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Abstract
We show that for no surface except for the plane does monadic second-order logic (MSO) have a
zero-one-law – and not even a convergence law – on the class of (connected) graphs embeddable
on the surface. In addition we show that every rational in [0,1] is the limiting probability of
some MSO formula. This strongly refutes a conjecture by Heinig et al. (2014) who proved a
convergence law for planar graphs, and a zero-one law for connected planar graphs, and also
identified the so-called gaps of [0,1]: the subintervals that are not limiting probabilities of any
MSO formula. The proof relies on a combination of methods from structural graph theory,
especially large face-width embeddings of graphs on surfaces, analytic combinatorics, and finite
model theory, and several parts of the proof may be of independent interest. In particular, we
identify precisely the properties that make the zero-one law work on planar graphs but fail for
every other surface.
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1 Introduction

We consider classes of labelled graphs with the uniform distribution on graphs with a fixed
number of vertices. Let S be a closed compact surface, and let GS be the class of graphs
embeddable on S. Heinig et al. [9] studied limiting probabilities of first order (FO) and
monadic second order (MSO) properties of graphs in the classes GS . They showed that a
convergence law in FO holds for all surfaces S, and that a convergence law holds in MSO
when S is the sphere, so that GS is the class of planar graphs. They also showed that
a zero-one law in FO holds for connected graphs in GS , and a zero-one law in MSO for
connected planar graphs. They conjectured that these results extend to MSO properties on
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an arbitrary surface. We strongly refute these conjectures. For each surface S other than the
sphere we construct an MSO formula ϕ such that the probability that ϕ is satisfied in GS
does not converge when the number of vertices n tends to infinity, not even on connected
graphs. In addition, telling whether the probability of a given MSO formula ϕ converges is
an undecidable problem. We also show that every rational number in [0,1] is the limiting
probability of some MSO formula for connected graphs in GS .

We sketch next the main ingredients in the proofs of our results. We fix a surface
S different from the sphere. Embeddings of graphs on surfaces can be defined in purely
combinatorial terms. If S is orientable, an embedding of a graph on S is given by a rotation
system consisting, for each vertex v, of a cyclic orientation of the edges incident with v. If
S is non-orientable one has to consider also signed edges [10]. Given a graph G embedded
in S the face-width of the embedding is the minimum number of intersections of G with
a non-contractible curve in S. In what follows, we say that a graph property holds with
high probability (w.h.p.), or asymptotically almost surely (a.a.s.), if it holds with probability
tending to 1 as n tends to infinity. It is known [10] that if the face-width of a 3-connected
graph G is at least 2g, where g is the genus of G (orientable or not), then G has a unique
embedding in S. We also need the fact that the face-width of a random 3-connected graph
G embedded on S is Ω(logn) w.h.p. [1].

It is shown in [2] that w.h.p. a random graph G in GS has a unique non-planar 3-connected
component C. Since planarity is MSO expressible and 3-connected components are MSO
definable, so is C. Using the fact that w.h.p. the face-width of C is large, we show the
existence of an MSO definable grid structure M in G of size Ω(log logn). This is obtained
starting with a non-contractible cycle, which is MSO definable, and extending it to a grid
structure. Inspired by the capacity of MSO to emulate Turing machine computations on
grid graphs, we are then able to define an MSO formula ϕ expressing the property that
log† |M | is in {0, 1, 2, 3} modulo 8, where log† n is a variant of log∗ n (see Section 5). Given
that log logn ≤ |M | ≤ n, the value of log† |M | modulo 8 oscillates and, as a consequence,
the probability that ϕ holds does not converge as n goes to infinity.

The non-converging formula ϕ, combined with the abovementioned capacity of MSO to
emulate Turing machine computations on grid graphs, also gives the undecidability of the
decision problem for converging probabilities. For each Turing machine M , we find an MSO
formula ϕM that simulates partial runs of M along the definable growing grids. The formula
ϕM has asymptotic probability 1 if M halts, and asymptotic probability 0 otherwise, and
the probability of the conjunction ϕ ∧ ϕM is thus converging if and only if M halts.

To prove that each rational in [0, 1] is the limiting probability of some MSO formula,
we use the following facts. (a) A 3-connected graph in a surface of genus g has a spanning
tree with maximum degree at most 4g [7]. (b) For the class GS , every property in MSO2
(quantification over vertices and edges) is also expressible in MSO [5]. (c) The size Xn of the
unique non-planar component obeys a limit local law related to a stable law [8]. Consider
now a random graph G in GS with n vertices, let C be the unique non-planar component,
and let Xn = |C|. From properties (a) and (b) it follows that, for each integers a and b,
we can express in MSO the property ϕa,b that Xn is equal to a modulo b. Using property
(c) we show that the probability that ϕa,b is satisfied tends to 1/b. Now given any rational
non-negative a/b ≤ 1, the property that Xn is less than a modulo b tends to a/b.

The key fact that makes MSO properties of graphs on non-planar surfaces so different
from the plane is that w.h.p. there is a unique non-planar 3-connected component, which
also happens to be the only one of linear size. For random planar graphs there is a unique
3-connected component of linear size as well, but it is indistinguishable in MSO from the
smaller ones.
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2 Graphs and Surfaces

In this section we present the background from graph theory and surface topology we need
for our main result. We refer to [10, 6] for background on graphs and surfaces. Our notation
on surfaces and embeddings follows [10].

Graphs. All graphs in this paper are finite, undirected, and simple, i.e. no parallel edges or
self-loops. We denote the vertex and edge set of a graph G by V (G) and E(G), resp. For
d ≥ 0, a graph G is d-degenerate if every subgraph H ⊆ G contains a vertex of degree at
most d.

We need the concept of 3-connected components of a graph G. For k > 0, a graph G is
k-connected if |V (G)| > k and G−S is connected for all S ⊆ V (G) with |S| < k. A connected
component of G is an inclusion-wise maximal connected subgraph C ⊆ G. A 2-connected
component of G is an inclusion-wise maximal 2-connected subgraph C ⊆ G. For defining
3-connected components of G we need some preparation.

Let G be a 2-connected graph. A separator of order 2 in G is a set X = {u, v} of distinct
vertices such that G−X is not connected. Let C be an inclusion-wise maximal subgraph of
G such that for all 2-separations X of G there is one connected component of G−X which
contains all vertices of C −X. For any such 2-separation X of G, if X ⊆ V (C) then we add
an edge between the two vertices of X in C if it is not already there. This produces a new
graph C̃. For a 2-connected graph G, the graphs C̃ obtained in this way which are not cycles
are called the 3-connected components of G. Tutte proved that every 2-connected graph has
a decomposition into a tree whose nodes are cycles or 3-connected components.

Surfaces and Graph Embeddings. We now present some fundamental properties of surfaces
and embedded graphs. We refer to [10] for background.

A surface is a compact connected Hausdorff topological space in which every point has a
neighbourhood homeomorphic to the plane. A surface can be constructed from the sphere by
cutting a number of holes and pairs of holes into the sphere, each homeomorphic to an open
disc. Every pair of holes is then closed by adding a handle – an open cylinder – connecting
the boundary of the holes. The remaining holes are closed by adding a crosscap, that is,
by identifying each point on the boundary of the hole with the corresponding point on the
opposite side. The surface classification theorem shows that every surface is homeomorphic to
a surface constructed in this way. Any surface obtained in this way that includes a crosscap
is called non-orientable, otherwise it is called orientable. Our main result holds for orientable
and non-orientable surfaces. Due to space constraints, we only explain the orientable case.
The surface obtained from the sphere by adding k handles is denoted by Sk. The number k
is called the genus of Sk.

Let S = Sk be a surface. The way we constructed S implies that we can reduce it to
the plane by taking for each handle a closed curve that goes around the handle and cut the
surface along the curves, closing the appearing holes by disks. This way, every handle is cut
open and the resulting surface is homeomorphic to the plane. We call curves which cut a
handle in this way noncontractible. There are two types of non-contractible curves: if we cut
along a curve, we may either disconnect the surface or not. Curves which do not disconnect
the surface when we cut along them are called non-separating.

Following [10], a graph G′ is embedded on a surface S if its vertices are distinct points on
S and every edge e of G′ with endpoints u, v is a simple closed arc connecting u and v in
S such that the interior of e is disjoint from other edges and vertices of G′. A graph G is
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embeddable on S if it is isomorphic to an embedded graph G′ on S. Let Π be an embedding
of a graph G in S. The connected components of S −Π are called the faces of Π.

An embedding of a graph in a surface S can be uniquely represented by an object called
an embedding scheme or rotation system. If v is a vertex of G then the embedding of G
embeds the edges incident with v in some order in clockwise orientation around v. That is,
for any v the embedding defines a cyclic permutation of the incident edges, or a linear order
on the edges that have v as an endpoint. We call this order the clockwise order around v. A
rotation system is a set of clockwise orderings containing one order for every vertex.

Such a rotation system uniquely determines an embedding of G in S. Given a rotation
system π of a graph G, we can construct the facial cycles of the embedding as follows. Let
v be a vertex and let e = {u, v} be an incident edge. Then v and e determine a walk in G
where we start at v, follow the edge e to its other endpoint and then proceed with the next
edge in clockwise order until we return to v. In this way we obtain exactly the facial cycles
of the embedding. In particular, we can represent any face of the embedding by orienting an
edge in its boundary cycle, which fixes the start vertex v and the edge e to choose first. This
will be used in the MSO definition in the next section.

One of the main challenges in proving our main result is that we need to define MSO-
formulas that encode in a given graph an embedding of it in a fixed surface S. Whitney
proved that a planar graph G that is 3-connected has a unique embedding into the plane. In
[3], Courcelle proved that there are MSO-formulas defining the rotation system for planar
graphs.

To prove that rotation systems are also definable for graphs on other surfaces we will
reduce the problem to the planar case as follows. As mentioned above, any surface can be
reduced to the plane by cutting the surface along a finite set of closed curves each of which
cuts a handle. We can generalize this concept of cutting along a cycle to cycles in embedded
graphs.

In the sequel, let S be a surface. If we refer to a Π-embedded graph G we implicitly define
Π to be an embedding of the graph G on S. Let C = (v0e1v1e2....vk = v0) be a cycle in G.
For i > 0, let Li be the set of edges incident to vi which in the clockwise ordering around vi
appear after ei but before ei+1 the Ri be the set of edges appearing after ei+1 and ei. The
edges in any Li are called the left edges of the cycle C and the edges in any Ri are called
the right edges of C.

I Definition 2.1. Let C = (v0e1v1 . . . vk) be a surface nonseparating cycle of a Π-embedded
graph G. Let G′ be the graph obtained from G by replacing C by two isomorphic copies
Cr = (vr0er1vr1 . . . vrk) and Cl = (vr0el1vl1 . . . vlk) such that all edges e = {u, vi} on the right of
C are replaced by edges {u, vri } incident to the corresponding vertices on Cr and all edges
e = {u, vi} on the left of C are replaced by edges {u, vli} incident to the corresponding vertices
on Cl. We say that G′ is obtained from G by cutting along the cycle C. The embedding Π
defines an embedding Π′ of G′ in the surface obtained from S by cutting along C and closing
the resulting holes by discs in the obvious way. Note that the two copies C1, C2 of C are now
facial cycles. We now add two new vertices f1, f2 such that fi has an edge to every vertex of
Ci. This means that fi is drawn in the face bounded by Ci. We call the resulting graph the
augmented graph obtained by cutting along C.

This motivates the following definition.

I Definition 2.2 (Planarizing set of cycles). Let G be a Π-embedded graph. A planarizing
set of cycles is a set C1, . . . , Ck of pairwise disjoint cycles in G such that cutting along all
cycles C1, . . . , Ck results in a connected graph embedded in the sphere.
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We will see below that for certain graphs embedded on a surface such sets of cycles always
exist. For this, we need the concept of face-width.

I Definition 2.3. Let Π be an embedding of a graph G on S. The face-width fw(G,Π) of G
is the smallest number k such that S contains a noncontractible closed curve that intersects
G in k points, or ∞ if no noncontractible curve exists (i.e. S is the plane).

We prove next that the connectivity between two Π-noncontractible and Π-nonseparating
cycles is at least as high as the face-width of Π.

I Lemma 2.4. Let G be a 2-connected Π-embedded graph and let C and C ′ be two disjoint
Π-noncontractible, Π-nonseparating cycles. Let 2 ≤ k = fw(G,Π) <∞. Then there are at
least k pairwise vertex disjoint paths linking C and C ′. Furthermore, if G is 3-connected
with 3 ≤ fw(G,Π) < ∞ and C is a Π-nonseparating cycle then be the augmented graph G̃
obtained from G by cutting along C is 3-connected.

See [10, Theorem 5.11.2] for a proof of the following theorem.

I Theorem 2.5. Let G be a graph that is Π-embedded in a surface with Euler genus g and
let d be a positive integer. If fw(G,Π) ≥ 8(d + 1)(2g − 1), then G contains a planarizing
collection of induced cycles C1, . . . , Ck, for some g/2 ≤ k ≤ g, such that the distance between
Ci and Cj, i 6= j, is at least d.

The previous theorem and the lemma preceding it show that starting from a graph that is
3-connected and has an embedding of face-width at least 3, we can reduce it to a 3-connected
planar graph by cutting along a constant number of cycles. Combining this with Whitney’s
theorem of unique embeddings of 3-connected planar graphs implies the following result
which will be important later.

I Theorem 2.6. Let G be a 3-connected graph that is Π-embedded in a surface with Euler
genus g such that 3 ≤ 8(d + 1)(2g − 1) ≤ fw(G,Π) < ∞. Let G′ be the augmented graph
obtained by cutting along a set of planarizing cycles. Then the facial cycles of Π are precisely
the facial cycles of the unique plane embedding of G′. Moreover, an embedding scheme which
is equivalent to Π can be deduced from the rotation system of the plane embedding of G′.

The following definition captures the abstract properties of planarizing sets of cycles.

I Definition 2.7. Let G be a graph and let k ≥ 0. A potential system of planarizing cycles
of order k is a sequence

(
(Ci, Li, Ri)

)k
i=1 such that C1, . . . , Ck are pairwise vertex disjoint

cycles in G and Li, Ri form a partition of the set of edges e 6∈ E(Ci) incident with a vertex
on Ci, for all i.

Note that the procedure of cutting along a cycle in a graph G and the augmented graph
obtained from G in this way as defined above can be applied to any cycle C with a given
partition L,R of the edges e 6∈ E(C) incident with a vertex on C. Of course it may not
always lead to the intended effect, e.g. if the sets L and R of left and right edges are chosen
wrongly. But in any case it will produce a graph G′ and if G and Π satisfy the conditions
of Theorem 2.5, then G′ will be the augmented graph obtained by cutting along the cycles
C1, . . . , Ck.

Let G′ be the graph obtained in this way. We call G′ the graph obtained from G by
cutting along S. If G′ is planar and Π′ is a plane embedding of G′ then we can obtain an
embedding Π′′ of G on some surface as follows. Let f1, . . . , fk be the extra vertices in G′. If
we delete f1, . . . , fk from G′ and Π′ then we obtain a plane embedding Π′′ which, for each i,
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has two facial cycles corresponding to the two copies of Ci. We cut two holes, each having a
copy of Ci as boundary cycle, and then identify the corresponding points on the two copies
of Ci in the obvious way. In this way we obtain a surface S defined by an embedding Π′′′ of
G. We call S,Π′′′ the surface and embedding obtained from G′ and Π′ by gluing along S.

The results and constructions proved in this subsection imply the next theorem.

I Theorem 2.8. Let S be a surface of genus g and let G be a 3-connected graph embedded
in S by an embedding Π such that 8(d+ 1)(2g − 1) ≤ fw(G,Π) <∞.
1. Then, there exists a potential system of planarizing cycles S of order at most g such that

the graph G′ obtained from G by cutting along S is 3-connected and planar, and if Π′ is
the (uniquely determined) plane embedding of G′, then S and Π are the surface and the
embedding obtained from G′ and Π′ by gluing along S.

2. Furthermore, for every potential system of planarizing cycles S of order at most g such
that the graph G′ obtained from G by cutting along S is 3-connected and planar, if Π′ is
the (uniquely determined) plane embedding of G′, then S and Π are the surface and the
embedding obtained from G′ and Π′ by gluing along S.

This theorem is the main tool for defining embeddings in monadic second-order logic later
on. In the next section we exploit face-width for finding grids of controlled size.

Grid-like Structures in High-Face Width Embeddings. In this section we establish some
graph theoretical properties of embedded graphs that will allow us to define grids in embedded
graphs whose order is proportional to the face-width.

I Definition 2.9. Let G be a 2-connected Π-embedded graph such that fw(G,Π) ≥ 2 and let
F = F (G,Π) be the set of Π-faces. The vertex-face graph is the bipartite graph Γ = Γ(G,Π)
with vertex set V (G) ∪ F (G,Π) and an edge between u ∈ V (G) and f ∈ F (G,Π) if u is
contained in the facial cycle bounding f .

Note that any closed curve on a surface corresponds to a cycle in the vertex-face graph in
the obvious way. From now on, we will therefore consider cycles in the Γ(G,Π). The length
of such a cycle is the number of faces (or vertices) on it.

I Lemma 2.10 (Prop. 5.5.10 of [10]). Let G be a Π-embedded graph such that 2 < fw(G,Π) <
∞, and let k := b fw(G,Π)

2 c − 1. Let v be a Π-face and let B0(v) be the Π-boundary walk of v.
For i > 0 we define Bi(v) as the union of Bi−1(v) and all Π-facial walks that have a vertex
in Bi−1(v). Then there exist k + 1 disjoint Π-contractible cycles C0, . . . , Ck such that for all
i = 0, 1, ..., k, Ci ⊆ ∂Bi(v) and Bi(v) ⊆ Int(Ci).

We are now ready to prove the graph theoretical properties we will use later to show
that any 3-connected graph embedded by a face-width k embedding, for some 3 ≤ k <∞,
contains a k

4 ×
k
4 -grid which, moreover, is controlled by a noncontractible cycle.

Let Π be an embedding of a graph G on a surface S of Euler genus g such that fw(G,Π) ≥ 3.
Let Γ = Γ(G,Π). Let k := b fw(G,Π)

2 c − 1.

I Definition 2.11. Let C be a Π-nonseparating, Π-non-contractible cycle of Γ of minimal
length. Hence, the number of vertices and faces on C is exactly fw(G,Π). Let v be a face on
C. A set P = {P0, . . . , Pk} of pairwise vertex disjoint cycles is controlled by C and v, if for
all 0 ≤ i ≤ k,

Pi intersects C in exactly two vertices pi, p′i,
for all 1 ≤ i ≤ k, pi and pi−1 and also p′i and p′i−1 have a common neighbour on C, which
is a face, and p0 and p′0 are the neighbours of the face v on C, and
if i < j then Pi is contained in the component of G− Pj , called the interior of Pj , that
contains v.
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Let C and v be as before and let P = {P0, . . . , Pk} be a set of pairwise vertex disjoint
cycles controlled by C and v. Then either there is exactly one face v̄ on C not in the interior
of Pk or there is exactly one vertex v̄ on C which is neither in the interior of Pk nor on Pk
itself. We call the node v̄ in the previous claim the opposite node of v on C and denote it by
v̄.

Let C, v, v̄ and P be as before. Let a be a face on C and let Q = {Q1, . . . , Qk} be a set
of pairwise disjoint cycles controlled by C and a. Let ā be the opposite node of a on C.

Let s := dk+1
2 e and let s′ := k − s. If fw(G,Π) is odd then a is a face of facial distance s

from v on C if, and only if, the cycle Q ∈ Q which contains the vertex v̄ has v on its exterior
but v is adjacent to a vertex on Q. If fw(G,Π) is even then a is a face of facial distance s
from v on C if, and only if, v and v̄ are adjacent to vertices on the same two cycles in Q. If
a and v satisfy these conditions, then we say that v and a match.

This observation will allow us to define a, ā, v̄ from C and v. What is left is to give a
topological condition for C to be a noncontractible cycle of minimal length. But this can
easily be done using Lemma 2.4. Finally, it can be shown that C, v, v̄, a, ā uniquely determine
a grid structure in C ∪ P ∪Q of size s′. The previous claims together establish the following
theorem.

I Theorem 2.12. Let C be a noncontractible, nonseparating cycle of length fw(G,Π) and
let v be a face on C. Let P be a set of pairwise disjoint cycles controlled by C and v and
let v̄ be the node on the opposite of v on C. Let x be a face on C and let Q be a set of
pairwise disjoint cycles controlled by C and x and let x̄ be the node opposite of x on C.
Finally, suppose v and x match as defined in the previous claim. Then C, v, x, x̄, v̄ determine
an s′ × s′ grid.

3 Monadic Second-Order Logic

In this section we introduce monadic second-order logic (MSO), and develop the MSO
definability of embedding schemes and grids in large face-width embeddings.

Logic. A vocabulary is a set of relation symbols with associate arities. If L is a vocabulary, a
finite L-structure M is given by a finite domain or universe D(M) and a relation R(M) ⊆Mr

for each relation symbol R ∈ L of arity r
The class of formulas of monadic second-order logic (MSO) is the smallest class of formulas

that contains the atomic formulas and is closed under negations, conjunctions, disjunctions,
and existential and universal quantification of individual and set variables. An individual
variable ranges over the domain, and a set variable ranges over the subsets of the domain.
If X is a set variable and x is an individual variable, then X(x) is the atomic formula that
says that x is in the set X. Given a structure M , the relation defined by a formula ϕ(x̄, X̄)
with individual and set free-variables x̄ and X̄, respectively, is the set of pairs of tuples (ā, Ā)
such that M makes ϕ(ā, Ā) true. A formula without free variables is called a sentence.

Logic on Graphs, MSO1 and MSO2. There are two natural encodings of graphs G as
structures. In the standard encoding the vocabulary has a single binary relation symbol
E, the domain of the structure is V (G), and the binary relation E is interpreted by E(G).
In the incidence encoding the vocabulary has two unary relation symbols V and E, one
binary relation symbol I, the domain is V (G)∪E(G), and I is the incidence relation between
vertices and their incident edges. The unary relations V and E are interpreted by V (G) and
E(G). Whereas for FO it is irrelevant which encoding is used, the two encodings behave
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116:8 On Zero-One and Convergence Laws for Graphs Embeddable on a Fixed Surface

differently for MSO: on the standard encoding the set quantifiers range over sets of vertices
whereas on the incidence encoding they range also over sets of edges, e.g., over paths. MSO
on the standard encoding is often referred to as MSO1 and on the incidence encoding it is
referred to as MSO2. For graphs of bounded genus, and even more generally, for classes
of graphs that are p-degenerate for some fixed p > 0, the two logics MSO1 and MSO2 are
equivalent: see Theorem 5.22 in [5]. Since we only consider classes of graphs of bounded
genus we will assume from now on that graphs are given by their incidence encoding.

MSO-definitions and interpretations. For an integer k ≥ 1, an MSO-definition of L-
structures of order k is a collection of formulas ϕD,1(x), . . . , ϕD,k(x) and ϕR,t(x̄) for R ∈ L
and t ∈ [k]r, where r is the arity of R, and x in ϕD,i(x) is an individual variable, and x̄

in ϕR,t(x̄) is a tuple of individual variables of length r. If Ψ is such an MSO-definition
and M is a structure of the vocabulary of the formulas in Ψ, then the structure defined
by Ψ on M is the L-structure N with D(N) = {(a, i) ∈ D(M) × [k] : M |= ϕD,i(a)}
and R(N) = {((a1, i1), . . . , (ar, ir)) ∈ (D(M) × [k])r : M |= ϕR,(i1,...,ir)(a1, . . . , ar)}. An
MSO-definition of order k with parameters is defined analogously, with each formula carrying
additional parameter variables z̄ and Z̄, and an additional formula π(z̄, Z̄) to tell if a choice
of parameters b̄, B̄ is good. We say that Ψ takes the structure M as input and produces the
structure N as output, for the good choice of parameters b̄ and B̄, if the defining formulas
produce N when z̄ and Z̄ are replaced by the parameters. If there is as least one good
choice of parameters in M and the same structure N is produced under all good choices
of parameters, then we omit any reference to them and say that Ψ takes M as input and
produces N as output.

Finally, MSO-interpretations extend MSO-definitions to allow factor structures. Con-
cretely, an MSO-interpretation (without parameters, of order 1) includes an additional
equality-defining formula ϕ≡(x, y), that is required to define an equivalence relation on the
domain defined by ϕD(x) that is a congruence of the relations defined by the ϕR(x̄)’s. On a
structureM as input, the MSO-interpretation produces the structure whose domain is the set
of equivalence classes of the equivalence relation ≡ defined by ϕ≡(x, y) on the domain defined
by ϕD(x), and whose relations are the relations that are defined by the ϕR(x̄)’s factored by
≡. MSO-interpretations with parameters and of order k > 1 are defined analogously.

The composition of two MSO-interpretations is defined in the obvious way and is again
an MSO-interpretation. As an example of MSO-interpretation we state the following easily
derived consequence of Theorem 4.7 in [3].

I Theorem 3.1. There is an MSO-definition Ψ that, for every graph G given as input and
every 3-connected component C of G, there is a good choice of parameters for Ψ on which it
produces C.

Logic Representation of Embedding Schemes. Embedding schemes will be represented
as graphs expanded by two relations that represent the cyclic orderings around the vertices.
Concretely, the vocabulary has two unary relation symbols V and E for vertices and edges,
one binary relation symbol I for the incidence relation between vertices and edges and one
ternary relation symbol R for cyclic orderings. The predicate R(v, e1, e2) holds if e1 and e2
are edges that are incident to vertex v, and e1 is the immediate predecessor of e2 in the
cyclic ordering of the edges that are incident to v.

This encoding was used by Courcelle [4] to show that there is an MSO-definition that
takes a 3-connected planar graph as input and produces an embedding in the plane as output,
which is unique by Whitney’s Theorem.
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I Theorem 3.2 ([4]). There is an MSO-definition that, given a 3-connected planar graph G
as input, produces an embedding scheme as output.

It will be convenient to extend the embedding schemes to include the faces of the
embedding. Accordingly, extended embedding schemes will include a set F of faces in their
domain and store the incidence relation between edges and faces through the incidence
relation I.

We aim at an MSO-interpretation that given an embedding scheme produces its extension
with faces. A face is determined by one of its bounding edges together with an orientation.
Specifying the orientation directly by specifying one of its endpoints would take us beyond the
syntax of MSO-interpretations. Instead of that, we use a proper k-coloring of the graph with
a small number k of colors and specify the orientation of the edge by specifying the colors
of the left and right endpoints. The k-coloring is provided through k many parameter set
variables, and we choose k large enough so that any graph in the surface under consideration
has chromatic number at most k. It is well-known that the chromatic number of all graphs
embeddable in a fixed surface is bounded (see [10]). In the case of planar graphs k = 5
suffices (and even k = 4 does).

I Lemma 3.3. For every k ≥ 2, there is an MSO-interpretation that, given an embedding
scheme for a graph that is k-colorable, produces its extension by faces as an extended embedding
scheme.

Embeddings by Reduction to Planar Case. Our next goal is to prove the analogue of
Theorem 3.2 for higher genus surfaces. We proceed by reduction to the planar case via
Theorem 2.8. Let S be an orientable surface of genus g. For simplicity we start with the
orientable case.

We start with two MSO-interpretations that implement the operations of cutting a graph
along a potential system of planarizing cycles, and its reverse operation of gluing along it; cf.
Definition 2.7 and the discussion immediately following it. Systems are represented most
simply by a sequence of 3k set variables.

I Lemma 3.4. There is an MSO-interpretation Ξ that, given a graph G and potential system
of planarizing cycles S, produces the graph G′ obtained from G by cutting along S. Conversely,
there is an MSO-interpretation Ξ′ that, given a graph G, a potential system of planarizing
cycles S, and a plane embedding scheme Π′ for the output of Ξ on G and S, produces the
graph G′′ and the embedding scheme Π′′ that is obtained from G′ and Π′ by gluing along S.

With these objects at hand we are ready to prove the analogue of Theorem 3.2.

I Theorem 3.5. Let S be a surface of genus g. There is an MSO-interpretation that, given
a 3-connected graph G that has an embedding in S of finite face-width at least 8(d+ 1)(2g− 1)
(which must be unique), produces such an embedding Π.

We need to show that the conditions of Theorem 2.8 can be defined in MSO.

Defining Grids in High Face-Width Embeddings. Our final goal of this section is to develop
an MSO-interpretation γ which defines large grids in 3-connected Π-embedded graphs.

I Theorem 3.6. There is an MSO-interpretation γ that, given an extended embedding scheme
for a graph G of finite face-width k ≥ 3, produces a grid of order bk4 c.

To define γ, we need to show that the conditions of Theorem 2.12 can be defined in MSO.
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4 Size and face-width for random graphs

Fix a surface S of genus g ≥ 0. It was shown in [2] that, a.a.s., a random graph G from GS
has genus g, and in particular it is not planar if g > 0. Moreover, a.a.s., G has a unique
non-planar connected component, as well as a unique non-planar 2-connected and 3-connected
components. Moreover, these components are all giant, i.e., of size linear in the number
of vertices. Indeed the probability distributions of their sizes is well-understood. In the
following, if fn and gn are sequences of positive real numbers, we use the notation fn ∼ gn
to mean that limn→∞ fn/gn = 1.

Sizes of the components. Let Ln denote the size (i.e., number of vertices) of the largest
connected component in a random n-vertex graph G from GS , and let Mn = n − Ln.
Theorem 5.3 in [2] determines the distribution of Mn, and hence of Ln: for every fixed
integer k ≥ 0 we have Pr[Mn = k] ∼ p · gk γ

−k

k! where p, gk and γ are constants that do not
depend on n, nor on the surface S. Moreover there exists constants a > 0 and b > 0 such
that E(Mn) ∼ a and Var(Mn) ∼ b. In particular, by Chebyshev’s inequality this means that,
for any a(n) that grows to infinity however slowly, we have Mn ≤ a(n) a.a.s., and hence
Ln ≥ n − a(n) a.a.s. Theorem 5.4 and 5.5 also in [2] determine the distributions of the
sizes of the largest 2-connected and 3-connected components, but only for random connected
graphs from GS . However, by composing the results it is still possible to determine the sizes
for random arbitrary graphs from GS , as we do next.

A sequence of integer random variables X0, X1, . . . is said to admit a local limit law
of the Airy type with parameters α and c if for every real finite interval [a, b] it holds
that Pr

[
Xn = bαn+ xn2/3c

]
∼ n−2/3cg(cx) uniformly for every x ∈ [a, b], where g(x) =

2e−2x3/3(xAi(x2)−Ai′(x2)) and Ai(x) is the Airy function. Here, uniformly for every x ∈ [a, b]
means that for every positive real ε > 0 and every large enough n the ratio is ε-close to 1
simultanesouly for all x ∈ [a, b].

I Theorem 4.1. Let Xn and Yn denote the sizes of the largest 2-connected and 3-connected
components of a random n-vertex graph in GS. Then Xn and Yn admit local limit laws of the
Airy type (with different parameters). Moreover, a.a.s., the largest connected, 2-connected
and 3-connected components are unique and have maximal possible genus, and all other
connected, 2-connected and 3-connected components are planar.

Face-width of the components. For this section we assume that the genus of S is g > 0.
Our goal is to show that the face-width of the largest 3-connected component of the random
graph grows logarithmically. We will need the following facts:

Almost all 3-connected maps on S with m edges have face-width greater than δ logm for
some constant δ > 0. This is proved in [1] for rooted maps. Since almost all 3-connected
maps have no non-trivial automorphisms [12] this is also true for unrooted maps. Moreover,
the largest 3-connected component of a random graph G from GS is unique and non-planar
by Theorem 4.1 a.a.s., and has face-width greater than any fixed constant also a.a.s. [2]. As
a consequence it has a unique embedding in S, and it can be considered as an unrooted map
[13].

I Theorem 4.2. Let S be a surface of genus g > 0 and let Fn denote the face-width of the
largest 3-connected component of a random n-vertex graph in GS. Then there exists γ such
that Fn ≥ γ logn asymptotically almost surely.
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Proof. Let G denote a random n-vertex graph in GS . Let L and T denote the largest
2-connected and 3-connected components of G. We start by arguing that, conditioned on the
number of edges of L and T , the distribution of T is uniform over the 3-connected graphs
in GS with its number of edges. Indeed, L is obtained from T by (possibly) replacing each
edge of T with a 2-connected graph, so each T with m edges gives rise to the same number
L with k edges. For m ≥ k, let Bm,k denote the event that e(T ) = m and e(L) = k. By
Theorem 4.1, the sizes of T and L are at least cn a.a.s., for some constant c > 0. Since
they are at least 2-connected, also e(T ) ≥ cn and e(L) ≥ cn a.a.s.. Now we combine the
previous paragraph with the one just before the theorem: In the distribution conditioned on
Bm,k, the 3-connected component T can be considered as a random m-edge 3-connected map
embedded in S, and its facewidth is at least δ logm if m is large enough. We conclude that
the facewidth of T is indeed at least δ log(cn) a.a.s. Precisely, if A denotes the event that
T has facewidth at least δ log(cn), then Pr[ A ] ≥

∑
m≥k≥cn Pr[ A | Bm,k ] Pr[ Bm,k ]. For

fixed ε > 0, if n is large enough, then Pr[ A | Bm,k ] ≥ 1− ε for any m ≥ k ≥ cn. It follows
that, if n is large enough, then Pr[ A ] ≥ (1− ε)

∑
m≥k≥cn Pr[ Bm,k ] ≥ (1− ε)2. Since ε > 0

was arbitrary, the claim is proved by choosing any γ > 0 smaller than δ. J

5 Limiting probabilities of MSO-sentences

In this section we put everything together. Let S be a surface of genus g > 0. The results
so far show that a random n-vertex graph in GS will have facewidth Ω(logn) with high
probability, and that on such graphs an m×m grid is MSO-definable, for some m ≥ log logn.
More precisely:

I Theorem 5.1. Let S be a surface other than the sphere. There is an MSO-interpretation
that, on a given n-vertex graph G from GS, produces an m×m grid for some m ≥ log logn
for every and at least one good choice of parameters, asymptotically almost surely when G is
a random n-vertex graph in GS.

We use this to build MSO-sentences with non-converging probabilities. We use it also
for proving the undecidability of the problem of determining the asymptotic probabilities
of MSO-sentences. For building MSO-sentences whose probabilities converge to any given
rational number in the interval [0, 1] we use Theorem 4.1 from the previous section.

MSO-sentences with non-converging probabilities. For every base b ≥ 2 and every natural
number n, define towb(n) recursively by towb(0) = 1 and towb(i+ 1) = btowb(i). For every
real x ≥ 0, let log∗b(x) denote the smallest integer k such that towb(i) ≥ x, and let log†b(x)
denote the smallest integer k such that

∑k
i=0 towb(i) ≥ x. By induction on k one proves

that
∑k
i=0 towb(i) ≤ 2towb(k), and hence log∗b(x/2) ≤ log†b(x) ≤ log∗b(x) for every b ≥ 2 and

every real x ≥ 0. Both log∗b(n) and log†b(n) are monotone non-decreasing functions of n that
have all natural numbers in their range. When the base is 2 we omit b from the notation.

The source of divergence in our example is the following easily verified arithmetic fact:

I Lemma 5.2. If m1,m2, . . . is an integer sequence such that log log(n) ≤ mn ≤ n for every
large enough n, then the sequence given by log†(mn) mod 8 is not eventually always in
{0, 1, 2, 3} and not eventually always in {4, 5, 6, 7}.

For the next technical lemma it will be more convenient to move, temporarily, to the
vocabulary of directed grids. For every i ∈ {0, . . . , 7}, we want an MSO-sentence strangei
that holds in the n× n directed grid if and only if log†(n) is congruent to i mod 8. We use
the notation Gd

n×n to denote the n× n directed grid.
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2^0

2^2^0

2^2^2^0

2^2^2^2^0

Figure 5.1 The red-green-blue pattern for the proof of Lemma 5.3.

I Lemma 5.3. For every i ∈ {0, . . . , 7} there exists an MSO-sentence strangei in the
vocabulary of directed grids such that, for every natural number n ≥ 1, the sentence strangei
is true in Gd

n×n if and only if log†(n) is congruent to i mod 8.

Proof. The sentence uses three existentially quantified monadic second-order variables R,
G, and B, for red, green and blue. First it verifies that the colors satisfy the pattern of
Figure 5.1. Once this is verified, the sentence states that the number of green vertices in the
leftmost column is congruent to i+ 1 mod 8. The number of green vertices in the leftmost
column is the smallest k such that

∑k−1
i=0 tow(i) ≥ n; i.e. k = log†(n) + 1, so the statement

states that log†(n) + 1 ≡ i+ 1 mod 8, which is the same as log†(n) ≡ i mod 8. J

We need to find a way of defining directed grids in the {right, down}-vocabulary from
undirected ones. One way to do this via MSO-interpretations can be extracted from
Section 5.2.3 in [5].

I Theorem 5.4. Let S be a surface other than the sphere. There is an MSO-sentence whose
asymptotic probability on GS does not converge.

Proof. Let Θ be the composition of Ψ from Theorem 5.1 with interpretation that produces
directed grids from undirected ones. For every T ⊆ {0, . . . , 7}, let ϕT say that there is a
good choice of the parameters for Θ that make it define a directed square grid on which the
disjunction

∨
i∈T strangei holds. If ϕ{0,1,2,3} has probability 0, then ϕ{4,5,6,7} has probability

1 by Lemma 5.3. Let T ∈ {{0, 1, 2, 3}, {4, 5, 6, 7}} be such that ϕT does not have asymptotic
probability 0.

We claim that the asymptotic probability of ϕT does not converge. Otherwise, it converges
to a positive real, and a positive fraction of the n-vertex graphs in GS satisfy ϕT . Therefore,
for n there is a least one n-vertex graph in GS for which there is a good choice of parameters
that makes Ψ define a directed m×m grid with log†(m) mod 8 in T and such that at the same
time m ≥ log logn. In other words, we find a sequence mn that contradicts Lemma 5.2. J

Undecidability of the decision problem. We proceed by reduction from the halting problem
for Turing machines, which is of course undecidable. For every 1-tape Turing machine M we
want an MSO sentence haltsM of the vocabulary of directed grids, that holds in the n× n
directed grid if and only if the computation of M on the empty input halts in time at most
n using space at most n. This construction is standard.

I Lemma 5.5. For every two-sided 1-tape Turing machine M there exists an MSO-sentence
haltsM of the vocabulary of directed grids such that, for every natural number n ≥ 1, the
sentence haltsM is true in Gd

n×n if and only if the computation of M on the empty input
halts in time at most n using space at most n.
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We combine the non-converging formula of Theorem 5.4 with Lemma 5.5.

I Theorem 5.6. Let S be a surface other than the sphere. The problem of determining
whether a given MSO-sentence has a converging asymptotic probability on GS is undecidable.

Proof. Let ϕ be the MSO-sentence with non-converging asymptotic probability from The-
orem 5.4. As in the proof of Theorem 5.4, let Ψ be the MSO-interpretation in Theorem 5.1,
and let Θ be the composition of Ψ with the MSO-interpretation that produces a directed
grid from an undirected one. For every two-sided 1-tape Turing machine M , let ψM be the
sentence that says that there is a good choice of parameters for Θ that makes it define a
square grid, and the sentence haltsM holds on some principal square subgrid of this grid.
It is easy to see that ψM has asymptotic probability one if M halts, and probability zero
otherwise. This ϕ ∧ ψM converges if and only if M halts. J

All rationals in [0,1] as limiting probabilities. Our goal in this section is to construct an
MSO sentence whose asymptotic probability over GS , for any fixed surface S other than
the sphere, converges to any given rational number in the interval [0, 1]. The idea of the
construction is the following. Let us say that we want to achieve the rational p/q as limiting
probability. Suppose that we succeed to write a sentence that says that the unique non-planar
3-connected component of the random n-vertex graph has size that is congruent to some
a ∈ {0, . . . , p− 1} mod q. If we do, then by Theorem 4.1 the probability that this sentence
holds on the random n-vertex graph is the probability that an integer random variable that
admits a local limit law of the Airy type is congruent to some a ∈ {0, . . . , p− 1} mod q. It
turns out that this probability approaches p/q as n approaches infinity:

I Lemma 5.7. Let X0, X1, . . . be a sequence of integer random variables that admits a local
limit law of the Airy type with parameters α and c. Then for every integer q ≥ 1 and every
a ∈ {0, . . . , q − 1} it holds that limn→∞ Pr

[
Xn ≡ a (mod q)

]
= 1/q.

For saying that the unique non-planar 3-connected component has a size that is congruent
to a mod q we use the fact every 3-connected graph of bounded Euler characteristic χ ≤ 0
has a spanning tree of degree at most d(8− 2χ)/3e [7, 11]. Thus, the unique non-planar
3-connected component, which is embeddable in the surface S, has such a spanning tree,
which can be guessed in MSO2. Once available, the spanning tree of bounded degree can be
used to define a linear order on the vertices of the 3-connected component, and MSO over
the linear order can say that its length is congruent to a mod q. Taking the disjunction over
all a ∈ {0, . . . , p− 1}, the asymptotic probability of the resulting sentence will be p/q.

I Theorem 5.8. Let S be a surface other than the sphere. For every rational number
r ∈ [0, 1], there exists an MSO sentence whose asymptotic probability on GS converges to r.
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