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Abstract
We consider bisimulation-invariant monadic second-order logic over various classes of finite trans-
ition systems. We present several combinatorial characterisations of when the expressive power
of this fragment coincides with that of the modal µ-calculus. Using these characterisations we
prove for some simple classes of transition systems that this is indeed the case. In particular, we
show that, over the class of all finite transition systems with Cantor–Bendixson rank at most k,
bisimulation-invariant MSO coincides with Lµ.
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1 Introduction

A characterisation of the bisimulation-invariant fragment of a given classical logic relates this
logic to a suitable modal logic. In this way, one obtains a correspondence between a family of
classical logics and a family of modal logics. Such characterisation results therefore help with
ordering the zoo of logics introduced (on both sides) over the years and with distinguishing
between natural and artificial instances of such logics.

The study of bisimulation-invariant fragments of classical logics was initiated by a result
of van Benthem [2] who proved that the bisimulation-invariant fragment of first-order logic
coincides with standard modal logic. Inspired by this work, several other characterisations
have been obtained. The table below summarises the results known so far.

bisimulation-invariant fragment modal logic reference

first-order logic modal logic [2]
monadic second-order logic modal µ-calculus [10]
monadic path logic CTL∗ [12, 13]
weak monadic second-order logic continuous µ-calculus [4]
weak chain logic PDL [4]
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There are also similar characterisations for various variants of bisimulation like guarded
bisimulation [1, 7] or bisimulation for inquisitive modal logic [5].

Researchers in finite model theory started to investigate to which extent these corres-
pondences also hold when only considering finite structures, that is, whether every formula
of a given classical logic that is bisimulation-invariant over the class of all finite transition
systems is equivalent, over that class, to the corresponding modal logic. For first-order logic,
a corresponding characterisation does indeed hold. Its proof by Rosen [15] uses tools from
finite model theory and is very different to the proof by van Benthem.

The above mentioned result by Janin and Walukiewicz on bisimulation-invariant monadic
second-order logic has so far defied all attempts at a similar transfer to the realm of finite
structures. The main reason is that the original proof is based on automata-theoretic
techniques and an essential ingredient is a reduction to trees, via the unravelling operation.
As this operation produces infinite trees, we cannot use it for formulae that are only bisimu-
lation-invariant over finite transition systems.

In this paper we start a fresh attempt at a finitary version of the result of Janin and
Walukiewicz. Instead of automata-theoretic techniques we employ the composition method.
For certain classes of very simple, finite transition systems we characterise the bisimulation-
invariant fragments of monadic second-order logic over these classes. We hope that some
day our techniques can be extended to the general case of all finite structures, but currently
there are still a few technical obstacles to overcome.

We start in Section 2 by recalling the needed material on bisimulation and by listing
all known results on bisimulation-invariant monadic second-order logic. We also collect
some low-hanging fruit by proving two new results concerning (i) finite classes and (ii) the
class of all finite trees. Finally, we lay the groundwork for the more involved proofs to
follow by characterising bisimulation-invariance in terms of a combinatorial property called
the unravelling property. In Section 3, we collect some tools from logic we will need. The
emphasis in on so-called composition lemmas. Nothing in this section is new.

Finally we start in Section 4 in earnest by developing the technical machinery our proofs
are based on. Sections 5 and 6 contain our first two applications: characterisations of
bisimulation-invariant monadic second-order logic over (i) the class of lassos and (ii) certain
classes of what we call hierarchical lassos. The former is already known and simply serves as
an example of our techniques and to fix our notation for the second result, which is new.

Before presenting our last characterisation result, we develop in Section 7 some additional
technical tools that allow us to reduce one characterisation result to another. This is then
applied in Section 8 to the most complex of our results. We characterise bisimulation-
invariant monadic second-order logic over the class of all transition systems of a given
Cantor–Bendixson rank.

2 Bisimulation-invariance

We consider two logics in this paper: (i) monadic second-order logic (MSO), which is the
extension of first-order logic by set variables and set quantifiers, and (ii) the modal µ-calculus
(Lµ), which is the fixed-point extension of modal logic. A detailed introduction can be found,
e.g., in [8]. Concerning the µ-calculus and bisimulation, we also refer to the survey [17].
Transition systems are directed graphs where the edges are labelled by elements of a given
set A and vertices by elements of some set I. Formally, we consider a transition system as
a structure of the form S = 〈S, (Ea)a∈A, (Pi)i∈I , s0〉 where the Ea ⊆ S × S are (disjoint)
binary edge relations, the Pi ⊆ S are (disjoint) unary predicates, and s0 is the initial state.
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We write S, s to denote the transition system obtained from S by declaring s to be the
initial state.

A central notion in modal logic is bisimilarity since modal logics cannot distinguish
between bisimilar systems.

I Definition 2.1. Let S and T be transition systems.
(a) A bisimulation between S and T is a binary relation Z ⊆ S × T such that all pairs

〈s, t〉 ∈ Z satisfy the following conditions.
(prop) s ∈ PS

i iff t ∈ PT
i , for all i ∈ I.

(forth) For each edge 〈s, s′〉 ∈ ES
a , there is some 〈t, t′〉 ∈ ET

a such that 〈s′, t′〉 ∈ Z.
(back) For each edge 〈t, t′〉 ∈ ET

a , there is some 〈s, s′〉 ∈ ES
a such that 〈s′, t′〉 ∈ Z.

(b) Let s0 and t0 be the initial states of, respectively, S and T. We say that S and T are
bisimilar if there exists a bisimulation Z between S and T with 〈s0, t0〉 ∈ Z. We denote this
fact by S ∼ T.

(c) We denote by U(S) the unravelling of a transition system S. y

The next two observations show that the unravelling operation is closely related to
bisimilarity. In fact, having the same unravelling can be seen as a poor man’s version of
bisimilarity.

I Lemma 2.2. Let S and T be transition systems.
(a) U(S) ∼ S .

(b) S ∼ T implies U(S) ∼ U(T) .

As already mentioned modal logics cannot distinguish between bisimilar systems. They
are bisimulation-invariant in the sense of the following definition.

I Definition 2.3. Let C be a class of transition systems.
(a) An MSO-formula ϕ is bisimulation-invariant over C if

S ∼ T implies S |= ϕ ⇔ T |= ϕ , for all S,T ∈ C .

(b) We say that, over the class C, bisimulation-invariant MSO coincides with Lµ if,
for every MSO-formula ϕ that is bisimulation-invariant over the class C, there exists an
Lµ-formula ψ such that

S |= ϕ iff S |= ψ , for all S ∈ C . y

A straightforward induction over the structure of formulae shows that every Lµ-formula
is bisimulation-invariant over all transition systems. Hence, bisimulation-invariance is a
necessary condition for an MSO-formula to be equivalent to an Lµ-formula.

The following characterisations of bisimulation-invariant MSO have been obtained so far.
We start with the result of Janin and Walukiewicz.

I Theorem 2.4 (Janin, Walukiewicz [10]). Over the class of all transition systems, bisimula-
tion-invariant MSO coincides with Lµ.

The main part of the proof consists in proving the following variant, which implies the
case of all structures by a simple reduction.

I Theorem 2.5 (Janin, Walukiewicz). Over the class of all trees, bisimulation-invariant MSO
coincides with Lµ.

ICALP 2018
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There have already been two attempts at a finitary version. The first one is by Hirsch
who considered the class of all regular trees, i.e., unravellings of finite transition systems.
The proof is based on the fact that a formula is bisimulation-invariant over all trees if, and
only if, it is bisimulation-invariant over regular trees.

I Theorem 2.6 (Hirsch [9]). Over the class of all regular trees, bisimulation-invariant MSO
coincides with Lµ.

The second result is by Dawar and Janin who considered the class of finite lassos, i.e.,
finite paths leading to a cycle. We will present a proof in Section 5 below.

I Theorem 2.7 (Dawar, Janin [6]). Over the class of all lassos, bisimulation-invariant MSO
coincides with Lµ.

In this paper, we will extend this last result to larger classes. We start with two easy
observations. The first one is nearly trivial.

I Theorem 2.8. Over every finite class C of finite transition systems, bisimulation-invariant
MSO coincides with Lµ.

The second observation is much deeper, but fortunately nearly all of the work has already
been done by Janin and Walukiewicz.

I Theorem 2.9. Over the class of all finite trees, bisimulation-invariant MSO coincides
with Lµ.

As a preparation for the more involved characterisation results to follow, we simplify
our task by introducing the following property of a class C of transition systems, which will
turn out to be equivalent to having a characterisation result for bisimulation-invariant MSO
over C.

I Definition 2.10. We say that a class C of transition systems has the unravelling property if,
for every MSO-formula ϕ that is bisimulation-invariant over C, there exists an MSO-formula ϕ̂
that is bisimulation-invariant over trees such that

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C . y

Using Theorem 2.5, we can reformulate this definition as follows. This version will be our
main tool to prove characterisation results for bisimulation-invariant MSO: it is sufficient to
prove that the given class has the unravelling property.

I Theorem 2.11. A class C of transition systems has the unravelling property if, and only
if, over C bisimulation-invariant MSO coincides with Lµ.

Let us also note the following result, which allows us to extend the unravelling property
from a given class to certain superclasses.

I Lemma 2.12. Let C0 ⊆ C be classes such that every system in C is bisimilar to one in C0.
If C0 has the unravelling property, then so does C.

3 Composition lemmas

We have mentioned above that automata-theoretic methods have so far been unsuccessful
at attacking the finite version of the Janin–Walukiewicz result. Therefore, we rely on the
composition method instead. Let us recall how this method works.
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I Definition 3.1. Let S and T be transition systems (or general structures) and m < ω a
number. The m-theory Thm(S) of S is the set of all MSO-formulae of quantifier-rank m
that are satisfied by S. (The quantifier-rank of a formula is its nesting depths of (first-order
and second-order) quantifiers.) We write

S ≡m T : iff Thm(S) = Thm(T) . y

Roughly speaking the composition method provides some machinery that allows us
to compute the m-theory of a given transition system by breaking it down into several
components and looking at the m-theories of these components separately. This approach
is based on the realisation that several operations on transition systems are compatible
with m-theories in the sense that the m-theory of the result can be computed from the
m-theories of the arguments. Statements to that effect are known as composition theorems.
For an overview we refer the reader to [3] and [11]. The following basic operations and their
composition theorems will be used below. We start with disjoint unions.

I Definition 3.2. The disjoint union of two structures A = 〈A,RA
0 , . . . , R

A
m〉 and B =

〈B,RB
0 , . . . , R

B
m〉 is the structure

A⊕B :=
〈
A ·∪B, RA

0 ·∪RB
0 , . . . , R

A
m ·∪RB

m, Left, Right
〉

obtained by forming the disjoint union of the universes and relations of A and B and adding
two unary predicates Left := A and Right := B that mark whether an element belongs to A

or to B. If A and B are transition systems, the initial state of A⊕B is that of A. y

The corresponding composition theorem looks as follows. It can be proved by a simple
induction on m.

I Lemma 3.3. A ≡m A′ and B ≡m B′ implies A⊕B ≡m A′ ⊕B′ .

Two other operations we need are interpretations and fusion operations.

I Definition 3.4. An interpretation is an operation τ on structures that is given by a list
〈δ(x), (ϕR(x̄))R∈Σ〉 of MSO-formulae. Given a structure A, it produces the structure τ(A)
whose universe consists of all elements of A satisfying the formula δ and whose relations are
those defined by the formulae ϕR. The quantifier-rank of an interpretation is the maximal
quantifier-rank of a formula in the list. An interpretation is quantifier-free if its quantifier-rank
is 0. y

I Lemma 3.5. Let τ be an interpretation of quantifier-rank k. Then

A ≡m+k A′ implies τ(A) ≡m τ(A′) .

I Definition 3.6. Let P be a predicate symbol. The fusion operation fuseP merges in a
given structure all elements of the set P into a single element, i.e., all elements of P are
replaced by a single new element and all edges incident with one of the old elements are
attached to the new one instead. y

I Lemma 3.7. A ≡m A′ implies fuseP (A) = fuseP (A′) .

Using the composition theorems for these basic operations we can prove new theorems
for derived operations. As an example let us consider pointed paths, i.e., paths where both
end-points are marked by special colours.

ICALP 2018



117:6 Bisimulation Invariant MSO in the Finite

I Definition 3.8. We denote the concatenation of two paths A and B by A + B. And we
write A• for the expansion of a path A by two new constants for the end-points. y

I Corollary 3.9. Let A,A′,B,B′ be paths. Then A• ≡m A′• and B• ≡m B′• implies
(A + B)• ≡m (A′ + B′)• .

Proof. As the end-points are given by constants, we can construct a quantifier-free inter-
pretation τ mapping A• ⊕B• to (A + B)•. J

Note that, since the concatenation operation is associative, it in particular follows that the
set of m-theories of paths forms a semigroup.

Finally let us mention one more involved operation with a composition theorem. Let
S be a transition system and C ⊆ S a subsystem. We say that C is attached at the state
s ∈ S if there is a unique edge (in either direction) between a state in S \C and a state in C
and this edge leads from s to the initial state of C.

I Proposition 3.10. Let S be a (possibly infinite) transition system and let S′ be the system
obtained from S by replacing an arbitrary number of attached subsystems by subsystems with
the same m-theories (as the corresponding replaced ones). Then S ≡m S′.

For a finite system S this statement can be proved in the same way as Corollary 3.9 by
expressing S as a disjoint union followed by a quantifier-free interpretation. For infinite
systems, we need a more powerful version of the disjoint union operation called a generalised
sum (see [16]).

As presented above these tools work with m-theories, which is not quite what we need
since we have to also account for bisimulation-invariance. To do so we modify the definitions
as follows.

I Definition 3.11. Let C be a class of transition systems and m < ω a number.
(a) We denote by 'mC the transitive closure of the union ≡m ∪ ∼ restricted to the class C.

Formally, we define S 'mC T if there exist systems C0, . . . ,Cn ∈ C such that

C0 = S , Cn = T , and Ci ≡m Ci+1 or Ci ∼ Ci+1 , for all i < n .

(b) We denote by ThmC (S) the set of all MSO-formulae of quantifier-rank m that are
bisimulation-invariant over C and that are satisfied by S, and we define

S ≡mC S′ : iff ThmC (S) = ThmC (S′) .

We also set THm
C := {ThmC (S) | S ∈ C } . y

Note that, up to logical equivalence, there are only finitely many formulae of a given
quantifier-rank. Hence, each set THm

C is finite and the relations ≡m, ≡mC and 'mC have finite
index.

I Lemma 3.12. If ϕ is a MSO-formula of quantifier-rank m that is bisimulation-invariant
over C, then S 'mC T implies S |= ϕ⇔ T |= ϕ .

Some of the above composition theorems also hold for the relation 'mC . This is immediate
if the operation in question also preserves bisimilarity. We mention only two such results.
The second one will be needed below.

I Lemma 3.13. Let C be a class that is closed under disjoint unions.

A 'mC A′ and B 'mC B′ implies A⊕B 'mC A′ ⊕B′ .
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I Proposition 3.14. Let C and D be two classes, S ∈ C a (possibly infinite) transition
system and let S′ be the system obtained from S by replacing an arbitrary number of attached
subsystems by subsystems which are 'mD -equivalent. Then S 'mC S′ provided that the class C
is closed under the operation of replacing attached subsystems in D.

4 Types

Our strategy to prove the unravelling property for a class C is as follows. For every quanti-
fier-rank m, we assign to each tree T a so-called m-type τm(T). We choose the functions τm
such that we can compute the theory ThmC (C) of a system C ∈ C from the m-type τm(U(C))
of its unravelling. Furthermore, we need to find MSO-formulae checking whether a tree has a
given m-type. The formal definition is as follows.

I Definition 4.1. Let C be a class of transition systems and T the class of all trees.
(a) A family of type functions for C is a family of functions τm : T → Θm, for m < ω,

where the co-domains Θm are finite sets and each τm satisfies the following two axioms.
(S1) τm(U(C)) = τm(U(C′)) implies ThmC (C) = ThmC (C′) , for C,C′ ∈ C .
(S2) T ∼ T′ implies τm(T) = τm(T′) , for all T,T′ ∈ T .

(b) A family (τm)m of type functions is definable if, for every θ ∈ Θm, there exists an
MSO-formula ψθ such that
(S3) T |= ψθ iff τm(T) = θ , for all trees T .

y

Let us start by showing how to prove the unravelling property using type functions. The
following characterisation theorem can be considered to be the main theoretical result of this
article.

I Theorem 4.2. Let C be a class of transition systems and T the class of all trees. The
following statements are equivalent.
(1) Over C, bisimulation-invariant MSO coincides with Lµ.
(2) C has the unravelling property.
(3) There exists a definable family (τm)m of type functions for C.
(4) There exist functions g : ω → ω and hm : THg(m)

T → THm
C , for m < ω, such that

hm
(
Thg(m)
T (U(C))

)
= ThmC (C) , for all C ∈ C

(in other words, the g(m)-theory of U(C) determines the m-theory of C).

5 Lassos

As an application of type functions, we consider a very simple example, the class of lassos.
Our proof is based on more or less the same arguments as that by Dawar and Janin [6], just
the presentation differs. A lasso is a transition system consisting of a directed path ending in
a cycle.

ICALP 2018



117:8 Bisimulation Invariant MSO in the Finite

We allow the borderline cases where the initial path has length 0 or the cycle consists of only
a single edge.

To define the type of a lasso, note that we can construct every lasso L from two finite
paths A and B by identifying three of their end-points.

A
Bs t

v
u

The paths A and B are uniquely determined by L. We will refer to A as the tail of the lasso
and to B as the loop. We introduce two kinds of types for lassos, a strong one and a weak
one.

I Definition 5.1. The strong m-type of a lasso L with tail A and loop B is the pair

stpm(L) := 〈α, β〉 , where α := Thm(A•) and β := Thm(B•) . y

The strong m-type of a lasso uniquely determines its m-theory.

I Lemma 5.2. Let L0 and L1 be lassos.

stpm(L0) = stpm(L1) implies L0 ≡m L1 .

The problem with the strong type of a lasso L is that we cannot recover it from the
unravelling of L as the decomposition of U(L) into the parts of L is uncertain. Therefore we
introduce another notion of a type where this recovery is possible. For this we recall some
facts from the theory of ω-semigroups.

Recall that we have noted in Corollary 3.9 that the m-theories of pointed paths form
a finite semigroup with respect to concatenation. Furthermore, every element a of a finite
semigroup has an idempotent power aπ, which is defined as the value an where n is the least
natural number such that an · an = an.

I Definition 5.3. (a) A factorisation of an infinite path A is a sequence (Ai)i<ω of finite
paths whose concatenation is A. Such a factorisation has m-type 〈α, β〉 if

α := Thm(A•0) and β := Thm(A•i ) , for i > 0 .

(b) Two pairs 〈α, β〉 and 〈γ, δ〉 of m-theories are conjugate if there are m-theories ξ and η
such that

γδπ = αβπξ , βπ = ξη , and δπ = ηξ .

Being conjugate is an equivalence relation. We denote the equivalence class of a pair 〈α, β〉
by [α, β].

(c) The weak m-type of a lasso L with parts A and B is

wtpm(L) := [α, β] , where α := Thm(A•) and β := Thm(B•) .

(d) The m-type of an infinite tree T is

τm(T) := [α, β] ,

where α and β is an arbitrary pair ofm-theories such that every branch of T has a factorisation
of m-type 〈α, β〉. If there is no such pair, we set τm(T) := ⊥. y
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I Lemma 5.4. Let L be the class of all lassos and let L0,L1 ∈ L.

wtpm(L0) = wtpm(L1) implies L0 'mL L1 .

To show that the functions (τm)m form a family of type functions, we need the following
standard facts about factorisations and their types (see, e.g., Section II.2 of [14]).

I Proposition 5.5. Let A be an infinite path.
(a) A has a factorisation of type 〈α, β〉, for some α and β.
(b) If A has factorisations of type 〈α, β〉 and 〈γ, δ〉, then 〈α, β〉 and 〈γ, δ〉 are conjugate.
Note that these two statements imply in particular that the type τm(T) of a tree T is
well-defined.

I Lemma 5.6. The functions (τm)m defined above form a definable family of type functions
for the class of all lassos.

By Theorem 4.2, it therefore follows that the class of lassos has the unravelling property.

I Theorem 5.7. The class of all lassos has the unravelling property.

6 Hierarchical Lassos

After the simple example in the previous section, let us give a more substantial application
of the type machinery. We consider hierarchical (or nested) lassos. These are obtained from
a lasso by repeatedly attaching sublassos to some states. More precisely, a 1-lasso is just an
ordinary lasso, while inductively a (k + 1)-lasso is obtained from a k-lasso by attaching one
or more lassos to some of the states. (Each state may have several sublassos attached.)

Alternatively, we can obtain a (k + 1)-lasso M from a 1-lasso L by attaching k-lassos. We
will call this lasso L the main lasso of M.

The types we use for k-lassos are based on the same principles as those for simple lassos,
but we have to nest them in order to take the branching of a hierarchical lasso into account.

I Definition 6.1. Let t : dom(t)→ C be a labelled tree and m < ω.
(a) For a branch β of t, we set

wtpm(β) := [σ, τ ] ,

if β has a factorisation of m-type 〈σ, τ〉. (By Proposition 5.5, this is well-defined.)
(b) For k < ω, we define

tp0
m(t) :=

{
wtpm(β)

∣∣ β a branch of t
}
,

tpk+1
m (t) := tp0

m(TPkm(t)) ,

where TPkm(t) : T → C × P(Θkm) is the tree with labelling

TPkm(t)(v) :=
〈
t(v), { tpkm(t|u) | u a successor of v }

〉
. y

ICALP 2018
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We will prove that the functions tpkm form a family of type functions. Note that it follows
immediately from the definition that they satisfy Properties (S2) and (S3). Hence, it only
remains to check (S1).

I Lemma 6.2. (a) Let M be a k-lasso and N a k′-lasso. Then

U(M) ∼ U(N) implies tpkm(M) = tpkm(N) .

(b) For every type τ , there exists an MSO-formula ϕ such that

U(M) |= ϕ iff tpkm(M) = τ .

Thus, to prove that the class of k-lassos has the unravelling property it is sufficient to
show that tpkm also satisfies Property (S1). We will do so by induction on k. The base case
of this induction rests on the following lemma.

I Lemma 6.3. Let Lk be the class of all k-lassos and let M be a k-lasso such that, for every
vertex v and all branches β and γ starting at a successor of v, we have wtpm(β) = wtpm(γ).
Then M 'mLk

N, for some 1-lasso N.

I Proposition 6.4. Let M be a k-lasso and N a k′-lasso. For m ≥ 1,

tpkm(M) = tpkm(N) implies M 'mLK
N ,

where LK is the class of all K-lassos with K := max(k, k′).

Using Theorem 4.2 we now immediately obtain the following statement.

I Theorem 6.5. For every k, the class of all k-lassos has the unravelling property.

7 Reductions

We would like to define reductions that allow us to prove that a certain class has the
unravelling property when we already know that some other class has this property. To do
so, we encode every transition system of the first class by some system in the second one.
The main example we will be working with is a function % that removes certain attached
subsystems and uses additional vertex labels to remember the m-theories of all deleted
system. Up to equivalence of m-theories, we can undo this operation by a function η that
attaches to each vertex labelled by some m-theory θ some fixed system with theory θ. Let
us give a general definition of such pairs of maps.

I Definition 7.1. Let C and D be classes of transition systems and k,m < ω. A function
% : C → D is a (k,m)-encoding map if there exists a function η : D → C such that
(E1) %(η(D)) 'kD D , for all D ∈ D .
(E2) %(C) 'kD %(C′) implies C 'mC C′ , for all C,C′ ∈ C .
In this case, we call the function η a (k,m)-decoding map for %. y

These two axioms imply dual axioms with the functions % and η exchanged.

I Lemma 7.2. Let η : D → C be a (k,m)-decoding map for % : C → D.
(E3) η(%(C)) 'mC C , for all C ∈ C .
(E4) D 'kD D′ implies η(D) 'mC η(D′) , for all D,D′ ∈ D .
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The axioms of an encoding map were chosen to guarantee the property stated in the
following lemma. It will be used below to prove that encoding maps can be used to transfer
the unravelling property from one class to another.

I Lemma 7.3. Let % : C → D a (k,m)-encoding map and η : D → C a (k,m)-decoding map
for %. For every MSO-formula ϕ of quantifier-rank m that is bisimulation-invariant over C,
there exists an MSO-formula ϕ̂ of quantifier-rank k that is bisimulation-invariant over D
such that

C |= ϕ iff %(C) |= ϕ̂ , for all C ∈ C .

It remains to show how to use encoding maps to transfer the unravelling property. Just
the existence of such a map is not sufficient. It also has to be what we call definable.

I Definition 7.4. Let C be a class of transition systems.
(a) A (k,m)-encoding map % : C → D is definable if, for every MSO-formula ϕ that is

bisimulation-invariant over trees, there exists an MSO-formula ϕ̂ that is bisimulation-invariant
over trees such that

U(%(C)) |= ϕ iff U(C) |= ϕ̂ , for all C ∈ C .

(b) We say that C is reducible to a family (Dm)m<ω of classes if there exist a map
g : ω → ω and, for each m < ω, functions %m : C → Dm and ηm : Dm → C such that %m is a
definable (g(m),m)-encoding map and ηm a corresponding (g(m),m)-decoding map. y

(The only reason why we use a family of classes to reduce to, instead of a single one is so
that we can have the labellings of systems in Dm depend on the quantifier-rank m.)

I Theorem 7.5. Suppose that C is reducible to (Dm)m<ω. If every class Dm has the
unravelling property, so does C.

8 Finite Cantor–Bendixson rank

One common property of k-lassos is that the trees we obtain by unravelling them all have
finite Cantor–Bendixson rank. In this section we will generalise our results to cover transition
systems with this more general property. The proof below consists in a two-step reduction
to the class of k-lassos.

I Definition 8.1. Let T be a finitely branching tree. The Cantor–Bendixson derivative of T
is the tree T′ obtained from T by removing all subtrees that have only finitely many infinite
branches. The Cantor-Bendixson rank of a tree T is the least ordinal α such that applying
α+ 1 Cantor–Bendixson derivatives to T results in an empty tree. The Cantor–Bendixson
rank of a transition system S is equal to the Cantor–Bendixson rank of its unravelling. y

We can go from the class of k-lassos to that of systems with bounded Cantor–Bendixson
rank in two steps.

I Definition 8.2. (a) A transition system is a generalised k-lasso if it is obtained from a
finite tree by attaching (one or several) k-lassos to every leaf.

(b) A transition system T is a tree extension of S if T is obtained from S by attaching
an arbitrary number of finite trees to some of the vertices. y

With these two notions we can characterise the property of having bounded Cantor–
Bendixson rank as follows.
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I Proposition 8.3. Let S be a finite transition system.
(a) For every k < ω, the following statements are equivalent.
(1) S has Cantor–Bendixson rank at most k.
(2) S is bisimilar to a tree extension of a generalised (k + 1)-lasso.

(b) The following statements are equivalent.
(1) S has finite Cantor–Bendixson rank.
(2) S is bisimilar to a tree extension of a generalised k-lasso, for some k < ω.
(3) Every strongly connected component of S is either a singleton or a cycle.

To prove the unravelling property for the transition systems of bounded Cantor–Bendixson
rank, we proceed in two steps. First we consider generalised k-lassos and then their tree
extensions.

I Theorem 8.4. For fixed k, the class of all generalised k-lassos has the unravelling property.

Using this intermediate step, we obtain the following proof for transition systems with
bounded Cantor–Bendixson rank.

I Theorem 8.5. The class of all finite transition systems of Cantor–Bendixson rank at
most k has the unravelling property.

I Corollary 8.6. Over the class of all finite transition systems with Cantor–Bendixson rank
at most k, bisimulation-invariant MSO coincides with Lµ.

9 Conclusion

We have shown in several simple examples how to characterise bisimulation-invariant MSO
in the finite. In particular, we have proved that it coincides with Lµ over

every finite class (Theorem 2.8),
the class of all finite trees (Theorem 2.9),
the classes of all lassos, k-lassos, and generalised k-lassos (Theorems 5.7, 6.5, and 8.4),
the class of all systems of Cantor–Bendixson rank at most k (Theorem 8.5).

Our main tool in these proofs was the unravelling property (Theorem 2.11). It will be
interesting to see how far our methods can be extended to more complicated classes. For
instance, can they be used to prove the following conjecture?

Conjecture. If a class C of transition systems has the unravelling property, then so does
the class of all subdivisions of systems in C.

A good first step seems to be the class of all finite transition systems that have Cantor–
Bendixson rank k, for some k < ω that is not fixed.

In this paper we have considered only transition systems made out of paths with very
limited branching. To extend our techniques to classes allowing for more branching seems
to require new ideas. A simple test case that looks promising is the class of systems with
a ‘lasso-decomposition’ of width k, i.e., something like a tree decomposition but where the
pieces are indexed by a lasso instead of a tree.
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