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Abstract
In this paper, we study the problem of deciding the winner of reachability switching games.
We study zero-, one-, and two-player variants of these games. We show that the zero-player
case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard
and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented
model that maintains the upper bound of NP ∩ coNP. For the one- and two-player cases, our
results hold in both the natural, explicit model and succinctly-represented model. We also study
the structure of winning strategies in these games, and in particular we show that exponential
memory is required in both the one- and two-player settings.
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1 Introduction

A switching system (also known as a Propp machine) attempts to replicate the properties of
a random system in a deterministic way [14]. It does so by replacing the nodes of a Markov
chain with switching nodes. Each switching node maintains a queue over its outgoing edges.
When the system arrives at the node, it is sent along the first edge in this queue, and that
edge is then sent to the back of the queue. In this way, the switching node ensures that, after
a large number of visits, each outgoing edge is used a roughly equal number of times.

The Propp machine literature has focussed on many-token switching systems and has
addressed questions such as how well these systems emulate Markov chains. Recently, Dohrau
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et. al. [7] initiated the study of single-token switching systems and found that the reachability
problem raised interesting complexity-theoretic questions. Inspired by that work, we study
the question how hard is it to model check single-token switching systems? A switching node
is a simple example of a fair scheduler, and thus it is natural to consider model checking
of switching systems. We already have a good knowledge about the complexity of model
checking Markovian systems, but how does this change when we instead use switching nodes?

Our contribution. In this paper, we initiate the study of model checking in switching
systems. We focus on reachability problems, one of the simplest model checking tasks. This
corresponds to determining the winner of a two-player reachability switching game. We study
zero-, one-, and two-player variants of these games, which correspond to switching versions of
Markov chains, Markov decision processes [20], and simple stochastic games [2], respectively.

The main message of the paper is that deciding reachability in one- and two-player
switching games is harder than deciding reachability in Markovian systems. Specifically, we
show that deciding the winner of a one-player game is NP-complete, and that the problem of
deciding the winner of a two-player game is PSPACE-hard and in EXPTIME.

We also study the complexity of zero-player games, where we show hardness results
that complement the upper bounds shown in previous work [7]. For the standard model
of switching systems, which we call explicit games, we are able to show a lower bound of
NL-hardness, which is still quite far from the known upper bound of UP∩ coUP. We also show
that if one extends the model by allowing the switching order to be represented in a concise
way, then a stronger lower bound of P-hardness can be shown, while still maintaining an
NP ∩ coNP upper bound. We call these concisely represented games succinct games, and we
also observe that all of our other results, both upper and lower bounds, still apply to succinct
games. Our results are summarised in the following table.

Markovian Switching (explicit) Switching (succinct)

0-player PL-complete2 NL-hard; in CLS, in UP ∩ coUP P-hard; in NP ∩ coNP

1-player P-complete NP-complete NP-complete

2-player NP ∩ coNP PSPACE-hard; in EXPTIME PSPACE-hard; in EXPTIME

For the explicit zero-player case the first bound was an NP ∩ coNP upper bound given by
Dohrau et al. [7], and a PLS upper bound was then given by Karthik [15]. The CLS and
UP ∩ coUP upper bounds, which subsume the two earlier bounds, were given by Gärtner et
al. [10], who also produced a O(1.4143n) algorithm for solving explicit zero-player games.
All the other upper and lower bounds in the table are proved in this paper.

Finally, we address the memory requirements of winning strategies in reachability switching
games. It is easy to see that winning strategies exist that use exponential memory. These
strategies simply remember the current switch configuration of the switching nodes, and
their existence can be proved by blowing up a switching game into an exponentially sized
reachability game, and then following the positional winning strategies from that reachability
game. This raises the question of whether there are winning strategies that use less than

2 PL, or probabilistic L, is the class of languages recognizable by a polynomial time logarithmic space
randomized machine with probability > 1/2.
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exponential memory. We answer this negatively, by showing that the reachability player may
need Ω(2n/2) memory states to win a one-player reachability switching game, and that both
players may need to use Ω(2n) memory states to win a two-player game.

Related work. Switching games are part of a research thread at the intersection of computer
science and physics. This thread has studied zero-player switching systems, also known as
deterministic random walks, rotor-router walks, the Eulerian walkers model [19] and Propp
machines [3–6,13,14]. Propp machines have been studied in the context of derandomizing
algorithms and pseudorandom simulation, and in particular have received a lot of attention
in the context of load balancing [1, 9]. However, most work on Propp machines has focused
on how well multi-token switching systems simulate Markov chains. The idea of studying
single-token reachability should be credited to Dohrau at al. [7].

Katz et al. [16], Groote and Ploeger [12], and others [12, 18, 21], considered switching
graphs; these are graphs in which certain vertices (switches) have exactly one of their two
outgoing edges activated. However, the activation of the alternate edge does not occur when
a vertex is traversed by a run; this is the key difference to switching games in this paper.

Markov decision processes [20] and simple stochastic games [2] are important objects
of study in probabilistic model checking, which is an central topic in the field of formal
verification. Probabilistic model checking is now a mature topic, with tools like PRISM [17]
providing an accessible interface to the research that has taken place.

2 Preliminaries

A reachability switching game (RSG) is defined by a tuple (V,E, VR, VS, VSwi,Ord, s, t), where
(V,E) is a finite directed graph, and VR, VS, VSwi partition V into reachability vertices, safety
vertices, and switching vertices, respectively. The reachability vertices VR are controlled by
the reachability player, the safety vertices VS are controlled by the safety player, and the
switching vertices VSwi are not controlled by either player, but instead follow a predefined
“switching order”. The function Ord defines this switching order : for each switching vertex
v ∈ VSwi, we have that Ord(v) = 〈u1, u2, . . . , uk〉 where we have that (v, ui) ∈ E for all ui in
the sequence. Note that a particular vertex u may appear more than once in the sequence.
The vertices s, t ∈ V specify source and target vertices for the game.

A state of the game is defined by a tuple (v, C), where v is a vertex in V , and
C : VSwi → N is a function that assigns a number to each switching vertex, which rep-
resents how far that vertex has progressed through its switching order. Hence, it is required
that C(u) ≤ |Ord(v)| − 1, since the counts specify an index to the sequence Ord(v).

When the game is at a state (v, C) with v ∈ VR or v ∈ VS, then the respective player
chooses an outgoing edge at v, and the count function does not change. For states (v, C) with
v ∈ VSwi, the successor state is determined by the count function. More specifically, we define
Upd(v, C) : VSwi → N so that for each u ∈ VSwi we have Upd(v, C)(u) = C(u) if v 6= u, and
Upd(v, C)(u) = (C(u) + 1) mod |Ord(u)| otherwise. This function increases the count at v
by 1, and wraps around to 0 if the number is larger than the length of the switching order
at v. Then, the successor state of (v, C), denoted as Succ(v, C) is (u,Upd(v, C)), where u is
the element at position C(v) in Ord(v).

A play of the game is a (potentially infinite) sequence of states (v1, C1), (v2, C2), . . . with
the following properties:
1. v1 = s and C1(v) = 0 for all v ∈ VSwi;
2. If vi ∈ VR or vi ∈ VS then (vi, vi+1) ∈ E and Ci = Ci+1;

ICALP 2018
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3. If vi ∈ VSwi then (vi+1, Ci+1) = Succ(vi, Ci);
4. If the play is finite, then the final state (vn, Cn) must either satisfy vn = t, or vn must

have no outgoing edges.
A play is winning for the reachability player if it is finite and the final state is the target
vertex. A (deterministic, history dependent) strategy for the reachability player is a function
that maps each play prefix (v1, C1), (v2, C2), . . . , (vk, C1), with vk ∈ VR, to an outgoing edge
of vk. A play (v1, C1), (v2, C2), . . . is consistent with a strategy if, whenever vi ∈ VR, we
have that (vi, vi+1) is the edge chosen by the strategy. Strategies for the safety player are
defined analogously. A strategy is winning if all plays consistent with it are winning.

The representation of the switching order. Recall that Ord(v) = 〈u1, u2, . . . , uk〉 gives a
sequence of outgoing edges for every switching vertex. We consider two possible ways of
representing Ord(v) in this paper. In explicit RSGs, Ord(v) is represented by simply writing
down the sequence 〈u1, u2, . . . , uk〉.

We also consider games in which Ord(v) is written down in a more concise way, which
we call succinct RSGs. In these games, for each switching vertex v, we have a sequence of
pairs 〈(u1, t1), (u2, t2), . . . , (uk, tk)〉, where each ui is a vertex with (v, ui) ∈ E, and each ti
is a natural number. The idea is that Ord(v) should contain t1 copies of u1, followed by t2
copies of u2, and so on. So, if Rep(u, t) gives the sequence containing t copies of u, and if ·
represents sequence concatenation, then Ord(v) = Rep(u1, t1) ·Rep(u2, t2) · . . . ·Rep(uk, tk).
Any explicit game can be written down in the succinct encoding by setting all ti = 1. Note,
however, that in a succinct game Ord(v) may have exponentially many elements, even if the
input size is polynomial, since each ti is represented in binary.

3 One-player reachability switching games

In this section we consider one-player RSGs, i.e., where VS = ∅.

3.1 Containment in NP
We show that deciding whether the reachability player wins a one-player RSG is in NP. Our
proof holds for both explicit and succinct games. The proof uses controlled switching flows.
These extend the idea of switching flows, which were used by Dohrau et al. [7] to show
containment of the zero-player reachability problem in NP ∩ coNP.

Controlled switching flow. A flow is a function F : E → N that assigns a natural number
to each edge in the game. For each vertex v, we define Bal(F, v) =

∑
(v,u)∈E F (v, u) −∑

(w,v)∈E F (w, v), which is the difference between the outgoing and incoming flow at v. For
each switching node v ∈ VSwi, let Succ(v) denote the set of vertices that appear in Ord(v),
and for each index i ≤ |Ord(v)| and each vertex u ∈ Succ(v), let Out(v, i, u) be the number
of times that u appears in the first i entries of Ord(v). In other words, Out(v, i, u) gives the
amount of flow that should be sent to u if we send exactly i units of flow into v.

A flow F is a controlled switching flow if it satisfies the following constraints:
The source vertex s satisfies Bal(F, s) = 1, and the target vertex t satisfies Bal(F, t) = −1.
Every vertex v other than s or t satisfies Bal(F, v) = 0.
Let v ∈ VSwi be a switching node, k = |Ord(v)|, and let I =

∑
(u,v)∈E F (u, v) be

the total amount of flow incoming to v. Define p to be the largest integer such that
p · k ≤ I (which may be 0), and q = I mod k. For every vertex w ∈ Succ(v) we have that
F (v, w) = p ·Out(v, k, w) + Out(v, q, w).
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The first two constraints ensure that F is a flow from s to t, while the final constraint ensures
that the flow respects the switching order at each switching node. Note that there are no
constraints on how the flow is split at the nodes in VR. For each flow F , we define the size
of F to be

∑
e∈E F (e). A flow of size k can be written down using at most |E| · log k bits.

Marginal strategies. A marginal strategy for the reachability player is defined by a function
M : E → N, which assigns a target number to each outgoing edge of the vertices in VR. The
strategy ensures that each edge e is used no more than M(e) times. That is, when the play
arrives at a vertex v ∈ VR, the strategy checks how many times each outgoing edge of v has
been used so far, and selects an arbitrary outgoing edge e that has been used strictly less
than M(e) times. If there is no such edge, then the strategy is undefined.

Observe that a controlled switching flow defines a marginal strategy for the reachability
player. We prove that this strategy always reaches the target.

I Lemma 1. If a one-player RSG has a controlled switching flow F , then any corresponding
marginal strategy is winning for the reachability player.

In the other direction, if the reachability player has a winning strategy, then there exists
a controlled switching flow, and we can give an upper bound on its size.

I Lemma 2. If the reachability player has a winning strategy for a one-player RSG , then
that game has a controlled switching flow F , and the size of F is at most n · ln, where n is
the number of nodes in the game and l = maxv∈VSwi |Ord(v)|.

I Corollary 3. If the reachability player has a winning strategy for a one-player RSG, then
he also has a marginal winning strategy.

Finally, we can show that solving a one-player RSG is in NP.

I Theorem 4. Deciding the winner of an explicit or succinct one-player RSG is in NP.

3.2 NP-hardness
In this section we show that deciding the winner of a one-player RSG is NP-hard. Our
construction will produce an explicit RSG, so we obtain NP-hardness for both explicit and
succinct games. We reduce from 3SAT. Throughout this section, we will refer to a 3SAT
instance with variables x1, x2, . . . , xn, and clauses C1, C2, . . . , Cm. It is well-known [22, Thm.
2.1] that 3SAT remains NP-hard even if all variables appear in at most three clauses. We
make this assumption during our reduction.

Overview. The idea behind the construction is that the player will be asked to assign values
to each variable. Each variable xi has a corresponding vertex that will be visited 3 times
during the game. Each time this vertex is visited, the player will be asked to assign a value
to xi in a particular clause Cj . If the player chooses an assignment that does not satisfy Cj ,
then the game records this by incrementing a counter. If the counter corresponding to any
clause Cj is incremented to three (or two if the clause only has two variables), then the
reachability player immediately loses, since the chosen assignment fails to satisfy Cj .

The problem with the idea presented so far is that there is no mechanism to ensure
that the reachability player chooses a consistent assignment to the same variable. Since
each variable xi is visited three times, there is nothing to stop the reachability player from
choosing contradictory assignments to xi on each visit. To address this, the game also counts

ICALP 2018
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Controllerstart fail

x1 x2 x3 x4 target

C1 C2 C3start start start start

start fail start fail start fail

Figure 1 Overview of our construction for one player for the example formula C1 ∧ C2 ∧ C3 =
(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). Note that the negations of variables in the formula
are not relevant for this high-level view; they will feature in the clause gadgets as explained below.
The edges for the variable phase are solid, and the edges for the verification phase are dashed.

a3n+1bstart fail

x1 x2 x3 x4 x5

a

b

1 2 3 4 5

Figure 2 The control gadget.

xi

a3bxi+1

Ci start start

a

b

1
2 3

a3b xi+1

Cj Ck start

a

b

1
2 3

true false

Figure 3 A variable gadget.

how many times each assignment is chosen for xi. At the end of the game, if the reachability
player has not already lost by failing to satisfy the formula, the game is configured so that the
target is only reachable if the reachability player chose a consistent assignment. A high-level
overview of the construction for an example formula is given in Fig. 1.

The control gadget. The sequencing in the construction is determined by the control
gadget, which is shown in Fig. 2. In our diagramming notation, square vertices belong
to the reachability player. Circle vertices are switching nodes, and the switching order of
each switching vertex is labelled on its outgoing edges. Our diagrams also include counting
gadgets, which are represented as non-square rectangles that have labelled output edges. The
counting gadget is labelled by a sequence over these outputs, with the idea being that if the
play repeatedly reaches the gadget, then the corresponding output sequence will be produced.
In Fig. 2 the gadget is labelled by a3n+1b, which means the first 3n+ 1 times the gadget is
used the token will be moved along the a edge, and the 3n+ 2nd time the gadget is used the
token will be moved along the b edge. This gadget can be easily implemented by a switching
node that has 3n+ 2 outgoing edges, the first 3n+ 1 of which go to a, while the 3n+ 2nd
edge goes to b. We use gadgets in place of this because it simplifies our diagrams.

The control gadget has two phases. In the variable phase, each variable gadget, represented
by the vertices x1 through xn is used exactly 3 times, and thus overall the gadget will be
used 3n times. This is accomplished by a switching node that ensures that each variable is
used 3 times. After each variable gadget has been visited 3 times, the control gadget then
sends the token to the x1 variable gadget for the verification phase of the game. In this
phase, the reachability player must prove that he gave consistent assignments to all variables.
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a2bstart fail
a b

Figure 4 A gadget for a clause with three variables.

If the control gadget is visited 3n+ 2 times, then the token will be moved to the fail vertex.
This vertex has no outgoing edges, and thus is losing for the reachability player.

The variable gadgets. Each variable xi is represented by a variable gadget, which is shown
in Fig. 3. This gadget will be visited 3 times in total during the variable phase, and each
time the reachability player must choose either the true or false edges at the vertex xi. In
either case, the token will then pass through a counting gadget, and then move to a switching
vertex which either moves the token to a clause gadget, or back to the start vertex.

It can be seen that the gadget is divided into two almost identical branches. One
corresponds to a true assignment to xi, and the other to a false assignment to xi. The clause
gadgets are divided between the two branches of the gadget. In particular, a clause appears
on a branch if and only if the variable appears in that clause and the choice made by the
reachability player fails to satisfy the clause. So, the clauses in which xi appears positively
appear on the false branch of the gadget, while the clauses in which xi appears negatively
appear on the true branch.

The switching vertices each have exactly three outgoing edges. These edges use an
arbitrary order over the clauses assigned to the branch. If there are fewer than 3 clauses on
a particular branch, the remaining edges of the switching node go back to the start vertex.
Note that this means that a variable can be involved with fewer than three clauses.

The counting gadgets will be used during the verification phase of the game, in which
the variable player must prove that he has chosen consistent assignments to each of the
variables. Once each variable gadget has been used 3 times, the token will be moved to x1
by the control gadget. If the reachability player has used the same branch three times, then
he can choose that branch, and move to x2, which again has the same property. So, if the
reachability player gives a consistent assignment to all variables, he can eventually move
to xn, and then on to xn+1, which is the target vertex of the game. Since, as we will show,
there is no other way of reaching xn+1, this ensures that the reachability player must give
consistent assignments to the variables in order to win the game.

The clause gadgets. Each clause Cj is represented by a clause gadget, an example of
which is shown in Fig. 4. The gadget counts how many variables have failed to satisfy the
corresponding clause. If the number of times the gadget is visited is equal to the number of
variables involved with the clause, then the game moves to the fail vertex, and the reachability
player immediately loses. In all other cases, the token moves back to the start vertex.

Correctness. The following lemma shows that the reachability player wins the one-player
RSG if and only if the 3SAT instance is satisfiable.

I Lemma 5. The reachability player wins the one-player RSG if and only if the 3SAT
instance is satisfiable.

Note that our game can be written down as an explicit game, so our lower bound applies
to both explicit and succinct games. Hence, we have the following theorem.

I Theorem 6. Deciding the winner of an explicit or succinct one-player RSG is NP-hard.

ICALP 2018



124:8 Reachability Switching Games

a(p+p2)b x

ap2
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apb
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target

fail

fail
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a
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b
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Figure 5 One-player memory lower bound construction.

3.3 Memory requirements of winning strategies in one-player games
Consider the game shown in Fig. 5, which takes as input a parameter p that we will fix later.
The only control state for the player is x. By construction, x will be visited p+ p2 times.
Each time, the player must choose either the top or bottom edge. If the player uses the top
edge strictly more than p2 times, or the bottom edge strictly more than p times, then he
will immediately lose the game. If the player does not lose the game in this way, then after
p2 + p rounds the target will be reached, and the player will win the game.

The player has an obvious winning strategy: use the top edge p2 times and the bottom
edge p times. Intuitively, there are two ways that the player could implement the strategy.
(1) Use the bottom edge p times, and then use the top edge p2 times. This approach uses p
memory states to count the number of times the bottom edge has been used. (2) Use the
bottom edge once, use the top edge p times, and then repeat. This approach uses p memory
states to count the number of times the top state has been used after each use of the bottom
edge. We can prove that one cannot do significantly better.

I Lemma 7. The reachability player must use at least p− 1 memory states to win the game
shown in Fig. 5.

Setting p = 2n/2 gives us our lower bound. Even though p is exponential, it is possible to
create an explicit switching gadget that produces the sequence a2n

b with n switching nodes.

I Lemma 8. For all x ∈ N there is an explicit switching gadget of size log2(x) with output axb.

I Theorem 9. The number of memory states needed in an explicit one-player RSG is Ω(2 n
2 ).

4 Two-player reachability switching games

4.1 Containment in EXPTIME
We first observe that solving a two-player RSG lies in EXPTIME. This can be proved easily,
either by blowing the game up into an exponentially sized reachability game, or equivalently,
by simulating the game on an alternating polynomial-space Turing machine.

I Theorem 10. Deciding the winner of an RSG is in EXPTIME.

4.2 PSPACE-hardness
We show that deciding the winner of an explicit two-player RSG is PSPACE-hard, by reducing
true quantified boolean formula (TQBF), the canonical PSPACE-complete problem, to our
problem. Throughout this section we will refer to a TQBF instance ∃x1∀x2 . . . ∃xn−1∀xn ·
φ(x1, x2, . . . , xn), where φ denotes a boolean formula given in negation normal form, which
requires that negations are only applied to variables, and not sub-formulas. The problem is
to decide whether this formula is true.
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Formula φ

x1 x2· · · xnstart

target fail target fail target fail

Figure 6 High-level overview of our construction for two players. The dashed lines between
variables are part of the first, quantifier phase; the dotted line from variable xn to the Formula is
the transition between phases, and the solid edges are part of the second, formula phase.

di

xi ¬xi

fi

from xi−1

target target

to xi+1fail

1 1

2 2

12

Figure 7 The initialization gadget for an
existentially quantified variable xi.

∧1

from fn

∨1 ∧2

x1 ¬x2 ¬x3 x4

Figure 8 The formula phase game for the
formula (x1 ∨ ¬x2) ∧ ¬x3 ∧ x4.

Overview. We will implement the TQBF formula as a game between the reachability player
and the safety player. This game will have two phases. In the quantifier phase, the two
players assign values to their variables in the order specified by the quantifiers. In the formula
phase, the two players determine whether φ is satisfied by these assignments by playing
the standard model-checking game for propositional logic. The target state of the game is
reached if and only if the model checking game determines that the formula is satisfied. This
high-level view of our construction is depicted in Fig. 6.

The quantifier phase. Each variable in the TQBF formula will be represented by an
initialization gadget. The initialization gadget for an existentially quantified variable is shown
in Fig. 7. The gadget for a universally quantified variable is almost identical, but the state di

is instead controlled by the safety player.
During the quantifier phase, the game will start at d1, and then pass through the gadgets

for each of the variables in sequence. In each gadget, the controller of di must move to
either xi or ¬xi. In either case, the corresponding switching node moves the token to fi,
which then subsequently moves the token on to the gadget for xi+1.

The important property to note here is that once the player has made a choice, any
subsequent visit to xi or ¬xi will end the game. Suppose that the controller of di chooses
to move to xi. If the token ever arrives at xi a second time, then the switching node will
move to the target vertex and the reachability player will immediately win the game. If the
token ever arrives at ¬xi the token will move to fi and then on to the fail vertex, and the
Safety player will immediately win the game. The same property holds symmetrically if the
controller of di chooses ¬xi instead. In this way, the controller of di selects an assignment
to xi. Hence, the reachability player assigns values to the existentially quantified variables,
and the safety player assigns values to the universally quantified variables.

ICALP 2018
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x

y
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b

ctarget fail

y
start

1

1

2

2

2

1

Figure 9 An RSG in which the reachability player needs to use memory.

The formula phase. Once the quantifier phase has ended, the game moves into the formula
phase. In this phase the two players play a game to determine whether φ is satisfied by
the assignments to the variables. This is the standard model checking game for first order
logic. The players play a game on the parse tree of the formula, starting from the root. The
reachability player controls the ∨ nodes, while the safety player controls the ∧ nodes (recall
that the game is in negation normal form, so there are no internal ¬ nodes.) Each leaf is
either a variable or its negation, which in our game are represented by the xi and ¬xi nodes
in the initialization gadgets. An example of this game is shown in Fig. 8. In our diagramming
notation, nodes controlled by the safety player are represented by triangles.

Intuitively, if φ is satisfied by the assignment to x1, . . . , xn, then no matter what the
safety player does, the reachability player is able to reach a leaf node corresponding to a true
assignment, and as mentioned earlier, he will then immediately win the game. Conversely,
if φ is not satisfied, then no matter what the reachability player does, the safety player can
reach a leaf corresponding to a false assignment, and then immediately win the game.

I Lemma 11. The reachability player wins if and only if the QBF formula is true.

Since we have shown the lower bound for explicit games, we also get the same lower
bound for succinct games as well. We have shown the following theorem.

I Theorem 12. Deciding the winner of an explicit or succinct RSG is PSPACE-hard.

Note that all runs of the game have polynomial length, a property that is not shared by
all RSGs. This gives us the following corollary.

I Corollary 13. Deciding the winner of a polynomial-length RSG is PSPACE-complete.

4.3 Memory requirements for two player games
We can show even stronger memory lower bounds in two-player games compared to one-player
games. Fig. 9 shows a simple gadget that forces the reachability player to use memory. The
game starts by allowing the safety player to move the token from x to either a or b. Whatever
the choice, the token then moves to c and then on to y. At this point, if the reachability
player moves the token to the node chosen by the safety player, then the token will arrive at
the target node and the reachability player will win. If the reachability player moves to the
other node, the token will move to c for a second time, and then on to the fail vertex, which
is losing for the reachability player. Thus, every winning strategy of the reachability player
must remember the choice made by the safety player.

We can create a similar gadget that forces the safety player to use memory by swapping
the players. In the modified gadget, the safety player has to choose the vertex not chosen by
the reachability player. Thus, in an RSG, winning strategies for both players need to use
memory. By using n copies of the memory gadget, we can show the following lower bound.
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Figure 10 An AND-gate of depth 2.
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Figure 11 An OR-gate of depth 2.

I Lemma 14. In an explicit or succinct RSG, winning strategies for both players may need
to use 2n memory states, where n is the number of switching nodes.

5 Zero-player reachability switching games

5.1 Explicit zero-player games
We show that deciding the winner of an explicit zero-player game is NL-hard. To do this,
we reduce from the problem of deciding s-t connectivity in a directed graph. The idea is to
make every node in the graph a switching node. We then begin a walk from s. If, after |V |
steps we have not arrived at t, we go back to s and start again. So, if there is a path from s

to t, then the switching nodes must eventually send the token along that path.
Formally, given a graph (V,E), we produce a zero-player RSG played on V × V ∪ {fin},

where the second component of each state is a counter that counts up to |V |. Every vertex
is a switching node, the start vertex is (s, 1), and the target vertex is fin. Each vertex (v, k)
with v 6= t and k < |V | has outgoing edges to (u, k + 1) for each outgoing edge (v, u) ∈ E.
Each vertex (v, |V |) with v 6= t has a single outgoing edge to (s, 1). Every vertex (t, k) with
1 ≤ k ≤ |V | has a single outgoing edge to fin. This game can be constructed in logarithmic
space by looping over each element in V × V and producing the correct outgoing edges.

I Theorem 15. Deciding the winner of an explicit zero-player RSG is NL-hard under logspace
reductions.

5.2 Succinct games
Deciding reachability for succinct zero-player games still lies in NP ∩ coNP. This can be
shown using essentially the same arguments that were used to show NP ∩ coNP containment
for explicit games [7]. The fact that the problem lies in NP follows from Theorem 4, since
every succinct zero-player game is also a succinct one-player game, and so a switching flow
can be used to witness reachability. To put the problem in coNP, one can follow the original
proof given by Dohrau et al. [7, Theorem 3] for explicit games. This proof condenses all
losing and infinite plays into a single failure state, and then uses a switching flow to witness
reachability for that failure state. Their transformation uses only the graph structure of the
game, and not the switching order, and so it can equally well be applied to succinct games.

In contrast to explicit games, we can show a stronger lower bound of P-hardness for
succinct games. We will reduce from the problem of evaluating a boolean circuit (the circuit
value problem), which is one of the canonical P-complete problems. We will assume that the
circuit has fan-in and fan-out 2, that all gates are either AND-gates or OR-gates, and that
the circuit is synchronous, meaning that the outputs of the circuit have depth 1, and all
gates at depth i get their inputs from gates of depth exactly i+ 1. This is Problem A.1.6

ICALP 2018
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“Fanin 2, Fanout 2 Synchronous Alternating Monotone CVP” of Greenlaw et al. [11]. We
will reduce from the following decision problem: for a given input bit-string B ∈ {0, 1}n, and
a given output gate g, is g evaluated to true when the circuit is evaluated on B?

Boolean gates. We will simulate the gates of the circuit using switching nodes. A gate at
depth i > 1 is connected to exactly two gates of depth i+ 1 from which it gets its inputs,
and exactly two gates at depth i− 1 to which it sends its output. If a gate evaluates to true,
then it will send a signal to the output-gates, by sending the token to that gate’s gadget.
More precisely, for a gate of depth i > 1, the following signals are sent. If the gate evaluates
to true, then the gate will send the token exactly 2i−1 times to each output gate. If the gate
evaluates to false, then the gate will send the token exactly 0 times to each output gate. So
the number of signals sent by a gate grows exponentially with the depth of that gate.

Fig. 10 shows our construction for an AND-gate of depth 2. It consists of a single
switching node (with a succinct order). I1 and I2 are two input edges that come from the
two inputs to this gate, and O1 and O2 are two output edges that go to the outputs of
this gate. The control state is a special state that drives the construction, which will be
described later. The switching order was generated by the following rules. For a gate at
depth i, the switching order of an AND-gate is defined so that the first 2i positions in the
switching order go to control, the next 2i−1 positions in the switching order go to O1, and
the final 2i−1 positions in the switching order go to O2. Observe that this switching order
captures the behavior of an AND-gate. If the gadget receives 2i signals from both inputs,
then it sends 2i−1 signals to both outputs. On the other hand, if at least one of the two
inputs sends no signals, then the gadget sends no signals to the outputs.

The same idea is used to implement OR-gates. Fig. 11 shows the construction for an
OR-gate of depth 2. For an OR-gate of depth i we have that the first 2i−1 positions in the
switching order go to O1, the next 2i−1 positions in the switching order go to O2, and the
final 2i positions in the switching order go to control. These conditions simulate an OR-gate.
If either of the inputs produces 2i input signals, then 2i−1 signals are sent to both outputs.
If both inputs produce no signals, then no signals are sent to either output.

The control state and the depth 1 gates. Suppose that the inputs to the circuit are at
depth d. The control state is a single switching node that has the following switching order.
Each input edge to a gate at depth d refers to some bit contained in the bit-string B. The
control state sends 2d inputs using that edge if that bit is true, and 0 inputs using that edge
if that bit is false. Once those signals have been sent, the control state moves the token to
an absorbing failure state. The token begins at the control state.

Each gate at depth 1 is represented by a single state, and has the same structure and
switch configuration as the gates at depth i > 1. The only difference is the destination of the
edges O1 and O2. The gate g (which we must evaluate) sends all outputs to an absorbing
target state. All other gates send all outputs back to the control state.

I Lemma 16. The token reaches the target state if and only if the gate g evaluates to true
when the circuit is evaluated on the bit-string B.

Since these gadgets use exponential switching orders, this construction would have
exponential size if written down in the explicit format. Note, however, that all of the
switching orders can be written down in the succinct format in polynomially many bits.
Moreover, the construction has exactly one switching state for each gate in the circuit, and
three extra states for the control, target, and failure nodes. Every state in the construction
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can be created using only the inputs and outputs of the relevant gate in the circuit, which
means that the reduction can be carried out in logarithmic space. Thus, we have the following.

I Theorem 17. Deciding the winner of a succinct zero-player RSG is P-hard under logspace
reductions.
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