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—— Abstract

The k-FEven Set problem is a parameterized variant of the Minimum Distance Problem of linear

codes over Fy, which can be stated as follows: given a generator matrix A and an integer k,
determine whether the code generated by A has distance at most k. Here, k is the parameter of
the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been
repeatedly raised in literature and has earned its place in Downey and Fellows’ book (2013) as
one of the “most infamous” open problems in the field of Parameterized Complexity.

In this work, we show that k-Even Set does not admit FPT algorithms under the (randomized)
Gap Exponential Time Hypothesis (Gap-ETH) [Dinur’16, Manurangsi-Raghavendra’16]. In fact,
our result rules out not only exact FPT algorithms, but also any constant factor FPT approxim-
ation algorithms for the problem. Furthermore, our result holds even under the following weaker
assumption, which is also known as the Parameterized Inapprozimability Hypothesis (PIH) [Lok-
shtanov et al’17]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP instance
from one which is only 0.99-satisfiable (where the parameter is the number of variables).

We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given
a lattice whose basis vectors are integral and an integer k, and the goal is to determine whether
the norm of the shortest vector (in the ¢, norm for some fixed p) is at most k. Similar to k-Even
Set, this problem is also a long-standing open problem in the field of Parameterized Complexity.
We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant
factor, assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be
amplified to any constant.
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1 Introduction

The study of error-correcting codes gives rise to many computational problems. One of the
most fundamental among these is the problem of computing the distance of a linear code. In
this problem, which is commonly referred to as the Minimum Distance Problem (MDP), we
are given as input a generator matrix A € Fy*™ of a binary? linear code and an integer k.
The goal is to determine whether the code has distance at most k. Recall that the distance
of a linear code is o ;LlierIlF;” ||Ax||p where | - ||o denotes the 0-norm (aka the Hamming norm).

The study of MDP dates back to at least 1978 when Berlekamp et al. [8] conjectured that
it is NP-hard. This conjecture remained open for almost two decades until it was positively
resolved by Vardy [46, 47]. Later, Dumer et al. [22] strengthened this result by showing that
even approximately computing the minimum distance of the code is hard. Specifically, they
showed that, unless NP = RP, no polynomial time algorithm can distinguish between a code
with distance at most k£ and one whose distance is greater than - k for any constant v > 1.
Furthermore, under stronger assumptions, the ratio can be improved to superconstants and
even almost polynomial. Dumer et al.’s result has been subsequently derandomized by Cheng
and Wan [11] and further simplified by Austrin and Khot [6] and Micciancio [36].

While the aforementioned results rule out not only efficient algorithms but also efficient
approximation algorithms for MDP, there is another popular technique in coping with
NP-hardness of problems which is not yet ruled out by the known results: parameterization.

In parameterized problems, part of the input is an integer designated as the parameter
of the problem, and the goal is now not to find a polynomial time algorithm but a fized
parameter tractable (FPT) algorithm. This is an algorithm whose running time can be upper
bounded by some (computable) function of the parameter in addition to some polynomial
in the input length. Specifically, for MDP, its parameterized variant® k-MDP has k as the
parameter and the question is to decide if the code generated by A has distance at most k
in time T'(k) - poly(mn) where T' can be any computable function that depends only on k.

The parameterized complexity of k-MDP was first posed as an open problem by Downey
et al. [21]%7 who showed that parameterized variants of several other coding-theoretic
problems, including the Nearest Codeword Problem and the Nearest Vector Problem® which
we will discuss in more details in Section 1.1.1, are W[1]-hard. Thereby, assuming the
widely believed W[1] # FPT hypothesis, these problems are rendered intractable from the
parameterized perspective. Unfortunately, Downey et al. fell short of proving such hardness
for k-MDP and left it as an open problem:

Note that MDP can be defined over larger fields as well; we discuss more about this in Section 3.
Throughout Sections 1 and 2, for a computational problem II, we denote its parameterized variant by
k-1I, where k is the parameter of the problem.

k-MDP is formulated differently in [21] where the input is the parity-check matrix instead of the generator
matrix. Since we can efficiently compute one given the other, the two formulations are equivalent.
k-MDP is commonly referred to as k-Even Set due to its graph theoretic interpretation (see [21]).
The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.
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» Open Question 1. Is k-MDP fized parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this
day, despite receiving significant attention from the community. In particular, the problem
was listed as an open question in the seminal book of Downey and Fellows [19] and has been
reiterated numerous times over the years [15, 23, 25, 20, 12, 14, 9, 13, 31]. In fact, in their
second book [20], Downey and Fellows even include this problem as one of the six “most
infamous” open questions in the area of Parameterized Complexity.

Another question posted in [21] that remains open is the parameterized Shortest Vector
Problem (k-SVP) in lattices. The input of k-SVP (in the ¢, norm) is an integer k¥ € N and a
matrix A € Z"*™ representing the basis of a lattice, and we want to determine whether the
shortest (non-zero) vector in the lattice has length at most k, i.e., whether Oyén;ie% Ax]l, < k.

Again, k is the parameter of the problem. Note that, similar to [21], we require the basis of
the lattice to be integer-valued, which is sometimes not enforced in the literature (e.g. [45, 3]).
This is because, if A is allowed to have rational entries, then parameterization is meaningless
because we can simply scale A down by a large multiplicative factor.

The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied,
motivated partly due to the fact that both algorithms and hardness results for the problem
have numerous applications. Specifically, the celebrated LLL algorithm for SVP [28] can be
used to factor rational polynomials, and to solve integer programming (parameterized by the
number of unknowns) [29] and many other computational number-theoretic problems (see
e.g. [38]). Furthermore, the hardness of (approximating) SVP has been used as the basis of
several cryptographic constructions [3, 4, 39, 40]. Since these topics are out of scope of our
paper, we refer the interested readers to the following surveys for more details: [41, 37, 38, 42].

On the computational hardness side of the problem, van Emde-Boas [45] was the first
to show that SVP is NP-hard for the ¢,, norm, but left open the question of whether SVP
on the ¢, norm for 1 < p < oo is NP-hard. It was not until a decade and a half later that
Ajtai [2] showed, under a randomized reduction, that SVP for the 5 norm is also NP-hard;
in fact, Ajtai’s hardness result holds not only for exact algorithms but also for (1 + o(1))-
approximation algorithms as well. The o(1) term in the inapproximability ratio was then
improved in a subsequent work of Cai and Nerurkar [10]. Finally, Micciancio [33] managed to
achieve a factor that is bounded away from one. Specifically, Micciancio [33] showed (again
under randomized reductions) that SVP on the ¢, norm is NP-hard to approximate within
a factor of {/2 for every 1 < p < co. Khot [27] later improved the ratio to any constant,
and even to 2°¢"*7° (") ynder a stronger assumption. Haviv and Regev [26] subsequently
simplified the gap amplification step of Khot and, in the process, improved the ratio to almost
polynomial. We note that both Khot’s and Haviv-Regev reductions are also randomized and
it is still open to find a deterministic NP-hardness reduction for SVP in the ¢, norms for
1 < p < oo (see [35]); we emphasize here that such a reduction is not known even for the
exact (not approximate) version of the problem. For the ¢, norm, the following stronger
result due to Dinur is known [16]: SVP in the ¢, norm is NP-hard to approximate to within
nSt1/loglogn) factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [7, 1]. The authors of [7, 1]
showed that SVP for any ¢, norm cannot be solved (or even approximated to some constant
strictly greater than one) in subexponential time assuming the existence of a certain family
of lattices? and the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [17, 32],
which states that no randomized subexponential time algorithm can distinguish between a
satisfiable 3CNF formula and one which is only 0.99-satisfiable.

9 This assumption is needed only for p < 2. For p > 2, their hardness is conditional only on Gap-ETH.
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As with MDP, Downey et al. [21] were the first to question the parameterized tractability
of k-SVP (for the ¢5 norm). Once again, Downey and Fellows included k-SVP as one of the
open problems in both of their books [19, 20], albeit, in their second book, k-SVP was in the
“tough customers” list instead of the “most infamous” list that k-MDP belonged to. And
again, as with Open Question 1, this question remains unresolved to this day:

» Open Question 2. Is k-SVP fized parameter tractable?

1.1 Our Results

The main result of this paper is a resolution to the previously mentioned Open Ques-
tion 1 and 2: more specifically, we prove that k&-MDP and k-SVP (on £, norm for any p > 1)
do not admit any FPT algorithm, assuming the aforementioned (randomized) Gap-ETH. In
fact, our result is slightly stronger than stated here in a couple of ways:
We rule out not only exact FPT algorithms but also FPT approximation algorithms.
Second, our result works even under the so-called Parameterized Inapproximability Hypo-
thesis (PIH) [30], which asserts that no (randomized) FPT algorithm!® can distinguish
between a satisfiable 2CSP instance and one which is only 0.99-satisfiable, where the
parameter is the number of variables. It is known that Gap-ETH implies PTH.

With this in mind, we can state our results starting with the parameterized intractability
of k-MDP, more concretely (but still informally), as follows:

» Theorem 3. Assuming PIH, for any v > 1 and any computable function T, no T(k) -
poly(nm)-time algorithm, on input (A, k) € F3*™ x N, can distinguish between

the distance of the code generated by A is at most k, and,

the distance of the code generated by A is more than v - k.

While our above result rules out FPT approximation algorithms with any constant
approximation ratio for k-MDP, we can only prove FPT inapproximability with some
constant ratio for k-SVP in ¢, norm for p > 1, with the exception of p = 2 for which the
ratio in our result can be amplified to any constant. These are stated more precisely below.

» Theorem 4. For any p > 1, there exists a constant vy, > 1 such that, assuming PIH, for
any computable function T, no T(k) - poly(nm)-time algorithm, on input (A, k) € Z"*™ x N,
can distinguish between

the £, norm of the shortest vector of the lattice generated by A is < k, and,

the £, norm of the shortest vector of the lattice generated by A is > vy, - k.

» Theorem 5. Assuming PIH, for any computable function T and constant v > 1, no
T (k) - poly(nm)-time algorithm, on input (A, k) € Z™*™ x N, can distinguish between

the €5 norm of the shortest vector of the lattice generated by A is < k, and,

the {5 norm of the shortest vector of the lattice generated by A is > v - k.

We remark that our results do not yield hardness for SVP in the ¢; norm and this remains
an interesting open question. Section 3 contains discussion on this problem. We also note
that, for Theorem 4 and onwards, we are only concerned with p # oo; this is because, for
p = 00, the problem is NP-hard to approximate even when k =1 [45]!

10 The original formulation from [30] is slightly different in that it states that the problem is W([1]-hard.
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1.1.1 Nearest Codeword Problem and Nearest Vector Problem

As we shall see in Section 2, our proof proceeds by first showing FPT hardness of approxima-
tion of the non-homogeneous variants of k-MDP and k-SVP called the k-Nearest Codeword
Problem (k-NCP) and the k-Nearest Vector Problem (k-NVP) respectively. For both k-NCP
and k-NVP, we are given a target vector y (in Fy and Z", respectively) in addition to (A, k),
and the goal is to find whether there is any x (in F5* and Z™, respectively) such that the
(Hamming and ¢, respectively) norm of Ax —y is at most k.

As an intermediate step of our proof, we show that the k-NCP and k-NVP problems are
hard to approximate!!. This should be compared to [21], in which the authors show that
both problems are W[1]-hard. The distinction here is that our result rules out not only exact
algorithms but also approximation algorithms, at the expense of the stronger assumption
than that of [21]. Indeed, if one could somehow show that k-NCP and k-NVP are W[1]-hard
to approximate (to some constant strictly greater than one), then our reduction would imply
WI(1]-hardness of k-MDP and k-SVP (under randomized reductions). Unfortunately, no such
WI(1]-hardness of approximation of k-NCP and k-NVP is known yet.

We end this section by remarking that the computational complexity of both (non-
parameterized) NCP and NVP are also thoroughly studied (see e.g. [34, 18, 44, 5, 24] in
addition to the references for MDP and SVP), and indeed the inapproximability results of
these two problems form the basis of hardness of approximation for MDP and SVP.

2 Proof Overview

In the non-parameterized setting, all the aforementioned inapproximability results for both
MDP and SVP are shown in two steps: first, one proves the inapproximability of their
inhomogeneous counterparts (i.e. NCP and NVP), and then reduces them to MDP and SVP.
We follow this general outline. That is, we first show, via relatively simple reductions from
PIH, that both k-NCP and k-NVP are hard to approximate. Then, we reduce k-NCP and
k-NVP to k-MDP and k-SVP respectively. In this second step, we employ Dumer et al.’s
reduction [22] for k-MDP and Khot’s reduction [27] for k-SVP. While the latter works almost
immediately in the parameterized regime, there are several technical challenges in adapting
Dumer et al.’s reduction to our setting. The remainder of this section is devoted to presenting
all of our reductions and to highlight such technical challenges and changes in comparison
with the non-parameterized settings.

The starting point of all the hardness results in this paper is Gap-ETH. As mentioned
earlier, it is well-known that Gap-ETH implies PIH, i.e., PIH is weaker than Gap-ETH.
Hence, for the rest of this section, we may start from PIH instead of Gap-ETH.

2.1 Parameterized Intractability of k-MDP from PIH

We start this subsection by describing the Dumer et al.’s (henceforth DMS) reduction [22].
The starting point of the DMS reduction is the NP-hardness of approximating NCP to any
constant factor [5]. Let us recall that in NCP we are given a matrix A € F5*™, an integer
k, and a target vector y € F5, and the goal is to determine whether there is any x € F3
such that ||[Ax — yl|o is at most k. Arora et al. [5] shows that for any constant v > 1, it is
NP-hard to distinguish the case when there exists x such that ||Ax — y|lo < k from the case
when for all x we have that |Ax — yl|lo > vk. Dumer et al. introduce the notion of “locally

1 While our k-MDP result only applies for F2, our result for k-NCP holds for any finite field Fy too.
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dense codes” to enable a gadget reduction from NCP to MDP. Informally, a locally dense
code is a linear code L with minimum distance d admitting a ball B(s,r) centered at s of
radius'? r < d and containing a large (exponential in the dimension) number of codewords.
Moreover, for the gadget reduction to MDP to go through, we require not only the knowledge
of the code, but also the center s and a linear transformation T used to index the codewords
in B(s,r), i.e., T maps B(s,r) N L onto a smaller subspace. Given an instance (A,y, k) of
NCP, and a locally dense code (L, T,s) whose parameters (such as dimension and distance)
we will fix later, Dumer et al. build the following matrix:

[ATL —y|
: : a copies
ATL -y
B= A0V Y , 1)
: : b copies
L L 7S_

where a,b are some appropriately chosen positive integers. If there exists x such that
|Ax — yl|lo < k then consider z’ such that TLz' = x (we choose the parameters of (L, T,s),
in particular the dimensions of L and T such that all these computations are valid). Let
z =12 o1 (where o is used to denote the concatenation operation on vectors), and note that
IBz|lo = a||Ax —y|lo + b|Lz — s|lo < ak + br. In other words, if (A,y, k) is a YES instance
of NCP then (B, ak + br) is a YES instance of MDP. On the other hand if we had that for
all x, the norm of ||Ax — y/||o is more than vk for some constant'® v > 2, then it is possible
to show that for all z we have that |Bzl|/o > +'(ak + br) for any 7' < 2%% The proof is
based on a case analysis of the last coordinate of z. If that coordinate is 0, then, since L is
a code of distance d, we have |Bzl||o > bd > «'(ak + br); if that coordinate is 1, then the
assumption that (A,y, k) is a NO instance of NCP implies that ||Bz||o > avk > +'(ak + br).
Note that this gives an inapproximability for MDP of ratio «' < 2; this gap is then further
amplified by a simple tensoring procedure.

We note that Dumer et al. were not able to find a deterministic construction of locally
dense codes with all of the above described properties. Specifically, they gave an efficient
deterministic construction of L, but only gave a randomized algorithm that finds T and s
w.h.p. Therefore, their hardness result relies on the assumption that NP % RP, instead of
the more standard NP # P assumption. Later, Cheng and Wan [11] and Micciancio [36]
provided constructions for such (families of) locally dense codes with an explicit center, and
thus showed the constant ratio inapproximability of MDP under the assumption of NP # P.

Trying to follow the DMS reduction in order to show the parameterized intractability of
k-MDP, we face the following three immediate obstacles. First, there is no inapproximability
result known for k-NCP, for any constant factor greater than 1. Note that to use the DMS
reduction, we need the parameterized inapproximability of k-NCP, for an approximation
factor which is greater than two. Second, the construction of locally dense codes of Dumer
et al. only works when the distance is linear in the block length (which is a function of the
size of the input). However, we need codes whose distance are bounded above by a function
of the parameter of the problem (and does not depend on the input size). This is because

2 Note that for the ball to contain more than a single codeword, we must have r > dfa.
13 Note that in the described reduction, we need the inapproximability of NCP to a factor greater than
two, even to just reduce to the ezact version of MDP.
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the DMS reduction converts an instance (A,y, k) of k-NCP to an instance (B, ak + br) of
(ak + br)-MDP, and for this reduction to be an FPT reduction, we need ak + br to be a
function only depending on k, i.e., d, the distance of the code L (which is at most 2r), must
be a function only of k. Third, recall that the DMS reduction needs to identify the vectors
in the ball B(s,r) N L with all the potential solutions of k&-NCP. Notice that the number of
vectors in the ball is at most (nm)?(") but the number of potential solutions of k-NCP is
exponential in m (i.e. all x € F3"). However, this is impossible since r < d is bounded above
by a function of k!

We overcome the first obstacle by proving the constant inapproximability of k-NCP
under PIH. Specifically, assuming PIH, we first show the parameterized inapproximability of
k-NCP for some constant factor greater than 1, and then boost the gap using a composition
operator (self-recursively). Note that in order to follow the DMS reduction, we need the
inapproximability of k-NCP for some constant factor greater than 2; in other words, the
gap amplification for k-NCP is necessary, even if we are not interested in showing the
inapproximability of k-NCP for all constant factors.

We overcome the third obstacle by introducing an intermediate problem in the DMS
reduction, which we call the sparse nearest codeword problem. The sparse nearest codeword
problem is a promise problem which differs from k-NCP in only one way: in the YES case, we
want to find x € B(0, k) (rather than from the entire space F3*), such that ||[Ax —y|lo < k.
In other words, we only allow sparse x as a solution. We show that k-NCP can be reduced
to the sparse nearest codeword problem.

Finally, we overcome the second obstacle by introducing a variant of locally dense codes,
which we call sparse covering codes. Roughly speaking, we show that any code which nears
the Hamming bound (aka sphere-packing bound) in the high rate regime is a sparse covering
code. Then we follow the DMS reduction with the new ingredient of sparse covering codes
(replacing locally dense codes) to reduce the sparse nearest codeword problem to k-MDP.

We note that overcoming the second and third obstacles are our main technical contribu-
tions. Specifically, our result on sparse covering codes might be of independent interest.

The full reduction goes through several intermediate steps, which we will describe in more
detail in the coming paragraphs. Throughout this section, for any gap problem, if we do not
specify the gap in the subscript, then it implies that the gap can be any arbitrary constant.
For every € > 0, we denote by GAP2CSP, the gap problem where we have to determine if a
given 2CSP instance T', i.e., a graph G = (V, E) and a set of constraints {Cuyy }(u,0)cr Over
an alphabet set X, has an assignment to its vertices that satisfies all the constraints or if
every assignment violates more than e fraction of the constraints. Here each Cy, is simply
the set of all (oy,0,) € ¥ x ¥ that satisfy the constraint. The parameter of the problem
is |V|. PIH asserts that there exists some constant € > 0 such that no randomized FPT
algorithm can solve GAP2CSP..

Reducing Gap2CSP_ to GapMLD,. We start by showing the parameterized inapproxim-
ability of k-NCP for some constant ratio. Instead of working with k-NCP, we work with its
equivalent formulation (by converting the generator matrix given as input into a parity-check
matrix) which in the literature is referred to as the maximum likelihood decoding problem™®.
We define the gap version of this problem (i.e., a promise problem), denoted by GAPMLD,,
(for some constant v > 1) as follows: on input (A,y, k), distinguish between the YES case

4 The two formulations are equivalent but we use different names for them to avoid confusion when we
use Sparse Nearest Codeword Problem later on.
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where there exists x € B(0, k) such that Ax =y, and the NO case where for all x € B(0,~vk)
we have Ax # y. It is good to keep in mind that this is equivalent to asking whether there
exist k£ columns of A whose sum is equal to y or whether any < vk columns of A do not
sum up toy.

Next, we sketch the reduction from an instance (G = (V,E),X,{Cu}(u,v)er) of
GaAP2CSP. to an instance (A,y,k) of GAPMLD,,./3. The matrix A has |V|[3| +

> |Cuy| columns and |V| + |E| + 2|E||X| rows. The first |V||3] columns of A are
u,v)EE
{abélled with (u,0,) € V x X, and the remaining columns are labeled by (e, 0y, 0,) where
e = (u,v) € E and (0y,0,) € Cyyp.

Before we continue with our description of A, let us note that, in the YES case where
there is a satisfying assignment ¢ : V' — X, our intended solution for our GAPMLD instance
is to pick the (u, ¢(u))-column for every u € V and the ((u,v), ¢(u), ¢(v))-column for every
(u,v) € E. Notice that |V| + |E| columns are picked, and indeed we set k = |V| + |E|.
Moreover, we set the first |V| 4 |E| coordinates of y to be one and the rest to be zero.

We also identify the first |V| rows of A with u € V, the next |E| rows with e € E, and
the remaining 2|E||X| rows with (e, 0,b) € E' x ¥ x {0,1}. Figure 1 provides an illustration
of A. The rows of A will be designed to serve the following purposes: the first |V| rows will
ensure that, for each v € V, at least one column of the form (u,-) is picked, the next |E|
rows will ensure that, for each e € E, at least one column of the form (e, -,-) is picked, and
finally the remaining 2|E||X| rows will “check” that the constraint is indeed satisfied.

Specifically, each u-row for u € V has only |X| non-zero entries: those in column (u,0,,)
for all o, € X. Since our target vector y has y, = 1, we indeed have that at least one column
of the form (u,-) must be selected for every u € V. Similarly, each e-row for e = (u,v) € E
has |Cyy| non-zero entries: those in column (e, oy, 0,) for all (oy,0,) € Cy,. Again, these
make sure that at least one column of the form (e, -, ) must be picked for every e € E.

Finally, we will define the entries of the last 2| F||X| rows. To do so, let us recall that,
in the YES case, we pick the columns (u, ¢(u)) for all w € V and ((u,v), ¢(u), ¢(v)) for all
(u,v) € E. The goal of these remaining rows is to not only accept such a solution but also
prevent any solution that picks columns (u,0y,), (v, 0,) and ((u,v), o), 0l) where o, # o,
or o, # o). In other words, these rows serve as a “consistency checker” of the solution.
Specifically, the |X| rows of the form ((u,v),-,0) will force o, and o/, to be equal whereas the
|2] rows of the form ((u,v),-, 1) will force o, and o), to be equal. For convenience, we will
only define the entries for the ((u,v), -, 0)-rows; the ((u,v),-, 1)-rows can be defined similarly.
Each ((u,v),0,0)-row has only one non-zero entry within the first |V||X| rows: the one in
the (u,o0)-column. For the remaining columns, the entry in the ((u,v),o,0)-row and the
(e, 00, 01)-column is non-zero if and only if e = (u,v) and g = 0.

It should be clear from the definition that our intended solution for the YES case is
indeed a valid solution because, for each ((u,v), ¢(u),0)-row, the two non-zero entries from
the columns (u, ¢(u)) and ((u,v), d(u), ¢(v)) cancel each other out. On the other hand, for
the NO case, the main observation is that, for each edge (u,v) € E, if only one column of
the form (u,-), one of the form (v,-) and one of the form ((u,v),,-) are picked, then the
assignment corresponding to the picked columns satisfy the constraint C,. In particular, it
is easy to argue that, if we can pick (14 ¢/3)(|V|+ |E|) columns that sum up to y, then all
but ¢ fraction of all constraints fulfill the previous conditions, meaning that we can find an
assignment that satisfies 1 — ¢ fraction of the constraints. Thus, we have also proved the
soundness of the reduction.

Gap Amplification for GapMLD,,. We have sketched the proof of the hardness of GAPMLD,,
for some constant v > 1, assuming PTH. The next step is to amplify the gap and arrive at the
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Figure 1 An illustration of A and y. All entries in shaded areas are zero. Each row in the brick
pattern area has one non-zero entry in that area, and each column in the star pattern area has two
non-zero entries in the area. Finally, each column has one non-zero entry in the lines pattern areas.

hardness for GAPMLD, for every constant v > 1. To do so, we define an operator & over
every pair of instances of GAPMLD., with the following property: if two instances (A1, y1, k1)
and (Asg,y2,ks) are both YES instances, then (A,y, k) := (A1,y1,k1) @ (Aa,y2,k2) is a
YES instance for GAPMLD.,, where 7' ~ v2. On the other hand, if both (A1, y1,k;) and
(Ag,y2, ko) are NO instances, then (A,y, k) is a NO instance for GAPMLD,. Hence, we
can apply @ repeatedly to the GAPMLD,, instance from the previous step (with itself) and
amplify the gap to be any arbitrarily large constant. The definition of &, while simple, is
slightly tedious to formalize and we defer it to the full version of this paper.

Reducing GapMLD to GapSNC. Now we introduce the sparse nearest codeword problem
that we had briefly talked about. We define the gap version of this problem, denoted by
GAPSNC, (for some constant v > 1) as follows: on input (A’,y’, k), distinguish between the
YES case where there exists x € B(0, k) such that ||A’x —y'||o < k, and the NO case where
for all x (in the entire space), we have ||[A’x — y’|lo > vk. We highlight that the difference
between k-NCP and GAPSNC,, is that, in the YES case of the latter, we are promised that
x € B(0,k). We sketch below the reduction from an instance (A,y, k) of GAPMLD, to an
instance (A’,y’, k) of GAPSNC,. Given Ay, let

A y

A — : vk + 1 copies v = vk + 1 copies
A y
Id 0

Notice that for any x (in the entire space), we have [|[A’x—y’|lo = (vk+1)||Ax—y|lo+]/%]0,
and thus both the completeness and soundness of the reduction easily follow.

Sparse Covering Codes. Before reducing GAPSNC to GAPMDP; g9 we need to introduce
in more detail the notion of sparse covering codes that we previously mentioned.

A sparse covering code (SCC) is a linear code L of block length h with minimum distance
d admitting a ball B(s,r) centered at s of radius r < d and containing a large (i.e., about
h¥, where k = Q(d)) number of codewords. Moreover, for our reduction to go through, we
require not only L and s, but also a linear transformation T used to index the codewords in
B(s,r), i.e., T(B(s,r) N L) needs to contains the ball of radius &k centered at 0. Similar to
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how Dumer et al. only managed to show the probabilistic existence of the center, we too
cannot find an explicit s for the SCCs that we construct, but instead provide an efficiently
samplable distribution such that, for any x € B(0, k), the probability (over s sampled from
the distribution) that x € T(B(s,r) NL) is non-negligible. This is what makes our reduction
from GAPSNC to GAPMDP1 g9 randomized. We will not elaborate more on this issue here,
but focus on the (probabilistic) construction of such codes. For convenience, we will assume
throughout this overview that k is much smaller than d, i.e., £ = 0.001d.

Recall that the Hamming (aka sphere-packing) bound states that a binary code of block
length h and distance d can have at most 2"/|B3(0, [952])| codewords, because the balls of
radius [%] centered at the codewords do not intersect. Our main theorem regarding the
existence of SCC is that any code that is “near” the Hamming bound is a sparse covering
code with r = f%} +k =~ 0.501d. Here “near” means that the number of codewords must be
at least 2 /|B(0, [451])| divided by f(d) - poly(h) for some function f that depends only on
d. (Equivalently, this means that the message length must be at least h — (d/2 + O(1))logh.)
The BCH code over binary alphabet is an example of a code satisfying such a condition.

While we do not sketch the proof of the theorem here, we note that the idea is to set T
and the distribution over s in such a way that the probability that x lies in T(B(s,r) N L) is
at least the probability that a random point in F? is within distance r — k = [%] of some
codeword. The latter is non-negligible since L nears the Hamming bound.

Finally, we remark that our proof here is completely different from the DMS proof of
existence of locally dense codes. Specifically, DMS uses a group-theoretic argument to show
that, when a code exceeds the Gilbert—Varshamov bound, there must be a center s such
that B(s,r) contains many codewords. Then, they pick a random linear map T and show
that w.h.p. T(B(s,r) NL) is the entire space. Note that this second step does not use any
structure of B(s,r) N L; their argument is simply that, for any sufficiently large subset Y, a
random linear map T maps Y to an entire space w.h.p. However, such an argument fails
for us, due to the fact that, in SCC, we want to cover a ball B(0, k) rather than the whole
space, and it is not hard to see that there are very large subsets Y such that no linear map
T satisfies T(Y) 2 B(0,k). A simple example of this is when Y is a subspace of F; in this

case, even when Y is as large as exp(poly(h)), no desired linear map T exists.

Reducing GapSNC,, to GapMDP; g9. Next, we prove the hardness of GAPMDP./ for all
constant v € [1,2), assuming PIH, using a gadget constructed from sparse covering codes.
Given an instance (A,y, k) of GAPSNC,, for some v > 2 and a SCC (L, T, s) we build an
instance (B, ak+br) of GAPMDP,, where 7' < 22%7, by following the DMS reduction (which
was previously described; see (1)). If ||Ax — yljo < k for some x € B(0, k), then consider
z’ such that TLz = x; the existence of such a z’ is guaranteed by the definition of SCC.
Consider z = z’ o 1, and note that ||Bz||o = al|Ax — y||o + b||Lz — s|jo < ak + br. In other
words, as in the DMS reduction, if (A,y, k) is a YES instance of NCP, then (B, ak + br)
is a YES instance of MDP. On the other hand, similar to the DMS reduction, if we had
that [|[Ax —yllo > 7k for all x, then ||Bz|lo > 7'(ak + br) for all z. The parameterized
intractability of GAPMDP g9 is obtained by setting v = 400 in the above reduction.

Gap Amplification for GapMDP, 9. It is well known that the distance of the tensor
product of two linear codes is the product of the distances of the individual codes. We can
use this proposition to reduce GAPMDP,, to GAPMDP.» for any v > 1. In particular, we
can obtain, for any constant v, the intractability of GAPMDP,, starting from GAPMDP g9
by just recursively tensoring the input code [log; g9 ] times.
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2.2 Parameterized Intractability of k-SVP from PIH

We begin this subsection by briefly describing Khot’s reduction. The starting point of Khot’s
reduction is the NP-hardness of approximating NVP in every £, norm to any constant factor
[5]. Let us recall that in NVP in the £, norm, we are given a matrix A € Z"*™, an integer
k, and a target vector y € Z™, and the goal is to determine whether there is any x € Z™
such that|[Ax — y|| is at most k. The result of Arora et al. [5] states that for any constant
v = 1, it is NP-hard to distinguish the case when there exists x such that |[Ax —y[|h <k
from the case when for all (integral) x we have that |Ax — y|[} > vk. Khot’s reduction
proceeds in four steps. First, he constructs a gadget lattice called the “BCH Lattice” using
BCH Codes. Next, he reduces NVP in the ¢, norm (where p € (1,00)) to an instance of
SVP on an intermediate lattice by using the BCH Lattice. This intermediate lattice has the
following property. For any YES instance of NVP the intermediate lattice contains multiple
copies of the witness of the YES instance; For any NO instance of NVP there are also many
“annoying vectors” (but far less than the total number of YES instance witnesses) which
look like witnesses of a YES instance. However, since the annoying vectors are outnumbered,
Khot reduces this intermediate lattice to a proper SVP instance, by randomly picking a
sub-lattice via a random homogeneous linear constraint on the coordinates of the lattice
vectors (this annihilates all the annoying vectors while retaining at least one witness for the
YES instance). Thus he obtains some constant factor hardness for SVP. Finally, the gap is
amplified via “Augmented Tensor Product”. It is important to note that Khot’s reduction is
randomized, and thus his result of inapproximability of SVP is based on NP # RP.

Trying to follow Khot’s reduction, in order to show the parameterized intractability
of k-SVP, we face only one obstacle: there is no known parameterized inapproximability
of k-NVP for any constant factor greater than 1. Let us denote by GAPNVP,,,, for any
constant n > 1 the gap version of k-NVP in the ¢, norm. Recall that in GAPNVP,, we
are given a matrix A € Z"*"™ a target vector y € Z", and a parameter k, and we would
like to distinguish the case when there exists x € Z™ such that [|[Ax — y||} < k from the
case when for all x € Z™ we have that [|[Ax —y|} > nk. As it turns out, our reduction from
GAP2CSP. to GAPSNC (with arbitrary constant gap), having GAPMLD, and GAPMLD
as intermediate steps, can be translated to show the constant inapproximability of GAPNVP,,
(under PIH) in a straightforward manner. We will not elaborate on this part of the proof
any further here and defer the detailed proof to the full version of this paper.

Once we have established the constant parameterized inapproximability of GAPNVP,,, we
follow Khot’s reduction, and everything goes through as it is to establish the inapproximability
for some factor of the gap version of k-SVP in the £, norm (where p € (1,00)). We denote by
GAPSVP,, , for some constant y(p) > 1 the gap version of k-SVP (in the £, norm) where we
are given a matrix B € Z"*™ and a parameter k € N, and we would like to distinguish the
case when there exists a non-zero x € Z™ such that ||Bx|[|} < & from the case when for all
x € Z™ \ {0} we have that ||Bx|[} > ~vk. Let v* := 21,,2717“
obtain the inapproximability of GAPSVP,, .~ (under PIH). To obtain inapproximability of
GAPSVP;, for all constant ratios, we use the tensor product of lattices; the argument needed
here is slightly more subtle than the similar step in MDP because, unlike distances of codes,
the ¢ norm of the shortest vector of the tensor product of two lattices is not necessarily
equal to the product of the ¢ norm of the shortest vector of each lattice. Fortunately, Khot’s
construction is tailored so that the resulting lattice is “well-behaved” under tensoring [27, 26],
and gap amplification is indeed possible for such instances.

Following Khot’s reduction, we
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We remark here that, for the (non-parameterized) inapproximability of SVP, the tech-
niques of [27, 26] allow one to successfully amplify gaps for £, norm where p # 2 as well.
Unfortunately, this does not work in our settings, as it requires the distance k to be dependent
on nm which is not possible for us since k is the parameter of the problem.

3 Discussion and Open Questions

While our results give an evidence of intractability of k-MDP and k-SVP, there are still many
questions that remain open. First and foremost, it is still open whether the hardness of
both problems can be based on more standard assumptions, such as ETH or W[1] # FPT.
On this front, we would like to note that the only reason we need PIH is to arrive at the
inapproximability of the non-homogeneous variants of the problems, which is needed for us
even if we want to only rule out exact FPT algorithms for k-MDP and k-SVP. Hence, if one
could prove the hardness of approximation for these problems under weaker assumptions,
then the inapproximability of k&-MDP and k-SVP would still follow.

Another obvious question is whether k-SVP in the ¢; norm is in FPT. Khot’s reduction
unfortunately does not work for ¢;; indeed, in [26], the hardness of approximating SVP in
the 1 norm is shown by embedding SVP instances in {5 to instances in ¢; using an earlier
result of Regev and Rosen [43]. This embedding inherently does not work in the FPT regime
either, as it produces non-integral lattices. Similar issue applies to an earlier hardness result
for SVP on ¢; of [33], whose reduction produces irrational bases.

An additional question regarding k-SVP is whether we can prove inapproximability for
every constant factor for p # 2. As described earlier, the gap amplification techniques
of [27, 26] require the distance k to be dependent on the input size nm, and hence are not
applicable for us. To the best of our knowledge, it is unknown whether this dependency is
necessary. If they are indeed required, it would be interesting to come up with different gap
amplification techniques that also work for our settings.

Furthermore, k-MDP can be defined for linear codes in I, for any larger field of size p > 2
as well. It turns out that our result does not rule out FPT algorithms for &-MDP over F,
with p > 2. The issue here is that, in our proof of existence of Sparse Covering Codes, we
need the co-dimension of the code to be small compared to its distance. In particular, the
co-dimension h — m has to be at most (d/2+ O(1))log, h where d is the distance. While the
BCH code over binary alphabet satisfies this property, we are not aware of any linear codes
that satisfy this for larger fields. It is an intriguing open question to determine whether such
codes exist, or whether the reduction can be made to work without existence of such codes.

Since the current reductions for both k-MDP and k-SVP are randomized, it is still an
intriguing open question whether we can find deterministic reductions from PIH to these
problems. As stated in the introduction, even in the non-parameterized setting, NP-hardness
of SVP through deterministic reductions is not known. On the other hand, MDP is known
to be NP-hard even to approximate under deterministic reductions; in fact, even the DMS
reduction [22] that we employ can be derandomized, as long as one has a deterministic
construction for Locally Dense Codes [11, 36]. In our settings, if one can deterministically
construct Sparse Covering Codes, we would also get a deterministic reduction for k-MDP.

Finally, another interesting research direction is to prove more concrete running time
lower bounds for k-MDP and k-SVP. For instance, k-MDP can be trivially solved (exactly) in
NO&) time, where N = nm is the input size. On the other hand, while not stated explicitly
above, our proof implies that k-MDP cannot be solved (or even approximated) in time N°(*°)
for some small constant ¢ > 0, assuming Gap-ETH. Would it be possible to improve this
running time lower bound to the tight N°*)? Similar questions also apply to k-SVP.



A. Bhattacharyya, S. Ghoshal, Karthik C. S., and P. Manurangsi

—— References

1

10

11

12

13

14

15

16

17

Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s)eth hardness of SVP. CoRR,
abs/1712.00942, 2017. arXiv:1712.00942.

Miklés Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-Fighth Annual ACM Symposium on the Theory of Comput-
ing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99-108, 1996. doi:
10.1145/237814.237838.

Miklés Ajtai. The shortest vector problem in ¢ is NP-hard for randomized reductions
(extended abstract). In STOC, pages 10-19, 1998. doi:10.1145/276698.276705.

Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In STOC, pages 284-293, 1997. doi:10.1145/258533.258604.

Sanjeev Arora, Laszl6 Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317—
331, 1997. doi:10.1006/jcss.1997.1472.

Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum
distance of code problem. IEEE Trans. Information Theory, 60(10):6636—6645, 2014. doi:
10.1109/TIT.2014.2340869.

Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative
hardness of CVP. In FOCS, pages 13-24, 2017. doi:10.1109/F0CS.2017.11.

Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans. Information Theory,
24(3):384-386, 1978. doi:10.1109/TIT.1978.1055873.

Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the hard-
ness of learning sparse parities. In ESA, pages 11:1-11:17, 2016. doi:10.4230/LIPIcs.
ESA.2016.11.

Jin-yi Cai and Ajay Nerurkar. Approximating the SVP to within a factor (14 1/dim®) is
NP-hard under randomized reductions. J. Comput. Syst. Sci., 59(2):221-239, 1999. doi:
10.1006/jcss.1999.1649.

Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance

problem. IEEE Trans. Information Theory, 58(11):6935-6941, 2012. doi:10.1109/TIT.

2012.2209198.

Marek Cygan, Fedor Fomin, Bart MP Jansen, Lukasz Kowalik, Daniel Lokshtanov, Déaniel
Marx, Marcin Pilipczuk, and Saket Saurabh. Open problems for fpt school 2014, 2014.
Marek Cygan, Fedor V. Fomin, Danny Hermelin, and Magnus Wahlstrom. Randomization
in parameterized complexity (dagstuhl seminar 17041). Dagstuhl Reports, 7(1):103-128,
2017. doi:10.4230/DagRep.7.1.103.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

Erik D. Demaine, Gregory Gutin, Daniel Marx, and Ulrike Stege. 07281 open prob-
lems — structure theory and FPT algorithmes for graphs, digraphs and hypergraphs.
In Erik D. Demaine, Gregory Z. Gutin, Déaniel Marx, and Ulrike Stege, editors, Struc-
ture Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, 08.07. -
13.07.2007, volume 07281 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. URL:
http://drops.dagstuhl.de/opus/volltexte/2007/1254.

Irit Dinur. Approximating SVP ., to within almost-polynomial factors is NP-hard. Theor.
Comput. Sci., 285(1):55-71, 2002. doi:10.1016/S0304-3975(01)00290-0.

Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
ECCC, 23:128, 2016. URL: http://eccc.hpi-web.de/report/2016/128.

17:13

ICALP 2018


http://arxiv.org/abs/1712.00942
http://dx.doi.org/10.1145/237814.237838
http://dx.doi.org/10.1145/237814.237838
http://dx.doi.org/10.1145/276698.276705
http://dx.doi.org/10.1145/258533.258604
http://dx.doi.org/10.1006/jcss.1997.1472
http://dx.doi.org/10.1109/TIT.2014.2340869
http://dx.doi.org/10.1109/TIT.2014.2340869
http://dx.doi.org/10.1109/FOCS.2017.11
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.11
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.11
http://dx.doi.org/10.1006/jcss.1999.1649
http://dx.doi.org/10.1006/jcss.1999.1649
http://dx.doi.org/10.1109/TIT.2012.2209198
http://dx.doi.org/10.1109/TIT.2012.2209198
http://dx.doi.org/10.4230/DagRep.7.1.103
http://dx.doi.org/10.1007/978-3-319-21275-3
http://drops.dagstuhl.de/opus/volltexte/2007/1254
http://dx.doi.org/10.1016/S0304-3975(01)00290-0
http://eccc.hpi-web.de/report/2016/128

17:14

Parameterized Intractability of Even Set and Shortest Vector Problem

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2):205-243, 2003. doi:10.1007/
s00493-003-0019-y.

Rodney G. Downey and Michael R. Fellows. Parameterized Complezity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The para-
metrized complexity of some fundamental problems in coding theory. SIAM J. Comput.,
29(2):545-570, 1999. doi:10.1137/80097539797323571.

Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the min-
imum distance of a linear code. IEEE Trans. Information Theory, 49(1):22-37, 2003.
doi:10.1109/TIT.2002.806118.

Michael R. Fellows, Jiong Guo, Daniel Marx, and Saket Saurabh. Data reduction and
problem kernels (dagstuhl seminar 12241). Dagstuhl Reports, 2(6):26-50, 2012. doi:10.
4230/DagRep.2.6.26.

Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process.
Lett., 71(2):55-61, 1999. doi:10.1016/50020-0190(99)00083-6.

Petr A. Golovach, Jan Kratochvil, and Ondrej Suchy. Parameterized complexity of
generalized domination problems. Discrete Applied Mathematics, 160(6):780-792, 2012.
doi:10.1016/j.dam.2010.11.012.

Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In STOC, pages 469-477, 2007. doi:10.1145/1250790.
1250859.

Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789-808, 2005.

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Lészl6 Lovész. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515-534, 1982.

Hendrik Willem Lenstra. Integer programming with a fixed number of variables. Math.
Oper. Res., 8(4):538-548, 1983. doi:10.1287/moor.8.4.538.

Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. CoRR, abs/1704.04249,
2017. arXiv:1704.04249.

Ruhollah Majdoddin. Parameterized complexity of CSP for infinite constraint languages.
CoRR, abs/1706.10153, 2017. arXiv:1706.10153.

Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. CoRR, abs/1607.02986, 2016. URL: http://arxiv.org/
abs/1607.02986, arXiv:1607.02986.

Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. SIAM J. Comput., 30(6):2008-2035, 2000. doi:10.1137/S0097539700373039.
Daniele Micciancio. The hardness of the closest vector problem with preprocessing. IFEE
Trans. Information Theory, 47(3):1212-1215, 2001. doi:10.1109/18.915688.

Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a determ-
inistic reduction. Theory of Computing, 8(1):487-512, 2012. doi:10.4086/toc.2012.
v008a022.

Daniele Micciancio. Locally dense codes. In CCC, pages 90-97. IEEE Computer Society,
2014. doi:10.1109/CCC.2014.17.

Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryp-
tography, pages 147-191. Springer, 2009.


http://dx.doi.org/10.1007/s00493-003-0019-y
http://dx.doi.org/10.1007/s00493-003-0019-y
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/S0097539797323571
http://dx.doi.org/10.1109/TIT.2002.806118
http://dx.doi.org/10.4230/DagRep.2.6.26
http://dx.doi.org/10.4230/DagRep.2.6.26
http://dx.doi.org/10.1016/S0020-0190(99)00083-6
http://dx.doi.org/10.1016/j.dam.2010.11.012
http://dx.doi.org/10.1145/1250790.1250859
http://dx.doi.org/10.1145/1250790.1250859
http://dx.doi.org/10.1287/moor.8.4.538
http://arxiv.org/abs/1704.04249
http://arxiv.org/abs/1706.10153
http://arxiv.org/abs/1607.02986
http://arxiv.org/abs/1607.02986
http://arxiv.org/abs/1607.02986
http://dx.doi.org/10.1137/S0097539700373039
http://dx.doi.org/10.1109/18.915688
http://dx.doi.org/10.4086/toc.2012.v008a022
http://dx.doi.org/10.4086/toc.2012.v008a022
http://dx.doi.org/10.1109/CCC.2014.17

A. Bhattacharyya, S. Ghoshal, Karthik C. S., and P. Manurangsi

38

39

40

41

42

43

44

45

46

47

Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and
Applications. Information Security and Cryptography. Springer, 2010. doi:10.1007/
978-3-642-02295-1.

Oded Regev. New lattice based cryptographic constructions. In Lawrence L. Larmore and

Michel X. Goemans, editors, STOC, pages 407-416. ACM, 2003. doi:10.1145/780542.

780603.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84-93, 2005. doi:10.1145/1060590.1060603.

Oded Regev. Lattice-based cryptography. In Cynthia Dwork, editor, CRYPTO, volume
4117 of Lecture Notes in Computer Science, pages 131-141. Springer, 2006. doi:10.1007/
11818175_8.

Oded Regev. The learning with errors problem (invited survey). In CCC, pages 191-204,
2010. doi:10.1109/CCC.2010.26.

Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In STOC, pages
447-456, 2006. doi:10.1145/1132516.1132581.

Jacques Stern. Approximating the number of error locations within a constant ratio is NP-
complete. In Gérard D. Cohen, Teo Mora, and Oscar Moreno, editors, AAECC, volume
673 of Lecture Notes in Computer Science, pages 325-331. Springer, 1993. doi:10.1007/
3-540-56686-4_54.

Peter van Emde-Boas. Another NP-complete partition problem and the complexity of com-
puting short vectors in a lattice. Report. Department of Mathematics. University of Ams-
terdam. Department, Univ., 1981.

Alexander Vardy. Algorithmic complexity in coding theory and the minimum distance
problem. In STOC, pages 92-109, 1997. doi:10.1145/258533.258559.

Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE
Trans. Information Theory, 43(6):1757-1766, 1997. doi:10.1109/18.641542.

17:15

ICALP 2018


http://dx.doi.org/10.1007/978-3-642-02295-1
http://dx.doi.org/10.1007/978-3-642-02295-1
http://dx.doi.org/10.1145/780542.780603
http://dx.doi.org/10.1145/780542.780603
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1007/11818175_8
http://dx.doi.org/10.1007/11818175_8
http://dx.doi.org/10.1109/CCC.2010.26
http://dx.doi.org/10.1145/1132516.1132581
http://dx.doi.org/10.1007/3-540-56686-4_54
http://dx.doi.org/10.1007/3-540-56686-4_54
http://dx.doi.org/10.1145/258533.258559
http://dx.doi.org/10.1109/18.641542

	Introduction
	Our Results
	Nearest Codeword Problem and Nearest Vector Problem


	Proof Overview
	Parameterized Intractability of k-MDP from PIH
	Parameterized Intractability of k-SVP from PIH

	Discussion and Open Questions

