is due to the fact that the TopVertices strategies
grow BFS balls with a predefined depth around high gain vertices first, and later on are not
able to include vertices that could be used to balance their movement. Hence, there are less
potential vertex movements that could yield an improvement.

For almost all strategies, we can see that the average running time decreases as the
number of blocks k increases. This happens because we limit the number of non-zeros N
in our ILP. As the number of non-zeros grows linearly with the underlying model size, the
models are far smaller for higher values of k. Using symmetry breaking, we already fixed the
block of the k vertices µi which represent the vertices not part of K. Thus the ILP solver
can quickly prune branches which would place vertices connected heavily to one of these
vertices in a different block. Additionally, our data indicate that a large number of small
areas in our model results faster in solve times than when the model contains few large areas.
The performance plot in Figure 3 shows that the strategies Boundary, TopVerticesδ=1 and
Gainρ=−2 have lower running times than other strategies. These strategies all select a large
number of vertices to initialize the breadth-first search. Therefore they output a vertex set
K that is the union of many small areas around these vertices. Variants that initialize the
breadth-first search with fewer vertices have fewer areas, however each of the areas is larger.

5.4 Walshaw Benchmark

In this section, we present the results when running our best configuration on all graphs from
Walshaw’s benchmark archive. Note that the rules of the benchmark imply that running
time is not an issue, but algorithms should achieve the smallest possible cut value while
satisfying the balance constraint. We run our algorithm in the following setting: We take
existing partitions from the archive and use those as input to our algorithm. As indicated by
the experiments in Section 5.3, the vertex selection strategies Gainρ∈{−1,−2} perform best
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Table 3 Relative number of improved instances in the Walshaw Benchmark starting from current
entries reported in the Walshaw benchmark.

k\ε 0% 1% 3% 5%

2 6% 12% 6% 6%
4 18% 9% 6% 18%
8 26% 24% 12% 15%
16 50% 26% 29% 29%
32 62% 47% 47% 53%
64 68% 59% 71% 76%

overall 38% 29% 28% 33%

for different values of k. Thus we use the variant Gainρ=−2 for k ≤ 16 and both Gainρ=−2
and Gainρ=−1 otherwise in this section. We repeat the experiment once for each instance
(graph, k) and run our algorithm for k = {2, 4, 8, 16, 32, 64} and ε ∈ {0, 1%, 3%, 5%}. For
larger values of k ∈ {32, 64}, we strengthen our strategy and use N = 5 · 106 as a bound for
the number of non-zeros. Table 3 summarizes the results. Detailed per-instance results are
given in the full version of this paper [23].

When running our algorithm using the currently best partitions provided in the benchmark,
we are able to improve 38% of the currently reported perfectly balanced results. We are
able to improve a larger number of results for larger values of k, more specifically, out of the
partitions with k ≥ 16, we can improve 60% of all perfectly balanced partitions. This is due
to the fact that the graph partitioning problem becomes more difficult for larger values of k.
There is a wide range of improvements with the smallest improvement being 0.0008% for
graph auto with k = 32 and ε = 3% and with the largest improvement that we found being
1.72% for fe_body for k = 32 and ε = 0%. The largest absolute improvement we found is 117
for bcsstk32 with k = 64 and ε = 0%. In general, the total number of improvements is lower
if some imbalance is allowed. This is also expected since traditional local search methods
have a larger amount of freedom to move vertices. However, the number of improvements
still shows that the method is also able to improve a many partitions even if some imbalance
is allowed.

6 Conclusions and Future Work

We presented a novel meta-heuristic for the balanced graph partitioning problem. Our
approach is based on an integer linear program that solves a model to combine unconstrained
vertex movements into a global feasible improvement. Through a given input partition, we
were able to use symmetry breaking and other techniques that make the approach scale to
large inputs. In Walshaw’s benchmark, we were able to improve a large number of partitions.

We plan to further improve our implementation and integrate it into the KaHIP framework.
We would like to look at other objective functions as long as they can be modelled linearly.
Moreover, we want to investigate whether this kind of contractions can be useful for other
ILPs. It may be interesting to find cores for contraction by using the information provided an
evolutionary algorithm like KaFFPaE [35], i.e. if many of the individuals of the population of
the evolutionary algorithm agree that two vertices should be put together in a block then those
should be contracted in our model. Lastly, besides using other exact techniques like branch-
and-bound to solve the model, it may also be worthwhile to use a heuristic algorithm instead.
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