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Abstract
A system is said to be resilient if slight deviations from expected behavior during run-time
does not lead to catastrophic degradation of performance: minor deviations should result in no
more than minor performance degradation. In mixed-criticality systems, such degradation should
additionally be criticality-cognizant. The applicability of control theory is explored for the design
of resilient run-time scheduling algorithms for mixed-criticality systems. Recent results in control
theory have shown how appropriately designed controllers can provide guaranteed service to hard-
real-time servers; this prior work is extended to allow for such guarantees to be made concurrently
to multiple criticality-cognizant servers. The applicability of this approach is explored via several
experimental simulations in a dual-criticality setting. These experiments demonstrate that our
control-based run-time schedulers can be synthesized in such a manner that bounded deviations
from expected behavior result in the high-criticality server suffering no performance degradation
and the lower-criticality one, bounded performance degradation.
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1 Introduction

There is an increasing trend in embedded systems towards implementing multiple function-
alities upon a shared platform. It may be the case that all these functionalities are not
equally important to the overall correctness of the embedded system; one widely-studied
model for representing timing requirements in such systems was proposed by Vestal in a
seminal paper [33]. Vestal observed that “In many applications, the consequences of missing
a deadline vary in severity from task to task. In RTCA DO 178B, for example, system
safety analysis assigns to each task a criticality level (ranging from A to D), where erroneous
behavior by a level A task might cause loss of aircraft but erroneous behavior by a level
D task might at worst cause inconvenient or suboptimal behavior.”1 Vestal went on to
conjecture that “the higher the degree of assurance required that actual task execution times
will never exceed the WCET parameters used for analysis, the larger and more conservative
the latter values become in practice.” (This conjecture appears reasonable. Very conservative
WCET-estimation tools have been developed, typically based upon static analysis of code,
that yield WCET bounds that may be very large, but that we can trust to a very high level of
assurance. Less conservative WCET-estimation tools, which are typically measurement based,
tend to obtain smaller estimates, but these estimates may be trust-worthy to lower levels of
assurance since the worst-case behaviors of the system may not have become revealed during
the measurements.) The “Vestal model” for representing, and validating the correctness of,
mixed-criticality systems is based upon this conjecture. In this model,

§1. A fixed number of distinct criticality levels are defined throughout the system. In
this paper, we will assume that there are two such criticality levels, designated lo and hi,
with the interpretation that functionalities designated as being of the lo criticality level
need to have their correctness validated to a lower level of assurance than functionalities
designated as being of the hi criticality level.

§2. Each piece of code in the system is characterized as being of one of the criticality levels
lo or hi, and by two WCET parameter estimates. One WCET estimate is determined
using tools and techniques consistent with the lower criticality level lo, while the other
estimate is determined using tools and techniques consistent with the higher criticality
level hi.

§3. Prior to run-time, the correct timing behavior (e.g., meeting deadlines) of all the
functionalities are validated under the assumption that each piece of code will execute
for a duration not exceeding its lo-criticality WCET estimate; in addition, the correct
timing behavior of the hi-criticality functionalities (but not the lo-criticality ones) are
validated under the assumption that each piece of code may execute for a duration up to
its hi-criticality WCET estimate.

1 RTCA DO 178B is a guideline dealing with the safety of safety-critical software used in certain avionics
systems. Although the term “criticality” typically has a precise technical meaning in most safety
standards documents, its use in [33], and subsequent use in much of the mixed-criticality scheduling
theory literature, appears to be in a rather general sense as a designation of the level of assurance
against failure that is desired. In this paper we are using the term in this more general sense, in keeping
with prior literature in mixed-criticality scheduling.
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1.1 Verification versus resilience
The Vestal approach to modeling and analysis of mixed-criticality systems, as originally
proposed [33], is concerned solely with verification – determining, prior to run-time, whether
a system will behave correctly during run-time if its run-time behavior is compliant with the
models used to represent it. Clearly, such pre-runtime verification is desirable in safety-critical
systems. There is an additional aspect of correctness that is also desirable: the system’s
run-time behavior should be resilient or robust in the event that run-time behavior does not
conform to the models that were assumed during verification; if this happens, a robust system
design ensures that performance degrades gracefully, if at all. It is this run-time resilience
aspect of system behavior that is the primary focus of this paper. (While the precise semantics
of graceful degradation should be for a particular system may depend upon the characteristics
of the system, some general principles are applicable; for example, less important aspects of
system functionalities should be compromised before more important ones.)

The Vestal model of [33] and its derivatives and generalizations have formed the basis of
a large body of research: schedulability tests, scheduling algorithms, etc. – see, e.g., [5, 6]
for a survey. Much of this research is focused upon the pre-runtime verification aspect
of correctness rather than the run-time resilience. For instance, many mixed-criticality
scheduling algorithms allow for lo-criticality pieces of code to be aborted if any piece of code
executes beyond its lo-criticality WCET estimate. Such a scheduling algorithm may still
pass the pre-runtime verification test (since such tests are only concerned with the correctness
of the hi-criticality functionalities under such circumstances), but would not be considered
resilient. Some recent research has attempted to provide some resilience to lo-criticality
pieces of code in the event of some piece of code executing beyond its lo-criticality WCET
estimate; these approaches are reviewed in Section 7.

1.2 This research
In this paper, we explore the use of control-theoretic principles to achieve resilience in mixed-
criticality systems. We consider over-runs of hi-criticality pieces of code (in the sense of them
executing for more than their lo-criticality WCET estimates) to be rare events that are best
coped with by run-time adaptability. Some over-runs can be masked by under-runs by other
hi-criticality pieces of code; others will require system-wide adaptation. These adaptations
should be commensurate with the scale of the over-run – dropping all lo-criticality pieces
of code because a single hi-criticality piece of code has executed for slightly more than
its lo-criticality WCET is clearly an over-reaction. A resilient system should cope with
uncertainty in a measured way.

Some recent advances in real-time control (see, e.g., [22] and the references therein)
have motivated us to explore whether the desired resilience can be achieved using a control-
theoretic approach. The scheduling strategy we propose has the hi-criticality workload
executing within an execution-time server that is provisioned with a budget sufficient to
satisfy the lo-criticality WCET requirements of this hi-criticality workload; another, similar,
server is used to encapsulate the execution requirements of the lo-criticality workload. At
run-time if the hi-criticality server’s budget proves inadequate for meeting the execution
requirements of the hi-criticality workload (due to some hi-criticality pieces of code executing
for more than their lo-criticality WCET estimates) then the system is deemed to have
suffered a disturbance or perturbation. We employ a control feedback mechanism to govern
budget allocations going forward from the disturbance. This control-theoretic feedback
approach allows a number of questions to be answered concerning the run-time behavior of
the scheduling strategy, such as
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How long following a disturbance will it take the system to return to a non-perturbed
state?
What guaranteed level of service can be obtained for the lo-criticality workload?
What is the maximum magnitude of disturbance that can be accommodated allowing for
stable control and for the hi-criticality workload to remain schedulable?

1.3 Organization
The remainder of this paper is organized as follows. Section 2 presents the background for
this work, while Section 3 presents AdaptMC, the proposed approach, in detail. Section 4
discusses how AdaptMC is designed and tuned, while Section 5 presents how hard real-time
guarantees can be provided, by means of the calculation of the supply bound function.
Section 6 presents a numerical evaluation of AdaptMC. Section 7 reviews the related work,
while Section 8 concludes the paper.

2 Background

The use of feedback control to allocate resources has traditionally been applied to time-
varying workloads [28, 7, 1], and the kinds of offered guarantees have been probabilistic or
soft real-time. Recently, however, a control scheme called the Self-Adaptive Server (SAS) has
been proposed [22], that provides both good average behavior and hard real-time guarantees.
Such a guarantee is given by computing the supply bound function [21, 18, 27, 2] of a periodic
resource supply controlled by feedback [17].

The main idea behind SAS is as follows. Each server in the system is assigned a budget
of time to execute. The server is allowed execute more or less than the budget, but at the
next round it will be assigned a budget that is corrected with a term that is proportional to
the over- or under-run of the server. In [22] this simple, yet effective, control structure is
analyzed under the assumption that the maximum over- or under-run are bounded. The
designed controller is proven to effectively adapt the budget at run-time, while the supply
bound function associated with the controller can be computed offline.

3 The Proposed Approach

We are concerned with mixed-criticality systems in which the lo-criticality WCET values
represent typical or common-case behavior: executions rarely exceed these WCET values
and when they do, it is typically by small amounts. We seek to devise resilient scheduling
strategies for such mixed-criticality systems. As briefly stated in Section 1, our proposed
scheduling strategy uses two servers, one each for servicing the hi-criticality and lo-criticality
workloads.2 In dimensioning these servers’ budgets, our objective will be to modestly over-
allocate the hi-criticality server in the sense that “most of the time” we would expect the
entire provisioned budget to not be needed. If an occasional modest over-run occurs in

2 For the kinds of application systems that we are interested in, work (in the form of “jobs”) is typically
generated by recurrent – periodic and sporadic – tasks; determining appropriate budget and period
parameters for servers capable of accommodating the computational requirements of such recurrent tasks
is an important issue that has been widely studied in the real-time scheduling community [18, 27, 2].
However, the issue of dimensioning such servers is orthogonal to the focus of this paper and we will not
discuss it further, instead assuming that some appropriate scheme is used to determine appropriate
server parameters such that if all jobs execute at their lo-criticality WCET estimates, then each server
is able to correctly execute those jobs for which it is responsible.
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Figure 1 Server schedule over time.

the amount of execution required by the hi-criticality server (say, by an amount x over
the budgeted amount), our run-time scheduling strategy is to allow the hi-criticality server
to over-execute by this entire amount x, and then reduce the budget for the lo-criticality
server by an amount somewhat smaller than x. Informally speaking, the hope is that after
dealing with this one-time over-run, the hi-criticality server will not need to use its entire
budgeted amount for some duration, and hence can compensate the lo-criticality server over
this duration. However, (as we will see) our control-based scheduling strategy is robust to
scenarios in which the hi-criticality server over-runs for an extended duration as well; if this
happens, the lo-criticality server ends up getting under-served over an extended duration.

In order to develop a control-based strategy capable of achieving these goals, we needed
to extend and adapt SAS (Self-Adaptive Server) [22] in several directions. The feedback
mechanism derived in this paper is an extension of SAS to the mixed-criticality context that
enables:
1. the adjustment of server budgets based on disturbances at both hi-criticality and lo-

criticality servers (achieved by cross gains of the controller), and
2. the exploitation of the asymmetric nature of disturbances that are permitted for the

lo-criticality server (which may occasionally be under-served but never receives more
than its budgeted amount) to provide less conservative supply bound functions.

The presence of these two characteristics, needed in the mixed-criticality context, renders
the results in [22] inapplicable directly; hence the extensions reported here. Section 3.1
below describes the adaptive scheduling strategy we have developed; the control algorithm
underpinning this strategy is described in Section 3.2

3.1 Run-Time Scheduling Strategy
We propose a 2-levels hierarchical scheduler with two schedulers at the top level, one for
servicing lo-criticality work and the other, for servicing hi-criticality work (see Figure 1).
Let Q̄H and Q̄L denote the target budgets for the two servers, and P̄ = Q̄H + Q̄L the target
period. We will describe later the manner in which values are assigned to these target
budget parameters; intuitively speaking, we would assign them values such that under
normal circumstances (i.e., all jobs completing within their lo-criticality WCET estimates)
a periodic schedule with period P̄ in which the hi-criticality server executing for a duration
Q̄H is followed by the lo-criticality server executing for a duration Q̄L, would meet all timing
requirements for all the hi-criticality and the lo-criticality workload.

During run-time these two servers are repeatedly scheduled alternately. Let us refer to
the k’th time that both servers are scheduled as the k’th round. Let QH(k) and QL(k) denote
the tentative budgets that the control algorithm computes at the end of the k’th round, for
allocating to the two servers for the (k + 1)’th round. Initially, we have QH(0) = Q̄H and
QL(0) = Q̄L; i.e., for the first round the tentative budgets are set to be equal to the target
budgets.

Now suppose that during the (k+1)’th round for some k, the hi-criticality server needs to
execute for a duration greater than this tentative budget QH(k) in order to ensure the correct
execution of all hi-criticality jobs (budget overrun). We allow it to do so, and let SH(k + 1)
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denote the duration for which it executes – SH(k + 1) is called the actual budget assigned
to the hi-criticality server during the (k + 1)’th round, and εH(k) =

(
SH(k + 1)−QH(k)

)
is

called the disturbance experienced by the hi-criticality server, i.e., the discrepancy between
the target and actual budget. In response to such a disturbance, our control algorithm
modifies the tentative budgets QH(k + 1) and QL(k + 1) computed for both servers for the
next round, to compensate for the budget overrun and preserve the bandwidth.

3.2 The Control Algorithm

As stated earlier, our control-based scheduler is designed under the assumption that jobs
executing beyond their lo-criticality WCET estimates will be rare events. The target budget
Q̄H for the hi-criticality server should be chosen to somewhat exceed the minimum needed in
order to accommodate the lo-criticality WCET requirements for all the hi-criticality jobs;
hence, if only one or a few jobs over-run their lo-criticality WCETs during a round, such
over-runs are often masked by the excess budget and by under-runs of other hi-criticality
jobs. It should only rarely be the case that such over-runs during any round get expressed as
disturbances (i.e., as an εH(k) value for some k); in the rare events when this does happen,
our control algorithm requires that it be of magnitude that is bounded by an a priori known
constant ε̄H: |εH(k)| ≤ ε̄H.

In order to accommodate these disturbances in the hi-criticality servers, our control
algorithm will occasionally under-schedule the lo-criticality server, providing it a supply
SL(k + 1) that is strictly less than the tentative budget QL(k) that had been computed
for it – when this happens, the lo-criticality server is said to experience a disturbance
εL(k) =

(
SL(k + 1)−QL(k)

)
. We assume that such a disturbance will also be of magnitude

that is bounded by another a priori known constant ε̄L, i.e., maximum budget over-run of
the lo-criticality server.

Analogously, our run-time scheduler also bounds the “negative” disturbance to the hi-
criticality server: the amount by which the actual amount of execution supplied during a
round is less than the tentative budget, to have a magnitude no greater than ε̄H. Summarizing
the above discussion on disturbances, we obtain the following bounds on the magnitudes of
the disturbances that could be experienced by both the servers:

−ε̄H ≤ εH(k) ≤ ε̄H, −ε̄L ≤ εL(k) ≤ 0. (1)

As we had stated earlier, the actual budgets SH(k + 1) and SL(k + 1) assigned to the servers
may be expressed as being equal to the computed tentative budgets QH(k) and QL(k), plus
the disturbances εH(k) and εL(k).

SH(k + 1) = QH(k) + εH(k)
SL(k + 1) = QL(k) + εL(k)

The tentative budgets QH(k + 1) and QL(k + 1) that are computed by the control algorithm
may similarly be expressed as the sum of tentative budgets computed for the previous round
and a corrective term (called the “control signal”) denoted uH(k) and uL(k), that is computed
by the control algorithm at the end of each round:

QH(k + 1) = QH(k) + uH(k)
QL(k + 1) = QL(k) + uL(k)
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Letting

x(k) =


SH(k)
SL(k)
QH(k)
QL(k)

 , u(k) =
[
uH(k)
uL(k)

]
, ε(k) =

[
εH(k)
εL(k)

]
,

one can express the control system dynamics – the change in values of the actual and tentative
budgets across rounds that we have discussed above – in a more compact form, as follows:

x(k + 1) =

A︷ ︸︸ ︷
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

x(k) +

Bu︷ ︸︸ ︷
0 0
0 0
1 0
0 1

u(k) +

Bε︷ ︸︸ ︷
1 0
0 1
0 0
0 0

 ε(k). (2)

We now discuss how the control signals are computed by the control algorithm (this
computation is commonly referred to as the control strategy). In designing the controller, we
assign values to four real-valued gain parameters KHH,KHL,KLH, and KLL – the parameter
design is discussed in Section 4 – and compute the control signals as follows:

uH(k) = KHH

(
Q̄H − SH(k)

)
+ KHL/γ

(
Q̄L − SL(k)

)
,

uL(k) = γKLH

(
Q̄H − SH(k + 1)

)
+KLL

(
Q̄L − SL(k)

)
.

(3)

The parameters KHH,KHL,KLH, and KLL weigh the discrepancy between the target and
actual budgets; the values assigned to these parameters reflect the effect each discrepancy
has on the control signal. (Observe that in computing the control signal uL(k) that will be
applied to the lo-criticality server, we are able to exploit the fact that the value of SH(k+ 1)
is already known when the lo-criticality server is scheduled during the (k + 1)’th round; we
therefore choose to exploit this fact to compute a “better” values for uL(k).)

By substituting the control strategy as represented by Eqn (3) into Eqn (2), rearranging
terms, and letting γ denote the ratio of the target budgets, i.e., γ = Q̄L/Q̄H, the closed-loop
system dynamics may be represented as follows:

SH(k + 1) = QH(k) + εH(k) (4)
SL(k + 1) = QL(k) + εL(k) (5)
QH(k + 1) = QH(k) +KHH(Q̄H − SH(k)) + KHL/γ(Q̄L − SL(k)) (6)
QL(k + 1) = QL(k) +KLL(Q̄L − SL(k)) +KLHγ(Q̄H − SH(k + 1)) (7)

or, in a more compact way:

x(k + 1) = ACL x(k) + BQ Q̄ + Bε,CL ε(k) (8)

with

ACL =


0 0 1 0
0 0 0 1

−KHH −KHL
γ 1 0

0 −KLL −γKLH 1

 , BQ =


0 0
0 0

KHH
KHL
γ

γKLH KLL

 ,

Q̄ =
[
Q̄H

Q̄L

]
, Bε,CL =


1 0
0 1
0 0

−γKLH 0

 .
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The eigenvalues of ACL determine the convergence time towards the value x for the system
state. These can be obtained from the characteristic polynomial of ACL:

p(z) = z4 − 2z3 + (KHH +KLL + 1) z2 − (KHH +KLL +KHLKLH)z +KHHKLL. (9)

Since the considered system is linear, we can use the superposition principle3, and consider
separately the effect of Q̄ and ε on the evolution of x. The z-transform of (8) is:

X(z) = (zI −ACL)−1 (x(0) + BQQ̄ + Bε,CLE(z)
)

(10)

Evaluating the transfer function from the error ε to the state x for z = 1 computes, in control
theoretical terms, the asymptotic effect of the unitary constant disturbance ε on the state x;
in the considered case, evaluating (zI −ACL)−1Bε,CL for z = 1 yields:

(I −ACL)−1Bε,CL =


0 0
0 0
−1 0

0 −1


that proves that the effect of ε on S (the first two rows) vanishes asymptotically to zero
independently of the values assigned to the gain parameters. The effect of a unitary constant
disturbance on the budgets Q, on the other hand, is to compensate ε by reducing the budget
of exactly a unity so that value of S will compensate perfectly the disturbance ε.

4 Designing the Control Algorithm

In Section 3 we described how the control logic can be used to adjust the resource budgets
allocated to hi and lo-criticality servers. In this section, we are going to explore the
assignment of values to the control gain parameters KHH, KHL, KLH, and KLL such that the
resulting budget dynamics are guaranteed to possess the desirable control-theoretic properties
of compensation and stability.

I Definition 1 (Compensation property). A single disturbance ε(k) on the hi/lo-criticality
server results in an opposite or null effect on the value of S(k+ 1) (i.e., the actual budget) of
the lo/hi-criticality server, i.e.,

∃n > 0 : εi(k) = −α(k + n)uj(k + n), α(k + n) ≥ 0, i, j ∈ {H,L}, and i 6= j.

The intuition of the compensation property is that whenever the hi-criticality server exceeds
its budget (SH(k+ 1) > QH(k)), the lo-criticality server compensates for this disturbance by
temporarily reducing its budget. On the other hand, when the lo-criticality server requires
less time for its execution (SL(k + 1) < QL(k)), then the hi-criticality server will be allowed
to temporarily increase its budget. Finally, when the hi-criticality server executes for less
time (SH(k + 1) < QH(k)), then the lo-criticality server can temporarily increase its budget.

The overall objective is to both preserve the bandwidth of the two servers, and to reach
the target period P̄ = Q̄H + Q̄L.

3 The superposition principle for linear systems states that the net response caused by multiple stimuli
upon such a system is equal to the sum of the responses that would have been caused by each individual
stimulus.
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I Theorem 2. If

KHH > 0, KHL ≥ 0, KLH ≥ 0, KLL > 0, (11)

then the system (8) exhibits the compensation property.

Proof. First, let us consider the case when Kii > 0, KHL = KLH = 0, i ∈ {H,L} makes the hi-
and lo-criticality systems completely decoupled. It is trivial to show that the compensation
property holds, since εH has no effect on the lo-criticality server, and εL has no effect on the
hi-criticality server.

Therefore, we focus on the case Kij > 0, i, j ∈ {H,L}. Since we are dealing with a
linear system, we can consider the effect of the disturbances separately, and then use the
superposition principle. Without loss of generality, let us consider a positive disturbance
εH > 0, and an initial condition Si(0) = Qi(0) = Q̄i, i ∈ {H,L}. First, consider the case
when Kij > 0, i, j ∈ {H,L}. εH has the effect of increasing the value of SH, according to (4),
without affecting immediately the value of SL, according to (5). If Kij > 0, i, j ∈ {H,L}, an
increasing value of SH will make decrease both the tentative budgets, as per (6), and (7).
Therefore, in the next step, the tentative budget allocated to the two servers is decreased,
with the effect that SH is above the desired budget Q̄H, while SL is below the desired budget
Q̄L.

Analogous considerations can be done for the respective negative case. This concludes
the proof. J

Notice that the compensation property of the control scheme of (8) relates to the transient
behavior caused by the occurrence of a disturbance – it does not guarantee that the effect
of a disturbance will eventually vanish. Hence a second essential property of the control
scheme of (8) is stability. If stability is not guaranteed, then it is not possible to preserve the
bandwidth, and not even to preserve the target period P̄ . We want the effect of transient
perturbations to be transient, and desire that the actual server budgets tend towards the
specified target budget values. Theorem 2 guarantees some properties on the initial transient,
but it does not guarantee the convergence of the system behavior towards the desired budget;
guaranteeing such convergence is equivalent, in control theory terminology, to requiring
stability of the controlled system.

Stability of discrete-time systems, such as the one specified by Expression (8), is guaranteed
if and only if the roots of the characteristic polynomial p(z) of (9) are within the unit circle
over the complex plane C. That is

p(z) = 0 ⇒ |z| < 1.

Such a condition on the polynomial p(z) can be translated into a condition over the coefficients
of the polynomial and, in turn, into a condition over the control gains KHH, KHL, KLH, and
KLL. Jury’s stability criterion (see, for example, [23, Sec 3.15.2]) offers a necessary and
sufficient condition for the stability of a discrete-time system in the form of a set of inequalities
which are functions of the coefficients of the characteristic polynomial. By applying Jury’s
criterion to the polynomial p(z) of (9), one can obtain four analytic conditions on the values
of the parameters Kij, i, j ∈ {H,L} that guarantee stability. We do not present these
conditions here since they are quite lengthy and complex, but point out that they can be
computed through a symbolic manipulation tool4 from the expression of p(z).

4 We used the Matlab function available at https://se.mathworks.com/matlabcentral/fileexchange/
13904-jury in combination with the Matlab symbolic toolbox.
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Figure 2 Region of feasible control gains. The illustrated regions correspond to the values of
Ki ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.35}, respectively from the larger region to the smaller one.
Black dots represent the gains of the controllers selected for the examples illustrated in Section 6.

The intersection of the inequalities (11) with the stability conditions that are obtained
with the Jury criterion describes the region of the feasible controller gains that guarantee both
the compensation property and the stability of the controller. Figure 2 shows the contour
plot of the stability regions for the parameters KHH, KLL, for different values of Ki = KHLKLH

(identified in the figure with different colors). Notice that the region is symmetric with
respect to the plane KHH = KLL, and that for increasing Ki the stability region shrinks.
Moreover, for Ki = 0, the stability region is 0 < KHH < 1, and 0 < KLL < 1.

5 Bounding the Resource Supply

Feedback control for real-time resource allocation was initially used for tracking time-varying
workloads [28, 7, 1]. Because of the unpredictable nature of variations, the type of offered
guarantees are probabilistic or soft real-time. Recently, however, it was shown that a control
scheme can provide both a good average behavior and hard-real-time guarantees [22]. Such a
guarantee was given by computing the “supply bound function” of a periodic resource supply
controlled by a feedback loop such as the one described by Expression (8).

Bounds to supply functions are a commonly used abstraction for modeling the minimum
amount of a computing resource that is available over time [21, 18, 27, 2]. They have
demonstrated their applicability to realistic use cases (e.g., avionics [12]) and there exist
measurement-based tools to determine them from actual system execution traces [20]. Let
us briefly recall the main concepts. Let s(t) be the indicator function of the availability of a
resource:

s(t) =
{

1 the resource is available at time t
0 the resource is not available at time t,

(12)
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t = 0

S(1) S(2) S(3)Z(1) Z(2)

Figure 3 Active intervals interleaved with idle intervals.

Then the supply bound function sbf(t) is such that it is

∀t0, t, sbf(t) ≤
∫ t0+t

t0

s(τ) dτ. (13)

Clearly, from (13), the bound sbf(t) may not be unique. The aim of much of the research in
this area is to find valid bounds sbf(t) fulfilling (13), which are as high as possible.

In [22], the resource availability schedule is modeled as a sequence of active intervals
of duration S(k) in which the resource is provided, alternating with intervals of idle time
of duration Z(k). An example of such a schedule and the corresponding representation by
means of the sequences S(k) and Z(k) is illustrated in Figure 3. Such a model offers some
advantages over the traditional model by the indicator function of a schedule (as in Eq. 12).
In fact, it was proved (Lemma 1 in [22]) that the supply function lower bound sbf(t) can
be written as a function of the sequences of active and idle intervals. Specifically, it was
shown that if the resource offered by a schedule is modeled by a sequence of supply intervals
of length {S(k)}k=1,2,... interleaved by a sequence of idle intervals of length {Z(k)}k=1,2,...,
then the following constitutes a valid supply bound function for this resource availability:

sbf(t) = min {t− σZ(n), σS(n)} , t ∈ In, n ∈ N (14)

with the sequence of intervals {In}n∈N defined as

In =
{[

0, σZ(1)
)

n = 0[
σZ(n) + σS(n− 1), σZ(n+ 1) + σS(n)

)
n ≥ 1

(15)

and with

σS(n) = inf
n0

n0+n−1∑
k=n0

S(k), σZ(n) = sup
n0

n0+n−1∑
k=n0

Z(k), (16)

properly extended at n = 0 with σS(0) = σZ(0) = 0. The worst-case nature of the bound is
condensed in σS(n) that is the smallest sum of the lengths of n consecutive active intervals
(respectively, σZ(n) is the largest sum of the length of n consecutive idle intervals). Figure 4
illustrates an example of supply function sbf(t). In the figure, we also draw on top the extent
of the intervals In.

5.1 Characterizing the Server Supply Functions
One criticism of many mixed-criticality scheduling algorithms that have been proposed is
that the lo-criticality workload is severely penalized (e.g., dropped entirely) in the event of
the mixed-criticality system behavior exceeding its lo-criticality specifications. As stated
earlier, this violates the principle of resilience or robustness, which requires that slight
deviations from lo-criticality specifications should result in slight degradation of performance
(in mixed-criticality settings, to only the lo-criticality workload). In this section, we discuss
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sbf(t)

t

σS(1)
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σS(2)

σZ(2)

σS(3)

σZ(3)

Figure 4 An example of supply bound function sbf(t) for a resource supply described by sequences
S(k) and Z(k) of active and idle intervals.

how an appropriate assignment of values to the gains of the controller KHH,KHL,KLH, and
KLL enables such resilience by guaranteeing some resource supply to the lo-criticality server.

Our overall approach is inspired by, and based upon, the analysis proposed by Papadopou-
los et al. [22]. However, there are several differences in the server requirements/assumptions
between our model and the model in [22], that renders the main result (Theorem 1 of [22,
page 231]) inapplicable for our purposes.

First, while disturbances were assumed in [22] to have symmetric bounds, in this paper the
lo-criticality server may only experience a a negative disturbance, as in (1); equivalently,
the lo-criticality server is never allowed to execute beyond the tentative budget that is
computed for it by the control strategy.
Second, in our mixed-criticality run-time algorithm, the servers assigning the computing
resource are coupled by cross gains KHL and KLH: letting i, j ∈ {H,L}, it is possible to
correct the server budget Si(k + 1) based on any disturbance εj(k). This enables a more
prompt compensation.

The following theorem characterizes the relationship between the run-time behavior of the
two servers, and enables us to determine the supply function of both the hi-criticality and
lo-criticality servers. In the theorem we use the notation hij(k), gij(k), and rij(k) to denote
the impulse, step, and ramp responses, respectively, of the system with input εj(k) and
output Si(k), with i, j ∈ {H,L} (see Appendix A for the definitions of the considered input
signals).

I Theorem 3. Consider a pair of hi-criticality and lo-criticality servers, whose budgets SH(k)
and SL(k) are subject to disturbances εH(k) and εL(k) respectively, with closed-loop system
dynamics as specified by Equation (8). If the disturbances are bounded as specified by (1),
then the supply function sbfH(t) of the hi-criticality server is as specified in Equation (14)
with

σS(n) = nQ̄H − ε̄HNHH(n)− ε̄L

2
(
IHL(n) +NHL(n)

)
,

σZ(n) = nQ̄L + ε̄HNLH(n) + ε̄L

2
(
JLL(n) +NLL(n)

)
,

(17)

and the supply function sbfL(t) of the lo-criticality server is as specified in Equation (14)
with

σS(n) = nQ̄L − ε̄HNLH(n)− ε̄L

2
(
ILL(n) +NLL(n)

)
,

σZ(n) = nQ̄H + ε̄HNHH(n) + ε̄L

2
(
JHL(n) +NHL(n)

)
.

(18)
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The coefficients Nij(n), IiL(n), and JiL(n) used in the equations above are set as

Nij(n) =
∞∑
k=0

∣∣gij(k)− gij(k − n)
∣∣

IiL(n) = sup
k

{
riL(k)− riL(k − n)

}
JiL(n) = sup

k

{
riL(k − n)− riL(k)

} (19)

with i, j ∈ {H,L} corresponding to the lo-criticality and hi-criticality servers, respectively.

Proof. In the appendix (Appendix A). J

Theorem 3 enables us to determine the supply function of both the hi-criticality and lo-
criticality servers. In the next section, several design choices for the control gain parameters
are illustrated and discussed; it is shown how different desired behaviors can be achieved by
an appropriate choice of gain parameters.

6 Evaluation via Simulation

By characterizing the run-time dynamics of both the hi-criticality and the lo-criticality
server, Equation (8) and Theorem 3 allow us to estimate the system response to different
kinds of transient deviations from the expected “common-case” behavior, as characterized
by the lo-criticality WCET estimates. We now explore, via some simulation experiments,
(i) the manner in which the choice of gain parameter values influences the precise nature of
resilience exhibited by the run-time scheduler, and (ii) how our proposed scheme compares
with a simpler alternative strategy that is not based on the application of control-theoretic
principles.

6.1 The Influence of Parameter Values
A closed-form solution of the dynamics of the system (8) may be obtained with the Lagrange
formula for the solution of a set of linear difference equations (see, e.g., [23, Section 12.3.5,
Eq. (12.3-34a)] for a text-book discussion). We consider the following set of parameters that
are expressed as Ki = {KHH,KHL,KLH,KLL}:

K1 = {0.4, 0.1, 0.1, 0.35}, K2 = {0.15, 0.1, 0.1, 0.15}, K3 = {0.25, 0.1, 0.1, 0.25},
K4 = {0.5, 0.1, 0.1, 0.5}, K5 = {0.75, 0.1, 0.1, 0.75}

Notice that all the selected sets of parameters satisfy the stability conditions, and the
compensation property conditions, and therefore lie in the region as depicted in Figure 2.

We considered the case of the following target budgets: Q̄H = 10, Q̄L = 8, i.e., γ = 0.8,
and εH = 1, εL = 1. The resulting supply functions are presented in Figure 5. One can see
that the supply function associated with K1 is higher than the others.

If keeping with common practice in control theory, we also analyzed the controller
response to a constant disturbance. Figure 6 shows the effect of the disturbance while
varying the values of Kij, i, j ∈ {H,L}. From Figure 6 we conclude that the best value for
the parameters is K1, since it provides a faster convergence to the target budget, and with
negligible oscillations.
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Figure 5 Supply functions for the considered set of control parameters.
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Figure 6 Effect of constant disturbances with various selection of Kij , i, j ∈ {H, L}.

6.2 Comparison with an Alternative Scheme
We now compare the presented approach with a Period-Preserving Approach (PPA), described
next. Based upon the findings described in Section 6.1 above, in these experiments we have
selected the parameter values K1 for AdaptMC.

In the PPA the hi-criticality and lo-criticality servers execute in sequence and periodically,
with a fixed period P (equal to the target period for AdaptMC). Within each period, the
hi-criticality server executes as much as it needs, allowing for any overrun, and the remaining
budget of the period is allocated to the lo-criticality server. Formally, with the introduced
notation:

SH(k + 1) = QH(k) + εH(k)
SL(k) = P − SH(k + 1)

where P now is a fixed value. PPA represents the simplest and most intuitive way to
compensate for non-ideal executions of the hi-criticality server.
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Figure 7 Comparison between AdaptMC and PPA.

In order to present the main differences between AdaptMC and PPA, we consider a
scenario in which three types of disturbances occur in the system: impulse, constant, and
linearly increasing. (In a well-designed mixed-criticality system, the most common form
of deviation from expected behavior should be of the kind best modeled as an impulse
disturbance – an overload that lasts for just one round and occurs rarely enough that the
effect of one such overload will have completely dissipated by the time the next one occurs.)

The system is initialized as SH(0) = QH(0) = Q̄H = 10, and SL(0) = QL(0) = Q̄L = 8,
P = 18 and no disturbance ε is present. An impulse overrun occurs at round 10, a constant
overrun occurs between rounds 30 and 50, and a linearly increasing disturbance begins at
round 65, and increases until it becomes of magnitude ε̄H. Figure 7 summarizes the obtained
numerical results. The graphs in the first row show the time evolution of the hi-criticality
server overruns: this is the disturbance, and is the same for the AdaptMC and PPA. The
graphs in the second row compares the actual time executed by the two servers with the
two methods. AdaptMC reacts to the disturbances by trying to preserve the target budgets,
and making minor adjustments to the tentative budgets. PPA, on the other hand, favors
the overruns of the hi-criticality server, while the execution of the lo-criticality server is
severely affected. Finally, the last row of Figure 7 shows the ratio between the bandwidth
allocated for the lo-criticality server, i.e., SL/P , and the actual bandwidth allocated for the
hi-criticality server, i.e., SH/P . We call this, the bandwidth ratio, and it is defined as: SL/SH.
The target bandwidth is Q̄L/P = 8/18, and Q̄H/P = 10/18, i.e., the target bandwidth ratio
is Q̄L/Q̄H = 8/10. The average bandwidth ratio allocated with AdaptMC is much closer
to the target bandwidth ratio than with PPA , and even the maximum deviation from the
target bandwidth is minimized by AdaptMC thanks to the feedback scheme.
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7 Related Work

The key property of the control-theoretic approach to budget control described in this paper
is the dynamic manner in which it modifies budgets to deal with different sizes and types of
task overruns; this stands in sharp contrast to the approach adopted in most other scheduling
schemes for mixed-criticality systems. In these schemes during run-time the system is defined
to be in one of two modes of behaviors. In the lo-criticality or “normal” mode all tasks
are executing within their lo-criticality WCET estimates and all deadlines (of both hi- and
lo-criticality tasks) are being met. As soon as any hi-criticality task executes for more
than its lo-criticality WCET estimate then there is a system-wide mode change to the
hi-criticality mode. In this new mode the behavior of the system is quite different. The
change to the hi-criticality mode occurs even if a single hi-criticality task executes for a
miniscule amount more than its lo-criticality WCET estimate or, at the other extreme, if
all hi-criticality tasks execute at their hi-criticality WCET estimate. The system responds
in the same way: there is no attempt to define behaviors that are commensurate with the
magnitude of the overrun (the disturbance or perturbation as defined in this paper).

Following a criticality mode change there are a number of approaches that have been
developed to define the degraded behavior of the system in the hi-criticality mode. The most
extreme is to just implement the assumptions made during the verification of the system.
Here, in the hi-criticality mode, only the hi-criticality tasks are guaranteed; hence all the
lo-criticality tasks can be abandoned (aborted). This is clearly an unacceptable approach as
no attempt is made to survive the overrun; there is no resilience in the run-time behavior of
the system. Forms of resilience that have been developed include:

1. Reduce priorities of the lo-criticality tasks [3], or similar with EDF scheduling [13].
2. Increase the periods and deadlines of lo-criticality jobs [32, 31, 15, 30, 29, 25], called

task stretching, the elastic task model or multi-rate.
3. Impose only a weakly-hard constraint on the lo-criticality jobs [9].
4. Decrease the computation times of some or all of the lo-criticality tasks [4], perhaps by

utilizing an imprecise mixed-criticality (IMC) model [19, 24] or budget control [10].
5. Abandon lo-criticality work in a disciplined sequence [8, 14, 11, 26, 16].

A flexible scheme utilizing hierarchical scheduling is proposed by Gu et al. [10]. They
differentiate between minor violations of lo-criticality execution time which can be dealt
with within a component (an internal mode change) and more extensive violations that
requires a system-wide external mode change.

By removing entirely the notion of a mode change (and hence a single perhaps quite
severe change in system behavior), the approach proposed in this paper results in more
gradual and measured responses to rare temporal glitches, such responses being automatically
delivered by the developed feedback scheme.

8 Conclusions and Future Work

In this paper we have shown how a control-theoretic approach based upon servers can be
used to manage the budgets allocated to dual-criticality workloads. The control strategy
developed automatically responds to minor perturbations in the needs of the hi-criticality
server with minimum and bounded degradation in the service provided to the lo-criticality
server. The controller is defined by four “gain” parameters whose values must be constrained
in order to ensure stable and appropriate (compensated) control; nevertheless there remains
considerable freedom for the designer to tune the behavior of the controller. This has been
demonstrated by some simple examples.
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This initial study has been limited to just two criticality levels and two servers (one
per level). Future work will first look to increase the number of levels supported, and to
investigate if there is any benefit to be gained from having more than one hi-criticality server
(and more than one lo-criticality server).
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A Proof of Theorem 3

Before entering the details of the proofs, we remind that a linear time-invariant (LTI) system
can be uniquely characterized by its impulse response h(k) that is the output y(k) when the
system is stimulated with an impulsive input u(k)

u(k) =
{

1 k = 0
0 otherwise.

In next lemmas, we are also using the step response

g(k) =
k∑
i=0

h(k), (20)

and the ramp response

r(k) =
k∑
i=0

g(i) (21)

of a LTI system.
Thanks to the linear and time-invariance of the system, the output y(k) to any input

u(k) is given by the convolution of the impulse response h(k) and the input u(k), that is

y(k) = h(k)⊗ u(k) =
k∑
i=0

u(i)h(k − i).

With these basic notions recalled, next we state a technical lemma that bounds the output
y(k) of a LTI system when the input u(k) belongs to a bounded interval [ũ− ε̄, ũ+ ε̄].

I Lemma 1. Given an asymptotically stable discrete-time LTI system with impulse response
h(k), step response g(k), input u(k), and output

y(k) = h(k)⊗ u(k).

If the input u(k) is bounded as follows

u(k) = ũ+ ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄,

then, the output y(k) is bounded by

|ũ| inf
k
{sign(ũ)g(k)} − ε̄ ‖h‖1 ≤ y(k) ≤ |ũ| sup

k
{sign(ũ)g(k)}+ ε̄ ‖h‖1, (22)

with the `1-norm of a signal defined as

‖h‖1 =
∞∑
k=0
|h(k)|.

Proof. By definition of y(k) as convolution of the impulse response h(k) with the input
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signal u(k), it follows

y(k) =
k∑
i=0

u(i)h(k − i) =
k∑
i=0

(ũ+ ε(i))h(k − i)

= ũ

k∑
i=0

h(k − i) +
k∑
i=0

ε(i)h(k − i)

= ũ g(k) +
k∑
i=0

ε(i)h(k − i)

≤ |ũ| sup
k
{sign(ũ)g(k)}+ ε̄ ‖h(k)‖1

with

‖h(k)‖1 =
∞∑
k=0
|h(k)|.

Analogously

y(k) ≥ |ũ| inf
k
{sign(ũ)g(k)} − ε̄ ‖h(k)‖1,

which concludes the proof. J

The next Corollary determines the upper and lower bounds to the sum of n consecutive
outputs, by exploiting Lemma 1.

I Corollary 1. Given an asymptotically stable discrete-time LTI system, if the input u(k)
bounded as follows

u(k) = ũ+ ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄.

Then, the sum of n consecutive outputs is bounded by

−
(
|ũ| I(n) + ε̄N (n)

)
≤
n0+n−1∑
k=n0

y(k) ≤ |ũ| J (n) + ε̄N (n), (23)

with

N (n) =
∞∑
k=0
|g(k)− g(k − n)|, (24)

I(n) = sup
k
{− sign(ũ)(r(k)− r(k − n))} (25)

J (n) = sup
k
{sign(ũ)(r(k)− r(k − n))} (26)

and g(k) and r(k) being the step and ramp response, respectively.

Proof. The output y(k) of a LTI system is the convolution of the impulse response h(g) and
the input u(k)

y(k) = h(k)⊗ u(k).

Because of the linearity of the convolution, the sum of n consecutive output is
k+n−1∑
i=k

y(i) =
(
k+n−1∑
i=k

h(i)
)
⊗ u(k) =

(
g(k)− g(k − n)

)
⊗ u(k).

Finally, by applying Equation (22) of Lemma 1, Equation (23) of the Corollary follows. J
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Proof of Theorem 3. Let us first determine the supply function sbfH(t) of the hi-criticality
server. We aim at modeling the resource supplied to the hi-criticality server as a sequence of
active intervals of lengths S(k), interleaved by a sequence of idle intervals of lengths Z(k)
that corresponds to the schedule of the lo-criticality server. Formally,

S(k) = SH(k), Z(k) = SL(k). (27)

In fact, by doing so, Lemma 1 of [22] can give us the supply function of (14) through the
proper value of σS(n) and σZ(n), as defined in (16).

First of all, the system of (8) that determines the dynamics of SH(k) is linear. Hence, by
the superposition principle the output SH(k) is equal to the sum of three components:
1. the output Q̄H when εH(k) = 0 and εL(k) = 0,
2. the output yHH(k) when Q̄H = 0 and εL(k) = 0, and
3. the output yHL(k) when Q̄H = 0 and εH(k) = 0,
that is

SH(k) = Q̄H + hHH(k)⊗ εH(k)︸ ︷︷ ︸
yHH(k)

+hHL(k)⊗ εL(k)︸ ︷︷ ︸
yHL(k)

(28)

and hHi(k) is the response of SH(k) to an impulse on the input εi(k), with i ∈ {L,H}.
Let us now compute σS(n) that is, from (16), a lower bound to the sum of the length of

n consecutive budgets SH(k)

σS(n) = inf
n0

n0+n−1∑
k=n0

S(k) = inf
n0

n0+n−1∑
k=n0

SH(k) = nQ̄H + inf
n0

n0+n−1∑
k=n0

(
yHH(k) + yHL(k)

)
. (29)

To bound the sum of n consecutive values of yHH(k) and yHL(k), we can invoke Corollary 1.
Let us start with

yHH(k) = hHH(k)⊗ εH(k).

From the hypothesis of (1), εH(k) is bounded by

−ε̄H ≤ εH(k) ≤ ε̄H

and then Eq. (23) of Corollary (1) states that

−ε̄HNHH(n) ≤
n0+n−1∑
k=n0

yHH(k),

with NHH(n) as in (19). Similarly, from the asymmetric bound to εL(k) of (1), from (23) it
follows that

− ε̄L

2 (IHL(n) +NHL(n)) ≤
n0+n−1∑
k=n0

yHL(k),

from which the expression of σS(n) of (17) follows.
The expression of σZ(n) of (17) can be found by following similar steps:

1. by setting the sequence of idle intervals Z(k) equal to the sequence of the lo-criticality
budgets SL(k), as in (27);
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2. by writing the sequence SL(k) as the sum of Q̄L and the sequences yLH(k) and yLL(k) that
corresponds to the responses to the disturbances εL(k) and εL(k) on SL(k) (similarly as
in (28); and

3. by exploiting Corollary 1 to bound yLH(k) and yLL(k).

The expressions of σS(n) and σZ(n) give the expression of the sbfH(t).
Analogously, by setting

S(k) = SL(k), Z(k) = SH(k),

and following the same steps illustrated above, it is possible to determine the proper values
of σS(n) and σZ(n) of (18) and then the supply function sbfL(t) of the lo-criticality server.
This concludes the proof. J
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