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Abstract
We present a simple linear-time algorithm for computing the topological centroid and the canon-
ical form of a plane graph. Although the targets are restricted to plane graphs, it is much simpler
than the linear-time algorithm by Hopcroft and Wong for determination of the canonical form
and isomorphism of planar graphs. By utilizing a modified centroid for outerplanar graphs, we
present a linear-time algorithm for a geometric version of the maximum common connected edge
subgraph (MCCES) problem for the special case in which input geometric graphs have outer-
planar structures, MCCES can be obtained by deleting at most a constant number of edges from
each input graph, and both the maximum degree and the maximum face degree are bounded by
constants.
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1 Introduction

Comparison of geometric objects is an important topic in various fields including pattern
recognition, computational geometry, and combinatorial pattern matching [7, 8, 17, 18]. In
many cases, geometric objects are given as graphs having geometric information. Therefore,
comparison of geometric objects are often modeled as pattern matching problems on graphs
possibly with geometric information.

Among various problems on graph pattern matching, the most fundamental one is the
graph isomorphism problem, which asks whether or not two given graphs are isomorphic.
Although extensive studies have been done on determining the complexity class of graph
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isomorphism, it is still unclear for general graphs [5], Polynomial-time algorithms are known
for special graph classes, which include graphs of bounded degree [14] and graphs of bounded
treewidth [16]. In particular, it is known that planar graph isomorphism can be tested
in O(n logn) time [10] and in linear time [11], where n is the number of vertices on each
given graph, and the former one was modified for testing the congruity of polyhedra [19].
Furthermore, both algorithms can be modified for computation of the canonical form of a
given graph, where the canonical form is a unique representation of a graph that is invariant
under isomorphic transformations. Although the algorithm in [10] is conceptually simple, that
in [11] is complicated. In this paper, we focus on plane graphs, which is a planar graph with
planar embedding, and present a (conceptually) simple linear-time algorithm for computing
the canonical form of a plane graph. The algorithm first computes the topological centroid
of a given graph, then transforms the graph into a circular string, and finally computes a
canonical form of this circular string [6, 12]. Since it is known that there is a close relationship
between planar and related graph isomorphism problems and the circular string problem
[11, 15], the approach is reasonable. Of course, it seems possible to modify the algorithm
in [11] for computation of the canonical form of a plane graph with keeping the linear time
complexity. However, our algorithm is much simpler and, as far as we know, no simple
algorithm has been known for determination of the canonical form or isomorphism of plane
graphs. In addition, our algorithm constructs a tree representation of an input plane graph.
By combining with grammar-based tree compression algorithm [3, 9], plane graphs having
many local symmetries might be efficiently compressed.

We also apply the (modified) centroid to the maximum common connected edge subgraph
(MCCES) problem for two geometric plane graphs, which seeks for a graph with the max-
imum number of edges that is identical to a subgraph of each input graph under isometric
transformations. Note that MCCES for geometric plane graphs is practically important
because various kinds of maps (e.g., roadmaps) are often represented as geometric planar
graphs. Although the MCCES problem is NP-hard for considerably restricted classes of
graphs [1, 2, 4, 13], it can trivially be solved in polynomial time if graphs are restricted to
geometric graphs and isomorphism is restricted to those by isometric transformations. We
present a linear-time algorithm for the MCCES problem for the special case in which input
geometric graphs have outerplanar structures, MCCES can be obtained by deleting at most
a constant number of edges from each input graph, and both the maximum degree and the
maximum face degree are bounded by constants.

2 Preliminaries

Let G(V,E) be an undirected graph. We assume that G is connected and its planar embedding
is given. Such a graph is called a plane graph. We use n to denote the size of V (i.e., n = |V |).
Since we only consider plane graphs, |E| is Θ(n). Two plane graphs G1 and G2 are called
isomorphic if there exists an isomorphic mapping from G1 to G2 such that outer faces
correspond to each other and the circular ordering of edges connected to each vertex is
preserved. If G1 and G2 are isomorphic, we write G1 ∼= G2.

Let φ(G) be a function that maps a given undirected graph G(V,E) to a string over an
alphabet of size O(n). Then, φ(G) is called a canonical form of G(V,E) if the following
conditions are satisfied:
|φ(G)| (i.e., the length of φ(G)) is O(n),
G can be reconstructed from φ(G),
φ(G1) = φ(G2) if and only if G1 ∼= G2.
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Figure 1 Example for cano(G, u, v).

We assume that a plane graph is given in a form of the doubly-connected-edge-list (DCEL)
[17] so that deletion of an edge can be done in a constant time and deletion of a face can be
done in time proportional to the number of surrounding edges.

For a string A = a0a1 . . . an−1, aiai+1 . . . ai+n−1 is called the canonical form of a circular
string A if it is lexicographycally smallest among i = 0, · · · , n−1, where indices are calculated
modulo n [6, 12].

3 O(n2) time canonical form computation

We begin with a simple O(n2) time algorithm for computing a canonical form. It is a known
fact (e.g., see [18]) but a part of this algorithm is used as a subroutine in the next section.

Let G(V,E) be a plane graph. Suppose that we are given a pair of vertices (u, v) such
that {u, v} ∈ E. We construct a string cano(G, u, v) by using the following procedure.
1. Perform depth first search (DFS) starting from u with choosing (u, v) as the first edge

(with the direction from u to v) and regarding it as the leftmost edge from u. In DFS, we
visit edges emanating from each vertex from left to right (i.e., anti-clockwise order).

2. Rename the vertices according to the visited DFS order. Let the resulting vertices be
v1, v2, . . . , vn.

3. Construct the Euler string by concatenating edges in the visited order, where each edge
is represented as (i, j) when vj is visited just after vi.

I Example 1. Consider a plane graph G(V,E) shown in Figure 1. If DFS is started from
(u, v), vertices are renamed as in Figure 1. The resulting cano(G, u, v) will be

(1, 2)(2, 3)(3, 4)(4, 2)(2, 4)(4, 3)(3, 2)(2, 5)(5, 6)(6, 7)(7, 1)(1, 7)(7, 2)(2, 7)
(7, 6)(6, 5)(5, 8)(8, 9)(9, 5)(5, 9)(9, 8)(8, 5)(5, 2)(2, 1)

It is seen from Example 1 that in cano(G, u, v), each edge appears exactly twice in
the opposite directions, which further means that cano(G, u, v) is a kind of Euler string.
Clearly, cano(G, u, v) can be computed in O(n) time and |cano(G, u, v)| is O(n). Since the
original plane graph is reconstructed from cano(G, u, v), we can see that cano(G1, u1, v1) =
cano(G2, u2, v2) holds if and only if there exists an isomorphic mapping from G1 to G2 that
maps u1 and v1 to u2 and v2, respectively. cano(G, u, v) is called an edge-specified canonical
form.

Let cano0(G) be the edge-specified canonical form which is lexicographycally smallest
among cano(G, u′, v′)s such that {u′, v′} ∈ E. Then, we have

I Proposition 2. cano0(G) is a canonical form of a plane graph G and can be computed in
O(n2) time.

CPM 2018
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4 Linear time canonical form computation

As shown in Section 3, we can have a canonical form in O(n) time if some unique edge is
identified. However, it is quite difficult to efficiently identify the unique edge because the
canonical form problem intrinsically includes the canonical form problem on circular strings.
Therefore, we will reduce the canonical form problem on plane graphs into the canonical
form problem on circular strings.

Our idea is to identify the (topological) centroid of a given plane graph G, where the
centroid is either a vertex, an edge, or a face. Once the centroid is found, we can create a
circular string using the method given in Section 3.

For an unordered tree T , v is called a centroid if the longest path from v to leaves is the
shortest. It is known that there exist either one centroid, or two centroids connected by an
edge. In the former case, this unique vertex is called the centroid vertex. In the latter case,
this unique edge is called the centroid edge. It is well known that for a tree T , the centroid
vertex/edge can be determined in linear time. We extend this concept for plane graphs.

In the following, we show how to construct a canonical form of a plane graph based on the
centroid and the trees connected to the centroid that are constructed in the determinization
process of the centroid. To this end, we first determine the centroid of a plane graph. It is
known that the connected plane graph has the unique outer face. We consider the directed
cycle consisting of the edges of the outer face, where edges are visited in the clockwise order.
Let C be this directed cycle (see Figure 2 (A)). An inner face (i.e., a face that is not the
outer face) of a plane graph G is called exposed if it includes an edge in C (with ignoring the
direction). Furthermore, an inner face is called singly exposed if the outer edges in this face
are connected in C. Similarly, an edge not belonging to an inner face is called singly exposed
if one of its endpoints is of degree 1. A graph consisting of a vertex, an edge, or a face
(including adjunct subgraphs) is not regarded as singly exposed. In addition, each maximally
connected subgraph GS that is surrounded by a singly exposed face with sharing only one
vertex v that is an outer one is called an adjunct subgraph (see Figure 2 (B)). Each adjunct
subgraph is ignored and removed along with its surrounding face because information on this
part can be easily included in the final canonical form as follows. According to the ordering
of C, we can define the parent vertex u of v. Then, the leftmost child w of v in the subgraph
can be uniquely determined and thus cano(GS , v, w) can be computed (see Figure 3). We
can insert this cano(GS , v, w) (delimited by a special symbol ’&’ not appearing in other
parts) into a part the canonical form corresponding to removed outer edges.

After identification of the singly exposed faces and edges, all of them will be removed.
This removal is done by deleting outer edges included in these faces and edges. However, we
keep information about all these edges in order to reconstruct tree structures at the final
stage. To this end, we virtually detach the last outer edge from the last endpoint in each
singly exposed face, where the last means that in the order of C (see Figure 2 (B)).

We use the following procedure (denoted as PEELING) to identify the centroid ver-
tex/edge/face (see Figure 4).
1. Repeat Steps 2-3 until there does not exist a singly exposed face/edge.
2. Identify all singly exposed faces and edges.
3. Delete outer edges and adjunct subgraphs in these exposed faces and edges.

The correctness of PEELING is guaranteed by the following two propositions.
I Proposition 3. After each removal step, the resulting graph is connected.
Proof. Since each face is doubly connected by its surrounding edges and only consecutive
outer edges are removed from each face, we do not lose the connectedness. J
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(A)

(B)

C

Figure 2 Example of face removal operations. (A) Directed cycle C is shown by a dashed curve.
Gray regions and bold edges correspond to singly exposed faces and edges, respectively. (B) Deleted
outer edges and adjunct subgraphs are shown by dotted lines and dashed lines, respectively.

I Proposition 4. If there does not exist a singly exposed face or edge in G, G is either a
vertex, an edge, or a face (possibly including adjunct subgraphs inside).

Proof. Suppose that G is not a vertex, an edge, or a face. Then, consider the directed cycle
C consisting of outer edges. Each edge in C belongs to a face or an edge (not in a face).
Then, C must include at least one edge in a singly exposed face or edge. J

After determining the centroid of a plane graph, we construct a canonical form using
the centroid as follows. Since the other cases are easier, we assume w.l.o.g. (without loss of
generality) that a single face fc (possibly including adjunct subgraphs inside) is finally left.
Then, we add trees and adjunct subgraphs deleted by PEELING to the centroid fc. Let G′
be the resulting graph. As mentioned before, we assume w.l.o.g. that there does not exist
any adjunct subgraph. Therefore, the resulting graph consists of the centroid and trees. Let
v1, v2, . . . , vd be the vertices of fc arranged in the clockwise order, starting from an arbitrary
one (see Figure 5). For each vertex vi, let vi

1, . . . , v
i
dv

be the neighboring vertices (not in fc)
in the clockwise order. For each subtree T i

j rooted at (vi, vi
j), we construct cano(T i

j , v
i, vi

j)
and then construct the string cano(vi) by concatenating these as

cano(vi) = #cano(T i
1, v

i, vi
1)#cano(T i

2, v
i, vi

2)# · · ·#cano(T i
dv
, vi, vi

dv
)#,

where ‘#’ is a special symbol not appearing in other parts.
Since trees in the canonical form may be obtained by decomposing cycles of the original

plane graph, leaves may need information about from which vertices they are detached.

CPM 2018
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u

v

w

C

Figure 3 Example of an adjunct subgraph.

centroid

G’

Figure 4 Illustration of the PEELING procedure. Deleted edges are shown by dotted lines.
Adjunct subgraphs are shown by dashed lines.

Therefore, in computation of cano(T i
j , v, v

i
j), we need to add the information about other

trees because the disconnected edge shares a vertex in T i
j , another tree, or the centroid. In

order to cope with this problem, we renumber T i
j s to be T1, . . . , Tm in the clockwise order

starting from an arbitrary tree (we only use the difference of the indices modulo m). We
consider the following three cases (see Figure 5):

if the disconnected endpoint vj of an edge (vh, vj) in Ti is actually a vertex vj′ in the
same subtree Ti, we replace j in cano(...) with (T, j′),
else if the disconnected endpoint vj of an edge (vh, vj) in Ti is actually a vertex vj′ in Ti′ ,
we replace j in cano(...) with (T + (i′ − i), j′), where i′ − i is computed modulo m,
otherwise (i.e., vj is actually a vertex vk′ in the centroid), we replace j in cano(...) with
(C + (k′ − k)). where vk is the root of Ti and k′ − k is computed modulo d.

Then, we construct cano(F ) by concatenating cano(vi)s by

cano(F ) = cano(v1)!cano(v2)! · · ·!cano(vk)!,

where ‘!’ is a special symbol not appearing in other parts. Finally, we regard cano(F ) as a
circular string and define cano(G) to be the canonical form of this circular string.

I Theorem 5. cano(G) is a canonical form of a plane graph G and can be computed in O(n)
time.
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Figure 5 Illustration of replacement of labels for disconnected vertices.

Proof. The correctness follows from the following facts:
The peeling process is invariant under isomorphic transformations, that is, the same set
of edges is always deleted at each time step for isomorphic plane graphs.
After the peeling process, only one face, edge, or vertex remains.
cano(vi) is invariant under isomorphic transformations.

Next, we analyze the time complexity. We maintain plane graphs using DCEL data structure
with adding information about exposed/not exposed. We also maintain lists of consecutively
exposed edges and pointers from each list to the corresponding face and from each face to the
corresponding lists. Each list/face also has a flag showing whether or not it is singly exposed
one. The peeling process can be done by deleting edges in lists with singly exposed flags. Of
course, all data structures must be updated, which can be done in time proportional to the
number of deleted edges and the number of newly exposed edges. Since each edge is newly
exposed only once and is deleted only once, the total time complexity is proportional to the
number of edges (i.e., the total complexity is O(n)). It is straightforward to see that cano(F )
can be obtained in O(n) time. Since the canonical form of a circular string over a general
alphabet can be computed in O(n) time [6, 12], the total time complexity is O(n). J

5 Canonical form of geometric plane graphs

The algorithm in Section 4 can be modified for computing the canonical form of a given
geometric plane graph so that the canonical form is invariant under isometric transformations.
We say that G1 and G2 are isomorphic under isometric transformations if there is an isometric
transformation T (i.e., combination of translation, rotation, and mirror image) such that
T (shape(G1)) = shape(G2), where shape(G) denotes the set of line segments in G. We may
omit shape(...) and write this relation as T (G1) = G2. Since inclusion of mirror images in
isometric transformation can be done by multiplying a constant factor to the time complexity,
we ignore them in the following.

In order to include geometric information, it is enough to add geometric information to
cano(G, u, v). Suppose that (u, v) and (v, w) are consecutive edges. Let L2(v, v′) denote the
square of the Euclid distance between v and v′, the exact value of which can be computed
from the coordinates of v and v′. Then, we add the following information to (v, w).

L2(u, v), L2(v, w), L2(u,w),
whether w is located left or right of ~uv.

It is straightforward to see the correctness of this modified procedure to define the
canonical form. Since it does not increase the order of the size of the canonical form and the
time complexity, the following holds.

CPM 2018
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I Proposition 6. The canonical form of a geometric plane graph be computed in O(n) time.

It might be possible to use the geometric centroid (which can be easily computed), in
place of the topological centroid, to compute the canonical form in linear time. However, it
is unclear whether or not the circular string can be constructed easily.

6 Maximum common connected edge subgraph of geometric plane
graphs

We consider the problem of finding a maximum common connected edge subgraph (MCCES)
Gc of two geometric plane graphs G1 and G2: G has the maximum number of edges such
that G = T (G1) ∩G2 for some isometric transformation T . For simplicity, we assume that
G1 and G2 have O(n) edges. We also assume Real RAM (Random Access Machine) as a
computation model in which each arithmetic computation can be done in a constant time.
This problem can be solved by the following procedure (SimpleMCCES):
1. Let G0 be an empty graph.
2. For all directed edge pairs (e1, e2) ∈ E(G1)× E(G2), repeat steps 3-6.
3. Determine isometric transformation T uniquely (except mirror image) that maps e1 to e2.
4. Let G← T (G1) ∩G2.
5. Let Ec(G) be the set of edges in the connected component of G having the maximum

number of edges.
6. If |Ec(G)| > |Ec(G0)|, then let G0 ← G.
7. Output G0.

In computation of T (G1) ∩G2, edges remain only if two corresponding edges completely
overlap. Furthermore, T is examined only if the lengths of e1 and e2 are the same. Then,
the correctness of the procedure is obvious.

Next, we analyze the time complexity. Suppose that Gc has O(k) edges. Step 4 can be
done in O(n) time by performing DFS using edges common to T (G1) and G2. If the maximum
degree is bounded by a constant, it can be done in O(k) time. Since we may examine all
edge pairs, Steps 3-6 are repeated O(n2) times. Therefore, the total time complexity is O(n3)
in a general case and is O(kn2) if the maximum degree is bounded by a constant.

When the maximum degree is bounded by a constant, we can improve the time complexity
to O(n2 logn) (it is an improvement when k > c logn for some constant c) using a geometric
hashing [20]. For each directed edge pair (e1, e2) ∈ E(G1)× E(G2) having the same length,
we compute the unique isometric transformation T such that T (e1) = e2, and put this pair
into the bin labeled with T . Then, we find the bin containing the maximum number of
pairs connected in both G1 and G2, which corresponds to MCCES. Since O(n2) pairs are
examined and finding the bin (where a respective edge pair is to be put in) needs O(logn)
time using binary search, the total computation time to create all bins is O(n2 logn). Since
we assumed that the maximum degree is bounded by a constant, connected components in
all bins can be computed in linear time of the total number of edge pairs. Therefore, the
total time complexity is O(n2 logn).

The above results are almost trivial. Here we present a faster algorithm for a special case
of geometric MCCES in which graphs are outerplanar, both the maximum degree and the
maximum face degree (i.e., maximum number of edges of a face) are bounded by constants,
and Gc is very similar to G1 and G2 (precisely, Gc is obtained by deleting at most K edges
from G1 and also by deleting at most K edges from G2). In the following, a plane graph
with outerplanar graph structure is called an outer-plane graph. Suppose that the maximum
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Figure 6 Determination of the centroid for an outer-plane graph. In this case, tG(f1) = tG(f3) =
tG(f5) = tG(f6) = tG(e1) = 1, tG(e2) = G(e3) = tG(e4) = 2, tG(f2) = G(f4) = 3, and e5 is the
centroid.

degree and the maximum face degree are bounded by constants Dv and Df , respectively.
We will show that the position of the centroid changes for a constant amount by addition (or
deletion) of an edge.

To this end, we use a simpler definition of the centroid for an outer-plane graph G, where
it can also be applied to an outerplanar graph. We use the following simple procedure (see
Figure 6), where the resulting face/edge/vertex is the centroid and is denoted by cO(G).

1. Repeat Step 2 until there remains only one face, edge, or vertex.
2. Identify all faces and edges each of which overlaps with other face(s)/edge(s) at one edge

(including its endpoints) or one vertex.
3. Delete all faces and edges identified in Step 2.

It is straightforward to see that this procedure works in O(n) time and the centroid is
determined uniquely for isomorphic outer-plane graphs. For two edges e1 and e2, d(e1, e2)
denotes the shortest distance between endpoints of e1 and endpoints of e2, where the distance
between vertices is defined as the length of the shortest path connecting u and v. For the
centroid C in a graph G, let e(x) denote the set of edges in x if x is a face or an edge, and
the set of edges connecting to x otherwise (i.e., x is a vertex). In addition, let e(x, d) denote
the set of edges each of which has an edge in x within distance d in G. Then, we apply
SimpleMCCES only for the edge pairs (each with two directions) between e(cO(G1), dK)
and e(cO(G2), dK), where dK is to be determined later so that at least one edge in e(cO(Gc))
is included in both e(cO(G1), dK) and e(cO(G2), dK).

I Lemma 7. Suppose that G2 is obtained by adding an edge to G1 with keeping outerplanarity
and connectivity. Then, the minimum distance between e(cO(G1)) and e(cO(G2)) is at most
Df

2/2.

Proof. For each face or edge (not in a face), we consider the time step (the number of
repeats) at which the face/edge is deleted in the procedure determining the centroid, where
the time step for the firstly deleted faces/edges is regarded to be 1. For each face or edge x
in graph G, tG(x) denotes this deletion time step (see Figure 6).

We classify an addition of an edge into the following three cases (see Figure 7).
(a) One endpoint is a new vertex.
(b) An existing face is divided into two faces.
(c) A new face (not in an existing face) is created.

CPM 2018
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(a) (b) (c)

Figure 7 Classification of edge addition patterns. Added edges are shown by bold lines.

Let G2 be the graph obtained by addition of an edge to G1.
It is straightforward to see that the following properties hold.
In case (a), |tG2(x)− tG1(x)| ≤ 1 holds for each face/edge x.
In case (b), |tG2(x)− tG1(x)| ≤ 1 holds for each face/edge x.
In case (c), |tG2(x)− tG1(x)| ≤ Df holds for each face/edge x.

Since the centroid must have an overlap with the lastly deleted face(s)/edge(s) (i.e., face(s)/edge(s)
with the maximum tGi

(x)) and the distance between two vertices in the same face is at most
Df/2, the lemma holds. J

I Theorem 8. Suppose that both the maximum degree and the maximum face degree of
geometric outer-plane graphs G1 and G2 are bounded by constants Dv and Df , respectively.
Suppose also that a maximum common connected edge subgraph is obtained by deletion of at
most K edges from each of G1 and G2. Then, a maximum common connected edge subgraph
can be computed in O(f(Df , Dv,K)n) time, where f(Df , Dv,K) = D2

f ·D
KDf

2+Df +4
v .

Proof. From Lemma 7 and the assumption on Gc, the minimum distance between edges
in cO(Gc) and cO(Gi) is at most KDf

2/2. Then, all edges in e(cO(Gc)) are included
in e(cO(Gi), (KDf

2 + Df )/2) for each Gi. Therefore, by letting dK = (KDf
2 + Df )/2, a

maximum common connected edge subgraph can be found for two geometric graphsG1 andG2,
Since the vertex degree is bounded by Dv, the number of edges in e(cO(Gi), (KDf

2 +Df )/2)
is at most Df ·D

(KDf
2+Df )/2+1

v . Since we examine all pairs in e(cO(G1), (KDf
2 +Df )/2)

and e(cO(G2), (KDf
2 + Df )/2), the number of directed edge pairs examined is at most

2D2
f ·D

KDf
2+Df +2

v . For each pair, computation of T (G1) ∩G2 can be done in O(D2
vn) time

using DFS. Therefore, the theorem holds. J

It is unclear whether Lemma 7 or a similar lemma holds for outer-plane graphs if the
centroid c(Gi) defined in Section 3 is used. However, it is easy to see that a similar lemma
does not hold for plane graphs by considering a graph including large adjunct subgraphs.
Therefore, defining a centroid for plane graphs so that a property similar to Lemma 7 holds
is left as an open problem.
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