
A 3
2-Approximation Algorithm for the

Student-Project Allocation Problem
Frances Cooper1

School of Computing Science, University of Glasgow
Glasgow, Scotland, UK
f.cooper.1@research.gla.ac.uk

https://orcid.org/0000-0001-6363-9002

David Manlove2

School of Computing Science, University of Glasgow
Glasgow, Scotland, UK
david.manlove@glasgow.ac.uk

https://orcid.org/0000-0001-6754-7308

Abstract
The Student-Project Allocation problem with lecturer preferences over Students (spa-s) comprises
three sets of agents, namely students, projects and lecturers, where students have preferences over
projects and lecturers have preferences over students. In this scenario we seek a stable matching,
that is, an assignment of students to projects such that there is no student and lecturer who
have an incentive to deviate from their assignee/s. We study spa-st, the extension of spa-s
in which the preference lists of students and lecturers need not be strictly ordered, and may
contain ties. In this scenario, stable matchings may be of different sizes, and it is known that
max spa-st, the problem of finding a maximum stable matching in spa-st, is NP-hard. We
present a linear-time 3

2 -approximation algorithm for max spa-st and an Integer Programming
(IP) model to solve max spa-st optimally. We compare the approximation algorithm with the
IP model experimentally using randomly-generated data. We find that the performance of the
approximation algorithm easily surpassed the 3

2 bound, constructing a stable matching within
92% of optimal in all cases, with the percentage being far higher for many instances.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Matching problems, Approximation, Algorithms, Stability

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.8

1 Introduction

Background and motivation. In universities all over the world, students need to be assigned
to projects as part of their degree programmes. Lecturers typically offer a range of projects,
and students may rank a subset of the available projects in preference order. Lecturers
may have preferences over students, or over the projects they offer, or they may not have
explicit preferences at all. There may also be capacity constraints on the maximum numbers
of students that can be allocated to each project and lecturer. The problem of allocating
students to projects subject to these preference and capacity constraints is called the Student-
Project Allocation problem (spa) [7, Section 5.5][2, 3]. Variants of this problem can be defined
for the cases that lecturers have preferences over the students that rank their projects [1],

1 Supported by an Engineering and Physical Sciences Research Council Doctoral Training Account
2 Supported by Engineering and Physical Sciences Research Council grant EP/P028306/01

© Frances Cooper and David Manlove;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.cooper.1@research.gla.ac.uk
https://orcid.org/0000-0001-6363-9002
mailto:david.manlove@glasgow.ac.uk
https://orcid.org/0000-0001-6754-7308
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

or over the projects they offer [9], or not at all [6]. In this paper we focus on the first of
these cases, where lecturers have preferences over students – the so-called Student-Project
Allocation problem with lecturer preferences over Students (spa-s).

Finding an optimal allocation of students to projects manually is time-consuming and error-
prone. Consequently many universities automate the allocation process using a centralised
algorithm. Given the typical sizes of problem instances (e.g., 130 students at the University
of Glasgow, School of Computing Science), the efficiency of the matching algorithm is of
paramount importance. In the case of spa-s, the desired matching must be stable with
respect to the given preference lists, meaning that no student and lecturer have an incentive
to deviate from the given allocation and form an assignment with one another [10].

Abraham et al. [1] described a linear-time algorithm to find a stable matching in an
instance I of spa-s when all preference lists in I are strictly ordered. They also showed that,
under this condition, all stable matchings in I are of the same size. In this paper we focus on
the variant of spa-s in which preference lists of students and lecturers can contain ties, which
we refer to as the Student-Project Allocation problem with lecturer preferences over Students
including Ties (spa-st). Ties allow both students and lecturers to express indifference in
their preference lists (in practice, for example, lecturers may be unable to distinguish between
certain groups of students). A stable matching in an instance of spa-st can be found in
linear time by breaking the ties arbitrarily and using the algorithm of Abraham et al. [1].

The Stable Marriage problem with Ties and Incomplete lists (smti) is a special case of
spa-st in which each project and lecturer has capacity 1, and each lecturer offers one project.
Given an instance of smti, it is known that stable matchings can have different sizes [8], and
thus the same is true for spa-st. Yet in practical applications it is desirable to match as
many students to projects as possible. This motivates max spa-st, the problem of finding a
maximum (cardinality) stable matching in an instance of spa-st. This problem is NP-hard,
since the corresponding optimisation problem restricted to smti, which we refer to as max
smti, is NP-hard [8]. Király [5] described a 3

2 -approximation algorithm for max smti. He
also showed how to extend this algorithm to the case of the Hospitals-Residents problem with
Ties (hrt), where hrt is the special case of spa-st in which each lecturer l offers one project
p, and the capacities of l and p are equal. Yanagisawa [11] showed that max smti is not
approximable within a factor of 33

29 unless P=NP; the same bound applies to max spa-st.

Our contribution. In this paper we describe a linear-time 3
2 -approximation algorithm for

max spa-st. This algorithm is a non-trivial extension of Király’s approximation algorithm
for hrt as mentioned above. We also describe an Integer Programming (IP) model to solve
max spa-st optimally. Through a series of experiments on randomly-generated data, we then
compare the sizes of stable matchings output by our approximation algorithm with the sizes
of optimal solutions obtained from our IP model. Our main finding is that the performance
of the approximation algorithm easily surpassed the 3

2 bound on the generated instances,
constructing a stable matching within 92% of optimal in all cases, with the percentage being
far higher for many instances.

Note that a natural “cloning” technique, involving transforming an instance I of spa-st
into an instance I ′ of smti, and then using Király’s 3

2 -approximation algorithm for smti [5]
in order to obtain a similar approximation in spa-st, does not work in general, as shown in
[4, Appendix A]. This motivates the need for a bespoke algorithm for the spa-st case.

Structure of this paper. Section 2 gives a formal definition of spa-st. Section 3 describes
the 3

2 -approximation algorithm, and the IP model for max spa-st is given in Section 4. The
experimental evaluation is described in Section 5, and Section 6 discusses future work.

F. Cooper and D. Manlove 8:3

2 Formal definition of SPA-ST

An instance I of spa-st comprises a set S = {s1, s2, ..., sn1} of students, a set P =
{p1, p2, ..., pn2} of projects, and a set L = {l1, l2, ..., ln3} of lecturers. Each project is offered by
one lecturer, and each lecturer lk offers a set of projects Pk ⊆ P , where P1, . . . , Pk partitions
P . Each project pj ∈ P has a capacity cj ∈ Z+

0 , and similarly each lecturer lk ∈ L has a
capacity dk ∈ Z+

0 . Each student si ∈ S has a set Ai ⊆ P of acceptable projects that they
rank in order of preference. Ties are allowed in preference lists, where a tie t in a student
si’s list indicates that si is indifferent between all projects in t. Each lecturer lk ∈ L has a
preference list over the students si for which Ai ∩ Pk 6= ∅. Ties may also exist in lecturer
preference lists. The rank of project pj on student si’s list, denoted rank(si, pj), is defined
as 1 plus the number of projects that si strictly prefers to pj . An analogous definition exists
for the rank of a student on a lecturer’s list, denoted rank(lk, si).

An assignment M in I is a subset of S ×P such that, for each pair (si, pj) ∈M , pj ∈ Ai,
that is, si finds pj acceptable. Let M(si) denote the set of projects assigned to a student
si ∈ S, let M(pj) denote the set of students assigned to a project pj ∈ P , and let M(lk)
denote the set of students assigned to projects in Pk for a given lecturer lk ∈ L. A matching
M is an assignment such that |M(si)| ≤ 1 for all si ∈ S, |M(pj)| ≤ cj for all pj ∈ P and
|M(lk)| ≤ dk for all lk ∈ L. If si ∈ S is assigned in a matching M , we let M(si) denote si’s
assigned project, otherwise M(si) is empty.

Given a matching M in I, let (si, pj) ∈ (S ×P)\M be a student-project pair, where pj is
offered by lecturer lk. Then (si, pj) is a blocking pair of M [1] if 1, 2 and 3 hold as follows:
1. si finds pj acceptable;
2. si either prefers pj to M(si) or is unassigned in M ;
3. Either a, b or c holds as follows:

a. pj is undersubscribed (i.e., |M(pj)| < cj) and lk is undersubscribed (i.e., |M(lk)| < dk);
b. pj is undersubscribed, lk is full and either si ∈ M(lk) or lk prefers si to the worst

student in M(lk);
c. pj is full and lk prefers si to the worst student in M(pj).

Let (si, pj) be a blocking pair of M . Then we say that (si, pj) is of type (3x) if 1, 2 and
3x are true in the above definition, where x ∈ {a, b, c}. In order to more easily describe
certain stages of the approximation algorithm, blocking pairs of type (3b) are split into two
subtypes as follows. (3bi) defines a blocking pair of type (3b) where si is already assigned to
another project of lk’s. (3bii) defines a blocking pair of type (3b) where this is not the case.

A matching M in an instance I of spa-st is stable if it admits no blocking pair. Define
max spa-st to be the problem of finding a maximum stable matching in spa-st and let
Mopt denote a maximum stable matching for a given instance. Similarly, let min spa-st be
the problem of finding a minimum stable matching in spa-st.

3 Approximation algorithm

3.1 Introduction and preliminary definitions
We begin by defining key terminology before describing the approximation algorithm itself
in Section 3.2, which is a non-trivial extension of Király’s hrt algorithm [5].

A student si ∈ S is either in phase 1, 2 or 3. In phase 1 there are still projects on si’s list
that they have not applied to. In phase 2, si has iterated once through their list and are
doing so again whilst a priority is given to si on each lecturer’s preference list, compared to

SEA 2018

8:4 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

other students who tie with si. In phase 3, si is considered unassigned and carries out no
more applications. A project pj is fully available if pj and lk are both undersubscribed, where
lecturer lk offers pj . A student si meta-prefers project pj1 to pj2 if either (i) rank(si, pj1) <
rank(si, pj2), or (ii) rank(si, pj1) = rank(si, pj2) and pj1 is fully available, whereas pj2 is not.
In phase 1 or 2, si may be either available, provisionally assigned or confirmed. Student si

is available if they are not assigned to a project. Student si is provisionally assigned if si

has been assigned in phase 1 and there is a project still on si’s list that meta-prefers to pj .
Otherwise, si is confirmed.

If a student si is a provisionally assigned to project pj , then (si, pj) is said to be precarious.
A project pj is precarious if it is assigned a student si such that (si, pj) is precarious. A
lecturer is precarious if they offer a project pj that is precarious. Lecturer lk meta-prefers si1

to si2 if either (i) rank(lk, si1) < rank(lk, si2), or (ii) rank(lk, si1) = rank(lk, si2) and si1 is in
phase 2, whereas si2 is not. The favourite projects Fi of a student si are defined as the set of
projects on si’s preference list for which there is no other project on si’s list meta-preferred
to any project in Fi. A worst assignee of lecturer lk is defined to be a student in M(lk) of
worst rank, with priority given to phase 1 students over phase 2 students. Similarly, a worst
assignee of lecturer lk in M(pj) is defined to be a student in M(pj) of worst rank, prioritising
phase 1 over phase 2 students, where lk offers pj .

We remark that some of the above terms such as favourite and precarious have been
defined for the spa-st setting by extending the definitions of the corresponding terms as
given by Király in the hrt context [5].

3.2 Description of the algorithm

Algorithm 1 begins with an empty matching M which will be built up over the course of
the algorithm’s execution. All students are initially set to be available and in phase 1. The
algorithm proceeds as follows. While there are still available students in phase 1 or 2, choose
some such student si. Student si applies to a favourite project pj at the head of their list,
that is, there is no project on si’s list that si meta-prefers to pj . Let lk be the lecturer who
offers pj . We consider the following cases.

If pj and lk are both undersubscribed then (si, pj) is added to M . Clearly if (si, pj) were
not added to M , it would potentially be a blocking pair of type (3a).
If pj is undersubscribed, lk is full and lk is precarious where precarious pair (si′ , pj′) ∈M
for some project p′

j offered by lk, then we remove (si′ , pj′) from M and add pair (si, pj).
This notion of precariousness allows us to find a stable matching of sufficient size even
when there are ties in student preference lists (there may also be ties in lecturer preference
lists). Allowing a pair (si′ , pj′) ∈ M to be precarious means that we are noting that
si′ has other fully available project options in their preference list at equal rank to pj′ .
Hence, if another student applies to pj′ when pj′ is full, or to a project offered by lk
where lk is full, we allow this assignment to happen removing (si′ , pj′) from M , since
there is a chance that the size of the resultant matching could be increased.
If on the other hand pj is undersubscribed, lk is full and lk meta-prefers si to a worst
assignee si′ , where (si′ , pj′) ∈ M for some project pj′ offered by lk, then we remove
(si′ , pj′) fromM and add pair (si, pj). It makes intuitive sense that if lk is full and gets an
offer to an undersubscribed project from a student si that they prefer to a worst assigned
student si′ , then lk would want to remove si′ from pj′ and take on si for pj′ . Student si′

will subsequently remove pj′ from their preference list as lk will not want to assign to
them on re-application. This is done via the Remove-pref method (Algorithm 2).

F. Cooper and D. Manlove 8:5

Algorithm 1 3/2-approximation algorithm for spa-st.
Require: An instance I of spa-st
Ensure: Return a stable matching M where |M | ≥ 2

3 |Mopt|
1: M ← ∅
2: all students are initially set to be available and in phase 1
3: while there exists an available student si ∈ S who is in phase 1 or 2 do
4: let lk be the lecturer who offers pj

5: si applies to a favourite project pj ∈ A(si)
6: if pj is fully available then
7: M ←M ∪ {(si, pj)}
8: else if pj is undersubscribed, lk is full and (lk is precarious or lk meta-prefers si to

a worst assignee) then . according to the worst assignee definition in Section 3.1
9: if lk is precarious then

10: let pj′ be a project in Pk such that there exists (si′ , pj′) ∈M that is precarious
11: else . lk is not precarious
12: let si′ be a worst assignee of lk such that lk meta-prefers si to si′ and let

pj′ = M(si′)
13: Remove-Pref(si′ , pj′)
14: end if
15: M ←M\{(si′ , pj′)}
16: M ←M ∪ {(si, pj)}
17: else if pj is full and (pj is precarious or lk meta-prefers si to a worst assignee in

M(pj)) then
18: if pj is precarious then
19: identify a student si′ ∈M(pj) such that (si′ , pj) is precarious
20: else . pj is not precarious
21: let si′ be a worst assignee of lk in M(pj) such that lk meta-prefers si to si′

22: Remove-Pref(si′ , pj)
23: end if
24: M ←M\{(si′ , pj)}
25: M ←M ∪ {(si, pj)}
26: else
27: Remove-Pref(si, pj)
28: end if
29: end while
30: Promote-students(M)
31: return M ;

If pj is full and precarious then pair (si, pj) is added to M while precarious pair (si′ , pj)
is removed. As before, this allows si′ to potentially assign to other fully available projects
at the same rank as pj on their list. Since si′ does not remove pj from their preference
list, si′ will get another chance to assign to pj if these other applications to fully available
projects at the same rank are not successful.
If pj is full and lk meta-prefers si to a worst assignee si′ in M(pj), then pair (si, pj) is
added toM while (si′ , pj) is removed. As this lecturer’s project is full (and not precarious)
the only time they will want to add a student si to this project (meaning the removal
of another student) is if si is preferred to a worst student si′ assigned to that project.
Similar to before, si′ will not subsequently be able to assign to this project and so removes
it from their preference list via the Remove-pref method (Algorithm 2).

SEA 2018

8:6 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

Algorithm 2 Remove-Pref(si, pj) – remove a project from a student’s preference list.
Require: An instance I of spa-st and a student si and project pj

Ensure: Return an instance I where pj is removed from si’s preference list
1: remove pj from si’s preference list
2: if si’s preference list is empty then
3: reinstate si’s preference list
4: if si is in phase 1 then
5: move si to phase 2
6: else if si is in phase 2 then
7: move si to phase 3
8: end if
9: end if

10: return instance I

Algorithm 3 Promote-students(M) – remove all blocking pairs of type (3bi).
Require: SPA-ST instance I and matching M that does not contain blocking pairs of type

(3a), (3bii) or (3c).
Ensure: Return a stable matching M .

1: while there are still blocking pairs of type (3bi) do
2: Let (si, pj′) be a blocking pair of type (3bi)
3: M ←M\{(si,M(si))}
4: M ←M ∪ {(si, pj′)}
5: end while
6: return M

When removing a project from a student si’s preference list (the Remove-pref operation
of Algorithm 2), if si has removed all projects from their preference list and is in phase 1
then their preference list is reinstated and they are set to be in phase 2. If on the other
hand they were already in phase 2, then they are set to be in phase 3 and are hence inactive.
The proof that Algorithm 1 produces a stable matching (see [4, Appendix B]) relies only
on the fact that a student iterates once through their preference list. Allowing students to
iterate through their preference lists a second time when in phase 2 allows us to find a stable
matching of sufficient size when there are ties in lecturer preference lists (there may also be
ties in student preference lists). This is due to the meta-prefers definition where a lecturer
favours one student si over another si′ if they are the same rank and si is in phase 2 whereas
si′ is not. Similar to above, this then allows si to steal a position from si′ with the chance
that si′ may find another assignment and increase the size of the resultant matching.

After the main while loop has terminated, the final part of the algorithm begins where all
blocking pairs of type (3bi) are removed using the Promote-students method (Algorithm 3).

3.3 Proof of correctness
I Theorem 1. Let M be a matching found by Algorithm 1 for an instance I of spa-st. Then
M is stable and |M | ≥ 2

3 |Mopt|, where Mopt is a maximum stable matching in I.

Proof. Theorems 18, 22 and Theorem 30, proved in [4, Appendix B], show that M is stable,
and that Algorithm 1 runs in polynomial time and has performance guarantee 3

2 . The proofs
required for this algorithm are naturally longer and more complex than given by Király [5]

F. Cooper and D. Manlove 8:7

for smti, as spa-st generalises smti to the case that lecturers can offer multiple projects,
and projects and lecturers may have capacities greater than 1. These extensions add extra
components to the definition of a blocking pair (given in Section 2) which in turn adds
complexity to the algorithm and its proof of correctness. J

Appendix B.5 in [4] gives a simple example instance where a matching found by Algorithm
1 is exactly 2

3 times the optimal size, hence the analysis of the performance guarantee is tight.

4 IP model

In this section we present an IP model for max spa-st. For the stability constraints in
the model, it is advantageous to use an equivalent condition for stability, as given by the
following lemma, whose proof can be found in [4, Appendix C].

I Lemma 2. Let I be an instance of SPA-ST and let M be a matching in I. Then M is
stable if and only if the following condition, referred to as condition (*) holds: For each
student si ∈ S and project pj ∈ P , if si is unassigned in M and finds pj acceptable, or si

prefers pj to M(si), then either:
lk is full, si /∈ M(lk) and lk prefers the worst student in M(lk) to si or is indifferent
between them, or;
pj is full and lk prefers the worst student in M(pj) to si or is indifferent between them,
where lk is the lecturer offering pj.

The key variables in the model are binary-valued variables xij , defined for each si ∈ S
and pj ∈ P , where xij = 1 if and only if student si is assigned to project pj . Additionally, we
have binary-valued variables αij and βij for each si ∈ S and pj ∈ P . These variables allow
us to more easily describe the stability constraints below. For each si ∈ S and lk ∈ L, let

Tik = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si}.

That is, Tik is the set of students ranked at least as highly as student si in lecturer lk’s
preference list not including si. Also, for each pj ∈ P , let

Tijk = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si ∧ pj ∈ A(su)}.

That is, Tijk is the set of students su ranked at least as highly as student si in lecturer
lk’s preference list, such that project pj is acceptable to su, not including si. Finally, let
Sij = {pr ∈ P : rank(si, pr) ≤ rank(si, pj)}, that is, Sij is the set of projects ranked at least
as highly as project pj in student si’s preference list, including pj . Figure 1 shows the IP
model for max spa-st.

Equation (1) enforces xij = 0 if si finds pj unacceptable. Inequality (2) ensures that
a student may be assigned to a maximum of one project. Inequalities (3) and (4) ensure
that project and lecturer capacities are enforced. In the left hand side of Inequality (5), if
1−

∑
pr∈Sij

xir = 1, then either si is unmatched or si prefers pj to M(si). This also ensures
that either αij = 1 or βij = 1, described in Inequalities (6) and (7). Inequality (6) ensures
that, if αij = 1, the number of students ranked at least as highly as student si by lk (not
including si) and assigned to lk must be at least lk’s capacity dk. Inequality (7) ensures that,
if βij = 1, the number of students ranked at least as highly as student si in lecturer lk’s
preference list (not including si) and assigned to pj must be at least pj ’s capacity cj .

Finally, for our optimisation we maximise the sum of all xij variables in order to maximise
the number of students assigned. The following result, proved in [4, Appendix C], establishes
the correctness of the IP model.

SEA 2018

8:8 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

maximise:
∑
si∈S

∑
pj∈P

xij

subject to:
1. xij = 0 ∀si ∈ S ∀pj ∈ P , pj /∈ A(si)

2.
∑

pj∈P

xij ≤ 1 ∀si ∈ S

3.
∑
si∈S

xij ≤ cj ∀pj ∈ P

4.
∑
si∈S

∑
pj∈Pk

xij ≤ dk ∀lk ∈ L

5. 1−
∑

pr∈Sij

xir ≤ αij + βij ∀si ∈ S ∀pj ∈ P

6.
∑

su∈Tik

∑
pr∈Pk

xur ≥ dkαij ∀si ∈ S ∀pj ∈ P

7.
∑

su∈Tijk

xuj ≥ cjβij ∀si ∈ S ∀pj ∈ P

xij ∈ {0, 1}, αij ∈ {0, 1}, βij ∈ {0, 1} ∀si ∈ S ∀pj ∈ P

Figure 1 IP model for max spa-st.

I Theorem 3. Given an instance I of spa-st, let J be the IP model as defined in Figure 1.
A maximum stable matching in I corresponds to an optimal solution in J and vice versa.

5 Experimental evaluation

5.1 Methodology
Experiments were conducted on the approximation algorithm and the IP model using
randomly-generated data in order to measure the effects on matching statistics when changing
parameter values relating to (1) instance size, (2) probability of ties in preference lists, and (3)
preference list lengths. Two further experiments (referred to as (4) and (5) below) explored
scalability properties for both techniques. Instances were generated using both existing and
new software. The existing software is known as the Matching Algorithm Toolkit and is a
collaborative project developed by students and staff at the University of Glasgow.

For a given spa-st instance, let the total project and lecturer capacities be denoted by
cP and dL, respectively. Note that these capacities were distributed randomly, subject to
there being a maximum difference of 1 between the capacities of any two projects or any two
lecturers (to ensure uniformity). The minimum and maximum size of student preference lists
is given by lmin and lmax, and ts represents the probability that a project on a student’s
preference list is tied with the next project. Lecturer preference lists were generated initially
from the student preference lists, where a lecturer lk must rank a student if a student ranks
a project offered by lk. These lists were randomly shuffled and tl denotes the ties probability
for lecturer preference lists. A linear distribution was used to make some projects more
popular than others and in all experiments the most popular project is around 5 times more

F. Cooper and D. Manlove 8:9

popular than the least. This distribution influenced the likelihood of a student finding a
given project acceptable. Parameter details for each experiment are given below.
(1) Increasing instance size: 10 sets of 10, 000 instances were created (labelled SIZE1,

..., SIZE10). The number of students n1 increased from 100 to 1000 in steps of 100, with
n2 = 0.6n1, n3 = 0.4n1, cP = 1.4n1, dL = 1.2n1. The probabilities of ties in preference
lists were ts = tl = 0.2 throughout all instance sets. Lengths of preference lists lmin = 3
and lmax = 5 also remained the same and were kept low to ensure a wide variability in
stable matching size per instance.

(2) Increasing probability of ties: 11 sets of 10, 000 instances were created (labelled
TIES1, ..., TIES11). Throughout all instance sets n1 = 300, n2 = 250, n3 = 120,
cP = 420, dL = 360, lmin = 3 and lmax = 5. The probabilities of ties in student and
lecturer preference lists increased from ts = tl = 0.0 to ts = tl = 0.5 in steps of 0.05.

(3) Increasing preference list lengths: 10 sets of 10, 000 instances were generated
(labelled PREF1, ..., PREF10). Similar to the TIES cases, throughout all instance sets
n1 = 300, n2 = 250, n3 = 120, cP = 420 and dL = 360. Additionally, ts = tl = 0.2.
Preference list lengths increased from lmin = lmax = 1 to lmin = lmax = 10 in steps of 1.

(4) Instance size scalability: 5 sets of 10 instances were generated (labelled SCALS1, ...,
SCALS5). All instance sets in this experiment used the same parameter values as the
SIZE experiment, except the number of students n1 increased from 10, 000 to 50, 000 in
steps of 10, 000.

(5) Preference list scalability: Finally, 6 sets of 10 instances were created (labelled
SCALP1, ..., SCALP6). Throughout all instance sets n1 = 500 with the same values
for other parameters as the SIZE experiment. However in this case ties were fixed at
ts = tl = 0.4, and lmin = lmax increasing from 25 to 150 in steps of 25.

For each generated instance, we ran the 3
2 -approximation algorithm and then used the IP

model to find a maximum stable matching. We also computed a minimum stable matching
using a simple adaptation of our IP model for max spa-st, in order to measure the spread
in the sizes of stable matchings. A timeout of 1800 seconds (30 minutes) was imposed on all
instance runs. All experiments were conducted using a machine with 32 cores, 8×64GB RAM
and Dual Intel® Xeon® CPU E5-2697A v4 processors. The operating system was Ubuntu
version 17.04 with all code compiled in Java version 1.8, where the IP models were solved
using Gurobi version 7.5.2. Each approximation algorithm instance was run on a single thread
while each IP instance was run on two threads. No attempt was made to parallelise Java
garbage collection. Repositories for the code and data can be found at https://doi.org/
10.5281/zenodo.1183221 and https://doi.org/10.5281/zenodo.1186823 respectively.

Correctness testing was conducted over all generated instances. This consisted of (1)
ensuring that each matching produced by the approximation algorithm was at least 2

3 the
size of maximum stable matching, as found by the IP, and, (2) testing that a given allocation
was stable and adhered to all project and lecturer capacities. This was run over all output
from both the approximation algorithm and the IP-based algorithm.

5.2 Experimental results
Experimental results can be seen in Tables 1, 2, 3 and 4. Tables 1, 2 and 3 show the
results from Experiments 1, 2 and 3 respectively (in which the instance size, probability of
ties and preference list lengths were increased, respectively). From this point onwards an
optimal matching refers to a maximum stable matching. In these tables, column ‘minimum
A/Max’ gives the minimum ratio of approximation algorithm matching size to optimal

SEA 2018

https://doi.org/10.5281/zenodo.1183221
https://doi.org/10.5281/zenodo.1183221
https://doi.org/10.5281/zenodo.1186823

8:10 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

matching size that occurred, ‘% A=Max’ displays the percentage of times the approximation
algorithm achieved an optimal result, and ‘% A≥ 0.98Max’ shows the percentage of times
the approximation algorithm achieved a result at least 98% of optimal. The ‘average size’
columns are somewhat self explanatory, with sub-columns ‘A/Max’ and ‘Min/Max’ showing
the average approximation algorithm matching size and minimum stable matching size as a
fraction of optimal. Finally, ‘average total time’ indicates the time taken for model creation,
solving and outputting results per instance. The main findings are summarised below.

The approximation algorithm consistently far exceeds its 3
2 bound. Considering the column

labelled ‘minimum A/Max’ in Tables 1, 2 and 3, we see that the smallest value was within
the SIZE1 instance set with a ratio of 0.9286. This is well above the required bound of 2

3 .

On average the approximation algorithm provides results that are closer in size to the
average maximum stable matching than the minimum stable matching. The columns
‘A/Max’ and ‘Min/Max’ show that, on average, for each instance set, the approximation
algorithm produces a solution that is within 98% of maximum and far closer to the
maximum size than to the minimum size.

Table 4 shows the scalability results for increasing instance sizes (Experiment 4) and
increasing preference list lengths (Experiment 5). The ‘instances completed’ column indicates
the number of instances completed before timeout occurred. In addition to showing the
average total time taken (where ‘total’ includes model creation time and solution time), the
column ‘average solve time’ displays the time taken to either execute the approximation
algorithm, or solve the IP model (in both cases, model creation time is excluded).

For Experiment 4, the number of instances solved within the 30-minute timeout reduced
from 10 to 0 for the IP-based algorithm finding the maximum stable matching. However,
even for the largest instance set sizes the approximation algorithm was able to solve all
instances on average within a total of 21 seconds (0.8 seconds of which was used to actually
execute the algorithm).

For Experiment 5, with a higher probability of ties and increasing preference list lengths,
the IP-based algorithm was only able to solve all the instances of one instance set (SCALP2)
within 30 minutes each, however the approximation algorithm took less than 0.3 seconds on
average to return a solution for each instance. This shows that the approximation algorithm
is useful for either larger or more complex instances than the IP-based algorithm can handle,
motivating its use for real world scenarios.

6 Future work

This paper has described a 3
2 -approximation algorithm for max spa-st. It remains open to

describe an approximation algorithm that has a better performance guarantee, and/or to
prove a stronger lower bound on the inapproximability of the problem than the current best
bound of 33

29 [11]. Further experiments could also measure the extent to which the order that
students apply to projects in Algorithm 1 affects the size of the stable matching generated.

The work in this paper has mainly focused on the size of stable matchings. However, it is
possible for a stable matching to admit a blocking coalition, where a permutation of student
assignments could improve the allocations of the students and lecturers involved without
harming anyone else. Since permutations of this kind cannot change the size of the matching
they are not studied further here, but would be of interest for future work.

F. Cooper and D. Manlove 8:11

Ta
bl
e
1

In
cr

ea
si

ng
in

st
an

ce
si

ze
ex

pe
rim

en
ta

lr
es

ul
ts

.

m
in

im
um

A
/M

ax
% A

=
M

ax
%

A
≥

0.
98

M
ax

av
er

ag
e

si
ze

av
er

ag
e

to
ta

lt
im

e
(m

s)
C

as
e

A
M

in
M

ax
A

/M
ax

M
in

/M
ax

A
M

in
M

ax
SI

ZE
1

0.
92

86
17

.8
62

.7
96

.4
92

.0
97

.8
0.

98
6

0.
94

1
43

.3
14

7.
6

13
7.

8
SI

ZE
2

0.
95

85
1.

6
62

.6
19

2.
6

18
3.

4
19

5.
7

0.
98

4
0.

93
7

51
.2

23
0.

6
21

0.
6

SI
ZE

3
0.

95
56

0.
1

63
.7

28
8.

7
27

4.
9

29
3.

7
0.

98
3

0.
93

6
56

.6
34

6.
4

31
3.

4
SI

ZE
4

0.
96

44
0.

0
65

.6
38

4.
9

36
6.

4
39

1.
7

0.
98

3
0.

93
5

59
.7

48
8.

7
42

9.
3

SI
ZE

5
0.

96
54

0.
0

66
.5

48
1.

0
45

7.
7

48
9.

6
0.

98
2

0.
93

5
62

.8
66

0.
3

55
5.

6
SI

ZE
6

0.
96

41
0.

0
66

.8
57

7.
2

54
9.

3
58

7.
7

0.
98

2
0.

93
5

66
.4

86
2.

3
71

3.
0

SI
ZE

7
0.

96
79

0.
0

65
.4

67
3.

3
64

0.
5

68
5.

7
0.

98
2

0.
93

4
69

.8
11

27
.8

90
0.

6
SI

ZE
8

0.
96

84
0.

0
67

.4
76

9.
5

73
2.

0
78

3.
8

0.
98

2
0.

93
4

73
.0

14
37

.3
10

98
.2

SI
ZE

9
0.

96
53

0.
0

68
.6

86
5.

6
82

3.
4

88
1.

7
0.

98
2

0.
93

4
76

.5
17

84
.3

13
43

.9
SI

ZE
10

0.
97

01
0.

0
68

.0
96

1.
7

91
4.

7
97

9.
7

0.
98

2
0.

93
4

86
.6

22
81

.2
16

51
.0

Ta
bl
e
2

In
cr

ea
si

ng
pr

ob
ab

ili
ty

of
tie

s
ex

pe
rim

en
ta

lr
es

ul
ts

.

m
in

im
um

A
/M

ax
% A

=
M

ax
%

A
≥

0.
98

M
ax

av
er

ag
e

si
ze

av
er

ag
e

to
ta

lt
im

e
(m

s)
C

as
e

A
M

in
M

ax
A

/M
ax

M
in

/M
ax

A
M

in
M

ax
T

IE
S1

1.
00

00
10

0.
0

10
0.

0
28

4.
0

28
4.

0
28

4.
0

1.
00

0
1.

00
0

59
.2

18
4.

0
18

6.
9

T
IE

S2
0.

97
92

38
.0

10
0.

0
28

4.
9

28
2.

0
28

5.
8

0.
99

7
0.

98
7

61
.2

19
2.

4
19

4.
7

T
IE

S3
0.

97
22

12
.1

99
.3

28
5.

9
27

9.
9

28
7.

9
0.

99
3

0.
97

2
61

.7
20

1.
0

20
3.

1
T

IE
S4

0.
96

55
3.

4
95

.2
28

7.
0

27
7.

6
28

9.
9

0.
99

0
0.

95
8

62
.3

21
3.

3
21

4.
5

T
IE

S5
0.

96
26

1.
0

82
.5

28
8.

0
27

5.
1

29
1.

9
0.

98
6

0.
94

2
62

.9
23

4.
3

23
1.

0
T

IE
S6

0.
95

58
0.

4
66

.7
28

9.
2

27
2.

4
29

4.
0

0.
98

4
0.

92
7

64
.2

27
4.

2
26

0.
6

T
IE

S7
0.

94
86

0.
2

52
.9

29
0.

3
26

9.
4

29
5.

7
0.

98
2

0.
91

1
64

.3
35

8.
3

31
1.

3
T

IE
S8

0.
95

27
0.

2
46

.4
29

1.
4

26
6.

2
29

7.
2

0.
98

0
0.

89
6

64
.2

57
7.

3
38

0.
7

T
IE

S9
0.

94
67

0.
2

50
.4

29
2.

5
26

2.
7

29
8.

3
0.

98
0

0.
88

0
65

.2
12

34
.1

42
7.

5
T

IE
S1

0
0.

95
29

0.
5

61
.9

29
3.

7
25

8.
9

29
9.

1
0.

98
2

0.
86

6
59

.6
29

03
.4

40
9.

1
T

IE
S1

1
0.

94
67

1.
0

74
.2

29
4.

8
25

4.
8

29
9.

5
0.

98
4

0.
85

1
60

.4
57

56
.9

37
7.

4

SEA 2018

8:12 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

Ta
bl
e
3

In
cr

ea
si

ng
pr

ef
er

en
ce

lis
t

le
ng

th
ex

pe
rim

en
ta

lr
es

ul
ts

.

m
in

im
um

A
/M

ax
% A

=
M

ax
%

A
≥

0.
98

M
ax

av
er

ag
e

si
ze

av
er

ag
e

to
ta

lt
im

e
(m

s)
C

as
e

A
M

in
M

ax
A

/M
ax

M
in

/M
ax

A
M

in
M

ax
P

R
E

F1
1.

00
00

10
0.

0
10

0.
0

21
5.

0
21

5.
0

21
5.

0
1.

00
0

1.
00

0
74

.3
10

7.
5

10
5.

1
P

R
E

F2
0.

96
99

12
.3

99
.0

26
2.

1
24

9.
1

26
4.

1
0.

99
3

0.
94

3
67

.5
13

3.
8

12
8.

7
P

R
E

F3
0.

96
17

1.
2

84
.0

28
0.

9
26

6.
4

28
4.

7
0.

98
7

0.
93

6
68

.1
18

1.
4

17
4.

0
P

R
E

F4
0.

96
23

1.
0

82
.8

29
0.

0
27

7.
0

29
3.

9
0.

98
7

0.
94

3
69

.1
24

9.
7

24
2.

6
P

R
E

F5
0.

96
61

4.
2

95
.1

29
4.

8
28

3.
9

29
7.

7
0.

99
0

0.
95

4
68

.3
34

6.
7

34
0.

3
P

R
E

F6
0.

97
32

15
.7

99
.5

29
7.

3
28

8.
7

29
9.

1
0.

99
4

0.
96

5
66

.1
47

2.
4

44
0.

6
P

R
E

F7
0.

97
67

36
.2

10
0.

0
29

8.
7

29
2.

1
29

9.
7

0.
99

7
0.

97
5

64
.5

63
8.

3
55

0.
9

P
R

E
F8

0.
98

33
58

.2
10

0.
0

29
9.

3
29

4.
4

29
9.

9
0.

99
8

0.
98

2
64

.1
81

1.
9

66
0.

3
P

R
E

F9
0.

98
66

75
.5

10
0.

0
29

9.
7

29
6.

1
29

9.
9

0.
99

9
0.

98
7

63
.4

10
32

.2
78

9.
1

P
R

E
F1

0
0.

99
00

87
.3

10
0.

0
29

9.
8

29
7.

4
30

0.
0

1.
00

0
0.

99
1

10
4.

3
12

39
.4

93
1.

0

Ta
bl
e
4

Sc
al

ab
ili

ty
ex

pe
rim

en
ta

lr
es

ul
ts

.

in
st

an
ce

s
co

m
pl

et
ed

av
er

ag
e

so
lv

e
tim

e
(m

s)
av

er
ag

e
to

ta
lt

im
e

(m
s)

C
as

e
A

M
in

M
ax

A
M

in
M

ax
A

M
in

M
ax

SC
A

LS
1

10
10

10
13

6.
5

12
61

62
.8

22
59

17
.9

13
93

.8
12

79
80

.3
22

77
64

.3
SC

A
LS

2
10

10
9

24
2.

4
34

88
49

.4
10

91
42

4.
2

53
56

.7
35

32
72

.3
10

96
04

5.
6

SC
A

LS
3

10
10

0
49

1.
7

77
72

67
.7

N
/A

13
09

5.
3

78
54

21
.2

N
/A

SC
A

LS
4

10
7

0
71

8.
8

10
49

12
2.

0
N

/A
18

88
3.

5
10

62
07

6.
4

N
/A

SC
A

LS
5

10
7

0
80

3.
5

12
88

96
1.

1
N

/A
20

99
3.

0
13

07
72

8.
7

N
/A

SC
A

LP
1

10
0

9
25

.1
N

/A
93

08
6.

0
19

3.
3

N
/A

94
24

2.
9

SC
A

LP
2

10
1

10
23

.3
14

25
17

7.
0

62
67

74
.9

18
9.

4
14

28
84

4.
0

63
12

25
.2

SC
A

LP
3

10
0

3
31

.7
N

/A
86

71
07

.7
19

6.
6

N
/A

88
22

51
.0

SC
A

LP
4

10
0

1
37

.8
N

/A
15

51
37

6.
0

24
8.

5
N

/A
15

94
20

1.
0

SC
A

LP
5

10
0

0
59

.0
N

/A
N

/A
28

3.
7

N
/A

N
/A

SC
A

LP
6

10
0

0
45

.7
N

/A
N

/A
28

8.
4

N
/A

N
/A

F. Cooper and D. Manlove 8:13

References
1 D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the student-project

allocation problem. Journal of Discrete Algorithms, 5:73–90, 2007.
2 R. Calvo-Serrano, G. Guillén-Gosálbez, S. Kohn, and A. Masters. Mathematical program-

ming approach for optimally allocating students’ projects to academics in large cohorts.
Education for Chemical Engineers, 20:11–21, 2017.

3 M. Chiarandini, R. Fagerberg, and S. Gualandi. Handling preferences in student-project
allocation. Annals of Operations Research, to appear, 2018.

4 F. Cooper and D. Manlove. A 3
2 -approximation algorithm for the Student-Project Alloc-

ation problem. Technical Report 1804.02731, Computing Research Repository, Cornell
University Library, 2018. Available from http://arxiv.org/abs/1804.02731.

5 Z. Király. Linear time local approximation for maximum stable marriage. Algorithms,
6:471–484, 2013.

6 A. Kwanashie, R.W. Irving, D.F. Manlove, and C.T.S. Sng. Profile-based optimal match-
ings in the Student–Project Allocation problem. In Proceedings of IWOCA ’14: the 25th
International Workshop on Combinatorial Algorithms, volume 8986 of Lecture Notes in
Computer Science, pages 213–225. Springer, 2015.

7 D.F. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
8 D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable

marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.
9 D.F. Manlove and G. O’Malley. Student-project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008.
10 A.E. Roth. The evolution of the labor market for medical interns and residents: a case

study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.
11 H. Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD thesis,

Kyoto University, School of Informatics, 2007.

SEA 2018

http://arxiv.org/abs/1804.02731

	Introduction
	Formal definition of SPA-ST
	Approximation algorithm
	Introduction and preliminary definitions
	Description of the algorithm
	Proof of correctness

	IP model
	Experimental evaluation
	Methodology
	Experimental results

	Future work

