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—— Abstract

We revisit the heaviest induced ancestors problem, which has several interesting applications in
string matching. Let 71 and T2 be two weighted trees, where the weight W(u) of a node u in
either of the two trees is more than the weight of w’s parent. Additionally, the leaves in both
trees are labeled and the labeling of the leaves in 73 is a permutation of those in 7;. A node
z € T and a node y € Ty are induced, iff their subtree have at least one common leaf label. A
heaviest induced ancestor query HIA(u1,us) is: given a node u; € 77 and a node ug € Tz, output
the pair (uj, u}) of induced nodes with the highest combined weight W(u}) + W(u3), such that
u] is an ancestor of u; and w3 is an ancestor of us. Let n be the number of nodes in both trees
combined and € > 0 be an arbitrarily small constant. Gagie et al. [CCCG’ 13] introduced this
problem and proposed three solutions with the following space-time trade-offs:

an O(nlog? n)-word data structure with O(lognloglogn) query time

an O(nlogn)-word data structure with O(log® n) query time

an O(n)-word data structure with O(log®"“n) query time.

In this paper, we revisit this problem and present new data structures, with improved bounds.
Our results are as follows.

an O(nlogn)-word data structure with O(lognloglogn) query time
log®n

an O(n)-word data structure with O( > query time.

loglogn

As a corollary, we also improve the LZ compressed index of Gagie et al. [CCCG’ 13] for
answering longest common substring (LCS) queries. Additionally, we show that the LCS after
one edit problem of size n [Amir et al., SPIRE’ 17] can also be reduced to the heaviest induced
ancestors problem over two trees of n nodes in total. This yields a straightforward improvement
over its current solution of O(n log® n) space and O(log3 n) query time.
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1 Introduction

Let 71 and 72 be two weighted trees, having n; and ns nodes respectively. The weight of a
node w in either of the two trees is given by W(u) and W(u) > W(parent(u)), where parent(u)
is the parent node of u. For simplicity, node u means the node with pre-order rank u. Each
tree has exactly m < min{ni,ny} leaves. Leaves in both trees are labeled and the labeling
of the leaves in 73 is a permutation of the labeling of the leaves in 7;. Two nodes, one each
from 77 and 73, are induced if the leaves in the respective subtrees have at least one common
label. For any two nodes u and v in a tree, the node v is an ancestor of  iff v is on the path
from u to the root of the tree. Moreover, v is a proper ancestor u iff u # v. We revisit the
following problem, which has several interesting applications in string matching.

» Problem 1 (Heaviest Induced Ancestor Problem). Given a node u; € 7; and a node us € Ta,
find HIA(u1,uz2), which is defined as the pair of induced nodes (uj,us) with the highest
combined weight W(u3) + W(u3), such that uj (resp., u3) is an ancestor of uy (resp., ug).

Here and henceforth, € is an arbitrarily small positive constant and n = ny + no is the
total number of nodes in the two trees. The model of computation is the standard Word
RAM with word size Q(logn) bits. Gagie et al. [8] presented the following several results for
the Heaviest Induced Ancestor problem.

an O(nlog® n)-word index with O(lognloglogn) query time
an O(nlogn)-word index with O(log? n) query time
an O(n)-word index with O(log®™“n) query time.

Our contribution is summarized in the following Theorem.

» Theorem 2. A heaviest induced ancestor query over two trees of n nodes in total can be
answered
in O(lognloglogn) time using an O(nlogn)-word data structure, or

log®n
O| ———— | time using an O(n)-word data structure.
loglogn

1.1 Applications to String Matching

One motivation to study the heaviest induced ancestor problem is to design an LZ77 [20]
compressed text index that can answer longest common substring LCS(S, P) queries efficiently.
Formal definition is below.

» Problem 3 (Longest Common Substring in LZ77 Compressed Strings [8]). Given a string S
of length N, whose LZT7 parsing contains n phrases, build a data structure that can efficiently
report LCS(S, P), i.e., the longest common substring of S and P, where P is a query string
of length |P)|.

If one were to forego the compression requirement, the problem can be easily solved by
maintaining a suffix tree [17] of S in O(N) words yielding O(|P|) query time. On the other
hand, we can also answer LCS(S, P) queries using compressed/succinct data structures, such
as the FM Index or Compressed Suffix Array [6, 9, 13], with a slight penalty in query time.
However, for strings having a repetitive structure, LZ77-based compression techniques offer
better space-efficiency than that obtained using FM-Index or Compressed Suffix Array.

Gagie et al. [8] showed that Problem 3 can be solved using an O(nlog N + nlog? n)-word
index with very high probability in O(|P|lognloglogn) query time. Alternatively, they also
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presented an O(nlog N)-word index with O(|P|log®n) query time. Using Theorem 2 and
the techniques in [8], we present an improved result for Problem 3 (see Theorem 4). We omit
the details as they are immediate from the discussions in [8].

» Theorem 4. Given a string S of length N, we can build an O(nlog N)-word indez that
reports LCS(S, P) in O(|P|lognloglogn) time with very high probability, where n is the
number of phrases in an LZ77 parsing of S and |P| is the length of the input query string P.

Another problem that we study is the recently introduced longest common substring after
one substitution problem [1], defined as follows.

» Problem 5 (Longest Common Substring after One Substitution [1]). Given two strings X
and Y of total length n over an alphabet set 2, build a data structure that can efficiently
report LCS(;,0)(X,Y), the length of the longest common substring of Xnew and Y, where
Xnew 18 X after replacing its ith character by a € X.

An O(n|X]) space and O(1) time solution is straightforward, but not efficient when |X| is

large. The solution by Amir et al. [1] takes O(nlog®n) space and O(log®n) query time.

Theorem 2 combined with other techniques implies an improved result to this problem, as
summarized in the following theorem.

» Theorem 6. Given two strings X and Y of total length n, we can build indexes with the
following space-time trade-offs for reporting LCS(; o) (X,Y)

1. an O(nlogn) space data structure with O(lognloglogn) query time

log2 n

2. an O(n) space data structure with O( ) query time.

loglogn

Straightforward modifications to our approach leads to an index that can also support
the case of single letter insertions or deletions in X, i.e., insert the character o after position
i and delete the character at position .

1.2 Map

In Section 2, we revisit some of the well-known data structures that have been used to arrive
at out results. Section 3 presents an overview of our techniques, as an intermediate step into

the final data structures. The final data structures for Theorem 2 are presented in Section 4.

Section 5.1 is left to sketch our solution to Problem 5.

2 Preliminaries and Terminologies

2.1 Predecessor/Successor Queries

Let S be a subset of U = {0,1,2,3,...,U — 1} of size n. A predecessor search query p on &
asks to return p if p € S, else return max{q < p | ¢ € S§}. Similarly, a successor query p on
S asks to return p if p € S, else return min{q > p | ¢ € S}. By preprocessing S into a y-fast
trie of size O(n) words, we can answer such queries in O(loglogU) time [18].

2.2 Fully-Functional Succinct Tree

Let 7 be a tree having n nodes, such that nodes are numbered from 1 to n in the ascending
order of their pre-order rank. Also, let ¢; denotes the ith leftmost leaf. Then by maintaining
an index of size 2n+o(n) bits, we can answer the following queries on 7 in constant time [14]:

20:3
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parent,(u) = parent of node u.

sizer(u) = number of leaves in the subtree of w.

nodeDepth(u) = number of nodes on the path from u to the root of 7.
levelAncestory(u, D) = ancestor w of u such that nodeDepth(w) = D.
IMosty(u) = 4, where ¢; is the leftmost leaf in the subtree of w.
rMost7(u) = j, where /; is the rightmost leaf in the subtree of u.
lcar(u,v) = lowest common ancestor (LCA) of two nodes u and v.

We omit the subscript “7” if the context is clear.

2.3 Range Maximum Query (RMQ) and Path Maximum Query (PMQ)

Let A[1,n] be an array of n elements. A range maximum query RMQ 4(a,b) asks to return
k € [a, b], such that A[k] = max{A[i] | ¢ € [a,b]}. Path maximum query (PMQ) (or bottleneck
edge query [5]) is a generalization of RMQ from arrays to trees. Let T be a tree having n
nodes, such that each node u is associated with a score. A path maximum query PMQ+(a, b)
returns the node k in 7, where k is a node with highest score among all nodes on the path
from node a to node b. Cartesian tree based solutions exists for both problems. The space
and query time are 2n + o(n) bits and O(1), respectively [5, 7].

2.4 Orthogonal Range Queries in 2-Dimension

Let P be a set of n points in an [1,n] X [1,n] grid. Then,
An orthogonal range counting query (a,b, ¢, d) on P returns the cardinality of {(z,y) €
Plx€lab],y € [cd]}
An orthogonal range emptiness query (a, b, ¢,d) on P returns “EMPTY” if the cardinality
of the set {(z,y) € P | = € [a,b],y € [¢,d]} is zero. Otherwise, it returns “NOT-EMPTY".
An orthogonal range predecessor query (a,b,¢) on P returns the point in {(z,y) € P |
x € [a,b],y < ¢} with the highest y-coordinate value, if one exists.
An orthogonal range successor query (a, b, c) on P returns the point in {(z,y) € P |z €
[a,b],y > ¢} with the lowest y-coordinate value, if one exists.
An orthogonal range selection query (a,b, k) on P returns the point in {(z,y) € P |z €
[a,b]} with the kth lowest y-coordinate value.

By maintaining an O(n) word structure, we can answer orthogonal range counting queries
in O(log / loglogn) time [11], orthogonal range emptiness queries in O(log®n) time [3], ortho-
gonal range predecessor/successor queries in O(log® n) time [12] and orthogonal range selection
queries in O(logn/loglogn) time [2, 4]. Alternatively, by maintaining an O(n loglogn) space
structure, we can answer orthogonal range emptiness and orthogonal range predecessor/suc-
cessor queries in O(loglogn) time [3, 19].

2.5 Heavy Path and Heavy Path Decomposition

We now define the heavy path decomposition [10, 15] of a tree T having n nodes. First, the
nodes in 7 are categorized into light and heavy. The root node is light and exactly one child
of every internal node is heavy. Specifically, the child having the largest number of nodes in
its subtree (ties are broken arbitrarily). The first heavy path of T is the path starting at 7T’s
root, and traversing through every heavy node to a leaf. Each off-path subtree of the first
heavy path is further decomposed recursively. Clearly, a tree with m leaves has m heavy
paths. Let u be a node on a heavy path H, then hp_root(u) is the highest node on H and
hp_leaf(u) is the lowest node on H. Note that hp_root(-) is always light.
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» Fact 7. For a tree having n nodes, the path from the root to any leaf traverses at most
[logn] light nodes. Consequently, the sum of the subtree sizes of all light nodes (i.e., the
starting node of a heavy path) put together is at most n[logn].

3  Our Framework

We assume that both trees 77 and 7> are compacted, i.e., any internal node has at least two
children. This ensures that the number of internal nodes is strictly less than the number
of leaves (m). Thus, n < 4m — 2. We remark that this assumption can be easily removed
without affecting the query time. We maintain the tree topology of 71 and 73 succinctly in
O(n) bits with constant time navigational support (refer to Section 2.2). Define two arrays,
Labeli[1,m] for £ = 1 and 2, such that Labelg[j] is the label associated with the jth leaf
node in 7. The following is a set of m two-dimensional points based on tree labels.

P ={(i,4) | i,7 € [1,m] and Label;[i] = Labels[j]}

We pre-process P into a data structure, so as to support various range queries described
in Section 2.4. For range counting and selection, we maintain data structures with O(n) space
and O(logn/loglogn) time. For range successor/predecessor and emptiness queries, we have
two options: and O(nloglogn) space structure with O(loglogn) time, and an O(n) space
structure with O(log®n) time. We employ the first result in our O(nlogn) space solution
and the second result in our O(n) space solution.

3.1 Basic Queries

» Lemma 8 (Induced-Check). Given two nodes x,y, where x € Ty and y € T2, we can check
if they are induced or not

in O(loglogn) time using an O(nloglogn) space structure, or

in O(log®n) time using an O(n) space structure.

Proof. The task can be reduced to a range emptiness query, because z and y are induced iff
the set {(7,7) € P | (¢,7) € [IMost(x), rMost(z)] x [IMost(y), rMost(y)]} is not empty. <

» Definition 9 (Partner). The partner of a node € 71 w.r.t a node y € T3, denoted
by partner(z/y) is the lowest ancestor 3 of y, such that x and ¢y’ are induced. Likewise,
partner(y/z) is the lowest ancestor z’ of x, such that 2’ and y are induced.

» Lemma 10 (Find Partner). Given two nodes x,y, where x € T; and y € Tz, we can find
partner(x/y) as well as partner(y/x)

in O(loglogn) time using an O(nloglogn) space structure, or

in O(log®n) time using an O(n) space structure.

Proof. To find partner(x/y), first check if = and y are induced. If yes, then partner(z/y) = y.

Otherwise, find the last leaf node ¢, € 75 before y in pre-order, such that x and ¢, are
induced (¢, denotes a-th leftmost leaf). Also, find the first leaf node ¢, € T after y in
pre-order, such that z and /¢, are induced. Both tasks can be reduced to orthogonal range
predecessor /successor queries.

(,a) = argm]ax{(i,j) € P | (i,4) € [IMost(z), rMost(x)] x [1,Most(y)]}

(-,b) = argmin{(i, j) € P | (i, ) € [IMost(z), Most()] x [rMost(y), m]}

20:5
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Clearly, an ancestor of y and x are induced iff either ¢, or ¢, is in its subtree. Therefore,
we report the lowest node among u, = Ica({,,y) and u, = Ica({,,y) as partner(z/y). The
computation of partner(y/z) is analogous. <

3.2 Overview

For any two nodes u and v in the same tree T, define Path(u,v,7) as the set of nodes on
the path from u to v. Let root; be the root of 77 and rooty be the root of 75. Throughout
this paper, (u1,us) denotes the input and HIA(u1,us) = (uj, u3) denotes the output. Clearly,
ud = partner(uj /us) and uj = partner(u3/u1). Therefore,

(uj,uy) = arg 1(1;22))({1/1/(58) + W(y) | y € Path(roota, uz, 72) and x = partner(y/u1)}

To evaluate the above equation efficiently, we explore the heavy path decomposition of 75.

» Definition 11 (Special Nodes). For each light node in w € T3, we identify a set Special(w)
of nodes in 7; (which we call special nodes) as follows: a leaf node ¢; € T is special iff ¢;
and w are induced. An internal node in 77 is special iff it is the lowest common ancestor of
two special leaves. Additionally, for each node = € Special(w), define its score w.r.t. w as
the sum of weights of = and the node partner(z/hp_leaf(w)) € T2. Formally,

score,, (z) = W(x) + W (partner(xz/hp_ leaf (w))

Moreover, |Special(w)| < 2size(w) — 1 and > |Special(w)| = O(nlogn).

w is a light node

To answer an HIA query (uq, us), we first identify some nodes in 77 and 73 as follows. Nodes
w1 = rooty, wa, . . . , Wy, are the light nodes in Path(roots, us, 72) (in the ascending order of their
pre-order ranks). Nodes t1,ts, ..., are also in Path(roots, us, 72), such that ¢ = us and
t, = parent(wy+1) for h < k. Therefore, Path(roots, us, T2) = U¥_,Path(wp, ts, T2). Next,
a1,Qa,...,a and By, Ba, ..., Bk are nodes in Path(rooty, uy, 71), such that for h =1,2,... k,
ap, = partner(tp/uy) and B = partner(wp /uy). Clearly, there exists an f € [1, k] such that
us € Path(wy,ty, T2). See Figure 1 for an illustration. We now present several lemmas, which
forms the basis of our solution.

» Lemma 12. The node uj € Path(ay, B¢, Th).

Proof. We prove this via proof by contradiction arguments.
Suppose uj is a proper ancestor of ay. Then, ay are ¢t induced and W(ay) + W(ty) >
W (u}) + W(u3), a contradiction. Therefore, uj is in the subtree of aj.
Suppose uj is in the proper subtree of 5. Then, u] and wy are also induced. Therefore,
partner(wy/u1) is u} or a node in the subtree of uj. This implies, 5; = partner(wy/uq) is
in the proper subtree of §¢, a contradiction. Therefore, u] is an ancestor of 5y.

This completes the proof. |

» Lemma 13. The node uj € Special(wy) U {f;}.

Proof. Let z (if exists) be the first node in Special(w;) on the path from uj to 8. Then,
if z exists, then uj ¢ Special(wy) gives a contradiction as follows. The intersection
of the following two sets is empty: (i) set of labels of the leaves in the subtree of
uf, but not in the subtree of z and (ii) set of labels associated with the leaves in the
subtree of wy. This implies, z and u} are induced (because uj and 3 are induced) and
W(z) + w(us) > W(uf) + W(u3), a contradiction.
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Figure 1 We refer to Section 3.2 for the description of this figure.

otherwise, if z does not exist, then it is possible that u] ¢ Special(w). However, in this
case, uj = By (proof follows from similar arguments as above).

In summary, u} € Special(wy) U {B¢}. «

» Lemma 14. For any x € Path(ay, 8y, T1)\{ar}, partner(xz/us) = partner(xz/hp_leaf(wy)).

Proof. We claim that for any « € Path(ay, Bf, T1)\{c}, partner(z/us) is a proper ancestor
of ty. The proof follows from contradiction as follows. Suppose, there exists an = €
Path(ay, B¢, T1)\{ar}, such that partner(z/us) is in the subtree of ¢t;. Then, x and ¢y are
induced. This means, oy = partner(t¢/u1) is a node in the subtree of z, a contradiction.
Since, partner(x/us) is a proper ancestor of t¢, partner(x/us) = partner(z/r) for any node
r in the subtree of ty. Therefore, by choosing r = hp_leaf(wy), we obtain Lemma 14. <

» Corollary 15. For any x € (Path(af,ﬂf,ﬂ)\{af}),

W (x) + W (partner(x/uz)) = W(x) + W (partner(z/hp_leaf (wy))) = score,, ()
» Lemma 16. The node uj € {ay, Bf,vs}, where

7y = arg max{score,,, (v) | @ € Special(wy) N (Path(ay, 87, Ti)\{ay, B})

Proof. Follows from Lemma 12, Lemma 13, Lemma 14 and Corollary 15. |

» Lemma 17. Let C = U¥_,{an, B, n}, where

Yp = arg mgx{scorewh (z) | = € Special(wy) N (Path(ah,ﬁh, ﬂ)\{ah,ﬂh})

20:7
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Then,

(ui,us) = arg{nzﬂ){{W(sﬂ) +W(y) | z € C and y = partner(z/uz)}
mﬁy

Proof. Since f is unknown, we invoke Lemma 14 for f =1,2,3,...,k < logn. |

Next, we show how to transform the result in Lemma 17 into an efficient data structure.

4  Our Data Structures

We start by defining a crucial component of our solution.

» Definition 18 (Induced Subtree). The induced subtree of 71 (w) of 71 w.r.t. a light node
w € T3 is a tree having exactly |Special(w)| number of nodes, such that

for each node x € T1(w), there exists a node Map,,(z) € Special(w) and

for each o’ € Special(w), there exists a node invMap,,(z’) € T1(w), such that

lcar, (Map,, (), Map,,(y)) = Map,, (Icar; (w) (z, y))

Note that a node x is a leaf in 77 (w) iff Map,,(z) is a leaf in 77 (w). In the following lemmas,
we present two space-time trade-offs on induced subtrees.

» Lemma 19. By maintaining an O(nlogn) space structure, we can compute Map,,(-) and
invMap,, () for any light node w € Tz in time O(1) and O(loglogn), respectively.

Proof. Let L,[1,|Special(w)|] be an array, such that L,[z] = Map,,(x). For each w, maintain
L,, and a y-fast trie [18] over it. The total space is O(nlogn). Now, any Map,,(-) query can
be answered in constant time. Also, for any ' € Special(w), invMap,,(«’) is the number of
elements in L,, that are < z’. Therefore, an invMap,,(-) can be reduced to a predecessor
search and answered in O(loglogn) time. <

» Lemma 20. By maintaining an O(n) space structure, we can compute Map,,(-) and
invMap,, () for any light node w € T in time O(logn/loglogn).

Proof. Let node p be the rth leaf in 77 (w) and ¢ = Map,,(p) be the sth leaf in 7;. Then,
s is the z-coordinate of the rth point in {(i,7) € P | (i,5) € [1,m] x [IMost(w), rMost(w)]}
in the ascending order of z-coordinates. Also, r is the number of points in {(i,j) € P |
(i,7) € [1, ] x [IMost(w), rMost(w)]}. Therefore, given p, we can compute 7, then s and ¢ in
O(logn/loglogn) time via a range selection query on P. Similarly, given ¢, we can compute
s and then r and p in O(logn/loglogn) time via a range counting query on P.

Now, if p is an internal node in 77(w), then Map,(p) is lcar; (Map,,(¢r), Map,,(¢r)),
where £;, and ¢ are the first and last leaves in the subtree of p. Similarly, if ¢ is an internal
node in 77, then invMap,,(q) = Icay; () (invMap,, (£4),invMap,, (¢£5)) as follows:

(4,) = argmiin{(i,j) € P | (i,7) € [IMost(q), rMost(q)] x [IMost(w), rMost(w)]}

(B,:) = arg mlax{(i,j) € P (i,j4) € [IMost(q), rMost(q)] x [IMost(w), rMost(w)]}

Here, A and B can be computed via range successor/predecessor queries in O(log®n) time.
Therefore, the total time is log®n + logn/loglogn = O(logn/loglogn) time. <

» Lemma 21. Given an input (a,b, w), where w is a light node in Ty and, a and b are nodes
in T1(w), we can report the node with the highest score,,(Map,,(+)) over all nodes on the path
from a to b in Ti(w) in O(1) time using an O(n) space structure.
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Proof. For each 71(w), we maintain the Cartesian tree for answering path maximum query
(refer to Section 2.3). Space for a particular w is |Special(w)|(2+ o(1)) bits and space over all
light nodes w in 73 is O(nlogn) bits (from Fact 7), equivalently O(n) words. For an input
(a,b,w), the answer is PMQ7; () (a, b). <

4.1 Our O(nlogn) space data structure

We maintain 77 and 75 explicitly, so that the weight of any node in either of the trees can be
accessed in constant time. Moreover, we maintain fully-functional succinct representation

of their topologies (refer to Section 2.2) for supporting various operations in O(1) time.

Additionally, we maintain the structures for answering Induced-Check and Find-Partner
queries in O(loglogn) time, data structures for range predecessor/successor queries on P
in O(loglogn) time (refer to Section 2.4) and the structures described in Lemma 19 and
Lemma 21. Thus, the total space is O(nlogn) words.

We now present the algorithm for computing the output (uf, u}) for a given input (uq, us).

Following are the key steps.

1. Find wy and tp, for h =1,2,...,k <logn.

2. Find oy, and By, for h=1,2,...,k <logn.

3. Let aj, be the first and (3} be the last special node (w.r.t. wp) on the path from ay
(excluding a,) to By, (excluding ). Also, let

Yn = Map,,, (PMQTl(wh) (invMapwh (a},), invMap,,, (B;L)))

Compute v, for h =1,2,...,k <logn.
4. Obtain C = U¥_ {an, Br,vn} and report

(uj,u3) = arg I(naX{W(x) +W(y) | z € C and y = partner(z/uz)}

T,y

The correctness follows immediately from Lemma 17. We now bound the time complexity.
Step 1 takes O(k) time and step 2 takes O(k) number of Find-Partner queries with O(log logn)
time per query. The procedure for computing o}, and £y, is the following.

Find the child o} of aj, on the path from ay, to 8. Then o) = lcar, (¢q, , ly, ), where £,
(resp. £y, ) is the first (resp. last) special leaf in the subtree of o) (w.r.t wy). To compute
ap, and by, we rely on range predecessor/successor queries on P:

(ap,-) = argmiin{(i,j) € P (i,7) € [IMost(aj ), rMost(a’)] x [IMost(wy,), rMost(wy)] }

(bp, ) = arg mlax{(i,j) € P (i,7) € [IMost(a}), rMost(a,)] X [IMost(wy,), rMost(wy, )] }

Find the rightmost special (w.r.t. wp) leaf ¢4, before 5, and the leftmost special
(w.r.t. wy) leaf £, after the last leaf in the subtree of §;,. For this, we rely on range
predecessor /successor queries on P:

(dp,-) = arg mlax{(z',j) € Pl (i,7) € [1,IMost(a)) — 1] x [IMost(wy,), rMost(w,)] }

(gn,") = argmiin{(i,j) € P | (i,5) € [rMost(a},) + 1,m] x [IMost(wp,), rMost(wp,)] }

Then, 8, = Icar, (4a,,¥y,) if B, and wy, are not induced (i.e., there does not exist a special
node (w.r.t. wy) under 3;). Otherwise, 3}, is the lowest node among Icar; (¢q, , 1) and
lcaTl (ﬁha égh)'
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The time for a range predecessor/successor query on P is O(loglogn). Therefore, com-
putation of o} and j; takes O(loglogn) time, and an additional O(loglogn) for eval-
uating ~y,. Therefore, the total time for step 3 is O(kloglogn). Finally, step 4 also
takes O(kloglogn) time. By putting every thing together, the total time complexity is
kloglogn = O(lognloglogn).

4.2 OQur Linear Space Data Structure

We obtain our linear space data structure by replacing all super-linear space components
in the previous solution by their space efficient counter parts. Specifically, we use linear
space structures for Induced-Check, Find-Partner, and range predecessor/successor with
query time O(log®n). Also, we use the structure in Lemma 20 instead of the structure in
Lemma 19. Thus, the total space is O(n) words.

The query algorithm remains the same. The time complexity is: O(k) for step 1,
O(klog®n) for step 2, O(klogn/loglogn) for step 3 and O(klog®n) for step 4. Thus, total
time is O(log? n/ loglogn).

5 Applications

5.1 Longest Common Substring after One Substitution

Let X and Y be two strings of total length n over an alphabet set 3. Define, LCS(X,Y) as
the length of the longest common substring of X and Y and LCS; ,)(X,Y") as the length
of the longest common substring of X,,.,, and Y, where X,,.,, is X after replacing its ith
character by a € ¥. Our task is to build a data structure for X and Y, so that LCS(; ,)(X,Y)
for any input (¢, a) can be reported efficiently.

5.1.1 The Data Structure

Let LCS(; o) be X[l,r]. As observed by Amir et al. [1], two possible scenarios are: i ¢ [[, ]
and ¢ € [I,7]. We handle each of these scenarios separately, i.e., we find the new longest
common substring (with the character at position ¢ replaced by «) with position i (a) not
covered and (b) covered, and choose the longest. To obtain (a), simply store an array
AL, |X|], where

Ali] = max{LCS(Y, X[1...(¢ — 1)]),LCS(Y, X[(: + 1) ... | X|]}

For case (b), we maintain the following structures.

1. A generalized suffix tree [17] of X and Y (GST), which is a compact trie over all suffixes
of X and Y, after appending each string from X (resp., Y) with a unique symbol $;
(resp., $2).

2. A compact trie of reverse of all prefixes of X and Y (GPT), after appending each string
from X (resp., Y) with a unique symbol $; (resp., $5).

3. For each character a € 3,

a compact trie T, of all strings in {Y[(i +1)...] | Y[i] = o} after appending each
suffix with $5. We label Y[(i +1)...] with 4.

Another compact trie 7. of all strings in {Y[1...(: — 1)] | Y[i] = a}. Here

Y[1...(i —1)] is the reverse of Y[1... (i — 1)] and we label it with .
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The data structure for HIA queries on (7,,7.). Here the weight of a node is its
string-depth. Therefore, we can easily generalize our solution to the HIA problem to
the case where the input (u1,uz) is such that u; and ug are not necessarily nodes, but
locations on edges.

The total space is proportional to the size of an HIA structure over an input of size n.

5.1.2 Processing a query (i, o)

Get the LCS not covering ¢ in constant time from the array A. For LCS covering i, do the
following steps.

Let ¢, be the leaf in GST corresponding to the suffix X[(i +1)...]. Find the lowest
ancestor u of ¢, with at least one leaf corresponding to a suffix of Y (say Ya...]) in its
subtree.
Let ¢, be the leaf in GPT corresponding to the reverse of the prefix X[1... (i —1)]. Find
the lowest ancestor v of ¢, with at least one leaf corresponding to a reverse of a prefix of
Y (say Y[...b]) in its subtree.
Issue an HIA query HIA(z,y) on (74, 7.), where
1. =z is the location in 7, on the path of the leaf corresponding to Y[a...| at a distance
of string-depth of u from the root.
PR
2. y is the location in 7 on the path of the leaf corresponding to Y7...b] at a distance
of string-depth of v from the root.
Let (2*,5*) be the output. Then, LCS(; )(X,Y") covering position i is W (z*) + W (y*).

Therefore, final LCS(; 4)(X,Y") is max{A[i], W (z*)+W (y*)}. Steps 1 and 2 can be performed
in O(logn) time binary searches. Therefore, total time is dominated by the time for an HIA
query. The correctness can be easily verified.

5.2 All-Pairs Longest Common Substring Problem

Let S = {57, 55,53, ...5,} be a collection of n strings and let L be the length of the longest
string in S. We consider the problem of finding LCS(S;, S;) for all (4, j) pairs. This problem
can be easily solved in O(n%L) time. However, it is also possible to obtain a conditional
lower bound of Q(n?L) via a reduction from the boolean matrix multiplication [16]. To this
end, we remark that the following run-time is possible with the aid of HIA framework.

- L
© (”L 2.2 ess, sj)>

i j<i

We defer details to the full version of this paper.
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