Can a permutation be sorted by best short swaps?

Shu Zhang

Department of Computer Science and Technology, Shandong University Jinan, China zhangshu365@163.com

Daming Zhu

Department of Computer Science and Technology, Shandong University Jinan, China dmzhu@sdu.edu.cn

Haitao Jiang

Department of Computer Science and Technology, Shandong University Jinan, China htjiang@sdu.edu.cn

Jingjing Ma

Department of Computer Science and Technology, Shandong University Jinan, China majingjing.sdu@gmail.com

Jiong Guo

Department of Computer Science and Technology, Shandong University Jinan, China

Haodi Feng

Department of Computer Science and Technology, Shandong University Jinan, China

Ahstract

A short swap switches two elements with at most one element caught between them. Sorting permutation by short swaps asks to find a shortest short swap sequence to transform a permutation into another. A short swap can eliminate at most three inversions. It is still open for whether a permutation can be sorted by short swaps each of which can eliminate three inversions. In this paper, we present a polynomial time algorithm to solve the problem, which can decide whether a permutation can be sorted by short swaps each of which can eliminate 3 inversions in O(n) time, and if so, sort the permutation by such short swaps in $O(n^2)$ time, where n is the number of elements in the permutation.

A short swap can cause the total length of two element vectors to decrease by at most 4. We further propose an algorithm to recognize a permutation which can be sorted by short swaps each of which can cause the element vector length sum to decrease by 4 in O(n) time, and if so, sort the permutation by such short swaps in $O(n^2)$ time. This improves upon the $O(n^2)$ algorithm proposed by Heath and Vergara to decide whether a permutation is so called lucky.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Algorithm, Complexity, Short Swap, Permutation, Reversal

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.14

Acknowledgements This paper is supported by national natural science foundation of China, No. 61472222, 61732009, 61761136017, 61672325.

© Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng; licensed under Creative Commons License CC-BY 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 14; pp. 14:1–14:12 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

1 Introduction

A short swap on a permutation represents an operation which switches two elements with at most one element caught between them in the permutation. Sorting by short swaps asks to find a shortest sequence of short swaps which can transform a given permutation into another. This problem was first proposed by Heath and Vergara, who also proposed an approximation algorithm which can achieve a performance ratio 2 for this problem [9].

Short swap can be thought of as a kind of rearrangement operations on permutations, where a rearrangement has been being used to account for the gene order variations in a genome [3], and can be formalized as some basic operations such as reversal, translocation, and transposition [15]. Sorting permutation by rearrangements can be used to trace the evolutionary path between genomes [14], and plays important roles in computational biology and bioinformatics [13][8].

A short swap can be thought of as a two or three element consecutive subsequence reversal on a permutation [9]. Sorting a signed permutation by reversals was introduced by Bafna and Pevzner[1]. Hannenhalli and Pevzner proposed a polynomial time algorithm for this problem [8]. Other algorithmic progresses can be looked up in [11][6][7]. Sorting unsigned permutation by reversals turns to be NP-hard [4]. Thus people have been engaging in designing approximation algorithms for this problem [16][12][2].

Moreover, a short swap can be thought of as a swap of length 2 to 3 on a permutation. Jerrum has shown that minimum sorting by swaps can be solved in polynomial time [10]. The complexity of sorting by short swaps remains open up to now. Heath and Vergara proposed an upper bound $(\frac{n^2}{4}) + O(n \log n)$ for the minimum number of short swaps to sort an n-element permutation [9]. Feng et. al. improved the bound to $(\frac{3}{16})n^2 + O(n \log n)$ later [5].

In fact, the time complexity of deciding whether a permutation can be sorted by short swaps which eliminate three inversions, is still open. In this paper, we present a sufficient and necessary condition for a permutation to be sorted by short swaps which eliminate three inversions, based on which, we can propose an algorithm to recognize a permutation which can be sorted by short swaps which eliminate three inversions in O(n) time, and if so, sort the permutation by short swaps to eliminate three inversions, in $O(n^2)$ time.

In the 2-approximation algorithm for sorting by short swaps [9], Heath and Vergara proposed to use an element vector to indicate how long a distance the element is from that element position it aims to be moved to, and showed that a short swap can cause two element vector's length sum to decrease by at most 4. Thus a so-called best cancellation refers to a short swap which can cause two element vector's length sum to decrease by 4. Heath and Vergara also presented an $O(n^2)$ algorithm to decide whether a permutation can be sorted by best cancellations. In this paper, we further propose a sufficient and necessary condition for a permutation to be sorted by best cancellations. Based on this observation, we propose an algorithm to recognize a permutation which can be sorted by best cancellations in O(n) time, and if so, sort the permutation by best cancellations, in $O(n^2)$ time.

2 Preliminaries

Let $\pi = [\pi_1, \pi_2, ..., \pi_n]$ be a permutation of $\{1, 2, ..., n\}$. A swap on π switches π_i with π_j , where π_i and π_j are two elements in π . The swap is short, if there is at most one element between π_i and π_j in π . Let ρ be an arbitrary swap on π . We denote by $\pi \cdot \rho$ the permutation ρ transforms π into. For example, let ρ be a swap which switches 7 with 4 in $\pi = [5, 3, 1, 7, 6, 4, 2]$. Then $\pi \cdot \rho = [5, 3, 1, 4, 6, 7, 2]$. The problem of sorting a permutation by short swaps can be formulated as follows.

Instance: A permutation π

Solution: A sequence of short swaps $\rho_1, \rho_2, ..., \rho_k$, such that $\pi \cdot \rho_1 \cdot \rho_2, ..., \rho_k = [1, 2, ..., n]$ and k is minimized.

As usually used, let ι denote the identity permutation [1, 2, ..., n]. The minimum number of short swaps which transform π into ι is referred to as the short swap distance of π , and denoted by $sw^3(\pi)$.

2.1 Happy permutation

An inversion in π refers to a pair of elements that are not in their correct relative order. Formally, the pair composed of π_i and π_j is an inversion of π_i and π_j in π , if i < j and $\pi_i > \pi_j$. Let inv_{π} be the set of inversions in π . A short swap ρ is said to eliminate $|inv_{\pi}| - |inv_{\pi \cdot \rho}|$ inversions (of π), if $|inv_{\pi}| \ge |inv_{\pi \cdot \rho}|$, and add $|inv_{\pi \cdot \rho}| - |inv_{\pi}|$ inversions (of π) otherwise.

A short swap can eliminate at most 3 inversions of π . If $\pi \neq \iota$, at least 1 inversion of two adjacent elements occurs in π , which can be eliminated by a short swap. Thus the short swap distance of π can be bounded by,

▶ Lemma 1.
$$\lceil \frac{|inv_{\pi}|}{3} \rceil \le sw^3(\pi) \le |inv_{\pi}|$$

Proof. See Theorem 3 in [9].

Due to Lemma 1, a short swap is referred to as best (resp. worst), if it can eliminate (resp. add) 3 inversions of π . A permutation, say π is referred to as happy, if $sw^3(\pi) = \frac{|inv_{\pi}|}{3}$. A permutation is happy, if and only if it can be transformed into ι by none other than best short swaps.

A consecutive sub sequence $\pi[x \to y] \equiv [\pi_x, ..., \pi_y]$ of π is referred to as an independent sub-permutation (abbr. ISP) in π , if for $1 \le l < x \le i \le y < h \le n$, $\pi_l < \pi_i < \pi_h$. An ISP is referred to as minimal, if none of its sub sequence, other than itself, is an ISP. A minimal ISP in π is abbreviated as an MISP. Since no inversion happens between two distinct ISPs, it suffices to pay attention to sorting an MISP by best short swaps.

For an element π_i in π , we refer to the integer interval $[i, \pi_i]$ as the vector of π_i in π and denote it as $v_{\pi}(\pi_i)$, where $|v_{\pi}(\pi_i)| = |\pi_i - i|$ is referred to as the length of $v_{\pi}(\pi_i)$. The element vector length indicates the difference between the element index and its correct index. The element π_i is referred to as vector-right, if $\pi_i - i > 0$; vector-left, if $\pi_i - i < 0$; and vector-zero, if $\pi_i - i = 0$. An MISP is isolated, if it contains just one element. An isolated MISP must admit one and only one vector-zero element. Let $\pi[x \to y]$ be an arbitrary MISP. If $\pi[x \to y]$ is not isolated, then π_x must be vector-right, and π_y vector-left.

2.2 Lucky permutation

Let $V_{\pi} = \{v_{\pi}(\pi_i) \mid 1 \leq i \leq n\}$. We denote by $L(V_{\pi})$ the length sum of all those vectors in V_{π} . A short swap always involves two element vectors. An element can be caused by one short swap to change its vector's length by at most 2. Thus a short swap can cause $L(V_{\pi})$ to decrease by at most 4. If $\pi \neq \iota$, Heath *et. al.* have shown in [9] that it can always find two elements in π and a sequence of short swaps to switch them, such that if switching the two elements uses m short swaps which transform π into π' , then $L(V_{\pi}) - L(V_{\pi'}) \geq 2m$. This leads to another short swap distance bound of π , which can be described as,

▶ Lemma 2.
$$\frac{L(V_{\pi})}{4} \leq sw^3(\pi) \leq \frac{L(V_{\pi})}{2}$$

Proof. See Theorem 10 in [9].

A permutation π is referred to as lucky, if $sw^3(\pi) = \frac{L(V_\pi)}{4}$.

3 How to recognize a happy permutation

We denote by $\rho\langle i,j\rangle$ (i< j) a swap on π , which switches π_i with π_j . If $\rho\langle i,j\rangle$ is short, then $i+1\leq j\leq i+2$. The short swap $\rho\langle i,j\rangle$ affects an ISP in π , if at least one of π_i , π_{i+1} , π_j occurs in the ISP. The short swap $\rho\langle i,j\rangle$ acts on an ISP, if all of π_i , π_{i+1} π_j occur in the ISP. To check if a permutation is happy, we present a sufficient and necessary condition for a short swap to be worst. A best or worst short swap must switch two elements with another element caught between them. Thus $\rho\langle i,i+2\rangle$ will usually be used to represent a best or worst short swap.

▶ **Lemma 3.** A short swap, say $\rho(i, i+2)$ on π is worst, if and only if $\pi_i < \pi_{i+1} < \pi_{i+2}$.

Let $\pi[x \to y]$ be an ISP in π . If a short swap $\rho(i,j)$ which acts on $\pi[x \to y]$ transforms π into π' , then $\pi'[x \to y]$ must be an ISP in π' .

▶ Lemma 4. If a worst short swap acts on an MISP, it must transform the MISP into an ISP which remains an MISP.

For an arbitrary ISP $\pi[x \to y]$ in π , an element π_j in $\pi[x \to y]$ is referred to as position-odd, if j-x is zero or even; position-even, otherwise. An ISP is referred to as sorted if no inversion occurs in the ISP; unsorted, otherwise. An ISP $\pi[x \to y]$ in π is referred to as happy, if it can be transformed into $\iota[x \to y]$ by none other than best short swaps. By the following theorem, we present a sufficient and necessary condition for an MISP to be happy.

▶ **Theorem 5.** An unsorted MISP is happy if and only if, (1) an element in the MISP is vector-zero if it is position-even; not vector-zero otherwise; and (2) for any two vector-left (resp. vector-right) elements, say π_i , π_j in the MISP, if i > j, then $\pi_i > \pi_j$.

To prove Theorem 5, let's start with a couple of lemmas. Although in Theorem 5, those two properties are mentioned for an MISP to meet, it cannot refuse an ISP in π to meet those two properties. Thus an ISP is said to meet the Theorem-5 property (1), if all position-even elements are vector-zero, while all position-odd elements in the ISP are not; and said to meet the Theorem-5 property (2), if all those vector-left as well as vector-right elements increase monotonously. To show Theorem 5, we insist to show that a worst short swap can always transform a sorted ISP or an ISP which meets those two Theorem-5 properties into an ISP which meets those two Theorem-5 properties. This asks to observe on if a worst short swap acts on an ISP which meets those two Theorem-5 properties, and transform it into an MISP, whether this MISP meets those two Theorem-5 properties. No matter how many MISPs a short swap affects, we always treat those MISPs a short swap affects as an ISP.

▶ **Lemma 6.** If a worst short swap acts on an ISP which meets those two Theorem-5 properties, it must transform the ISP into an ISP which meets those two Theorem-5 properties.

If the ISP the worst short swap acts on is an MISP, Lemma 6 can be redescribed as:

- ▶ Corollary 7. If a worst short swap acts on an MISP with those two Theorem-5 properties, it must transform the MISP into an MISP with those two Theorem-5 properties.
- ▶ Lemma 8. A short swap cannot be worst, if it affects just two MISPs each of which is isolated or meets those two Theorem-5 properties.
- ▶ Lemma 9. If a worst short swap affects three MISPs, each of which is isolated or meets those two Theorem-5 properties, it must transform the ISP which consists only these three MISPs into an MISP with those two Theorem-5 properties.

Proof. Let $\rho\langle i,i+2\rangle$ be a worst short swap which affects three MISPs in π , each of which is isolated or meets those two Theorem-5 properties. Then $\pi_i < \pi_{i+1} < \pi_{i+2}$. That MISP caught between the other two MISPs in π must be isolated. Thus without loss of generality, let $\pi[x \to i]$, [i+1] and $\pi[i+2 \to y]$ be those three MISPs $\rho\langle i,i+2\rangle$ affects. Let $\pi' = \pi \cdot \rho\langle i,i+2\rangle$.

Proof for $\pi'[x \to y]$ **to be an MISP.** Note that $\pi'_i = \pi_{i+2}$, $\pi'_{i+2} = \pi_i$ and $\pi'_j = \pi_j$ for $j \neq i$ and $j \neq i+2$. We show that if $\pi'[x_1 \to y_1]$ is an MISP with $x \leq x_1 \leq y_1 \leq y$, then $x = x_1$ and $y = y_1$.

Otherwise, let on one hand, $x \neq x_1$. (1) If $x < x_1 < i+1$, then in $\pi'[x \to x_1 - 1]$, an arbitrary element is less than an arbitrary element in $\pi'[x_1 \to y]$. Since $\pi[x \to x_1 - 1] = \pi'[x \to x_1 - 1]$, $\pi[x \to x_1 - 1]$ must be an ISP. The assumption for $\pi[x \to i]$ to be an MISP is contracted. (2) If $i+2 < x_1 \le y$, it can follow (1) to show that $\pi[i+2 \to x_1 - 1]$ must be an ISP. The assumption for $\pi[i+2 \to y]$ to be an MISP is contracted. (3) If $x_1 = i+1$ or $x_1 = i+2$, then $\pi'[x_1 \to y_1]$ cannot be an MISP because $\pi'_i > \pi'_{i+1} > \pi'_{i+2}$. That is the proof for $x = x_1$. For the same reason, $y = y_1$.

Proof for $\pi'[x \to y]$ **to meet those two Theorem-5 properties.** Since [i+1] is isolated, $\pi_{i+1} = i+1$, and for $x \le l \le i$ and $i+2 \le h \le y$, $\pi_l < \pi_{i+1} < \pi_h$.

- (1) If $\pi[x \to i]$ and $\pi[i+2 \to y]$ are both isolated, then i=x and y=i+2, and $\pi'[x \to y]$ = [i+2, i+1, i] meets those two Theorem-5 properties trivially.
- (2) If one of $\pi[x \to i]$ and $\pi[i+2 \to y]$ is isolated, then i=x and $y \neq i+2$ or $i \neq x$ and y = i+2. We only focus on the former subcase, where i=x and $y \neq i+2$, to present the proof. In this subcase, $\pi_i = \pi'_{i+2} = i < i+2$, $\pi_{i+1} = \pi'_{i+1} = i+1$, which means π'_{i+1} is vector-zero and π'_{i+2} vector-left. Since $\pi[i+2 \to y]$ is not isolated, π'_i and π_{i+2} are vector-right. All position-odd (resp. position-even) elements in $\pi[i+2 \to y]$ remain position-odd and not vector-zero (resp. position-even and vector-zero) in $\pi'[x \to y]$. The proof for $\pi'[x \to y]$ to meet Theorem-5 property (1), is done. The vector-zero element π_i in $\pi[x \to y]$ turns into the vector-left element π'_{i+2} in

The vector-zero element π_i in $\pi[x \to y]$ turns into the vector-left element π'_{i+2} in $\pi'[x \to y]$, and all elements in $\pi[i+2 \to y]$ turn into elements in $\pi'[x \to y]$ in the the same relative order as they are in $\pi[i+2 \to y]$. Thus to show that $\pi'[x \to y]$ meets Theorem-5, it suffices to show that π'_{i+2} is the leftmost vector-left element in $\pi'[x \to y]$, and less than any other vector-left element in $\pi'[x \to y]$. Of course this is true, because π'_i is vector-right, π'_{i+1} is vector-zero and $\pi'_{i+2} = \pi_i < \pi_{i+1} < \pi_h$ for h > i + 1. The proof for $\pi'[x \to y]$ to meet Theorem-5 property (2), is done.

(3) If none of $\pi[x \to i]$ and $\pi[i+2 \to y]$ is isolated, then $i \neq x$ and $y \neq i+2$. By Lemma 6, to make sure for $\pi'[x \to y]$ to meet those two Theorem-5 properties, it suffices to show that $\pi[x \to y]$ meets those two Theorem-5 properties. Since $\pi[x \to i]$ and $\pi[i+2 \to y]$ meet Theorem-5 property (2), and $\pi_l < \pi_{i+1} < \pi_h$ for $x \leq l \leq i$ and $i+2 \leq h \leq y$, $\pi[x \to y]$ meets the Theorem-5 property (2). Since $\pi[x \to i]$ meets the Theorem-5 property (1), i-x is even. Then, (1)the vector-zero element π_{i+1} is position-even in $\pi[x \to y]$; (2)each position-odd (resp. position-even) element in $\pi[x \to i]$ and $\pi[i+2 \to y]$, remains position-odd (resp. position-even) in $\pi[x \to y]$. This implies that $\pi[x \to y]$ meets the Theorem-5 property (1).

The proof of Theorem 5 can be given by Corollary 7 and Lemma 8, 9.

Proof. Only if: Let $\pi[x \to y]$ be an unsorted and happy MISP, which can be transformed into $\iota[x \to y]$ by m best short swaps, say $\rho_1, \rho_2, ..., \rho_m$. Then $(\pi \cdot \rho_1 \cdot \rho_2 ... \rho_{m-1} \cdot \rho_m)[x \to y] = \iota[x \to y]$. Let $\pi^k[x \to y] = (\iota \cdot \rho_m \cdot \rho_{m-1} ... \rho_{m+2-k} \cdot \rho_{m+1-k})[x \to y]$ for

- (1) Without loss of generality, let $\rho_m = \rho \langle i, i+2 \rangle (1 \leq i \leq n-2)$. Then $\rho \langle i, i+2 \rangle$ must be a worst short swap which acts on ι . It follows that $\pi^1[x \to y] = (\iota \cdot \rho_m)[x \to y]$ = [x, x+1, ..., i-1, i+2, i+1, i, i+3, ..., y], where [x], ..., [i-1], [i+3], ..., [y] are isolated MISPs and [i+2, i+1, i] is an unsorted MISP, which meets those two Theorem-5 properties trivially.
- (2) By inductive assumption, let all unsorted MISPs in $\pi^{k-1}[x \to y]$ meet those two Theorem-5 properties. Assume again $\rho_{m+1-k} = \rho \langle i, i+2 \rangle (x \le i \le y-2)$ with $\pi^k[x \to y] = (\pi^{k-1} \cdot \rho \ \langle i, i+2 \rangle)[x \to y]$. Note that $\rho \langle i, i+2 \rangle$ must be a worst short swap which acts on $\pi^{k-1}[x \to y]$. By Lemma 8, $\rho \langle i, i+2 \rangle$ cannot affect two MISPs. By Corollary 7 and Lemma 9, all unsorted MISPs in $\pi^k[x \to y]$ must meet those two Theorem-5 properties.
- If: Let $\pi[x \to y]$ be an MISP in π which meets those two Theorem-5 properties. The proof for $\pi[x \to y]$ to be happy, is to show that one can find a best short swap which can act on $\pi[x \to y]$ and transform it into an ISP in which each MISP either is isolated or meets those two Theorem-5 properties.
- **Identify a best short swap:** Let π_i be the biggest element in $\pi[x \to y]$. Then $\rho(i, i+2)$ can be shown to be a best short swap which acts on $\pi[x \to y]$. The proof can be stated as:
 - (1) Since $\pi[x \to y]$ meets those two Theorem-5 properties and π_i is the biggest in $\pi[x \to y]$, π_i must be vector-right and position-odd in $\pi[x \to y]$ and no vector-right element can occur on the right side of π_i , which implies π_{i+1} is position-even and equal to i+1.
 - (2) Then $\pi_i \geq i+2$ follows from that π_i is vector-right, $\pi_{i+2} \leq i$ follows from that no vector-right element can occur on the right side of π_i . Thus $\pi_i > \pi_{i+1} > \pi_{i+2}$.
 - Let $\pi'[x \to y] = (\pi \cdot \rho \langle i, i+2 \rangle)[x \to y]$. We devote to show that all unsorted MISPs in $\pi'[x \to y]$ must meet those two Theorem-5 properties.
- The proof to meet the Theorem-5 property (2): Since $\pi_i \geq i+2$ is vector-right, $\pi_{i+2} \leq i$ is vector-left, $\pi'_i = \pi_{i+2} \leq i$ is either vector-zero or vector-left, $\pi'_{i+2} = \pi_i \geq i+2$ is either vector-zero or vector-right. This indicates that no vector-left (resp. vector-right) element in $\pi[x \to y]$ can turn into vector-right (resp. vector-left) in $\pi'[x \to y]$. Moreover, no two vector-left (resp. vector-right) elements in $\pi[x \to y]$ can occur in $\pi'[x \to y]$ in the other order than they are in $\pi[x \to y]$. It follows that all unsorted MISPs in $\pi'[x \to y]$ meet the Theorem-5 property (2).
- The proof to meet the Theorem-5 property (1): All position-even elements in $\pi'[x \to y]$ are vector-zero because $\rho\langle i, i+2 \rangle$ switches only π_i with π_{i+2} . The first element in an unsorted MISP in $\pi'[x \to y]$ must be vector-right, then must be position-odd in $\pi'[x \to y]$. Thus to make sure for all unsorted MISPs in $\pi'[x \to y]$ to meet the Theorem-5 property (1), it suffices to show that for all π'_j in $\pi'[x \to y]$, if π'_j is position-odd and vector-zero, then $[\pi'_j]$ is an isolated MISP. Since $\pi[x \to y]$ meets the Theorem-5 property (1), only π'_i and π'_{i+2} can be position-odd and vector-zero in $\pi'[x \to y]$.
 - If π'_{i+2} is vector-zero, $[\pi'_{i+2}]$ must be an isolated MISP, because π'_{i+2} is the biggest element in $\pi'[x \to y]$.
 - If π'_i is vector-zero, it must be the smallest in $\pi'[i \to y]$. The reason is, (1)since $\pi[x \to y]$ meets the Theorem-5 property (1) and $\pi_{i+2} = i$, an element in $\pi[i \to y]$ is bigger than $\pi_{i+2} = \pi'_i$, if it is position-even in $\pi[x \to y]$; (2)since $\pi[x \to y]$ meets the Theorem-5 property (2) and π_{i+2} is vector-left, an element in $\pi[i+3 \to y]$ is bigger than $\pi_{i+2} = \pi'_i$, if it is vector-left in $\pi[x \to y]$; (3) π_i is the unique vector-right element in $\pi[i \to y]$ and bigger than $\pi_{i+2} = \pi'_i$. It follows that $[\pi'_i]$ is an isolated MISP.

Algorithm 1: How to recognize a happy permutation.

```
Algorithm Happy permutation
Input: A permutation \pi.
Output: The best short swap sequence \rho if \pi is happy; no, otherwise.
     lb \leftarrow 0; rb \leftarrow 0; x \leftarrow 1; b \leftarrow 0;
2
     For i from 1 to n do
3
        if (i > b) then x \leftarrow i; (an MISP starts with \pi_x)
4
        if (i-x \mod 2=1 \text{ and } \pi_i=i) then i \leftarrow i+1; (\pi_i \text{ is position-even, vector-zero.})
5
        if (i - x \mod 2 = 0 \text{ and } \pi_i < i \text{ and } \pi_i > lb)
6
           then lb \leftarrow \pi_i; i \leftarrow i+1; (\pi_i is position-odd, vector-left.)
        if (i - x \mod 2 = 0 \text{ and } \pi_i > i \text{ and } \pi_i > rb)
           then rb \leftarrow \pi_i; i \leftarrow i+1; b \leftarrow \pi_i; (\pi_i is position-odd, vector-right.)
9
        if (i = x \text{ and } \pi_i = i) then b \leftarrow \pi_i, i \leftarrow i + 1; ([\pi_i] is isolated.)
10
         else return no:
11
     end for
12
     Return Sort(\pi);
```

In fact, an MISP in π can be recognized by,

▶ Lemma 10. An MISP in π starts with π_i , if and only if i = 1 or for $1 \leq j \leq i - 1$, $i > \pi_j$.

To decide if π is happy, it suffices to check if all MISPs in π , if unsorted, meet those two Theorem-5 properties.

An element in an MISP can be decided to be position-odd or position-even by the first element index of the MISP and its index. Then an MISP can be decided to meet the Theorem-5 property (1) by the value of $|\pi_i - i|$ for all π_i in this MISP.

An element in π can be decided to be vector-right, vector-left or vector-zero by the value of $\pi_i - i$. To check if all unsorted MISPs in π meet the Theorem-5 property (2), it suffices to check if π meets the Theorem-5 property (2). Fortunately, π can be decided to meet the Theorem-5 property (2) by checking if all those vector-left (resp. vector-right) elements increase monotonously in the order from π_1 to π_n .

We present an algorithm to recognize and sort a happy permutation π in Algorithm 1. If π is happy, the algorithm returns a best short swap sequence which can transform π into ι by invoking a subroutine named as $\operatorname{Sort}(\pi)$; returns no, otherwise. In the algorithm description, we use the integer parameter lb (resp. rb) to maintain the biggest vector-left (resp. vector-right) element in $\pi[1 \to i-1]$, b the biggest element in $\pi[1 \to i-1]$, x the starting index of the MISP in which π_i is an element.

Running the algorithm from Step 1 to Step 11 can decide if π is happy or not. This can take O(n) time, where n is the number of elements in π . Later, let π be happy. We present on how to find a sequence of best short swaps to transform π into ι . To identify a best short swap which switches π_i with π_{i+2} , it suffices to record the integer i. Thus in $\operatorname{Sort}(\pi)$, we will employ a linear integer array $\rho[1 \sim X]$ to maintain the best short swap sequence to sort π , where $X \leq \frac{n(n-1)}{6}$, $\rho[j]$ indicates to switch $\pi_{\rho[j]}$ with $\pi_{\rho[j]+2}$.

The rightmost vector-right element in π must be the rightmost vector-right element in an MISP in π . Let π_i be the rightmost vector-right element in π . Then it follows the proof of the Theorem 5 sufficient condition that the short swap which switches π_i with π_{i+2} is best. By Theorem 5 again, this operation must transform π into a happy permutation. Thus the trick for finding the rightmost vector-right element in π to identify a best short swap can be done repeatedly until π is transformed into ι . The algorithm $\operatorname{Sort}(\pi)$ is depicted in Figure 2.

Algorithm 2: How to sort a happy permutation.

```
Algorithm Sort(\pi)
1
     x \leftarrow 0;
2
     while \pi \neq \iota
3
         find the rightmost vector-right element \pi_i;
4
         while \pi_i > i
5
            \rho[x] \leftarrow i; \pi \leftarrow \pi \cdot \rho[x]; x \leftarrow x + 1;
6
7
         end while
8
     end while
9
     Return \rho.
```

A rightmost vector-right element, say π_i , remains rightmost and vector-right in the permutation the short swap which switches π_i with π_{i+2} transforms π into, until it turns into vector-zero. So it takes O(n) time to find all the rightmost vector-right elements. On the other hand, each best short swap can eliminate 3 inversions, the total inversion number is $O(n^2)$. Thus the time complexity of $Sort(\pi)$ is $O(n^2)$. It follows that the time complexity of recognizing a happy permutation is $O(n^2)$.

4 How to recognize a lucky permutation

A short swap on π is referred to as a best cancellation, if it cause $L(V_{\pi})$ to decrease by 4 [9]. The permutation π is referred to as lucky, if it can be transformed into ι by none other than best cancellations. A short swap is referred to as a promising cancellation (resp. promising addition), if it switches two adjacent elements in π and causes $L(V_{\pi})$ to decrease (resp. increase) by 2.

An ISP $\pi[x \to y]$ is referred to as *sub-lucky*, if it can be transformed into $\iota[x \to y]$ by none other than promising cancellations. To check if a permutation is lucky, we set about to check if an ISP is sub-lucky. This asks us to observe what kind of a short swap is a promising addition or cancellation.

▶ **Lemma 11.** The short swap $\rho(i, i+1)$ on π is a promising addition, if and only if $\pi_i \leq i$ and $\pi_{i+1} \geq i+1$.

Following Lemma 11, a promising cancellation can be identified by,

▶ Corollary 12. The short swap $\rho(i, i+1)$ on π is a promising cancellation, if and only if $\pi_i \geq i+1$ and $\pi_{i+1} \leq i$.

By the following theorem, we state for what an MISP is sub-lucky.

▶ Theorem 13. An unsorted MISP is sub-lucky if and only if, (1) all elements in the MISP are not vector-zero; and (2) for any two vector-left (resp. vector-right) elements, say π_i , π_j in the MISP, if i > j, then $\pi_i > \pi_j$.

The second property of the theorem implies that those vector-left as well as vector-right elements increase monotonously. In fact, we can use the same way as used to show Theorem 5 to show the theorem. Although in Theorem 13, those two properties are mentioned for an MISP to meet, it cannot refuse an ISP in π to meet those two properties. Thus an ISP is said to meet the Theorem-13 property (1), if all elements in the ISP are not vector-zero; and said to meet the Theorem-13 property (2), if all those vector-left as well as vector-right elements increase monotonously. The following lemma, although seems trivial, deserves to be stated.

▶ Lemma 14. If an ISP meets those two Theorem-13 properties, then all MISPs in the ISP meet those two Theorem-13 properties.

To show Theorem 13, we show that an ISP, if meets those two Theorem-13 properties, cannot be transformed by a promising addition into one out of those two Theorem-13 properties. That is,

▶ **Lemma 15.** If a promising addition acts on an ISP which meets those two Theorem-13 properties, it must transform the ISP into one which meets those two Theorem-13 properties.

An ISP with two or more MISPs does not always meet those two Theorem-13 properties. However, Lemma 15 can be extended to fit for some situation where a promising addition affects two MISPs.

▶ Lemma 16. If a promising addition affects two MISPs, each of which is isolated or meets those two Theorem-13 properties, it must transform the two MISPs into an ISP which meets those two Theorem-13 properties.

To show Theorem 13, we need to observe on what kind of an ISP a promising cancellation can transform an MISP with those two Theorem-13 properties into.

▶ Lemma 17. If a promising cancellation acts on an MISP with those two Theorem-13 properties, it must transform the MISP into an ISP in which all unsorted MISPs meets those two Theorem-13 properties.

Similar to Theorem 5, Theorem 13 can be proved with Lemma 14, 15, 16 and 17.

A best cancellation must switch two elements between which another element has been caught. Thus we will usually denote by $\rho(i, i+2)$ a best cancellation on π . A best cancellation can be identified by,

▶ **Lemma 18.** A short swap, say $\rho\langle i, i+2 \rangle$ on π is a best cancellation, if and only if $\pi_i \geq i+2$ and $\pi_{i+2} \leq i$.

In π , there exist $\lfloor \frac{n}{2} \rfloor$ even elements and $\lceil \frac{n}{2} \rceil$ odd elements. Thus those even elements in π can be extracted into a subsequence of π as $[\pi_{x[1]}, \pi_{x[2]}, ..., \pi_{x[\lfloor \frac{n}{2} \rfloor]}]$ where, (1) x[i] < x[i+1] for $1 \le i \le \lfloor \frac{n}{2} \rfloor - 1$; (2) $\pi_{x[i]}$ is even in π , $1 \le x[i] \le n$. Likewise, those odd elements in π can be extracted into $[\pi_{y[1]}, ..., \pi_{y[\lceil \frac{n}{2} \rceil]}]$ where, (1) y[i] < y[i+1] for $1 \le i \le \lceil \frac{n}{2} \rceil - 1$; (2) $\pi_{y[i]}$ is odd in π , $1 \le y[i] \le n$. Moreover, let $Even[\pi] \equiv [e_1, e_2 \dots e_{\lfloor \frac{n}{2} \rfloor}]$ with $e_i = \frac{\pi_{x[i]}}{2}$, $1 \le i \le \lceil \frac{n}{2} \rceil$, $Odd[\pi] \equiv [o_1, o_2 \dots o_{\lfloor \frac{n}{2} \rfloor}]$ with $o_i = \frac{\pi_{y[i]} + 1}{2}$, $1 \le i \le \lceil \frac{n}{2} \rceil$. Then $Even[\pi]$ must be a permutation of $\{1, 2, ..., \lfloor \frac{n}{2} \rfloor \}$, $Odd[\pi]$ a permutation of $\{1, 2, ..., \lceil \frac{n}{2} \rceil \}$. A sufficient and necessary condition for a permutation to be lucky can be announced by,

- ▶ Theorem 19. The permutation π is lucky if and only if, (1) each of its elements admits a vector with zero or even absolute value; (2) each unsorted MISP in Even[π] and Odd[π] is sub-lucky.
- **Proof.** Only if: Let π be lucky and unsorted, $\rho(i, i+2)$ a best cancellation on π . Then $\rho(i, i+2)$ must cause $|v_{\pi}(\pi_i)|$ as well as $|v_{\pi}(\pi_{i+2})|$ to decrease by 2. Since π can be transformed into ι by none other than best cancellations, $|\pi_j j| \mod 2 = 0$ for $1 \leq j \leq n$. The proof for π to meet the Theorem-19 property (1), is done.

A position-even (resp. position-odd) element in π remains position-even (resp. position-odd) in $\pi \cdot \rho \langle i, i+2 \rangle$. Since π meets the Theorem-19 property (1), an even (resp. odd) element in π must be position-even (resp. position-odd). This implies $Even[\pi] = \left[\frac{\pi_2}{2}, \frac{\pi_4}{2}, \ldots, \frac{\pi_2 \lfloor \frac{n}{2} \rfloor}{2}\right]$, $Odd[\pi] = \left[\frac{\pi_1}{2}, \frac{\pi_3}{2}, \ldots, \frac{\pi_2 \lceil \frac{n}{2} \rceil - 1}{2}\right]$.

Let i be even. By Lemma 18, $\pi_i \geq i+2$ and $\pi_{i+2} \leq i$. Thus $\frac{\pi_i}{2} \geq \frac{i}{2}+1$ and $\frac{\pi_{i+2}}{2} \leq \frac{i}{2}$. By Corollary 12, $\rho(\frac{i}{2}, \frac{i}{2}+1)$ can be viewed as a promising cancellation which acts on an MISP in $Even[\pi]$. Thus, if one can use best cancellations to transform π into a permutation, say π' with $Even[\pi'] = Even[\iota]$, then all unsorted MISPs in $Even[\pi]$ are sub-lucky. The same argument can be employed to show that all unsorted MISPs in $Odd[\pi]$ are sub-lucky. The proof for π to meet the Theorem-19 property (2), is done.

If: Let π be unsorted and meet those two Theorem-19 properties. The proof for π to be lucky, is to show that one can find a best cancellation ρ on π which transforms π into a permutation which meets those two Theorem-19 properties. Firstly, the Theorem-19 property (1) implies that $Even[\pi] = \left[\frac{\pi_2}{2}, \frac{\pi_4}{2}, ..., \frac{\pi_2 \lfloor \frac{n}{2} \rfloor}{2}\right], Odd[\pi] = \left[\frac{\pi_1}{2}, \frac{\pi_3}{2}, ..., \frac{\pi_2 \lfloor \frac{n}{2} \rfloor - 1}{2}\right].$

Let π_i be the rightmost vector-right element in π . Then $\pi_{i+2} \leq i+2$ because π_{i+2} is either vector-zero or vector-left. We argue that if i is even, $\rho\langle i, i+2 \rangle$ must be a best cancellation on π .

- (1) Since i is even, $\pi_i \geq i + 2$, and $\frac{\pi_i}{2}$ and $\frac{\pi_{i+2}}{2}$ must occur in $Even[\pi]$.
- (2) To get to $\pi_{i+2} \leq i$, we argue that $\frac{\pi_i}{2}$ and $\frac{\pi_{i+2}}{2}$ must occur in one unsorted MISP in $Even[\pi]$.

It follows $\pi_{i+2} \leq i+2$ and $\pi_i \geq i+2$ that $\frac{\pi_i}{2} \geq \frac{i}{2}+1$ and $\frac{\pi_{i+2}}{2} \leq \frac{i}{2}+1$. Thus $\frac{\pi_i}{2} > \frac{\pi_{i+2}}{2}$. Thus an inversion of $\frac{\pi_i}{2}$ and $\frac{\pi_{i+2}}{2}$ occurs in $Even[\pi]$, which means $\frac{\pi_i}{2}$ and $\frac{\pi_{i+2}}{2}$ occur in one MISP. By the Theorem-19 property (2), the MISP in $Even[\pi]$ with $\frac{\pi_i}{2}$ and $\frac{\pi_{i+2}}{2}$ must be sub-lucky. Thus by the Theorem-13 property (1), $\frac{\pi_{i+2}}{2}$ in $Even[\pi]$ is not vector-zero. It follows that $\frac{\pi_{i+2}}{2} \leq \frac{i}{2}$, and equivalently, $\pi_{i+2} \leq i$.

The same argument can be employed to show that if i is odd, $\rho(i,i+2)$ is a best cancellation.

Let $\pi' = \pi \cdot \rho \langle i, i+2 \rangle$. It remains to show that π' , if unsorted, must meet those two Theorem-19 properties.

Since $\rho(i,i+2)$ is a best cancellation, it must cause $|v_{\pi}(\pi_i)|$ and $|v_{\pi}(\pi_{i+2})|$ each to decrease by 2. Since π meet the Theorem-19 property (1), π' must meet the Theorem-19 property (1).

If i is even, since π meets the Theorem-19 property (1), then $\frac{\pi_{i+2}}{2}$ must occur on the right side next to $\frac{\pi_i}{2}$ in $Even[\pi]$. Since $\rho\langle i, i+2 \rangle$ is a best cancellation, $\rho\langle \frac{i}{2}, \frac{i}{2}+1 \rangle$ must be a promising cancellation which acts on an MISP in $Even[\pi]$. By Lemma 17, all unsorted MISPs in $Even[\pi']$ meet those two Theorem-13 properties. That is, all unsorted MISPs in $Even[\pi']$ are sub-lucky by Theorem 13. Moreover, it follows $Odd[\pi'] = Odd[\pi]$ that all MISPs in $Odd[\pi']$ are sub-lucky. Thus, π' meets Theorem-19 property (2)

If i is odd, π' can be shown to meet the Theorem-19 property (2) in the same way as for i to be even.

To decide if π meets the Theorem 19 property (1), it suffices to check for all i in [1, n], if i and π_i are both even, or both odd.

Let π_i be an arbitrary element in π . We refer to $\frac{\pi_i}{2}$ (resp. $\frac{\pi_i+1}{2}$) as the image of π_i in $Even[\pi]$ (resp. $Odd[\pi]$). Then for a lucky permutation π , π_i is vector-right (resp. vector-left, vector-zero) in π , if and only if its image in $Even[\pi]$ or $Odd[\pi]$ is vector-right (resp. vector-left, vector-zero). Thus, to decide if π meets the Theorem-19 property (2), it suffices to check for, (1) if the image of a vector-zero element occurs in an isolated MISP in $Odd[\pi]$ or $Even[\pi]$; and (2) if those vector-left and even (resp. odd) elements in π , as well as those vector-right and even (resp. odd) elements, always increase monotonously in the order from π_1 to π_n .

The image in $Even[\pi]$ (resp. $Odd[\pi]$) of a vector-zero element, say π_i , can be decided to occur in an isolated MISP in $Even[\pi]$ (resp. $Odd[\pi]$) by checking if all even (resp. odd) elements in $\pi[1 \to i-1]$ are smaller than π_i . Those vector-left (resp. vector-right) elements

Algorithm 3: How to recognize a lucky permutation.

```
Algorithm lucky permutation
Input: A permutation \pi.
Output: The best short swap sequence \rho if \pi is lucky; no, otherwise.
     lo \leftarrow 0; ro \leftarrow 0; le \leftarrow 0; re \leftarrow 0;
2
     For i \to 1 to n do
3
        If (i \text{ and } \pi_i \text{ are both even}) then
4
               If (\pi_i \geq i \text{ and } \pi_i > re)
5
                   then re \leftarrow \pi_i; i \leftarrow i+1; (\pi_i \text{ is vector-right even or } [\pi_i] \text{ is isolated})
6
               If (\pi_i < i \text{ and } \pi_i > le)
7
                  then le \leftarrow \pi_i; i \leftarrow i+1; (\pi_i \text{ is vector-left even})
8
        If (i \text{ and } \pi_i \text{ are both odd}) then
9
               If (\pi_i \geq i \text{ and } \pi_i > ro)
10
                   then ro \leftarrow \pi_i; i \leftarrow i+1; (\pi_i is vector-right odd or [\pi_i] is isolated)
11
                If (\pi_i < i \text{ and } \pi_i > lo)
12
                   then lo \leftarrow \pi_i; i \leftarrow i+1; (\pi_i \text{ is vector-left odd})
13
         Else return no;
14 End for
15
     Return Sort(\pi);
```

can be decided to be monotonous increasing by checking for each vector-left (resp. vector-right) even (resp. odd) element, say π_i , if π_i is bigger than the biggest vector-left (resp. vector-right) even (resp. odd) element in $\pi[1 \rightarrow i-1]$. In fact, it is not necessary to pay special attention to check if a vector-zero element occurs in an isolated MISP. This benefits from

▶ **Lemma 20.** In $\pi[1 \to k]$ for $k \ge 2$, the biggest vector-right element must be bigger than the biggest vector-left element.

We present in Figure 3 the algorithm to decide if π is lucky, and if so, to find a best cancellation sequence to sort π . If π is lucky, the algorithm will return a best cancellation sequence which can transform π into ι by invoking the $\mathrm{Sort}(\pi)$; return no, otherwise. Since by the sufficiency proof of Theorem 19, one can employ the same way as to find a best short swap in Theorem 5 to find a best cancellation, the subroutine $\mathrm{Sort}(\pi)$ is just so as it has been depicted in Algorithm 2.

In the algorithm description, we use the integer parameter le (resp. lo) to maintain the biggest vector-left even (resp. odd) element in $\pi[1 \to i-1]$, re (resp. ro) the biggest even (odd) element in $\pi[1 \to i-1]$. It follows Lemma 20 that le < re, lo < ro.

Running the algorithm from Step 1 to Step 14 can inform us if π is lucky or not. This takes O(n) time, where n is the number of elements in π . Let π_i be the rightmost vector-right element in a lucky permutation π , by the proof of Theorem 19, the short swap which switches π_i with π_{i+2} is a best cancellation. By Theorem 19 again, this operation must transform π into a lucky permutation. By the complexity analysis for $\operatorname{Sort}(\pi)$ in Section 3, it has been known $\operatorname{Sort}(\pi)$ can run in $O(n^2)$ time. Thus the time complexity of sorting a lucky permutation is $O(n^2)$.

5 Conclusion

Sort a happy permutation or a lucky permutation by short swaps is a special case of minimum sorting by short swaps problem. In this paper, we proposed a polynomial-time algorithm

to recognize a happy permutation and sort it with the fewest short swaps. We also gave a new algorithm to recognize a lucky permutation with O(n) steps, which improves the time complexity of $O(n^2)$ [9]. The complexity of minimum sorting by short swaps problem remains open. The best known approximation ratio of this problem is 2, which was given by Heath and Vergara [9]. It is interesting that if we can get a smaller approximation ratio for this problem.

References -

- 1 V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. *Siam Journal on Computing*, 25(2):272–289, 1993.
- 2 Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-approximation algorithm for sorting by reversals. *Lecture Notes in Computer Science*, pages 200–210, 2002.
- 3 Guillaume Bourque and Pavel A. Pevzner. Genome-scale evolution: Reconstructing gene orders in the ancestral species. *Genome Research*, 12(1):26–36, 2002.
- 4 Alberto Caprara. Sorting permutations by reversals and eulerian cycle decompositions. Siam Journal on Discrete Mathematics, 12(1):91–110, 1999.
- 5 Xuerong Feng, Ivan Hal Sudborough, and Enyue Lu. A fast algorithm for sorting by short swap. In *Proceeding of the 10th IASTED International Conference on Computational and Systems Biology*, pages 62–67, 2006.
- 6 Gustavo Rodrigues Galvão and Zanoni Dias. Approximation algorithms for sorting by signed short reversals. In *Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB '14, Newport Beach, California, USA, September 20-23, 2014*, pages 360–369. ACM, 2014. doi:10.1145/2649387.2649413.
- 7 Gustavo Rodrigues Galvão, Orlando Lee, and Zanoni Dias. Sorting signed permutations by short operations. Algorithms for Molecular Biology, 10(1):1–17, 2015.
- 8 Sridhar Hannenhalli. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. *Journal of the Acm*, 46(1):1–27, 1999.
- 9 L. S. Heath and J. P. Vergara. Sorting by short swaps. Journal of Computational Biology A Journal of Computational Molecular Cell Biology, 10(5):775–89, 2003.
- 10 Mark R. Jerrum. The complexity of finding minimum-length generator sequences. In Colloquium on Automata, Languages and Programming, pages 270–280, 1984.
- 11 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. A Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals. Society for Industrial and Applied Mathematics, 1999
- J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. *Algorithmica*, 13(1-2):180–210, 1995.
- 13 P Pevzner and G Tesler. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. *Genome Research*, 13(1):37–45, 2003.
- 14 G. P. Pradhan and P. V. Prasad. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. Plos One, 10(2):1–20, 2015.
- D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B F Lang, and R. Cedergren. Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. *Proceedings* of the National Academy of Sciences of the United States of America, 89(14):6575–6579, 1992.
- **16** G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion problem. *Journal of Theoretical Biology*, 99(1):1–7, 1982.