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Abstract
The problem of computing the dual of a monotone Boolean function f is a fundamental problem
in theoretical computer science with numerous applications. The related problem of duality
testing (given two monotone Boolean functions f and g, declare that they are dual or provide
a certificate that shows they are not) has a complexity that is not yet known. However, two
quasi-polynomial time algorithms for it, often referred to as FK-A and FK-B, were proposed by
Fredman and Khachiyan in 1996, with the latter having a better complexity guarantee. These
can be naturally used as a subroutine in computing the dual of f .

In this paper, we investigate this use of the FK-B algorithm for the computation of the dual
of a monotone Boolean function, and present practical improvements to its performance. First,
we show how FK-B can be modified to produce multiple certificates (Boolean vectors on which
the functions defined by the original f and the current dual g do not provide outputs consistent
with duality). Second, we show how the number of redundancy tests - one of the more costly and
time-consuming steps of FK-B - can be substantially reduced in this context. Lastly, we describe
a simple memoization technique that avoids the solution of multiple identical subproblems.

We test our approach on a number of inputs coming from computational biology as well
as combinatorics. These modifications provide a substantial speed-up, as much as an order of
magnitude, for FK-B dualization relative to a naive implementation. Although other methods
may end up being faster in practice, our work paves the way for a principled optimization process
for the generation of monotone Boolean functions and their duals from an oracle.
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1 Introduction

Boolean functions are a powerful modeling tool. In many applications, such as those described
in [9], the relevant Boolean functions have a natural monotone structure, and can thus be
understood and manipulated in terms of their minimal true and maximal false settings.
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Obtaining and translating between these representations is a challenging and deep theoretical
question. There are numerous applications to do this in areas such as graph theory (generating
the transversal of a hypergraph), combinatorics (finding minimal hitting sets), and machine
learning (model-based fault diagnosis). It is also of interest in more applied fields from
security to networking and from distributed systems to computational biology. Our interest
in the problem stems begins from computational biology, notably in computing elementary
flux modes (EFMs) and minimal cut sets (MCSs) following [13].

Given the list of minimal true settings, the problem of generating the list of maximal false
settings is the classical problem of hypergraph dualization, which has arisen in several contexts,
see for example [9] for a survey, but is not well understood theoretically. The problem of
jointly generating both lists when the function is presented as an oracle is an attractive
problem. Notably Fredman and Khachiyan [7] found two novel algorithms for dualization,
that, unlike other known algorithms for the problem, extend to oracle-based generation [10].
These algorithms, which we refer to as FK-A and FK-B, verify duality or generate new
clauses in incremental quasi-polynomial time No(log N2) and No(log N) respectively, where
N is the current joint size of the input and output lists. These algorithms are poorly
understood in theory and in practice. The only available open-source code for oracle-based
generation is cl-jointgen [12] for FK-A, though some experiments on FK-A and FK-B
are described in [11], and an FK-A based dualization algorithm by Elbassioni is also now
available [5]. Highly parallel FK-type algorithms were proposed by Elbassioni [6] and Boros
and Makino [1].

In this paper we address some of the computational challenges of using the FK-B
algorithm for dualizing a monotone Boolean function, although our techniques can also be
directly applied to the setting of jointly generating the minimal true and maximal false settings
of a monotone Boolean function given as an oracle. Our main contribution is an extension of
the basic FK-B algorithm to produce multiple conflicting assignments (abbreviated as CA)
in a single iteration. Our second contribution is a substantial reduction in the number of
redundancy tests (namely, a test to make sure that no clause is a strict superset of another
one, required to maintain correctness) during the execution of FK-B. Lastly, we find that a
number of the subproblems arising during the different calls to FK-B are identical, and this
leads to our final contribution - the use of a memoization technique to speed up dualization.
Each improvement alone produces a substantial speed-up, and in combination, they result in
an order of magnitude speed gain relative to a naive (unoptimized) implementation.

2 Definitions

Let n be fixed. We write B to denote the set {0, 1}. A Boolean function f : Bn → B is
monotone if f(s) ≤ f(t) for any two vectors s ≤ t ∈ Bn, where the inequality is interpreted
component-wise. In other words, replacing a 0 with a 1 in the input cannot decrease f ’s
value. Monotone functions are precisely those that can be constructed using the OR and
AND operations, without any NOT gates.

The dual of a Boolean function f is the function fd defined by:

fd(x) = f(x) (1)

for all x = (x1, x2, . . . , xn) ∈ {0, 1}n, where x̄ = (x̄1, x̄2, . . . , x̄n).
A monotone Boolean function f is said to be in Disjunctive Normal Form (DNF) if it is

represented as an OR of ANDs, i.e. as

f =
m∨

j=1
Mj , whereMj =

∧
i∈Tj

xi.
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Here, the monomials Mj are called implicants of f . If the underlying sets Tj satisfy the
Sperner property, i.e. Tj 6⊂ Tk whenever j 6= k, then each Mj is also called a prime implicant
of f and m is called the size of f . In this case, the point x defined by

xi =
{

1 if i ∈ Tj

0 otherwise

is a minimal true point of f ; indeed, for this x we have f(x) = 1 and f(y) = 0 for any y < x,
where y < x if and only if y ≤ x and y 6= x.

Similarly, a monotone Boolean function f is said to be in Conjunctive Normal Form
(CNF) if it is represented as an AND of ORs, i.e. as

f =
m∧

j=1
Cj , where Cj =

∨
i∈Sj

xi.

Here, the clauses Cj are called implicates of f . Once again, if the underlying sets Sj satisfy
the Sperner property, then each Cj is also called a prime implicate of f and m is called the
size of f . In this case, the point x defined by

xi =
{

0 if i ∈ Sj

1 otherwise

is a maximal false point of f ; indeed, for this x we have f(x) = 0 and f(y) = 1 for any y > x.
Lastly, we define the support of x, denoted supp(x), as the set {i ∈ {1, 2, . . . , n}|xi = 1}.
In the context of a metabolic network model M , which we use as one of the test cases

here, the monotone Boolean function f is defined on subsets of reactions via f(x) = 1 if and
only if the support of x enables biomass production. In this setting the minimal true points
of f are called elementary flux modes (EFMs) and the maximal false points of f are called
minimal cut sets (MCSs), see for example [20, 14].

We can define two related problems for monotone Boolean functions:
- testing the equivalence of two monotone Boolean functions defined by a DNF and a CNF;
- the dualization problem: computing the equivalent CNF when a monotone DNF is given.

These two problems can be easily transformed into one another. The dualization problem
is equivalent to Transversal Hypergraph Generation, also called the Minimal Hitting Set
Enumeration problem. For background on these problems and applications, we refer the
reader to [4, 11, 3, 9] and references therein.

The study of monotone Boolean functions is a vibrant area of ongoing research. The
algorithm with the best known worst-case performance guarantee for the dualization of a
monotone Boolean function f has incremental quasi-polynomial running time. More precisely,
starting from a description of f in DNF, each iteration obtains an additional clause of the
equivalent CNF, in NO(logN) time, where N is the total size of the DNF and the current,
possibly incomplete, CNF [7].

2.1 The F K-Dualization Algorithm
Algorithms 1 and 2 show the FK dualization and FK-B duality checking procedure respec-
tively, following the presentations of [3] and [15].

Let φ be a DNF or CNF, and let x be a splitting variable. Then φx
0 denotes the

formula that consists of the terms of φ from which x is removed: φx
0 = {t − {x} : t ∈ φ}.

Analogously, φx
1 denotes the formula that consists of all terms of φ that do not contain x:

φx
1 = {t : t ∈ φ and x /∈ t}.

SEA 2018
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Algorithm 1 Fredman-Khachiyan Dualization.
Input: A positive Boolean function f on Bn expressed by its complete DNF.
Output: The complete DNF of fd.
1: function FK_Dualization(f)

2: g = 0;
3: Call FKB on the pair (f, g);
4: if the returned value is “Yes" then
5: halt;
6: else
7: let X∗ ∈ Bn be the point returned by FKB ;
8: compute a maximal false point of f , say Y ∗, such that X∗ ≤ Y ∗;
9: g = g ∨

∧
j∈supp(Y ∗)xj ;

10: return to Step 3.

A variable x is called at most µ-frequent in D if its frequency in D is at most 1/µ(|D| · |C|),
i.e. |{m ∈ D : x ∈ m}|/|D| ≤ 1/µ(|D|·|C|) where µ(n) ∼ logn/ log logn. A similar definition
applies to C.

The original FK-B algorithm returns the first conflicting assignment (CA) that it finds
between the given CNF and DNF. Hence computing the dual of a given DNF requires
NCNF + 1 iterations, where NCNF is the size of the CNF that is dual to the given DNF.

3 Methods

3.1 Pre-processing and Post-processing Steps
When analyzing metabolic networks to obtain the MCSs from the EFMs, it is beneficial to
pre-process the given EFMs before starting the dualization procedure. The preprocessing
involves three steps:

removing any reactions that are not part of any EFMs (also known as blocked reactions
[2, 8]), which correspond to unused variables;
removing any reactions involved in all the EFMs (also referred to as essential reactions
[2, 8]), adding them as singleton MCSs in post-processing;
collapsing any set of k reactions whose presence/absence patterns in clauses are identical
(a special case of this is referred to as enzyme subsets [2, 8]) into a single reaction,
expanding each of the final MCSs involving this reaction into k copies in post-processing.

The pre-processing and post-processing steps are not necessary and can be ignored.
However, they reduce the original problem and make the dualization procedure faster, so we
routinely perform these steps.

3.2 Finding Multiple Conflicting Assignments
Given that we can use any conflicting assignment between the current CNF and DNF to
compute a new clause in CNF, we can find Multiple Conflicting Assignments (MCAs) at the
same time to generate more than one clause per iteration of the dualization procedure, and
reduce the running time of the algorithm by reducing the total number of required iterations.
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Algorithm 2 The Fredman-Khachiyan Algorithm B (FK-B).
Input: irredundant, monotone DNF D and CNF C.
Output: ∅ in case of equivalence; otherwise, assignment A with A(D) 6= A(C).

1: function FK-B(C,D)
2: make D and C irredundant;
3: if a necessary condition is violated then return conflicting assignment;
4: if min{|D|, |C|} ≤ 2 then return conflicting assignment found by a trivial check;
5: else
6: choose a splitting variable x from the formulae
7: if x is at most µ-frequent in D then
8: A ← FK-B(Dx

1 , C
x
0 ∧ Cx

1 ) // recursive call for x set to false
9: if A 6= ∅ then return A
10: for all clauses c ∈ Cx

0 do do
11: A ← FK-B(Dc,x

0 , Cc,x
1 ) // see 〈1〉

12: if A 6= ∅ then return A ∪ {x}
13: else if x is at most µ-frequent in C then
14: A← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to true

15: if A 6= ∅ then return A ∪ {x}
16: for all monomials m ∈ Dx

0 do do
17: A ← FK-B(Dm,x

1 , Cm,x
0 ) // see 〈2〉

18: if A 6= ∅ then return A ∪ {m}
19: else
20: A ← FK-B(Dx

1 , C
x
0 ∧ Cx

1 ) // recursive call for x set to false
21: if A = ∅ then
22: A← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to true

23: if A 6= ∅ then return A ∪ {x}
24: return A
〈1〉: Dx

1 ≡ Cx
0 ∧Cx

1 : recursive call for all maximal non-satisfying assignments of Cx
0 for x

set to true. Dc,x
0 and Cc,x

1 denote the formulae we obtain if we set all variables in c to
false.
〈2〉: Dx

0 ∨Dx
1 ≡ Cx

1 : recursive call for all minimal satisfying assignments of Dx
0 for x set

to false. Dm,x
1 and Cm,x

0 denote the formula we obtain if we set all variables in m to
true.

To this end, MCAs can be computed in the situations below without significant increase
of computational effort. The first two situations arise during the assessment of the first two
conditions necessary for equivalence in FK-B.

The first condition that we assess in the FK-B algorithm is the existence of a non-
empty intersection between every clause in CNF and every monomial in DNF. If there is no
intersection between monomial m ∈ DNF and clause c ∈ CNF , then m makes the DNF
true and the CNF false, so it is a CA. During the dualization procedure, especially early on,
many of the monomials and clauses have no intersection. We thus consider intersections
between every clause in the CNF and every monomial in the DNF at once and can return
more than one CA.

The second condition that we assess in the FK-B algorithm is the presence of exactly the
same variables in the CNF and the DNF. If this condition is not met, a CA is determined
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from the extra variable(s) in the CNF or the DNF. If multiple variables are present in exactly
one of the CNF and the DNF, we consider all possible conflicting assignments instead of
returning only one.

The third situation in which we compute MCAs is in the case where min(|C|, |D|) ≤ 2.
In such cases, the conflicting assignment is directly derived from Boolean algebra. We only
consider the case |C| ≤ 2 here; the case |D| ≤ 2 is symmetric and is processed analogously.

The following cases may happen during this step:
|C| = 1
Here, we look for a variable x in the unique CNF clause, denoted C[1], such that D does
not contain the singleton monomial x, in which case {x} is a conflicting assignment.
|C| = 2
In this case, we denote the two clauses by C[1] and C[2]. There are three sub-cases:

Let A0 := C[1] ∩ C[2]. If x ∈ A0 is a variable such that D does not contain the
singleton monomial x, then {x} is a conflicting assignment.
Let A1 := C[1]−C[2] and A2 := C[2]−C[1]. Note that A1, A2 6= ∅. If some monomial
m in D is a subset of one of the Ai’s, then {x|x ∈ m} is a conflicting assignment.
Let (x, y) ∈ A1 ×A2 (defined in the previous case). If no monomial in D is a subset of
{x, y} then {x, y} is a conflicting assignment.

In all the aforementioned cases, whenever there is more than one conflicting assignment
we return all of them. An issue regarding MCAs is that sometimes more than one CA can
be mapped to a single clause in the CNF.

In the following sections, we refer to this version of FK-B as FKM .

3.3 Reducing the Number of Redundancy Tests in the F K-B
Algorithm

In the original FK-B algorithm, Algorithm 2, the first two instructions (line 2) remove
redundancy in both the CNF and the DNF. During redundancy removal one performs an
all-pairs comparison of the clauses (the monomials) in the CNF (the DNF) and remove any
supersets found. In logic, removing redundancy is equivalent to applying the absorption rule
to simplify the Boolean function.

In the FK-B algorithm, this procedure is a bottleneck due to the large number of pairwise
comparisons that must be performed in each recursive call, and this is compounded by the
fact that when we perform dualization, the FK-B algorithm is iterated many times to find
the clauses of the CNF.

We reduce the number of redundancy tests performed in FK-B, and consequently in
FK-dualization, by noting that when we set a variable to true (false) in the CNF (DNF),
there is no need to check the redundancy of the CNF (DNF) in the next recursive call because
such a setting results in one or more clauses (monomials) in the CNF (DNF) being removed,
which cannot generate redundancy.

This can simply be implemented using two binary flags, which are respectively set if and
only if the redundancy in the CNF (the DNF) should be checked, and cleared otherwise.
For simplicity, we call this algorithm FKR. It differs from the baseline, algorithm 2, in
the following ways. First, the redundancy of the CNF (the DNF) is only checked if the
corresponding flag is set. Second, in lines 8 and 20, where a variable x is set to false, the
flag for the CNF is set and the flag for the DNF is cleared, since we only need to check the
redundancy in the CNF, not the DNF. Conversely, in lines 14 and 22, the variable x is set to
true, so the flag for the DNF is set and the flag for the CNF is cleared. Note that in lines
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11 and 17, it is assumed that variable x is respectively set to true and false, and then the
variables in c and m are respectively set to false and true. For this reason, redundancy can
be produced in those lines, so the next call to FKR needs to check the redundancy in both
the CNF and the DNF.

3.4 Dealing with Repeated subproblems
Given that the FK-B algorithm is a recursive algorithm which is called multiple times during
dualization, we encounter many subproblems solved in the previous recursive calls or past
iterations. In this case, memoizing (storing for future retrieval) these subproblems and their
solutions (in the form of CAs) is beneficial, as it can reduce the running time of both the
FK-B algorithm as well as FK-dualization as a whole.

To this end, we use a hash table whose keys are combination of the CNF and the DNF
and whose values are the CAs between them. To implement this idea, we compute the key
for a given CNF and DNF prior to calling the FK algorithm. If it is already in the hash
table, we retrieve the value, i.e. the corresponding CAs, bypassing a recursive call to FK.
Otherwise, we call FK and store the computed CAs as a new record in the hash table.

As we experimented with different settings in implementation of the memoization idea,
we realized that solving small subproblems, with |C| < 3 and |D| < 3, from scratch was faster
than storing them in the hash table and retrieving the CAs. Thus, in our implementation we
do not use the hashing technique for small subproblems. The method that uses hashing in
the FK-B algorithm is referred to as FKH .

4 Experimental Results

To assess the proposed algorithms, we run them on 12 problems including seven biological
(metabolic network) models downloaded from the BioModels database3 as well as 5 synthetic
models. The code and examples that we used are available on GitHub [16].

We first parsed the biological models using the SBML parser in MATLAB to obtain a
stoichiometric matrix containing the reactions and the metabolites, then applied EFMTool
[18]/FluxModeCalculator [19] to extract the EFMs into a matrix. We converted this matrix
into a binary one by setting all non-zero values to one, and used this as the input DNF, as is
standard when looking for MCSs. We have chosen models with small to medium sizes.

The synthetic models included in our experiments are the 3× 3 magic squares, called ‘ms-
33’, 3× 3 semi-magic squares, called ‘sms-33’, and three problems ‘ac-200k’, ‘SDFP16’, and
‘SDFP23’ taken from the Hypergraph Dualization Repository4. ‘ac-200k’ is the complement
of the set of maximal frequent itemsets with support threshold 200, 000 from the “accident"
dataset. ‘SDFP16’ and ‘SDFP23’ are the Self-Dual Fano Plane hypergraphs with respectively
n = 16 and n = 23 vertices, and (kn − 2)2/4 + kn/2 + 1 hyperedges, where kn = (n− 2)/7.

4.1 Evaluating the Speed of the Algorithms
To measure the running time of the proposed algorithms we used the timeit function
in MATLAB, which measures the typical running time of functions in seconds. timeit
automatically repeats the input function in a timing loop a number of runs determined by a
built-in heuristic method, and returns the median value across the runs.

3 http://www.ebi.ac.uk/biomodels-main/publmodels
4 http://research.nii.ac.jp/~uno/dualization.html
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Table 1 Characteristics of models; nmetab: number of metabolites, nEF M : number of elementary
flux modes or monomials in DNF, n<pre

r : Number of reactions/variables before preprocessing steps,
n>pre

r : Number of reactions/variables after preprocessing, n<post
MCS : Number of minimal cut sets or

clauses in CNF before postprocessing, n>post
MCS : Number of minimal cut sets or clauses in CNF after

post-processing.

Model nmetab nEF M n<pre
r n>pre

r n<post
MCS n>post

MCS

BIOMD0000000048 23 63 25 14 320 12960
BIOMD0000000093 34 24 46 24 293 2001
BIOMD0000000094 34 23 45 23 293 667
BIOMD0000000089 16 20 36 28 192 15552
BIOMD0000000228 9 13 22 20 128 512
BIOMD0000000034 9 13 22 22 56 56
BIOMD0000000042 15 35 25 20 56 188

sms_33 - 48 9 9 81 81
ms_33 - 40 9 9 76 76
ac_200k - 81 64 21 210 253
SDFP16 - 64 16 16 64 64
SDFP23 - 365 23 23 365 365

Table 2 Running time in seconds; FKM : FK-dualization algorithm that returns multiple
conflicting assignments, FKR: Variant of FK with a reduction in the number of redundancy tests,
FKMHR: Variant of FKM with a reduction in the number of redundancy tests that stores solved
subproblems in a hash table, FKMHCR: Variant of FKMHR that stores solved subproblems in a
hash table and uses the canonical form for small ones. In the last four columns, τ is the threshold
such that if |C| < τ and |D| < τ , the hash table is not used (when τ = 0 it is always used).

FK FKM FKR
FKMHR

(τ = 0)
FKMHR

(τ = 3)
FKMHCR

(τ = 0)
FKMHCR

(τ = 3)

BIOMD0000000048 119.06 62.71 86.13 12.82 12.67 17.29 12.80
BIOMD0000000093 136.68 88.69 117.54 14.44 15.84 25.24 15.92
BIOMD0000000094 140.37 78.81 122.28 19.31 21.69 37.71 21.81
BIOMD0000000089 31.27 26.6 25.96 9.59 8.52 15.62 8.57
BIOMD0000000228 9.30 6.41 7.82 2.42 2.81 5.57 3.06
BIOMD0000000034 1.56 1.34 1.36 0.45 0.42 1.05 0.43
BIOMD0000000042 7.74 3.72 7.24 0.19 0.19 0.20 0.22

sms_33 3.95 1.72 3.27 0.46 0.55 3.06 2.45
ms_33 2.90 1.26 2.28 0.46 0.64 2.79 2.17
ac_200k 311.57 35.22 305.69 7.13 7.85 13.44 11.65
SDFP16 6.67 2.80 5.86 0.40 0.58 1.90 0.56
SDFP23 648.59 251.05 504.30 103.66 108.98 130.81 108.67

Table 2 shows the running time of finding the dual of a given DNF. The time measurements
only show the time required for dualization, exclusive of pre- and post-processing.
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Figure 1 Size of the CNF versus number of iterations in FK-dualization and FKM−dualization.

4.2 Reducing the Number of Iterations in F K-dualization Using F KM

To show how effective FKM -dualization is in comparison to FK-dualization we run both
methods on our 12 problems and stored the size of the CNF in each iteration of the algorithms.
Figure 1 shows the results. As can be seen in this figure, FKM -dualization constructs the
final CNF faster and requires as few as half the iterations in comparison to FK-dualization.

We have also counted the number of recursive calls to FK and FKM in their corresponding
dualization procedures. It turns out that by returning multiple conflicting assignments, FKM

requires fewer recursive calls than FK for every problem except ‘ac-200k’, as illustrated in
Figure 2. Although finding multiple conflicting assignments always reduces the total number
of iterations (except for one of the metabolic models, where it stays the same, as shown
in Figure 1), the number of recursive calls to FKM can occasionally exceed the number of
recursive calls to FK, presumably due to changes in the traversal of the assignment tree.
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Figure 2 Comparing the number of recursive calls to FK and FKM during dualization.
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Figure 3 Comparing the number of redundancy tests in FK and FKR dualization.

4.3 Reducing the Number of Redundancy Tests in the F K-B
Algorithm

In this experiment, we show how using the two flags in the FKR algorithm in comparison
with FK reduces the number of redundancy tests in both the CNF and the DNF. To this
end we count the number of calls to the redundancy testing function.

Figure 3 shows the results. As expected, using the two redundancy flags reduces the
number of redundancy tests in the FKR algorithm relative to the baseline FK algorithm.

In small problems, the reduction is not significant, however, in large problems like
BIOMD0000000048, the number of redundancy tests in FKR is about 2

3 of what it is in FK.
Given that the procedure of redundancy test is a bottleneck of the FK algorithm, fewer
calls to this function reduces the time required to find the dual of a given monotone Boolean
function.
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4.4 Dealing with Repeated subproblems Using a Hash Table

In this experiment we show the efficiency of using a hash table for dualization. We count
the number of successful key and value retrievals from the hash table. Figure 4 shows
the characteristics of the subproblems, e.g. the frequency and the size of the subproblem,
corresponding to the first five most popular keys in FKMH dualization. For each model
there are two figures, corresponding to τ = 0 and τ = 3, meaning that we use the hash table
only for subproblems with |C| > τ and |D| > τ .

Comparing the figures in columns with τ = 0 to the figures in columns with τ = 3
demonstrates that when we use hash table for every subproblem, i.e. τ = 0, the size of
frequent subproblems is very small while in the other case, i.e. τ = 3, the size of the frequent
subproblems is larger.

Since there is the possibility that some of the frequently occurring Boolean functions
differ only by a permutation of the variables, we have implemented a simple scheme for
reducing functions of up to seven variables to a canonical form as is done in Stephen and
Yusun [17]. We found that the most popular keys in the implementation of the hash table
with and without the canonical form are the same, thus, we only present the results without
the canonical form here, as FKMH .

5 Discussion

The FK-B algorithm was a theoretical breakthrough at the time of its discovery in 1996,
showing for the first time that the problem of testing the duality of two monotone Boolean
functions could be solved in quasi-polynomial time. Because of its ability to produce a
certificate of non-duality, this also means that, given a Boolean function in explicit form,
its dual can be generated in incremental quasi-polynomial time. In addition, the FK-B
algorithm also applies to joint generation, namely, an explicit description of the function f
and of its dual in the case where f is given implicitly by an oracle (an algorithm that, given
an input x, returns the value f(x)) - with the same complexity guarantees provided that the
oracle runs in polynomial time.

However, despite these exciting developments the FK-B algorithm is not easily usable
for generating the dual of a large monotone Boolean function in practice. In this paper
we provided several improvements that reduce the overall running time by an order of
magnitude on most of the examples we considered. Although they do not change the worst-
case algorithmic complexity of dualization via the FK-B algorithm, they take it closer to
being usable in practice on medium-to-large-scale problems.

All our techniques also apply directly to the problem of joint generation. The generation
of multiple conflicting assignments per iteration, the reduction in the number of redundancy
tests, and the use of memoization could all turn out to be beneficial in this scenario as well.
One of our future directions is to explore how helpful these techniques are in the context
of joint generation (which, for metabolic network models, would amount to simultaneously
generating the elementary modes and the minimal cut sets of the network).

In conclusion, our work paves the way for a systematic exploration of algorithmic
improvements to Monotone boolean function dualization and joint generation algorithms
that use a duality testing algorithm such as FK-B as a subroutine. We expect that, with
additional algorithmic improvements, this approach will ultimately result in a practical
method for solving this important problem.
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Figure 4 Characteristics of most frequent subproblems in the hash table in FKMH dualization.
In this set of experiments, hash table has been used for subproblems with |C| > τ and |D| > τ .
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