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Abstract
Generating good revenue is one of the most important problems in Bayesian auction design,
and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian
mechanisms have been constructed for various auction settings. However, most existing studies
do not consider the complexity for the seller to carry out the mechanism. It is assumed that the
seller knows “each single bit” of the distributions and is able to optimize perfectly based on the
entire distributions. Unfortunately this is a strong assumption and may not hold in reality: for
example, when the value distributions have exponentially large supports or do not have succinct
representations.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms.
We only allow the seller to have limited oracle accesses to the players’ value distributions, via
quantile queries and value queries. For a large class of auction settings, we prove logarithmic
lower-bounds for the query complexity for any DSIC Bayesian mechanism to be of any constant
approximation to the optimal revenue. For single-item auctions and multi-item auctions with
unit-demand or additive valuation functions, we prove tight upper-bounds via efficient query
schemes, without requiring the distributions to be regular or have monotone hazard rate. Thus,
in those auction settings the seller needs to access much less than the full distributions in order
to achieve approximately optimal revenue.
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1 Introduction

An important problem in Bayesian mechanism design is to design auctions that (approx-
imately) maximize the seller’s expected revenue. More precisely, in a Bayesian multi-item
auction a seller has m heterogenous items to sell to n players. Each player i has a private
value for each item j, vij ; and each vij is independently drawn from some prior distribution
Dij . When the prior distribution D , ×ijDij is of common knowledge to both the seller and
the players, optimal Bayesian incentive-compatible (BIC) mechanisms have been discovered
for various auction settings [16, 11, 4, 5], where all players reporting their true values forms
a Bayesian Nash equilibrium. When there is no common prior but the seller knows D,
many (approximately) optimal dominant-strategy incentive-compatible (DSIC) Bayesian
mechanisms have been designed [16, 17, 7, 14, 19, 6], where it is each player’s dominant
strategy to report his true values.

However, the complexity for the seller to carry out such mechanisms is largely unconsidered
in the literature. Most existing Bayesian mechanisms require that the seller has full access
to the prior distribution D and is able to carry out all required optimizations based on
D, so as to compute the allocation and the prices. Unfortunately the seller may not be
so knowledgeable or powerful in real-world scenarios. If the supports of the distributions
are exponentially large (in m and n), or if the distributions are continuous and do not
have succinct representations, it is hard for the seller to write out “each single bit” of the
distributions or precisely carry out arbitrary optimization tasks based on them. Even with
a single player and a single item, when the value distribution is irregular, computing the
optimal price in time that is much smaller than the size of the support is not an easy task.
Thus, a natural and important question to ask is how much the seller should know about the
distributions in order to obtain approximately optimal revenue.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms.
In particular, the seller can only access the distributions by making oracle queries. Two
types of queries are allowed, quantile queries and value queries. That is, the seller queries the
oracle with specific quantiles (respectively, values), and the oracle returns the corresponding
values (respectively, quantiles) in the underlying distributions. These two types of queries
happen a lot in market study. Indeed, the seller may wish to know what is the price he
should set so that half of the consumers would purchase his product; or if he sets the price
to be 200 dollars, how many consumers would buy it. Another important scenario where
such queries naturally come up is in databases. Indeed, although the seller may not know
the distribution, some powerful institutes, say the Office for National Statistics, may have
such information figured out and stored in its database. As in most database applications, it
may be neither necessary nor feasible for the seller to download the whole distribution to his
local machines. Rather, he would like to access the distribution via queries to the database.
Other types of queries are of course possible, and will be considered in future works.

In this work we focus on non-adaptive queries. That is, the seller makes all oracle queries
simultaneously, before the auction starts. This is also natural in both database and market
study scenarios, and adaptive queries will be considered in future works.

2 Main Results

We would like to understand both lower- and upper-bounds for the query complexity of
approximately optimal Bayesian auctions. In this work, we mainly consider three widely
studied settings: single-item auctions and multi-item auctions with unit-demand or additive
valuation functions. Our main results are summarized in Table 1.
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Table 1 Our main results. Here h(·) < 1 is the tail function in the small-tail assumptions. For
single-item auctions, the revenue is a (1 + ε)-approximation to the optimal BIC revenue, with ε
sufficiently small. For multi-item auctions with unit-demand or additive valuation functions, the
revenue is a c-approximation for some constant c.

Query Distributions

Complexity Bounded in [1, H] Unbounded & Small Tail

A
uc
tio

ns

Single-Item Θ(nε−1 logH) O(−nε−1 log h( 2ε
3(1+ε) )

Unit-Demand ∀c > 1: Ω(mn logH
log c ) ∀c > 24: O(mn logH

log(c/24) ) ∀c > 24: O(−mn logh( 2c−48
3c

)
log(c/24) )

Additive ∀c > 1: Ω(mn logH
log c ) ∀c > 8: O(mn logH

log(c/8) ) ∀c > 8: O(−m
2n logh( c−8

10c
)

log(c/8) )

Single-Item Regular Distributions: Ω(nε−1), O(nε−1 log n
ε
)

Note that we allow arbitrary unbounded distributions that satisfy small-tail assumptions,
which means the expected revenue generated from the “tail” of the distributions is negligible
compared to the optimal revenue. Similar assumptions are widely adopted in sampling
mechanisms [18, 12], to deal with irregular distributions with unbounded supports. Since
distributions with bounded supports automatically satisfy the small-tail assumptions, the
lower-bounds listed for the former apply to the latter as well.

Also note that our lower- and upper-bounds on query complexity are tight for bounded
distributions. In the full version of the paper [9], we show that our lower-bounds allow the
seller to make both value and quantile queries, and apply to any multi-player multi-item
auctions where each player’s valuation function is succinct sub-additive. The lower-bounds
also allow randomized queries and randomized mechanisms.

For the upper-bounds, all our query schemes are deterministic and only make one type of
queries: value queries for bounded distributions and quantile queries for unbounded ones. We
show that our schemes, despite of being very efficient, only loses a small fraction of revenue
compared with the cases where the seller has full access to the distributions.

3 Discussion and Future Directions

In the full version, we will elaborate on the connections between our work and related studies.
For example, a closely related area is sampling mechanisms [10, 13, 15, 12, 3]. It assumes
that the seller does not know D but observes independent samples from D before the auction
begins. The sample complexity measures how many samples the seller needs so as to obtain a
good approximation to the optimal Bayesian revenue. Our results show that query complexity
can be exponentially smaller than sample complexity: the former is logarithmic in the “size”
of the distributions, while the latter is known to be polynomial. We will also discuss other
related studies such as [2, 1, 3, 8].

Finally, we point out some interesting further directions. As mentioned, we focus on
non-adaptive queries in this work. One can imagine more powerful mechanisms using adaptive
queries, where the seller’s later queries depend on the oracle’s responses to former ones. It is
intriguing to design approximately optimal Bayesian mechanisms with lower query complexity
using adaptive queries, or prove that even with such queries, the query complexity cannot be
much better than our lower-bounds. Another interesting direction is when the answers of
the oracle contain noise. In this case, the distributions learnt by the seller may be within
a small distance from the “true distributions” defined by oracle answers without noise. It
would be interesting to design mechanisms to handle such noise.

ICALP 2018
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