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Abstract
In an onion routing protocol, messages travel through several intermediaries before arriving at
their destinations; they are wrapped in layers of encryption (hence they are called “onions”). The
goal is to make it hard to establish who sent the message. It is a practical and widespread tool
for creating anonymous channels.

For the standard adversary models – passive and active – we present practical and provably
secure onion routing protocols. Akin to Tor, in our protocols each party independently chooses
the routing paths for his onions. For security parameter λ, our differentially private solution for
the active adversary takes O(log2 λ) rounds and requires every participant to transmit O(log4 λ)
onions in every round.
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1 Introduction

Anonymous channels are a prerequisite for protecting user privacy. But how do we achieve
anonymous channels in an Internet-like network that consists of point-to-point links?

If a user Alice wishes to send a message m to a user Bob, she may begin by encrypting
her message m under Bob’s public key to obtain the ciphertext cBob = Enc(pkBob,m).
But sending cBob directly to Bob would allow an eavesdropper to observe that Alice is in
communication with Bob. So instead, Alice may designate several intermediate relays, called
“mix-nodes” (typically chosen at random) and send the ciphertext through them, “wrapped”
in several layers of encryption so that the ciphertext received by a mix-node cannot be
linked to the ciphertext sent out by the mix-node. Each node decrypts each ciphertext it
receives (“peels off” a layer of encryption) and discovers the identity of the next node and the
ciphertext to send along. This approach to hiding who is talking to whom is called “onion
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routing” [10] (sometimes it is also called “anonymous remailer” [13]) because the ciphertexts
are layered, akin to onions; from now on we will refer to such ciphertexts as “onions”.

Onion routing is attractive for several reasons: (1) simplicity: users and developers
understand how it works; the only cryptographic tool it uses is encryption; (2) fault-tolerance:
it can easily tolerate and adapt to the failure of a subset of mix-nodes; (3) scalability: its
performance remains the same even as more and more users and mix-nodes are added to
the system. As a result, onion routing is what people use to obscure their online activities.
According to current statistics published by the Tor Project, Inc., Tor is used by millions of
users every day to add privacy to their communications [14,15]1.

In spite of its attractiveness and widespread use, the security of onion routing is not
well-understood.

The definitional question – what notion of security do we want to achieve? – has been
studied [3,20,21,28]. The most desirable notion, which we will refer to as “statistical privacy”,
requires that the adversary’s view in the protocol be distributed statistically independently of
who is trying to send messages to whom2. Unfortunately, a network adversary observing the
traffic flowing out of Alice and flowing into Bob can already make inferences about whether
Alice is talking to Bob. For example, if the adversary knows that Alice is sending a movie to
someone, but there isn’t enough traffic flowing into Bob’s computer to suggest that Bob is
receiving a movie, then Bob cannot be Alice’s interlocutor. (Participants’ inputs may also
affect others’ privacy in other ways [20].)

So let us consider the setting in which, in principle, statistical privacy can be achieved:
every party wants to anonymously send and receive just one short message to and from some
other party. Let us call this “the simple input-output (I/O) setting”. In the simple I/O
setting, anonymity can be achieved even against an adversary who can observe the entire
network if there is a trusted party through whom all messages are routed. Can onion routing
that does not rely on one trusted party emulate such a trusted party in the presence of a
powerful adversary?

Specifically, we may be dealing with the network adversary that observes all network
traffic; or the stronger passive adversary that, in addition to observing network traffic, also
observes the internal states of a fraction of the network nodes; or the most realistic active
adversary that observes network traffic and also controls a fraction of the nodes. Prior work
analyzing Tor [3, 20, 21] did not consider these standard adversary models. Instead, they
focused on the adversary who was entirely absent from some regions of the network, but
resourceful adversaries (such as the NSA) and adversaries running sophisticated attacks
(such as BGP hijacking [29]) may receive the full view of the network traffic, and may also
infiltrate the collection of mix-nodes.

Surprisingly, despite its real-world importance, we were the first to consider this question.
Warm-up: An oblivious permutation algorithm between a memory-constrained client

and an untrusted storage server enables the client to permute a sequence of (encrypted) data
blocks stored on the server without the server learning anything (in the statistical sense)
about the permutation.

1 Tor stands for “the onion router”, and even though the underlying mechanics are somewhat different
from what we described above (instead of using public-key encryption, participants carry out key
exchange so that the rest of the communication can be more efficient), the underlying theory is still the
same.

2 Technically, since onion routing uses encryption, the adversary’s view cannot be statistically independent
of the input, but at best computationally independent. However, as we will see, if we work in an
idealized encryption model, such as in Canetti’s FEnc-hybrid model [7], statistical privacy makes sense.
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I Theorem 1. Any oblivious permutation algorithms can be adapted into a communications
protocol for achieving statistical privacy from the network adversary.

As an example, Ohrimenko et al. [26] presented a family of efficient oblivious permutation
algorithms. This can be adapted into a secure and “tunable” OR protocol that can trade
off between low server load and latency. Letting λ denote the security parameter, for
any B ∈ [

√
N

log2 λ
], this protocol can be set to run in O( logN

logB ) rounds with communication
complexity overhead O(B logN log2 λ

logB ) and server load O(B log2 λ).
However, to be secure from the passive adversary, we need more resources. We prove for

the first time that onion routing can provide statistical privacy from the passive adversary,
while being efficient.
1. We prove that our solution, Πp, is statistically private from any passive adversary capable

of monitoring any constant κ ∈ [0, 1) of the mix-nodes, while having communication
complexity overhead O(log2 λ), server load O(log2 λ), and latency O(log2 λ), where λ
denotes the security parameter. (See Section 4.)

However, for most realistic input settings (not constrained to the simple I/O setting),
statistical privacy is too ambitious a goal. It is not attainable even with a trusted third party.
Following recent literature [3,31], for our final result, let us not restrict users’ inputs, and
settle for a weaker notion of privacy, namely, differential privacy.

Our definition of differential privacy requires that the difference between the adversary’s
view when Alice sends a message to Bob and its view when she does not send a message
at all or sends it to Carol instead, is small. This is meaningful; showing that the protocol
achieves differential privacy gives every user a guarantee that sending her message through
does not change the adversary’s observations very much.

2. Our solution, Πa, can defend against the active adversary while having communication
complexity overhead O(log6 λ), server load O(log4 λ), and latency O(log2 λ). This is the
first provably secure peer-to-peer solution that also provides a level of robustness; unless
the adversary forces the honest players to abort the protocol run, most messages that are
not dropped by the adversary are delivered to their final destinations. (See Section 5.)

To prepare onions, we use a cryptographic scheme that is strong enough that, effectively,
the only thing that the active adversary can do with onions generated by honest parties is to
drop them (see the onion cryptosystem by Camenisch and Lysyanskaya [6] for an example
of a sufficiently strong cryptosystem). Unfortunately, even with such a scheme, it is still
tricky to protect Alice’s privacy against an adversary that targets Alice specifically. Suppose
that an adversarial Bob is expecting a message of a particular form from an anonymous
interlocutor, and wants to figure out if it was Alice or not. If the adversary succeeds in
blocking all of Alice’s onions and not too many of the onions from other parties, and then
Bob never receives the expected message, then the adversary’s hunch that it was Alice will
be confirmed.

How do we prevent this attack? For this attack to work, the adversary would have to
drop a large number of onions – there is enough cover traffic in our protocol that dropping
just a few onions does not do much. But once a large enough number of onions is dropped,
the honest mix-nodes will detect that an attack is taking place, and will shut down before
any onions are delivered to their destinations. Specifically, if enough onions survive half of
the rounds, then privacy is guaranteed through having sufficient cover; otherwise, privacy is
guaranteed because no message reaches its final destination with overwhelming probability.
So the adversary does not learn anything about the destination of Alice’s onions.

ICALP 2018
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In order to make it possible for the mix-nodes to detect that an attack is taking place, our
honest users create “checkpoint” onions. These onions don’t carry any messages; instead, they
are designed to be “verified” by a particular mix-node in a particular round. These checkpoint
onions are expected by the mix-node, so if one of them does not arrive, the mix-node in
question realizes that something is wrong. If enough checkpoint onions are missing, the
mix-node determines that an attack is underway and shuts down. Two different users, Alice
and Allison, use a PRF with a shared key (this shared key need not be pre-computed, but can
instead be derived from a discrete-log based public-key infrastructure under the decisional
Diffie-Hellman assumption) in order to determine whether Alice should create a checkpoint
onion that will mirror Allison’s checkpoint onion.

Related work

Encryption schemes that are appropriate for onion routing are known [2, 6]. Several papers
attempted to define anonymity for communications protocols and to analyze Tor [20, 21, 28].
Backes et al. [3] were the first to consider a notion inspired by differential privacy [18] but,
in analyzing Tor, they assume an adversary with only a partial view of the network. There
are also some studies on anonymity protocols, other than onion routing protocols, that were
analyzed using information-theoretic measures [1, 4, 8, 16,24]. In contrast, all the protocols
presented in this paper are provably secure against powerful adversaries that can observe all
network traffic. The system, Vuvuzela [31], assumes that all messages travel through the same
set of dedicated servers and is, therefore, impractical compared to Tor. Recently proposed
systems, Stadium [30] and Atom [25] are distributed but not robust; they rely on verifiable
shuffling to detect and abort. A variant of Atom is robust at a cost in security; it only
achieves k-anonymity [25]. In contrast, our solution for the active adversary is distributed
while maintaining low latency, and robust while being provably secure.

Achieving anonymous channels using heavier cryptographic machinery has been considered
also. One of the earliest examples is Chaum’s dining cryptographer’s protocol [9]. Rackoff and
Simon [27] use secure multiparty computation for providing security from active adversaries.
Other cryptographic tools used in constructing anonymity protocols include oblivious RAM
(ORAM) and private information retrieval (PIR) [11, 12]. Corrigan-Gibbs et al.’s Riposte
solution makes use of a global bulletin board and has a latency of a couple of days [12]. The
aforementioned Stadium [25] is another solution for a public forum. Blaze et al. [5] provided
an anonymity protocol in the wireless (rather than point-to-point) setting.

2 Preliminaries

Notation

By the notation [n], we mean the set {1, . . . , n} of integers. The output a of an algorithm A

is denoted by a← A. For a set S, we write s← S to represent that s is a uniformly random
sample from the set S and |S|, to represent its cardinality. A realization d of a distribution D
is denoted d ∼ D; by d ∼ Binomial(N, p), we mean that d is a realization of a binomial
random variable with parameters N and p. By log(n), we mean the logarithm of n, base 2;
and by ln(n), we mean the natural log of n.

A function f : N→ R is negligible in λ, written f(λ) = negl(λ), if for every polynomial p(·)
and all sufficiently large λ, f(λ) < 1/p(λ). When λ is the security parameter, we say that
an event occurs with overwhelming probability if it is the complement of an event with
probability negligible in λ. Two families of distributions {D0,λ}λ∈N and {D1,λ}λ∈N are
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statistically close if the statistical distance between D0,λ and D1,λ is negligible in λ; we
abbreviate this notion by D0 ≈s D1 when the security parameter is clear by context. We use
the standard notion of a pseudorandom function [22, Ch. 3.6].

Onion routing

Following Camenisch and Lysyanskaya’s work on cryptographic onions [6], an onion routing
scheme is a triple of algorithms: (Gen,FormOnion,ProcOnion). The algorithm, Gen, generates
a public-key infrastructure for a set of parties. The algorithm, FormOnion, forms onions; and
the algorithm, ProcOnion, processes onions.

Given a set [N ] of parties, for every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key pair
generated for party i ∈ [N ], where λ denotes the security parameter.

FormOnion takes as input: a messagem, an ordered list (P1, . . . , PL+1) of parties from [N ],
and the public-keys (pkP1 , . . . , pkPL+1

) associated with these parties, and a list (s1, . . . , sL) of
(possibly empty) strings that are nonces associated with layers of the onion. The party PL+1
is interpreted as the recipient of the message, and the list (P1, . . . , PL+1) is the routing path of
the message. The output of FormOnion is a sequence (O1, . . . , OL+1) of onions. Because it is
convenient to think of an onion as a layered encryption object, where processing an onion Or
produces the next onion Or+1, we sometimes refer to the process of revealing the next layer of
an onion as “decrypting the onion”, or “peeling the onion”. For every r ∈ [L], only party Pr
can peel onion Or to reveal the next layer, (Pr+1, Or+1, sr+1) ← ProcOnion(skPr

, Or, Pr),
of the onion containing the “peeled” onion Or+1, the “next destination” Pr+1, and the
nonce sr+1. Only the recipient PL+1 can peel the innermost onion OL+1 to reveal the
message, m← ProcOnion(skPL+1 , OL+1, PL+1).

Let O0 be an onion formed from running FormOnion(m0, P
0, pk0, s0), and let O1 be

another onion formed from running FormOnion(m1, P
1, pk1, s1). Importantly, a party that

can’t peel either onion can’t tell which input produced which onion. See Camenisch and
Lysyanskaya’s paper [6] for formal definitions.

In our protocols, a sender of a message m to a recipient j “forms an onion” by generating
nonces and running the FormOnion algorithm on the messagem, a routing path (P1, . . . , PL, j),
the public keys (pkP1 , . . . , pkPL

, pkj) associated with the parties on the routing path, and
the generated nonces; the “formed onion” is the first onion O1 from the list of outputted
onions. The sender sends O1 to the first party P1 on the routing path, who processes it and
sends the peeled onion O2 to the next destination P2, and so on, until the last onion OL+1 is
received by the recipient j, who processes it to obtain the message m.

3 Definitions

We model the network as a graph with N nodes, and we assume that these nodes are
synchronized. This way, any onion can be sent from any sender to any receiver, and also its
transmission occurs within a single round.

Every participant is a user client, and some user clients also serve as mix-nodes. In
all the definitions, the N users participating in an communications protocol Π are labeled
1, . . . , N ; and the number N of users is assumed to be polynomially-bounded in the security
parameter λ. Every input to a protocol is an N -dimensional vector. When a protocol runs on
input σ = (σ1, . . . , σN ), it means that the protocol is instantiated with each user i receiving
σi as input. M denotes the (bounded) message space. A message pair (m, j) is properly
formed if m ∈M and j ∈ [N ]. The input σi to each user i ∈ [N ] is a collection of properly
formed message pairs, where (m, j) ∈ σi means that user i intends on sending message m to
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user j. Let M(σ) denote the “messages in σ”. It is the multiset of all message pairs in σ,
that is M(σ1, . . . , σN ) =

⋃N
i=1 {(m, j) ∈ σi} .

For analyzing our solutions, it is helpful to first assume an idealized version of an
encryption scheme, in which the ciphertexts are information-theoretically unrelated to the
plaintexts that they encrypt and reveal nothing but the length of the plaintext. Obviously,
such encryption schemes do not exist computationally, but only in a hybrid model with an
oracle that realizes an ideal encryption functionality, such as that of Canetti [7]. When
used in forming onions, such an encryption scheme gives rise to onions that are information-
theoretically independent of their contents, destinations, and identities of the mix-nodes.
Our real-life proposal, of course, will use standard computationally secure encryption [17].
We discuss the implications of this in the full version of this paper.

Views and outputs

We consider the following standard adversary models, in increasing order of capabilities:
1. Network adversary. A network adversary can observe the bits flowing on every link

of the network. (Note that if the peer-to-peer links are encrypted in an idealized sense,
then the only information that the adversary can use is the volume flow.)

2. Passive adversary. In addition to the capabilities of a network adversary, a passive
adversary can monitor the internal states and operations of a constant fraction of the
parties. The adversary’s choices for which parties to monitor are made non-adaptively
over the course of the execution run.

3. Active adversary. In addition to the capabilities of a network adversary, an active
adversary can corrupt a constant fraction of the parties. The adversary’s choices for
which parties to corrupt are made non-adaptively over the course of the execution run.
The adversary can change the behavior of corrupted parties to deviate arbitrarily from
the protocol.

Let Π be a protocol, and let σ be a vector of inputs to Π. Given an adversary A, the
view V Π,A(σ) of A is its observables from participating in Π on input σ plus any randomness
used to make its decisions. With idealized secure peer-to-peer links, the observables for a
network adversary are the traffic volumes on all links; whereas for the passive and active
adversaries, the observables additionally include the internal states and computations of all
monitored / corrupted parties at all times.

Given an adversary A, the output OΠ,A(σ) = (OΠ,A
1 (σ), . . . , OΠ,A

N (σ)) of Π on input σ is
a vector of outputs for the N parties.

3.1 Privacy definitions
How do we define security for an anonymous channel? The adversary’s view also includes
the internal states of corrupted parties. In such case, we may wish to protect the identities
of honest senders from the recipients that are in cahoots with the adversary. However,
even an ideal anonymous channel cannot prevent the contents of messages (including the
volumes of messages) from providing a clue on who sent the messages; thus any “message
content” leakage should be outside the purview of an anonymous channel. To that end, we
say that an communications protocol is secure if it is difficult for the adversary to learn who
is communicating with whom, beyond what leaks from captured messages.

Below, we provide two flavors of this security notion; we will prove that our constructions
achieve either statistical privacy or (ε, δ)-differential privacy [19, Defn. 2.4] in the idealized
encryption setting.
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I Definition 2 (Statistical privacy). Let Σ∗ be the input set consisting of every input of the
form σ = ({(m1, π(1))}, . . . , {(mN , π(N))}), where π : [N ]→ [N ] is any permutation function
over the set [N ], and mi ∈M for every i ∈ [N ]. A communications protocol Π is statistically
private from every adversary from the class A if for all A ∈ A and for all σ0, σ1 ∈ Σ∗ that
differ only on the honest parties’ inputs and outputs, the adversary’s views V Π,A(σ0) and
V Π,A(σ1) are statistically indistinguishable, i.e., ∆(V Π,A(σ0), V Π,A(σ1)) = negl(λ), where
λ ∈ N denotes the security parameter, and ∆(·, ·) denotes statistical distance (i.e., total
variation distance). Π is perfectly secure if the statistical distance is zero instead.

I Definition 3 (Distance between inputs). The distance d(σ0, σ1) between two inputs σ0 =
(σ0,1, . . . , σ0,N ) and σ1 = (σ1,1, . . . , σ1,N ) is given by d(σ0, σ1) def=

∑N
i=1 |σ0,i∇σ1,i|, where

(·∇·) denotes the symmetric difference.

I Definition 4 (Neighboring inputs). Two inputs σ0 and σ1 are neighboring if d(σ0, σ1) ≤ 1.

I Definition 5 ((ε, δ)-DP [19, Defn. 2.4]). Let Σ be the set of all valid inputs. A communic-
ations protocol is (ε, δ)-DP from every adversary in the class A if for all A ∈ A, for every
neighboring inputs σ0, σ1 ∈ Σ that differ only on an honest party’s input and an honest
party’s output, and any set V of views, Pr[V Π,A(σ0) ∈ V] ≤ eε · Pr[V Π,A(σ1) ∈ V] + δ.

While differential privacy is defined with respect to neighboring inputs, it also provides (albeit
weaker) guarantees for non-neighboring inputs; it is known that the security parameters
degrade proportionally in the distance between the inputs [19].

3.2 Other performance metrics
Since message delivery cannot be guaranteed in the presence of an active adversary, we define
correctness with respect to passive adversaries.

I Definition 6 (Correctness). A communications protocol Π is correct on an input σ ∈ Σ if
for any passive adversary A, and for every recipient j ∈ [N ], the output OΠ,A

j (σ) corresponds
to the multiset of all messages for recipient j in the input vector σ. That is, OΠ,A

j (σ) =
{m |(m, j) ∈M(σ)} , where M(σ) denotes the multiset of all messages in σ.

Efficiency of OR protocols

The communication complexity blow-up of an onion routing (OR) protocol measures how
many more onion transmissions are required by the protocol, compared with transmitting
the messages in onions directly from the senders to the recipients (without passing through
intermediaries). We assume that every message m ∈M in the message spaceM “fits” into a
single onion. The communication complexity is measured in unit onions, which is appropriate
when the parties pass primarily onions to each other.

I Definition 7 (Communication complexity blow-up). The communication complexity blow-up
of an OR protocol Π is defined with respect to an input vector σ and an adversary A.
Denoted γΠ,A(σ), it is the expected ratio between the total number ΓΠ,A(σ) of onions
transmitted in protocol Π and the total number |M(σ)| of messages in the input vector.
That is, γΠ,A(σ) def= E

[
ΓΠ,A(σ)
|M(σ)|

]
.

I Definition 8 (Server load). The server load of an OR protocol Π is defined with respect to
an input vector σ and an adversary A. It is the expected number of onions processed by a
single party in a round.

ICALP 2018
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I Definition 9 (Latency). The latency of an OR protocol Π is defined with respect to an
input vector σ and an adversary A. It is the expected number of rounds in a protocol
execution.

In addition to having low (i.e., polylog in the security parameter) communication com-
plexity blow-ups, we will show that our OR protocols have low (i.e., polylog in the security
parameter) server load and low (i.e., polylog in the security parameter) latency.

4 The passive adversary

Communication patterns can trivially be hidden by sending every message to every participant
in the network, but this solution is not scalable as it requires a communication complexity
blow-up that is linear in the number of participants. Here, we prove that an OR protocol can
provide anonymity from the passive adversary while being practical with low communication
complexity and low server load.

To do this, every user must send and receive the same number of messages as any other
user; otherwise, the sender-receiver relation can leak from the differing volumes of messages
sent and received by the users. In other words, every user essentially commits to sending
a message, be it the empty message ⊥ to itself. Let Σ∗ be the set of all input vectors of
the form σ = ({(m1, π(1))}, . . . , {(mN , π(N))}), where π : [N ] → [N ] is any permutation
function over the set [N ], and m1, . . . ,mN are any messages from the message spaceM; our
solution, Πp, is presented in the setting where the input vector is constrained to Σ∗.

Let [N ] be the set of users, and S = {S1, . . . , Sn} ⊂ [N ] the set of servers. Πp uses a
secure onion routing scheme, denoted by OR = (Gen,FormOnion,ProcOnion), as a primitive
building block. For every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key pair generated for
party i, where λ denotes the security parameter.

During a setup phase, each user i ∈ [N ] creates an onion. On input σi = {(m, j)},
user i first picks a sequence T1, . . . , TL servers, where each server is chosen independently
and uniformly at random, and then forms an onion from the message m, the routing
path (T1, . . . , TL, j), the public keys (pkT1 , . . . , pkTL

, pkj) associated with the parties on the
routing path, and a list of empty nonces. At the first round of the protocol run, user i sends
the formed onion to the first hop T1 on the routing path.

After every round i ∈ [L] (but before round i+1) of the protocol run, each server processes
the onions it received at round i. At round i+ 1, the resulting peeled onions are sent to their
respective next destinations in random order. At round L+ 1, every user receives an onion
and processes it to reveal a message.

Correctness and efficiency

Clearly, Πp is correct. In Πp, N messages are transmitted in each of the L+ 1 rounds of the
protocol run. Thus, the communication complexity blow-up and the latency are both L+ 1.
The server load is N

n .

Privacy

To prove that Πp is statistically private from the passive adversary, we first prove that it is
secure from the network adversary.

I Theorem 10. Πp is statistically private from the network adversary when N
n = Ω(log2 λ),

and L = Ω(log2 λ), where λ ∈ N denotes the security parameter.
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Proof. Let N
n = α log2 λ; so that after each round, every location receives α log2 λ onions

in expectation. We recast our problem as a balls-in-bins problem, where the balls are the
onions, and the bins, the locations. At every round of the protocol, all αn log2 λ balls (i.e.,
onions) are thrown uniformly at random into n bins (i.e., each onion is routed to one of n
locations, chosen independently and uniformly at random).

Fix any target sender U , and let Xr = (Xr
1 , . . . , X

r
n) be a vector of non-negative numbers

summing to one, representing A’s best estimate for the location of U ’s ball after r rounds
(and before round r + 1); for every i ∈ [n], Xr

i is the likelihood that bin i contains U ’s ball
after r rounds. Let (Xr

fr(1), . . . , X
r
fr(n)) be the result of sorting (Xr

1 , . . . , X
r
n) in decreasing

order, where fr : [n]→ [n] is a permutation function over the set [n]. For every i ∈ [n], let
bri = fr(i) be the index of the bin with the i-th largest likelihood at round r.

W.l.o.g. we assume that n is divisible by three. We partition the bins into three groups
Gr1, Gr2, and Gr3; such that Gr1 contains all the balls in the top one-third most likely bins
br1, . . . , b

r
n
3
; Gr3 contains all the balls in the bottom one-third most likely bins br2n

3 +1, . . . , b
r
n;

and Gr2 contains all the balls in the remaining bins brn
3 +1, . . . , b

r
2n
3
.

For each j ∈ [3], let Orj ∈ Grj be a ball with the maximum likelihood of being U ’s onion
among the balls in group Grj . For any d ∈ (0, 1), let d′ = 1− 1

1+d . Let c
r
j be the bin containing

Orj . The bin crj contains at least (1− d′)α log2 λ balls (Chernoff bounds for Poisson trials).
It follows that,

Pr[Orj is U ’s onion] ≤ (1 + d)
Xr
cr

j

α log2 λ
≤ (1 + d)

Xr
(j−1)n

3 +1

α log2 λ
(1)

with overwhelming probability, where Xr
(j−1)n

3 +1
is the likelihood of the most likely bin in

group Gj .
The number of balls contained in each group Grj is arbitrarily close to the expected number

α
3 n log2 λ of balls in a group (Chernoff bounds). Thus, the most probable bin br+1

1 after the
next round receives at most (1+d)α

3 log2 λ balls from each of the three groups: Gr1, Gr2, and Gr3.
From (1), this implies that, with overwhelming probability, Xr+1

1 ≤ (1+d)2

3
∑3
j=1X

r
(j−1)n

3 +1
.

Using a symmetric argument, we can conclude that, with overwhelming probability, Xr+1
n ≥

(1−d)2

3
∑3
j=1X

r
jn
3
, where Xr

jn
3

is the likelihood of the least likely bin in group Gj .
For all r ∈ [L], define gr = Xr

1 −Xr
n as the difference in likelihoods between the most

and least likely bins at round r.

gr+1 ≤
(1 + d)2∑3

j=1X
r
(j−1)n

3 +1

3 −
(1− d)2∑3

j=1X
r
jn
3

3 ≤ 1
2 (Xr

1 −Xr
n) = gr

2 ,

where the latter inequality follows from telescopic cancelling, since Xr
n
3 +1 ≤ Xr

n
3
, and

Xr
2n
3 +1 ≤ X

r
2n
3
.

The difference gr is at least halved at every round. By round log2 λ, the difference is
negligible in λ. Thus, after traveling L random hops, each onion becomes unlinked from its
sender. Since everyone sends the same number of onions, and everyone receives the same
number of onions; it follows that the adversary’s views from any two inputs are statistically
indistinguishable.

In the proof above, the bins were partitioned into three groups at every round. By
partitioning the bins into an appropriately large constant number of groups, we can show
that Πp achieves statistical privacy after L = Ω(log2 λ) rounds. J

We are now ready to prove the main result of this section:
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I Theorem 11. Πp is statistically private from the passive adversary capable of monitoring
any constant fraction κ ∈ [0, 1) of the servers when N

n = Ω(log2 λ), and L = Ω(log2 λ), where
λ ∈ N denotes the security parameter.

Proof. We prove this by cases.
In the first case, σ1 is the same as σ0 except that the inputs of two users are swapped,

i.e., d(σ0, σ1) = 2. Using Chernoff bounds for Poisson trials, there are at least some polylog
number of rounds where the swapped onions are both routed to an honest bin (not necessarily
the same bin). From Theorem 10, after the polylog number of steps, the locations of these
two target onions are statistically indistinguishable from each other.

In the second case, d(σ0, σ1) > 2. However, the distance between σ0 and σ1 is always
polynomially bounded. By a simple hybrid argument, it follows that V Π,A(σ0) ≈s V Π,A(σ1)
from case 1. J

Remark: Protocol Πp is not secure from the active adversary. This is because, with
non-negligible probability, any honest user will choose a corrupted party as its first hop on
its onion’s routing path, in which case the adversary can drop the target user’s onion at the
first hop and observe who does not receive an onion at the last round.

5 The active adversary

We now present an OR protocol, Πa, that is secure from the active adversary. The setting for
Πa is different from that of our previous solution in a couple of important ways. Whereas Πp

is statistically private from the passive adversary, Πa is only differentially private from the
active adversary. The upside is that we are no longer constrained to operate in the simple
I/O setting; the input can be any valid input.

We let [N ] be the set of N parties participating in a protocol. Every party is both a
user and a server. As before, OR = (Gen,FormOnion,ProcOnion) is a secure onion routing
scheme; and for every i ∈ [N ], (pki, ski)← Gen(1λ) denotes the key pair generated for party i,
where λ is the security parameter. Further, we assume that every pair (i, k) ∈ [N ]2 of parties
shares a common secret key3, denoted by ski,k. F is a pseudorandom function (PRF).

We describe the protocol by the setup and routing algorithms for party i ∈ [N ]; each
honest party runs the same algorithms.

Setup

Let L = β log2 λ for some constant β > 0. During the setup phase, party i prepares a set of
onions from its input. For every message pair u = {m, j} in party i’s input, party i picks a
sequence Tu1 , . . . , TuL of parties, where each party Tu` is chosen independently and uniformly
at random, and forms an onion from the message m, the routing path (Tu1 , . . . , TuL , j), the
public keys (pkTu

1
, . . . , pkTu

L
, pkj), and a list of empty nonces.

Additionally, party i forms some dummy onions, where a dummy onion is an onion formed
using the empty message ⊥.
1: for every index (r, k) ∈ [L]× [N ]:
2: compute b← F (ski,k, session + r, 0), where session ∈ N denotes the protocol instance.
3: if b ≡ 1 – set to occur with frequency α log2 λ

N for some constant α > 0 – do:

3 In practice, the shared keys do not need to be set up in advance; they can be generated as needed from
an existing PKI, e.g., using Diffie-Hellman.
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4: choose a list T r,k = (T r,k1 , . . . , T r,kr−1, T
r,k
r+1, . . . , T

r,k
L+1) parties, where each party is

chosen independently and uniformly at random;
5: create a list sr,k = (sr,k1 , . . . , sr,k2 ) of nonces, where

sr,kr = (checkpt, F (ski,k, session + r, 1)), and all other elements of sr,k are ⊥; and
6: form a dummy onion using the message ⊥, the routing path T r,k, the public keys

associated with T r,k, and the list sr,k of nonces. end if, end for

The additional information sr,kr is embedded in only the r-th layer; no additional inform-
ation is embedded in any other layer. At the first round of the protocol run (after setup), all
formed onions are sent to their respective first hops.

Routing

If party i forms a dummy onion with nonce sr,kr embedded in the r-th layer, then it expects
to receive a symmetric dummy onion at the r-th round formed by another party k that,
when processed, reveals the same nonce sr,kr . If many checkpoint nonces are missing, then
party i knows to abort the protocol run.

After every round r ∈ [L] (but before round r + 1), party i peels the onions it received
at round r and counts the number of missing checkpoint nonces. If the count exceeds a
threshold value t, the party aborts the protocol run; otherwise, at round r + 1, the peeled
onions are sent to their next destinations in random order. After the final round, party i
outputs the set of messages revealed from processing its the onions it receives at round L+ 1.

Correctness and efficiency

Recalling that correctness is defined with respect to the passive adversary, Πa is clearly
correct. Moreover, unless an honest party aborts the protocol run, all messages that are not
dropped by the adversary are delivered to their final destinations. In Πa, the communication
complexity blow-up is O(log6 λ), since the latency is L + 1 = O(log2 λ) rounds, and the
server load is O(log4 λ).

Privacy

To prove that Πa is secure, we require that the thresholding mechanism does its job:

I Lemma 12. In Πa, if F is a random function, t = c(1 − d)(1 − κ)2α log2 λ for some
c, d ∈ (0, 1), and an honest party does not abort within the first r rounds of the protocol run,
then with overwhelming probability, at least (1 − c) of the dummy onions created between
honest parties survive at least (r − 1) rounds, even in the presence of an active adversary
non-adaptively corrupting a constant fraction κ ∈ [0, 1) of the parties.

The proof relies on a known concentration bound for the hypergeometric distribution [23]
and can be found in the full version of this paper.

I Theorem 13. If, in Πa, F is a random function, N ≥ 3
1−κ , and t = c(1−d)(1−κ)2α log2 λ

for some c, d ∈ (0, 1), then, for αβ ≥ − 36(1+ε/2)2 ln(δ/4)
(1−c)(1−κ)2ε2 , Πa is (ε, δ)-DP from the active

adversary non-adaptively corrupting a constant fraction κ ∈ [0, 1) of the parties.

Proof. The proof is by cases.
Case 1: All honest parties abort within the first half of the protocol run. With

overwhelming probability, no onion created by an honest party will be delivered to its final
destination (Chernoff bounds for Poisson trials), and so the adversary doesn’t learn anything.
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Case 2: Some honest party doesn’t abort within the first half of the protocol run. Let A
be any adversary that non-adaptively corrupts a constant κ ∈ [0, 1) of the parties. Suppose
that for every onion that survive the first half of the protocol run, a dark angel provides the
adversary A with the second half of the onion’s routing path. Further suppose that no other
onions are dropped in the second half of the protocol run. (If more onions are dropped, then
Πa is secure from the post-processing theorem for differential privacy [19, Proposition 2.1].)

For any two neighboring inputs σ0 and σ1, the only difference in the adversary’s views,
V Πa,A(σ0) and V Πa,A(σ1), is the routing of a single onion O. If there is an honest party
who does not abort within the first half of the protocol run, then from Lemma 12, some
constant fraction of the dummy onions created by the honest parties survive the first half of
the protocol run with overwhelming probability. So, from Theorem 11, the onions are no
longer linked to their senders by the end of the first half of the protocol run. Thus, the only
information that A could find useful is the volume of onions sent out by the sender Ps of the
extra onion O and the volume of onions received by the receiver Pr of O.

Let X denote the number of dummy onions created by Ps. For every (k, r) ∈ [L]× [N ], an
honest sender Ps creates a dummy onion with probability α log2 λ

N ; so X ∼ Binomial(H, p),
where H = LN , and p = α log2 λ

N .
Let Y ∼ Binomial(G, q) be another binomial random variable with parameters G =

L(1−κ)2N2

3 and q = (1−c)α log2 λ
N2 . For N ≥ 3

1−κ and sufficiently small d > 0, G ≤ (1 −
d)L

((1−κ)N−1
2

)
; thus, with overwhelming probability, Y is less than the number of dummy

onions created between honest non-Ps parties and received by Pr in the final round (Chernoff
bounds).

Let O def= N× N be the sample space for the multivariate random variable (X,Y ).
Let O1 be the event that |X−E[X]| ≤ d′E[X], and |Y −E[Y ]| ≤ d′E[Y ], where d′ = ε/2

1+ε/2 ,
E[X] = Hp is the expected value of X, and E[Y ] = Gq is the expected value of Y ; and let
Ō1 be the complement of O1.

For every (x, y) ∈ O1, we can show that

max
(

Pr[(X,Y ) = (x, y)]
Pr[(X,Y ) = (x+ 1, y + 1)] ,

Pr[(X,Y ) = (x+ 1, y + 1)]
Pr[(X,Y ) = (x, y)]

)
≤ eε. (2)

We can also show that the probability of the tail event Ō1 occurring is negligible in λ and at
most δ when αβ ≥ − 36(1+ε/2)2 ln(δ/4)

(1−c)(1−κ)2ε2 . (See the full version of this paper.)
Any event E can be decomposed into two subsets E1 and E2, such that (1) E = E1 ∪ E2,

(2) E1 ⊆ O1, and (3) E2 ⊆ Ō1. It follows that, for every event E ,

Pr[(X,Y ) ∈ E ] ≤ eε · Pr[(X + 1, Y + 1) ∈ E ] + δ, and (3)
Pr[(X + 1, Y + 1) ∈ E ] ≤ eε · Pr[(X,Y ) ∈ E ] + δ. (4)

The views V Πa,A(σ0) and V Πa,A(σ1) are the same except that O exists in one of the
views but not in the other. Thus, (3) and (4) suffice to show that for any set V of views and
for any b ∈ {0, 1}, Pr[V Πa,A

b ∈ V] ≤ eε · Pr[V Πa,A
b̄

∈ V] + δ, where b̄ = b+ 1 mod 2. J

Remark: Our protocols are for a single-pass setting, where the users send out messages
once. It is clear how our statistical privacy results would compose for the multi-pass case.
To prove that Πa also provides differential privacy in the multi-pass scenario – albeit for
degraded security parameters – we can use the k-fold composition theorem [19]; the noise
falls at a rate of the square-root of the number of runs.
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