
Load Thresholds for Cuckoo Hashing with
Overlapping Blocks
Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

https://orcid.org/0000-0002-6477-0106

Abstract

2012 ACM Subject Classification Theory of computation→Data structures design and analysis,
Mathematics of computing → Probabilistic algorithms, Theory of computation → Bloom filters
and hashing

Keywords and phrases Cuckoo Hashing, Unaligned Blocks, Hypergraph Orientability, Load
Thresholds, Randomised Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.102

Related Version Due to size constraints, many technical details are omitted. These details will
be included in a full version and can already be found in the preprint [22] (https://arxiv.org/
abs/1707.06855) of this article.

Acknowledgements I am indebted to my advisor Martin Dietzfelbinger for drawing my attention
to this problem as well as for providing a constant stream of useful literature recommendations.
When discussing a preliminary version of this work at the Dagstuhl Seminar 17181 on Theory and
Applications of Hashing, Michael Mitzenmacher and Konstantinos Panagiotou provided useful
comments.

1 Introduction

In standard cuckoo hashing [20], a set X = {x1, . . . , xcn} of objects (possibly with
associated data) from a universe U is to be stored in a hash table indexed by V = {0, . . . , n−
1} of size n such that each object xi resides in one of two associated memory locations
h1(xi), h2(xi), given by hash functions h1, h2 : U → V . In most theoretic works, these
functions are modelled as fully random functions, selected uniformly and independently
from V U .

The load parameter c ∈ [0, 1] indicates the desired space efficiency, i.e. the ratio between
objects and allocated table positions. Whether or not a valid placement of the objects in
the table exists is well predicted by whether c is above or below the threshold c∗ = 1

2 : If
c ≤ c∗ − ε for arbitrary ε > 0, then a placement exists with high probability (whp), i.e.
with probability approaching 1 as n tends to infinity, and if c ≥ c∗ + ε for ε > 0, then no
placement exists whp.

If a placement is found, we obtain a dictionary data structure representing X ⊆ U . To
check whether an object x ∈ U resides in the dictionary (and possibly retrieve associated
data), only the memory locations h1(x) and h2(x) need to be computed and searched for x.
Combined with results facilitating swift creation, insertion and deletion, standard cuckoo
hashing has decent performance when compared to other hashing schemes at load factors
around 1

3 [20].

EA
T

C
S

© Stefan Walzer;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 102; pp. 102:1–102:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.walzer@tu-ilmenau.de
https://orcid.org/0000-0002-6477-0106
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.102
https://arxiv.org/abs/1707.06855
https://arxiv.org/abs/1707.06855
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

102:2 Load Thresholds for Cuckoo Hashing with Overlapping Blocks

Several generalisations have been studied that allow trading rigidity of the data structure
– and therefore performance of lookup operations – for load thresholds closer to 1.

In k-ary cuckoo hashing, due to Fotakis et al. [8], a general number k ≥ 2 of hash
functions is used.
Dietzfelbinger and Weidling [6] propose partitioning the table into n

` contiguous blocks
of size ` and assign two random blocks to each object via the two hash functions, allowing
an object to reside anywhere within those blocks.
By windows of size ` we mean the related idea – called “cuckoo-lp” in [6] – where x
may reside anywhere in the intervals [h1(x), h1(x) + `) and [h2(x), h2(x) + `) (all indices
understood modulo n). Compared to the block variant, the values h1(x), h2(x) ∈ V need
not be multiples of `, so the possible intervals do not form a partition of V .

The overall performance of a cuckoo hashing scheme is a story of multidimensional trade-offs
and hardware dependencies, but based on experiments in [6, 17] roughly speaking, the
following empirical claims can be made:

k-ary cuckoo hashing for k > 2 is slower than the other two approaches. This is because
lookup operations trigger up to k evaluations of hash functions and k random memory
accesses, each likely to result in a cache fault. In the other cases, only the number of key
comparisons rises, which are comparatively cheap.
Windows of size ` offer a better tradeoff between worst-case lookup times and space
efficiency than blocks of size `.

Although our results are oblivious of hardware effects, they support the second empirical
observation from a mathematical perspective.

1.1 Previous Work on Thresholds
Precise thresholds are known for k-ary cuckoo hashing [4, 12, 10], cuckoo hashing with blocks
of size ` [7, 3], and the combination of both, i.e. k-ary cuckoo hashing with blocks of size
` with k ≥ 3, ` ≥ 2 [9]. The techniques in the cited papers are remarkably heterogeneous
and often specific to the cases at hand. Lelarge [18] managed to unify the above results
using techniques from statistical physics that, perhaps surprisingly, feel like they grasp more
directly at the core phenomena. Generalising further, Leconte, Lelarge, and Massoulié [15]
solved the case where each object must occupy j ∈ N incident table positions, r ∈ N of which
may lie in the same block (see also [13]).

Lehman and Panigrahy [17] showed that, asymptotically, the load threshold is 1− (2/e+
o`(1))` for cuckoo hashing with blocks of size ` and 1 − (1/e + o`(1))1.59` in the case of
windows, with no implication for small constant `. Beyer [2] showed in his master’s thesis
that for ` = 2 the threshold is at least 0.829 and at most 0.981. To our knowledge, this is an
exhaustive list of published work concerning windows.

In a spirit similar to cuckoo hashing with windows, Porat and Shalem [21] analyse a
scheme where memory is partitioned into pages and a bucket of size k is a choice of k memory
positions from the same page (not necessarily contiguous). The authors provide rigorous
lower bounds on the corresponding thresholds as well as empirical results.

1.2 Our Contribution
We provide precise thresholds for k-ary cuckoo hashing with windows of size ` for all k, ` ≥ 2.
In particular this solves the case of k = 2 left open in [6, 17]. Note the pronounced
improvements in space efficiency when using windows over blocks, for instance in the case of
k = ` = 2, where the threshold is at roughly 96.5% instead of roughly 89.7%.

S. Walzer 102:3

Formally, for any k, ` ≥ 2, we identify real analytic functions fk,`, gk,`, such that for
γk,` = infλ>0{fk,`(λ) | gk,`(λ) < 0} we have

I Main Theorem. The threshold for k-ary cuckoo hashing with windows of size ` is γk,`, in
particular for any ε > 0,
(i) if c > γk,` + ε, then no valid placement of objects exists whp and
(ii) if c < γk,` − ε, then a valid placement of objects exists whp.

While fk,` and gk,` are very unwieldy, with ever more terms as ` increases, numerical
aproximations of γk,` can be attained with mathematics software. We provide some values
in Table 1.

1.3 Methods
The obvious methods to model cuckoo hashing with windows either give probabilistic
structures with awkward dependencies or the question to answer for the structure follows
awkward rules. Our first non-trivial step is to transform a preliminary representation into a
hypergraph with n vertices, cn uniformly random hyperedges of size k, an added deterministic
cycle, and a question strictly about the orientability of this hypergraph.

In the new form, the problem is approachable by a combination of belief propagation
methods and the objective method [1], adapted to the world of hypergraph orientability by
Lelarge [18] in his insightful paper. The results were further strengthened by a Theorem in
[15], which we apply at a critical point in our argument.

As the method is fundamentally about approximate sizes of incomplete orientations,
it leaves open the possibility of o(n) unplaced objects; a gap that can be closed in an
afterthought with standard methods.

Table 1 Some thresholds ck,` as obtained by [20, 3, 7, 4, 12, 11, 9] and values of γk,` as obtained
from our main theorem.
In both tables, the line for ` = 1 corresponds to plain k-ary cuckoo hashing, reproduced here for
comparison.

Thresholds ck,` for k-ary cuckoo hashing with blocks of size `:
`\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.8970118682 0.9882014140 0.9982414840 0.9997243601 0.9999568737 0.9999933439
3 0.9591542686 0.9972857393 0.9997951434 0.9999851453 0.9999989795 0.9999999329
4 0.9803697743 0.9992531564 0.9999720661 0.9999990737 0.9999999721 0.9999999992

Thresholds γk,` for k-ary cuckoo hashing with windows of size `:
`\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.964994923 0.9968991072 0.9996335076 0.9999529036 0.9999937602 0.9999991631
3 0.994422754 0.9998255112 0.9999928198 0.9999996722 0.9999999843 0.9999999992
4 0.998951593 0.9999896830 0.9999998577 0.9999999977 ≈ 1 ≈ 1

1.4 Further Discussion
In the full version of this paper, we touch on three further issues that complement our results
but are somewhat detached from our main theorem.

ICALP 2018

102:4 Load Thresholds for Cuckoo Hashing with Overlapping Blocks

Numerical approximations of the thresholds. We explain how mathematics software can
be used to get approximations for the values γk,`, which have been characterised only
implicitely.

Speed of convergence. We provide experimental results with finite table sizes to demon-
strate how quickly the threshold behaviour emerges.

Constructing orientations We examine the LSA algorithm by Khosla for insertion of ele-
ments, adapted to our hashing scheme. Experiments suggest an expected constant runtime
per element as long as the load is bounded away from the threshold, i.e. c < γk,` − ε for
some ε > 0.

2 Definitions and Notation

A cuckoo hashing scheme specifies for each object x ∈ X a set Ax ⊂ V of table positions that
x may be placed in. For our purposes, we may identitfy x with Ax. In this sense, H = (V,X)
is a hypergraph, where table positions are vertices and objects are hyperedges. The task of
placing objects into admissible table positions corresponds to finding an orientation of H,
which assigns each edge x ∈ X to an incident vertex v ∈ x such that no vertex has more
than one edge assigned to it. If such an orientation exists, H is orientable.

We now restate the hashing schemes from the introduction in this hypergraph framework,
switching to letters e (and E) to refer to (sets of) edges. We depart in notation, but not
in substance, from definitions given previously, e.g. [8, 5, 17]. Illustrations are available in
Figure 1.

Concerning k-ary cuckoo hashing the hypergraph is given as:

Hn = Hk
n,cn := (Zn, E = {e1, e2, . . . , ecn}), for ei ← [Zn

k
], (1)

where Zn = {0, 1, . . . , n − 1} and for a set S and k ∈ N we write e ← [Sk] to indicate that
e = {s1, s2, . . . , sk} is obtained by picking s1, . . . , sk independently and uniformly at random
from S.

There is a subtle difference to picking e uniformly at random from
(
S
k

)
, the set of all

k-subsets of S, as the elements s1, . . . , sk need not be distinct. We therefore understand e as
a multiset. Also, we may have ei = ej for i 6= j, so E is a multiset as well.1

Assuming the table size n is a multiple of `, k-ary cuckoo hashing with blocks of
size ` is modelled by the hypergraph

Bn = Bk,`n,cn := (Zn, {e′1, e′2, . . . , e′cn}), where e′i =
⋃
j∈ei

[j`, (j + 1)`) and ei ← [Zn/`

k
], (2)

that is, each hyperedge is the union of k blocks chosen uniformly at random from the set of
all blocks, which are the n/` intervals of size ` in Zn that start at a multiple of `. Note that
for ` = 1 we recover Hn.

Similarly, k-ary cuckoo hashing with windows of size ` is modelled by

Wn = W k,`
n,cn := (Zn, {e′1, e′2, . . . , e′cn}), where e′i =

⋃
j∈ei

[j, j + `) and ei ← [Zn

k
], (3)

that is, each hyperedge is the union of k windows chosen uniformly at random from the
set of all windows, which are the n intervals of size ` in Zn, this time without alignment

1 While our choice for the probability space is adequate for cuckoo hashing and convenient in the proof,
such details are inconsequential. Choosing Hn uniformly from the set of all hypergraphs with cn distinct
edges all of which contain k distinct vertices would be equivalent for our purposes.

S. Walzer 102:5

Figure 1 Drawing of possible outcomes for the hypergraphs Hn, Bn and Wn (modelling k-ary
cuckoo hashing plain / with blocks / with windows) for n = 30, c = 1

6 , k = 3 and ` = 2 (` only for B
and W). Each edge is drawn as a point and connected to all incident table cells, which are arranged
in a circle. In the case of B, thick lines indicate the borders between blocks.

restriction. Note that intervals wrap around at the ends of the set {0, . . . , n− 1} with no
awkward “border intervals”. Again, for ` = 1 we recover Hn.

3 Outline of the Proof

Step 1: A tidier problem. The elements of an edge e of Bn andWn are not independent, as
e is the union of k intervals of size `. This poorly reflects the actual tidiness of the probabilistic
object. We may obtain a model with independent elements in edges, by switching to a more
general notion of what it means to orient a hypergraph.

Formally, given a weighted hypergraph H = (V,E, η) with weight function η : V ∪E → N,
an orientation µ of H assigns to each pair (e, v) of an edge and an incident vertex a number
µ(e, v) ∈ N0 such that

∀e ∈ E :
∑
v∈e

µ(e, v) = η(e), and ∀v ∈ V :
∑
e3v

µ(e, v) ≤ η(v). (4)

We will still say that an edge e is oriented to a vertex v (possibly several times) if µ(e, v) > 0.
One may be inclined to call η(v) a capacity for v ∈ V and η(e) a demand for e ∈ E, but we
use the same letter in both cases as the distinction is dropped later anyway.

Orientability of H,B and W from earlier is also captured in the generalised notion with
implicit vertex weights of η ≡ 1.

A simplified representation of Bn is straightforward to obtain. We provide it mainly for
illustration purposes, see Figure 2(a):

B̂n := B̂k,`n,cn := (Zn/`, {e1, e2, . . . , ecn}, η), where ei ← [Zn/`

k
] (5)

and η(v) = ` for v ∈ Zn/` and η(ei) = 1 for 1 ≤ i ≤ cn.

In B̂n, each group of ` vertices of Bn representing one block is now contracted into a single
vertex of weight ` and edges contain k independent vertices representing blocks instead of k`
dependent vertices. It is clear that Bn is orientable if and only if B̂n is orientable.

In a similar spirit we identify a transformed version Ŵn for Wn, but this time the details
are more complicated as the vertices have an intrinsic linear geometry, whereas Bn featured
essentially an unordered collection of internally unordered blocks. The ordinary edges in Ŵn

ICALP 2018

102:6 Load Thresholds for Cuckoo Hashing with Overlapping Blocks

(a) →

η() = `
η() = 1

(b) →

η() = `
η() = 1
η() = `−1

Figure 2 (a) In k-ary cuckoo hashing with blocks of size ` (here k = ` = 3), we can contract
each block into a single vertex of weight ` to obtain a simpler but equivalent representation of the
orientation problem.
(b) In k-ary cuckoo hashing with windows of size `, a similar idea can be made to work, but
additional helper edges (drawn as) of weight `− 1 are needed (see Proposition 1).

also have size k instead of size k`, but we need to introduce additional helper edges that
capture the linear geometry of Zn, see Figure 2(b). We define:

Ŵn := Ŵ k,`
n,cn := (Zn, Cn ∪ {e1, . . . , ecn}, η) (6)

with ordinary edges ei ← [Zn

k
], helper edges Cn = {ci := (i, i+ 1) | i ∈ Zn},

and weights η(w) = `, η(h) = `− 1, η(e) = 1 for w ∈ Zn, h ∈ Cn, e ∈ {e1, . . . , ecn}.

Note that formally the graphs Wn and Ŵn are random variables on a common probability
space. An outcome ω = (ei)1≤i≤cn from this space determines both graphs.

The following proposition justifies the definition and is proved in the full version of this
paper.

I Proposition 1. Ŵn is orientable if and only if Wn is orientable.2

An important merit of Ŵn that will be useful in Step 3 is that it is locally tree-like, meaning
each vertex has a probability of o(1) to be involved in a constant-length cycle. Here, by a
cycle in a hypergraph we mean a sequence of distinct edges e1, e2, . . . , ej such that successive
edges share a vertex and ej and e1 share a vertex.

Note the interesting special case Ŵ 2,2
n,cn, which is a cycle of length n with cn random

chords, unit edge weights and vertices of weight 2. Understanding the orientability thresholds
for this graph seems interesting in its own right, not just as a means to understand W 2,2

n,cn.

Step 2: Incidence Graph and Allocations. The next step is by no means a difficult or
creative one, we merely perform the necessary preparations needed to apply [15], introducing
their concept of an allocation in the process.

This will effectively get rid of the asymmetry between the roles of vertices and edges in
the problem of orienting Ŵn, by switching perspective in two simple ways. The first is to
consider the incidence graph Gn of Ŵn instead of Ŵn itself, i.e. the bipartite graph

Gn = Gk,`n,cn = (Cn︸︷︷︸
AC

∪{e1, . . . , ecn}︸ ︷︷ ︸
AR

, Zn︸︷︷︸
B

, “3”︸︷︷︸
E(Gn)

). (7)

2 Formally this should read: The events {Wn is orientable} and {Ŵn is orientable} coincide.

S. Walzer 102:7

We use A = AC ∪AR to denote those vertices of Gn that were edges in Ŵn and B for those
vertices of Gn that were vertices in Ŵn. Vertices a ∈ A and b ∈ B are adjacent in Gn if b ∈ a
in Ŵn. The weights η on vertices and edges in Ŵn are now vertex weights with η(aC) = `−1,
η(aR) = 1, η(b) = ` for aC ∈ AC , aR ∈ AR, b ∈ B. The notion of µ being an orientation
translates to µ being a map µ : E(Gn)→ N0 such that

∑
b∈N(a) µ(a, b) = η(a) for all a ∈ A

and
∑
a∈N(b) µ(a, b) ≤ η(b) for all b ∈ B. Note that vertices from A need to be saturated

(“= η(a)” for a ∈ A) while vertices from B need not be (“≤ η(b)” for b ∈ B). This leads to
the second switch in perspective.

Dropping the saturation requirement for A, we say µ is an allocation if
∑
u∈N(v) µ(u, v) ≤

η(v) for all v ∈ A ∪B.
Clearly, any orientation is an allocation, but not vice versa; for instance, the trivial map

µ ≡ 0 is an allocation. Let |µ| denote the size of an allocation, i.e. |µ| =
∑
e∈E µ(e). By

bipartiteness, no allocation can have a size larger than the total weight of A, i.e.

for all allocations µ : |µ| ≤ η(A) =
∑
a∈A

η(a) = |AC | · (`− 1) + |AR| · 1 = (`− 1 + c)n

and it is precisely the orientations of Gn that have size η(A). We conclude:

I Proposition 2. Let M(Gn) denote the maximal size of an allocation of Gn. Then

M(Gn)
n = `− 1 + c if and only if Gn is orientable if and only if Ŵn is orientable.

Step 3: The Limit T of Gn. Reaping the benefits of step 1, we find Gn to have O(1)
cycles of length O(1) whp. To capture the local appearance of Gn even more precisely, let
the r-ball around a vertex v in a graph be the subgraph induced by the vertices of distance at
most r from v. Then the r-ball around a random vertex of Gn is distributed, as n gets large,
more and more like the r-ball around the root of a random infinite rooted tree T = T k,`c . It
is distributed as follows, with nodes of types AC , AR or B.

The root of T is of type AC , AR or B with probability 1
2+c ,

c
2+c and 1

2+c , respectively.
If the root is of type AC , it has two children of type B. If it is of type AR, it has k
children of type B. If it is of type B, it has two children of type AC and a random
number X of children of type AR, where X ∼ Po(kc). Here Po(λ) denotes the Poisson
distribution with parameter λ.
A vertex of type AC that is not the root has one child of type B. A vertex of type AR
that is not the root has k − 1 children of type B.
A vertex of type B that is not the root has a random number X of children of type
AR, where X ∼ Po(kc). If its parent is of type AC , then it has one child of type AC ,
otherwise it has two children of type AC .
Vertices of type AC , AR and B have weight `−1, 1 and `, respectively.

All random decisions should be understood to be independent. A type is also treated as a
set containing all vertices of that type. In the full version of this paper we briefly recall the
notion of local weak convergence and argue that the following holds:

I Proposition 3. (Gn)n∈N = (Gk,`n,cn)n∈N converges locally weakly to T = T k,`c .

Step 4: The Method of [15]. We are now in a position to apply a powerful Theorem
due to Leconte, Lelarge, and Massoulié [15] that characterises limn→∞

M(Gn)
n in terms of

solutions to belief propagation equations for T . Put abstractly: The limit of a function of Gn
is a function of the limit of Gn. We elaborate on details and deal with the equations in the

ICALP 2018

102:8 Load Thresholds for Cuckoo Hashing with Overlapping Blocks

full version of this paper. After condensing the results into a characterisation of γk,` ∈ (0, 1)
in terms of “well-behaved” functions we obtain:

I Proposition 4.

lim
n→∞

M(Gn,cn)
n

{
= `− 1 + c almost surely if c < γk,`

< `− 1 + c almost surely if c > γk,`

Step 5: Closing the Gap. It is important to note that we are not done, as

lim
n→∞

M(Gn,cn)
n = `− 1 + c a.s. does not imply3 M(Gn,cn) = n · (`− 1 + c) whp. (8)

We still have to exclude the possibility of a gap of size o(n) on the right hand side, imagine for
instance M(Gn,cn) = (`− 1 + c)n−

√
n to appreciate the difference. In the setting of cuckoo

hashing with double hashing (see [16]), it is actually the analogue of this pesky distinction
that seems to be in the way of proving precise thresholds for perfect orientability, so we
should treat this seriously.

Luckily the line of reasoning by Lelarge [18] can be adapted to our more general setting.
The key is to prove that if not all objects can be placed into the hash table, then the
configuration causing this problem has size Θ(n) (and those large overfull structures do not
go unnoticed on the left side of (8)).

I Lemma 1. There is a constant δ > 0 such that whp no set of 0 < t < δn vertices in Ŵn

(of weight `t) induces edges of total weight `t or more, provided c ≤ 1.

The proof of this Lemma (using first moment methods) and the final steps towards our main
theorem are found in the full version of this paper.

4 Conclusion and Outlook

We established a method to determine load thresholds γk,` for k-ary cuckoo hashing with
(unaligned) windows of size `. In particular, we resolved the cases with k = 2 left open in
[6, 17], confirming corresponding experimental results by rigorous analysis.

The following four questions may be worthwhile starting points for further research.

Is there more in this method? It is conceivable that there is an insightful simplification of
our calculations that yields a less unwieldy characterisation of γk,`. We also suspect that the
threshold for the appearance of the (`+ 1)-core of Ŵn can be identified with some additional
work (for cores see e.g. [19, 14]). This threshold is of interest because it is the point where
the simple peeling algorithm to compute an orientation of Ŵn breaks down.

Can we prove efficient insertion? Given our experiments concerning the performance of
Khosla’s LSA algorithm for inserting elements in our hashing scheme (for details refer to the
full version), it seems likely that its runtime is linear. But one could also consider approaches
that do not insert elements one by one but build a hash table of load c = γk,` − ε given
all elements at once. Something in the spirit of the selfless algorithm [3] or excess degree
reduction [4] may offer linear runtime with no performance degradation as ε gets smaller, at
least for k = 2.

S. Walzer 102:9

How good is it in practice? This paper does not address the competitiveness of our hashing
scheme in realistic practical settings. The fact that windows give higher thresholds than
(aligned) blocks for the same parameter ` may just mean that the “best” ` for a particular
use case is lower, not precluding the possibility that the associated performance benefit is
outweighed by other effects. [6] provide a few experiments in their appendix suggesting slight
advantages for windows in the case of unsuccessful searches and slight disadvantages for
successful searches and insert operations, in one very particular setup with k = 2. Further
research could take into account precise knowledge of cache effects on modern machines,
possibly using a mixed approach, respecting alignment only insofar as it is favoured by the
caches. Ideas from Porat and Shalem [21] could prove beneficial in this regard.

What about other geometries? We analysed linear hash tables where objects are assigned
random intervals. One could also consider a square hash table (Z√n)2 where objects are
assigned random squares of size ` × ` (with no alignment requirement). We suspect that
understanding the thresholds in such cases would require completely new techniques.

References
1 David Aldous and J. Michael Steele. The Objective Method: Probabilistic Combinatorial

Optimization and Local Weak Convergence, pages 1–72. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004. doi:10.1007/978-3-662-09444-0_1.

2 Stephan Beyer. Analysis of the Linear Probing Variant of Cuckoo Hashing. Master’s thesis,
Technische Universität Ilmenau, 2012. URL: http://gso.gbv.de/DB=2.1/PPNSET?PPN=
685166759.

3 Julie Anne Cain, Peter Sanders, and Nicholas C. Wormald. The Random Graph Threshold
for k-orientiability and a Fast Algorithm for Optimal Multiple-Choice Allocation. In Proc.
18th SODA, pages 469–476, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283433.

4 Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari,
Rasmus Pagh, and Michael Rink. Tight Thresholds for Cuckoo Hashing via XORSAT.
In Proc. 37th ICALP (1), pages 213–225, 2010. doi:10.1007/978-3-642-14165-2_19.

5 Martin Dietzfelbinger and Christoph Weidling. Balanced Allocation and Dictionaries with
Tightly Packed Constant Size Bins. In Proc. 32nd ICALP, pages 166–178, 2005. doi:
10.1007/11523468_14.

6 Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theor. Comput. Sci., 380(1-2):47–68, 2007. doi:10.
1016/j.tcs.2007.02.054.

7 Daniel Fernholz and Vijaya Ramachandran. The k-orientability Thresholds for Gn,p. In
Proc. 18th SODA, pages 459–468, 2007. URL: http://dl.acm.org/citation.cfm?id=
1283383.1283432.

8 Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space Efficient Hash
Tables with Worst Case Constant Access Time. Theory Comput. Syst., 38(2):229–248, 2005.
doi:10.1007/s00224-004-1195-x.

9 Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The Multiple-
Orientability Thresholds for Random Hypergraphs. In Proc. 22nd SODA, pages
1222–1236, 2011. URL: http://www.siam.org/proceedings/soda/2011/SODA11_092_
fountoulakisn.pdf.

10 Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of Random Hypergraphs
and the Power of Multiple Choices. In Proc. 37th ICALP (1), pages 348–359, 2010. doi:
10.1007/978-3-642-14165-2_30.

ICALP 2018

http://dx.doi.org/10.1007/978-3-662-09444-0_1
http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
http://dl.acm.org/citation.cfm?id=1283383.1283433
http://dl.acm.org/citation.cfm?id=1283383.1283433
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/11523468_14
http://dx.doi.org/10.1007/11523468_14
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dl.acm.org/citation.cfm?id=1283383.1283432
http://dl.acm.org/citation.cfm?id=1283383.1283432
http://dx.doi.org/10.1007/s00224-004-1195-x
http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://dx.doi.org/10.1007/978-3-642-14165-2_30
http://dx.doi.org/10.1007/978-3-642-14165-2_30

102:10 Load Thresholds for Cuckoo Hashing with Overlapping Blocks

11 Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp Load Thresholds for Cuckoo
Hashing. Random Struct. Algorithms, 41(3):306–333, 2012. doi:10.1002/rsa.20426.

12 Alan M. Frieze and Páll Melsted. Maximum Matchings in Random Bipartite Graphs and
the Space Utilization of Cuckoo Hash Tables. Random Struct. Algorithms, 41(3):334–364,
2012. doi:10.1002/rsa.20427.

13 Pu Gao and Nicholas C. Wormald. Load Balancing and Orientability Thresholds for Ran-
dom Hypergraphs. In Proc. 42nd STOC, pages 97–104, 2010. doi:10.1145/1806689.
1806705.

14 Svante Janson and Malwina J. Luczak. A simple solution to the k-core problem. Random
Struct. Algorithms, 30(1-2):50–62, 2007. doi:10.1002/rsa.20147.

15 M. Leconte, M. Lelarge, and L. Massoulié. Convergence of multivariate belief propagation,
with applications to cuckoo hashing and load balancing. In Proc. 24th SODA, pages 35–46,
2013. URL: http://dl.acm.org/citation.cfm?id=2627817.2627820.

16 Mathieu Leconte. Double hashing thresholds via local weak convergence. In 51st Annual
Allerton Conference on Communication, Control, and Computing, pages 131–137, 2013.
doi:10.1109/Allerton.2013.6736515.

17 Eric Lehman and Rina Panigrahy. 3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit.
In Proc. 17th ESA, pages 671–681, 2009. doi:10.1007/978-3-642-04128-0_60.

18 Marc Lelarge. A New Approach to the Orientation of Random Hypergraphs. In Proc. 23rd
SODA, pages 251–264, 2012. URL: http://dl.acm.org/citation.cfm?id=2095139.

19 Michael Molloy. Cores in random hypergraphs and boolean formulas. Random Struct.
Algorithms, 27(1):124–135, 2005. doi:10.1002/rsa.20061.

20 Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. J. Algorithms, 51(2):122–144,
2004. doi:10.1016/j.jalgor.2003.12.002.

21 Ely Porat and Bar Shalem. A Cuckoo Hashing Variant with Improved Memory Utilization
and Insertion Time. In Proc. 22nd DCC, 2012. doi:10.1109/DCC.2012.41.

22 Stefan Walzer. Load thresholds for cuckoo hashing with overlapping blocks. CoRR,
abs/1707.06855, 2017. arXiv:1707.06855.

http://dx.doi.org/10.1002/rsa.20426
http://dx.doi.org/10.1002/rsa.20427
http://dx.doi.org/10.1145/1806689.1806705
http://dx.doi.org/10.1145/1806689.1806705
http://dx.doi.org/10.1002/rsa.20147
http://dl.acm.org/citation.cfm?id=2627817.2627820
http://dx.doi.org/10.1109/Allerton.2013.6736515
http://dx.doi.org/10.1007/978-3-642-04128-0_60
http://dl.acm.org/citation.cfm?id=2095139
http://dx.doi.org/10.1002/rsa.20061
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1109/DCC.2012.41
http://arxiv.org/abs/1707.06855

	Introduction
	Previous Work on Thresholds
	Our Contribution
	Methods
	Further Discussion

	Definitions and Notation
	Outline of the Proof
	Conclusion and Outlook

