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Abstract
We consider a job scheduling problem under precedence constraints, a classical problem for a
single processor and multiple jobs to be done. The goal is, given processing time of n fixed
jobs and precedence constraints over jobs, to find a permutation of n jobs that minimizes the
total flow time, i.e., the sum of total wait time and processing times of all jobs, while satisfying
the precedence constraints. The problem is an integer program and is NP-hard in general. We
propose a decision diagram π-MDD, for solving the scheduling problem exactly. Our diagram is
suitable for solving linear optimization over permutations with precedence constraints. We show
the effectiveness of our approach on the experiments on large scale artificial scheduling problems.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases decision diagram, permutation, scheduling, NP-hardness, precedence
constraints, MDD

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.5

Supplement Material Source codes are available at https://bitbucket.org/kohei_hatano/
pimdd/.

Funding This work is supported in part by JSPS KAKENHI Grant Number JP16K00305 and
JSPS KAKENHI Grant Number JP15H02667, respectively.

Acknowledgements We thank Fumito Miyake for insightful discussions and anonymous reviewers
for helpful comments.

1 Introduction

Scheduling problems are typical problems which are known to be NP-hard in general. Hence,
practical fast approximate solvers for scheduling are quite useful in practice. Among them,
the job scheduling problem of a single machine with precedence constraints is a classical
one, where, given n fixed jobs and their processing times, as well as precedence constraints
over jobs (i.e., job i must be done prior to job j), the task is to find a permutation of
n jobs ( a schedule) which minimizes the sum of processing times and wait times (called
flow time) of all jobs among those permutations satisfying precedence constraints. This
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5:2 Decision Diagrams for Solving a Job Scheduling Problem

problem is NP-hard [15, 16] as well and 2-approximation polynomial time algorithms are
known [24, 11, 5, 17, 4]. For further details, see, e.g., [8, 2]. On the other hand, practical
exact algorithms are quite non-trivial to obtain; Naive algorithms using integer programming
solvers still take prohibitive time.

BDDs (Binary Decision Diagrams) [1, 3] and ZDDs (Zero Suppressed BDDs) [20, 21, 14] are
data structures which represent sets of binary vectors (or sets of fixed objects). BDDs/ZDDs
can compress sets succinctly and various functions over sets (such as union and intersection)
are efficiently computed using the data structures. In particular, ZDDs are suitable for
representing sparse sets and often advantageous in practice (see, e.g., [22, 12]). A variant of
ZDDs called πDDs are specially designed for representing permutations [23]. The structure
is suitable for counting or enumeration, but not designed for optimization. In addition, we
are not aware of other non-trivial applications of BDDs/ZDDs for the scheduling problem
with precedence constraints. MDDs (Multiple-Valued Decision Diagrams)[19] are of variants
of BDDs which can treat multiple values naturally and applications of MDDs to scheduling
problems are known [6, 7]. The scheduling problems considered are different from ours and
thus are not applicable.

In this paper, we propose a data structure π-MDD, which directly represents a set of
permutations over {1, . . . , n}1. A π-MDD is a DAG and each path in the DAG represents a
permutation. Using the data structure, we show an exact optimization scheme for the job
scheduling problem under precedence constraints. More specifically, our scheme consists of
the following two parts.
(i) We propose an algorithm which, when given a set of precedence constraints represented

by a DAG as input, constructs a π-MDD representing permutations satisfying the
precedence constraints in output-linear time. We show that the size of the π-MDD
made by the algorithm is O(h(G)(n/h(G) + 1)h(G)), where G is the DAG representing
precedence constraints and h(G) is the width of the graph.

(ii) Given a π-MDD which represents a set of permutations, and processing times of jobs,
we show a method for finding a permutation π optimizing the flow time among the
set which is a linear optimization over the permutations in the set. Like BDDs/ZDDs,
linear optimization of the set of interest can be reduced to the shortest path problem
over the corresponding MDD which represents the set. Thus the computation time for
the optimization is linear in the size of the π-MDD.

A potential advantage of our method (and other BDDs/ZDDs/MDDs based approaches)
over naive integer-programming based methods is that once we construct a π-MDD represent-
ing permutations satisfying precedence constraints, we can re-use it for different cost criteria
without reconstructing π-MDDs. This advantage is crucial for (i) the case where several
different cost criteria are considered and (ii) a repeated game version of the job scheduling
under fixed precedence constraints under uncertainty (see, e.g., [9]).

In our preliminary experiments over large artificial data sets of job scheduling under
precedence constraints, our method outperforms naive methods based on the integer pro-
gramming, especially when there are more precedence constraints.

1.1 Related Work
Note that the data structure π-MDD is a special case of MDDs and not new itself. Further-
more, the structure of π-MDD is quite similar to ones used in the previous work of Hadzic
et al. [10] and Ciré and van Hoeve [6, 7]. However, their approach to construct the data

1 More precisely, π-MDDs can deal with permutations over n fixed different numbers.
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structure is totally different from ours. Their approach is to construct a relaxed MDD which
represents a super set of the feasible solutions first and to solve the problem by refining
the MDD as well as filtering infeasible solutions. On the other hand, our approach directly
constructs the exact set of feasible solutions.

The technical contribution of the paper is not to derive a new data structure, but to
derive an efficient construction method of π-MDDs satisfying precedence constraints as well
as an efficient exact optimization of the job scheduling problem using the structure.

2 Preliminaries

2.1 Notations
Let [n] = {1, 2, ..., n} be the set of integers 1, . . . , n. A permutation π over [n] is a bijection
from [n] to [n]. Each permutation π can be represented as the corresponding vector π =
(π(1), . . . , π(n)). For convenience, for each i ∈ [n],let πi be the i-th element of π, and π−1

i

be the position of element i, respectively. Let S[n] be the set of permutations over [n]. For
example, S[3] = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

A directed graph (DAG) G = (V,E) is a pair, where V is the set of nodes and E ⊆ V ×V
is the set of directed edges in which there is no directed cycle, i.e., there is no sequence
(v1, v2), (v2, v3) . . . , (vk, vk+1) ∈ Ek with v1 = vk+1.

Let d+
v denote the out-degree of node v in V , that is d+

v = |{v′ ∈ V | (v, v′) ∈ E}|. We
say that a node v ∈ V is reachable from v′ ∈ V if there is a directed path starting from
v′ ending at v, i.e., a sequence of directed edges (v′, v1), (v1, v2), . . . , (vk−1, vk), (vk, v) ∈ E.
For a DAG G = (V,E), the width h(G) denote the maximum size of the set V ′ ⊆ V

where each pair of nodes are not reachable from each other. A partially ordered set (poset)
(P,R) is a pair, where P is a set and R ⊂ P × P is a binary relation satisfying reflexivity
(∀a ∈ P, aRa), transitivity (∀a, b, c ∈ P, aRb and bRc implies aRc), and antisymmetry
(∀a, b ∈ P, aRb and bRa implies a = b). A poset (P,R) can be viewed as a DAG G = (V,E)
with V = P and R = E and known as a Hasse diagram.

Let SV (G) denote the set of permutations over V ⊆ [n] satisfying the precedence
constraints corresponding to the DAG G = (V,E) and is defined as

SV (G) = {π ∈ SV | ∀(v, v′) ∈ E πv < πv′}.

Similarly, let S−1
V (G) the set of inverses of permutations in SV (G), i.e.,

S−1
V (G) = {π−1 ∈ SV | π ∈ SV (G)}

Note that, by definition of the inverse, S−1
V (G) = {π ∈ SV | ∀(v, v′) ∈ E π−1

v < π−1
v′ }. We

will make use of this property extensively in later discussions.

2.2 The job scheduling problem under precedence constraints
We consider the job scheduling problem of n jobs with a single machine under the precedence
constraints given as a DAG G = ([n], E). Given processing times of jobs represented as a
vector w ∈ Rn and the precedence constraints G, the task is to find a permutation over the
set [n] of jobs minimizing the sum of flow times (the sum of processing time and wait time)
of all jobs. For example, when n = 4, jobs 3, 2, 4, 1 are done successively, flow times of these
jobs are w3, w3 +w2, w3 +w2 +w4, w3 +w2 +w4 +w1, respectively and the sum of flow times
is 4w3 + 3w2 + 2w4 +w1. If we represent the schedule as a permutation π = (1, 3, 4, 2) (each
component i can be viewed as its priority), the sum of flow times of the schedule is exactly

SEA 2018
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the inner product π ·w. This relationship holds in general. That is, a permutation π ∈ S[n]
represents a schedule where the priority of job i is πi (i.e., the job is the (n+ 1− πi)-th to
be done) and the sum of flow times is π ·w.

Now we define the job scheduling problem under the precedence constraints represented
as a DAG G = ([n], E) and w ∈ Rn as the following linear optimization problem:

Input : DAG G = ([n], E), w ∈ Rn

Output : π∗ = arg min
π∈S[n](G)

π ·w (1)

The problem can be formulated as an integer program where variables takes values in [n]
and it is NP-hard [15, 16]. We will solve this problem exactly using a new data structure
later.

This problem can be reduced to the 0-1 integer programs in two ways. The first reduction
represents a permutation as a permutation matrix as follows: Given a permutation π ∈ S[n],
the corresponding permutation matrix X ∈ {0, 1}n×n is defined as Xi,j = 1 if πj = i and
otherwise Xj = 0 for each j ∈ [n]. For example, for π = (2, 3, 1), the permutation matrix X
is

X =

0 0 1
1 0 0
0 1 0

 .
When we represent permutations as permutation matrices and we are given w ∈ Rn, let

W =


w1 w2 · · · wn
2w1 2w2 · · · 2wn
...

...
. . .

...
nw1 nw2 · · · nwn

 .
Then the problem can be given as the following integer program.

minimizeX∈{0,1}n×n

n∑
i=1

n∑
j=1

Xi,jWi,j

subject to (2a)

∀i ∈ [n]
n∑
j=1

Xi,j = 1 (2b)

∀j ∈ [n]
n∑
i=1

Xi,j = 1 (2c)

∀(v, v′) ∈ E ∀i ∈ [n]
n∑
j=i

Xj,v ≤
n∑
j=i

Xj,v′ (2d)

This formulation has n2 variables and n(|E|+ 2) linear constraints.
The second reduction to an 0-1 integer program uses a comparison matrix as a represent-

ation of a permutation. A comparison matrix Y ∈ {0, 1}n corresponding to a permutation π
is defined as

Yi,j =
{

0 (πi > πj)
1 (πi ≤ πj)

(3)
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By adopting the comparison matrix representation, the scheduling problem is given as the
following integer program with the input

W =


w1 w2 · · · wn
w1 w2 · · · wn
...

...
. . .

...
w1 w2 · · · wn

 .

minimizeY ∈{0,1}n×n

n∑
i=1

n∑
j=1

Yi,jWi,j

subject to
∀i, j, k ∈ [n] 1 ≥ Yi,j − Yi,k + Yj,k ≥ 0 (4a)

∀i, j ∈ [n]
{
Yi,j + Yj,i = 1 (i 6= j)
Yi,j = 1 (i = j) (4b)

∀(v, v′) ∈ E Yv,v′ = 1 (4c)

The optimum of the scheduling problem is the permutation represented by the solution Y .
This problem has n2 variables and 2n3 + n(n + 1)/2 + |E| constraints. This formulation
is well-known in the scheduling literature. For details, see, e.g.,the result of Chudak and
Hochbaum [5].

3 π-MDD

We propose π-MDD, a variant of MDD (Multiple-Valued Decision Diagram[18][19]). An
MDD is a data structure representing a set of vectors, while a π-MDD represents a set of
permutation vectors.

A π-MDD D = (VD, ED) over N ⊂ N, |N | = n is a DAG with the root node r whose
in-degree is 0 and the terminal node t whose out-degree is 0, where VD ⊆ 2N consists of sets
of nodes. Each node of VD corresponds to a subset of N . In particular, r = N and t = ∅.
The structure of a π-MDD has several layers. At the first layer, only the root r = N exists
and i-th layer consists of nodes u with size |u| = n− i+ 1 (i = 1, . . . , n). Edges of a π-MDD
appear only between consecutive layers. More precisely, (u, u′) ∈ ED if and only if u′ ⊂ u

and u and u′ differ in exactly one element. Each path from the root r to the terminal t has
length exactly n and each node u in VD with distance i from t corresponds to a set of size i,
that is |u| = i. Let PD be the set of all paths from the root r = N to the terminal t = ∅. For
convenience, we sometimes regard a path in PD as a sequence of vertices along the directed
path. That is, PD ⊂ (2N )n+1. Figure 1 illustrates a π-MDD. Given a π-MDD D, a path
p = (p1, . . . , pn+1) ∈ PD defines a permutation πp as follows:

πp = (πp,1, . . . , πp,n) s.t. πp,i ∈ pn−i+1 \ pn−i+2 (i = 1, . . . , n).

Note that the set pn−i+1 \ pn−i+2 is a singleton and thus the definition is well-defined. For
example, in Figure 1, for the path p = ({1, 2, 3, 4}, {2, 3, 4}, {3, 4}, {3}, ∅), the corresponding
permutation πp is (3, 4, 2, 1). Similarly, two sets of permutations associated with a π-MDD
D over N ⊂ N are defined as follows:

Π(D) = {πp |p ∈ PD}, and Π−1(D) = {π−1 | π ∈ Π(D)}.
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5:6 Decision Diagrams for Solving a Job Scheduling Problem

Figure 1 An illustration of a π-MDD D.

For the π-MDD in Figure 1, Π(D) = {(4, 1, 2, 3), (4, 1, 3, 2), (3, 4, 1, 2), (3, 4, 2, 1)}, and
Π−1(D) = {(2, 3, 4, 1), (2, 4, 3, 1), (3, 4, 1, 2), (4, 3, 1, 2)}. S−1

π (D) Sπ(D), respectively.
Now we propose a method to solve the scheduling problem using π-MDDs. The method

consists of two parts.

1. Given a DAG G = ([n], E) which represents precedence constraints, construct a π-MDD
D such that Π(D) = S−1

[n] (G). That is, the π-MDD D represents inverses of permutations
satisfying the constraints.

2. Given the π-MDD D over [n] and a weight vector w ∈ Rn, solve

π = arg min
π∈S[n](G)

π ·w.

3.1 Construction of a π-MDD

In this subsection, we consider the following problem:

Input : DAG G = ([n], E)
Output : π-MDD D s.t. Π(D) = S−1

[n] (G).

Let G(V ′) denote the subgraph of G induced by the vertex subset V ′, that is, G(V ′) =
(V ′, E′), where E′ = {(v, v′) ∈ V ′ | (v, v′) ∈ E}. Also, let E(V ′) = {(v, v′) ∈ V ′ | (v, v′) ∈ E}.
First, we describe the algorithm Makeπ-MDD in Algorithm 1.

The algorithm Makeπ-MDD recursively constructs a π-MDD from the root node r = [n]
to the terminal node t = ∅. For any π ∈ SV and an integer q, we denote πq as πq =
(π1, . . . , π|V |, q). For any set Y ⊆ Rn and any real number y ∈ R, let Y × y = {(y, y) ∈
Rn+1 | y ∈ Y }. Then we prove an important property of S−1

V (G).

I Lemma 1. For a DAG G = (V,E) and Q = {q ∈ V | d+
q = 0},

S−1
V (G) =

⋃
q∈Q

S−1
V \{q}(G(V \ {q}))× q. (5)
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Algorithm 1 Makeπ-MDD.
Require: DAG G = (V,E), where V ⊆ [n]
1: if V = ∅ then
2: return node ∅
3: else if have never memorized the π-MDD DG for G then
4: π-MDD D ← (VD, ED) with VD = {V } and ED = ∅.
5: for each v ∈ V whose out-degree is 0 in G = (V,E) do
6: V ′ ← V \ {v}
7: π-MDD D′ ← Makeπ-MDD(G(V ′)) // root node is V ′
8: D ← D with D′ and edge (V, V ′)
9: end for
10: memorize D as DG

11: end if
12: return DG

Proof. For any fixed q ∈ Q,

πq ∈ S−1
V \{q}(G(V \ {q}))× q

⇔ πq ∈ SV , ∀(v, v′) ∈ E(V \ {q}), π−1
v ≤ π−1

v

(by definition of S−1
V (G) and its property)

⇔ π′ = πq ∈ SV , ∀(v, v′) ∈ E(V \ {q}) ∪ {(i, q) ∈ V 2 | i ∈ V \ {q}}, π
′−1
v ≤ π

′−1
v

(since π|V | = q ⇔ π
′−1
q = |V | )

⇒ π′ = πq ∈ SV , ∀(v, v′) ∈ V, π
′−1
v ≤ π

′−1
v = S−1

V (G)
(since E ⊆ E(V \ {q}) ∪ {(i, q) ∈ V 2 | i ∈ V \ {q}}),

which implies that ∪q∈QS−1
V \{q}(G(V \ {q}))× q ⊆ S−1

V (G).

For the opposite direction, let π be any member of S−1
V (G). Then, by definition, for

any (v, v′) ∈ E, it holds that π−1
v ≤ π−1

v′ . Let q = π|V |. Then, we have π−1
q = |V | > π−1

v

for any v ∈ V \ {q}. Therefore, there is no out-going edge from q (if exists, it implies a
contradiction) and thus q ∈ Q. Together with the fact that π ∈ S−1

V \{q}(G(V \ {q}))× q, the
opposite direction also holds. J

The following lemma holds for Makeπ-MDD. Now we describe an important relationship
between the output of Makeπ-MDD and the input DAG G = (V,E). Roughly speaking, the
π-MDD made by the algorithm represents a set of inverses of permutations satisfying the
precedence constraints.

I Lemma 2. Makeπ-MDD constructs a π-MDD D such that Sπ(D) = S−1
V (G).

Proof. The proof is done by induction on the size k = |V | in the input DAG G = (V,E).
(i) For |V |=0, Makeπ-MDD outputs the π-MDD D = (VD, ED) with VD = {∅} and E = ∅.
Thus the statement is true. (ii) For |V | = k, assume that the statement is true. Let DG(V ′)
be the π-MDD made by Makeπ-MDD(G(V ′)). Then,
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5:8 Decision Diagrams for Solving a Job Scheduling Problem

Π(D) =
⋃
q∈Q

(Π(DG(V \{q}))× q)

=
⋃
q∈Q

(S−1
V \{q}(G(V \ {q}))× q) (by the inductive assumption)

=
⋃
q∈Q

({π ∈ SV \{q}| ∀(v, v′) ∈ E(V \ {q}) π−1
v < π−1

v′ } × q)

= S−1
V (G) (by Lemma 1), (6)

which completes the inductive proof. J

I Corollary 3. For the output D of Makeπ-MDD(G) with G = ([n], E), Π−1(D) = S[n](G).

The size of the π-MDD can be bounded based on the result of Inoue and Minato [13].

I Lemma 4. For a DAG G = (V,E), let h(G) be the width of G. Then, the size |D| of
π-MDD D obtained from Makeπ-MDD(G = (V,E)) is

|D| = O(h(G)(n/h(G) + 1)h(G)).

Proof. Let IS(G) be the set of DAGs which can be constructed by updating G = G(V \{v ∈
V | d+(v) = 0}) recursively. The total number of recursions in Makeπ-MDD is at most
|IS(G)|. It is known that the size |IS(G)| is at most (n/h(G) + 1)h(G) [13]. Since any pair
of elements in the set Q = {v ∈ V ′ | d+

v = 0} are not reachable to each other, |Q| ≤ h(G).
Therefore, at each recursion, at most h(G) edges are added, and thus the total edges in the
π-MDD made by the algorithm is O(h(G)(n/h(G) + 1)h(G)). J

3.2 Optimization over a π-MDD

We describe how to find an optimal solution of the scheduling problem (1) using a π-MDD.
More precisely, we deal with the following optimization problem.

Input : π-MDD D = (VD, ED) s.t. Π(D) = S−1
[n] (G) for some DAG G, and w ∈ Rn

Output : π = arg min
π∈S[n](G)

π ·w

We solve this problem by reducing it to the shortest path problem over the π-MDD D. The
reduction is as follows: For each edge (u, u′) ∈ ED, we set the cost L(u,u′) as

L(u,u′) = |u|wu\u′ .

The cost Lp of each path p ∈ PD is defined as Lp =
∑
i∈[n] L(pi,pi+1). Then we consider the

shortest path problem over D from the root r = [n] to the terminal t = ∅ with cost L(v,v′) for
each edge (v, v′) ∈ DE . This problem is can be solved in time O(|D|). We prove the following
relationship between the cost of each path p ∈ PD and its corresponding permutation.

I Lemma 5. For any p ∈ P (D),

Lp = π−1
p ·w.
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Proof.

Lp =
∑
i∈[n]

L(pi,pi+1)

= |p1|wp1\p2 + · · ·+ |pn|wpn\pn+1

= nwp1\p2 + · · ·+ wpn\pn+1

= nwπp,n
+ · · ·+ wπp,1

=
∑
i∈[n]

iwπp,i

=
∑
i∈[n]

i
∑
j∈[n]

1l[j = πp,i]wj

=
∑
i∈[n]

i
∑
j∈[n]

1l[π−1
p,j = i]wj

=
∑
j∈[n]

∑
i∈[n]

1l[π−1
p,j = i]iwj

=
∑
j∈[n]

π−1
pj wj

= π−1
p ·w J

By combining Lemma 2, 4, 5, we obtain the main result.

I Theorem 6. There is an algorithm that, given a DAG G = ([n], E) as precedence con-
straints, computes a solution of problem (1) in time O(h(G)(n/h(G) + 1)h(G)).

Proof. By Lemma 2, given a DAG G = ([n], E), Makeπ-MDD constructs a π-DD D such
that Π(D) = S−1

[n] (G). By Lemma 5, we can compute the linear optimization problem over
Π−1(D) = S[n](G). By Lemma 4, both constructing a π-MDD and solving the shortest path
problem take time O(h(G)(n/h(G) + 1)h(G)). J

4 Experimental Results

In this section, we show experimental results on artificial data. We construct the artificial
data sets of the scheduling problem with precedence constraints by generating DAGs and
weight vectors randomly. More precisely, given V = [n], for each (vi, vj) ∈ V × V (vi < vj),
we assign the edge (vi, vj) ∈ E with probability p (0 < p < 1). Note that, because of
the constraint that vi < vj , the resulting random graph is a DAG. We generate a random
weight vector by generating each wi according to the uniform distribution over [0, 1] for
i ∈ [n]. We use the parameters n = 25, and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We compare the
proposed methods with π-MDD, and integer programming (IP) with permutation matrices
and comparison matrices, respectively. We implemented these methods in C++ and used the
Gurobi optimizer 6.5.0 to solve integer programs. We run them in a machine with Intel(R)
Xeon(R) CPU X5560 2.80GHz and 198GB memory.

Figure 2 shows the computation times of each method for different choices of p. The
shown results are obtained by averaging over 500 random instances for each fixed choice of p.

The proposed method is fastest among others when p > 0.15, i.e., precedence constraints
are not sparse. (Figure3 shows the detailed results). In particular, for p ≥ 0.2, the speed up
by the proposed method is 10 times w.r.t. the IP with comparison matrices and more than 20
times w.r.t. the IP with permutation matrices. Also, as can be seen in Figure 2, computation
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Figure 2 Average running time for n = 25.
Figure 3 Average running time for n = 25 in

details.

Table 1 Average number of constraints for n = 25.

k = 0.1 k = 0.3 k = 0.5 k = 0.7 k = 0.9
permutation matrix 799.3 2304.8 3801.9 5294.0 6803.4
comparison matrix 31580.0 31640.2 31700.1 31759.8 31820.1

Figure 4 Average computation time for optimization for n = 25.

time of the IP with permutation matrices is much larger than that of the IP with comparison
matrices by 10 times for p ≤ 0.5. In contrast, as in Table 1, the number of constraints used
in IP with comparison matrices is much larger. So, the number of constraints does not seem
to affect the computation time.

In general, if the DAG G = (V,E) is sparse, the width of G tends to be larger. In fact, for
p = 0.1, the average width of the random graph is 11.808, while for p = 0.5, the average width
is 3.596. Note that the worst case time complexity bound O(h(n/h+ 1)h) for constructing a
π-MDD depends on the width h.

Next, for sparse precedence constraints, we compare performances of our π-MDD based
method and the IP with comparison matrices. For n = 25, and p ∈ {0.06, 0.07, . . . , 0.30}, we
generate 500 random DAGs for precedence constraints, and run these algorithms for each
random instance. Figure3 shows averaged results. The average running time of the proposed
method becomes smaller than the IP-based method for p ≥ 0.13.
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Now we compare computation times of these methods for optimization only. Here we
separate computation time into preprocessing time and time for optimization. For our
π-MDD based method, time for constructing a π-MDD is for preprocessing and solving
the shortest path problem over the π-MDD corresponds to the optimization part. For IP
with comparison matrices, we regard time for constructing a problem instance (e.g., adding
constraints) as preproccessing time.

Figure 4 shows computation times of the proposed method and the IP with comparison
matrices for optimization only. For optimization, the proposed method is faster than the IP
for p ≥ 0.09. This result indicates that the proposed method is better suited when we solve
scheduling problems with the same precedence constraints and different weight vectors.
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