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Abstract
In an instance of the network design problem, we are given a graph G = (V,E), an edge-cost
function c : E → R≥0, and a connectivity criterion. The goal is to find a minimum-cost subgraph
H of G that meets the connectivity requirements. An important family of this class is the
survivable network design problem (SNDP): given non-negative integers ruv for each pair u, v ∈ V ,
the solution subgraph H should contain ruv edge-disjoint paths for each pair u and v.

While this problem is known to admit good approximation algorithms in the offline case, the
problem is much harder in the online setting. Gupta, Krishnaswamy, and Ravi [14] (STOC’09)
are the first to consider the online survivable network design problem. They demonstrate an
algorithm with competitive ratio of O(k log3 n), where k = maxu,v ruv. Note that the competitive
ratio of the algorithm by Gupta et al. grows linearly in k. Since then, an important open problem
in the online community [22, 14] is whether the linear dependence on k can be reduced to a
logarithmic dependency.

Consider an online greedy algorithm that connects every demand by adding a minimum cost
set of edges to H. Surprisingly, we show that this greedy algorithm significantly improves the
competitive ratio when a congestion of 2 is allowed on the edges or when the model is stochastic.
While our algorithm is fairly simple, our analysis requires a deep understanding of k-connected
graphs. In particular, we prove that the greedy algorithm is O(log2 n log k)-competitive if one
satisfies every demand between u and v by ruv/2 edge-disjoint paths. The spirit of our result is
similar to the work of Chuzhoy and Li [7] (FOCS’12), in which the authors give a polylogarithmic
approximation algorithm for edge-disjoint paths with congestion 2.

Moreover, we study the greedy algorithm in the online stochastic setting. We consider the
i.i.d. model, where each online demand is drawn from a single probability distribution, the
unknown i.i.d. model, where every demand is drawn from a single but unknown probability
distribution, and the prophet model in which online demands are drawn from (possibly) different
probability distributions. Through a different analysis, we prove that a similar greedy algorithm
is constant competitive for the i.i.d. and the prophet models. Also, the greedy algorithm is
O(logn)-competitive for the unknown i.i.d. model, which is almost tight due to the lower bound
of [9] for single connectivity.
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1 Introduction

In an instance of the network design problem, we are given a graph G = (V,E), an edge-cost
function c : E → R≥0, and a connectivity criteria. The goal is to find a minimum-cost
subgraph H of G that satisfies the connectivity requirements. An important family of this
class is the survivable network design problem (SNDP): Given non-negative integers ruv for
each pair u, v ∈ V , the solution subgraph H should contain ruv edge-disjoint paths for each
pair u and v. SNDP arises in fault tolerance management and thus is of much interest in
design community: the connectivity of nodes u and v in H is resilient to even (ruv − 1) edge
failures. This problem clearly generalizes the Steiner tree1 and Steiner forest2 problems.

For a non-empty cut S ⊂ V , let δ(S) denote the set of edges with exactly one endpoint
in S. SNDP falls in the general class of network design problems that can be characterized
by proper cut functions. A function f : 2V → Z≥0 defined over cuts in the graph is proper,
if it is symmetric (f(S) = f(V \ S) for all S ⊂ V ) and it satisfies maximality (f(S ∪ T ) ≤
max{f(S), f(T )} for all S ∩ T = φ). For SNDP, one can choose f(S) = maxu∈S,v/∈S ruv
for every cut S. Given a proper function f over cuts in the graph, the goal is to find a
minimum-cost subgraph H such that

|E(H) ∩ δ(S)| ≥ f(S) ∀non-empty S ⊂ V .

Over the past decades, the offline SNDP and proper cut functions have been extensively
studied especially as an important testbed for primal-dual and iterative rounding methods
(see e.g. [10, 11, 13, 18, 26, 27]). In this paper, we consider SNDP in the online setting: we
are given a graph G = (V,E) and an edge-cost function c in advance. We receive an online
sequence of demands in the form of tuples (u, v, ruv) ∈ V ×V ×Z≥0. We start with an empty
subgraph H. Upon the arrival of a demand (u, v, ruv), we need to immediately augment H
such that there exist at least ruv edge-disjoint paths between u and v in H. The goal is to
minimize the cost of H. The competitive ratio of an algorithm is defined as the maximum
ratio of the cost of its output and that of an optimal offline solution, over all possible input
instances.

The online 1-connectivity problems, in which ruv ∈ {0, 1} for all pairs, have been
extensively studied in the last decades. Imase and Waxman [17] (SIAM’91) were first to
consider the edge-weighted Steiner tree problem. They used a dual-fitting argument to show
that the natural greedy algorithm is O(logn)-competitive where n denotes the number of
vertices3. Their result is asymptotically tight. Later, Berman and Coulston [3] (STOC’97) and
Awerbuch, Azar, and Bartal [2] (TCS’04) demonstrated an O(logn)-competitive algorithm for

1 In the Steiner tree problem, given a set of terminal nodes T ⊂ V , the goal is to find a minimum-cost
subgraph connecting all terminals.

2 In the Steiner forest problem, given a set of pairs of vertices si, ti ∈ V , the goal is to find a minimum-cost
subgraph in which every pair is connected.

3 In fact, the competitive ratio is O(log min{n,D}) where D is the number of demand requests. However,
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the more general Steiner forest problem by designing an elegant online primal-dual technique.
The latter also shows that the greedy algorithm achieves the competitive ratio of O(log2 n)
for Steiner forest. Indeed, due to the simplicity of greedy approaches, an important open
problem is to settle the competitiveness of the greedy algorithm for Steiner forest. In the
recent years, several primal-dual techniques are developed for solving node-weighted variants
[1, 15, 22], and prize-collecting variants [25, 16] of 1-connectivity problems.

Gupta, Krishnaswamy, and Ravi [14] (SIAM’12) were first to consider the online survivable
network design problem. They demonstrate an elegant algorithm with competitive ratio of
Õ(k log3 n), where k = maxu,v ruv. The crux of their analysis is to use distance-preserving
tree-embeddings in an online setting. More precisely, they first pick a random distance-
preserving spanning subtree T ⊆ G. They satisfy a connectivity demand ruv by iteratively
increasing the connectivity of u and v. In each iteration, they show that it is sufficient to use
cycles that are formed by an edge e = (a, b) /∈ T and the {a, b}-path in T ; hence, reducing
the number of options for satisfying a connectivity demand. This would enable them to use a
set cover approach to solve the problem in an online manner and achieve the first competitive
algorithm for online SNDP.

Single-source SNDP is a variant of SNDP where all demands share the same endpoint.
Naor, Panigrahi, and Singh [22] (FOCS’11) partially improve the results of Gupta et al. [14]
by demonstrating a bi-criteria competitive algorithm for single-source SNDP using structural
properties of a single-source optimal solution. A bi-criteria competitive ratio of (α, β) for
SNDP implies that the solution produced by the online algorithm achieves a connectivity
of b ri

β c for every demand σi and is at most a factor of α more expensive than the optimal
offline solution for connectivity of ri. The algorithm by Naor et al. achieves the competitive
ratio of (O(k logn

ε ), 2 + ε) for any ε > 0. They also study and give bi-criteria algorithms for
the vertex-connectivity problem.

The competitive ratio of algorithms by Gupta et al. and Naor et al. grow linearly in k.
This seems to be inherent to their methods since they may need to solve a set-cover-like
problem in each iteration of incrementing the connectivity of a demand; hence, losing a
polylogarithmic factor in each iteration. One would need a new approach to break the
linear dependency on k. Indeed, both factors of O(log3 n) and O(k) are not plausible in
practice, and an important open problem in the online community [22, 14] is whether the
linear dependency on k can be reduced to a logarithmic dependency.

We circumvent this problem within the class of greedy algorithms. This class has been a
center of attention in many applications due to its simplicity. We would like to note that
the previous algorithms for the problem are based on fairly complex techniques such tree-
embedding and reductions to online set cover. Despite their theoretical provable guarantees,
these approaches are not efficiently implementable for large networks and become extremely
harder to analyze when more parameters of the system are involved, e.g. degree constraints.
For these reasons, we are interested in the theory behind simple algorithms for the online
SNDP. In this paper, we study both the cases with and without the presence of priori
information about connectivity demands.

No Information Setting: for this traditional online setting, we show that the greedy
approach is promising although the classic greedy algorithm4 fails to give a competitive

to simplify the comparison with results for SNDP, in this paper we ignore the distinction between this
factor and O(log n).

4 Which augments the solution with the cheapest set of edges that satisfy full connectivity demands.
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solution. In Section 2, we give a hardness instance for the classic greedy algorithm and
present our modified versions of it which have polylogarithmic competitive ratio. In par-
ticular, we demonstrate a deterministic algorithm with a bi-criteria competitive ratio of
(O(log2 n log1+ε k), 2 + ε) for any constant ε > 0. For the single-rooted variant, the competit-
ive ratio is (O(logn log1+ε k), 2 + ε). Besides, our hardness instance shows a loss of Ω(n) on
the weight criterion if satisfying full connectivities greedily.

Partial Information Setting: one of the recent trends in the study of online problems is
to consider a stochastic model for the online demands. This, in particular, is to model the
scenarios in which the algorithm designer has sufficient data available in hand to be able
to make predictions, i.e. fit distributions, for future requests. In this paper, we consider an
online stochastic model inspired by the well-known prophet inequality problem5 in which
different demands are drawn independently from different distributions. We call it the prophet
setting not only to highlight the similarity between this online stochastic model and prophet
inequalities but also to distinguish it from other online stochastic models6.

In the second half of this paper, we study online SNDP in the prophet setting for both
cases of known and unknown distributions. For the most general case in prophet setting
in which the distributions are known and (possibly) different, we show that the classic
greedy algorithm that satisfies full connectivity results in a constant approximation solution.
Furthermore, we explore the connection between the known i.i.d. case and the general case
and present a framework that transforms an algorithm for the former into one for the latter
by loosing only a constant factor on the approximation ratio. Lastly but more interestingly,
we prove that the classic greedy algorithm is O(logn) approximation7 for the unknown i.i.d.
case8. This result shows that a simple algorithm can significantly outperform the previous
complex algorithms when the demands are drawn from the same distribution without even
learning the underlying distribution!

1.1 Our Results and Techniques

Let σi = (ui, vi, ri) denote the i-th connectivity demand. Consider the following intuitive
greedy approach. Upon the arrival of σi, we augment the solution subgraph H, by finding
the minimum-cost set of edges whose addition to H creates ri edge-disjoint paths between
ui and vi. Awerbuch et al. [2] (TCS’04) show that if all the demands require 1-connectivity
(i.e., ri = 1 for every i), this algorithm achieves a competitive ratio of O(log2 n). This leads
to a natural question that whether greedy works for higher connectivity problems as well.
However, we show an instance of online SND in Section 2, for which the greedy algorithm has
a competitive ratio of Ω(n). Indeed, the connectivity demands in the instance are either zero
or two, hence greedy is not competitive even for low connectivity demands. However, on the
positive side, we show that greedy-like algorithms do surprisingly well in both the stochastic
version of the problem and the case when a small congestion on the edges is acceptable.

5 Given n distributions D1, . . . , Dn on real numbers and an online sequence of random draws
Xi ∼ Di, we have to make an immediate and irrevocable selection Xτ that maximizes the ratio
E[Xτ ]/E[max1≤i≤n Xi].

6 Such as "the (two stage) stochastic version" of Gupta et al [14].
7 Which is almost tight
8 When unknown, it is natural to assume the distributions are i.i.d. Otherwise, the algorithm can be
easily tricked.
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1.1.1 Allowing Small Congestion
We show that a greedy algorithm does surprisingly well, if we relax the connectivity re-
quirements by a constant factor. Let α denote an arbitrary scale factor. We define an
α-scaled variant of the greedy algorithm in which the goal is to find only b ri

α c disjoint paths
between the endpoints of σi. Our main result states that the scaled greedy algorithm is
polylogarithmic competitive.

I Theorem 1. For any constant ε > 0, the (2 + ε)-scaled greedy algorithm is
(O(log2 n log1+ε k), 2 + ε)-competitive. For the single-source variant, the competitive ra-
tio is (O(logn log1+ε k), 2 + ε).
Furthermore, for uniform SNDP, 2-scaled greedy is (O(log2 n), 2)-competitive.

We start by demonstrating a deep connection between the greedy method for SNDP
and the Steiner packing problems. The Steiner packing problems are motivated by vast
applications in VLSI-layout and have been used as an algorithmic toolkit in computer science.
In the Steiner tree packing problem, we are given a graph G = (V,E) and a set S of vertices
and the goal is to find the Steiner decomposition number (SDN), the maximum number
of edge-disjoint subgraphs that each connects the vertices of S. We note that a minimal
connecting subgraph is a Steiner tree with respect to S. In the Steiner forest packing problem,
we are given a set of demand pairs ui, vi ∈ V and the goal is to find SDN, the maximum
number of edge-disjoint subgraphs that in each the demand pairs are connected.

For simplicity, let us assume we have a uniform instance. In a uniform instance, we are
given an integer k in advance and for any demand (u, v) we must k-connect u to v. Let opt
denote the optimal SNDP solution, with the Steiner decomposition number q. In Section 2,
we show that the (kq )-scaled greedy algorithm approximates opt up to logarithmic factors.
Intuitively, every forest in the Steiner forest decomposition, gives us a path to satisfy a
demand. Hence, we need to bound the overall cost of satisfying demands in all the q forests.
The crux of our analysis is then to charge the cost of the scaled greedy to that of a parallel
set of greedy algorithms that solve 1-connectivity instances on every forest. Finally, to get a
polylogarithmic competitive algorithm, we need to find a universal lower bound on the SDN
number q with respect to k.

It is shown that finding SDN is NP-hard and cannot be computed in polynomial time
unless P=NP[6] (Algorithmica’06). Given that there exist q disjoint Steiner forests connecting
a set of demands, it is straight forward to show the graph is q-connected on the demands.
Therefore, a natural upper bound on SDN is the minimum connectivity of the endpoints
of demands. For the case of spanning trees (Steiner tree with S = V (G)), it is proven that
the above upper bound also provides a good approximation guarantee for the problem. In
other words, any k-connected graph can be decomposed into k/2 edge-disjoint spanning
trees[23]. This is also followed by a matching upper bound. The problem is much subtler
when S does not encompass all vertices of the graph. The first lower bound for the Steiner
tree packing problem was achieved by Petingi and Rodriguez[24] (CON’03) who proved every
S-k-connected9 has b(2/3)(|V (G)−|S|)k/2c disjoint Steiner trees. This was later improved by
Kriesell [20] (JCT’03), Jain, Mahdian, and Salavatipour [19] (SODA’03), Lau [21] (FOCS’04),
and DeVos, McDonald, and Pivotto [8] (Man’13), the most recent of which shows for every
S-(5k + 4)-connected graph, we can find k edge-disjoint Steiner trees. However, the main
conjecture is that, similar to the case of spanning trees, every S-k-connected graph admits a
k/2-disjoint Steiner tree decomposition [20].

9 A graph which is k-connected on a set of vertices S

ICALP 2018
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For a set of demand pairs (ui, vi)’s, let T denote the set of Steiner forests that satisfy
all the demands. In the fractional Steiner forest packing problem, the output is a fractional
assignment x over T such that for every edge e,

∑
T∈T :e∈T xT is not more than one. The

goal is to find a fractional Steiner forest decomposition with the maximum total sum of
weights in x. While the term fractional Steiner forest packing is not explicitly used in the
previous work, it follows from the arguments of [4, 8] that the conjecture of Kriesell holds
for the fractional variant.

I Theorem 2 (proven in [4]). Given a set of demand pairs (ui, vi), if G is k-connected for
every demand pair, then the fractional Steiner decomposition number is at least k/2.

Indeed, in Section 2, we use a dependent rounding method to show that the connection
between SDN and the competitiveness of the greedy approach holds even for the stronger
fractional variant of SDN. Hence, Theorem 2 implies that the 2-scaled greedy algorithm,
achieves a polylogarithmic competitive ratio for the uniform SNDP. Finally, we prove that
the scaled greedy is also competitive for the non-uniform variant if one is willing to lose an
extra O(log k) factor in the competitive ratio (Theorem 1).

1.1.2 Online Stochastic SNDP
A single-source uniform instance of online SNDP is an instance in which for every demand
σi, ui = u, ri = k for some vertex u ∈ V and integer k. For a non-uniform variant, let
k = maxi ri. Let D be a given probability distribution over V . In i.i.d. SNDP, at each online
step i, a random connectivity demand σi = (u, vi, k) arrives, where vi is drawn independently
at random from distribution D. We call the problem unknown distribution SNDP if the
probability distribution D is not given in advance. Another interesting generalization of
the i.i.d. model, which we call the prophet SNDP is defined as follows. In prophet SNDP,
instead of only a single probability distribution D, we are given T probability distributions
D1, . . . , DT , such that the i-th demand is σi = (u, vi, k), where vi is drawn independently at
random from distribution Di. In all three variants of the stochastic SNDP, the competitive-
ratio is defined as the expected cost of an algorithm A over the expected cost of an optimal
offline algorithm while the distributions are chosen by an adversary. More precisely let
E[A(ω)] and E[opt(ω)] denote the expected cost of an algorithm A and the expected cost of
an optimal offline algorithm for an online scenario ω, respectively. Thus the competitive-ratio
of algorithm A is defined as follows.

cr(A) := max
D

Eω∼D[A(ω)]
Eω∼D[opt(ω)] .

We first provide an oblivious10 greedy algorithm for the i.i.d. SNDP. This algorithm
starts with a sampling of the demands and finding a 2-approximation solution for them using
the algorithm of Jain [18]. Let us call this the backbone solution. Then, to satisfy each
demand v, we simply connect it to the backbone using the cheapest set of edges and show
that this greedy approach leads to a 4-competitive solution. The oblivious algorithm for the
i.i.d. case is in fact a stepping stone that enables us to further analyze the greedy algorithm
in the unknown distribution and different known distributions (prophet) cases.

I Theorem 3. The oblivious greedy is 4-competitive algorithm for i.i.d. SNDP.

10An oblivious algorithm connects a demand through a path which is independent of the rest of the
demands
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A similar result to Theorem 3 is also given in [5].

1.1.2.1 Unknown i.i.d.

Although computing the backbone solution is impossible for the unknown i.i.d. case, we take
advantage of our analysis of the oblivious i.i.d. algorithm and show that the classic greedy
algorithm is O(logn)-approximation for unknown i.i.d. SNDP. The main idea is simple but
tricky: due to the sampling nature of the backbone solution, for every 1 ≤ k ≤ T/2 we can
think of a solution for the first k demands as a backbone solution for the next k demands.
Hence, we can exploit our analysis for the known i.i.d. case. This in conjunction with the
submodularity of Steiner networks results in the desired competitive ratio. We note that the
factor O(logn) is almost tight given the Ω( logn

log logn ) lower bound of [9] for the 1-connectivity
case.

I Theorem 4. The classic greedy algorithm is O(logn)-competitive for unknown i.i.d. SNDP.

1.1.2.2 From Oblivious i.i.d. to Prophet

We show if there exists a competitive oblivious algorithm for an online problem in i.i.d.
setting, we can obtain a competitive algorithm for the same problem in prophet setting.
Roughly speaking, we show that we can combine different distributions in the prophet setting
to obtain a single average distribution. Therefore, the i.i.d. oblivious algorithm for the
average distribution does not incur more than a constant factor to the competitive ratio.

I Theorem 5 (restated informally). Given an oblivious α-competitive online algorithm for
problem P in the i.i.d. setting, there exists an α 2e

e−1 (1 + o(1))-competitive online algorithm
for P in prophet setting.

I Corollary 6. There exists a constant competitive algorithm for prophet SNDP.

Using our framework, we can obtain competitive algorithms for many fundamental and
classical problems in prophet setting. For instance, define D1, . . . , DT be T probability
distributions over the elements of a set cover instance. Now let i-th demand of a set cover
problem be an element randomly and independently drawn from distribution Di. We call this
problem the prophet set cover problem. Similarly one may define prophet facility location
the same as the classical facility location problem, with the difference that the i-th demand
is randomly drawn from a known distribution Di. Garg et al. [9] provide oblivious online
algorithms for i.i.d. facility location and i.i.d. vertex cover. Applying the above framework
directly results in the following corollary.

I Corollary 7. There exist constant competitive algorithms for prophet vertex cover and
prophet facility location problems.

Also, Grandoni et al. [12] provide an oblivious online algorithm for i.i.d. set cover. Hence,
we have the following corollary.

I Corollary 8. There exists an O(logn)-competitive algorithm for prophet set cover.

ICALP 2018
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1.2 Further Related Work
Over the past decades, SNDP and proper cut functions have been an important testbed for
primal-dual and iterative rounding methods. Goemans and Williamson [11] (SIAM’95) were
first to consider the case of {0, 1}-proper functions. They used a primal-dual method to obtain
a 2-approximation algorithm for the problem; which later on got generalized to the celebrated
moat-growing framework for solving connectivity problems. Klein and Ravi [26] (IPCO’93)
considered the two-connectivity problem and the case of {0, 2}-proper functions. They gave
a primal-dual 3-approximation algorithm for the problem. Williamson, Goemans, Mihail,
and Vazirani [27] (Combinatorica’95) were first to consider general proper functions. They
too developed a primal-dual algorithm with approximation ratio 2k, where k = maxS f(S).
Subsequently, Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [10] (SODA’94)
presented a primal-dual 2H(k)-approximation algorithm, where H(k) is the kth harmonic
number. Finally, in his seminal work [18] (Combinatorica’01), Jain introduced the iterative
rounding method by developing a 2-approximation algorithm for network design problems
characterized by proper cut functions11. We refer the reader to [13] for a survey of results
for (offline) network design problems.

2 Uniform SNDP

In this section we consider the uniform-connectivity version of the online survivable Steiner
network design problem, in which all connectivity requirements are equal to a given number.
For this problem we first give a very simple algorithm and then analyze it using Steiner
packing tools. Further in the paper, we explain how to generalize our algorithm to make it
work for inputs with non-uniform connectivity requirements.

In the online uniform-connectivity survivable Steiner forest problem we are given an
offline graph G = 〈V (G), E(G)〉, an integer k, and an online stream of demands S =
(s1, t1), (s2, t2), . . .. Every time a demand (si, ti) arrives we have to add some of the edges
of G to our current solution H in order to make k edge-disjoint paths between si and ti in
H. The online uniform-connectivity survivable Steiner tree problem is a special case of the
forest problem in which the second endpoints of all demands are fixed at some vertex root.
The objective of the problems is to minimize the cost of the selected subgraph H according
to a given cost function.

A simple approach to solve these problems is to choose edges based on the following
greedy method: for every demand add a minimum-cost subset of edges that satisfies the
k-connectivity between its endpoints. In this section we show that this algorithm is not
competitive to the optimum offline solution. This is shown by Lemma 14 in which we give
an instance graph and a series of demands for which the greedy algorithm gives a solution of
cost Ω(n) times the cost of the optimum offline solution.

However, we show a modified version of the greedy algorithm can be a viable approach
for these problems if we lose some factor on the connectivity requirement. This can be done
by satisfying half of the required connectivity. In particular, for every demand we add a
minimum-cost subset of the edges that makes the current solution (k/2)-connected between
the endpoints of that demand. Let us call this algorithm GA. In this section we show the cost
of the edges GA selects is poly-logarithmically competitive to the optimum offline solution
that satisfies k-connectivity for every demand.

11 Indeed, the results in [10] and [18] applies to the more general class of weakly or skew supermodular cut
functions.
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Algorithm 1: 2-scaled Greedy
1 Input: A graph G, an integer k, and an online stream of demands (s1, t1), (s2, t2), . . ..
2 Output: A set H of edges such that every given demand (si, ti) is connected through
k edge-disjoint paths in H.

3 Offline Process:
1: Initialize H = ∅.
Online Scheme; assuming a demand (si, ti) is arrived:
1: Pi = A minimum-cost subset of edges, such that si is k/2-connected to ti in
H ∪ Pi.

2: Update H = H ∪ Pi.

I Theorem 9. For the online survivable Steiner forest problem, the output of GA satisfies
(k/2)-connectivity for every demand and its cost is O(log2 n)-competitive.

I Theorem 10. For the online survivable Steiner tree problem, the output of GA satisfies
(k/2)-connectivity for every demand and its cost is O(logn)-competitive.

As a direct consequence of adding edges according to GA, the (k/2)-connectivity is
guaranteed for every demand. To complete the proof of the theorems, we need to show that
the cost of the solution produced by GA is upper bounded by a factor of O(log2 n) for forests,
and O(logn) for trees.

Let c : E(G) → R≥0 be the cost function on the edges. With some abuse of notation,
we also use c(Y ) for a subset of edges Y ⊆ E(G) as the sum of the cost of the edges in Y .
With this notation we can say at every step i GA chooses a subset of edges Pi that satisfies
(k/2)-connectivity and minimizes c(Pi).

The overall idea of the proofs is as follows. We take an optimum solution and charge
every c(Pi) to c(Li), where Li is a set of edges chosen from the optimum solution. The way
we define Li’s allows them to have overlapping edges, but we show that their total cost is
limited by the desired poly-logarithmic factor of the cost of the optimum solution. More
specifically, we charge c(Li) to the cost of a fractional routing Qi between si and ti. Every
Qi is itself a linear combination of routes on different Steiner forests of the optimum solution.
The coefficients of this linear combination are achieved from an Steiner forest packing of the
optimum solution. In this fashion, the problem boils down to finding an upper bound for the
total cost of routings on each Steiner forest. In the following we formally prove every step in
detail.

Let OPT be an optimum offline solution of the survivable Steiner forest problem on
graph G, a stream of demands S, and the connectivity requirement k. Now we define Li for
every demand i as a minimum-cost set of edges in OPT that is (k/2)-connected between si
and ti assuming the endpoints of every previous demand are contracted. In particular, we
call a set of edges a pseudo-path between si and ti if there is a path between these vertices
using those edges and the edges in {(sj , tj)|∀j < i}. A pseudo-routing between si and ti is
hence a set of pseudo-paths between si and ti. With these definitions, Li is a minimum-cost
pseudo-routing between si and ti in OPT that consists of k/2 pseudo-paths. The following
lemma shows the relation between the costs of Li and Pi.

I Lemma 11. For every demand i, c(Pi) ≤ c(Li).

Proof. Every time a demand i arrives, GA finds a set Pi with the minimum cost and adds
it to H in order to satisfy (k/2)-connectivity between si and ti. Note that the endpoints
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of every demand j < i are already connected with k/2 disjoint paths in H. Besides, Li
is a pseudo-routing between si and ti which is (k/2)-connected between si and ti if we
contract the two endpoints of every previous demand. Therefore adding Li to H makes H
(k/2)-connected between si and ti. Since GA finds a minimum-cost set of edges that satisfies
(k/2)-connectivity in H, c(Pi) never exceeds c(Li). J

In the remaining we show how to charge the total cost of Li’s to c(OPT ). As a property
of an optimum solution, OPT contains k edge-disjoint paths between the endpoints of every
demand (si, ti) ∈ S. Therefore, according to Theorem 2 there exists a solution for the
fractional Steiner forest packing of OPT and demand set S with value at least k/2. Let
z be a Steiner forest packing of OPT with value k/2. In the following we use FS(OPT )
to denote the collection of all Steiner forests of OPT with respect to demand set S. The
theorem states there exists a vector z such that∑

F∈FS(OPT )

zF = k/2 (1)

∑
F∈FS(OPT ):e∈F

zF ≤ 1 ∀e ∈ OPT . (2)

Moreover, the following inequality holds for the summation of the costs of these forests.

I Lemma 12.
∑
F∈FS(OPT ) zF .c(F ) ≤ c(OPT ) .

Proof. For each forest we replace its cost with the sum of the cost of its edges.∑
F∈FS(OPT )

zF .c(F ) =
∑

F∈FS(OPT )

zF
∑
e∈F

c(e)

=
∑

e∈OPT

∑
F∈FS(OPT ):e∈F

zF c(e)

=
∑

e∈OPT
c(e)

( ∑
F∈FS(OPT ):e∈F

zF

)
.

Now we use the fact that the load on every edge in the fractional Steiner forest packing is no
more than 1.∑

F∈FS(OPT )

zF .c(F ) ≤
∑

e∈OPT
c(e) Inequality (2)

= c(OPT ) .

J

Now for every forest F ∈ FS(OPT ) and every demand i we define Qi(F ) as a minimum-
cost pseudo-path between si to ti in F . This definition allows using an edge e ∈ F multiple
times in Qi(F ) of different demands. Note that Qi(F ) can be considered as a fractional
pseudo-routing between si and ti with value zF . Considering this for all forests in FS(OPT ),
we achieve a fractional pseudo-routing between si and ti that has a value of k/2. We use Qi
to refer to this fractional pseudo-routing and c(Qi) =

∑
F∈FS(OPT ) zF .c(Qi(F )) to refer to

its cost.
For every demand i we have mentioned two different pseudo-routings between si and ti

in OPT with value k/2: an integral pseudo-routing Li, and a fractional pseudo-routing Qi.
The following lemma shows the relation between the costs of these two.
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I Lemma 13. For every Li and Qi pseudo-paths defined as above, we have:

c(Li) ≤ c(Qi)

In the interest of space, we defer the proof of Lemma 13 to the full-version of the paper.
Finally for a particular F ∈ FS(OPT ) we show an upper bound for the sum of c(Qi(F ))

over all demands. First let us take a closer look at every Qi(F ) on a particular F . Every time
a new demand (si, ti) arrives Qi(F ) connects its endpoints through a pseudo-path in F . This
can be generalized to an algorithm for the online single-connectivity Steiner forest problem
that greedily connects the endpoints of every demand by fully buying a minimum-cost
pseudo-path between si and ti. This is very similar to the greedy algorithm proposed in [2].
Theorem 2.1 of that paper states that their greedy algorithm is O(log2 n)-competitive. The
statement of that theorem is slightly different than Claim 2.1, but the same proof verifies
the correctness of the claim.

I Claim 2.1. For the online Steiner forest problem, the algorithm that connects every demand
with a minimum-cost pseudo-path is O(log2 n)-competitive.

Now we are ready to wrap up the proof of Theorem 9.

Proof of Theorem 9. Let ALG denote the output of GA. The cost of ALG is the sum of
the cost of Pi’s over all demands. Therefore, by applying lemmas 11 and 13 we have

c(ALG) =
∑

(si,ti)∈S

c(Pi)

≤
∑

(si,ti)∈S

c(Li) Lemma 11

≤
∑

(si,ti)∈S

c(Qi) Lemma 13

Now we replace c(Qi) with the weighted sum of c(Qi(F ))’s with respect to z.

c(ALG) ≤
∑

(si,ti)∈S

∑
F∈FS(OPT )

zF .c(Qi(F ))

=
∑

F∈FS(OPT )

zF
∑

(si,ti)∈S

c(Qi(F )) (3)

By applying Claim 2.1 to Inequality (3) we achieve an O(log2 n)-competitive ratio for GA.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(log2 n)c(F )

)
Claim 2.1

≤ O(log2 n)
∑

F∈FS(OPT )

zF .c(F )

≤ O(log2 n)c(OPT ) . Lemma 12

J

Finally, for the survivable Steiner tree problem we show that GA is O(logn)-competitive.
In other words, if one endpoint of every demand is fixed at the root, then the output of GA
is at most O(logn) times the optimum offline solution. To complete the proof of Theorem
10 we use a result from [22]. In that paper the authors prove a competitive ratio of O(logn)
for the algorithm which satisfies every demand using a minimum-cost pseudo-path. The
following claim is a restatement of their result.
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I Claim 2.2. For the online Steiner tree problem, the algorithm that satisfies each demand
with a minimum-cost pseudo-path is O(logn)-competitive.

of Theorem 10. Note that the tree problem is a special case of the forest problem, hence
Inequality (3) also holds for it. By applying Claim 2.2 to that inequality the proof is complete.

c(ALG) ≤
∑

F∈FS(OPT )

zF

(
O(logn)c(F )

)
Claim 2.2

≤ O(logn)
∑

F∈FS(OPT )

zF .c(F )

≤ O(logn)c(OPT ) . Lemma 12

J

The following Lemma shows that there exists a graph G and a sequence of demands σ
such that Greedy algorithm performs Ω(n) times worse than the optimal solution.

I Lemma 14. The competitive ratio of the greedy algorithm for survivable Steiner network
design is Ω(n), even if every connectivity requirement is exactly 2.

Proof. First we provide an online instance of the survivable network design problem where
every connectivity requirement is exactly 2 and show the greedy algorithm performs poorly
in comparison with the optimal solution. We construct a graph G of size n as follows. For
each 1 ≤ i ≤ n− 1, there exist two undirected edges from node i to node i+ 1 of weights 1
and n− i− ε for some small ε > 0. There exist two undirected edges from node n to node 1
with weights 1 and n− ε. Thus G is the union of two cycles of size n. We construct a set of
demands S as follows. For each 1 ≤ i ≤ n− 1, let (i, i+ 1) be the i’th demand in S.

Now we analyze the output of the greedy algorithm for the input instance. We claim that
after satisfying demand i the greedy algorithm has selected both edges between j and j + 1
for every j ≤ i. We prove this claim by induction. For the base case, when the first demand
arrives the greedy algorithm chooses both edges between nodes 1 and 2 which costs n− ε.
Now assume the greedy algorithm has selected every edge between j and j + 1 for every
j < i before the arrival of the i’th demand. When the i’th demand arrives, the set of edges
with minimum cost that provides two edge-disjoint paths from i to i+ 1 is the two edges
between i and i+ 1 which costs n− i− ε. Thus the total cost of the greedy algorithm at the
end is n(n−1)

2 − εn. However, the optimum offline solution chooses the cycle containing all
edges of weight 1. Thus the competitive ratio of the greedy algorithm is Ω(n). J
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