Can a permutation be sorted by best short swaps?

Shu Zhang

Department of Computer Science and Technology, Shandong University
Jinan, China

zhangshu365@163.com

Daming Zhu

Department of Computer Science and Technology, Shandong University
Jinan, China

dmzhu@sdu.edu.cn

Haitao Jiang

Department of Computer Science and Technology, Shandong University
Jinan, China

htjiang@sdu.edu.cn

Jingjing Ma

Department of Computer Science and Technology, Shandong University
Jinan, China

majingjing.sdu@gmail.com

Jiong Guo
Department of Computer Science and Technology, Shandong University
Jinan, China

Haodi Feng

Department of Computer Science and Technology, Shandong University
Jinan, China

—— Abstract

A short swap switches two elements with at most one element caught between them. Sorting per-

mutation by short swaps asks to find a shortest short swap sequence to transform a permutation
into another. A short swap can eliminate at most three inversions. It is still open for whether a
permutation can be sorted by short swaps each of which can eliminate three inversions. In this
paper, we present a polynomial time algorithm to solve the problem, which can decide whether
a permutation can be sorted by short swaps each of which can eliminate 3 inversions in O(n)
time, and if so, sort the permutation by such short swaps in O(n?) time, where n is the number
of elements in the permutation.

A short swap can cause the total length of two element vectors to decrease by at most 4. We
further propose an algorithm to recognize a permutation which can be sorted by short swaps each
of which can cause the element vector length sum to decrease by 4 in O(n) time, and if so, sort
the permutation by such short swaps in O(n?) time. This improves upon the O(n?) algorithm
proposed by Heath and Vergara to decide whether a permutation is so called lucky.

2012 ACM Subject Classification Mathematics of computing
Keywords and phrases Algorithm, Complexity, Short Swap, Permutation, Reversal

Digital Object ldentifier 10.4230/LIPIcs.CPM.2018.14

Acknowledgements This paper is supported by national natural science foundation of China,
No. 61472222, 61732009, 61761136017, 61672325.

© Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng;
oY licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).

Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 14; pp. 14:1-14:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:zhangshu365@163.com
mailto:dmzhu@sdu.edu.cn
mailto:htjiang@sdu.edu.cn
mailto:majingjing.sdu@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

Can a permutation be sorted by best short swaps?

1 Introduction

A short swap on a permutation represents an operation which switches two elements with at
most one element caught between them in the permutation. Sorting by short swaps asks
to find a shortest sequence of short swaps which can transform a given permutation into
another. This problem was first proposed by Heath and Vergara, who also proposed an
approximation algorithm which can achieve a performance ratio 2 for this problem [9].

Short swap can be thought of as a kind of rearrangement operations on permutations,
where a rearrangement has been being used to account for the gene order variations in a
genome [3], and can be formalized as some basic operations such as reversal, translocation,
and transposition [15]. Sorting permutation by rearrangements can be used to trace the
evolutionary path between genomes [14], and plays important roles in computational biology
and bioinformatics [13][8].

A short swap can be thought of as a two or three element consecutive subsequence
reversal on a permutation [9]. Sorting a signed permutation by reversals was introduced
by Bafna and Pevzner[1]. Hannenhalli and Pevzner proposed a polynomial time algorithm
for this problem [8]. Other algorithmic progresses can be looked up in [11][6][7]. Sorting
unsigned permutation by reversals turns to be NP-hard [4]. Thus people have been engaging
in designing approximation algorithms for this problem [16][12][2].

Moreover, a short swap can be thought of as a swap of length 2 to 3 on a permutation.
Jerrum has shown that minimum sorting by swaps can be solved in polynomial time [10].
The complexity of sorting by short swaps remains open up to now. Heath and Vergara
proposed an upper bound (%2) +O(nlogn) for the minimum number of short swaps to sort
an n-element permutation [9]. Feng et. al. improved the bound to (£)n? + O(nlogn) later
[5].

In fact, the time complexity of deciding whether a permutation can be sorted by short
swaps which eliminate three inversions, is still open. In this paper, we present a sufficient
and necessary condition for a permutation to be sorted by short swaps which eliminate three
inversions, based on which, we can propose an algorithm to recognize a permutation which
can be sorted by short swaps which eliminate three inversions in O(n) time, and if so, sort
the permutation by short swaps to eliminate three inversions, in O(n?) time.

In the 2-approximation algorithm for sorting by short swaps [9], Heath and Vergara
proposed to use an element vector to indicate how long a distance the element is from that
element position it aims to be moved to, and showed that a short swap can cause two element
vector’s length sum to decrease by at most 4. Thus a so-called best cancellation refers to a
short swap which can cause two element vector’s length sum to decrease by 4. Heath and
Vergara also presented an O(n?) algorithm to decide whether a permutation can be sorted
by best cancellations. In this paper, we further propose a sufficient and necessary condition
for a permutation to be sorted by best cancellations. Based on this observation, we propose
an algorithm to recognize a permutation which can be sorted by best cancellations in O(n)
time, and if so, sort the permutation by best cancellations, in O(n?) time.

2 Preliminaries

Let m = [m1, 72, ..., ™, be a permutation of {1, 2, ..., n}. A swap on 7 switches m; with =,
where m; and 7; are two elements in 7. The swap is short, if there is at most one element
between m; and 7; in m. Let p be an arbitrary swap on 7. We denote by 7 - p the permutation
p transforms 7 into. For example, let p be a swap which switches 7 with 4 in 7 =[5, 3, 1, 7,
6, 4, 2]. Then w-p =[5, 3, 1, 4, 6, 7, 2]. The problem of sorting a permutation by short
swaps can be formulated as follows.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng

Instance: A permutation 7
Solution: A sequence of short swaps p1, pa, ..., pg, such that - p1 - pa, ..., - pr = [1, 2, ...,
n] and k is minimized.

As usually used, let ¢ denote the identity permutation [1, 2, ..., n]. The minimum number
of short swaps which transform 7 into ¢ is referred to as the short swap distance of 7, and
denoted by sw3 (7).

2.1 Happy permutation

An inversion in 7 refers to a pair of elements that are not in their correct relative order.
Formally, the pair composed of m; and ; is an inversion of m; and 7; in 7, if ¢ < j and
m; > 7j. Let inv, be the set of inversions in m. A short swap p is said to eliminate linvg|
— |invs.,| inversions (of 7), if |invs| > |invs.,|, and add |invy.,| — |inv.| inversions (of)
otherwise.

A short swap can eliminate at most 3 inversions of w. If m # ¢, at least 1 inversion of
two adjacent elements occurs in 7, which can be eliminated by a short swap. Thus the short
swap distance of m can be bounded by,

» Lemma 1. [%] < sw?(m)< |inv,|

Proof. See Theorem 3 in [9]. <

Due to Lemma 1, a short swap is referred to as best (resp. worst), if it can eliminate (resp.

add) 3 inversions of . A permutation, say 7 is referred to as happy, if sw?(r) = % A
permutation is happy, if and only if it can be transformed into ¢ by none other than best
short swaps.

A consecutive sub sequence m[x — y] = [7y, ..., m,] of 7 is referred to as an independent
sub-permutation (abbr. ISP) in 7, iffor 1 <l <z <i<y<h<n,m<m <mp An ISP
is referred to as minimal, if none of its sub sequence, other than itself, is an ISP. A minimal
ISP in 7 is abbreviated as an MISP. Since no inversion happens between two distinct ISPs,
it suffices to pay attention to sorting an MISP by best short swaps.

For an element 7; in 7, we refer to the integer interval [i, m;] as the vector of m; in 7
and denote it as v, (m;), where |v;(m;)| = |m; — i| is referred to as the length of v, (m;). The
element vector length indicates the difference between the element index and its correct
index. The element 7; is referred to as vector-right, if m; —i > 0; vector-left, if m; —i < 0; and
vector-zero, if m; —i = 0. An MISP is isolated, if it contains just one element. An isolated

MISP must admit one and only one vector-zero element. Let w[x — y] be an arbitrary MISP.

If 7[x — y] is not isolated, then 7, must be vector-right, and 7, vector-left.

2.2 Lucky permutation

Let Vi = {v(m) | 1 <i < n}. We denote by L(V;) the length sum of all those vectors in
V. A short swap always involves two element vectors. An element can be caused by one
short swap to change its vector’s length by at most 2. Thus a short swap can cause L(V;) to
decrease by at most 4. If m # ¢, Heath et. al. have shown in [9] that it can always find two
elements in 7 and a sequence of short swaps to switch them, such that if switching the two
elements uses m short swaps which transform = into 7', then L(V;) — L(Vz/) > 2m. This
leads to another short swap distance bound of 7, which can be described as,

> Lemma 2. 2Wn) < g3() < L)
Proof. See Theorem 10 in [9]. <
A permutation 7 is referred to as lucky, if sw3(w) = L(X").

14:3

CPM 2018

14:4

Can a permutation be sorted by best short swaps?

3 How to recognize a happy permutation

We denote by p(i,7) (i < j) a swap on m, which switches m; with m;. If p(3, j) is short, then
i+ 1< j <i+2. The short swap p(i, j) affects an ISP in 7, if at least one of m;, 41, 7;
occurs in the ISP. The short swap p(i, j) acts on an ISP, if all of m;, ;11 7; occur in the
ISP. To check if a permutation is happy, we present a sufficient and necessary condition for a
short swap to be worst. A best or worst short swap must switch two elements with another
element caught between them. Thus p(i, ¢ + 2) will usually be used to represent a best or
worst short swap.

» Lemma 3. A short swap, say p(i,i + 2) on 7 is worst, if and only if m; < mip1 < Tita.

Let 7[x — y] be an ISP in 7. If a short swap p(i, j) which acts on [z — y] transforms 7
into 7', then 7'[z — y] must be an ISP in 7’

» Lemma 4. If a worst short swap acts on an MISP, it must transform the MISP into an
ISP which remains an MISP.

For an arbitrary ISP m[z — y| in 7, an element 7; in [z — y] is referred to as position-
odd, if j — x is zero or even; position-even, otherwise. An ISP is referred to as sorted if no
inversion occurs in the ISP; unsorted, otherwise. An ISP w[x — y| in 7 is referred to as
happy, if it can be transformed into ¢[x — y] by none other than best short swaps. By the
following theorem, we present a sufficient and necessary condition for an MISP to be happy.

» Theorem 5. An unsorted MISP is happy if and only if, (1) an element in the MISP is
vector-zero if it is position-even; not vector-zero otherwise; and (2) for any two vector-left
(resp. vector-right) elements, say m;, m; in the MISP, if i > j, then m; > =;.

To prove Theorem 5, let’s start with a couple of lemmas. Although in Theorem 5, those two
properties are mentioned for an MISP to meet, it cannot refuse an ISP in 7 to meet those
two properties. Thus an ISP is said to meet the Theorem-5 property (1), if all position-even
elements are vector-zero, while all position-odd elements in the ISP are not; and said to meet
the Theorem-5 property (2), if all those vector-left as well as vector-right elements increase
monotonously. To show Theorem 5, we insist to show that a worst short swap can always
transform a sorted ISP or an ISP which meets those two Theorem-5 properties into an ISP
which meets those two Theorem-5 properties. This asks to observe on if a worst short swap
acts on an ISP which meets those two Theorem-5 properties, and transform it into an MISP,
whether this MISP meets those two Theorem-5 properties. No matter how many MISPs a
short swap affects, we always treat those MISPs a short swap affects as an ISP.

» Lemma 6. If a worst short swap acts on an ISP which meets those two Theorem-5 properties,
it must transform the ISP into an ISP which meets those two Theorem-5 properties.

If the ISP the worst short swap acts on is an MISP, Lemma 6 can be redescribed as:

» Corollary 7. If a worst short swap acts on an MISP with those two Theorem-5 properties,
it must transform the MISP into an MISP with those two Theorem-5 properties.

» Lemma 8. A short swap cannot be worst, if it affects just two MISPs each of which is
isolated or meets those two Theorem-5 properties.

» Lemma 9. If a worst short swap affects three MISPs, each of which is isolated or meets
those two Theorem-5 properties, it must transform the ISP which consists only these three
MISPs into an MISP with those two Theorem-5 properties.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng

Proof. Let p(i,i + 2) be a worst short swap which affects three MISPs in 7, each of which
is isolated or meets those two Theorem-5 properties. Then m; < m;41 < ;2. That MISP
caught between the other two MISPs in 7 must be isolated. Thus without loss of generality,
let w[z —], [{ + 1] and 7[i + 2 — y] be those three MISPs p(i,i + 2) affects. Let 7’ = 7 -
pliyi + 2).

Proof for 7/[z — y] to be an MISP. Note that ; = 7,42, T 5 = m; and 7 = 7; for j #
i and j # i + 2. We show that if 7'[z1; — y1] is an MISP with < 21 < y; < y, then z
=2z and y = y;.

Otherwise, let on one hand, z # z;. (1) If z < 1 < i+ 1, then in 7'[x — z; — 1], an
arbitrary element is less than an arbitrary element in n'[z; — y|. Since 7[x — x1 — 1]
= 7'[x = x1 — 1], [z — x1 — 1] must be an ISP. The assumption for 7[z — i] to be an
MISP is contracted. (2) If i4+2 < 21 < y, it can follow (1) to show that w[i+2 — z1 — 1]
must be an ISP. The assumption for 7[i + 2 — y] to be an MISP is contracted. (3) If 24

=i+ 1orx; =i+ 2, then 7'[z; — y1] cannot be an MISP because 7} > 7, > 7 .

That is the proof for z = z;. For the same reason, y = y;.

Proof for 7w’/[x — y] to meet those two Theorem-5 properties. Since [i 4+ 1] is isolated,
mir1 =t+lLand forz <l <diandi+2 < h <y, m < mip1 < Th.

(1)
(2)

(3)

If n[z — 4] and 7[i + 2 — y] are both isolated, then i = x and y = i+ 2, and 7'[x — y]
= [i + 2, i + 1, i] meets those two Theorem-5 properties trivially.

If one of w[x — 4] and 7[i +2 — y] is isolated, then i =z and y #i 4+ 2o0ri # z and y
=14 + 2. We only focus on the former subcase, where i = x and y # i + 2, to present
the proof. In this subcase, m; = mj o, =4 < i + 2, m41 = 7,y = i + 1, which means
;. is vector-zero and 7, vector-left. Since w[i +2 — y] is not isolated, 7} and m; o
are vector-right. All position-odd (resp. position-even) elements in 7[i +2 — y] remain

position-odd and not vector-zero (resp. position-even and vector-zero) in 7'[z — y].

The proof for [z — y] to meet Theorem-5 property (1), is done.

The vector-zero element m; in 7[z — y] turns into the vector-left element ; , in
7'[x — y], and all elements in 7[i + 2 — gy] turn into elements in «'[x — y] in the
the same relative order as they are in 7[i + 2 — y|. Thus to show that 7'[z — y]
meets Theorem-5, it suffices to show that 7, is the leftmost vector-left element in
7'[x — y], and less than any other vector-left element in 7'[x — y]. Of course this is
true, because 7; is vector-right, 7, is vector-zero and 7, , = m; < mip1 < 7w, for b
> i + 1. The proof for 7’[x — y| to meet Theorem-5 property (2), is done.

If none of w[x — i] and 7[i + 2 — y| is isolated, then i # = and y # i + 2. By Lemma
6, to make sure for [z — y| to meet those two Theorem-5 properties, it suffices to
show that w[x — y] meets those two Theorem-5 properties.

Since m[x — ¢] and 7[i + 2 — y] meet Theorem-5 property (2), and m < w11 < 7, for
x<l<iandi+2 < h <y, m[x — y] meets the Theorem-5 property (2).

Since 7[z — 4] meets the Theorem-5 property (1), i—x is even. Then, (1)the vector-zero
element ;1 is position-even in 7[z — y]; (2)each position-odd (resp. position-even)
element in 7[z — i] and 7[i + 2 — y], remains position-odd (resp. position-even) in
w[x — y]. This implies that 7|z — y] meets the Theorem-5 property (1). <

The proof of Theorem 5 can be given by Corollary 7 and Lemma 8, 9.

Proof. Only if: Let w[x — y] be an unsorted and happy MISP, which can be transformed
into [z — y] by m best short swaps, say p1, p2, ..., pm. Then (7 - p1 - p2 ... pm—1
pm)le =yl = [z = y]. Let 7%[z = y] = (t - pm - Pm—1 -+ Pmr2—k - Pmi1—k)[x — y] for

14:5

CPM 2018

14:6 Can a permutation be sorted by best short swaps?

1 <k <m. Then 7™[x — y] = w[xz — y]. By induction for k, we show every unsorted
MISP in 7*[z — y] meets those two Theorem-5 properties.

(1) Without loss of generality, let p,,, = p(i,7+2)(1 < i < n — 2). Then p(¢, ¢+ 2) must
be a worst short swap which acts on ¢. It follows that 7i[z — y] = (¢ - pm)[z — Y]
=lz,z+1, .., i—1,i+2,9i+1, 43+ 3, ..., y], where [z], ..., [i = 1], [i + 3], ..., [¢]
are isolated MISPs and [i + 2, i + 1, ¢] is an unsorted MISP, which meets those two
Theorem-5 properties trivially.

(2) By inductive assumption, let all unsorted MISPs in 7%~ [z — y] meet those two
Theorem-5 properties. Assume again p,11-x = p{isi + 2)(z < i < y — 2) with
7Fz — y] = (7F~1 - p (i,i + 2))[x — y]. Note that p(i,i + 2) must be a worst short
swap which acts on 77 1[z — y]. By Lemma 8, p(i,i + 2) cannot affect two MISPs.
By Corollary 7 and Lemma 9, all unsorted MISPs in 7%[z — y] must meet those two
Theorem-5 properties.

If: Let [z — y] be an MISP in 7 which meets those two Theorem-5 properties. The proof
for [z — y] to be happy, is to show that one can find a best short swap which can act
on m[z — y| and transform it into an ISP in which each MISP either is isolated or meets
those two Theorem-5 properties.

Identify a best short swap: Let 7; be the biggest element in 7[z — y]. Then p(i,i + 2) can
be shown to be a best short swap which acts on 7[z — y]. The proof can be stated as:

(1) Since 7[z — y] meets those two Theorem-5 properties and ; is the biggest in w[z — y],
m; must be vector-right and position-odd in 7|z — y] and no vector-right element can
occur on the right side of 7;, which implies ;41 is position-even and equal to ¢ + 1.

(2) Then m; > i + 2 follows from that m; is vector-right, m;1o < i follows from that no
vector-right element can occur on the right side of m;. Thus m; > w11 > miy2.

Let n'[x = y] = (7 - pli,i+ 2))[x — y]. We devote to show that all unsorted MISPs in
7'[z — y] must meet those two Theorem-5 properties.

The proof to meet the Theorem-5 property (2): Since m; > i+ 2 is vector-right, m; 1o < i
is vector-left, m; = w19 < i is either vector-zero or vector-left, 7j_ , = m; > i+ 2 is either
vector-zero or vector-right. This indicates that no vector-left (resp. vector-right) element
in 7[z — y] can turn into vector-right (resp. vector-left) in 7/[x — y]. Moreover, no two
vector-left (resp. vector-right) elements in m[z — y] can occur in 7'[x — y| in the other
order than they are in w[x — y]. It follows that all unsorted MISPs in #'[z — y] meet
the Theorem-5 property (2).

The proof to meet the Theorem-5 property (1): All position-even elements in 7'[z — y]
are vector-zero because p(i,i + 2) switches only 7; with m; 2. The first element in an
unsorted MISP in 7/[z — y] must be vector-right, then must be position-odd in #'[z — y].
Thus to make sure for all unsorted MISPs in 7/[x — y] to meet the Theorem-5 property
(1), it suffices to show that for all 7 in 7'[z — y], if 7} is position-odd and vector-zero,
then [r}] is an isolated MISP. Since 7[z — y| meets the Theorem-5 property (1), only 7
and 7, can be position-odd and vector-zero in 7'[x — y].

If 7}, 5 is vector-zero, [mj_ 5] must be an isolated MISP, because 7 , is the biggest element
in 7'z — y].

If 7} is vector-zero, it must be the smallest in 7'[i — y]. The reason is, (1)since [z — y]
meets the Theorem-5 property (1) and ;12 = i, an element in 7[i — y] is bigger than
Tiy2 = T, if it is position-even in w[x — yl; (2)since 7|z — y| meets the Theorem-5
property (2) and 7;42 is vector-left, an element in 7[i + 3 — y] is bigger than m;1o = 7/,
if it is vector-left in w[x — y]; (3)m; is the unique vector-right element in 7[i — y] and
bigger than m;1o = 7). It follows that [n]] is an isolated MISP. <

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng

Algorithm 1: How to recognize a happy permutation.

Algorithm Happy permutation
Input: A permutation 7.
Output: The best short swap sequence p if 7 is happy; no, otherwise.
b+ 0;rb+ 0; 2+ 1; b+ 0
For ¢ from 1 to n do
if (¢ > b) then « < 4; (an MISP starts with)
if (i —2 mod 2 =1 and 7; = i) then ¢ < ¢ + 1; (m; is position-even, vector-zero.)
if (i —x mod 2 = 0 and m; < i and 7; > Ib)
then b < m;; @ < i+ 1; (m; is position-odd, vector-left.)
if (i —2x mod 2 = 0 and m; > 4 and m; > rb)
then rb < m;; 4 < i+ 1; b < m;; (m; is position-odd, vector-right.)
if (i =2 and m; =) then b + m;, i + i+ 1; ([m;] is isolated.)
10 else return no;
11 end for
12 Return Sort(n);

© 00 J O T W N~

In fact, an MISP in 7 can be recognized by,

» Lemma 10. An MISP in 7 starts with 7;, if and only ifi =1 or for 1 < j <i—1,4 >
-

To decide if 7 is happy, it suffices to check if all MISPs in , if unsorted, meet those two
Theorem-5 properties.

An element in an MISP can be decided to be position-odd or position-even by the first
element index of the MISP and its index. Then an MISP can be decided to meet the
Theorem-5 property (1) by the value of |r; — i| for all m; in this MISP.

An element in 7 can be decided to be vector-right, vector-left or vector-zero by the value
of m; — 4. To check if all unsorted MISPs in 7 meet the Theorem-5 property (2), it suffices
to check if m meets the Theorem-5 property (2). Fortunately, = can be decided to meet
the Theorem-5 property (2) by checking if all those vector-left (resp. vector-right) elements
increase monotonously in the order from 7 to m,.

We present an algorithm to recognize and sort a happy permutation = in Algorithm
1. If 7 is happy, the algorithm returns a best short swap sequence which can transform =
into ¢ by invoking a subroutine named as Sort(r); returns no, otherwise. In the algorithm
description, we use the integer parameter (b (resp. rb) to maintain the biggest vector-left
(resp. vector-right) element in 7[1 — i — 1], b the biggest element in 7[1 — i — 1], = the
starting index of the MISP in which 7; is an element.

Running the algorithm from Step 1 to Step 11 can decide if 7 is happy or not. This can
take O(n) time, where n is the number of elements in 7. Later, let © be happy. We present
on how to find a sequence of best short swaps to transform 7 into ¢. To identify a best short
swap which switches m; with ;4 2, it suffices to record the integer ¢. Thus in Sort(7), we will
employ a linear integer array p[l ~ X| to maintain the best short swap sequence to sort 7,
where X < %, ply] indicates to switch ;) with 7,142

The rightmost vector-right element in 7 must be the rightmost vector-right element in an
MISP in 7. Let m; be the rightmost vector-right element in 7. Then it follows the proof of

the Theorem 5 sufficient condition that the short swap which switches m; with 7,12 is best.

By Theorem 5 again, this operation must transform 7 into a happy permutation. Thus the
trick for finding the rightmost vector-right element in 7 to identify a best short swap can be
done repeatedly until 7 is transformed into ¢. The algorithm Sort() is depicted in Figure 2.

14:7

CPM 2018

14:8 Can a permutation be sorted by best short swaps?

Algorithm 2: How to sort a happy permutation.
Algorithm Sort(m)
x < 0;
while 7 # ¢

1
2
3 find the rightmost vector-right element 7;;
4 while m; > 1

5 ple] «— i m+ weplz]; z +— x + 15

6 14— 1+ 2

7 end while

8 end while

9 Return p.

A rightmost vector-right element, say m;, remains rightmost and vector-right in the
permutation the short swap which switches m; with 7,15 transforms 7 into, until it turns
into vector-zero. So it takes O(n) time to find all the rightmost vector-right elements. On
the other hand, each best short swap can eliminate 3 inversions, the total inversion number
is O(n?). Thus the time complexity of Sort(r) is O(n?). It follows that the time complexity
of recognizing a happy permutation is O(n?).

4 How to recognize a lucky permutation

A short swap on 7 is referred to as a best cancellation, if it cause L(V;) to decrease by
4 [9]. The permutation 7 is referred to as lucky, if it can be transformed into ¢ by none
other than best cancellations. A short swap is referred to as a promising cancellation (resp.
promising addition), if it switches two adjacent elements in 7 and causes L(V;) to decrease
(resp. increase) by 2.

An ISP 7|z — y] is referred to as sub-lucky, if it can be transformed into ¢[z — y] by
none other than promising cancellations. To check if a permutation is lucky, we set about to
check if an ISP is sub-lucky. This asks us to observe what kind of a short swap is a promising
addition or cancellation.

» Lemma 11. The short swap p{i,i + 1) on w is a promising addition, if and only if m; < i
and Ti4+1 2 i+ 1.

Following Lemma 11, a promising cancellation can be identified by,

» Corollary 12. The short swap p(i,i + 1) on 7 is a promising cancellation, if and only if
T Z 1+ 1 andm-_H S 7.

By the following theorem, we state for what an MISP is sub-lucky.

» Theorem 13. An unsorted MISP is sub-lucky if and only if, (1) all elements in the MISP
are not vector-zero; and (2) for any two vector-left (resp. vector-right) elements, say m;, m;
in the MISP, if i > j, then m; > ;.

The second property of the theorem implies that those vector-left as well as vector-right
elements increase monotonously. In fact, we can use the same way as used to show Theorem
5 to show the theorem. Although in Theorem 13, those two properties are mentioned for an
MISP to meet, it cannot refuse an ISP in 7 to meet those two properties. Thus an ISP is said
to meet the Theorem-13 property (1), if all elements in the ISP are not vector-zero; and said
to meet the Theorem-13 property (2), if all those vector-left as well as vector-right elements
increase monotonously. The following lemma, although seems trivial, deserves to be stated.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng

» Lemma 14. If an ISP meets those two Theorem-13 properties, then all MISPs in the ISP
meet those two Theorem-13 properties.

To show Theorem 13, we show that an ISP, if meets those two Theorem-13 properties,
cannot be transformed by a promising addition into one out of those two Theorem-13
properties. That is,

» Lemma 15. If a promising addition acts on an ISP which meets those two Theorem-13
properties, it must transform the ISP into one which meets those two Theorem-13 properties.

An ISP with two or more MISPs does not always meet those two Theorem-13 properties.
However, Lemma 15 can be extended to fit for some situation where a promising addition
affects two MISPs.

» Lemma 16. If a promising addition affects two MISPs, each of which is isolated or meets
those two Theorem-13 properties, it must transform the two MISPs into an ISP which meets
those two Theorem-13 properties.

To show Theorem 13, we need to observe on what kind of an ISP a promising cancellation
can transform an MISP with those two Theorem-13 properties into.

» Lemma 17. If a promising cancellation acts on an MISP with those two Theorem-13
properties, it must transform the MISP into an ISP in which all unsorted MISPs meets those
two Theorem-13 properties.

Similar to Theorem 5, Theorem 13 can be proved with Lemma 14, 15, 16 and 17.

A best cancellation must switch two elements between which another element has been
caught. Thus we will usually denote by p(i,i+2) a best cancellation on 7. A best cancellation
can be identified by,

» Lemma 18. A short swap, say p(i,i + 2) on 7 is a best cancellation, if and only if m; >
i+ 2 and iy < i.

In 7, there exist | 5] even elements and [4] odd elements. Thus those even elements in 7

can be extracted into a subsequence of as [m[1], Ta[2]; - ww“%“] where, (1) z[i] < z[i + 1]
for 1 <i < |5] — 15 (2) myp is even in 7, 1 < z[i] < n. Likewise, those odd elements in 7
can be extracted into [mqy, ..., my[ray)] where, (1) y[i] <gyli+1]for 1 <i < [Z] — 1; (2)
myp) is odd in m, 1 < y[i] < n. Moreover, let Even|r] = [e1, ez ... e|n] with e; = 1<

i < [3], Odd[r] = [o1, 02 ... 0] with o; = Fy[iT]—H, 1 <i < [§]. Then Even[r] must be
a permutation of {1, 2, ..., | 5]}, Odd[r] a permutation of {1, 2, ..., [§]}. A sufficient and

necessary condition for a permutation to be lucky can be announced by,

» Theorem 19. The permutation 7 is lucky if and only if, (1) each of its elements admits a
vector with zero or even absolute value; (2) each unsorted MISP in Even[rn] and Odd[n] is
sub-lucky.

Proof. Only if: Let 7 be lucky and unsorted, p(i,i + 2) a best cancellation on 7. Then
p(i,i+2) must cause |v, (7;)| as well as |v; (m;42)| to decrease by 2. Since 7 can be transformed
into ¢ by none other than best cancellations, |7rj — jlmod 2 =0 for 1 < j < n. The proof
for m to meet the Theorem-19 property (1), is done.

A position-even (resp. position-odd) element in 7 remains position-even (resp. position-
odd) in 7 - p(i,7 + 2). Since m meets the Theorem-19 property (1), an even (resp. odd)

element in 7 must be position-even (resp. position-odd). This implies Even[r] = [%, &,
WQLQJ 71'2[&“ —1
oy —52=|, Odd[] =[5+, %2, ., ——].

14:9

CPM 2018

14:10

Can a permutation be sorted by best short swaps?

Let i be even. By Lemma 18, m; > 4 + 2 and m;42 <. Thus 5 > % 4+ 1 and 7”;2 < %
By Corollary 12, p(5,5+1) can be viewed as a promising cancellation which acts on an MISP
in Even[r]. Thus, if one can use best cancellations to transform 7 into a permutation, say
7’ with Even[r'] = Even][i], then all unsorted MISPs in Even[n] are sub-lucky. The same
argument can be employed to show that all unsorted MISPs in Odd[r] are sub-lucky. The
proof for m to meet the Theorem-19 property (2), is done.

If: Let m be unsorted and meet those two Theorem-19 properties. The proof for 7 to
be lucky, is to show that one can find a best cancellation p on m which transforms 7 into a
permutation which meets those two Theorem-19 properties. Firstly, the Theorem-19 property
(1) implies that Even[n] = [%2, &, ..., ﬁQLQ%J], Odd[n] = [&, &, ..., ﬂﬂ%kl].

Let m; be the rightmost vector-right element in 7. Then 7,5 < ¢+ 2 because ;5 is either
vector-zero or vector-left. We argue that if ¢ is even, p(i,i + 2) must be a best cancellation

on 7.

Tit2
2

(1) Since i is even, 7; > i + 2, and % and must occur in Fven/[r].

Tit2

5= must occur in one unsorted MISP in

(2) To get to w12 < i, we argue that 5 and
Even|r].

It follows w12 < i+ 2 and m; > i+ 2 that 5 > % + 1 and 7”2*2 < % + 1. Thus % >
T2 Thus an inversion of % and 52 occurs in Even[r], which means % and ™52 occur
in one MISP. By the Theorem-19 property (2), the MISP in Even[r] with %+ and 52 must
be sub-lucky. Thus by the Theorem-13 property (1), 52 in Fven|n] is not vector-zero. It

: 2
follows that ™32 < £, and equivalently, m o < 1.

The same argument can be employed to show that if 4 is odd, p(i,i + 2) is a best
cancellation.

Let 7' = 7 - p(i,i + 2). It remains to show that 7/, if unsorted, must meet those two
Theorem-19 properties.

Since p(i,i+2) is a best cancellation, it must cause |v,(m;)| and |v; (m42)| each to decrease
by 2. Since m meet the Theorem-19 property (1), 7 must meet the Theorem-19 property (1).

T2 must occur on the

If 4 is even, since m meets the Theorem-19 property (1), then
right side next to Zt in Even[r]. Since p(i,i + 2) is a best cancellation, p(%, £ + 1) must be
a promising cancellation which acts on an MISP in Fven[r]. By Lemma 17, all unsorted
MISPs in Even[r’] meet those two Theorem-13 properties. That is, all unsorted MISPs
in Even[n'] are sub-lucky by Theorem 13. Moreover, it follows Odd[n'] = Odd[n] that all
MISPs in Odd[n'] are sub-lucky. Thus, 7’ meets Theorem-19 property (2)

If ¢ is odd, 7’ can be shown to meet the Theorem-19 property (2) in the same way as for
1 to be even. |

To decide if = meets the Theorem 19 property (1), it suffices to check for all 7 in [1, n], if
i and m; are both even, or both odd.

Let m; be an arbitrary element in . We refer to % (resp. ”‘T'H) as the ¢mage of m; in
Even[r] (resp. Odd[r]). Then for a lucky permutation , m; is vector-right (resp. vector-left,
vector-zero) in 7, if and only if its image in Even[r] or Odd[n] is vector-right (resp. vector-left,
vector-zero). Thus, to decide if m meets the Theorem-19 property (2), it suffices to check for,
(1) if the image of a vector-zero element occurs in an isolated MISP in Odd[r] or Even|r];
and (2) if those vector-left and even (resp. odd) elements in 7, as well as those vector-right
and even (resp. odd) elements, always increase monotonously in the order from m to 7.

The image in Fven|n] (resp. Odd[n]) of a vector-zero element, say ;, can be decided
to occur in an isolated MISP in Fven[r| (resp. Odd[n]) by checking if all even (resp. odd)
elements in 7|1 — ¢ — 1] are smaller than m;. Those vector-left (resp. vector-right) elements

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng

Algorithm 3: How to recognize a lucky permutation.

Algorithm lucky permutation
Input: A permutation 7.
Output: The best short swap sequence p if 7 is lucky; no, otherwise.

1 lo<0;r04 0;le< 0; re <+ 0;

2 Fori— 1tondo

3 If (¢ and 7; are both even) then

4 If (m; > i and m; > re)

5 then re < m;; @ < i+ 1; (m; is vector-right even or [m;] is isolated)
6 If (m; < iand m; > le)

7 then le «— m; @ <= i+ 1; (m; is vector-left even)

8 If (¢ and 7; are both odd) then

9 If (m; > ¢ and 7; > ro)

10 then ro < m;; @ < i + 1; (m; is vector-right odd or [r;] is isolated)
11 If (m; < i and 7 > lo)

12 then lo < m;; 4 < i+ 1; (m; is vector-left odd)

13 Else return no;

14 End for

15 Return Sort(m);

can be decided to be monotonous increasing by checking for each vector-left (resp. vector-
right) even (resp. odd) element, say m;, if m; is bigger than the biggest vector-left (resp.
vector-right) even (resp. odd) element in w[1—i — 1]. In fact, it is not necessary to pay
special attention to check if a vector-zero element occurs in an isolated MISP. This benefits
from

» Lemma 20. In 7[1 — k] for k > 2, the biggest vector-right element must be bigger than
the biggest vector-left element.

We present in Figure 3 the algorithm to decide if 7 is lucky, and if so, to find a best
cancellation sequence to sort 7. If 7 is lucky, the algorithm will return a best cancellation
sequence which can transform 7 into ¢ by invoking the Sort(w); return no, otherwise. Since
by the sufficiency proof of Theorem 19, one can employ the same way as to find a best short
swap in Theorem 5 to find a best cancellation, the subroutine Sort(7) is just so as it has
been depicted in Algorithm 2.

In the algorithm description, we use the integer parameter le (resp. [0) to maintain the
biggest vector-left even (resp. odd) element in 7[1 — ¢ — 1], re (resp. ro) the biggest even
(odd) element in 7|1 — i — 1]. It follows Lemma 20 that le < re, lo < ro.

Running the algorithm from Step 1 to Step 14 can inform us if 7 is lucky or not. This
takes O(n) time, where n is the number of elements in 7. Let ; be the rightmost vector-right
element in a lucky permutation 7, by the proof of Theorem 19, the short swap which switches
m; with m; 49 is a best cancellation. By Theorem 19 again, this operation must transform
7 into a lucky permutation. By the complexity analysis for Sort(r) in Section 3, it has
been known Sort(m) can run in O(n?) time. Thus the time complexity of sorting a lucky
permutation is O(n?).

5 Conclusion

Sort a happy permutation or a lucky permutation by short swaps is a special case of minimum
sorting by short swaps problem. In this paper, we proposed a polynomial-time algorithm

14:11

CPM 2018

14:12

Can a permutation be sorted by best short swaps?

to recognize a happy permutation and sort it with the fewest short swaps. We also gave

a new algorithm to recognize a lucky permutation with O(n) steps, which improves the

time complexity of O(n?) [9]. The complexity of minimum sorting by short swaps problem

remains open. The best known approximation ratio of this problem is 2, which was given by

Heath and Vergara [9]. It is interesting that if we can get a smaller approximation ratio for

this problem.

—— References

1

10

11

12

13

14

15

16

V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. Siam
Journal on Computing, 25(2):272-289, 1993.

Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-approximation algorithm
for sorting by reversals. Lecture Notes in Computer Science, pages 200-210, 2002.
Guillaume Bourque and Pavel A. Pevzner. Genome-scale evolution: Reconstructing gene
orders in the ancestral species. Genome Research, 12(1):26-36, 2002.

Alberto Caprara. Sorting permutations by reversals and eulerian cycle decompositions.
Siam Journal on Discrete Mathematics, 12(1):91-110, 1999.

Xuerong Feng, Ivan Hal Sudborough, and Enyue Lu. A fast algorithm for sorting by short
swap. In Proceeding of the 10th IASTED International Conference on Computational and
Systems Biology, pages 62—67, 2006.

Gustavo Rodrigues Galvao and Zanoni Dias. Approximation algorithms for sorting by
signed short reversals. In Proceedings of the 5th ACM Conference on Bioinformatics, Com-
putational Biology, and Health Informatics, BCB ’14, Newport Beach, California, USA,
September 20-23, 2014, pages 360-369. ACM, 2014. doi:10.1145/2649387.2649413.
Gustavo Rodrigues Galvao, Orlando Lee, and Zanoni Dias. Sorting signed permutations
by short operations. Algorithms for Molecular Biology, 10(1):1-17, 2015.

Sridhar Hannenhalli. Transforming cabbage into turnip: polynomial algorithm for sorting
signed permutations by reversals. Journal of the Acm, 46(1):1-27, 1999.

L. S. Heath and J. P. Vergara. Sorting by short swaps. Journal of Computational Biology
A Journal of Computational Molecular Cell Biology, 10(5):775-89, 2003.

Mark R. Jerrum. The complexity of finding minimum-length generator sequences. In
Colloquium on Automata, Languages and Programming, pages 270280, 1984.

Haim Kaplan, Ron Shamir, and Robert E. Tarjan. A Faster and Simpler Algorithm for
Sorting Signed Permutations by Reversals. Society for Industrial and Applied Mathematics,
1999.

J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement. Algorithmica, 13(1-2):180-210, 1995.

P Pevzner and G Tesler. Genome rearrangements in mammalian evolution: lessons from
human and mouse genomes. Genome Research, 13(1):37-45, 2003.

G. P. Pradhan and P. V. Prasad. Evaluation of wheat chromosome translocation lines for
high temperature stress tolerance at grain filling stage. Plos One, 10(2):1-20, 2015.

D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B F Lang, and R. Cedergren. Gene order
comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings
of the National Academy of Sciences of the United States of America, 89(14):6575-6579,
1992.

G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion
problem. Journal of Theoretical Biology, 99(1):1-7, 1982.

http://dx.doi.org/10.1145/2649387.2649413

	Introduction
	Preliminaries
	Happy permutation
	Lucky permutation

	How to recognize a happy permutation
	How to recognize a lucky permutation
	Conclusion

