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Abstract
Tracing regularities plays a key role in data analysis for various areas of science, including coding
and automata theory, formal language theory, combinatorics, molecular biology and many others.
Part of the scientific process is understanding and explaining these regularities. A common notion
to describe regularity in a string T is a cover or quasi-period, which is a string C for which every
letter of T lies within some occurrence of C. In many applications finding exact repetitions is not
sufficient, due to the presence of errors. In this paper we initiate the study of quasi-periodicity
persistence under mismatch errors, and our goal is to characterize situations where a given quasi-
periodic string remains quasi-periodic even after substitution errors have been introduced to the
string. Our study results in proving necessary conditions as well as a theorem stating sufficient
conditions for quasi-periodicity persistence. As an application, we are able to close the gap in
understanding the complexity of Approximate Cover Problem (ACP) relaxations studied by [5, 4]
and solve an open question.
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1 Introduction

Tracing regularities plays a key role in data analysis for various areas of science, including
coding and automata theory, formal language theory, combinatorics, molecular biology and
many others. Part of the scientific process is understanding and explaining these regularities.
A typical form of regularity is periodicity, meaning that a “long” string T can be represented
as a concatenation of copies of a “short” string P , possibly ending in a prefix of P . Periodicity
has been extensively studied in Computer Science over the years (see [26]).

For many phenomena the definition of periodicity is too restrictive and it is necessary to
study wider classes of repetitive patterns. One common such notion is that of a cover or a
quasi-period, defined as follows.

© Amihood Amir, Avivit Levy, and Ely Porat;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@cs.biu.ac.il
mailto:avivitlevy@shenkar.ac.il
mailto:porately@cs.biu.ac.il
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Quasi-Periodicity Under Mismatch Errors

I Definition 1 (Cover). A length m substring C of a string T of length n, is said to be a
cover of T , if n > m and every letter of T lies within some occurrence of C.

Note that by the definition of cover, the string C is both a prefix and a suffix of the string
T . For example, consider the string T = abaababaaba. Clearly, T is “almost” periodic with
period aba, however, as it is not completely periodic, the algorithms that exploit repetitions
cannot be applied to it. On the other hand, the string C = aba is a cover of T , which
allows applying to T cover-based algorithms. In this paper we study quasi-periodicity under
mismatch errors.

Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according to [8]). The earliest
paper in which it was studied is by Apostolico, Farach and Iliopoulos [9], which defined the
quasi-period of a string to be the length of its shortest cover and presented an algorithm
for computing the quasi-period of a given string in O(n) time and space. The new notion
attracted immediately several groups of researchers (e.g. [10], [27, 28], [25], [11]). An overview
on the first decade of the research on covers can be found in the surveys [8, 18, 31].

While covers are a significant generalization of the notion of periods as formalizing
regularities in strings, they are still restrictive, in the sense that it remains unlikely that
an arbitrary string has a cover shorter than the word itself. One direction to deal with
this is to study different variants of quasi-periodicity. Variants that were introduces include
seeds [20], maximal quasi-periodic substring [7], the notion of k-covers [19], λ-cover [32],
enhanced covers [16], partial cover [21]. Since the notion of a seed is necessary to our study,
we give its formal definition here.

I Definition 2 (Seed). A length m substring C of a string T of length n, is said to be a seed
of T , if n > m and there exists a superstring T ′ of T such that C is a cover of T ′.

Note that the definition of a seed allows the first and last occurrence of the seed C in
T to be incomplete. Other recently explored directions include the inverse problem for
cover arrays [14], extensions to strings in which not all letters are uniquely defined, such
as indeterminate strings [6] or weighted sequences [33]. Some of the related problems are
NP-hard (see e.g., [6, 12, 21]).

Another direction to deal with the restrictiveness of quasi-periodicity definition is to
consider the presence of errors. This direction was motivated by some applications, such
as molecular biology and computer-assisted music analysis, were finding exact repetitions
is not sufficient. In these applications, a more appropriate notion is that of approximate
repetitions, where errors are allowed (see, e.g., [13, 15]). This notion was first studied in 1993
by Landau and Schmidt [23, 24] who concentrated on approximate tandem repeats. Note
that, the natural definition of an approximate repetition is not clear. One possible definition
is that the distance between any two adjacent repeats is small. Another possibility is that all
repeats lie at a small distance from a single “original”. Such a definition of approximate seeds
is studied in [12, 29, 17]. Indeed, all these definitions along with other ones were proposed
and studied (see [1, 22, 30]). Yet another possibility is that all repeats must be equal, but
we allow a fixed total number of mismatches. The possibility presented in [1] is a global one,
assuming that an original unknown string is a sequence of repeats without errors, but the
process of sequence creation or transmission incurs errors to the sequence of repeats, and,
thus, the examined input string is not a sequence of repeats. [5] extend this approach to
quasi-periodicity and study the approximate cover problem (ACP), in which the input text is
a sequence of some cover repetitions with possible mismatch errors, and a string that covers
the text with the minimum number of errors is sought. We continue this line of research by
studying quasi-periodic strings that have been introduced to substitution errors.
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Our Results. In this paper we initiate the study of quasi-periodicity persistence under
mismatch errors, and our goal is to characterize situations where a given quasi-periodic
string remains quasi-periodic even after substitution errors have been introduced to the
string. An implicit study of this question was introduced by [3], while proving that two
strings with Hamming distance 1 cannot be both quasi-periodic. In our terminology this
means that quasi-periodicity does not persist under a single substitution error. Broadening
the study to situations where more than one substitution error may happen necessitates a
deep understanding of the structure of quasi-periodic strings as well as their behaviour under
mismatch errors. Our study results in proving necessary conditions as well as a theorem
stating sufficient conditions for quasi-periodicity persistence. As an application, we are
able to close the gap in understanding the complexity of ACP relaxations studied by [5, 4]
and solve an open question [5] regarding the complexity of the full-tiling relaxation of the ACP.

Paper Contributions. The main contributions of this paper are:
Giving a first explicit study of quasi-periodicity persistence, while broadening the know-
ledge on quasi-periodic strings under mismatch errors.
Proving that the full-tiling relaxation of the ACP is polynomial-time computable, which
was beyond the reach of current research prior to this paper. This result closes the gap
in understanding the complexity hierarchy of ACP relaxations, where the ACP itself was
proven to be NP-hard [5].
Proving properties of covers, seeds and quasi-periodic strings under mismatch errors that
can serve future research of approximate regularities.

The paper is organized as follows. In Section 2, we give formal definitions and basic
lemmas. Section 3 is devoted to the study of quasi-periodicity persistence under mismatch
errors. In Section 4, we give a description of the full-tiling relaxation of the ACP and prove
it is polynomial-time computable by applying the results from Section 3.

2 Preliminaries

In this section we give the needed formal definitions and prove some basic combinatorial
properties of covers and seeds.

I Definition 3 (Tiling). Let T be a string over alphabet Σ such that the string C over
alphabet Σ is a cover of T . Then, the sorted list of indices representing the start positions of
occurrences of the cover C in the text T is called the tiling of C in T .

In this paper we have a text T which may contain substitution errors and, therefore, is
not coverable. However, we would like to refer to a retained tiling of an unknown string C
in T although C does not cover T because of mismatch positions. The following definition
makes a distinction between a list of indices that may be assumed to be a tiling of the text
before mismatch errors occurred and a list of indices that cannot be such a tiling.

I Definition 4 (A Valid Tiling). Let T be an n-length string over alphabet Σ and let L be
a sorted list of indices L ⊂ {1, ..., n}. Let m = n+ 1− Llast, where Llast is the last index
in L. Then, L is called a valid tiling of T , if i1 = 1 and for every ik, ik+1 ∈ L, it holds that
ik+1 − ik ≤ m.

I Notation 5. Let C be an m length string over alphabet Σ. Denote by S(C) a string of
length n, n > m, such that C is a cover of S(C).

CPM 2018
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Note that S(C) is not uniquely defined even for a fixed n > m, since different valid tilings
of the m-length string C may generate a different n-length string S(C). A unique version is
obtained if a unique appropriate valid tiling L is also given.

I Notation 6. Let T be an n-length string over alphabet Σ and let L be a valid tiling of
T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. For any m-length
string C ′, let SL(C ′) be the n-length string obtained using C ′ as a cover and L as the tiling
as follows: SL(C ′) begins with a copy of C ′ and for each index i in L a new copy of C ′ is
concatenated starting from index i of SL(C ′) (maybe running over a suffix of the last copy of
C ′).

I Definition 7. Let T be a string of length n over alphabet Σ. Let H be the Hamming
distance. The distance of T from being covered is:

dist = min
C∈Σ∗,|C|<n,S(C)∈Σn

H(S(C), T ).

We will also refer to dist as the number of errors in T .

I Definition 8. Let T be a string of length n over alphabet Σ. An m-long string C over Σ,
m ∈ N, m < n, is called an m-length approximate cover of T , if for every string C ′ of length
m over Σ, minS(C′)∈Σn H(S(C ′), T ) ≥ minS(C)∈Σn H(S(C), T ), where H is the Hamming
distance of the given strings.
We refer to minS(C)∈Σn H(S(C), T ) as the number of errors of an m-length approximate
cover of T .

I Definition 9 (Approximate Cover). Let T be a string of length n over alphabet Σ. A string
C over alphabet Σ is called an approximate cover of T if:
1. C is an m-length approximate cover of T for some m ∈ N, m < n, for which

min
S(C)∈Σn

H(S(C), T ) = dist.

2. for every m′-length approximate cover of T , C ′, s.t. minS(C′)∈Σn H(S(C ′), T ) = dist, it
holds that: m′ ≥ m.

Primitivity. By definition, an approximate cover C should be primitive, i.e., it cannot be
covered by a string other than itself (otherwise, T has a cover with a smaller length). Note
that a periodic string can be covered by a smaller string (not necessarily the period), and
therefore, is not primitive.

I Definition 10. The Approximate Cover Problem (ACP) is the following:
INPUT: String T of length n over alphabet Σ.
OUTPUT: An approximate cover of T , C, and the number of errors in T .

2.1 Properties of Covers and Seeds
Our analysis of quasi-periodicity persistence under mismatch errors in Section 3 requires a
preliminary study of properties of covers and seeds. We use the following easy observations:

I Observation 11. If a string W is coverable but non-periodic then the shortest cover c of
W satisfies |c| < |W |/2.

I Observation 12. Coverability is transitive, i.e., a cover of a cover of W is a cover of W .
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I Observation 13. If a string c is a cover of a string W then c is a seed of every factor of
W of length at least |c|.

I Observation 14. If a string s is a seed of a string W then s is a seed of every factor of
W of length at least |s|.

I Lemma 15. A periodic string W is coverable, and one of the following must hold:
1. Its shortest cover is of length more than |W |/2. In this case, W = p2p′, where p′ is a

non-empty prefix of p.
2. Its shortest cover c is of length at most |W |/2 and |c| 6= |p|, where p is the period of W .
3. Its shortest cover c is of length at most |W |/2 and |c| = |p|, where p is the period of W .

In this case, c = p and W = pi.

Example: Consider the following periodic strings:
The stringW = abaabaa is periodic with period p = aba. It is coverable by c = abaa = pp′,
where |c| > |W |/2. Note that W = p2p′, where p′ = a is a prefix of p.
The string W = abaababaababa is periodic with period p = abaab. It is coverable by
the string pp′ = abaababa, however, its shortest cover is c = aba, where |c| < |W |/2 and
|c| < |p|. Note that c does not cover p.
The string W = abababa is periodic with period p = ab. It is coverable by c = pp′ = aba,
where |c| < |W |/2, and |c| > |p|.
The stringW = ababaababa is periodic with period p = ababa. It is coverable by its period
p since W = p2, however, its shortest cover is c = aba, where |c| < |W |/2 and |c| < |p|.
Note that c covers p. We can make a longer string with this period W1 = ababaababaaba

which is still periodic with p and covered by c. However, if we take W2 = ababaababaa

which is again still periodic with p but no longer coverable by aba (which remains its
seed). The shortest cover of W2 is c2 = ababaa.

The next properties require an additional notation:

I Notation 16. Let w be a string. Denote by wj the string w with the j-th symbol substituted
by some other symbol, i.e., |w(j)| = |w|, for all i = 1, . . . , |w|, i 6= j, wi = w

(j)
i , and wj 6= w

(j)
j .

In this case we also write w =j w
(j).

I Theorem 17. Let S be a length n periodic string with period P . Then for any j ∈ {1, . . . , n},
S(j) is not periodic.

Theorem 17 can be easily proven using a lemma proved in [2]. A similar result for covers is
also known [3]:

I Theorem 18. [Amir et al. [3]] For every string W of length n and index j ∈ {1, . . . , n}, at
most one of the strings W , W (j) is coverable.

We will also need the following auxiliary lemma from [3].

I Lemma 19. [Amir et al. [3]] Let w be a string and j be an index. Then w is not a seed of
w(j).

I Corollary 20. [Amir et al. [3]] Let U and V be two coverable strings of the same length
such that U 6= V . Then, H(U, V ) > 1.

We also make use of the following lemma.

I Lemma 21. Let W be a coverable string and let j be an index. Then no prefix (suffix) of
W (j) of length at most |W |/2 is a seed of W (j).

CPM 2018



4:6 Quasi-Periodicity Under Mismatch Errors

3 Quasi-Periodicity Persistence Under Mismatch Errors

In this section we analyze the extent to which quasi-periodicity may persist under mismatch
errors, and characterize the structure of strings, the number and positions of mismatch errors,
where such a persistence of quasi-periodicity is assured. First note that Corollary 20 means
that quasi-periodicity is not persistent under a single mismatch error, no matter its position.
Our analysis effort is, therefore, devoted to study the case where more mismatch errors occur.
In such situations the number of errors as well as their exact positions determine wether the
quasi-periodicity persists or not, as the following example shows.

Example: Consider the quasi-periodic (specifically, also periodic) string: S = abbbbabbbb.
Two mismatch errors in positions 2 and 3 give the primitive string S′ = aaabbabbbb. However,
two mismatch errors in positions 2 and 6 give the (quasi-)periodic string S′′ = aabbbaabbb.

We, therefore, need to refer to the structure of a quasi-periodic string, in order to analyze
persistence of quasi-periodicity. Since the structure of the special case of periodic strings
is known, giving sufficient conditions for periodicity persistence is easy, as the following
observation states.

I Observation 22. Let S be a periodic string with period length p. Let q = a · p, a ∈ N, such
that bnq c ≥ 2, and let S′ be the string obtained from S by k = bnq c errors of substitution to a
character σ ∈ Σ where the difference between each subsequent error positions is q, then S′ is
periodic.

We also want to give sufficient conditions for quasi-periodicity persistence, which is much
more complicated to understand. Our first goal is to give a formal characterization of a
structure of quasi-periodic strings. We begin by characterizing the structure of any string
that may serve as a cover of another string. We call this string of variables the free variable
scheme of the cover. We first give a definition of this term.

I Definition 23. Let Γ be an alphabet, called the free variables alphabet. A string in Γ∗ is
a free variable scheme. A free variable scheme α over alphabet Σ defines a subset Sα of Σ∗,
where s is in Sα if there is a function Φ : Σ→ Γ such that Φ(s) = α.

I Lemma 24. The free variable scheme representing any primitive cover is of the form αβα

where: β is a non empty string of distinct variables that do not occur in α, α is defined
recursively, as follows:
1. α is empty, or
2. α is of the form α′β′α′, where β′ is a, possibly empty, string of variables that do not

occur in α′, and α′ is recursively defined similarly as α.

Proof. There are two cases to consider:
1. If there are no overlaps of the cover in the string, then the cover is actually a period

(having only complete appearances in the string it covers). In this case, it has the form
αβα, where α is empty and β is a non empty string of distinct variables that do not
occur in α.

2. If there is at least one overlap of the cover in the string it covers, then the cover cannot
be a period. Such an overlap forces the structure of the cover to begin and end with the
same string, represented by the sequence of variables α. It is, therefore, of the form αβα

where β is a string of distinct variables that do not occur in α. The fact that the cover is
primitive, means that β is non empty. Otherwise, it is periodic, therefore, by Lemma 15
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it is coverable, contradiction to its primitivity. Now, if all the overlaps of the cover are
of the same length as α, then the recursion ends and we get α = β′ and α′ is empty.
Otherwise, any overlap of different length forces a recursive structure as follows. Assume
without loss of generality that the longer overlap is of length as α, then the existence
of a smaller overlap means that α begins and ends with the same string, represented by
the sequence of variables α′. These occurrences of α′ in α may be separated by another
string, represented by the sequence of variables β′. J

Example: The recursive structure of the following free variable scheme

WWYWWZWWYWWABCWWYWWZWWYWW

is:
level 1: α = WWYWWZWWYWW and β = ABC

level 2: α = WWYWW and β = Z

level 3: α = WW and β = Y

level 4: α = W and β is the empty string
level 5: α is the empty string and β = W .

Lemma 24 serves us in two directions. On the one hand, it is used to characterize the
structure of any primitive cover, and on the other hand, it serves to characterize the structure
of any quasi-periodic string with more than two occurrences of the cover. Note that, by
Lemma 15, any quasi-periodic string with only two occurrences of the cover is periodic, for
which Observation 22 applies. We, therefore, refer only to quasi-periodic strings having more
than two occurrences of their cover. We call such strings non-degenerate quasi-periodic. The
second direction is applied as formalized by Observation 25.

I Observation 25. The free variable scheme applies to any non-degenerate quasi-periodic
string S by defining C as follows. Take the longest prefix of S with length q0 smaller than
|S|/2, which equals the suffix of S with the same length. Define α to have length q0. The
length of β will be |S| − 2 · q0. Define α0 = α, β0 = β. The definition of C continues
recursively as long as Sαi

has a prefix of length at most |Sαi
|/2 which equals its suffix of

the same length. Let Sαi+1 be the prefix, and define: αi = αi+1βi+1αi+1. Otherwise, the
recursion stops with αi = βi+1. For all i, βi is defined to be a sequence of distinct variables
that do not occur elsewhere.

Example: Consider the string S = abaababaabaababaababa, which is quasi-periodic with
cover aba. Applying Observation 25 to S gives:
level 1: Sα0 = abaababa, |α0| = 8 and |β0| = 5
level 2: Sα1 = aba, |α1| = 3 and |β1| = 2
level 3: Sα2 = a, |α2| = 1 and |β2| = 1.
The free variable scheme we get is: C = Y1Y2Y1Y3Y4Y1Y2Y1Y5Y6Y7Y8Y9Y1Y2Y1Y3Y4Y1Y2Y1.
The assignment: Y1 = a, Y2 = b, Y3 = a, Y4 = b, Y5 = a, Y6 = b, Y7 = a, Y8 = a, Y9 = b,
to the variables of C gives the string S. Note that C has a structure of a primitive cover,
however, the above assignment results in a non-primitive string.

Observation 25 enables us to refer to any non-degenerate quasi-periodic string as an
assignment to its free variable scheme. Our analysis takes into account the positions of the
mismatch errors inserted to this string by referring to them as changing the assignment of a
set of variables in its free variable scheme. In order to continue with our analysis, we need
the following notation.

CPM 2018
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I Notation 26. Let C be a given free variable scheme. Denote by AC the string created by
an assignment A of alphabet symbols to the variables of C. Denote by AC(Xi1 , ..., Xij ) the
string created by assigning the variables Xi1 , ....Xij of C an alphabet symbol that is different
from the one assigned by A, and all other variables get assigned the same alphabet symbol as
in the assignment A.

We begin by showing that, assuming we already have an assignment A giving a quasi-
periodic string AC , then changing the assignment of any variable that appears once in the
α or β parts of the free variable scheme C results in a primitive string.

I Lemma 27. Let C be a given free variable scheme, and let Y be a variable that appears only
once in the α or β parts of C. Assume that AC is non-primitive, then AC(Y ) is primitive.

We can now proceed with checking the case of variables that appear more than once
in α. Changing the assignment of such a variable may in some cases result in a primit-
ive string, but in other cases result in another non-primitive string, as the next example shows.

Example: Consider C = XY V XY ZXY V XY , where α = XY V XY and β = Z. Note
that both X and Y appear twice in α. Now the string AC = aaaaaaaaaaa is non-primitive,
however, both AC(X) = baabaabaaba and AC(Y ) = abaabaabaab are also non-primitive with
covers baaba and abaab, respectively. Nonetheless, changing the assignment of both X and
Y also yields a non-primitive string AC(X,Y ) = bbabbabbabb with a cover bbabb.

Lemma 30 characterizes the case of a variable Y for which AC(Y ) is also non-primitive.
We need Definition 28 and Lemma 29 for the statement and proof of Lemma 30.

I Definition 28 (Superimposed Tiling). Let L1 and L2 be valid tilings over length n. Then,
L1 is said to be superimposed on L2, if for every index r in L2, let s be the greatest index in
L1 satisfying s ≤ r, then r +m2 ≤ s+m1, where m1, m2 are the lengths of the covers in L1
and L2, respectively (m = n− Llast, where Llast is the last index in a given tiling L).

I Lemma 29. Let AC = AαSAα and AC(Y ) = Aα(Y )SAα(Y ), where Aα is a sequence of
at least 2 appearances of W and Aα(Y ) is sequence of the same number of appearances of
W (j), then only one of the strings AC , AC(Y ) can be non-primitive and the other must be
primitive.

I Lemma 30 (Quasi-Periodicity Persistence Necessary Condition). If there exists a variable Y
in C such that both AC and AC(Y ) are non-primitive, then:
1. Y appears 2i times in C, where i ≥ 2.
2. If Y appears 2i times in C for some i ≥ 2, then C = αiβiαi, and for each 1 < ` ≤ i,

α` = α`−1β`−1α`−1, where Y appears once in α1.
3. There exists an `, 1 ≤ ` < i such that β` is non-empty.
4. Let Lc and Lc′ be the tiling of the cover c in AC and c′ in AC(Y ), respectively. Then, if
|c| ≤ |c′| then Lc′ is superimposed on Lc, else, Lc is superimposed on Lc′ .

Proof. First, by Lemma 27, Y must appear at least twice in α (and therefore, exactly twice
as that in C). Thus, by the recursive structure of C (Lemma 24), Y appears a power of 2
times in α and, therefore, a power of two times in C. Also, by Lemma 24, this recursive
structure is of the form C = αiβiαi, and for each 1 < ` ≤ i, α` = α`−1β`−1α`−1, where
Y appears once in α1. Denote by W the string Aα1 and by S` the string Aβ`

, for all `.
Note that since Y only appears once in α1 and doesn’t appear elsewhere, we have that
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Aβ`
(Y ) = Aβ`

= S`, for all `, and Aα1(Y ) = W (j) for the index j that indicates the position
of Y in α1.

We now prove that there exists an `, 1 ≤ ` < i such that β` is non-empty. Assume to the
contrary that only Si is nonempty (because βi must be nonempty by the definition of C),
then we have that AC = AαiSiAαi and AC(Y ) = Aαi(Y )SiAαi(Y ), where Aαi is a sequence
of 2i−1 appearances of W and Aαi

(Y ) is a sequence of 2i−1 appearances of W (j). Note that
since 2i−1 ≥ 2, then by Lemma 29, only one of the strings AC , AC(Y ) can be non-primitive
and the other must be primitive, contradiction. Therefore, there exists an `, 1 ≤ ` < i such
that β` is non-empty.

Since both AC and AC(Y ) are non-primitive, they have shortest covers c and c′, re-
spectively. Assume without loss of generality that |c| ≤ |c′|. It remains to show that Lc′ is
superimposed on Lc. Assume to the contrary that this is not the case, and let r be the first
index in Lc, such that for the greatest index s in Lc′ satisfying s ≤ r, we have r+ |c| > s+ |c′|.
First, note that s 6= r, otherwise, we necessarily have: r+ |c| ≤ s+ |c′|, since |c| ≤ |c′|, which
contradicts the assumption. Therefore, s < r.

Let ĉ be the |c′|-length prefix of AC . Since c covers AC then c is both a prefix and a
suffix of GC and a prefix of ĉ. Also, since c′ covers AC(Y ), then c′ is both a prefix and a
suffix of AC(Y ) and, therefore, ĉ is both a prefix and a suffix of AC . Thus, c is also a suffix
of ĉ. We get that the last complete occurrence of c, before r is at index s+ |c′| − |c|. Now,
any occurrence of c′ in AC(Y ) before index r (including r) contradicts the maximality of
s. Also, any occurrence of c′ in index greater than r and at most s + |c′| contradicts the
choice of r as the first index to contradict the assumption due to the occurrence of c in index
s+ |c′| − |c| < r. Therefore, the next occurrence of c′ in AC(Y ) is at index s+ |c′|+ 1. Thus,
we have in AC two consecutive occurrences of ĉ, where c is a suffix of the first occurrence
(due to the occurrence of c in index s+ |c′| − |c|) and a prefix of the second occurrence (due
to the fact that c is a prefix of ĉ), and there is an occurrence of c overlapping to suffix of the
first and the prefix of the second (due to the occurrence in in index r). However, this means
that c is periodic, which contradicts the minimality of c by Lemma 15. This concludes the
proof of the lemma. J

The following observations and lemma describe basic properties of the superimposition
relation between tilings and the equation systems that tilings impose. Lemma 34 follows.

I Observation 31. Any tiling L of the string created by an assignment A on the m-length
free variable scheme C imposes an equation system E on the variables of C. Moreover, if L1
is superimposed on L2, then E1 ⊆ E2, where E1 and E2 are the equation systems imposed by
L1 and L2, respectively.

I Observation 32. Assume that the strings AC(Y1) and AC(Y2) are both non-primitive, and
let L1 and L2 be the tilings of the strings AC(Y1) and AC(Y2), respectively. Let E1 and E2
be the equation systems imposed by L1 and L2, respectively. Then, AC(Y1, Y2) imposes the
equation system E = E1 ∩ E2 (which may be empty).

We need the following lemma for the proof of Lemma 34 below.

I Lemma 33. Assume that the strings AC , AC(Y1) and AC(Y2) are non-primitive, and let
L, L1 and L2 be the tilings of the strings AC , AC(Y1) and AC(Y2), respectively. Assume
that both L1 and L2 are superimposed on L. Then, L1 is superimposed on L2 or L2 is
superimposed on L1.
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4:10 Quasi-Periodicity Under Mismatch Errors

I Lemma 34. If there exist variables Y1, . . . Yk, k ≥ 1, in C such that AC , AC(Yi), for
every i, 1 ≤ i ≤ k, are non-primitive, then AC(Y1, . . . , Yk) is also non-primitive. Moreover,
let L and L′ be the tilings of the covers in the strings AC and AC(Y1, . . . , Yk), respectively,
then L is superimposed on L′ or viceversa.

Proof. The proof is by induction on k. The case k = 1 follows trivially. Let Y1, . . . Yk+1,
k ≥ 1, be variables in C such that AC , AC(Yi), for every i, 1 ≤ i ≤ k + 1, are non-primitive.
By induction hypothesis, AC(Y1, . . . , Yk) is also non-primitive. Moreover, let L and L′ be
the tilings of the covers c, c′ in the strings AC and AC(Y1, . . . , Yk), respectively, then L is
superimposed on L′ or viceversa. Also, let L′′ be the tiling of the cover c′′ of the string
AC(Yk+1). By Lemma 30, we have that if |c| ≤ |c′′| then L′′ is superimposed on L, else, L is
superimposed on L′′.

Let Ec, Ec′ and Ec′′ be the equation systems imposed, according to Observation 31, by
the tilings L, L′ and L′′, respectively. There are four cases to consider:
1. If L′ is superimposed on L and L′′ is superimposed on L, then by Lemma 33, either L′ is

superimposed on L′′ or viceversa. Therefore, either Ec′ ⊆ Ec′′ ⊆ Ec or Ec′′ ⊆ Ec′ ⊆ Ec.
Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation system E = Ec′ ∩Ec′′ =
Ec′ or E = Ec′ ∩Ec′′ = Ec′′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

2. If L′ is superimposed on L and L is superimposed on L′′, then Ec′ ⊆ Ec and Ec ⊆ Ec′′ .
Therefore, Ec′ ⊆ Ec′′ . Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation
system E = Ec′ ∩Ec′′ = Ec′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

3. If L is superimposed on L′ and L′′ is superimposed on L, then Ec ⊆ Ec′ and Ec′′ ⊆ Ec.
Therefore, Ec′′ ⊆ Ec′ . Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation
system E = Ec′∩Ec′′ = Ec′′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

4. If L is superimposed on L′ and L is superimposed on L′′, then Ec ⊆ Ec′ and Ec ⊆ Ec′′ .
Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation system E = Ec′ ∩Ec′′ ⊇
Ec. Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover, we have that L is
superimposed on L̂, where L̂ is the tiling defined by E.

This concludes the proof of the lemma. J

Theorem 35 follows.

I Theorem 35. [Quasi-Periodicity Persistence Theorem]
Let S be a non-degenerate quasi-periodic string. Let C be the free variable scheme of S, A be
the assignment on the variables of C such that AC = S, and

V = {Y ∈ C| Y appears k(Y ) = 2i times, i ≥ 2, and AC(Y ) is quasi−periodic}.

Let V ′ ⊆ V and let S′ be the string obtained from S by k =
∑
Y ∈V ′ k(Y ) substitution errors

in positions where the variables Y ∈ V ′ appear in C by an assignment AC(V ′), then S′ is
quasi-periodic.

4 Application: Closing the Complexity Gap in ACP Relaxations Study

In this section we apply the analysis of quasi-periodicity persistence described in Section 3,
to study the full-tiling relaxation of the approximate cover problem, in which we are given
a retained tiling of the cover before the errors has occurred together with the input string
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itself. This relaxation was first introduced and studied in [5] and its complexity remained
open. Proving the correctness of this algorithm was beyond the reach of current research
of quasi-periodicity in the presence of mismatch errors prior to this paper. The results of
Section 3 enable proving its correctness, thus showing that the full-tiling relaxation of the
ACP is polynomial time computable, which closes the gap in understanding the complexity
hierarchy of ACP relaxations, presented in [5]. In order to formally define the relaxation we
need Definition 36.

I Definition 36. Let T be an n-length string over alphabet Σ and let L be a valid tiling
of T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. Then, an
L-approximate cover of T is a primitive string C such that for every string C ′ of length
m over Σ, H(SL(C ′), T ) ≥ H(SL(C), T ), where H is the Hamming distance of the given
strings.
minC∈Σm H(SL(C), T ) is the number of errors of an L approximate cover of T .

The formal definition of the full-tiling relaxation of the ACP is given below.

I Definition 37 (The Full-Tiling Relaxation of the ACP). INPUT: String T of length n over
alphabet Σ, and a valid tiling L of T .
OUTPUT: An L-approximate cover C of T .

[5] suggest a polynomial-time algorithm for the full-tiling relaxation of the approximate
cover problem in two parts. The algorithm has a mandatory part, called the Histogram
Greedy Algorithm. This algorithm does the main work in finding an approximate cover
subject to the tiling L. It returns a candidate for the final L approximate cover to be output.
This candidate is legal if it is primitive and illegal, otherwise. In the latter case, a second
part of the algorithm is needed: the Full-Tiling Primitivity Coercion. In this part, the
legality of the candidate is checked, and if needed, the candidate is corrected in order to
coerce the primitivity requirement. In order to give a self-contained presentation of our
results, we give a description of the Histogram Greedy Algorithm in Subsection 4.1 and the
Full-Tiling Primitivity Coercion Algorithm in Subsection 4.2. We then complete its analysis
in Subsection 4.3.

4.1 The Histogram Greedy Algorithm
This part of the algorithm performs the following steps given the text T and the valid tiling
L:
1. Find m, the length of an approximate cover subject to the tiling L, by computing the

difference between n + 1, and the last index in the tiling L, Llast, which indicates the
last occurrence of the cover in T .

2. Compute the m-length mask M of an approximate cover, by initializing M to zeroes,
settingM [1] = 1, then reading the tiling L from beginning to end and for each ik, ik+1 ∈ L
setting M [ik+1 − ik] = 1.

3. Compute the m-long string VC of variables from an auxiliary alphabet

ΣV = {v1, v2, . . . , vm}.

First, we initialize the m-long string VC to v1v2 . . . vm. Then, we read the mask M

from end to beginning, and for every j such that M [j] = 1, we update the string VC by
equalizing the substrings VC [1..m− j+ 1] and VC [j..m]. In the equalization process, when
we obtain an equation vk = v` for k < `, we replace both letters by vk. The resulting

CPM 2018



4:12 Quasi-Periodicity Under Mismatch Errors

string VC represents C in the following sense: for any pair of indices 1 ≤ i < j ≤ m, if
VC [i] = VC [j] then C[i] = C[j]. However, it can be that VC [i] 6= VC [j], while C[i] = C[j].
In other words, VC carries the information on equalities imposed by the mask M between
indices of C.

4. Compute the string of length n, VT , with variables from the auxiliary alphabet ΣV , which
is a string covered by VC according to the tiling L of T . VC is computed using the tiling
L and VC as follows: it begins with a copy of VC and for each index i in L a new copy of
VC is concatenated starting from index i of VT (maybe running over a suffix of the last
copy of VC).

5. Compute the histogram HistVC ,Σ using the alignment of T with VT and counting for each
variable V ∈ VC and each σ ∈ Σ, the number of indices i in T, VT for which VT [i] = V

and T [i] = σ.
6. Compute an L-approximate cover candidate C greedily according to the histogram

HistVC ,Σ, as follows: for every index 1 ≤ i ≤ m, set C[i] = σ0, whereHistVC ,Σ[VC [i], σ0] =
maxσ∈ΣHistVC ,Σ[VC [i], σ], i.e., for each index in C we choose the alphabet symbol that
minimizes the number of mismatch errors between SL(C) and T in the relevant indices
according to the tiling L.

The algorithm outputs the m-length string C from its last step and the histogram table
HistVC ,Σ.

As discussed in [5], the output C of the Histogram Greedy algorithm might not be an
L-approximate cover of T , because it might not be primitive, as the following example shows.

Example: Assume that VC = XY ZWXY and Σ = {a, b} and that the histogram HistVC ,Σ
computed by the algorithm is the following:

VC�Σ a b
X 4 1
Y 2 3
Z 2 1
W 0 3

Then, the Histogram Greedy algorithm chooses: X = a, Y = b, Z = a, W = b, and outputs
C = ababab, which cannot be considered a legal cover since it is not primitive, i.e., C itself
can be covered by the shorter string ab. Note, that the input tiling L requires an m-length
string as an output. Therefore, the (primitive) 2-length approximate cover ab is precluded as
an L-approximate cover. Assuming that the input tiling L is the retained tiling of the cover
of the original text before the errors occurred, such a case means that, though ab is a string
covering T subject to a partial tiling L with the least number of errors, it does not cover
T with L as a full tiling. In this sense, L is an evidence that the original cover is of larger
length than ab and that more errors actually happened.

In order to impose the requirement of the definition of an L-approximate cover of T to be
a primitive string such that all its repetitions to cover T (with minimum number of errors)
are marked in the tiling L, we need a primitivity coercion algorithm. This algorithm was
suggested by [5], and is described in Subsection 4.2.

4.2 The Full-Tiling Primitivity Coercion Algorithm
This part of the algorithm gets as input the string C returned by the Histogram Greedy
algorithm (Subsection 4.1) and performs the following steps:
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1. Check the primitivity of C (using the linear-time algorithm of [9]). If C is primitive,
return C.

2. Else, find Vk ∈ VC such that if the assignment of Vk is changed from the symbol with the
largest value in the row of Vk in HistVC ,Σ to the symbol with the second largest value
in this row, thus obtaining a new m-length candidate string C ′, such that the difference
H(SL(C ′), T )−H(SL(C), T ) is minimized and where C ′ is primitive.

Lemma 38 below describes the time complexity of the Full-Tiling Primitivity Coercion
algorithm and immediately follows from the linear-time complexity of the algorithm [9] used
in the first step and the description of the second step.

I Lemma 38 ([5]). The time complexity of the Full-Tiling Primitivity Coercion algorithm is
O(|Σ| ·m).

The following subsection is devoted to proving the correctness of the Full-Tiling Primitivity
Coercion algorithm, thus proving that the full-tiling relaxation of the ACP is polynomial-time
computable.

4.3 Correctness of the Full-Tiling Primitivity Coercion Algorithm
We begin by noting that the structure of the string of variables created by the Histogram
Greedy algorithm has the free variable scheme, as defined by Lemma 24.

If the cover generated by the assignment of the Histogram Greedy algorithm to this
scheme is not primitive, then Corollary 20 guarantees that changing the value of any free
variable in β results in a primitive cover. The problem is that this may not necessarily be
the cover with minimum cost. Checking, for every single free variable, if changing it for
the alphabet symbol with the second largest value in the histogram results in a primitive
cover, and choosing the cover that generates the smallest Hamming distance, will indeed
guarantee that we have a primitive cover with the smallest Hamming distance that results
from changing a single variable. We need to show that it is impossible to get a primitive
cover that generates an even smaller Hamming distance, by choosing the alphabet symbol
with the second highest histogram in a set of free variables. We prove that this situation
can not happen.

Note that if C is the free variable scheme generated be the Histogram Greedy algorithm.
Then AC can be the string created by the assignment of this algorithm to the variables of
C, and AC(Xi1 , ..., Xij ) can be the string created by assigning the variables Xi1 , ....Xij of
C an alphabet symbol whose histogram value is second highest, and all other variables get
assigned an alphabet symbol whose histogram value is the highest.

Theorem 39 follows.

I Theorem 39. Given a text T of length n over alphabet Σ and a valid tiling L. Let Llast
be the last index in L. Then, the full-tiling relaxation of the approximate cover problem of T
can be solved in O(Σ ·m+ n) time, where m = n+ 1− Llast.

Proof. First, note that an L-approximate cover of T must have length m = n+ 1− Llast,
where Llast is the last index in L. If the string C ′ returned by the Histogram greedy
algorithm is primitive, then C ′ is an L-approximate cover of T since by its construction, it is
the m-length primitive string such that its n-length tiled string according to the given tiling
L, SL(C ′) has the minimum Hamming distance from T . In this case C ′ is also the string C
returned by the Full-Tiling Primitivity Coercion algorithm.
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Assume then that C ′ is not a primitive string and, therefore, the second step of the
Full-Tiling Primitivity Coercion algorithm is performed. By Lemma 27, a change in a variable
that appear once in the β or α parts of the free variable form of C ′ results in a primitive
m-length string. Lemma 30 characterizes C ′ in case there exists a variable such that changing
its assignment does not yield a primitive string. Note that by Lemma 34 taking a set of such
variables and changing their assignment also does not yield a primitive string. Therefore,
any set of variables such that changing their assignment yields a primitive string, necessarily
contains a variable that changing its assignment only is enough to yield a primitive string.
However, it is obvious that changing this variable only gives a primitive string that covers
the input string with less mismatch errors.

The second step of the Full-tiling Primitivity Coercion algorithm chooses a character that
minimizes the difference H(SL(C ′), T ) −H(SL(C), T ). Therefore, the resulting m-length
string C is the m-length primitive string such that its n-length tiled string according to the
given tiling L, SL(C) has the minimum Hamming distance from T . J
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