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Abstract
We present a new approach to approximating the Maximum Duo-Preservation String Mapping
Problem (MPSM) based on massaging the constraints into a tractable matching problem. MPSM
was introduced in Chen, Chen, Samatova, Peng, Wang, and Tang [10] as the complement to the
well-studied Minimum Common String Partition problem (MCSP). Prior work also considers
the k-MPSM and k-MCSP variants in which each letter occurs at most k times in each string.
The authors of [10] showed a k2-appoximation for k ≥ 3 and 2-approximation for k = 2. Boria,
Kurpisz, Leppänen, and Mastrolilli [6] gave a 4-approximation independent of k and showed that
even 2-MPSM is APX-Hard. A series of improvements led to the current best bounds of a (2+ε)-
approximation for any ε > 0 in nO(1/ε) time for strings of length n and a 2.67-approximation
running in O(n2) time, both by Dudek, Gawrychowski, and Ostropolski-Nalewaja [16]. Here,
we show that a 2.67-approximation can surprisingly be achieved in O(n) time for alphabets of
constant size and O(n+ α7) for alphabets of size α.

Recently, Mehrabi [28] introduced the more general weighted variant, Maximum Weight Duo-
Preservation String Mapping (MWPSM) and provided a 6-approximation. Our approach gives
a 2.67-approximation to this problem running in O(n3) time. This approach can also find an
8/(3(1− ε))-approximation to MWPSM for any ε > 0 in O(n2ε−1 lg ε−1) time using the approx-
imate weighted matching algorithm of Duan and Pettie [15].

Finally, we introduce the first streaming algorithm for MPSM. We show that a single pass
suffices to find a 4-approximation on the size of an optimal solution using only O(α2 lgn) space.
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1 Introduction

String comparison is a fundamental problem in many fields such as bioinformatics and
data compression. The difference between two strings is often measured by some notion of
edit distance, the number of edit operations required to transform one string into another.
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5:2 Fast Matching-based Approximations for MPSM and its Weighted Variant

The classic Levenshtein distance definition includes insertion, deletion, and/or substitution
operations on single characters. However, the more general edit distance with moves problem
studied in [13] allows an additional operation wherein an entire block of text is shifted within
a string.

Variations of these shift operations, also known as rearrangements, are commonly studied
in genomics [31, 11] with several biologically motivated twists on the above definition. String
comparison of DNA or protein sequences can provide an estimate of how closely related
different species are. In data compression, we may want to store many similar strings as a
single string along with the edits required to recover all strings. These two applications even
overlap naturally in the field of bioinformatics where extremely large datasets of biological
sequences are common. For example, the challenge of pan-genome storage is to store many
highly similar sequences from the same clade such as a bacterial species.

One way to capture just the “moves” operation on two strings which are permutations of
each other is the Minimum Common String Partition problem (MCSP). In that problem,
we cut (partition) each string into a multi-set of substrings such that the two multi-sets
are identical and the number of cuts is minimized. This paper studies the complementary
problem to MCSP, the Maximum Duo-Preservation String Mapping Problem (MPSM) and
its weighted variant (MWPSM). Our goal is to find a one-to-one mapping from the letters of
one string to the other. The objective is to maximize the pairs of consecutive letters (duos)
which map to pairs of consecutive letters in the other string (i.e. pairs that are not cut in
MCSP).

While MCSP has been well-studied for some time, a recent flurry of work on MPSM has
given us a deeper understanding of that problem. Mehrabi [28] introduced the Maximum
Weight Duo-Preservation String Mapping Problem (MWPSM) to better capture applications
in comparitive genomics. Beyond identifying the number of block moves, the weighted variant
allows us to address questions like, "How far did these blocks move?" This better captures the
concept of “synteny” in genetics [22, 29]. Also addressing practical considerations, Dudek, et
al [16] included a quadratic time version of their approximation algorithm whereas much of
the prior work has focused on improving the approximation in polynomial time.

1.1 Problem Description
The Maximum Duo-Preservation String Mapping Problem (MPSM) is defined as follows.
We are given two strings A = a1a2 . . . an and B = b1b2 . . . bn of length n such that B is a
permutation of A. Let ai and bj be the ith and jth characters of their respective strings. A
proper mapping π from A to B is a one-to-one mapping with ai = bπ(i) for all i = 1, . . . , n. A
duo is simply two consecutive characters from the same string. We say that a duo (ai, ai+1)
is preserved if ai is mapped some bj and ai+1 is mapped to bj+1. The objective is to return
a proper mapping from the letters of A to the letters of B which preserves the maximum
number of duos. Note that the number of duos preserved in each string is identical and by
convention we count the number of duos preserved in a single string rather than the sum
over both strings. Let OPTMPSM denote the number of duos preserved from a single string
in an optimal solution to the MPSM problem. Figure 1 shows an example of an optimal
mapping which preserves the maximum possible number of duos.

The complementary Minimum Common String Partition problem (MCSP) seeks to find
partitions of the strings A and B where a partition PA of A is defined as a set of substrings
whose concatenation is A. The objective is to find minimum cardinality partitions PA of A
and PB of B such that PB is a permutation of PA. Let OPTMCSP denote the cardinality of a
partition in an optimal solution. We can see that OPTMCSP = |PA| = |PB | = n−OPTMPSM .
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A: a b c d d c b a

B: b c a d d c a b

Figure 1 Illustration of a mapping π from A to B that preserves 3 duos: bc, dd, and dc. A solution
to the complementary MCSP problem on the same strings would be partitions PA = a, bc, ddc, b, a

and PB = bc, a, ddc, a, b with |PA| = |PB | = 5.

The variants, k-MPSM and k-MCSP, add the restriction that each letter occurs at most k
times in each string. For a given algorithm, let ALGMPSM be number of duos preserved by the
algorithm. The approximation ratio for that algorithm is defined as OPTMPSM/ALGMPSM .

In MWPSM, a weight is assigned to every pair of preservable duos and we seek to
maximize the weight of the solution. While [28], discusses using weights to capture the
positions of preserved duos within their respective strings, the weights in MWPSM can be
arbitrary and are not required to be a function of position.

1.2 Related Work
The Maximum Duo-Preservation String Mapping Problem (MPSM) was introduced in [10]
along with the related Constrained Maximum Induced Subgraph (CMIS) and Constrained
Minimum Induced Subgraph (CNIS) problems. They used a linear programming and
randomized rounding approach to approximate the k-CMIS problem which they show is a
generalization of k-MPSM. This led to a k2-approximation for k ≥ 3 and a 2-approximation
for k = 2. This was improved by [6] to a 4-approximation independent of k and running in
O(n3/2) time as well as approximation ratios of 3 for k = 3 and 8/5 for k = 2. [6] also showed
that k-MPSM is APX-hard even for k = 2, meaning no polynomial-time approximation
scheme (PTAS) exists assuming P 6= NP . The approximation was subsequently improved
to 3.5 using local search [5], 3.25 using a combinatorial triplet matching approach [7], and
finally 2 + ε for any ε > 0 in nO(1/ε) time, again using local search [16]. The work of [16] also
presented a 2.67-approximation running in O(n2) time.

The recent interest in MPSM led to the study of several variants including Maximum
Weight Duo-preservation String Mapping (MWPSM), k-MPSM, and fixed-parameter tractab-
ility (FPT). The weighted variant of MPSM was introduced in [28] along with an algorithm
achieving a 6-approximation. That work was the first to apply the local ratio technique
developed by Bar-Yehuda and Even [2] to an MPSM problem. Recent work on k-MPSM led
to a (1.4 + ε)-approximation for 2-MPSM [32]. On the FPT side, [3] showed that MPSM
is fixed-parameter tractable when parameterized by the number of preserved duos and [27]
achieved a faster running time with a randomized algorithm.

The Minimum Common String Partition problem (MCSP) has been extensively studied
from many angles including polynomial-time approximation [10, 12, 13, 20, 26, 25], fixed-
parameter tractability [8, 14, 23, 9], and heuristics [17, 4, 18]. FPT algorithms have been
parameterized by maximum number of times any character occurs, minimum block size, and
the size of the optimal minimum partition. Heuristic approaches range from an ant colony
optimization algorithm [17] to integer linear programming (ILP) based strategies [4, 18]
which in some cases solve the problem optimally for strings up to 2, 000 characters in length.

The problem was shown to be NP-hard (thus implying MPSM is also NP-hard) and
APX-hard even for 2-MCSP [20]. The current best approximations are an O(logn log∗ n)-
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approximation due to [13] for general MCSP bases on the related edit distance with moves
problem and an O(k)-approximation for k-MCSP due to [26]. Applications to evolutionary
distance and genome rearrangement can be found in [31, 11].

Unclaimed results in prior work: An analysis of prior work shows that 4-approximations
to both problems studied here can be achieved using slight modifications to existing work.
For MWPSM, the algorithm in [6] can be extended by choosing a maximum weight matching
and partition rather than maximum cardinality. For the unweighted problem, Goldstein and
Lewenstein [21] showed an O(n) time greedy algorithm for MCSP. Although not discussed in
their paper which pre-dated MPSM, we note that the greedy algorithm for MCSP achieves a
4-approximation for MPSM by a fairly straightforward charging argument. Formal proofs of
these claims are outside the scope of this paper and we leave them to the interested reader.
Additionally, we will not refer to these approximations when comparing our work to previous
best known results. We simply mention them here for completeness and to give a nod to two
nice papers in the area.

1.3 Our Contributions
We show a transformation of the Maximum Duo-Preservation String Mapping (MPSM)
problem into a related tractable problem. This transformation leads to new algorithms
for both weighted and unweighted MPSM. For the weighted case, we present an 8/3-
approximation running in O(n3) time. This improves upon the previous best 6-approximation
in polynomial time [28] (a tighter bound on the running time is not given in the paper).
It also matches the best quadratic time approximation for the unweighted problem of 2.67
and approaches the best unweighted approximation of 2 + ε for any ε > 0 in nO(1/ε) time,
both due to [16]. We further show in Corollary 2 that we can improve the running time at
the cost of a weaker approximation. For the unweighted case, we present the first linear
time algorithm with an 8/3-approximation again matching the previous best quadratic time
algorithm and coming fairly close to the best known (2 + ε)-approximation achieved by a
significantly larger running time. In particular, the move from quadratic to linear time in
length of the strings is significant for practical settings wherein the string length may be
long enough that quadratic time is prohibitive. Finally, we introduce the first streaming
algorithm for MPSM in the streaming model where each string is read one character at a
time. We show that a single pass suffices to find a 4-approximation on the size of an optimal
solution using only O(α2 lgn) space.

In addition, the techniques here are novel to this problem and may inspire future
improvements. While [7] also used a form of triplet matching, the structure of the triplet
matching is different as is the approach to achieving a feasible solution to MPSM. Our main
results are summarized in the theorems below.

I Theorem 1. There exists an algorithm which finds an 8/3-approximation to MWPSM on
strings of length n in O(n3) time.

I Corollary 2. Using the approximate weighted matching algorithm of [15], we can find an
8/(3(1−ε))-approximation to MWPSM on strings of length n for any ε > 0 in O(n2ε−1 lg ε−1)
time.

I Theorem 3. There exists an algorithm which finds an 8/3-approximation to MPSM on
strings of length n over alphabets of size α in O(n+ α7) time.
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I Corollary 4. There exists an algorithm which finds an 8/3-approximation to MPSM on
strings of length n over constant-sized alphabets in O(n) time.

I Theorem 5. There exists a single-pass streaming algorithm which finds a 4-approximation
to the size of an MPSM on strings of length n over alphabets of size α using only O(α2 lgn)
space.

1.4 Preliminaries
Let A = a1a2 . . . an and B = b1b2 . . . bn be two strings of length n with ai and bj being
the ith and jth characters of their respective strings. A duo DA

i = (ai, ai+1) contains
a pair of consecutive characters ai and ai+1. We use DA = (DA

1 , . . . , D
A
n−1) and DB =

(DB
1 , . . . , D

B
n−1) to denote the sets of duos for A and B, respectively. We similarly define a

triplet TAi = (ai, ai+1, ai+2) as a set of three consecutive characters ai, ai+1, and ai+2 in the
string and sets of triplets TA = (TA1 , . . . , TAn−2) and TB = (TB1 , . . . , TBn−2) for strings A and
B, respectively. Observe that the duos DA

i and DA
i+1 correspond to the first two and last

two characters, respectively, of the triplet TAi . We refer to duos DA
i and DA

i+1 as subsets of
the triplet TAi .

A proper mapping π from A to B is a one-to-one mapping from the letters of A to the
letters of B with ai = bπ(i) for all i = 1, . . . , n. Recall that a duo (ai, ai+1) is preserved if
and only if ai is mapped to some bj and ai+1 is mapped to bj+1. We call a pair of duos
(DA

i , D
B
j ) preservable if and only if ai = bj and ai+1 = bj+1. For MWPSM, let w(DA

i , D
B
j )

be the weight gained by mapping DA
i to DB

j .
For consistency, we define the concept of conflicting pairs of duos using the terminology

of [6]. Two preservable pairs of duos (DA
i , D

B
j ) and (DA

h , D
B
` ) are said to be conflicting if no

proper mapping can preserve both of them. These conflicts can be of two types type 1 and
type 2. In type 1 conflicts, either i = h ∧ j 6= ` or i 6= h ∧ j = `. In type 2 conflicts, either
i = h+ 1 ∧ j 6= `+ 1 or i 6= h+ 1 ∧ j = `+ 1.

The algorithms here only show how to map the characters of the preserved duos. In all
cases, note that any unmapped characters can be mapped arbitrarily to identical characters
in the other string in linear time.

2 Main techniques and algorithm for MWPSM

For both algorithms, we first solve a weighted bipartite matching problem we call Alternating
Triplet Matching (ATM). In this section, we define ATM, show that a solution to ATM has
weight at least 3/4 of an optimal solution to MWPSM, and finally show that we can convert
a solution to ATM to a feasible duo mapping while preserving 1/2 of its weight. Combining
these facts leads to an 8/3-approximation to MWPSM.

2.1 The Alternating Triplet Matching (ATM) problem
Here, we define this problem in terms of MWPSM. Modifications for the unweighted variant
(to admit a faster solution) will be defined in Section 3. Let TA′ = {TAi | i is odd}, TB

′ =
{TBi | i is odd} and TB

′′ = {TBi | i is even}. Throughout the paper, we refer to triplets
starting at odd indices in their respective strings as odd triplets and similarly use the term
even triplets. Note, we do not use the even triplets from A.

Using these subsets, we formulate bipartite matching problems on two separate graphs
G′ = {TA′

, TB
′
, E′} and G′′ = {TA′

, TB
′′
, E′′}. The edges of G′ depend on the letters in the

triplets. Consider triplets TA′

i = (DA
i , D

A
i+1) and TB′

j = (DB
j , D

B
j+1). For each pair of duos

CPM 2018
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(1)
A: A A A C A G T C T. . . . . .

B: A A A G T C A T C. . . . . .

3 345 1 3 2 51

(2)
TA

′ :

TB
′ :

AAA ACA AGT TCT

AAA AGT TCA ATC

6 14 2 5

(3)
TA

′ :

TB
′′ :

AAA ACA AGT TCT

AAG GTC CAT

4 11 3 2

Figure 2 Illustration of how to generate an ATM instance from an MWPSM instance. (1)
Substrings of the original two strings, A and B, starting at some odd index and featuring weighted
edges representing the weight of preserving a pair of duos. (2) The graph G′ with thicker edges
representing an exact match between two triplets. In the case of multiple edges between a pair of
triplets (e.g. the five edges between the “AAA” triplets), we only show the heaviest weight edge. (3)
The graph G′′. Note that that the weight of a mapping which maps the two “AGTC” strings to
each other is 6, which can be achieved by a matching in G′, but not in G′′.

DA
h and DB

` with h ∈ {i, i+ 1}, ` ∈ {j, j+ 1}, and DA
h = DB

` , we add an edge e = (TA′

i , TB
′

j )
with weight w(e) = w(DA

h , D
B
` ). Additionally, if TA′

i = TB
′

j , we add an edge e = (TA′

i , TB
′

j )
between them with weight w(e) = w(DA

i , D
B
j ) + w(DA

i+1, D
B
j+1). In other words, the edge

gets the combined weight of the duo pairs preserved by mapping the substring TA′

i to the
substring TB′

j . The graph G′′ is defined similarly. There could be up to five edges total if
the triplets contain one letter repeated (e.g. “AAA”). In the case of multiple edges between
a pair of triplets, we only need to consider the heaviest edge among them since each triplet
can be matched at most once. However, we keep all edges for the sake of simplifying some of
the proofs. Figure 2 illustrates the procedure of generating an ATM instance.

2.2 MWPSM algorithm and analysis

Let OPTG′ and OPTG′′ be the weights of maximum weight matchings in G′ and G′′,
respectively. Note that we can find these matchings in the time it takes to compute maximum
weight bipartite matching. Since our graphs have O(n) vertices and could have O(n2) edges,
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this takes O(n2 lgn + n · n2) = O(n3) time [19]. Lemma 6 states that either OPTG′ or
OPTG′′ will be a (3/4)-approximation to the weight of an optimal solution to MWPSM,
OPTMWPSM . Let OPTATM = max(OPTG′ , OPTG′′).

I Lemma 6. OPTATM ≥ (3/4)OPTMWPSM .

Proof. We divide the edges of OPTMWPSM into two partitions. The first partition, P same,
includes mappings, in which both letters occur at odd indices or both letters occur at even
indices. The second partition, P diff , includes the remaining mappings wherein one letter is
at an odd index and the other is at an even index (this could be odd from A, even from B or
even from A, odd from B).

Note that the mapping of each preserved pair of duos (DA
i , D

B
j ) will be contained in one

of these two partitions. Without loss of generality, let the weight of P same be at least the
weight of P diff . We show how to transform OPTMWPSM into a feasible bipartite matching
in G′ while retaining the full weight of P same and at least half of the weight of P diff . Thus,
we retain at least 3/4 of the weight of OPTMWPSM .

For each triplet in the vertex set of G′ that contains one or two preserved duos from
P same, we can add an edge to our matching with weight equal to the weight of the preserved
duos. This works because consecutive pairs of preserved duos (DA

i , D
B
j ) and (DA

i+1, D
B
j+1)

with i and j both being odd will correspond to a “double” edge in the ATM instance with
weight equal to w(DA

i , D
B
j ) + w(DA

i+1, D
B
j+1). On the other hand, if i and j are both even,

then the duos of (DA
i , D

B
j ) and (DA

i+1, D
B
j+1) are contained in four different triplets and will

be added separately. Thus, we can maintain all of the weight of P same in a matching in G′.
A slightly trickier case arises with P diff . Any consecutive pairs of preserved duos

(DA
i , D

B
j ) and (DA

i+1, D
B
j+1) in P diff will have i and j of different parity. This results in

the duos being contained in three triplets, two from one partition and one from the other.
That means the edges in the ATM instance capturing the weights of the two pairs will be
conflicting. Thus we can only preserve the weight of one of the two pairs in our ATM solution.
To guarantee that we add at least half of the weight of P diff to our solution, we further
partition it into pairs (DA

i , D
B
j ) with i being odd and those with i being even. Then we

simply choose the heavier of those two partitions to add to our ATM solution.
For the case where P diff is heavier than P same, we can do a similar construction for G′′.

Thus, our ATM solution in either G′ or G′′ could have at least 3/4 the weight of an optimal
solution to MWPSM. J

We can now show how to transform an optimal solution to ATM (the heavier of the two
matchings) into a feasible string mapping which preserves at least half of the weight of the
ATM solution. Let G = (DA, DB , E) be a bipartite graph on the duos of A and B with edge
weights equal to the weight of preserving each pair of duos. We first show how to convert an
ATM solution into a matching M in G. Then, we show how to resolve conflicts of type 2
(conflicts of type 1 will not arise since M is a matching).

The transformation is simply a reversal of how we constructed the ATM graphs. For each
edge between triplets in our ATM solution (the heavier of the two matchings in G′ and G′′),
we add an edge or edges to M corresponding to the duos that “created” that triplet edge.

To resolve conflicts, we consider the conflict graph C wherein we have a node for each
edge in M and an arc between nodes if their corresponding edges are in conflict. We can
prove that C has maximum degree 2, meaning it will be a collection of paths and cycles.
Further, we note that each cycle will have even length due to Lemma 7 and the fact that
the underlying graph is bipartite. Thus, for each path or cycle, we choose the heavier of
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the two maximal independent sets in that path or cycle to add to our final MPSM solution.
Lemma 7 establishes that C has maximum degree 2.

I Lemma 7. Each edge in M conflicts with at most one other edge at each endpoint.

Proof. First, we note that each duo is contained in at most one triplet edge from the ATM
solution and therefore can only be matched once in M . In other words, M is a classical
matching in the bipartite graph of duos. This follows from the fact that consecutive triplets
in a string starting at only odd (or only even) indices will overlap at exactly one letter.

This ensures that no conflicts of type 1 can arise since that would require a duo to be
matched twice. We can also show that at most one conflict of type 2 arises at each endpoint.
Without loss of generality, consider the endpoint DA

i . Consider the duos DA
i−1 and DA

i+1
where such a conflict might arise. Notice that one of these duos must have come from the
same triplet as DA

i , while the other comes from a different triplet. The duo from the same
triplet will either be unmatched or matched as a non-conflicting parallel edge. Thus no
conflict arises from that duo. The duo from a different triplet could contribute at most one
conflicting edge by the above claim that each duo is matched at most once. Applying this
argument to both endpoints of a given edge completes the proof. J

I Lemma 8. M can be converted into M ′, a feasible solution to MWPSM, such that the
weight of M ′ is at least (1/2)OPTATM ≥ (3/8)OPTMWPSM .

Proof. The conflict graph on the edges of M must be a collection of paths and even length
cycles since it has maximum degree 2 and G is bipartite. We can simply decompose each
path or cycle into two independent sets and choose the heavier of the two. This operation
discards at most half of the weight of M while removing all conflicts and leaving us with a
feasible solution to MWPSM. J

The proofs of Theorem 1 and Corollary 2 follow from the preceding lemmas.

3 Linear time algorithm for unweighted MPSM

The basic approach follows roughly the same steps as the weighted algorithm from Section 2:
construct an ATM instance, solve the matching problem, transform the solution into a duo
matching on the strings, and resolve conflicts. We show that with a small modification, each
step can be done in linear time for the unweighted problem. The key insight that allows for
this speedup is that identical triplets can be collapsed into single vertices and we can solve a
b-matching problem we call b-ATM. In the b-matching variant of classical matching, each
vertex in the graph has a capacity and can be matched that many times. We will abuse
notation a bit and refer to each vertex as having capacity b, although we actually allow the
capacity of each node to be different. The following subsections illustrate how to perform
the aforementioned steps and bound the running time of each step.

3.1 Constructing the b-ATM instance in O(n+ α4) time
We construct a triplet matching problem as in Section 2.1 with one crucial adjustment:
identical triplets are collapsed into single vertices with capacity equal to the number of
occurrences of that triplet in its given set (TA′ , TB′ , or TB′′). The number of times each
vertex is allowed to be matched is equal to its capacity. Similarly, each edge can be matched
multiple times up to the smaller capacity among its two endpoints. Algorithm 1 shows how
to construct a b-ATM instance from the two input strings in linear time.
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Algorithm 1: Construct b-ATM
1 Traverse each string to build a set of triplets with counts for A′, B′, and B′′.
2 For G′ and G′′, create a vertex for each triplet with capacity equal to its count. Add

edges between the triplets as in Section 2.1 with the following modification. If two
triplets match exactly, give the edge weight 2 and if they only share a duo in
common, give the edge weight 1.

Algorithm 2: Solve b-ATM
1 Add each edge with weight 2, corresponding to two identical triplets, to the matching.
2 Find a maximum b-matching in the remaining “unweighted” graph using maximum

flow techniques.

As in Section 2.1, let OPTG′ and OPTG′′ be the weights of maximum weight b-matchings
in G′ and G′′, respectively. Lemma 9 states that either OPTG′ or OPTG′′ will be a (3/4)-
approximation to the size of an optimal solution to MPSM, OPTMPSM . Let OPTb-ATM =
max(OPTG′ , OPTG′′) as constructed by Algorithm 1.

I Lemma 9. OPTb-ATM ≥ (3/4)OPTMPSM .

Proof. This proof follows from Lemma 6. Suppose we constructed an ATM instance as in
Section 2.1, but for the unweighted problem. By Lemma 6, we would have OPTATM ≥
(3/4)OPTMPSM . Now note that we can collapse all identical triplet vertices in each partition
of OPTATM to get a feasible solution to the b-ATM problem without reducing the weight. J

I Lemma 10. Algorithm 1 constructs a graph with O(α3) vertices and O(α4) edges in
O(n+ α4) time.

Proof. Step 1 of the algorithm clearly runs in less than O(n+ α4) time. It simply traverses
each string once, storing the triplets in some appropriate data structure with constant insert
and query time.

To bound the running time of step 2, we first bound the number of edges created. Note
that the bipartite graph of b-ATM has O(α3) vertices in each partition since that is the
maximum number of 3-mers in an alphabet of size α. To bound the edge set, notice that
for any 3-mer, there exist at most 4α other 3-mers with a substring of length 2 in common.
Thus, the max degree of each node is O(α) and the size of the edge set E is at most O(α4).
When adding edges, we can check for the existence of each edge in constant time, again
assuming the triplet are stored in some appropriate data structure. J

3.2 Solving b-ATM quickly
Algorithm 2 shows how to solve b-ATM within our time constraints. Lemma 11 proves the
correctness of this algorithm while Lemma 12 bounds its running time.

I Lemma 11. Algorithm 2 finds a maximum weight b-matching in the b-ATM instance.

Proof. Here, we need to justify Step 1 of Algorithm 2 by showing that there always exists
some maximum b-matching which contains all of the edges corresponding to identical pairs
of triplets. First note that it is feasible to include all such edges since they can never conflict
with each other. For each triplet in one partition, there is at most one identical triplet in the
other partition.
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Algorithm 3: Transform b-ATM to MPSM
1 Assign each copy of a 3-mer and its edge from the b-ATM solution to a triplet from

the original strings to get an ATM solution.
2 Transform the ATM solution into a duo matching as detailed in Section 2.2
3 Resolve conflicts by traversing the paths/cycles of the conflict graph and discarding

every other edge.

We apply the following claim iteratively to complete the proof. Given a maximum weight
b-matching M which does not include all identical pair edges, we can always add one such
edge without decreasing the weight of the solution. Consider an arbitrary identical pair edge
e that is not in M . To add e to M we need to remove at most two edges from M , one for
each endpoint of e. Since e has a weight of 2 while the removed edges have weights of 1 each,
swapping those edges for e will not reduce the weight of the solution. J

I Lemma 12. Algorithm 2 runs in O(n) time plus the time to compute an unweighted
maximum b-matching on a graph with O(α3) vertices and O(α4) edges and total capacity
O(n). Using current maximum flow algorithms, Algorithm 2 can run in O(n+ α7) time.

Proof. If the graph were unweighted, we could find a maximum b-matching in O(|V ||E|) =
O(α7) time using the maximum flow approach in [30]. Fortunately, by Lemma 11, we can
first add all edges with weight 2 to our solution. Thus, we are left with an “unweighted”
residual problem that can be solved using a maximum flow algorithm. J

3.3 Transforming the b-ATM solution to a duo matching and resolving
conflicts

Now that we have solved our b-ATM problem we need transform it back to a duo matching.
The obvious challenge here is that each b-ATM vertex represents roughly b copies of a given
3-mer that must each be assigned to a triplet in the original string in linear time while
preserving the weight of the b-ATM solution. There are b! such assignments and b could be
on the order of n. However, the important observation here is that we can do this arbitrarily
and still preserve the size of the b-ATM solution.

I Lemma 13. Algorithm 3 constructs a feasible solution to MPSM with size equal to half
the weight of OPTb-ATM .

Proof. The proof follows from Lemma 8. Notice that we assign exactly one copy of a 3-mer
to each triplet and the result is a feasible solution to the ATM problem. J

I Lemma 14. Algorithm 3 runs in O(n) time.

Proof. Assigning each copy of a 3-mer and its edge to a triplet can be done in constant time
if we maintain lists of the indices at which each 3-mer occurs in each string, resulting in
O(n) time overall. Similarly, generating the duo-matching can easily be done in O(n) time.
Resolving conflicts in the unweighted problem involves traversing O(n) edges and removing
every other one which can be done in O(n) time as well. J

The proofs of Theorem 3 and Corollary 4 follow from the preceding lemmas.
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4 A streaming algorithm for MPSM

We observe that the algorithm of [6] can be adapted into a single-pass streaming algorithm
in the streaming model where each string is read one character at a time. We present an
algorithm using O(α2 lgn) space and giving a 4-approximation of the size of an MPSM
solution without providing an explicit mapping. In [6], they upper bound MPSM by a
maximum matching in the duo graph. Then they show that a feasible MPSM solution can
be found while preserving at least 1/4 of the edges in the matching.

The algorithm is simple. Maintain a counter for each 2-mer in the alphabet and a
counter for the size of the matching. While processing the first string, count the number
of occurrences of each 2-mer. For the second string, each time you encounter a duo with
a nonzero count, decrease its count by 1 and increase the size of the matching by 1. At
the end, divide the size of the matching by 4 to get a 4-approximation to the size of the
optimal MPSM. The following Lemmas establish the space-efficiency and correctness of the
the algorithm.

I Lemma 15. The streaming algorithm uses only O(α2 lgn) space where α is the alphabet
size and n is the length of the strings.

Proof. The number of 2-mers from an alphabet of size α is α2. We require only O(lgn)
bits of space for each 2-mer counter since no 2-mer could appear more than O(n) times
where n is the length of the strings. Similarly, we keep just one counter for the size of the
matching which requires only O(lgn) bits of space since the size of the matching is at most
n. In addition to the counters, we must store the previously seen letter since our streaming
model involves reading one character at a time, but we are counting duos. However, this
only requires O(lgα) space. J

I Lemma 16. The streaming algorithm achieves a 4-approximation to MPSM.

Proof. We first show that the size of a maximum matching in a bipartite duo graph G as
defined in [6] is equal to the sum of the minimum number of occurrences of each duo among
the two strings. Notice that G can be decomposed into a set of connected components for
each 2-mer since each vertex only has edges to other vertices corresponding to the same
2-mer. Further, each of these connected components is a complete bipartite graph with
maximum matching size equal to the minimum size of the two partitions.

Thus, computing the above sum gives us the size of the maximum matching. We note
that the number of times the matching size counter increase due to vertices of a given 2-mer
is exactly equal to the minimum number of times that 2-mer appears in either of the two
strings.

Finally, as shown in [6], a maximum matching in the duo graph is an upper bound on
the optimal solution to MPSM and can always be converted into a feasible MPSM solution
while preserving at least 1/4 of its size. J

The proof of Theorem 5 follows from Lemmas 15 and 16.

5 Conclusion and future directions

We showed a transformation of the Maximum Duo-Preservation String Mapping (MPSM)
problem into a related tractable problem. This led to new algorithms for both MWPSM
and MPSM. For the weighted case, we presented a tighter approximation closing in on
the best unweighted result using a reasonably fast algorithm. We also showed that the
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running time could be improved at the expense of a slightly weaker approximation. For
the unweighted case, we presented the first linear time algorithm with an approximation
matching the previous best quadratic time algorithm and fairly close to the best known
approximation achieved by a significantly larger running time. Finally, we presented the first
streaming algorithm for MPSM showing that a constant approximation is achievable in the
single-pass streaming model.

We believe the most pressing future direction is to explore the applications and utility
of this problem further. The complementary relationship with Minimum Common String
Partition (MCSP) has driven much of the current interest in MPSM. However, given their
relationship, new approximations for MPSM do not directly lead to any improvements for
MSCP. It is reasonable to ask if the study of MPSM can teach us anything about MCSP
or at least inspire new heuristics. We note that some current linear-time algorithms for
MCSP are greedy algorithms [21] with a proven lower bound of Ω(n0.46) [24] (Although this
bound arises from carefully constructed strings over a (logn)-sized alphabet). This is in
contrast to the best known approximation for MCSP, O(logn log∗ n) [13]. Perhaps the linear
time MPSM algorithm presented here could be combined with greedy approaches leading to
better, more robust heuristics. Further, since MPSM currently appears to be “easier” than
MCSP, it would be fruitful to explore more applications for MPSM itself in bioinformatics,
data compression, and beyond.

On the theoretical side, the biggest questions revolve around the factor of 2 approximation.
Is this tight for MPSM conditioned on some hardness conjecture or can we do better? It
surely seems like a natural bound. Regardless, can we achieve a 2-approximation in linear
time? Likewise, for MWPSM, a 2-approximation could be seen as the next major goal. All of
this seems within reach, using existing ideas or different tools such as LP rounding techniques.
Another direction would be to add edit operations. It seems that MWPSM could be adapted
to handle the cost of substitutions. However, this is nontrivial since existing algorithms
assume that letters which do not belong to preserved duos can be mapped at no penalty.

Finally, we propose variants of MWPSM that may admit a faster approximation than
we see in this paper. Suppose the weights are not arbitrary, but follow some “rules”. [28]
suggested the weight of a duo-preservation could be a function of the “closeness” of the
mapping in terms of the positions of the characters in their respective strings. However, [28]
and this paper consider only arbitrary weights. One could imagine a weight function like
w(DA

i , D
B
j ) = n− |i− j| that does not require us to examine every edge in the duo graph.

Of course, the function need not be so naive as any metric or geometric weight functions
admit faster matching algorithms [1].
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