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Abstract

Poor time predictability of multicore processors has been a long-standing challenge in the real-
time systems community. In this paper, we make a case that a fundamental problem that
prevents efficient and predictable real-time computing on multicore is the lack of a proper memory
abstraction to express memory criticality, which cuts across various layers of the system: the
application, OS, and hardware. We, therefore, propose a new holistic resource management
approach driven by a new memory abstraction, which we call Deterministic Memory. The key
characteristic of deterministic memory is that the platform–the OS and hardware–guarantees
small and tightly bounded worst-case memory access timing. In contrast, we call the conventional
memory abstraction as best-effort memory in which only highly pessimistic worst-case bounds
can be achieved. We propose to utilize both abstractions to achieve high time predictability
but without significantly sacrificing performance. We present deterministic memory-aware OS
and architecture designs, including OS-level page allocator, hardware-level cache, and DRAM
controller designs. We implement the proposed OS and architecture extensions on Linux and
gem5 simulator. Our evaluation results, using a set of synthetic and real-world benchmarks,
demonstrate the feasibility and effectiveness of our approach.
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1 Introduction

High-performance embedded multicore platforms are increasingly demanded in cyber-physical
systems (CPS)–especially those in automotive and aviation applications–to cut cost and to
reduce size, weight, and power (SWaP) of the system via consolidation [31].

Consolidating multiple tasks with different criticality levels (a.k.a. mixed-criticality
systems [58, 8]) on a single multicore processor is, however, extremely challenging because
interference in shared hardware resources in the memory hierarchy can significantly alter
the tasks’ timing characteristics. Poor time predictability of multicore platforms is a major
hurdle that makes their adoption challenging in many safety-critical CPS. For example, the
CAST-32A position paper by the avionics certification authorities comprehensively discusses
the certification challenges of multicore avionics [9]. Therefore, in the aerospace industry,
it is a common practice to disable all but one core [28], because extremely pessimistic
worst-case-execution times (WCETs) nullify any performance benefits of using multicore
processors in critical applications. This phenomenon is also known as the “one-out-of-m”
problem [27].

There have been significant research efforts to address the problem. Two common
strategies are (1) partitioning the shared resources among the tasks or cores to achieve spatial
isolation and (2) applying analyzable arbitration schemes (e.g., time-division multiple access)
in accessing the shared resources to achieve temporal isolation. These strategies have been
studied individually (e.g., cache [25, 59, 39], DRAM banks [38, 63], memory bus [64, 40]) or
in combination (e.g., [27, 51]). However, most of these efforts improve predictability at the
cost of a significant sacrifice in efficiency and performance.

In this paper, we argue that the fundamental problem that prevents efficient and predict-
able real-time computing on multicore is the lack of a proper memory abstraction to express
memory criticality, which cuts across various layers of the system: the application, OS, and
hardware. Thus, our approach starts by defining a new OS-level memory abstraction, which
we call Deterministic Memory. The key characteristic of deterministic memory is that the
platform–the OS and hardware–guarantees small and tightly bounded worst-case memory
access timing. In contrast, we call the conventional memory abstraction as best-effort memory
in which only highly pessimistic worst-case bounds can be achieved.

We propose a new holistic cross-layer resource management approach that leverages the
deterministic and best-effort memory abstractions. In our approach, a task can allocate
either type of memory blocks in its address space, at the page granularity, based on the
desired WCET requirement in accessing the memory blocks. The OS and hardware then
apply different resource management strategies depending on the memory type. Specifically,
predictability focused strategies, such as resource reservation and predictable scheduling,
shall be used for deterministic memory while average performance and efficiency-focused
strategies, such as space sharing and out-of-order scheduling, shall be used for best-effort
memory. Because neither all tasks are time-critical nor all memory blocks of a time-critical
task are equally important with respect to the task’s WCET, our approach enables the
possibility of achieving high time predictability without significantly affecting performance
and efficiency through the selective use of deterministic memory.

While our approach is a generic framework that can be applied to any shared hardware
resource management, in this paper, we particularly focus on the shared cache and main
memory, and demonstrate the potential benefits of our approach in the context of shared
cache and DRAM related resource management. First, we describe OS extensions and an
OS-level memory allocation method to support deterministic memory. We then describe a
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deterministic memory-aware cache design that provides the same level of cache space isolation
of the conventional way-based partitioning techniques, while achieving significantly higher
cache space utilization. We also describe a deterministic memory-aware DRAM controller
design that extends a previously proposed real-time memory controller [55] to achieve similar
predictability benefits with minimal DRAM space waste.

We implement the deterministic memory abstraction and an OS-level memory allocator
(replacing Linux’s buddy allocator) in a Linux 3.13 kernel and implement the proposed
deterministic-memory aware memory hierarchy hardware extensions (in MMU, TLB, cache
and DRAM controller) in a gem5 full-system simulator [7] modeling a high-performance (out-
of-order) quad-core platform as the baseline. We evaluate the system using a set of synthetic
and real-world benchmarks from EEMBC [14], SD-VBS [57] and SPEC2006 [19] suites. We
achieve the same degree of isolation with conventional way-based cache partitioning for
real-time tasks while improving the cache hit rate of co-scheduled non-real-time workloads
by 39% on average. In addition, we need significantly less memory space in reserved DRAM
banks, while achieving comparable WCET guarantees compared with a state-of-the-art
real-time DRAM controller.

The main contributions of this work are as follows:
We propose a new OS-level memory abstraction, which we call Deterministic Memory,
that enables efficient cross-layer resource management, balancing time predictability and
resource efficiency.
We present a concrete system design–from the OS down to the entire memory hierarchy,
including shared cache and DRAM controller designs–that demonstrate the potential
benefits of the new memory abstraction. The key contribution of our design is its
Memory Management Unit (MMU) based approach that provides flexible, fine-grained
(page-granularity) resource management across the entire memory hierarchy.
We implement a realistic prototype system on a Linux kernel and a cycle-accurate full
system simulator. 1 We also provide extensive empirical results, using both synthetic and
real-world benchmarks, that demonstrates the effectiveness of our approach.

The remainder of the paper is organized as follows. Section 2 provides background and
motivation. Section 3 describes the proposed Deterministic Memory abstraction. Section 4
provides an overview of the deterministic memory-aware system design. Section 5 presents
DM-aware timing analysis. Section 6 details our prototype implementation. Section 7
presents evaluation results. We review related work in Section 8 and conclude in Section 9.

2 Background and Motivation

In this section, we describe why the standard uniform memory abstraction is a fundamental
limitation for the development of efficient and predictable real-time computing infrastructures.

CPU-centric Abstractions and Resource Management. Traditionally, the CPU has been
the main focus of resource management in real-time systems. This is because, in a unicore
processor, only one task at a time can access the entire memory hierarchy and that CPU
scheduling decisions have a predominant impact on the response time of real-time tasks.
Therefore, CPU-centric abstractions such as core, task and task priority have been the
primary focus of resource management. However, in multicore platforms, which have become

1 We provide the modified Linux kernel source, the modified gem5 simulator source, and the simulation
methodology at http://github.com/CSL-KU/detmem for replication study.
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mainstream over the last decade, extensive inter-core hardware resource sharing in the
memory hierarchy heavily impacts task timing. Hence, CPU time management is no longer
the sole dimension to explore when reasoning about the temporal behavior of a system.
Various OS and hardware-level solutions have been proposed to manage shared resources
in the memory hierarchy with the goal of improving time predictability (we will provide
a comprehensive review of related work in Section 8). Nonetheless, in most approaches,
CPU-centric abstractions are still most widely used to perform allocation and scheduling of
shared resources in the memory hierarchy. Unfortunately, CPU-centric abstractions are often
too coarse-grained to enact accurate management policies on memory hierarchy resources,
such as cache lines and main memory pages. For instance, when a fraction of cache space is
reserved for a task, it cannot be used by other tasks, even if it is not fully utilized by the
reserved task. Likewise, when DRAM banks are reserved for a task, they cannot be utilized
by other tasks, resulting in under-utilized DRAM space, even though not all memory of the
task may need to be allocated on the reserved DRAM bank.

The Uniform Memory Abstraction. Operating systems and hardware traditionally have
provided a simple uniform memory abstraction that hides all the complex details of the
memory hierarchy. When an application requests to allocate more memory, the OS simply
maps the necessary amount of any physical memory pages available at the time to the
application’s address space–without considering: (1) how the memory pages are actually
mapped to the shared hardware resources in the memory hierarchy, and (2) how they will
affect application performance. Likewise, the underlying hardware components treat all
memory accesses from the CPU as equal without any regard to differences in criticality and
timing requirements in allocating and scheduling the requests.

We argue that this uniform memory abstraction is fundamentally inadequate for multicore
systems because it prevents the OS and the memory hierarchy hardware from making informed
decisions in allocating and scheduling access to shared hardware resources. As such, we
believe that new memory abstractions are needed to enable both efficient and predictable
real-time resource management. It is important to note that the said abstractions should not
expose too many architectural details about the memory hierarchy to the users, to ensure
portability in spite of rapid changes in hardware architectures.

3 Deterministic Memory Abstraction

In this section, we introduce the Deterministic Memory abstraction to address the aforemen-
tioned challenges.

We define deterministic memory as special memory space for which the OS and hardware
guarantee small and tightly bounded worst-case access delay. In contrast, we call conventional
memory as best-effort memory, for which only highly pessimistic worst-case bounds can be
achieved. A platform shall support both memory types, which allow applications to express
their memory access timing requirements in an architecture-neutral way, while leaving the
implementation details to the platform–the OS and the hardware architecture. This, in turn,
enables efficient and analyzable cross-layer resource management, as we will discuss in the
rest of the section.

Figure 1 shows the conceptual differences between the two memory types with respect to
worst-case memory access delay bounds. For clarity, we divide memory access delay into two
components: inherent access delay and inter-core interference delay. The inherent access
delay is the minimum necessary timing in isolation. In this regard, deterministic memory can
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Figure 1 Conceptual differences of deterministic and best-effort memories.

Table 1 Differences in resource management strategies.

Space allocation Request scheduling WCET bounds
Deterministic memory Dedicated resources Predictability focused Tight

Best-effort memory Shared resources Performance focused Pessimistic

be slower–in principal, but not necessarily–than best-effort memory, as its main objective
is predictability and not performance, while in the case of best-effort memory, the reverse
is true. The inter-core interference delay is, on the other hand, an additional delay caused
by concurrently sharing hardware resources between multiple cores. This is where the two
memory types differ the most. For best-effort memory, the worst-case delay bound is highly
pessimistic mainly because the inter-core interference delay can be severe. For deterministic
memory, on the other hand, the worst-case delay bound is small and tight as the inter-core
interference delay is minimized by the platform.

Table 1 shows general spatial and temporal resource management strategies of the OS
and hardware to achieve the differing goals of the two memory types. Here, we mainly focus
on shared hardware resources, such as shared cache, DRAM banks, memory controllers, and
buses. In contrast, we do not focus on core-private hardware resources such as private (L1)
caches as they do not generally contribute to inter-core interference.

In the deterministic memory approach, a task can map all or part of its memory from
the deterministic memory. For example, an entire address space of a real-time task can be
allocated from the deterministic memory; or, only the important buffers used in a control
loop of the real-time task can be allocated from the deterministic memory, while temporary
buffers used in the initialization phase are allocated from the best-effort memory.

Our key insight is that not all memory blocks of an application are equally important with
respect to the application’s WCET. For instance, in the applications we profiled in Section 7.1,
only a small fraction of memory pages account for most memory accesses to the shared
memory hierarchy (shared cache and DRAM).

Based on this insight, we now provide a detailed design and implementation of determin-
istic memory-aware OS and architecture extensions with a goal of achieving high efficiency
and predictability.

ECRTS 2018
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Figure 2 Logical and physical mappings of the deterministic and best-effort memory abstractions.

4 System Design

In this section, we first provide a high-level overview of a deterministic-memory based
multicore system design (Section 4.1). We then describe necessary small OS and hardware
architecture extensions to support the deterministic/best-effort memory abstractions (Sec-
tion 4.2). Lastly, we describe deterministic memory-aware cache and DRAM management
frameworks (Section 4.3 and 4.4, respectively).

4.1 Overview

Figure 2a shows the virtual address space of a task using both deterministic and best-effort
memory under our approach. From the point of view of the task, the two memory types
differ only in their worst-case timing characteristics. The deterministic memory is realized
by extending the virtual memory system at the page granularity. Whether a certain page is
deterministic or best-effort memory is stored in the task’s page table and the information is
propagated throughout the shared memory hierarchy, which is then used in allocation and
scheduling decisions made by the OS and the memory hierarchy hardware.

Figure 2b shows the system-level (OS and architecture) view of a multicore system
supporting the deterministic and best-effort memory abstractions. In this example, each core
is given one cache way and a DRAM bank which will be used to serve deterministic memory
for the core. One cache way and four DRAM banks are assigned to the best-effort memory
of all cores. Here, the highlighted deterministic memory-aware memory hierarchy refers to
hardware support for the deterministic memory abstraction.

It is important to note that the support for deterministic memory is generally more
expensive than that of best-effort memory in the sense that it may require dedicated space,
which may be wasted if under-utilized, and predictability focused scheduling, which may not
offer the highest performance. As such, to improve efficiency and performance, it is desirable
to use as little deterministic memory as possible as long as the desired worst-case timing of
real-time tasks can be satisfied.
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Figure 3 Deterministic memory-aware memory hierarchy: Overview.

4.2 OS and Architecture Extensions for Deterministic Memory
Abstraction Support

The deterministic memory abstraction is realized by extending the OS’s virtual memory
subsystem. Whether a certain page has the deterministic memory property or not is stored
in the corresponding page table entry. Note that in most architectures, a page table entry
contains not only the virtual-to-physical address translation but also a number of auxiliary
attributes such as access permission and cacheability. The deterministic memory can be
encoded as just another attribute, which we call a DM bit, in the page table entry. 2 The OS
is responsible for updating the DM bits in each task’s page tables. The OS provides interfaces
for applications to declare and update their deterministic/best-effort memory regions at
the page granularity. Any number of memory regions of any sizes (down to a single page)
within the application’s address space can be declared as deterministic memory (the rest is
best-effort memory by default).

In a modern processor, the processor’s view of memory is determined by the Memory
Management Unit (MMU), which translates a virtual address to a corresponding physical
address. The translation information, along with other auxiliary information, is stored in a
page table entry, which is managed by the OS. Translation Look-aside Buffer (TLB) then
caches frequently accessed page table entries to accelerate the translation speed. As discussed
above, in our design, the DM bit in each page table entry indicates whether the page is for
deterministic memory or for best-effort memory. Thus, the TLB also stores the DM bit and
passes the information down to the memory hierarchy.

Figure 3 shows this information flow of deterministic memory. Note that bus protocols
(e.g., AMBA [2]) also should provide a mean to pass the deterministic memory information
into each request packet. In fact, many existing bus protocols already support some forms of
priority information as part of bus transaction messages 3. These fields are currently used
to distinguish priority between bus masters (e.g., CPU vs. GPU vs. DMA controllers). A
bus transaction for deterministic memory can be incorporated into these bus protocols, for
example, as a special priority class. The deterministic memory information can then be
utilized in mapping and scheduling decisions made by the respective hardware components
in the memory hierarchy.

In the following, we focus on cache and DRAM controllers and how the deterministic
memory information can be utilized in these important shared hardware resources.

2 In our implementation, we currently use an unused memory attribute in the page table entry of the
ARM architecture; see Section 6 for details.

3 For example, ARM AXI4 protocol includes a 4-bit QoS identifier AxQOS signal [2] that supports up to
16 different priority classes for bus transactions.

ECRTS 2018
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PartMask  ways of the given partition
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// Allocating a deterministic line
If DM==1:

victim = LRU(PartMask)
DetMask |= 1<<victim

// Allocating a best-effort line
else

victim = LRU(!DetMask U IgnMask)
DetMask ^= !(1<<victim)

fi

Way 4
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Set 0

Set 1

Set 2

Set 3

0

DM Tag Line data

Figure 4 Deterministic memory-aware cache management.

4.3 Deterministic Memory-Aware Shared Cache
In this subsection, we present a deterministic memory-aware shared cache design that
provides the same isolation benefits of traditional way-based cache partitioning techniques
while achieving higher cache space utilization.

Way-based Cache Partitioning. In a standard way-based partitioning, which is supported
in several COTS multicore processors [15, 3], each core is given a subset of cache ways. When
a cache miss occurs, a new cache line (loaded from the memory) is allocated on one of the
assigned cache ways in order not to evict useful cache lines of the other cores that share
the same cache set. An important shortcoming of way-partitioning is, however, that its
partitioning granularity is coarse (i.e., way granularity) and the cache space of each partition
may be wasted if it is underutilized. Furthermore, even if fine-grain partition adjustment is
possible, it is not easy to determine the “optimal” partition size of a task because the task’s
behavior may change over time or depending on the input. As a result, it is often a common
practice to conservatively allocate sufficient amount of resource (over-provisioning), which
will waste much of the reserved space most of the time.

Deterministic Memory-Aware Replacement Algorithm. We improve way-based partition-
ing by taking advantage of the deterministic memory abstraction. The basic approach is that
we use way partitioning only for deterministic memory accesses while allowing best-effort
memory accesses to use all the cache ways that do not currently hold deterministic cache
lines.

Figure 4 shows an example cache status of our design in which two cores share a 4-set,
5-way set-associative cache. In our design, each cache-line includes a DM bit to indicate
whether the cache line is for deterministic memory or best-effort memory (see the upper-right
side of Figure 4). When inserting a new cache line (of a given set), if the requesting memory
access is for deterministic memory, then the victim line is chosen from the core’s way partition
(e.g., way 0 and 1 for Core 0 in Figure 4). On the other hand, if the requesting memory
access is for best-effort memory, the victim line is chosen from the ways that do not hold
deterministic cache lines. (e.g., in set 0 of Fugre 4, all but way 2 are best-effort cache lines;
in set 1, only the way 4 is best-effort cache line.)

Algorithm 1 shows the pseudo code of the cache line replacement algorithm. As in the
standard cache way-partitioning, we assign dedicated cache ways for each core, denoted as
PartMaski, to eliminate inter-core cache interference. Note that DetMasks denotes the
bitmask of the set s’s cache lines that contain deterministic memory. If a request from core
i is a deterministic memory request (DM = 1), then a line is allocated from the core’s
cache way partition (PartMaski). Among the ways of the partition, the algorithm first tries
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Algorithm 1: Deterministic memory-aware cache line replacement algorithm.
Input :PartMaski - way partition mask of Core i

DetMasks - deterministic ways of Set s
Output : victim - the victim way to be replaced.

1 if DM == 1 then
2 if (PartMaski ∧ ¬DetMasks) 6= NULL then

// evict a best-effort line first
3 victim = LRU(PartMaski ∧ ¬DetMasks)
4 DetMasks |= 1� victim

5 else
// evict a deterministic line

6 victim = LRU(PartMaski)
7 end
8 else

// evict a best-effort line
9 victim = LRU(¬DetMask)

10 end
11 return victim

to evict a best-effort cache line, if such a line exists (Line 3-4). If not (i.e., all lines are
deterministic ones), it chooses one of the deterministic lines as the victim (Line 6). One the
other hand, if a best-effort memory is requested (DM 6= 1), it evicts one of the best-effort
cache lines, but not any of the deterministic cache lines (Line 9). In this way, while the
deterministic cache lines of a partition are completely isolated from any accesses other than
the assigned core of the partition, any under-utilized cache lines of the partition can still be
utilized as best-effort cache lines by all cores.

Deterministic Memory Cleanup. Note that a core’s way partition would eventually be
filled with deterministic cache lines (ones with DM = 1) if left unmanaged (e.g., scheduling
multiple different real-time tasks on the core). This would eliminate the space efficiency
gains of using deterministic memory because the deterministic memory cache lines cannot be
evicted by best-effort memory requests.

In order to keep only a minimal number of deterministic cache lines on any given partition
in a predictable manner, our cache controller provides a special hardware mechanism that
clears the DM bits of all deterministic cache lines, effectively turning them into best-effort
cache-lines. This mechanism is used by the core’s OS scheduler on each context switch so
that the deterministic cache-lines of the previous tasks can be evicted by the current task.
When the deterministic-turned-best-effort cache-lines of a task are accessed again and they
still exist in the cache, they will be simply re-marked as deterministic without needing to
reload from memory. In the worst case, however, all deterministic cache lines of a task shall
be reloaded when the task is re-scheduled on the CPU.

Note that our cache controller reports the number of deterministic cache lines that are
cleared on a context switch back to the OS. This information can be used to more accurately
estimate cache-related preemption delays (CRPD) [1].

Guarantees. The premise of the proposed cache replacement strategy is that a core’s
deterministic cache lines will never be evicted by other cores’ cache allocations, hence

ECRTS 2018
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Figure 5 Deterministic memory-aware memory controller architecture and scheduling algorithm.

preserving the benefit of cache partitioning. At the same time, non-deterministic cache lines
in the core’s cache partition can safely be used as other cores’ best-effort memory requests,
hence minimizing wasted cache capacity due to partitioning.

Comparison with PRETI. Our DM-aware cache replacement algorithm is similar to several
prior mixed-criticality aware cache designs [32, 30, 62]. The most closely related work is
PRETI [32], which also modifies LRU to be mixed-criticality-aware. There are, however,
several notable differences. First, PRETI uses the thread(task)-id to distinguish critical
and non-critical cache accesses, whereas we use MMU, which enables finer, page granularity
criticality control. Second, in PRETI, cache-lines reserved for a critical thread can only be
released on its termination. In contrast, we provide a DM-cleanup mechanism, which enables
efficient reclamation of deterministic memory cache-lines at each context-switch. Third,
PRETI’s replacement algorithm provides a firm cache space reservation capability [44] in the
sense that a real-time task can utilize more than its dedicated private space, whereas our
replacement algorithm does not allow such additional cache space utilization. Lastly, while
the prior works mainly focus on the cache, our main goal is to provide a unified framework–the
deterministic memory abstraction–which can carry information about time-sensitivity of
memory space not only in the cache, but also in the OS and throughout the entire memory
hierarchy. We will discuss how a traditional DRAM controller can be extended to support
deterministic memory abstraction in the following.

4.4 Deterministic Memory-Aware DRAM Controller
In this subsection, we present a deterministic memory-aware DRAM controller design, which,
in collaboration with our OS support, provides strong spatial and temporal isolation for
deterministic memory accesses while also enables efficient best-effort memory processing.

First, the OS actively controls on which DRAM bank a page frame is allocated. Specifically,
the OS reserves a small number of banks for each core to be used as the deterministic memory
for the core, while the rest of the banks are used for the best-effort memory of all cores,
as shown in Figure 5a (also in Figure 2b). When the OS allocates memory pages of an
application task, deterministic memory pages of the task shall be allocated on core-private
DRAM banks to eliminate DRAM bank-level inter-core interference [24, 55], while best-effort
memory pages are allocated on the shared DRAM banks.

Second, the memory controller (MC) implements a two-level scheduling algorithm that
first prioritizes deterministic memory requests over the ones for best-effort memory. For
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deterministic memory requests, we use a round-robin scheduling policy as it offers stronger
time predictability [43], while we use first-ready first-come-first-serve (FR-FCFS) policy for
scheduling best-effort memory requests as it offers high average throughput [46]. Figure 5b
shows the flowchart of the scheduler. Note, however, that strictly prioritizing deterministic
memory requests could starve best-effort memory requests indefinitely. Since we assume the
existence of a pessimistic worst-case bound for best-effort memory, we limit the maximum
number of consecutive processing of deterministic memory requests in case best-effort memory
requests exist, in order to achieve tightly bounded worst-case timing for deterministic memory
while achieving pessimistic, but still bounded, worst-case timing for best-effort memory.

Our design is inspired by prior mixed-criticality memory controller proposals [26, 22, 55],
all of which, like us, apply different scheduling algorithms depending on memory criticality,
although detailed designs (and assumptions) are varied. In this work, we particularly use
the MEDUSA memory controller design [55] as our baseline, but improve its efficiency by
leveraging the DM-bit information passed down to the memory controller. Specifically, in [55],
a real-time task has to allocate its entire memory space from the reserved DRAM banks,
even when much of its allocated memory is never used in the time-critical part. In contrast,
our design can reduce the amount of memory allocated in the reserved DRAM banks by only
allocating the deterministic memory pages. This allows us to accommodate more real-time
tasks with the same amount of reserved DRAM banks.

The necessary changes to support deterministic memory is small. Specifically, the original
MEDUSA controller [55] uses a set of memory controller specific hardware registers to
identify reserved DRAM banks of the cores. Instead, our modified memory controller design
simply uses the DM-bit information in each memory request to determine memory criticality.
Other mixed-criticality real-time memory controllers designs [26, 22] also similarly rely on
memory-controller-specific hardware registers to identify memory criticality. Thus, we believe
they also can be easily augmented to support the deterministic memory abstraction.

4.5 Other Shared Hardware Resources
We briefly discuss other potential deterministic memory-aware shared hardware designs.

As shown in [56], the miss-status-holding-registers (MSRHs) in a shared non-blocking
cache can be a significant source of inter-core interference if the number of MSHRs in the
shared cache is insufficient to support the memory parallelism of the cores. The contention
in MSHRs can be avoided by simply having a sufficient number of MSHRs, as we did in
our evaluation setup. But if it is difficult for the reasons discussed in [56], deterministic
memory-aware MSHR management can be alternatively considered. For example, one possible
DM-aware approach is that reserving some per-core MSHR entries to handle deterministic
memory and sharing the rest of MSHR entries for best-effort memory requests from all cores.

Deterministic memory-aware TLB can also be considered. Although a TLB is not typically
shared among the cores, it is conceivable to design a DM-aware TLB replacement policy that
reserves some TLB entries for deterministic memory that cannot be evicted by access to
best-effort memory addresses. Such a policy can be useful to reduce task WCET and CRPD
overhead within a core.

5 Timing Analysis

In this section, we show how the traditional response time analysis (RTA) [5] can be extended
to account for deterministic and best-effort memory abstractions.
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In our system, a real-time task τi is represented by the following parameters:

τi = {Ci, Ti, Di, DMi, BMi} (1)

where Ci is the WCET of the τi when it executes in isolation; Ti is the period of the
task; Di is the deadline of the task; DMi represents the maximum number of deterministic
memory requests that suffer inter-core interference; BMi is the maximum number of best-
effort memory requests that are subject to inter-core interference.

Note that all these parameters can be obtained in isolation. A task is said to execute in
isolation if: (1) it executes alone on the assigned core under a given resource partition; and
(2) all the other Nproc − 1 cores are idle or offline.

Note also that in the proposed DM-aware system described earlier, DMi accounts only a
subset of deterministic memory accesses that result in L2 misses because the L2 hit accesses
would not suffer inter-core interference. On the other hand, BMi would represent a subset
of best-effort memory accesses that result in L1 misses (not L2 misses). This is because for
best-effort memory, L2 cache space is shared, and, in the worst-case, all of them will have to
be fetched from the memory controller.

We then can compute τi’s worst-case memory interference delay Ii as follows:

Ii = DMi ×RDdm +BMi ×RDbm, (2)

where RDdm and RDbm denote the worst-case inter-core interference delay of a determ-
inistic and best-effort memory request, respectively.

By our system design, RDdm is small and tightly bounded because accesses to deterministic
memory suffer minimal (or zero) inter-core interference at the shared L2 cache and the shared
DRAM. On the other hand, RDbm will be substantially higher and highly pessimistic because
we have to pessimistically assume access to best-effort memory will always miss the L2 cache
and suffer high queuing delay at the DRAM controller.

Traditional RTA analysis can then be performed by finding the first value of k such that
R

(k+1)
i = R

(k)
i (task is schedulable) or such that R(k)

i > Di (task is not schedulable), given
that R(0)

i = Ci + Ii and that R(k+1)
i is calculated as:

R
(k+1)
i = Ci + Ii +

∑
τj∈hp(i)

⌈
R

(k)
i

Tj

⌉
· (Cj + Ij), (3)

where hp(i) is the set of all the tasks with priority higher than τi.
The major benefit of our approach is its flexibility. For example, a pure COTS multicore

system may provide high performance but, doesn’t provide isolation guarantees. Therefore,
all access to shared resource may need to be assumed to suffer highly pessimistic worst-case
inter-core interference delay (e.g., RDbm above) because no isolation is guaranteed. On the
other hand, a fully time-predictable hardware architecture [37, 54, 53] may provide strong
timing predictability with a small tight worst-case inter-core interference delay (e.g., RDdm

above), but not high performance and efficiency. In contrast, the flexibility of our approach
enables hardware designs that optimize differently depending on the memory type, which in
turn enables analyzable and efficient multicore systems.

6 Prototype Implementation

In this section, we provide implementation details of our prototype, which is based on Linux
3.13 kernel and gem5 [7] full-system simulator. First, we briefly review the ARMv7 architec-
ture on which our implementation is based (Section 6.1). We then describe our modifications
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Figure 6 Small descriptor format for 2nd level page table entry in ARMv7-A family SoCs [3].

to the Linux kernel to support the deterministic memory abstraction (Section 6.2). Lastly,
we describe the hardware extensions on the gem5 simulator (Section 6.3).

6.1 ARM Architecture Background
We use the ARMv7-A [3] architecture because it is well supported by the gem5 simulator.
The ARMv7 architecture defines four primary memory types and several memory-related
attributes such as cache policy (write-back/write-through) and coherence boundaries (between
cores or beyond). Up to 8 different combinations are allowed by the architecture. Each
page’s memory type is determined by a set of bits in the corresponding 2nd-level page table
entry. Figure 6 illustrates the structure of a page table entry (PTE).

In the figure, the bits TEX[0], C and B are used to define one of the 8 memory types. The
property of each memory type is determined by two global architectural registers, namely
Primary Region Remap Register (PRRR) and Normal Memory Region Register (NMRR) 4.

6.2 Linux Extensions
We have modified Linux kernel 3.13 to support deterministic memory.

At the lowest level, we define a new memory type that corresponds to the deterministic
memory. The default ARM Linux uses only 6 out of 8 possible memory types of ARMv7,
leaving two undefined memory types. For deterministic memory, we define one of the unused
memory types as the deterministic memory type, by updating PRRR and NMRR registers
at boot time. A page is marked as deterministic memory when the corresponding page table
entry’s memory attributes point to the deterministic memory type.

At the user-level, we extend Linux’s ELF (Executable and Linkable Format [10]) loader
and the exec system call implementation. We currently use a special file extension to inform
the ELF loader whether to mark the entire memory address or a subset of task’s memory
pages as deterministic memory. For fine-grained control, the virtual page numbers which
might be marked as deterministic memory are currently hard-coded in the kernel source
and a subset of them is selected based on the arguments passed to the exec system call.
In the future, we will use Linux kernel’s debugfs interface to efficiently communicate page
information. Also, the ELF header of a program binary can be used instead to encode the
virtual page numbers.

Within the Linux kernel, a task’s virtual address space is represented as a set of memory
regions, each of which is represented by a data structure, vm_area_struct, called a VMA
descriptor. Each VMA descriptor contains a variety of metadata about the memory region,
including its memory type information. Whenever a new physical memory block is allocated
(at a page fault), the kernel uses the information stored in the corresponding VMA descriptor

4 The hardware behaves as described only when the so -called “TEX remapping” mechanism is in use. TEX
remapping can be controlled via a configuration bit (TRE) in the System Control Register (SCTLR).
The Linux kernel enabled TEX remapping by default.
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to construct the page table entry for the new page. We add a new flag VM_DETMEM to indicate
the deterministic memory type in a VMA descriptor. When a page fault happens on accessing
a memory address, if the VM_DETMEM flag of the memory region corresponding to the address
is set, or the address falls within one of the virtual page numbers hard-coded in the kernel
then OS sets the TEX[0], C and B bits in allocating the page for the address to mark that it
is a deterministic memory page.

Note that the above code changes are minimal. In total, we only have added/modified
less than 200 lines of C and assembly code over 12 files in the Linux kernel source tree.
Furthermore, because most changes are in page table descriptors and their initialization, no
runtime overhead is incurred by the code changes.

We then have applied the PALLOC patch [63], which replaces the buddy allocator to
support DRAM bank-aware page allocation. We further extend the PALLOC allocator to
support deterministic memory. Specifically, we extend PALLOC’s cgroup interface to declare
a subset of banks to be used as private banks for the cgroup’s deterministic memory pages
and another subset of banks to be used for best-effort memory pages.

6.3 Gem5 Extensions
We have modified the gem5 full-system simulator as follows.

MMU and TLB. The deterministic memory type information stored in the page table is
read by the MMU and passed throughout the memory hierarchy. When a page fault occurs,
the MMU performs the page table walk to determine the physical address of the faulted
virtual address. In the process, it also reads other important auxiliary information such as
memory attribute and access permission from the page table entry and stores them into a
TLB entry in the processor. The deterministic memory attribute is stored alongside with the
other memory attributes in the TLB entry. Specifically, we add a single bit in the gem5’s
implementation of a TLB entry to indicate the deterministic memory type. As a reference,
Cortex-A17’s TLB entry has 80 bits and a significant fraction of the bits are already used to
store various auxiliary information [4] or reserved for future use. Thus, requiring a single
bit in a TLB entry does not pose significant overhead in practice. We also extend the
memory request packet format in the gem5 simulator to include the deterministic memory
type information. In this way, the memory type information of each memory request can
be passed down through the memory hierarchy. In real hardware, bus protocols should be
extended to include such information. As discussed earlier, existing bus protocols such as
AXI4 already support the inclusion of such additional information in each bus packet [2].

Cache Controller. The gem5’s cache subsystem implements a flexibly configurable non-
blocking cache architecture and supports standard LRU and random replacement algorithms.
Our modifications are as follows. First, we extend gem5’s cache controller to support a
standard way-based partitioning capability 5. The way partition is configured via a set
of programmable registers. When a cache miss occurs, instead of replacing the cache line
in the LRU position, the controller replaces the LRU line among the configured ways for
the core. The way-based partitioning mechanism is used as a baseline. On top of the
way-based partitioning, we implement the proposed deterministic memory-aware replacement
and cleanup algorithms (Section 4.3).

5 https://github.com/farzadfch/gem5-cache-partitioning
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Table 2 Simulator configuration.

Core Quad-core, out-of-order, 2 GHz, IQ: 96, ROB: 128, LSQ: 48/48
L1-I/D caches Private 16/16 KiB (2-way), MSHRs: 2(I)/6(D)

L2 cache Shared 2 MiB (16-way), LRU, MSHRs: 56, hit latency: 12
DRAM Controller Read buffer: 64, write buffer: 64, open-adaptive page policy
DRAM module LPDDR2@533MHz, 1 rank, 8 banks

DRAM Controller. Gem5’s memory controller subsystem supports a standard FR-FCFS
algorithm [18]. We have extended the memory controller subsystem to support the two-level
scheduling algorithm described in [55]. The two-level scheduler is modified to leverage the
DM bit passed to the memory controller as part of each memory request bus transaction.
Also, to prevent starvation of best-effort memory requests, we limit the maximum consecutive
deterministic memory request processing to 30 when one or more best-effort memory requests
are in the memory controller’s queue.

7 Evaluation

In this section, we present evaluation results to support the feasibility and effectiveness of
the proposed deterministic memory-aware system design.

System Setup. For OS, we use a modified Linux kernel 3.13, which implements the modi-
fications explained in Section 6.2 to support the deterministic memory abstraction. For
hardware, we use a modified gem5 full system simulator, which implements the proposed
deterministic memory support described in Section 6.3. The simulator is configured as a
quad-core out-of-order processor (O3CPU model [16]) with per-core private L1 I/D caches, a
shared L2 cache, and a shared DRAM. The baseline architecture parameters are shown in
Table 2. We use the mlockall system call to allocate all necessary pages of each real-time
application at the beginning so as to avoid page faults during the rest of program’s execution.
In addition, we enabled the kernel configuration option NO_HZ_FULL to reduce unnecessary
scheduler-tick interrupts.

7.1 Real-Time Benchmark Characteristics

We use a set of EEMBC [14] automotive and SD-VBS [57] vision benchmarks (input: sim)
as real-time workloads. We profile each benchmark, using the gem5 simulator, to better
understand memory characteristics of the benchmarks.

Figure 7a shows the ratio between the number of accessed pages within the main loop
and the number of all accessed pages of each benchmark; the pages accessed in the loop are
denoted as critical pages. To further analyze the characteristics of the critical pages, we
profiled L1 cache misses of each critical page to see which pages contribute most to the overall
L1 cache misses. Critical(T98) shows the ratio of “top” critical pages which contribute to
98% of the L1 cache misses. The same is for Critical(T90) except that 90% of the L1 cache
misses are considered. As can be seen in the figure, only 38% of all pages, on average, are
critical pages, and this number can be as low as 6% (svm.) This means that the rest of the
pages are accessed during the initialization and other non-time-critical procedures. This ratio
is further reduced to 23% of the touched pages if 90% of L1 cache misses are considered.
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Figure 7 Space and temporal characteristics of application memory pages. Critical pages refer to
the touched pages within the main loop of each benchmark.

Note that in our system setup, the private L1 cache misses are directed to the shared
L2 cache, which is shared by all cores. Thus, those pages that show high L1 misses likely
contribute most to the WCET of the application because they can suffer from high inter-core
interference due to contention at the shared L2 cache and/or the shared DRAM. Figure 7b
shows how we determine top critical pages for the svm benchmark. We rank all pages based
on the number of L1 cache misses of each page. In case of svm, the top 26 and 16 pages
account for 98% and 90% of misses of all critical pages. These pages are 4% and 2% of all
the touched pages, respectively, as shown in Figure 7a. This suggests even among the critical
pages, certain pages contribute more to WCET than the rest of the critical pages.

The results show that selective, fine-grained application of deterministic memory can
significantly reduce WCETs while minimizing resource waste.

7.2 Effects of Deterministic Memory-Aware Cache
In this experiment, we study the effectiveness of the proposed deterministic memory-aware
cache. The basic experimental setup is that we run a real-time task on Core 3 and three
instances of a memory intensive synthetic benchmark (Bandwidth with write memory access
pattern from the IsolBench suite [56]) as best-effort co-runners on Core 0 through 2. Note that
the working-set size of the best-effort co-runners is chosen so that the sum of all co-runners
is equal to the size of the entire L2 cache. This will increase the likelihood to evict the cache
lines of the real-time task if its cache lines are not protected.

We evaluate the system with 5 different configurations: NoP, WP, DM(A), DM(T98)
and DM(T90). In NoP, the L2 cache is shared among all cores without any restrictions. In
WP, the L2 cache is partitioned using the standard way-based partitioning method, where
4 dedicated cache ways are given to each core. In DM(A), the entire address space of the
real-time task is marked as deterministic memory, while in DM(T98) and DM(90), only the
pages which account for 98% and 90%of the L1 misses, respectively, of the task’s critical
pages are marked as deterministic. In all DM configurations, each core is given 1/4 of the
cache ways for the core’s deterministic memory.

Note that, in this experiment, the results for DM(A) will be similar to that of PRETI [32],
because, in both systems, a dedicated cache space is guaranteed to a real-time task’s entire
memory space, while the presence of memory-intensive best-effort co-runners would prevent
the real-time task under PRETI from utilizing additional cache space.
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Figure 8 L2 hit-rate and cache space usage (deterministic memory only) of real-time tasks.

Effects on Real-Time Tasks. Figure 8a compares the L2 hit rates of real-time tasks for each
system configuration. First, in NoP, the L2 hit rates are low (e.g., 54% for sift) because the
cache lines of the real-time benchmarks are evicted by the co-running Bandwidth benchmarks.
In WP, on the other hand, all benchmarks show close to 100% hit rates. This is because the
dedicated private L2 cache space (4 out of 16 cache ways = 512KB) is sufficient to hold the
working-sets of the real-time benchmarks, which cannot be evicted by the co-runners. The
hit rates are also close to 100% in DM(A) because the co-runners are not allowed to evict
any of the cache lines allocated for the real-time tasks as their entire memory spaces (thus
their cache-lines in the L2) are marked as deterministic memory. In DM(T98) and DM(90),
not all pages are marked as deterministic memory. As the result, the co-runners can evict
some of the best-effort cache lines of the real-time tasks and this in turn results in slight
reduction in the hit rates.

Next, for all DM configurations, we measure the fraction of deterministic memory cache-
lines in a real-time task’s cache partition by checking DM bit in the cache lines in the
instrumented gem5 simulator. Figure 8b shows the percentage of the cache lines allocated by
the deterministic memory cache lines. On average, only 49%, 27%, and 21% of cache-lines
are deterministic memory cache-lines for DM(A), DM(T98), and DM(T90), respectively.
Note that when the conventional way partitioning is used (in WP), the unused cache space
in the private cache partition is essentially wasted as no other task can utilize it. In the
deterministic memory-aware cache, on the other hand, the best-effort tasks can use the
non-DM cache lines in the cache partition. Thus, the hit rate of the best-effort tasks can be
improved as more cache space will be available to them. This effect will be shown in the
following experiment.

Effects on Best-Effort Tasks. To study the effect of deterministic memory-aware cache
on realistic best-effort tasks (as oppose the synthetic ones used above), we designed an
experiment with the bzip2 benchmark from SPEC2006 as the best-effort task running on
Core 0, and 3 instances of a real-time task running on Core 1 through 3. We chose bzip2
based on the following selection criteria: 1) It must frequently access the shared cache; 2)
It must be sensitive to extra cache space (i.e. the hit rate shall be improved if more cache
space is given to the benchmark). The bzip2 meet both requirements according to a memory
characterization study [20] by Intel, which is also confirmed in our simulation setup.

Figure 9 shows the results. Inset (a) shows the percentage of cache space used by bzip2
for each real-time task pairing, while inset (b) shows its hit rates. Note that in WP, bzip2
can only use 25% of cache space (512kB out of 2MB), as this is the size of its private cache
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Figure 9 Cache usage and hit rate impact of DM-aware cache to the best-effort task (bzip2 ).

partition. On the other hand, in a deterministic memory-aware cache, bzip2 can allocate
more lines from the private partitions of the other cores which are not marked as deterministic
memory cache lines. Consequently, the average hit rate is improved by 39%, 49%, and 50%
in DM(A), DM(T98), and DM(T90), respectively, compared with the rate in WP. Note
also that more cache lines are allocated by bzip2 in DM(T98) and DM(T90) compared to
DM(A) because more best-effort cache lines can be available for bzip2 in these configurations.
The best-effort cache lines of each core’s cache partition are shared among all of the cores,
including the core that runs bzip2 and those that run the real-time tasks. We include the
result for NoP to show how much cache space bzip2 can allocate if there is no restriction.
These numbers can also be seen as the upper-bound cache space that bzip2 can allocate
in the deterministic memory-aware cache. By comparing the cache occupancy in DM(90)
and NoP (i.e., “free-for-all” sharing), we see that using deterministic memory-aware cache,
bzip2 ’s cache space occupancy is close to what we see in NoP.

7.3 Effects of Deterministic Memory-Aware DRAM Controller

We evaluate the deterministic memory-aware DRAM controller, using SD-VBS benchmark
suite (input: CIF). Note that we increase the input size of the SD-VBS benchmarks to ensure
that the working-sets of the benchmarks do not fit in the L2 cache and the memory accesses
have to go to the main memory. On the other hand, because the EEMBC benchmarks
are cache-fitting and their working-set size cannot be adjusted, we remove them from this
experiment. We then re-profile the SD-VBS benchmark with the new inputs, following the
method described in 7.1, to determine the critical pages.

The basic setup is the same as in 7.2: We schedule a real-time task on Core 0, while
co-schedule three instances of the Bandwidth benchmark as co-runners on Core 1 to 3. The
working-set size of the Bandwidth benchmark is configured to be 2x larger than the L2
cache size to induce lots of competing DRAM accesses. We repeat the experiment in the
following configurations. In DM(A), DM(T98), and DM(T90), the cache configurations are
the same as in 7.2. In addition, each core is given a private DRAM bank for deterministic
memory in the DM configurations. The remaining four DRAM banks are shared among the
cores for best-effort memory. With the DM-aware OS allocator support described in 4.4, the
deterministic memory blocks are allocated on the per-core private banks, and the best-effort
regions are allocated on the shared banks. In BA and FR-FCFS, the FR-FCFS algorithm is
used to schedule the memory accesses to the DRAM, and no OS-level DRAM bank control
is applied (i.e., default buddy allocator).
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Figure 10 Performance and deterministic memory space impacts of DM-aware DRAM.

Figure 10a shows the normalized slowdown results for different system configurations.
Note first that real-time tasks can suffer a significant slowdown in BA&FR-FCFS (by up
to 5.7X), while all DM-aware configurations suffer much fewer slowdowns thanks to the
two-level scheduling algorithm of our DM-aware memory controller design. Figure 10b shows
the ratio between the number pages marked as deterministic and all the pages touched by
each real-time task. In DM(A), all the pages of each benchmark are marked as deterministic
memory, while in DM(T90) only 51% of pages, on average, are marked as deterministic
as more pages are allocated in best-effort DRAM banks. This space saving is achieved at
the cost of slight execution time increase in real-time benchmarks. These results show how
the number of deterministic pages can be used as a parameter to make a trade-off between
resource utilization and isolation performance.

8 Related Work

Time-predictable hardware architecture. Time-predictable hardware architecture has long
been studied in the real-time community. Edwards and Lee proposed the PRET architecture,
which promoted the idea of making time as a first-class citizen in computer architecture [13].
A PRET machine [37] provides hardware-based isolation–featuring a thread interleaved
pipeline, scratchpad memory [6] and a bank-privatized PRET DRAM controller [45]–to
support strong timing predictability and repeatability. FlexPRET improves the efficiency
of PRET with a flexible hardware thread scheduler that guarantees hardware isolation of
hard real-time threads while allowing soft real-time threads to efficiently utilize the processor
pipeline [67]. T-CREST [48], MERASA [54] and parMERASA [53] projects also have
investigated time-predictability focused core architecture, cache, cache coherence protocol,
system-bus, and DRAM controller designs [49, 23, 47, 21, 42, 43, 33, 34]. There are also
many other proposals, which focus on improving timing predictability of each individual
shared hardware component–such as time predictable shared caches [61, 62, 32], hybrid
SPM-cache architecture [65], and predictable DRAM controllers [60, 17, 29, 12]. In most
proposals, the basic approach has been to provide space and time partitioning of hardware
resources to each critical real-time task or the cores that are designated to execute such
tasks. Thus, CPU-centric abstractions such as task priority and core/task id are commonly
used information sources, which are utilized by these hardware proposals in managing
the hardware resources. However, when it comes to managing memory related hardware
resources, these CPU-centric abstractions can be too coarse-grained, which make efficient
resource management difficult. This is because neither all tasks are time-critical (and thus
requires hardware isolation support), nor all memory blocks of a critical task are necessarily
time-critical, as we have shown in Section 7.1.
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Memory address based real-time architecture designs. The basic idea of using physical
memory address in hardware-level resource management has been explored in several prior
works. Kumar et al. proposed a criticality-aware cache design, which uses a number of
hardware range registers to declare critical memory regions. Its Least Critical (LC) cache
replacement algorithm then prioritize the cache-lines of critical memory regions over others
to ensure predictable cache performance for a single-core, fixed-priority preemptive scheduled
system setup [30]. Kim et al. similarly declare critical memory regions using a set of
hardware range registers to distinguish memory-criticality at the DRAM controller level [26].
While our approach is also based on memory address based criticality determination, our
deterministic memory abstraction is designed to be utilized by the entire memory hierarchy
whereas the prior works focused on a single individual hardware resource management.
Furthermore, a key contribution of our approach is that, in our approach, memory criticality
is determined at the page granularity by utilizing memory management unit (MMU), which
enables more flexible and fine-grained (page-granularity) memory criticality control. In
contrast, the prior works may be limited by the number of available hardware range registers
in declaring critical memory regions. As such, our MMU-based approach is compatible with
high-performance processors and general-purpose OSs such as Linux, whereas the prior works
primarily focus on MMU-less processors and RTOSs. We would like to note, however, that
our MMU-based deterministic memory abstraction can be integrated into and leveraged by
these prior works. The deterministic memory abstraction provides a general framework for
the entire memory-hierarchy and thus is complementary to the prior works.

OS-level shared resource management. In many OS-level resource management approa-
ches, MMU has been a vital hardware component that the OS leverages for implementing
certain memory management policies for real-time systems. Page-coloring is a prime example
that has been used to partition shared cache [35, 36, 66, 50, 11, 59, 39, 25], DRAM banks [63,
38, 51] and even TLB [41] by selecting certain physical addresses (cache color, DRAM bank,
etc.) in allocating pages. However, in most OS-level resource management approaches,
shared resources are allocated at the granularity of task or core, which is too coarse-grained
and therefore can result in resource under-utilization problems. Furthermore, these OS-
level resource management approaches have fundamental limitations because they generally
cannot directly influence important resource allocation and scheduling decisions done by
the underlying hardware due to the lack of a generalized abstraction that allows such cross-
layer communication. We address these limitations by proposing the deterministic memory
abstraction, which enables close collaboration between the OS and the underlying hardware
components in the memory hierarchy to achieve efficient and predictable resource allocation
and scheduling. To the best of our knowledge, we are first to propose to encode each individual
memory page’s time criticality in the page’s page table entry, which is then passed through
the entire memory hierarchy to enable system-wide, end-to-end memory-criticality-aware
resource management.

9 Conclusion and Future Work

In this paper, we proposed a new memory abstraction, which we call Deterministic Memory,
for predictable and efficient resource management in multicore. We define deterministic
memory as a special memory space where the platform–OS and hardware architecture–
guarantees small and tightly bounded worst-case access timing.
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We presented OS and architecture extensions to efficiently support the deterministic
memory abstraction. In particular, we presented a deterministic memory-aware cache design
that leverages the abstraction to improve the efficiency of shared cache without losing isolation
benefits of traditional way-based cache partitioning. In addition, we proposed a deterministic
memory-aware DRAM controller which effectively reduces the necessary core-private DRAM
bank space while still providing good isolation performance. We implemented the proposed
OS extension on a real operating system (Linux) and implemented the proposed architecture
extensions on a cycle-accurate full-system simulator (gem5).

Evaluation results show the feasibility and effectiveness of deterministic memory based
cross-layer resource management. Concretely, by using deterministic memory, we achieved
the same degree of strong isolation while using 49% less cache space, on average, than the
conventional way-based cache partitioning method. Similarly, we were able to reduce required
private DRAM bank space while achieving comparable isolation performance for DRAM
intensive real-time applications, compared to a baseline real-time DRAM controller.

We are currently working on implementing the proposed architecture extensions on a
FPGA using an open-source RISC-V based multicore platform [52]. We also plan to develop
methodologies and tools to identify “optimal” deterministic memory blocks that maximize
the overall schedulability.
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