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—— Abstract

Artificial Software Diversity is a well-established method to increase security of computer sys-
tems by thwarting code-reuse attacks, which is particularly beneficial in safety-critical real-time
systems. However, static worst-case execution time (WCET) analysis on complex hardware in-
volving caches only delivers sound results for single versions of the program, as it relies on absolute
addresses for all instructions. To overcome this problem, we present an abstract interpretation
based instruction cache analysis that provides a safe yet precise upper bound for the execution of
all variants of a program. We achieve this by integrating uncertainties in the absolute and relative
positioning of code fragments when updating the abstract cache state during the analysis. We
demonstrate the effectiveness of our approach in an in-depth evaluation and provide an overview
of the impact of different diversity techniques on the WCET estimations.
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1 Introduction

Cyber-Physical Systems (CPS) have an ever increasing impact on our life as more systems are
controlled by computers, which are highly interconnected and even connected to the internet.
Among these systems are hard real-time systems such as airbag or ABS controllers, where
missing a deadline is considered a system failure. If such a functionality is safety-critical,
e.g. the ignition of an airbag, the developer is required to provide guarantees on safety and
timing properties. To provide timing guarantees for given system, the worst-case execution
time (WCET) needs to be determined. Static WCET analyses deliver a safe upper bound of
the execution time of a task. In contrast, dynamic analyses under-approximate the execution
time and are thus not feasible to be used in safety-critical systems.

When safety-critical systems are exposed to potential attackers, assuring safety implies
also dealing with security issues. In particular, control-flow attacks are a threat to CPS
because approximately 82% of the systems are developed in unsafe languages [12]. Also,
CPS are often deployed in hostile environments. Existing run-time countermeasures cannot
be applied due to limited resources or limited operating system support. Recent events
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demonstrate that even in safety-critical applications, where strict regulations are in place,
attacks are successfully mounted [28, 33].

Formal methods to statically prove the absence of vulnerabilities (e.g. Astrée [29] or
CPAChecker [3]) often impose high usage effort and cost or considerable limitations in
language and development possibilities, which keep them from being widely adapted in areas
where it is not enforced by regulations. Also, defensive techniques that specifically target
known attacks and vulnerabilities are often circumvented by new kinds of attacks.

Artificial software diversity [17,23,32] is an established way to enhance security in
general purpose computing systems by thwarting code-reuse attacks such as return-oriented
programming [6,35]. The basic idea is to hide the memory layout from the attacker by
compiling or loading semantically equivalent versions of the program with varying memory
layout. Without detailed knowledge of the memory layout, it is considerably harder to
mount a successful attack using existing code. Hiding the memory layout does not prevent
attacks entirely, but it can lower the probability of success so that the attack becomes
infeasible. Diversity also copes very well with new kinds of attack, provided the attack
relies on knowledge of the memory layout, and, once introduced into the tool chain, does
not require additional actions by the developer. In addition, diversity enables redundant
systems, where independent replicas show the same intended behavior, but react differently
to code-reuse attacks. As long as an attack on a replica does not interfere with the timing of
other replicas, the system can tolerate a subset of the replicas to be compromised.

A WCET of a task in a diverse system has to be an upper bound for all variants of the
program because the timing guarantees are only sound if they are guaranteed for any variant
at any time. Existing static WCET analyses that incorporate instruction caches perform a
detailed micro-architectural analysis that relies on absolute fixed instruction addresses. Using
the diversification techniques we consider, the code is split into a fixed set of code parts,
whose order is varied among the variants (we refer to these parts as fragments). Thereby,
the absolute positions of fragments and their relative distances are unknown to the WCET
analysis. So far, due to this contradiction, state-of-the-art static WCET cache analysis is not
applicable to diverse systems, as it cannot guarantee an upper bound for all variants.

To overcome this problem, we introduce an instruction cache analysis, which is based
on the abstract interpretation-based approach originally proposed by Ferdinand [15], and
later improved by Ballabriga [1]. Our key idea is as follows: To ensure soundness, we assume
that all instructions are possibly located in any location in a cache block, and we apply the
worst-case cache behavior to all sets of blocks with unknown relative distance to the current
basic block. Together, this ensures that our analysis neither relies on absolute instruction
addresses nor on their relative distances, which both may be changed by diversification. To
still be able to calculate tight upper bounds on the WCET, we retain all relative positioning
within a fragment, we consider all possible absolute addresses of a fragment and we tightly
limit the impact of cache accesses for cache contents of other fragments to the worst-case
cache access.

Our approach universally supports all regular instruction cache architectures. In our exper-
iments with small caches, the WCET estimates are tight, with an average over-approximation
of 8.6%, compared to the highest WCET obtained by the non-diverse analysis applied to a
number of variants. The estimates are a considerable improvement over an analysis without
caches (assuming all miss for every memory access). Our benchmark results average at only
39.8% of the WCET without considering a cache.

The rest of this paper is structured as follows: In Section 2, we give an overview of
artificial diversity techniques, and we introduce the basic concepts of current instruction
cache analyses. We introduce our approach in three steps: First, in Section 3, we discuss the
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impact of changes in absolute and relative position of code fragments on the cache behavior
and analysis. Second, in Section 4, we present our analysis approach. Third, we introduce
our worst-case cache hit classification in Section 5. Section 6 contains a detailed evaluation of
our approach using well-known WCET benchmark programs. Section 7 contains a discussion
of related work. And, finally, in Section 8, we conclude with a discussion of our findings and
future work.

2 Background

In this section, we first briefly introduce artificial diversity, which serves as a basis for
the different types of diversity we use in our evaluation. Then, we introduce the WCET
instruction cache analyses our work is based on in Section 2.2.

2.1 Artificial Diversity

Artificial software diversity techniques [17,23] are run-time countermeasures against control-
flow attacks that are based on hiding information from the attacker by automatically creating
many variants of the same program. The concept is based on the fact that the attacker
needs information such as the detailed layout of parts of the memory to mount certain
attacks successfully. Diversity is most useful against code-reuse attacks [4,7,34] on systems,
where code injection is prevented using data execution prevention (DEP). The diversification
can be introduced into every stage of the software development life cycle. Comprehensive
overviews of control flow attacks and their countermeasures can be found in [35,38]. It was
demonstrated (e.g., [6]) that code-reuse attacks are a threat to CPS, many of which are
safety-critical real-time systems.

The most prominent example of artificial diversity is address space layout randomization
(ASLR) [5,32]. In ASLR, the base addresses of some or all segments of the virtual memory
of a process are randomized. ASLR is part of standard desktop operating systems such as
Windows and Linux.

In addition to the segment-level diversity of ASLR, many other variations have been
proposed, such as the substitution of instructions or small sequences with equivalent ones,
garbage code insertion, function and function variable reordering, basic block level code
shuffling, instruction-level diversity [23]. In earlier work [14], we have proposed a way to
apply block-level diversity to safety-critical real-time systems.

In this paper, we concentrate on diversity techniques whose transformations are limited
to relocating and reordering fragments of the code without changes in the control flow, code
size, and instructions. These can be applied to the entire instruction memory, and enable us
to precisely predict the WCET of all tasks of the executable. More specifically, we support
the following kinds of diversity:

Segment-level diversity: Similarly to ASLR, the entire text segment is relocated to

a random position in memory, assuming a (virtual) memory space that is considerably

larger than the program. In contrast to ASLR, segment-level diversity does not have to

be aligned to memory pages. The segment (only one fragment segment-level diversity)
can be located at any address, which includes addresses that are mapped to any offset in

a cache line.

Function-level diversity [22]: Just as the compiler is free to choose the order of

functions and global data in the final executable, a variant can contain the functions

in random order without any semantic difference to other variants. This enables a

much larger number of possible variants than in segment-level diversity. The number of

fragments equals the number of functions in the code.
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Block-level diversity [14]: The code is split into movable instruction sequences (MIS),
which form the fragments, whose last instruction is an unconditional jump (e.g. jmp,
ret). These fragments contain at least one basic block (BB) of the control flow graph

(CFG).

The diversity techniques we consider can - for instruction cache analysis - be characterized
by the diversity alignment and the fragmentation. We define the diversity alignment as the
set of offsets O = {oy,...,0x} within a cache line an instruction can be located at. The
number of offsets is equal to the cache line size divided by the alignment. For example, if a
cache line has 16 Bytes, and the placement of code fragments is aligned to 4-Byte instructions
(e.g. in ARM binaries), there are K = 4 different offsets a basic block can have relative to
a cache line. If the alignment is greater or equal to the cache lines (e.g. 4 kByte pages in
ASLR), there is only one offset K = 1. The number of fragments N, or, more specifically,
the mapping of instructions and basic blocks to fragments depends on the diversification
techniques mentioned above. We assume this information is given during our analysis using
a function frag: I — F, where I is the set of instructions the program consists of and
F={f1,..., fn} the set of fragments.

2.2 Worst-Case Execution Time Analysis

Static WCET analyses typically consist of three parts: First, control flow and data flow
analyses are used to create a model of the program in form of a control flow graph, flow
facts such as loop bounds, and variable assignments or ranges. In a second phase, the
micro-architectural analysis determines local timings, taking into account the actual timing
behavior of the processor. Finally, the execution time is maximized over all control-flow
paths, usually by representing the findings of the other phases as constraints in a linear
program that can be solved by a linear program solver. This technique is called implicit
path enumeration technique (IPET) [36]. While phase one and three are independent of
the actual memory layout of the program on the target machine, phase two depends on the
actual hardware and on the granularity of the analysis.

Instruction caches exploit the spatial and temporal proximity of executed instructions in
the memory [27]. They are constructed so that instructions that are located close to each
other are not conflicting. Therefore, the behavior of caches directly depends on the absolute
position of each instruction (or basic block) and on the relative distance of code fragments
that are executed on the same path. Any change in the program location or the order of
code fragments will directly affect the WCET analysis result.

2.3 Instruction Cache Analysis

The state-of-the-art technique to represent caches in WCET analyses is based on Ferdinand et.
al. [16]. There, an abstract interpretation based [8] separate cache analysis was introduced,
which classifies memory accesses before the global WCET maximization phase. In this
section, we briefly introduce the non-diverse analysis. Note that, while non-diverse analyses
typically map a cache state from cache to memory, we define it the other way around. This
helps in defining our analysis in a more compact way in Section 4.
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2.3.1 Cache Definition

Caches are small buffer memories with shorter access times than the main memory. They
are used to avoid long waiting times when accessing memory locations multiple times. They
are mainly defined by the following values: The line size S, defines the number of bytes that
is cached together (cache block), i.e. the size of the portion of main memory that is loaded
on a cache miss. The associativity A characterizes the number of locations, into which a
memory block can be loaded. The capacity S¢ is the total number of bytes in the cache,
with n = g—f blocks in the cache. A set consists of all memory locations that can be loaded
into a cache line, and the number of different sets equals % . A cache with A =1 is called
direct-mapped, and a cache with A = n is called a fully-associative cache.

As a replacement strategy, we focus on the least recently used (LRU) as it is most
predictable, and we leave the investigation of other replacement strategies to future work.
As we are using instruction caches and we assume that no write accesses can be made, write
strategies are of no importance to our analysis.

2.3.2 Concrete Cache State

The cache itself is constructed as follows: A cache set is a sequence of cache lines
Sz = {lsy, s Lz, }, With x denoting the index of the set. Note that the order of the lines
does not correspond to their location in memory. Instead, the index depicts the age of the
line content in the LRU replacement, with 1 being the youngest. The whole cache is the
union of all sets, C' = [J{s1,...., 52 }. We also assume a special cache line {/, }, denoting the
cache line that all memory blocks map to that are not currently in cache. The main memory
is defined as a sequence of cache blocks in memory M = {myq,....,my}, with k xSy, as the
total program size. A cache state ¢ is a function of each cache block to a cache line:

C:M—)CU{ZJ_}

The set of all cache states is denoted C.
A concrete cache state (CCS) fulfills the property that at most one cache block can be
mapped to each cache line:

e(my) = ¢(ma) = (my =ma Ve(my) =c(ma) =1,) (1)

We use auxiliary functions: set(m): M — N maps cache blocks to cache set indices. And
age : C x M — N delivers the age of a cache block in the cache, or co if not cached.

oo e(m) =11
| l

e =

7

We define the empty cache as a function that maps all cache blocks to [ :
Cl (m) = lL

An update of the cache state ¢ at a memory reference m using the LRU replacement
strategy is described by an update function: U : C x M — C that updates the mapping of
all cache blocks m’ in a cache state ¢, resulting in a new cache state. The currently accessed
cache block m is in the first line of its set, I, , as it is (most recently) accessed or loaded. If
it was not in cache, all cache blocks m’ # m move one cache line “down" in age (degrade
from I5, to ls ), with the oldest one (with a’ = A) being evicted (degraded from their
previous cache line /5, to [ ). If the access to m is a hit, only the cache blocks of the same
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v N 50

b acs:

K 190:. 12 age 1: set 1 ... setd
: age 2: set 1 ... setd

basic block:

il cache block: set
i2 cache block: set

i3 cache block: set,

Figure 1 Must analysis example.

set, which were cached more recently (a > a’), are degraded. In any case, cache blocks of

other sets are not affected.

U(c,m) = U"(c,m, set(m), age(c, m))
ls, |m’ =m
ls lm’ £#mAcim’)=1s , Nd <ANa>d
Uh ! _ S(a’+1) Sq!
(e, m, s, a)(m’) ' |m' #m Ae(m') =1, Na"=ANa= o)

c(m')  |otherwise

The concrete cache state after executing a path that contains a sequence of memory

references P = (myq,...,my) is given as cp = U(...U(U(cL,m1), m2)...,my).

Note that we define the cache states for the whole cache at once, although the behavior
of the different sets is independent. This makes it easier for us to explain our own analysis

later on.
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2.3.3 Must Analysis

In an abstract cache state (ACS), more than one cache block can be mapped to a cache
line, i.e. property (1) may not hold. From the cache perspective, each cache line can be
associated with a set of cache blocks. With these abstract cache states, cache information
of all program paths leading to the basic block can be accumulated. Using the theory of
abstract interpretation and data flow analysis [9], the abstract cache states of the complete
control flow graph are determined using a fix point algorithm.

The LRU must analysis is used to identify which cache blocks are all hit (AH), i.e. cache
blocks which never generate a cache penalty. The must analysis creates abstract cache states,
where each memory block maps to the cache line that corresponds to its oldest possible age
in the cache at the given program point.

An update of a cache block m of an ACS in the must analysis U,,,s: is the same as
the update U of a CCS: Cached blocks of younger age are degraded, and blocks of age
A are evicted if there was a miss. An important difference to the CCS is that the ACS
might contain cache blocks of the same age as m. These are not degraded, because the
ACS holds the oldest possible age, so those blocks are in fact either younger than m, where
degradation would lead to an age not older than m’s age, or older, and therefore do not
need to be degraded. Given the incoming ACS, the cache behavior of the basic block is
independent of the path that is currently executed. The relevant change is the introduction
of the join-function that is used to merge two abstract cache states at program points where
different paths join, i.e. at the start of basic blocks with at least two incoming edges. Here,
for each memory block, the most pessimistic cache line is chosen, i.e. the line with the oldest
associated age or [ if the memory block is not in the cache in at least one of the outgoing
ACS of the basic blocks at the source of the incoming edges.

Umust (Ca m) = Uh(ca m, Set(m)7 Cl,g@(C, m))

I le1(m) =11 Vea(m) =11
Jmust(c1,c2)(m) = < ca(m)  |age(er,m) < age(ca,m) Aep(m) £ 1
ci(m) lage(ci,m) > age(ca, m) A ca(m) # 11

Figure 1 gives an example of the results of the must analysis. It contains a CFG of a
short example program, and the corresponding ACS after the fix point of the analysis was
reached (assuming bbO0 is the entry node and the cache is empty at start). The cache that
is used here is a 2-way associative cache with four sets and the block size S is set so that
it contains two fixed-size instructions. The boxes with rounded corners are basic blocks,
and they are split horizontally into one part per instruction. The first number depicted in
each instruction is the cache block it belongs to and the second is its corresponding cache
set. For example, the first two instructions of bb1l are in cache block 1, which belongs to
cache set 1. Along the edges of the CFG there are the ACS. The ACS tables contain a row
for each age of cache contents with the youngest on top. The cache contents are arranged
by set, starting at set 1 from the left. This way conflicting cache blocks are in the same
column (e.g. cache blocks 1, 5 and 9 are conflicting in set 1). When a basic block is executed,
the update function U,,,s: is applied to the incoming ACS, resulting in the ACS depicted
at the outgoing edges. For example, in bb3 the cache blocks 6 and 7 are accessed, which
corresponds to changes in sets 2 and 3. After the update, cache blocks 6 and 7 are in the
ACS at age 1. The conflicting cache blocks 2 and 3 are degraded from age 1 to age 2, and
cache block 10 is evicted because it was already at age 2. The entry ACS of bb4 shows an
example application of the J,,,st: The oldest age of cache block 1 is age=2, therefore this is
its resulting age. Cache block 7 is only cached after bb3, and not after bb2, therefore it does
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not appear in the resulting ACS. The check mark marks the memory block access that is
identified as a hit by the must analysis of this example.

2.3.4 May and persistence analysis

The may analysis is used to classify cache blocks as all miss (AM). It is similar to the must
analysis, with the difference that it associates each memory block with the cache line of the
youngest age the memory block may have. Another important analysis is the persistence
analysis to classify cache blocks as first miss (FM) [30], causing a cache penalty exactly
once in a specific scope. The first abstract interpretation based analysis by Ferdinand [16]
uses a converted may analysis, whose ACS contains the oldest possible age of a cache block
up to age A + 1. Any block that cannot have reached age A + 1 at a program point is
persistent. This analysis does not perform well on nested loops. Ballabriga [1] proposed
multi-level persistence: A persistence level is determined for each loop block m is part of.
This is achieved using a stack of persistence ACS, where a new empty element is pushed on
loop entry. Using this loop context information, the outermost loop in which the block is
persistent can be determined.

Cache blocks that cannot be identified by any of the analyses are classified as non-classified
(NC), which, in a WCET analysis, is equal to AM.

3 Impact of Diversity on Caches

Instruction caches exploit the temporal and spatial proximity of the instructions executed
alongside a path. Artificial diversity (relocating and reordering) impairs spatial proximity.
Therefore, a negative impact on caching behavior and thus on the average performance can
be expected. Moreover, static instruction cache analysis depends on absolute and relative
addresses. Diversity worsens the predictability of the cache behavior because for every
uncertainty, the worst case has to be assumed.

To clarify what the impact on the instruction cache analysis is, we discuss illustrating
examples. Figure 2a and 2b show examples of the different caching behavior of the same
basic blocks with different absolute positions. Figure 2a shows a basic block that in version
1 covers two cache blocks (m2, m3) and can therefore cause at worst two cache misses. In
version 2, the same basic block is moved to another position where it covers 3 cache blocks
(m3, m4, m5). Similar to that, Figure 2b shows a loop that just fits into the cache. Moving
it by half a cache line, as in version 2, creates a conflict between the first and the last
block. These examples show that the impact of absolute address changes of a basic block
corresponds to different offsets of its instructions in the cache line. This is the case for every
cache associativity.

Figure 2¢ shows two basic blocks whose relative distance differs in the two versions. Now
the number of cache blocks per basic block is the same, but the two basic blocks cover
conflicting cache blocks. In combination with the different possible offsets this means that
every instruction of a basic block in fragment f1 can be in conflict with every instruction in
fragment f2, located at every possible offset. The impact on relative addressing is a concern
for caches with A < n, because changing distances of cache blocks might also change their
set associativity.
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Figure 2 Impact of basic block addresses on cache behavior.

The resulting insights of the impact of diversity are:

Cache sets cannot be treated independently because every instruction of f1 may affect

2.

Fragments can be located at different offsets relative to a cache line. As this may affect

version 2
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cache sets as well, the offsets cannot be handled separately as well.

The number of cache blocks covered by a single basic block and the mapping of instructions
to cache blocks differ in different versions. Therefore, a classification of cache blocks into

the classes AH, AM, FH and NC is not feasible anymore.

4  Instruction Cache Analysis for Diversified Programs

Our instruction cache analysis is based on abstract interpretation similar to the analyses
described in Section 2.3. We use the insights of Section 3 to define an ACS and its update
and join functions so that we can cope with diversity. The key idea is as follows:

For every fragment in F', we assume an own wvirtual memory in our ACS. This way
we achieve independence of the fragments and the cache sets within and we get rid of
overlapping cache blocks in adjacent basic blocks of different fragments. Note that the
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size of the memory representation is similar to the memory before, because of the smaller

size of the fragments.

We create an ACS for every possible offset within cache lines a fragment can start at.

That way, we can find the worst-case timing for a basic block.

At the transition of control flow from one fragment to another, every relative distance of

addresses is possible. To address this uncertainty, the worst case (that depends on the

analysis) is applied to ACS for all offsets of cache blocks of other fragments. That way,
we do not have to create a tree of ACS in combination of all possible fragment offsets
along a path.
These features allow us to adapt to diversity and at the same time to keep and use all
the information available during updates in the abstract interpretation fix point algorithm:
Relative positioning within a fragment is fully available. Relative intra-fragment positioning
information and absolute positioning information are reduced to the worst case of spatial
locality, which still allows us to exploit the temporal locality of instructions.

Our abstract cache model for the must analysis is as follows: The cache C is characterized
as a set of cache lines (see Section 2.3). The memory model consist of N different virtual
memories M consisting of cache blocks m, one for each fragment in F'. To also represent
all possibilities in absolute addressing (K offsets), the memory representation results in
O x F x M. Our abstract cache state function is adjusted accordingly to map every cache
block of the new memory representation to a cache line:

E:OXFXM—)CU{ZJ_}

C is the set of all cache states, and &, with &, (o, fym) = 1, represents the empty
cache state. As described in Section 3, there is no direct affiliation of an instruction with a
cache block in our abstract model, as it depends on an offset. In addition to the function
frag: I — F, we assume the function block : O x I — M, which delivers the cache block m
of an instruction ¢ within its fragment, given that it starts at an offset 0. Given the premise
that all cache blocks of a fragment f; are potentially in conflict with the cache blocks of
another fragment f5, the notion of cache sets is only valid within a fragment. Also, as only
the conflicts between blocks (the distance) are of importance and not the actual set (the
absolute set number or address), we set the start of all fragments to the current offset o,
starting in the first set.

We use the following auxiliary functions, to deliver the set number and the age of a cache
block in a cache state analogous to Section 2.3, along with a shorthand notation for the age
of an instruction ¢ at offset o fetched from cache:

set(o, fym): M — N

age:Cx0Ox FxM—N

age}nst:C’XOxI%N

ag€inst(C,0,1) = age(¢, o, frag(i), block(o, 1))

For better readability of the following definition of our must analysis, we define two

additional functions: deg: C' x N — C' is used to update (degrade) a cache block mapping in
a cache state. It selects a new cache line of the same set according to a given age a.

Iy |l:ll\/(a:oo/\l:lSA)
deg(l,a) = { s,y Il=1s, Na>d' Na' <A
ls, =15, Nla>0ANa<da)
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load,. : C x P(I) — N determines the oldest age of a hit over a set of instructions and
all offsets, or a miss if any instruction misses at any offset. This resembles the worst-case

cache degradation of cache blocks whose relative distance to the instructions in ¢ is unknown.

loady. (¢, (i1, ....iz)) = max (ag€inst(¢,0,1))
i€ i1, rin}
0€0

Our update function U,y 55 1s applied at basic block level in two steps: First, we perform
the update of cache block mappings in the ACS that belong to the same fragment as the

basic block (Usust), and in a second step we degrade the cache blocks of the other fragments

by the worst-case Dyst-

Umust53(<i1> 7'Lw>76) = Dmust(Umust(~-~(Umust(67il)a ceey Zm)a <i1> alw>)

As stated earlier, our update function Umust has to be applied to instructions rather than
cache block references, because the mapping between those differs with different offsets. The
update is therefore performed per instruction 7, which together define the virtual memory
space O x F' x M. Cache block mappings for each offset o’ in the same fragment are updated
in the same way as in the regular must analysis: If they are in another set, they stay
unchanged. Otherwise, they get degraded according to the previous cache state of ¢ and o.

deg(e(o, f',m"),a) |f = frag(i) A m = block(i,o")
F ~ N/ oel Iy /\f’:f/\é(ol,f,m):lsa
Unust(€,4) (0", f',m") = Aset(d, f,m) = set(d, f',m’)
eo, fym') |otherwise

All cache blocks of other fragments get degraded in D,y,ys by the worst-case cache access
(oldest cache hit or eviction load,,.) that any of the instructions of that basic block may suffer
at any offset, as they potentially conflict with that worst-case instruction. This pessimistic
way to cope with the uncertainty in relative distances enables us to keep the analyses and the
ACS local, combining all possible paths in the original CFG and all possible combinations of
offsets of fragments in a memory model that does not grow exponentially with the number
of fragments.

Note that this definition of the worst-case cache access assumes that no cache conflicts

can occur during the execution of a basic blocks, as the worst case access is a single miss.

This can be achieved by limiting the size of a basic block to 570 — STL in the preceding
CFG construction. The definition uses the implicit property of the diversification that all

instructions of a basic block are part of the same fragment.

Dmust(é, <i17 ceey iz>)(0/7 f/7 m/) = {deg(é(d’ f/’ m/)7 loadwC(a <i1’ o Z&U>) |f’ 7& frag(il)

e(o, f',m') |otherwise

The join function is adjusted to the new memory model in the ACS. No additional
pessimism is required at this point, because the worst-case cache behavior is already applied
during the updates.

1 [é1(o, f/om!) =1L Ve (d, f,m') =11
G0, f',m')  |age(éy, o, f',m') < age(éa, o, f',m’)
jmust(51752)(0/7f7/ m/) = /\él(olvflvm/) 7é ZJ-

él(olvflvm/) |a§e(6170’,f’,m’) > age(é%ola f/am/)
AéQ(Olvflvm/) 7é ZJ_
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Figure 3 illustrates the must analysis for diverse software. It contains the same program
and cache setting as Figure 1. The cache blocks for each instruction ¢ are named f.m, where f
refers to the fragment and m is the cache block index within this fragment. The instructions
in the basic blocks (rounded rectangles) now contain the cache block every instruction maps
to at the two different offsets, separated by slashes. The three dimensions of the ACS are
displayed as tables with a column for each offset, and where the rows represent the worst-case
cache ages for each cache block in cache, with the youngest at the top. In the update of bb2,
we can see the regular must analysis within a fragment: In the offset 0 ACS, cache blocks
1.0 and 1.1 are degraded because they conflict with 1.4 and 1.5. Cache block 1.2 stays in
the same line because it gets accessed again. In the offset 0 ACS, 1.2 stays in the top line
because there is no conflict with any of accessed blocks, whereas 1.0 and 1.1 are in conflict
here as well. The update of the ACS of the different offsets is entirely independent. In bb3
and bb4, we can see how a cache access in one fragment leads to updates of other fragments:
the worst-case access to fragment 2 is a cache miss in both cases, and thus all cache blocks
of fragment 1 get degraded once in bb3 and bb4 each.

The proposed analysis terminates because firstly, the number of memory blocks in the
program and the number of blocks in the abstract cache state are both finite and secondly,
the update and join functions are monotonous. We refrain from presenting a formal proof and
a formal closure of the abstract interpretation, because our analysis differs from Ferdinand’s
must analysis only in the way the memory blocks are organized and in additional pessimism,
resulting in faster evictions of cache blocks. The offsets enhance the ACS by another
dimension, which increases the calculation effort, but does not affect the monotony.

4.1 May and Persistence Analysis

The may analysis and persistence analysis can be defined analogously to the must analysis.
For space reasons, we keep our description brief and without the formal details, but refer the
reader to Ferdinand [16] and Ballabriga [1].

In the may analysis, the cache states are updated so that cache blocks of other fragments
are degraded using the youngest age of any cache access within the basic block, and the join
function selects the youngest age for each cache block in O x F x M out of the cache states.

Ballabriga [1] uses an optimization of the update function for efficiency: The persistence
analysis is combined with the must analysis. If a block is accessed, that is not in the must
ACS, the age of all other cache blocks is reduced.

Our persistence analysis applies the principles described for the must analysis to Ferdin-
and’s and Ballabriga’s persistence analysis: The memory is split into virtual memories M that
represent the fragments, and duplicated for each offset in O. The cache model is extended
by an additional cache line of age A + 1, which is reached if a cache block, once loaded, may
have been evicted. The update and join functions resemble a reversed may analysis, where
each cache block in the ACS maps to the oldest age that may have been reached (which is
A + 1 if the block may have been evicted). Ballabriga [1] uses an optimization of the update
function for efficiency, which we adapt: The persistence analysis is combined with the must
analysis. If a block is accessed, that is not in the must ACS, the age of all other cache blocks
is reduced. Just as in our new must analysis, the update function is applied as usual to all
blocks within the same fragment as the current basic block. The age of all other blocks is
degraded by the worst possible eviction of all accesses in the basic block (up to A + 1).

In our multi-level persistence, analogously to Ballabriga, an stack of the ACS described
above is created, where each entry represents loop nesting level. The stack is initialized with
a regular persistence analysis at the highest level outside any loop. With every loop entry, an
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Figure 3 CFG with ACS (must analysis at fix point) of example program using diversity: Two
different offsets and fragments.

empty ACS is pushed onto the stack. The entries in this ACS that are in the same fragment
as the accessed block can only be replaced by cache blocks, which are accessed within the
loop. A cache block that is persistent with respect to a loop is executed as often as the loop
is entered, at the worst. In the update function of the multi-level persistence, the cache
blocks belonging to other fragments are degraded by the worst case access of the current
basic block over all ACS and all offsets.

With our must and persistence analyses, we have established an abstract representation
of all possible cache states before and after the execution of a basic block. To extract a
worst-case timing of the execution of the block, we cannot use a direct mapping between
instructions and cache accesses. Instead, we accumulate the overall block timing using a
classification algorithm, described in the next section.
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5 Classification

Our memory model in the ACS causes every instruction to be represented K times, once for
every offset, with possibly different cache classifications. These different representations need
to be merged in order to be able to deduce a worst-case timing for the basic block. As stated
in Section 3, the number of cache blocks may differ over different offsets, and instructions
may belong to different cache blocks. Therefore, simply classifying the cache blocks is not
feasible. Instead, we determine a worst-case number for each class at basic block level. We
nevertheless use the term classification, analogously to previous publications [10,39].

Finding the worst-case of cache misses AM after applying only the must analysis is
straightforward: For each offset o € O, we count the referenced cache blocks that are not
classified as a hit (¢(o, f,m) # 1), and use their maximum to calculate the worst-case cache
penalty. This penalty is added to the WCET as often as the block is executed.

In the multi-level persistence analysis, the cache block references are additionally classified
as persistent, with respect to the outermost loop it is persistent in, adding the classes
P(L0), P(L1).... The cache penalty of a cache block classified as P(L,) is added as often
as the outermost loop it is persistent in is executed. The worst-case classification over all
offsets is more complicated than maximizing the blocks for each persistence level separately.
We use Figure 3 as an example. Basic block bb3 contains three instructions, hence two cache
blocks in each offset. With offset 0, cache block 2.0 is a miss, because after being loaded,
it could be evicted by bbl and bb5 (and possibly bb2) in the second iteration before being
accessed the next time. 2.1, however, is loaded in bb4. In loop iterations other than the
first, bb3, 2.1 was only degraded once by bb1, and is therefore persistent (P(L0)). When
located at offset 1, 2.1 is not accessed in bb4, and therefore both cache blocks cause a miss.
To sum it up, at offset 0, cache accesses are classified as AM =1, P(L0) = 1 and at offset
1, AM = 2,P(L0) = 0. To determine how many cache loads are necessary at worst for
bb3, we have to combine the results of all offsets. Now assuming the loop is executed three
times, simply counting the worst case of each class, AM = 2 and P(L0) = 1 would result
in 3% AM + P(L0) = 7 times the cache penalty, whereas the true worst case is two misses,
causing six loads in total. This example did not make use of the fact that the second AM at
offset 1, which is included in the combined worst-case, already covers the P(L0) access at
offset 0. We solve this by finding the worst case of all accesses for all offsets, instead of a
separate worst case of each class.

Assuming a reducible CFG, the execution count of an inner loop is a multiple of the loop
entry’s execution count. Therefore, we can sort the classes, according to the loop nesting
depth, by descending execution count: AM,...,P(L1),P(L0). Our classification works as
follows (we denote ¢y for the maximal number of misses and ¢;, (¢ > 0) as the maximal
number of persistent blocks of each persistence level starting at ¢; as the persistence level of
the inner loop where the block resides. a;, are the numbers of misses and persistent blocks

in offset o):
0
¢ = OEE&(GOU) i1 |Z
max (a;, =3 _y (ck —ax,)) [i>0
o=1..K

We find the access counts of each class in the worst case by reducing the count of cache
blocks per offset that are in that class by the number of blocks already covered by classes with
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higher execution counts. In the following example, maxz(P(L2)) is 1 instead of 2, because in

offset 1, one cache block is already covered by an extra miss that was identified for offset 0.

Offset | Miss P(L2) P(L1) P(L0)
0 2 1 1 1
1 1 2 2 0
max 2 1 2 0

Our classification does not contain the classes NC and AH. The above maximum results
for misses and persistence already contain a worst case for the timing behavior of the basic
block, and thereby include the blocks before classified as NC. Note that we assume that the
processor does not exhibit timing anomalies. We leave that investigation to future work.

The blocks classified as AH would resemble the "rest" of cache blocks, which are not
included in the other classes. This differs between the offsets and its maximum does not
represent useful information to the WCET analysis. If we assumed that hits also consume

time, we would have to include the hits as an extra class of the above classification algorithm.

Using the preceding analyses and our classification we can generate additional ILP
constraints for each class per basic block. These worst-case execution counts that represent
a safe upper bound for the execution of all variants of the diverse program. In the following
section, we present the evaluation we performed on our approach.

6 Evaluation

To evaluate our instruction cache analysis for diversified software, we implemented it in
OTAWA, an open research framework for static WCET analysis, [2], and compared its original
analyses [1] with our results. We implemented the must, may and multi-level persistence
analysis as described in Section 4.

Our experiments were performed using the Maldrdalen benchmark suite [18]. This set of
small example programs is widely used for evaluating static WCET analyses, and therefore
enables transparent evaluation results. Out of the Maldrdalen benchmarks, nine programs
were supported by OTAWA in the publicly available form, when applied to our ARM processor
setup including cache analysis. Most of the other benchmarks were dismissed by OTAWA
mainly because the ARM processor does not support floating point arithmetic, the flow facts
(loop bounds, indirect branches) could not be deduced automatically, or external library
functions were used, e.g. to emulate a division operation. In addition, OTAWA’s original
cache analysis, which we use to compare our results, does not support programs with basic
blocks that are too large for the cache size we selected (basic blocks containing conflicting
cache blocks cause unnecessary misses).

To increase the number of benchmarks, we slightly modified seven programs by inserting
missing compiler functions, simplifying loop bounds and splitting the large basic blocks
so that they fit the cache sets without conflict. There were no such fixes available for the
remaining benchmark programs. However, the language features being exploited in the

benchmarks is not the focus of this evaluation, as we are interested in the binary level.

Also, we do not expect the additional pessimism of our analysis compared to state-of-the-art
analyses to increase considerably in larger benchmarks, because larger code sections mostly

introduce more independent sections with greater temporal distance, less relevant to caching.

The final set of benchmarks we used for this evaluation is summarized in Table 1. In
addition to the benchmark name and its size in bytes, the table contains the number
of fragments in function-level diversification (Functions) and in block-level diversification
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Table 1 Evaluated Maldrdalen benchmarks. (*) marks benchmarks with minor changes.

Benchmark | Size(B) | Functions | MIS | WCETaum
bs 256 3 6 2445
bsort100 492 3 8 7411365
cnt 676 7 12 111195
cre 1092 4 11 889455
edn* 4104 10 29 2208345
expint* 1332 6 19 6660570
fac 192 2 4 5550
fdct* 2796 3 15 81795
fir* 1152 4 14 25809855
fibcall 192 2 3 8370
insertsort 324 2 4 25815
jidctint* 2792 3 16 105675
matmult 676 6 11 5122410
ndes 3180 6 27 1440465
nsichneu™ 30316 1 2 227130
ud* 2320 5 22 839430

(Movable instruction sequences - MIS). At last, the table shows the WCET 4, that has
to be assumed without our analysis, where every access is a miss (AM). The benchmark
programs, which had to be modified for being supported are marked with an asterisk.

For our experiments, we used a simple 5-stage architecture, where each instruction
consumes five cycles and where cache miss adds a latency of ten cycles. We selected a cache
size so that the small benchmark programs do not fit entirely and caching effects are visible:
The line size S, is 16 Bytes, i.e. four instructions in the ARM instruction set. The diversity
is aligned at the instruction size, resulting in four offsets. The number of sets (rows) is 16,
and the associativity varies in the experiments. For our experiments, we created different
variants of the benchmark programs using different offsets and random order of fragments:
30 for block-level diversity and 10 for function and segment level, respectively. To include the
full range of possible offsets for all fragments, we added a random number of NOP instructions
before the start of the program. The variants were created using the diversification program
similar to the one we in introduced in [14].

Using the given setup, we analyzed each benchmark version using different cache dimen-
sions. To obtain a comprehensive insight into the timing effects of our cache analysis, we
needed to measure both the absolute timing improvements - compared to a system without
caches - and the relative effect - compared to the cache analysis without diversity. We can
measure the absolute effect by comparing to the WCET of a system without caches (all miss
assumption) WCET 4y, as depicted in Table 1. The relative comparison is done using the
WCET obtained by the original analysis without diversity, as implemented in the publicly
available version of OTAWA. We calculated this value for each variant of each benchmark,
together with the result of our analysis. We define WC ET};,4, the highest WCET obtained
by that original analysis across all variants of a benchmark using the same cache setup.
WCET,in, accordingly, is defined as the lowest WCET across such variants. Average values
across all benchmarks are given as arithmetic mean. OTAWA also offers the possibility of
using loop unrolling. We disabled that option in all our experiments.

One particularly interesting cache architecture for our evaluation is a cache with only
one line (an instruction buffer). Diversity generally impacts spatial locality, because the
execution order of the instructions remains intact and therefore subsequent executions of
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Figure 4 Diverse WCET pessimism with different associativity A with 16 Bytes per line and 16
sets.

instructions have the same temporal distance. In the case of subsequent instructions the
temporal locality of the cache block of an instruction is impacted as well, because, depending
on the current offset, two instructions may or may not cause a cache line to be accessed twice
in a row. To evaluate the performance effect of subsequent accesses to the same cache line,
we calculate WC ETy,y, using our analysis on a one-line cache with four instructions (16B).

A necessary requirement for our analysis is that it delivers a safe upper bound that is
the same for all versions of a program given a cache size. This requirement was fulfilled in
all our experiments: The estimates were always "worse" than those of the original analysis
(WCETgi, > WCET 4z ), and they were equal across all versions in the same experiment.

Figure 4 shows the tightness of the estimates using different associativities A and block-
level diversity. The WCET estimates WC ETy;, are depicted relative to the corresponding
WCET 4. The results show that the tightness of our analysis greatly depends on the
associativity. The over-approximation is the highest for direct-mapped caches, and gets
considerably tighter with A > 2. The average factor by which our analysis over-approximated
in all experiments was 11.6% for basic-block level diversity, 4.3% for function-level, and 1.1%
for segment-level diversity, which gives a total of 5.7%.

Figure 5 compares the results of our analysis with the range of non-diverse WCET
estimates for all versions of a benchmark, using associativity A = 2 and basic block shuffling.
There, WCET,,q, and WCET,,;, are depicted alongside the result of our analysis WCET ;.
All results are shown relative to WCET 45y, the WCET using the all miss assumption that is
the only choice for a static WCET analysis of diverse programs using the existing approaches.
The results show that our analysis is a drastic improvement over assuming all miss: The
estimates are on average at 44.8% of WCOET ;. Averaging the results of all experiments
with all diversity types and associativities yields 40.8%. Furthermore, the diagram shows
the impact of diversity on the cache analysis: WCFET,,., is in average 5.3% higher than
WCET,in. The diagram also shows WCETy,;, demonstrating the impact of immediate
temporal locality. As expected, this effect is responsible for the bulk of the WCET gains, and
in some benchmarks (such as bs) WCETy,¢ is almost equal to WCET,;,,. However, this is
not the case for most benchmarks, so that WCET,, s averages at only 56% of WCET gp.

Figure 6 shows the impact of fragmentation on the analysis result. The WCET estimates
for associativity A = 2 are depicted for all diversity types, again with WCFETy,;, relative
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Figure 5 Comparison of WCET estimates using 2-associative cache with 16 Bytes per line and
16 sets.

to WCET, 4. - The results show that basic-block diversity produces the highest estimates
(avg. 13.8%), while the segment-level diversity causes very low additional pessimism (avg.
1.2%). Function-level diversity averages at 6.0%.

Figure 7 shows the computation time compared to that of the original analysis. We
measured the total execution time of each of the above experiments. The diagram shows
the average factor by which the computation time exceeds that of the original analysis,
in dependence of associativity A and the diversity type. We have expected an increase of
computation time, as the ACS is a multiple of the size of the original analysis, because it
contains a memory representation per offset. However, to deliver a sound upper bound,
the original analysis would have to be executed for each possible version, which would take
considerably longer depending on the number of fragments. The results for A = 1 show a
factor eight in consumed time, while the number of offsets is K = 4. The time also increases
with associativity A, but not proportionally. We have observed that it took more iterations
for the fixpoint algorithm to terminate, and this increased with higher associativity. It can
partly be explained with the fact that the cache sets are not independent in our analysis.
The comparison of execution times of different diversity types delivers somewhat surprising
results: The analysis time increase for segment-level diversity is the highest, while function
level diversity performs best.

Note that in theory the performance analysis of OTAWA still has the bug referenced
by Cullmann [10], which causes restrictions on the use of indirect branches. Our approach
does not fix that, however, we think the demonstration of our approach using the proposed
persistence analysis is representative as the error has a low impact, in particular on instruction
caches. However, we plan to apply our solution to other persistence analyses as well.

To summarize our results, we can conclude that diversity is not prohibitive for WCET
cache analysis. On the contrary, in many experiments our analysis results are very tight,
and in all experiments they were far lower than the WCET without analyzing the cache.
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7 Related Work

To our knowledge, there is no approach of static WCET cache analysis that supports artificial
software diversity. However, many of the existing approaches serve as a basis for our approach
or may be complemented with our ideas.

7.1 WCET Analysis

Our approach is based on Ferdinand’s abstract interpretation-based analyses [15,16], as well
as Ballabriga’s extension, the multi-level persistence [1]. Other approaches improved the
persistence analysis as well. Cullmann [10] proposed two analyses, one based on conflict
counting and one that combines a regular may analysis with one that collects the oldest age.
Huynh [21] collects a set of conflicting blocks that may be younger than a block m at its
execution. If there are less than A blocks in this set, m is persistent. These analyses are

based on abstract interpretation, thus we believe that our ideas are applicable there as well.

Apart from abstract interpretation there are other static cache analysis techniques,
comprehensively surveyed in [27]. [24] introduces cache conflict graphs, explicitly modeling
all concrete cache states. [26] uses model checking, which also, implicitly, analyzes all cache
states. These approaches suffer from scalability issues, which would be worsened considerably
by extending the state space with the uncertainty of diversity.

In [19] also investigates relative addressing of cache contents. However, they concentrate
on data flow analyses for data caches, rather than implicit relations between instructions.
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WCET-aware compiler optimizations such as code positioning [13] [25] are used to improve
the WCET by varying compiler decisions similar to diversity. However, these approaches are
based on heuristics and are not able to find a guaranteed upper or lower bound.

7.2 Artificial Diversity

Out of the many artificial software diversity approaches [23], we chose those that limit their
transformations to reordering and relocating of fragments, for the reason that we need to
be able to predict the WCET of all possible versions. This would be possible as well for
narrow-scope in-place code transformations [31]. However, it would require a more detailed
analysis of the instruction semantics and would further complicate the ACS construction.

There are also basic-block level approaches that propose splitting the code dynamically
into blocks at random positions [11,37] for each variant. This is not supported as they change
the CFG and thus the WCET impact over all variants would be unpredictable statically.

Instruction level diversity [20] uses higher fragmentation than block-level diversity. We
expect its caching behavior to be very bad, and the analysis is futile as the relative distances
of all instructions are unknown.

8 Conclusion

The instruction cache analysis we propose fills an important gap in the research of static
WCET analysis, as it is the first to support artificially diversified programs. The key idea
is to precisely represent the uncertainties in relative and absolute positioning, which are
introduced by diversity, in the analysis, while still exploiting all relative information that is
still available. Our analysis supports all artificial diversity approaches where diversification
is achieved by reordering and relocation of code fragments. We have discussed that diversity
has an impact on caching and its analysis, which is confirmed by our experimental results.

Our evaluation shows that our analysis delivers a safe upper bound for all versions, and
that it is a major improvement over assuming all miss for the worst case, or not enabling the
cache at all. In many cases, the estimations are even very close to the highest WCET that
the non-diverse analysis may find. As we chose very small caches for being able to better
observe the different effects, we can even expect better results for more common cache sizes.

In addition to systems using artificial software diversity, the analysis is also applicable
to other areas, where code fragment positions are, at least partially, unavailable, such as
dynamic libraries, or resources linked together from independent teams or vendors.

There are interesting aspects of the approach that deserve further attention. Applying the
worst case of cache accesses per basic block is pessimistic considering that several successive
basic blocks of the same fragment might not contain any conflicts. We will look into extending
this scope to larger regions or sub-paths. We did also not investigate the actual structure of
the code, with aspects of fragmented loops, sub-functions within loops and such. Note that
we have also presented a WCET aware diversification approach in [14]. We plan to use our
cache analysis to optimize fragmentation in this approach with respect to caching behavior.
We also plan to consider other hardware features, such as certain kinds of branch prediction,
multi-core, multi-level caches etc.

By enabling diversity in the instruction cache analysis of static WCET analysis, our
approach delivers an important contribution to make artificial software diversity applicable
to more systems. Thus, a critical group of CPS can be protected against code-reuse-attacks,
making the systems they are controlling considerably more secure.
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