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Abstract
We present an algorithm for the following problem: given a context-free grammar for the word
problem of a virtually free group G, compute a finite graph of groups G with finite vertex groups
and fundamental group G. Our algorithm is non-deterministic and runs in doubly exponential
time. It follows that the isomorphism problem of context-free groups can be solved in doubly
exponential space. Moreover, if, instead of a grammar, a finite extension of a free group is given
as input, the construction of the graph of groups is in NP and, consequently, the isomorphism
problem in PSPACE.

2012 ACM Subject Classification Mathematics of computing → Graph theory, Theory of com-
putation → Grammars and context-free languages, Theory of computation → Computational
complexity and cryptography

Keywords and phrases virtually free groups, context-free groups, isomorphism problem, struc-
ture tree, graph of groups

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.139

Related Version A full version of the paper is available at [23], https://arxiv.org/abs/1802.
07085.

Acknowledgements G.S. thanks the FMI for hosting him from October to the end of the year
2017. Both authors acknowledge the financial support by the DFG project DI 435/7-1 “Algorith-
mic problems in group theory” for this work.

1 Introduction

The study of algorithmic problems in group theory was initiated by Dehn [6] when he
introduced the word and the isomorphism problem. The word problem asks whether a given
word over a (finite) set of generators represents the identity of the group. It also can be
viewed as a formal language, namely ϕ−1(1) ⊆ Σ∗ for some surjective monoid homomorphism
ϕ : Σ∗ → G. The isomorphism problem receives two finite presentations as input, the
question is whether the groups they define are isomorphic. Although both these problems
are undecidable in general [18, 3], there are many classes of groups where at least the word
problem can be decided efficiently.

One of these classes are the finitely generated virtually free groups (groups with a free
subgroup of finite index). It is easy to see that the word problem of a finitely generated
virtually free group can be solved in linear time. Indeed, it forms a deterministic context-free
language. A seminal paper by Muller and Schupp [16] shows the converse: every group
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with a context-free word problem is virtually free. Since then, also a wide range of other
characterizations of virtually free groups have emerged – for a survey we refer to [1, 9].

The isomorphism problem of virtually free groups is also decidable as Krstić showed in
[15] (indeed, later Dahmani and Guirardel showed that even the isomorphism problem for
the larger class of hyperbolic groups is decidable [5]). Here the input consists of two arbitrary
finite presentations with the promise that both define virtually free groups. Unfortunately,
the approach in [15] does not give any bound on the complexity. For the special case where
the input is given as finite extensions of free groups or as context-free grammars for the word
problems, Sénizergues [21, 22] showed that the isomorphism problem is primitive recursive.
Krstić’s and Sénizergues’ approaches both compute so-called graphs of groups, which encode
groups acting on trees, and then check these graph of groups for “isomorphism”. By the work
of Karrass, Pietrowski and Solitar [14], a finitely generated group is virtually free if and only
if it is the fundamental group of a finite graph of groups with finite vertex groups.

Contribution. We improve the complexity for the isomorphism problem by showing:
(A) Given a context-free grammar for the word problem of a context-free group G, a graph

of groups for G with finite vertex groups can be computed in NTIME(22O(n2)) (Theorem
33).

(B) Given a virtually free presentation for G, a graph of groups for G with finite vertex
groups can be computed in NP (Theorem 34).

(C) The isomorphism problem for context-free groups given as grammars is in
DSPACE(22O(n2)) (Theorem 37).

(D) The isomorphism problem for virtually free groups given as virtually free presentations
is in PSPACE (Theorem 38).

Here, a virtually free presentation for G consists of a free group F plus a set of representatives
S for the quotient F\G together with relations describing pairwise multiplications of elements
from F and S. Typical examples of virtually free presentations are finite extensions of free
groups (i. e., where the free sugroup F is normal in G). For non-deterministic function
problems we use the convention, that every accepting computation must yield a correct
result; but the results of different accepting computations might differ1.

The results C and D can be seen be to follow from A and B rather easily. Indeed, we
conclude from Forester’s work on deformation spaces [10] that two graphs of groups with
finite vertex groups and isomorphic fundamental groups can be transformed one into each
other by a sequence of slide moves (Proposition 35).

Our approach for proving A and B is as follows: in both cases the algorithm simply
guesses a graph of groups together with a map and afterwards it verifies deterministically
whether the map is indeed an isomorphism. The latter can be done using standard results
from formal language theory. The difficult part is to show the existence of a “small” graph
of groups and isomorphism (within the bounds of A and B).

For this, we introduce the structure tree theory by Dicks and Dunwoody [7] following a
slightly different approach by Diekert and Weiß [8] based on the optimal cuts of the Cayley
graph (Section 2.3). The optimal cuts can be seen as the edge set of some tree on which
the group G acts. By Bass-Serre theory, this yields the graph of groups we are aiming

1 Thus, B means that the graph of groups can be computed in NPMV in the sense of [20]. More precisely,
it can be rephrased as follows: the multi-valued function mapping a virtually free presentation for G
into a pair (G, ϕ), where G is a graph of groups and ϕ : π1(G) → G is an isomorphism of polynomial
size, is everywhere defined and belongs to the class FNP as defined in [19].
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for. Vertices in the graph of groups are defined in terms of equivalence classes of optimal
cuts. The key in the proof is to bound the size of the equivalence classes. Using Muller and
Schupp’s [16] notion of k-triangulability, Sénizergues [22] proved bounds on the size of finite
subgroups and on the number of edges in a reduced graph of groups for a context-free group,
from which we derive our bounds.

Outline. After fixing our notation, we recall basic facts from Bass-Serre theory and the
results from [22] and give a short review on structure trees based on [8]. Section 3, develops
bounds on the size of the vertices (= equivalence classes of cuts) of the structure tree. After
that, we introduce virtually free presentations formally and we derive stronger bounds for
this case in Section 4. Section 5 completes the proofs of A and B. Finally, in Section 6 we
derive C and D and we conclude with some open questions. Due to space constraints most
of the proofs are omitted; they can be found in the full version on arXiv [23].

2 Preliminaries

Complexity. We use the following convention for non-deterministic function problems: each
accepting computation path must yield a correct answer – though different accepting paths
can compute different correct answers. We use this convention to define the classes NP
(non-deterministic polynomial time) and NTIME(f(n)) (non-deterministic time bounded by
f(n)). Otherwise, we use standard complexity classes P (deterministic polynomial time),
PSPACE (polynomial space) and DSPACE(f(n)) (deterministic space bounded by f(n)) for
both decision and function problems.

Words. An alphabet is a (finite) set Σ; an element a ∈ Σ is called a letter. The set Σn forms
the set of words of length n. The length of w ∈ Σn is denoted by |w|. The set of all words is
denoted by Σ∗. It is the free monoid over Σ – its neutral element is the empty word 1.

Context-free grammars. We use standard notation for context-free grammars: a context-
free grammar is a tuple G = (V,Σ, P, S) with variables V , terminals Σ, a finite set of
productions rules P ⊆ V × (V ∪ Σ)∗, and a start symbol S. We denote its size by ‖G‖ =
|V |+ |Σ|+

∑
A→α∈P |α|. It is in Chomsky normal form if all productions are of the form

S → 1, A→ a or A→ BC with A,B,C ∈ V , a ∈ Σ. For further definitions, we refer to [12].

Groups. Let Σ be an alphabet and R ⊆ Σ∗ × Σ∗. The monoid (or group) G presented
by (Σ, R) is defined as G = Σ∗/R = Σ∗/=G where =G is the smallest monoid congruence
over Σ∗ containing R. There is a canonical projection π : Σ∗ → G. The word problem of
the group G is the formal language WP(G) = {w ∈ Σ∗ | w =G 1} = π−1(1). A symmetric
alphabet is an alphabet Σ endowed with an involution a 7→ a without fixed points (i. e., a = a

and a 6= a for all a ∈ Σ). If Σ is a symmetric alphabet for G (i. e., G = Σ∗/=G), we always
assume that aa =G aa =G 1 for all a ∈ Σ (without writing these relations explicitly).

Let Σ be a symmetric alphabet and w ∈ Σ∗. We say that w is freely reduced if w has no
factor aa for any letter a ∈ Σ. Given an arbitrary set X, the free group over X is denoted by
F (X). It is defined as the group presented by (X ∪X, {xx | x ∈ X ∪X}).

Graphs. A graph Γ = (V,E, s, t, · ) is given by the following data: a set of vertices V = V (Γ),
a set of edges E = E(Γ) together with two incidence maps s : E → V and t : E → V and an
involution E → E, e 7→ e without fixed points such that s(e) = t(e). The degree of a vertex
u is the number of incident edges. An undirected edge is a set {e, e}. For the cardinality of
sets of edges we usually count the number of undirected edges.

ICALP 2018
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A (finite) path from v0 to vn is a pair of sequences ((v0, . . . , vn), (e1, . . . , en)) such that
s(ei) = vi−1 and t(ei) = vi for all 1 ≤ i ≤ n. Similarly, a bi-infinite path is a pair of sequences
((vi)i∈Z, (ei)i∈Z) such that s(ei) = vi−1 and t(ei) = vi for all i ∈ Z. A path is simple if the
vertices are pairwise distinct. It is closed if v0 = vn. Depending on the situation we also
denote paths simply by the sequence of edges or the sequence of vertices. The distance
d(u, v) between vertices u and v is defined as the length (i. e., the number of edges) of a
shortest path connecting u and v. For A,B ⊆ V (Γ) with A,B 6= ∅, the distance is defined as
d(A,B) = min { d(u, v) | u ∈ A, v ∈ B }.

For S ⊆ V (Γ) we define Γ−S to be the induced subgraph of Γ with vertices V (Γ)rS. For
C ⊆ V (Γ), we write C for the complement of C, i. e., C = V (Γ) r C. We call C connected,
if the induced subgraph is connected. A group G acts on a graph Γ, if it acts on both V (Γ)
and E(Γ) and the actions preserve the incidences.

Cayley graphs. Let G be a group with a symmetric alphabet Σ. The Cayley graph Γ =
ΓΣ(G) of G (with respect to Σ) is defined by V (Γ) = G and E(Γ) = G × Σ, with the
incidence functions s(g, a) = g, t(g, a) = ga, and involution (g, a) = (ga, a). For r ∈ N let
B(r) = {u ∈ V (Γ) | d(u, 1) ≤ r } denote the ball with radius r around the identity.

Cuts. For a subset C ⊆ V (Γ) we define the edge and vertex boundaries of C as follows:

~δC =
{
e ∈ E(Γ)

∣∣ s(e) ∈ C, t(e) ∈ C } = directed edge boundary,

∂C =
{
s(e)

∣∣ e ∈ ~δC } = inner vertex boundary,

βC =
{
s(e)

∣∣ e ∈ ~δC or e ∈ ~δC
}

= ∂C ∪ ∂C = vertex boundary.

I Definition 1. A cut is a subset C ⊆ V (Γ) such that C and C are both non-empty and
connected and ~δC is finite. The weight of a cut is |~δC|. If |~δC| ≤ K, we call C a K-cut.

2.1 Bass-Serre theory
We give a brief summary of the basic definitions and results of Bass-Serre theory [24].

I Definition 2 (Graph of Groups). Let Y = (V (Y ), E(Y ), s, t, · ) be a connected graph. A
graph of groups G over Y is given by the following data:
(i) For each vertex P ∈ V (Y ) there is a vertex group GP .
(ii) For each edge y ∈ E(Y ) there is an edge group Gy such that Gy = Gy.
(iii) For each edge y ∈ E(Y ) there is an injective homomorphism from Gy to Gs(y), which

is denoted by a 7→ ay. The image of Gy in Gs(y) is denoted by Gyy.
Since we have Gy = Gy, there is also a homomorphism Gy → Gt(y) defined by a 7→ ay. The
image of Gy in Gt(y) is denoted by Gyy. A graph of groups is called reduced if Gyy 6= Gs(y)
whenever s(y) 6= t(y) for y ∈ E(Y ). Throughout we assume that all graphs of groups are
connected and finite (i. e., Y is a connected, finite graph).

Fundamental group of a graph of groups. We begin with the group F (G). It is defined
as the free product of the free group F (E(Y )) and the groups GP for P ∈ V (Y ) modulo
the set of defining relations

{
yayy = ay

∣∣ a ∈ Gy, y ∈ E(Y )
}
. As an alphabet we fix the

disjoint union ∆ =
⊎
P∈V (Y )(GP r {1}) ∪ E(Y ) throughout. Now, we have

F (G) = F (∆)/
{
gh = [gh], yayy = ay

∣∣ P ∈ V (Y ), g, h ∈ GP ; y ∈ E(Y ), a ∈ Gy
}
,

where [gh] denotes the element obtained by multiplying g and h in GP .
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For P ∈ V (Y ) we define a subgroup π1(G, P ) of F (G) by the elements g0y1 · · · gn−1yngn ∈
F (G), such that y1 · · · yn is a closed path from P to P and gi ∈ Gs(yi+1) for 0 ≤ i < n and
gn ∈ GP . The group π1(G, P ) is called the fundamental group of G with respect to the base
point P . Since we assumed Y to be connected, there exists a spanning tree T = (V (Y ), E(T ))
of Y . The fundamental group of G with respect to T is defined as

π1(G, T ) = F (G)/ { y = 1 | y ∈ T } .

I Proposition 3 ([24]). The canonical homomorphism ψ from the subgroup π1(G, P ) of F (G)
to the quotient group π1(G, T ) is an isomorphism. In particular, the two definitions of the
fundamental group are independent of the choice of the base point or the spanning tree.

A word w ∈ ∆∗ is called reduced if it does not contain a factor gh with g, h ∈ GP for
some P or a factor yayy with y ∈ E(Y ), a ∈ Gy.

I Lemma 4 ([24, Thm. I.11]). A reduced word in π1(G, P ) represents the trivial element if
and only if it is the empty word.

The quotient of a G-tree. Graphs of groups arise in a natural way in situations where a
group G acts (from the left) on some connected tree Z = (V,E) without edge inversion, i. e.,
e 6= ge for all e ∈ E, g ∈ G. We let Y = G\Z be the quotient graph with vertex set V (Y ) =
{Gv | v ∈ V } and edge set E(Y ) = {Ge | e ∈ E } and incidences and involution induced
by Z. By choosing representatives we find embeddings ι : V (Y ) ↪→ V and ι : E(Y ) ↪→ E

and we can assume that ι(V (Y )) induces a connected subgraph of Z and that ι(y) = ι(y)
for all y ∈ E(Y ). For P ∈ V (Y ), y ∈ E(Y ), we define vertex and edge groups as the
stabilizers of the respective representatives: GP = Stab(ιP ) = { g ∈ G | gιP = ιP } and
Gy = Stab(ιy) = { g ∈ G | gιy = ιy }. Note that as abstract groups the vertex and edge
groups are independent of the choice of representatives since stabilizers in the same orbit are
conjugate. Moreover, for each y ∈ E(Y ) there are gy, hy ∈ G such that s(ιy) = gyιP and
t(ιy) = hyιQ for P = s(y) and Q = t(y). Note that gy and hy are not unique; still the left
cosets gyGP resp. hyGQ are uniquely determined. Clearly, we can choose them such that
gy = hy and hy = gy. This yields two embeddings:

Gy → GP , a 7→ ay = gyagy, and Gy → GQ, a 7→ ay = hyahy. (1)

Hence, we have obtained a well-defined graph of groups G over Y . Notice that the Gyy and
Gyy depend on the choice of gy and hy (and change via conjugation when changing them).

We define a homomorphism ϕ : ∆∗ → G by ϕ(g) = g for g ∈ GP , P ∈ V (Y ). For
y ∈ E(Y ), we set ϕ(y) = gyhy. That means ϕ(y) maps some edge in the preimage of y and
terminating in ιt(y) to an edge in the preimage of y with source in ιs(y). By our assumption,
we have ϕ(y) = hygy = ϕ(y). Since ϕ(yayy) = ϕ(y)ϕ(ay)ϕ(y) = hygya

ygyhy = ay = ϕ(ay),
we obtain a well-defined homomorphism ϕ : F (G)→ G.

I Theorem 5 ([24]). The restriction ϕ : π1(G, P )→ G is an isomorphism.

2.2 Context-free groups and graphs
I Definition 6. A group is called context-free, if its word problem is a context free language.

Notice that the word problem of a context-free group is decidable in polynomial time – even
if the grammar is part of the input – by applying the CYK algorithm (see e. g. [12]).

ICALP 2018
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I Definition 7 (k-triangulable). Let Γ be a graph. Let k ∈ N and let γ = v0, v1, . . . , vn = v0
be a sequence of vertices Γ such that d(vi−1, vi) ≤ k for all i ∈ { 1, . . . , n } (e. g. γ can be a
closed path). Let P a convex polygon in the plane whose vertices are labeled by the vertices
of γ (i.e. we consider γ as a simple closed curve in the plane). A k-triangulation of γ is a
triangulation of P which does not introduce any additional vertices (thus only consists of
“diagonal” edges) and such that vertices joined by a diagonal edge are at distance at most k.
If n < 3, we consider γ as triangulated. If every closed path γ has a k-triangulation, then Γ
is called k-triangulable and we call k the triangulation constant of Γ.

I Lemma 8 ([16, Thm. I]). Let (V,Σ, P, S) be a context-free grammar in Chomsky normal
form for the word problem of a group G where Σ is a symmetric alphabet. Then the Cayley
graph Γ can be k-triangulated for k = 2|P |.

Note that in [16] only the existence of some k is shown; however, an easy induction shows
the bound of Lemma 8. Moreover, a slightly worse bound applies if Σ is not symmetric [23].

I Lemma 9 ([17, p.65]). Let Γ be k-triangulable and let r ∈ N. If C is a connected component
of Γ−B(r), then diam(∂C) ≤ 3k.

I Lemma 10. Let Γ be connected and k-triangulable and let C ⊆ V (Γ) be a cut. Then
diam(βC) ≤ 3k

2 |~δC|.

This lemma is asserted (without proof) in [21, Lemma 6] with a slightly worse bound on
diam(βC). For a proof see [23]. The following upper-bounds will be crucial.

I Proposition 11 ([22, Prop. 1.2]). Let Γ be the Cayley graph of a group G on a symmetric
alphabet Σ and let Γ be k-triangulable. Then |H| ≤ |Σ|12k+10 for every finite subgroup H ≤ G.

I Theorem 12 ([22, Thm. 1.4]). Let Γ be the Cayley graph of a group G on a symmetric
alphabet Σ and let Γ be k-triangulable. Then every reduced graph of groups G admitting G as
fundamental group has at most |Σ|12k+11 undirected edges.

2.3 Optimal cuts and structure trees
We briefly present the construction of optimal cuts and the associated structure tree from
[8, 9]. While in [8], the proof was for arbitrary accessible, co-compact, locally finite graphs,
here we assume that Γ is the Cayley graph of a context-free group. We are interested
in bi-infinite simple paths which can be split into two infinite pieces by some cut. For a
bi-infinite simple path α denote:

C(α) =
{
C ⊆ V (Γ)

∣∣ C is a cut and |α ∩ C| =∞ =
∣∣α ∩ C∣∣ } ,

Cmin(α) = {C ∈ C(α) | |δC| is minimal in C(α) } ,

where we identify α with its set of vertices. If C ∈ C(α), we say that C splits α. We define
the set of minimal cuts Cmin as the union of the Cmin(α) over all bi-infinite simple paths α.
Since every bi-infinite simple path α with C(α) 6= ∅ can be split by a cut which is a connected
component of Γ−B(m) for some m ∈ N, the next lemma follows from Lemma 9 and 10.

I Lemma 13. Let Γ be k-triangulable and let d denote the degree of Γ. Then for every
C ∈ Cmin we have |~δC| ≤ d3k+2 and diam(βC) ≤ 3k

2 d
3k+2.

Two cuts C and D are called nested, if one of the four inclusions C ⊆ D, C ⊆ D, C ⊆ D

or C ⊆ D holds. By Lemma 13, with K = d3k+3 for every bi-infinite simple path α with
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C(α) 6= ∅ there exists some cut C ∈ C(α) with |~δC| ≤ K. We fix this number K. For a cut
C let m(C) denote the number of K-cuts that are not nested with C. It follows from [25]
that m(C) is always finite, see also [8, Lem. 3.4].

I Definition 14. The set of optimal cuts is defined as

Copt(α) = {C ∈ Cmin(α) | m(C) ≤ m(D) for all D ∈ Cmin(α) } ,

Copt =
⋃
{ Copt(α) | α is a bi-infinite simple path } .

I Definition 15. A set C ⊆ C(Γ) of cuts is called a tree set, if C is pairwise nested, closed
under complementation and for all C,D ∈ C the set {E ∈ C | C ⊆ E ⊆ D } is finite.

I Proposition 16 ([8]). Copt is a tree set.

I Definition 17. Let C be a tree set. We can now define the following relation:

C ∼ D :⇐⇒ C = D or (C $ D and E ∈ C, C $ E ⊆ D =⇒ E = D).

Indeed, ∼ is an equivalence relation – see e. g. [7]. The intuition behind this definition is:
We consider C as the edge set of a graph, and define two edges to be incident to the same
vertex, if no other edge lies “between” them.

I Definition 18. Let C be a tree set and let T (C) denote the graph defined by

V (T (C)) = { [C] | C ∈ C } , E(T (C)) = C.

The incidence maps are defined by s(C) = [C] and t(C) = [C]. The involution C is defined
by the complementation C = V (Γ) r C; hence, we do not need to change notation.

The directed edges are in canonical bijection with the pairs ([C], [C]). Indeed, let C ∼ D

and C ∼ D. It follows C = D because otherwise C $ D $ C. Thus, T (C) is an undirected
graph without self-loops and multi-edges. Indeed, T (C) is a tree [7].

I Theorem 19 ([8, Thm. 5.9]). Let Γ be a connected, k-triangulable, locally finite graph. Let
a group G act on Γ such that G\Γ is finite and each node stabilizer Gv is finite. Then G acts
on the tree T (Copt) such that all vertex and edge stabilizers are finite and G\T (Copt) is finite.

Complete cut sets. By Proposition 16 and Theorem 19, Copt is a tree set on which G acts
with finitely many orbits such that the vertex stabilizers G[C] = { g ∈ G | gC ∼ C } of the
structure tree are finite. We shall call a set of cuts with these properties a complete cut set.

3 Bounds on the structure tree

In order to prove our main result, we have to show that there exists a “small” graph of groups
together with a “small” isomorphism. We start with the structure tree and bound the size of
the equivalence classes and the diameter of the boundaries of the cuts in one equivalence
class. As before Γ is the Cayley graph of a context-free group G.

ICALP 2018
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Avoiding edge inversion. Let C be a tree set (e. g. C = Copt). We aim to construct a graph
of groups as described in Section 2.1 from the structure tree T (C). However, if the action of
G on T (C) is with edge inversion, the construction cannot be applied directly. Instead, we
switch to a subdivision T̃ (C) of T (C) by putting a new vertex in the middle of every edge
which is inverted (in particular, V (T (C)) ⊆ V (T̃ (C))). Formally, T̃ (C) is defined as follows:
for every edge C of T (C) with gC = C for some g ∈ G we remove C and C and instead
add a new vertex v{C,C} together with edges C1, C1, C2, C2 with gC1 = C2, gC2 = C1
and s(C1) = [C], t(C1) = v{C,C}, s(C2) = v{C,C}, and t(C2) = [C]. We extend this in a
G-equivariant way to the whole tree. From now on we work with the tree T̃ (C).

Reduced cut sets. Given a tree set C with a finite quotient graph G\T̃ (C), we obtain a
graph of groups as in in Section 2.1. We aim to apply Theorem 12, to bound the number of
edges in this graph of groups. However, the graph of groups might not be reduced. In terms
of the set of cuts C this means that G[C] = GC for some C ∈ C and either [C] and [C] are not
in the same G-orbit or there is some g ∈ G with gC = C. (Note that the latter case implies
that the action on T (C) is with edge inversion. Thus, the new vertex v{C,C} is introduced
and the condition of being reduced is violated for the vertex G · [C] of the corresponding
graph of groups.) Nevertheless, in this case we can switch to a subset C′ ⊆ C such that the
corresponding graph of groups is reduced: if there is some cut C ∈ C with G[C] = GC and
either [C] 6∈ G ·

{
[C]
}
or C ∈ G · {C}, then we can replace C by C rG ·

{
C,C

}
(in terms of

the structure tree this means we collapse the respective edges). If no such C ∈ C remains, we
have obtained a reduced set of cuts C′. Since the number of G-orbits of cuts is finite, this
procedure terminates. The following lemmas are straightforward to verify.

I Lemma 20. Let C be a complete cut set and let C′ be the reduced cut set obtained by the
above procedure. Then C′ is also complete (i. e., all vertex stabilizers are still finite).

I Lemma 21. Let C be a reduced cut set and let T̃ (C) be the associated subdivision of the
structure tree without edge inversion. Then the graph of groups built on G\T̃ (C) is reduced.

Let Ξ be an upper bound on the order of finite subgroups of G and let Θ be a bound
on the number of undirected edges in a reduced graph of groups for G. Notice that by
Proposition 11, we have Ξ ≤ d12k+10 and by Theorem 12 we have Θ ≤ d12k+11 where k is
the triangulation constant and d the degree of Γ. The following lemma is straightforward to
prove using the fact that every orbit of cuts in C yields an edge in the graph of groups.

I Lemma 22. Let C be a reduced complete set of cuts and let C ∼ D ∈ C. Then we have
|{ g ∈ G | gD ∼ C }| ≤ Ξ and |[C]| ≤ 2 ·Θ · Ξ.

I Lemma 23. Let C be a tree set of cuts and let G act on C. Let C ∈ C and C ∈ P ⊆ [C].
Then P 6= [C] if and only if there is some E ∈ [C] r P with d(∂E,

⋃
D∈P ∂D) ≤ 1.

Proof. The if-part is clear. Thus, let P 6= [C]. Then there is some E ∈ [C] r P . Since
E $ D for all D ∈ P , we have ∅ 6= E ⊆

⋂
D∈P D. Now, if ∂E ⊆

⋃
D∈P ∂D, we are

done. Otherwise, there is some vertex u ∈ E ⊆
⋂
D∈P D with d(u,

⋃
D∈P ∂D) ≥ 1. Since

∂
(⋂

D∈P D
)
⊆
⋃
D∈P ∂D, we also find a vertex v ∈

⋂
D∈P D with d(v,

⋃
D∈P ∂D) = 1 by

following a path from u to ∂
(⋂

D∈P D
)
inside

⋂
D∈P D. Notice that, in particular, we have

v 6∈ βD ∪D for all D ∈ P. (2)

Now since Γ is vertex-transitive, we can find some cut Ẽ ∈ C such that v ∈ βẼ. After
possibly exchanging Ẽ with its complement, we can assume that Ẽ $ C or Ẽ ⊆ C. The
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latter would imply v ∈ βẼ ⊆ βC ∪ C contradicting (2). Moreover, for any other D ∈ P , we
have Ẽ ⊆ D because all other possibilities for Ẽ and D being nested lead to a contradiction:

if D $ Ẽ, then D $ Ẽ $ C contradicting D ∼ C,
if D $ Ẽ, then D ⊆ Ẽ ⊆ C and D ⊆ C contradicting C 6= ∅,
if Ẽ ⊆ D, then v ∈ βẼ ⊆ βD ∪D contradicting (2).

Thus, Ẽ ⊆
⋂
D∈P D. Let E ∈ C be minimal with respect to inclusion such that Ẽ ⊆ E $ C.

Then E ∼ C, but E 6∈ P because v ∈ βẼ ⊆ βE ∪ E.
It remains to verify that d(∂E,

⋃
D∈P ∂D) ≤ 1. Let w ∈ ∂D for some D ∈ P a vertex

with d(w, v) = 1. Then, we have w ∈ βD ∪D ⊆ βE ∪ E. Consider the two cases: v ∈ E
and v ∈ ∂E. If v ∈ E, then w ∈ βE ∩ ∂D and hence d(∂E,

⋃
D∈P ∂D) ≤ 1. If v ∈ ∂E, then

d(∂E,
⋃
D∈P ∂D) ≤ d(v, w) = 1. J

Now, an easy inductive argument shows the next lemma.

I Lemma 24. Let C be a complete set of cuts and R ∈ N such that diamβC ≤ R for all
C ∈ C. Let C ∈ C, then diam

( ⋃
C∼D

βC
)
≤ (R+ 1) · |[C]| .

I Lemma 25. Let Γ be the Cayley graph of G. Moreover, assume that
R bounds the diameter of the boundary of minimal cuts,
Θ bounds the number of undirected edges of a reduced graph of groups for G,
Ξ is an upper bound on the size of finite subgroups of G.

Then there exists a graph of groups G over Y and an isomorphism ϕ : π1(G, T )→ G with
(i) |V (Y )| ≤ Θ + 1,
(ii) |GP | ≤ Ξ for all P ∈ V (Y ),
(iii) |ϕ(a)| ≤ 4(R+ 1) · (Θ + 1)2 · Ξ for every a ∈

⋃
P∈V (Y )GP ∪ E(Y ).

Points i and ii of Lemma 25 are immediate. The proof iii starts with the set of optimal
cuts. As described at the beginning of this section, one can switch to a reduced, complete
subset C yielding a reduced graph of groups over G\T̃ (C) by Lemmas 20 and 21. Following
the construction of the graph of groups in Section 2.1, we can choose representatives for
V (Y ) ⊆ V (T̃ (C)) for G\V (T̃ (C)) such that ∂C ⊆ B(Λ) for any C ∈ P and P ∈ V (Y ) with
Λ = 2(R+ 1) · (Θ + 1) ·Θ · Ξ + Θ. This bound follows from Lemmas 24 and 22. Thus, we
have a graph of groups and it remains to bound the size of the isomorphism ϕ. Consider the
action of G on its Cayley graph Γ: every g ∈ GP for P ∈ V (Y ) maps a vertex from B(Λ) to
another vertex in B(Λ) (namely all vertices in

⋃
D∈P ∂D). Likewise the image of an edge D

maps ∂D ⊆ B(Λ + 1) into B(Λ). Since the action is free, iii follows. For details, see [23].

4 Stronger bounds for virtually free presentations

Let us start with a virtually free group G given as a free subgroup F (X) of finite index and
a system of representatives S of F\G. That means every group element can be written in a
unique way as xs with x ∈ F (X) and s ∈ S. Moreover, this normal form can be computed in
linear time from an arbitrary word by successively applying “commutation rules” of letters
from S and X ∪X ∪ S to the word. This gives a virtually free presentation. For this special
case, we can derive stronger bounds on the triangulation constant k and other parameters.

Formally, a virtually free presentation V for G is given by the following data:
finite sets X,X, S, where X ∪X is a symmetric alphabet and (X ∪X) ∩ S = ∅,
for all y ∈ X ∪X, r, t ∈ S, there are words xr,y, xr,t ∈ (X ∪X)∗, sr,y, sr,t ∈ S ∪ {1} with

ry =G xr,ysr,y rt =G xr,tsr,t (3)
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fulfilling two properties:
(i) for all r ∈ S there is some r′ ∈ S such that sr′,r = 1 (i. e., G is a group),
(ii) the equations (3), oriented from left to right, together with the free reductions xx = 1

for x ∈ X ∪X form a confluent rewriting system (for a definition, see e. g. [2, 13]).
We write S1 for S ∪ {1}. Clearly the associated rewriting system is terminating (noetherian),
F (X) is a subgroup of G, G = F (X) · S1, and F (X) ∩ S = ∅ (hence S1 is a system of
right-representatives for F (X)). Note that properties i and ii can be checked in polynomial
time. Using this confluent rewriting system, every g ∈ G can be uniquely written in its
normal form g = xs where x ∈ (X ∪X)∗ is a freely reduced word and s ∈ S1. Given any
word in (X ∪X ∪ S)∗, the normal form can be computed in linear time from left to right by
applying the identities (3) and reducing freely. This is the computation of a deterministic
pushdown automaton for the word problem of G:

I Lemma 26. Let G be the group defined by a virtually free presentation V. Then a
deterministic pushdown automaton for WP(G) can be computed in polynomial time.

Notice that a finite extension of a free group is a special case of a virtually free presentation
where F (X) is a normal subgroup of G (i. e., sr,y = r for all r ∈ S, y ∈ X ∪X). We assume
that V is written down in a naive way as input for algorithms: there is a table which for
all a ∈ X ∪X ∪ S and r ∈ S contains a word xr,a and some sr,a ∈ S. The size (number of
letters) of this table is |S| · (2 |X|+ |S|) ·max

{
|xr,a|+ 1

∣∣ a ∈ X ∪X ∪ S, r ∈ S }. Up to
logarithmic factors, this is the number of bits required to write down V this way.

We can always add a disjoint copy of formal inverses S of S representing S−1 in G.
Note that for s ∈ S this yields the rule rs = xr,s, sr,s for some sr,s ∈ S where xr,s = x−1

sr,s,s
.

In particular, |xr,s| ≤ max
{
|xr,a|

∣∣ a ∈ X ∪X ∪ S, r ∈ S }. We define the size of V as
‖V‖ =

∣∣S1
∣∣ · (2 |X|+ 2 |S|) ·max

{
|xr,a|+ 1

∣∣ a ∈ X ∪X ∪ S, r ∈ S }.
Whenever we talk about a group G given as a virtually free presentation, we denote

Σ = X ∪X ∪ S ∪ S. The Cayley graph Γ = ΓΣ(G) is defined with respect to this alphabet.
In particular, its degree is bounded by ‖V‖. The following lemma is easy to prove by
considering the sequence of normal forms x0s0, . . . , xnsn of a closed path: then x0, . . . , xn is
2 ‖V‖-triangulable in the Cayley graph of F (X).

I Lemma 27. Let G be the group defined by a virtually free presentation V and let Γ be its
Cayley graph. Then Γ is k-triangulable for k = 2 ‖V‖+ 2.

I Lemma 28. Let G be the group defined by a virtually free presentation V. Then for every
finite subgroup H ≤ G, we have |H| ≤

∣∣S1
∣∣. Hence, in particular, |H| ≤ ‖V‖.

I Lemma 29. Let G be the group defined by a virtually free presentation V. Then the number
of edges of a reduced graph of groups for G with finite vertex groups is at most ‖V‖.

The proof of Lemma 29 is almost a verbatim repetition of the proof of [22, Thm. 1.4].

I Lemma 30. Let G be the group defined by a virtually free presentation V and let Γ be its
Cayley graph. Then every minimal cut in Γ is a K-cut for K = ‖V‖2.

The proof of Lemma 30 is based on the fact that all cuts of the form Cx =
{ ys | s ∈ S, x is a prefix of y } for x ∈ (X ∪ X)∗ satisfy |~δCx| ≤ ‖V‖2 and that all
bi-infinite simple paths which are split by some cut also are split by some cut of the form Cx.
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5 Main results: computing graphs of groups

I Lemma 31. The uniform rational subset membership problem for virtually free groups
given as virtually free presentation or as context-free grammar for the word problem can be
decided in polynomial time. More precisely, the input is given as

either a virtually free presentation V or a context-free grammar G = (V,Σ, P, S) for the
word problem of a group G,
a rational subset of G given as non-deterministic finite automaton or regular expression
over Σ (in the case of a virtually free presentation Σ is defined as in Section 4),
a word w ∈ Σ∗.

The question is whether w is contained in the rational subset of G.

The proof of Lemma 31 is straightforward (for details see [23]): let p : Σ∗ → G denote the
canonical projection. Then p(w) ∈ p(L) ⇐⇒ 1 ∈ p(w−1L) ⇐⇒ WP(G) ∩ w−1L 6= ∅. The
latter can be tested in polynomial time by standard facts from formal language theory.

I Proposition 32. The following problem is in P: Given a virtually free group G either as
virtually free presentation V or as context-free grammar G for its word problem and a graph of
groups G over the graph Y (with vertex groups as multiplication tables, i. e., for all g, h ∈ GP
the product gh is written down explicitly) together with a homomorphism ϕ : ∆∗ → Σ∗ (where
∆ =

⋃
P∈V (Y )GP ∪E(Y ) and Σ is the alphabet for G defined by V (resp. G)), decide whether

ϕ induces an isomorphism π1(G, T )→ G.

Proof. We verify that ϕ induces a homomorphism ϕ̃ : π1(G, T )→ G and that ϕ̃ is injective
and surjective.

Testing that ϕ really induces a homomorphism reduces to the word problem for the group
G, which can be solved in polynomial time: for every relation a1 · · · am = 1 of π1(G, T ) test
whether ϕ(a1) · · ·ϕ(am) = 1 in G. Testing that ϕ̃ is surjective reduces to polynomially many
membership-problems for rational subsets of G: for all a ∈ Σ test whether a is contained in
the rational subset { ϕ̃(g) | g ∈ ∆ }∗. By Lemma 31 this can be done in polynomial time.

It remains to test whether ϕ̃ is injective. Let π : ∆∗ → F (G) and ψ : F (G) → π1(G, T )
denote the canonical projections (note that ψ induces an isomorphism π1(G, P ) ∼−→ π1(G, T )).
Let R ⊆ ∆∗ denote the set of reduced words. With slight abuse of notation we use π1(G, P )
also to denote the set of words g0y1 · · · gn−1yngn ∈ ∆∗ where y1 · · · yn is a closed path based
at P and gi ∈ Gs(yi+1) for 0 ≤ i < n and gn ∈ GP . Testing that ϕ̃ is injective amounts to
test whether the language L =

(
π−1(ψ−1(ϕ̃−1(1))) ∩ π1(G, P ) ∩ R

)
r {1} ⊆ ∆∗ is empty

because 1 is the only reduced word in π1(G, P ) representing the identity, by Lemma 4.
Notice that π−1(ψ−1(ϕ̃−1(1))) = ϕ−1(WP(G)). Since WP(G) is context-free (for virtually

free presentations, see Lemma 26) and since context-free languages are closed under inverse
homomorphism, ϕ−1(WP(G)) is a context-free language – and a pushdown automaton for it
can be computed in polynomial time from the pushdown automaton for WP(G) (see e. g.
[12]). Thus, L is a context-free language and we obtain a pushdown automaton for L, which
can be tested for emptiness in polynomial time (see e. g. [12]). J

I Theorem 33. The following problem is in NTIME(22O(N)):
Input: a context-free grammar G = (V,Σ, P, S) in Chomsky normal form with ‖G‖ ≤ N

which generates the word problem of a group G,
Compute a graph of groups with finite vertex groups and fundamental group G.

Note that if G is not in Chomsky normal form, it can be transformed into Chomsky normal
form in quadratic time. In this case the graph of groups can be computed in NTIME(22O(N2)).
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Table 1 Summary of appearing constants. The third column shows a bound in terms of the size
of a context-free grammar G for the word problem (due to Lemma 8, Lemma 13, Proposition 11, and
Theorem 12), the fourth column shows a bound in terms of the size of a virtually free presentation
V (due to Lemma 27, Lemma 30, Lemma 10, Lemma 28, and Lemma 29).

N size of the input ‖G‖ ‖V‖
d degree of Γ N N

k triangulation constant 2N+2 2N + 2
K maximal weight of a minimal cut d3k+3 N2

R = 3kK
2 maximal diameter of the boundary of a minimal cut 3k

2 d
3k+3 3(N + 1)N2

Ξ maximum cardinality of a finite subgroup d12k+10 N

Θ maximum number of edges in a reduced graph of groups d12k+11 N

I Theorem 34. The following problem is in NP:
Input: a group G as a virtually free presentation,
Compute a graph of groups with finite vertex groups and fundamental group G.

The proofs of Theorem 34 and Theorem 33 are now straightforward: guess a graph of groups
and a map ϕ : ∆→ Σ∗ and use Proposition 32 to check that it induces an isomorphism. By
Lemma 25 and Table 1, such a guess can be made within the time bounds of the theorems.

6 Slide moves and the isomorphism problem

Given two groups G1 and G2 one can calculate the respective graph of groups and then
check with Krstić’s algorithm by ([15]) whether their fundamental groups are isomorphic.
A closer analysis shows that this algorithm runs in polynomial space. As the description
is quite involved, we follow a different approach based on Forester’s theory of deformation
spaces [10, 4].

Let G be a graph of groups over Y . A slide move is the following operation on G: let GP
be a vertex group and Gx, Gy edge groups with s(x) = s(y) = P . If Gxx (the image of Gx in
GP ) can be conjugated by an element of GP into Gyy i. e., there is some g ∈ GP such that
g−1Gxxg ≤ Gyy, then x can be slid along y to Q = t(y), i. e., s(x) is changed to Q. The new
inclusion of Gx → GQ is then given by ιy ◦ ι−1

y ◦ cg ◦ ιx where ιx is the inclusion Gx → GP
(likewise for ιy, ιy) and cg is the conjugation with g (i. e., h 7→ g−1hg). A slide move induces
an isomorphism ϕ of the fundamental groups of the two graph of groups by ϕ(h) = h for
h ∈ GR, R ∈ V (Y ), and ϕ(z) = z for z ∈ E(Y ) r {x, x } and ϕ(x) = gyx. The following
result is an immediate consequence of [10, Thm. 1.1] and [11, Thm. 7.2] (resp. [4, Cor. 3.5]).
Since we are not aware of an explicit reference, we give the details in [23].

I Proposition 35. Let G1 and G2 be reduced finite graphs of groups with finite vertex groups.
Then π1(G1, P1) ∼= π1(G2, P2) if and only if G1 can be transformed into G2 by a sequence of
slide moves.

Clearly, any sequence of slide moves can be performed in linear space. By guessing a
sequence of slide moves transforming G1 into G2, we obtain the following corollary.

I Corollary 36. Given two graph of groups G1 and G2 where all vertex groups are given as full
multiplication tables, it can be checked in NSPACE(O(n)) whether π1(G1, P1) ∼= π1(G2, P2).

In combination with Theorem 33 (and Savitch’s theorem) and Theorem 34 this gives an
algorithm to solve the isomorphism problem for virtually free groups:
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I Theorem 37. The isomorphism problem for context-free groups is in DSPACE(22O(N)).
More precisely, the input is given as two context-free grammars of size at most N which are
guaranteed to generate word problems of groups.

I Theorem 38. The isomorphism problem for virtually free groups given as a virtually free
presentation is in PSPACE.

7 Conclusion and open questions

We have shown that the isomorphism problem for virtually free groups is in PSPACE (resp.
DSPACE(22O(N))) depending on the type of input – thus, improving the previous bound
(primitive recursive) significantly. The following questions remain open:

What is the complexity of the isomorphism problem for virtually free groups given as an
arbitrary presentation?
Is the doubly exponential bound n12·2n+10 on the size of finite subgroups tight or is there
a bound 2p(n) for some polynomial p? This is closely related to another question:
What is the minimal size of a context-free grammar of the word problem of a finite group?
Can it be log log(n) where n is the size of the group?
Is there a polynomial bound on the number of slide moves necessary to transform two
graphs of groups with isomorphic fundamental groups into each? This would lead to an
NP algorithm for the isomorphism problem with virtually free presentations as input. We
conjecture, however, that this is not true.
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