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Abstract
Solving large-scale graph problems is a fundamental task in many real-world applications, and
it is an increasingly important problem in data analysis. Despite the large effort in designing
scalable graph algorithms, many classic graph problems lack algorithms that require only a
sublinear number of machines and space in the input size. Specifically when the input graph is
large and sparse, which is indeed the case for many real-world graphs, it becomes impossible to
store and access all the vertices in one machine – something that is often taken for granted in
designing algorithms for massive graphs. The theoretical model that we consider is the Massively
Parallel Communications (MPC) model which is a popular theoretical model of MapReduce-like
systems. In this paper, we give an algorithmic framework to adapt a large family of dynamic
programs on MPC. We start by introducing two classes of dynamic programming problems,
namely “(poly log)-expressible” and “linear-expressible” problems. We show that both classes
can be solved efficiently using a sublinear number of machines and a sublinear memory per
machine. To achieve this result, we introduce a series of techniques that can be plugged together.
To illustrate the generality of our framework, we implement in O(log n) rounds of MPC, the
dynamic programming solution of fundamental problems such as minimum bisection, k-spanning
tree, maximum independent set, longest path, etc., when the input graph is a tree.
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1 Introduction

With the inevitable growth of the size of datasets to analyze, the rapid advance of distributed
computing infrastructure and platforms (such as MapReduce, Spark [11], Hadoop [10],
Flume [6], etc.), the need for developing better distributed algorithms is felt far and wide
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nowadays. The past decade has seen a lot of progress in studying important computer
science problems in the large-scale setting, which led to either adapting the sequential
algorithms to modern parallel settings or at times designing from scratch algorithms for these
problems [1, 2, 4, 7, 5]. Despite this trend, we still have limited theoretical understanding of
the status of several fundamental problems when it comes to designing large-scale algorithms.
In fact, even simple and widely used techniques such as the greedy approach or dynamic
programming seem to suffer from an inherent sequentiality that makes them difficult to adapt
in parallel or distributed settings on the aforementioned platforms. Finding methods to run
generic greedy algorithms or dynamic programming algorithms on MapReduce, for instance,
has broad applications. This is the main goal of this paper.

We consider the Massively Parallel Communication (MPC) model among previously
studied MapReduce-like models [9, 8, 3]. Let n denote the input size and let m denote the
number of available machines which is given in the input. At each round, every machine can
use a space of size s = Õ(n/m) and run an algorithm that is preferably linear time (but at
most polynomial time) in the size of its memory. Machines may only communicate between
the rounds, and no machine can receive or send more data than its memory.

In this paper, we give an algorithmic framework that could be used to simulate many
natural dynamic programs on trees. Indeed we formulate the properties that make a dynamic
program (on trees) amenable to our techniques. These properties, we show, are natural and
are satisfied by many known algorithms for fundamental optimization problems. To illustrate
the generality of our framework, we design O(log n) round algorithms for well-studied graph
problems on trees, such as, minimum bisection, minimum k-spanning tree, maximum weighted
matching, etc.

2 Main Results

We introduce a class of dynamic programming problems which we call f -expressible problems.
Here, f is a function and we get classes such as (poly log)-expressible problems or linear-
expressible problems. Roughly speaking, f is proportional to the amount of data that each
node of the tree stores in the dynamic program. Thus, linear-expressible problems are
generally harder to solve than (poly log)-expressible problems.

(poly log)-Expressible Problems. Many natural problems can be shown to be (poly log)-
expressible. For example, the following graph problems are all (poly log)-expressible if
defined on trees: maximum (weighted) matching, vertex cover, maximum independent set,
dominating set, longest path, etc. Intuitively, the dynamic programming solution of each
of these problems, for any vertex v, computes at most a constant number of values. Our
first result is to show that every (poly log)-expressible problem can be efficiently solved in
MPC. As a corollary of that, all the aforementioned problems can be solved efficiently on
trees using the optimal total space of Õ(n).

I Theorem 1. For any given m, there exists an algorithm that w.h.p. solves any (poly log)-
expressible problem in O(log n) rounds ofMPC using m machines while each machine uses
a space of size at most Õ(n/m).

Proof sketch. The first problem in solving dynamic programs on trees is that there is
no guarantee on the depth of the tree. If the given tree has only logarithmic depth one
can obtain a logarithmic round algorithm by simulating a bottom-up dynamic program in
parallel, where nodes at the same level are handled in the same round simultaneously. This is
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reminiscent of certain parallel algorithms whose number of rounds depends on the diameter
of the graph. Unfortunately the input tree might be quite unbalanced, with superlogarithmic
depth. An extreme case is a path of length n. In this case we can partition the path into
equal pieces (despite not knowing a priori the depth of each particular node), handling each
piece independently, and then stitching the results together. Complications arise, because
the subproblems are not completely independent. Things become more nuanced when the
input tree is not simply a path. To resolve this issue, we adopt a celebrated tree contraction
method of parallel computing to our model. Roughly speaking, the algorithm decomposes
the tree into pieces of size at most Õ(m) (i.e., we can fit each component completely on one
machine), with small interdependence. Omitting minor technical details, the latter property
allows us to almost independently solve the subproblems on different machines. This results
in a partial solution that is significantly smaller than the whole subtree; therefore, we can
send all these partial solutions to a master machine in the next round and merge them.

Linear-Expressible Problems. Although many natural problems are indeed (poly log)-
expressible, there are instances that are not. Consider for example the minimum bisection
problem. In the natural dynamic programming solution of this problem, for a subtree T of
size nT , we store O(nT ) different values. That is, for any i ∈ [nT ], the dynamic program
stores the weight of the optimal coloring that assigns blue to i vertices and red to the rest
of nT − i vertices. This problem is not necessarily (poly log)-expressible unless we find
another problem specific dynamic programming solution for it. However, it can be shown
that minimum bisection, as well as many other natural problems, including k-spanning-tree,
k-center, k-median, etc., are linear-expressible. It is notoriously more difficult to solve
linear-expressible problems. However, using a slightly more total memory, we show that it is
still possible to obtain the same result.

I Theorem 2 (Main Result). For any given m, there exists an algorithm that w.h.p. solves
any linear-expressible problem that is splittable in O(log n) rounds ofMPC using m machines
that each uses a space of size Õ(n4/3/m)

Proof sketch. Recall that linear-expressibility implies that the dynamic programming data
on each node, can be as large as the size of its subtree (i.e., even up to O(n)). Therefore,
even by using the tree decomposition technique, the partial solution that is computed for
each component of the tree can be linear in its size. This means that the idea of sending all
these partial data to one master machine, which worked for (poly log)-expressible problems,
does not work here since when aggregated, they take as much space as the original input.
Therefore we have to distribute the merging step among the machines.

Assume for now that each component that is obtained by the tree decomposition algorithm
is contracted into a node and call this contracted tree. The tree decomposition algorithm has
no guarantee on the depth of the contracted tree and it can be super-logarithmic; therefore
a simple bottom-up merging procedure does not work. However, it is guaranteed that the
contracted tree itself (i.e., when the components are contracted) can be stored in one machine.
Using this, we send the contracted tree to a machine and design a merging schedule that
informs each component about the round at which it has to be merged with each of its
neighbours. The merging schedule ensures that after O(log n) phases, all the components are
merged together. The merging schedule also guarantees that the number of neighbours of
the components, after any number of merging phases, remains constant. This is essential to
allow (almost) independent merging for many linear-expressible problems such as minimum
bisection. Observe that after a few rounds, the merged components grow to have up to
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Ω(n) nodes and even the partial data of one component cannot be stored in one machine.
Therefore, even merging the partial data of two components has to be distributed among the
machines. For this to be possible, we use a splitting technique of independent interest that
requires a further splittability property on linear-expressible problems. Indeed we show that
the aforementioned linear-expressible problems have the splittability property, and therefore
Theorem 2 implies they can also be solved in O(log n) rounds ofMPC.
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