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—— Abstract

In this work we construct tests that allow a classical user to certify high dimensional entanglement
in uncharacterized and possibly noisy quantum devices. We present a family of non-local games
{G,} that for all n certify states with entanglement of formation (n). These tests can be
derived from any bipartite non-local game with a classical-quantum gap. Furthermore, our tests
are noise-tolerant in the sense that fault tolerant technologies are not needed to play the games;
entanglement distributed over noisy channels can pass with high probability, making our tests
relevant for realistic experimental settings. This is in contrast to, e.g., results on self-testing of
high dimensional entanglement, which are only relevant when the noise rate goes to zero with the
system’s size n. As a corollary of our result, we supply a lower-bound on the entanglement cost
of any state achieving a quantum advantage in a bipartite non-local game. Our proof techniques
heavily rely on ideas from the work on classical and quantum parallel repetition theorems.
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1 Introduction

Non-local games offer a powerful method to experimentally study the properties and behavior
of uncharacterized quantum systems. In a non-local game, an experimenter can play a game
with two non-communicating players (representing spatially separated quantum systems)
via classical interaction only. Based on the outcome of the game, the experimenter draws
conclusions about, e.g., whether the players used an entangled quantum state to win the
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game. This idea dates back to John Bell’s seminal paper [7], in which he presents a
game to test the non-classicality of nature. Today, such games are not only relevant for
our understanding of the foundations of quantum physics but are at the heart of device-
independent quantum information processing, where a classical user can certify that an
unknown quantum device is performing a desired computational or cryptographic task (such
as, e.g., device-independent quantum key distribution [4, 37, 45, 34, 2] or delegated quantum
computation [42, 24, 22, 35, 17]).
In this work we ask the following question:

Is it possible to classically test for high dimensional entanglement,
even in the presence of noise?

Whereas Bell’s original test is a classical method to certify the presence of entanglement,
we are instead interested in non-local games that would allow us to quantify the amount.
In particular, we are interested in certifying the amount of entanglement of noisy quantum
systems.

Designing noise-tolerant tests for high dimensional entanglement is an important and
timely challenge for both computer science and physics. First, our understanding of complexity
theory indicates that unless BQP C BPP (i.e., quantum computers are classically simulable),
general quantum computations must involve highly entangled states. Thus if we hope to
achieve super-classical speedups in quantum computers, at the very least we must be able to
generate high dimensional entanglement.

Second, we are seeing increasingly sophisticated experiments involving quantum inform-
ation, from loophole-free Bell tests [26, 43, 23] to small scale quantum computers [10, 29].
However, full-fledged quantum fault tolerance appears to be a faraway prospect; in the
near-term, our explorations of complex quantum states will be done using noisy gates and
little (if any) error correction. Despite this obstacle, researchers have been enthusiastically
proposing uses of noisy quantum computers, from approximate optimization to investigation
of exotic physics phenomena. Interesting questions will emerge in tandem with these efforts,
namely: how can one verify that a noisy quantum computer has succeeded in these proposed
experiments? Finding noise-tolerant tests to certify high dimensional entanglement is a
prerequisite step towards verifying other complex quantum behavior in this noisy regime.

1.1 What do we mean by certifying entanglement?

There are a variety of ways to formulate this task; our work is most directly motivated by
recent work on self-tests, which are games that certify the presence of entanglement of a
specific form. The works of [33, 14, 16, 20, 35] construct families of games {G,,} where any
optimal quantum strategy for G,, must use a large amount of entanglement, e.g., a tensor
product of n EPR pairs. These self-testing results are also robust, in that near-optimal
strategies must use states that are near a specific highly entangled state. However, these tests
will also reject a natural class of highly entangled states such as 0®" where ¢ has fidelity
1 — v with a single EPR pair. Here, think of v as a small (but fixed) noise parameter that
represents the level of imperfection of a state preparation process.

Thus, even though |[EPR)YEPR|®" can be used to pass the tests of [33, 14, 16, 20, 35]
with high probability, the “similar-looking” state ¢®" will fail with high probability. A
key observation we wish to emphasize in this paper is that robustness of a self-test is not
equivalent to noise tolerance!

More formally, the robust self-tests in the above works show the following: let qval(G,,)
denote the optimal quantum winning probability for the game G,,. Then there exists a
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function f(n,e) and an ideal state p such that for all e, any quantum strategy that achieves

a winning probability of at least qval(G,,) — € must use a state p that is f(n, €)-close to p.

In these works, pX is a state whose entanglement grows with n (like a maximally entangled
state on n qubits). “Closeness” can be defined in terms of the fidelity of the two states up to
local isometries acting on each of the players’ systems.

Given a game G, as above, an experiment to test the entanglement of an unknown state
p can be the following: play the game G,, using p, and check whether the game is won.? In
order to obtain a non-trivial guarantee about p, we require that f(n,e) < 1; one can think
of this function as specifying the amount of experimental imperfection/noise that can be
tolerated by the test itself. In the works of [33, 14, 16, 20], the function f(n,¢c) scales as

a-nb - ¢ for constants a, b, c. Thus we get no guarantees about p unless ¢ scales as 1/ poly(n).

In other words, as we increase the amount of entanglement we want to certify, the test
becomes less tolerant of noise!

The strongest self-testing result (in this context) is presented in the work of Natarajan
and Vidick [35]. There, a self-test for n EPR pairs is given where the associated function is
f(n,e) = O(y/e). While the closeness parameter is independent of the parameter n, such
f(n,e) still requires that, in order to pass the test with high probability, the players share a
state p that is globally O(\/€)-close to |[EPRYEPR|®". Using a state like 0®" where o has
1 — v fidelity with a single EPR pair would fail their test with high probability, because o®"
has ezponentially small fidelity (1 — v)* ~ e~™/¥ with |EPRYEPR|®".

In this paper we seek an entanglement test that is both sound — meaning that any
strategy that passes the test with good probability must have high entanglement — and also

notse tolerant, meaning that they do not reject noisy implementations of an ideal strategy.

The self-tests above are sound, but they are not noise tolerant. Part of the difficulty stems
from the fact that it is not even clear how one should formulate the soundness guarantee of
a desired noise-tolerant self-testing result.

1.2 Noise model

As discussed above, we wish to define a testing procedure that can also certify entanglement
in noisy entangled states. While our work can be used to certify different types of noisy
states, we briefly discuss a specific noise model here for the sake of concreteness. The noise
model that we have in mind produces a state of the form ¢®” where each ¢ has fidelity 1 — v
with some optimal state defined via the considered non-local game. Such a state can be
produced, e.g., by sending many copies of the optimal state via noisy channels.

We emphasize that by saying that this is the noise model that we consider we merely
mean that we require that our tests will be able to certify the entanglement of o®". However,
we do not assume that all of the states on which the procedure is applied must have this

form (i.e., the soundness part of the statement is independent of the considered noise model).

1.3 Results and contributions

In this work, instead of trying to certify the presence of a specific state like in self-testing
statements, we address the question of certifying an entanglement measure. This allows us
to sidestep the difficulty of formulating a noise-tolerant self-testing result.

3 In an experiment one actually needs to prepare many identical and independent copies of p and
play the game G, many times. Then the average winning probability can be calculated, and high
amount of entanglement is certified (with high probability) if the average winning probability is at least
qval(Gn) —e.
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We present a family of simple non-local games {G,} where each game G, certifies
that the shared state of the players has Q(n) bits of entanglement of formation. The
entanglement of formation, denoted by Er(p), is a well-studied entanglement measure for
bipartite mixed states that, in the case of pure states, is equal to the entanglement entropy.
As the name suggests, the entanglement of formation captures, roughly speaking, the amount
of entanglement needed in order to produce a given state p. It is also closely related to
another important, perhaps more well known, entanglement measure which will be of use
below — the entanglement cost Ec(p). The entanglement cost of a mixed state roughly
describes how many EPR pairs are needed to create p via local operations and classical
communication [9]. We provide a more thorough discussion of the entanglement measures
relevant for our work in Section 1.4.

The family of non-local games that we consider are the so called threshold games. Before
stating our main result, we define these games. Let G be a two-player non-local game with
classical value* cval(G) and quantum value qval(G). Given an integer n > 1 and a noise
threshold 0 < v < qval(G) — cval(G), define the threshold game Gival(G)—v o be a game
where the two-players now play n independent instances of GG in parallel, and win if they win
at least qval(G) — v fraction of instances of G.

The main theorem of this paper is as follows:

» Theorem 1 (Main theorem). Let G be a two-player game with a classical-quantum gap:
i.e., A= qval(G) — cval(G) > 0. Let 0 <v < A be a noise parameter.

Completeness (Noise tolerance). Let n > 1 be an integer. Consider a quantum strategy
for G that succeeds with probability qval(G) —n for 0 < n < v. Playing this strategy n times
independently in parallel in the threshold game vaal(G)fy succeeds with probability at least

1~ exp(—(v — n)n/3).5

Soundness (Entanglement certification). There exist constants 0 < c¢1,c2 < 1 such
that for sufficiently large n > é, any strategy that wins the threshold game vaal(G)
with probability k > exp(—cin) must use a quantum state p such that its entanglement of
formation satisfies Er(p) > car’n.

The constants c1,co depend only on A, v, and the number of possible answers in G.

-V

To gain a better understanding of our theorem we now give an example. Consider the
famous CHSH game, which has classical value cval(CHSH) = 3/4 and quantum value
qval(CHSH) ~ 0.854. Any strategy for winning a single instance of CHSH with probability
qval(CHSH) — n for some parameter 0 < n < 0.1 must use some entangled state o. An
“honest” strategy for playing the threshold game CHSH'5,_5, would be to play each instance
of CHSH independently using c®™ as the entangled resource state. Via a simple Chernoff-
Hoeffding bound it is easy to see that this strategy will pass CHSH'5,_ 5, with overwhelming
probability. Thus this game is noise-tolerant. The entanglement of formation of o®" is
indeed Q(n).

But what about other strategies? Is there a state with entanglement of formation o(n)
that can be used to win CHSHy5,_o, sufficiently well? Theorem 1 shows that this is not
possible.

The classical value of a game is the maximum winning probability when the players employ classical
strategies, i.e., do not use entanglement. Similarly, the quantum value of a game is the optimal winning
probability when using quantum strategies.

Alternatively, a simpler (but slightly weaker) statement is that playing a strategy the succeeds with
probability qval(G) —v in G n times independently in parallel succeeds in the threshold game vaal(G)—u

with probability % This is sufficient for an experiment certifying entanglement.
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We list several features of Theorem 1:

1. It holds for any two-player game G. In other words, any game with a classical-quantum
gap can be “lifted” to another game that tests for large entanglement in a noise-tolerant
manner.

2. The players are able to pass our test with high probability by holding a tensor product of
noisy few-qubit states (such as 0®" where o has fidelity 1 — v with an EPR pair for any
amount). The theorem gives non-trivial guarantees for any 0 < v < qval(G) — cval(G),
i.e., it is robust to any amount of noise up to the classical limit.

3. It gives non-trivial guarantees even for strategies whose success probability is far from
optimal; for any constant #, Theorem 1 still guarantees that Er(p) € Q(n).

Theorem 1 thus shows that by playing the simple threshold game Gquval(G)fu with an
uncharacterized device we can classically test for large amounts of entanglement (as measured
by the entanglement of formation), even when the device is highly noisy, as current devices
are. As far as we are aware, previous results [33, 14, 16, 35, 18] cannot be used to derive
conclusions which are quantitively strong as Theorem 1, even when considering more complex
games and proof techniques.”

Our main theorem presented above can be easily used to derive another quantitive relation
between the advantage in a non-local game G and the entanglement cost required to achieve
this advantage. Specifically, we prove the following.

» Theorem 2. Let G be a two-player game with a classical-quantum gap: i.e., A :=
qval(G@) — cval(G) > 0. Let 0 < v < A be a noise parameter. Then, for any state o that
can be used to win G with probability at least qval(G) — v, its entanglement cost satisfies
Ec(0) > ca/4, where ¢y is the constant from Theorem 1.

Put in other words: the minimum entanglement cost® needed to obtain a super-classical
success probability in a non-local game only depends on the classical-quantum gap as well as
the number of possible answers in the game.

As we explain in Section 1.4, even given the full description of a state o, calculating
Ec (o) is not easy and no “single letter” formula is known to describe it. Theorem 2 gives a
simple lower bound on E¢(c) in terms of ¢’s advantage in any non-local game G.

The only lower-bound with a similar flavour which was known before is the one given
in [46]. There, a (tight) relation between Er (o) and o’s winning probability in the CHSH
game was derived. Self-testing results can, of course, also be used to achieve similar bounds
(by taking into account the continuity of the considered entanglement measures), but so
far most of the results are non-trivial for a very limited amount of noise and only apply to
specific two-player games. In contrast, Theorem 2 holds for any non-local game and amount
of noise.

1.4 Why entanglement of formation?

In this section we motivate and explain the relations between the entanglement measures
certified by our tests in Theorem 1 and Theorem 2.

% However, the constants ¢1 and ¢z are probably not optimal and can be improved.

7 This is not to say that our work supersedes the mentioned works; these derived self-testing statements
which certify the state and not just its entanglement as we do here.

8 For any o, Er(0) > Ec(c). Thus, Theorem 2 could have been phrased in terms of the entanglement of
formation as well.
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Myriad entanglement measurements have been studied by researchers, each possessing
various properties [38, 28]. For pure bipartite states |))AB, the coarsest quantity describing
entanglement is the entanglement rank, which is simply the Schmidt rank of [¢)). However,
this is not a very useful measure of entanglement as one can have a state arbitrarily close to
a product state, yet have high entanglement rank.

A more natural measure of entanglement is the entanglement entropy E(v), which is the
von Neumann entropy of the reduced density matrix of |)) on system A or equivalently B [8, 39].
In fact, the entanglement entropy is the unique entanglement measure for pure bipartite
states that satisfies a few natural axioms, such as monotonicity under local operations and
classical communication (LOCC) and asymptotic continuity [28].

For mixed states the situation is more complicated — there is no clear “best” entanglement
measure. The most natural and operational entanglement measures are considered to be the
entanglement cost Ec and the distillable entanglement Ep. In fact, for any entanglement
measure M satisfying some natural properties we have that Ep < M < E¢ [28]. Thus
the entanglement cost and distillable entanglement are in a sense “extremal” entanglement
measures. For pure states, both E- and Ep are equal to the entanglement entropy.

In the following we focus on E¢. Informally, the entanglement cost of a bipartite quantum
state pap describes the number of maximally entangled states required to produce p using
only LOCC. As LOCC cannot increase entanglement, the pre-shared maximally entangled
states describe the sole source of entanglement in such a process and hence quantify how
entangled p is in a meaningful way.’

Formally, the entanglement cost is defined as the following asymptotic quantity:

Ec(p) = inf {7’ : lim (inf | p®™ — A(<I>2+m)||1> = O} )
n—oo \ A
where the infimum ranges over all LOCC maps A and ®3,., is the maximally entangled state
of rank 2. That is, it is the maximal possible rate r at which one can convert ®,.. into
p®™ with vanishing error in the limit n — oo.

Computing Ec(p) is considered to be a difficult task in general. Due to this reason
one usually considers a closely related entanglement measure called the entanglement of
formation. It is formally defined as follows [9]:

Ep(p) = inf {ZPiE(‘I’i) p= Zpi|‘1’i><‘1’i|} .

That is, Er(p) is the minimum average entanglement entropy over all pure-state decomposi-
tions of p.

The entanglement of formation derives its relevance from its relation to the entanglement
cost Ec(p) discussed above. It describes the rate in which maximally entangled states are
converted to p using a specific type of LOCC protocols [51] (whereas Ec(p) is the minimum
over all LOCC protocols). Furthermore, [25] showed that the entanglement cost is equal to
the regularised entanglement of formation:

Ec(p) = E(p) = lim (Ep(p®")/n).

n—oo

9 Another way of thinking about the operational meaning of entanglement cost is by considering the task
of entanglement dilution. There, the goal is to start with initial noiseless entanglement and dilute it to
create a target state p using LOCC.
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For some time it was conjectured that the entanglement of formation is additive and hence
Ec(p) = Er(p). Today it is known that this is not the case and that the limit in the above
equation is needed in general [11].

It is not known how to compute E3°(p) for general p, in part because of the infinite limit.

The “single-letter” quantity Er(p) does not appear to be much easier to compute because
of the minimisation over all possible decompositions of p. To date, it can be done only for
states with high symmetry [44, 48] or of low dimension [49, 50, 3]. One can imagine that
the task of calculating or bounding Er(p) only becomes harder if one does not have full
information about p as in the scenario considered in the current work.

In the light of the above, one can see our work as giving a way to lower bound those

complex entanglement measures for an unknown state p in a device-independent manner.

Of course, this is not a general method that works for all states p, but rather it works
for any state p that can be used to gain an advantage in non-local games (or, in other
words, violate some Bell inequality). Specifically, Theorem 1 gives a lower bound on Ef for
high dimensional (while perhaps noisy) states that can be used to pass the threshold game
vaal(g)fy for some two-player game G. Theorem 2 gives a lower bound on F¢ for any state
achieving a quantum advantage in a two-player game G. In particular, for any given state
one can choose the game G such that the lower bounds on Er and E¢ are maximal.

1.5 Proof technique

The proof idea is simple: if the entanglement of formation of the players’ shared state in
the threshold game vaal(G)fy is o(n) and the players win with non-negligible probability,
then this strategy can be transformed into a strategy for the original game G that uses no
entanglement, yet still wins with probability strictly greater than cval(G), which would be a
contradiction.

This is argued as follows. Consider a two-player game G where the first player receives a
question x and produces answer a, and the second player receives question y and responds with
answer b. The players win if V' (z,y, a,b) = 1 for some predicate V. Let qval(G) > cval(G).

Now suppose there is a quantum strategy that wins vaal(g)fy with decent probability.

A simple probabilistic argument implies that conditioned on an event E of winning roughly
qval(G) — v fraction of some subset S C [n] of instances, the players will win the j’th instance
with probability close to qval(G), for an average j € [n]. Another way of phrasing this
statement is: Let (X;,Y;) denote the questions to the two players in the j’th instance of
G, and let (A;,B;) denote their answers. Let Px,v,A,B; g denote the joint distribution
of questions and answers of the j’th coordinate in this hypothetical strategy, conditioned
on the event F. Then sampling a tuple (X;, Y, A;,B;) from Px vy, a;B, g Will satisfy the
game predicate V with probability qval(G) — e > cval(G).

Next, we will prove the following three statements (roughly speaking): (1) Px v,z ~

“

ijy'].7 (2) PAj\XijE ~ PAj|Xan and (3) PBj\XijAjE ~ PBj|YjE7 where “~” denotes
closeness in statistical distance. Notice that without the conditioning event F, the first item
would be trivial and the second item would follow exactly from the non-signaling condition
between the players. To prove the third item, we use the fact that the hypothetical strategy
for the threshold game uses o(n) bits of entanglement; intuitively this implies that each
instance of G can only use o(1) bits of entanglement.

Putting these three items together, we obtain a classical strategy for G: the first player
receives question X;, and samples an answer A; from the distribution P4 ;x;£. The second
player receives question Y; and samples from Pg,y,z. The joint distribution of their
questions and answers will be close to Px v, a;B,|z, but that implies that they will win G
with probability qval(G) — & > cval(G), which is a contradiction.
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The proof strategy and the techniques used are heavily inspired by the proofs of the
parallel repetition theorem in classical complexity theory [41, 27, 40], and subsequently the
work on the quantum parallel repetition problem. This problem asks for a bound on gval(G™)
if qval(G) < 1, where G™ is like the threshold game except we demand that the players win
all instances of G. Tt is conjectured that qval(G™) decays exponentially with n, although the
best general upper bound is that qval(G™) decays polynomially with n when qval(G) < 1 [52].
Nearly all of the works that study the quantum parallel repetition problem [30, 15, 5, 6]
share the proof strategy of transforming a “too-good-to-be-true” strategy for the repeated
game G" into a “too-good-to-be-true” strategy for the single game G, namely a quantum
strategy with success probability better than qval(G), a contradiction. These works all use
information-theoretic machinery in the proof, and in this work we use the same tools.

The full proof can be found at https://arxiv.org/abs/1712.09368.

1.6 Related work

Our work is the first that addresses directly the question of certifying the entanglement of
formation of high dimensional states in a noise-tolerant way (while the case of a single CHSH
game was already considered in [46] as mentioned above).

Any robust self-testing result can be used to certify any continuous entanglement measures
(e.g. the entanglement of formation); but as explained before, such results cannot accom-
modate the kinds of noise considered here. In addition to the self-testing results mentioned
before [33, 14, 16, 20, 35, 18], the only other self-testing result that certifies asymptotically
growing amounts of entanglement is from the work of Reichardt, Unger and Vazirani [42],
who show how to verify quantum computations using classical resources only. At the heart of
their result is a sequential protocol where the experimenter plays many rounds of the CHSH
game with the two players in order to certify the presence of many EPR pairs. However,
like the other self-testing results, the protocol of [42] is also not noise-tolerant in the sense
considered here.

If one cares just about certifying high entanglement rank of a state (rather than certifying
an entanglement measure such as Fp, or precisely characterizing the state as in self-testing),
then we can combine the following two independent results to address the question of noise-
tolerant, device-independent testing of asymptotically growing amounts of entanglement: The
work of [40] shows that the classical value of a threshold game G?val(G) 45 decays exponentially
fast with n (if cval(G) < 1). The work of [31] shows that the maximum quantum success
probability in a game F' using dimension-d entanglement is at most d cval(F). Letting F be
a threshold game, we obtain that d must be exponentially large in any quantum strategy
whose winning probability is say at least a small constant. Since the threshold game is
noise-tolerant (i.e. it can be won with high probability with noisy strategies), this gives a
noise-tolerant test for entanglement rank. This same argument can be modified to show that
the 1/2-Rényi entropy of the state'® must be linear in n.

Our test lower bounds a stronger entanglement measure, the entanglement of formation,
which in the pure state case is the entanglement entropy and therefore a lower bound on the
1/2-Rényi entropy. There can be arbitrarily large gaps between the von Neumann entropy
and the 1/2-Rényi entropy of a pure state.

10 The 1/2-Rényi entropy of a pure state [1) is 2 log(zi /\;/2) where \; are the eigenvalues of the reduced
density matrix of [¢) on either side.
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The broader goal of certifying the dimension of a quantum system in a device-independent

manner has been heavily studied under the heading of dimension witnesses. Much of the
work on dimension witnesses has focused on finding Bell inequalities such that achieving the
optimal violation requires an entangled state of a certain dimension [12, 36, 13]. Many of

these works construct and design dimension witnesses using a combination of analytical and

numerical techniques.

1.7 Future work

Some open problems and future directions include:

1.
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