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Abstract
A small-biased function is a randomized function whose distribution of truth-tables is small-
biased. We demonstrate that known explicit lower bounds on (1) the size of general Boolean
formulas, (2) the size of De Morgan formulas, and (3) correlation against small De Morgan
formulas apply to small-biased functions. As a consequence, any strongly explicit small-biased
generator is subject to the best-known explicit formula lower bounds in all these models.

On the other hand, we give a construction of a small-biased function that is tight with
respect to lower bound (1) for the relevant range of parameters. We interpret this construction
as a natural-type barrier against substantially stronger lower bounds for general formulas.
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1 Introduction

Formula size is one of the most thoroughly studied complexity measures of Boolean functions.
A formula is a circuit in which every internal gate has fan-out one. The power of formulas
depends on the types of gates allowed. In this work we consider two models: General formulas
in which any gate of some pre-specified fan-in c is allowed, and De Morgan formulas that
only use NOT gates and AND/OR gates of fan-in two.

Explicit size lower bounds for general formulas were first proved by Nečiporuk [18], who
showed that the selector (addressing) function requires general constant fan-in formula size
Ω(n2/ logn log logn) over inputs of size n. Boppana and Sipser [8] applied a variant of this
method to obtain an improved lower bound of Ω(n2/ logn) for the element distinctness
function by a related but different method.

The case of De Morgan formulas had been studied even earlier. Subbotovskaya [25]
proved that computing parity on n bits requires formula size Ω(n3/2). Andreev [3] combined
the ideas of Nečiporuk and Subbotovskaya to obtain a n5/2−o(1) De Morgan formula size
lower bound for an explicit family of functions from {0, 1}n to {0, 1}. Following partial
improvements (Impagliazzo and Nisan [11], Paterson and Zwick [19]), Håstad [10] showed
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22:2 Small Bias Requires Large Formulas

that Andreev’s function requires formula size n3−o(1), which is optimal in the exponent.2
The same lower bound was reproved by Dinur and Meir [9] using different methods.

More recently, Tal gave two lower-order improvements to Håstad’s result. First, in [27] he
showed that Andreev’s function requires De Morgan formulas of size Ω(n3/(logn)2 log logn),
which is optimal for this function up to the doubly logarithmic term. Later, in [28] he showed
that another function introduced by Komargodski and Raz [13] requires De Morgan formula
size Ω(n3/(logn)(log logn)2).

In a related line of works, Komargodski, Raz, and Tal [13, 14, 27] study correlation
lower bounds against small formulas. For every k ≤ n1/3, they construct two variants
of an explicit function that has correlation at most 2−k with any De Morgan formula of
size n3/(logn)O(1)k2. Their hard functions make use of error-correcting codes with good
list-decodable properties and extractors for bit-fixing sources. Weaker correlation bounds
for the parity function were proved by Santhanam [23] and, as observed in [14], also follow
implicitly from bounds on the approximate degree of De Morgan formulas [6, 22].

Razborov and Rudich [21] observed that all formula size lower bounds (known at the
time) are natural, meaning that the formulas to which the bounds apply cannot compute
cryptographically pseudorandom functions. On the other hand, the class NC1 of polynomial-
size logarithmic-depth bounded fan-in circuit families, which are equivalent in power to
polynomial-size formula families, is believed to contain pseudorandom functions. Naor and
Reingold [16,17] and Banerjee, Peikert, and Rosen [5] proposed such candidate families based
on the Decisional Diffie Hellman, hardness of factoring, and Learning With Errors hardness
assumptions, respectively. These constructions suggest that explicit size nC lower bounds for
formulas is out of reach for current techniques for sufficiently large values of the exponent C.
The values of C in these constructions (for the requisite levels of hardness) are apparently
rather large, so they are unlikely to explain the perceived barriers of n2 and n3 for general
and De Morgan formula size, respectively.

Our results

Our main conceptual contribution is the realization that all known formula size lower bound
techniques also apply to small-biased functions. A randomized function is (K, ε)-biased if the
induced distribution over truth-tables is a (K, ε)-biased distribution (it satisfies (1) below).

From the perspective of natural proofs, the known properties that distinguish small
formulas from random functions are local in the sense that they only make a bounded
number of non-adaptive queries to the function.3 It is therefore reasonable to expect that
the largeness condition of the relevant natural properties should continue to hold for random
functions that only exhibit bounded independence. We show that these properties, in fact,
merely require small bias [15], which is closely related to approximate bounded independence.
As a direct consequence, we show that the best-known explicit formula lower bounds hold
against any implicitly specified small-biased generator (the precise definition is given below).

I Theorem 1. Any small-biased generator SBn,2−15n : {0, 1}O(n) → {0, 1}
1. requires fan-in c formulas of size Ω(n2/2c logn),
2. requires De Morgan formulas of size Ω(n3/ logn (log logn)2),
3. has correlation at most 2−Ω(k) with De Morgan formulas of size at most n3/(logn)O(1)k2

for any k such that ω(logn) ≤ k ≤ n.

2 Our discussion of formula lower bounds is based on Chapter 6 of Jukna’s book [12].
3 The correlation lower bounds [13,14] in fact apply adaptive queries of a restricted type.
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Together with the existence of strongly explicit small-biased generators (see definition
and discussion below), Theorem 1 reproves the best-known formula lower bounds in a unified
manner and even gives a minor improvement in one case. Item 1 matches the explicit formula
size lower bound of Nečiporuk. Item 2 matches the lower bound of Tal [28]. Item 3 is a minor
improvement over the lower bound of Tal [27]. His proof requires the additional assumption
k ≤ n1/3.

Like previous formula size lower bounds with the exception of [9], the proof of Theorem 1
relies on shrinkage. It is therefore not surprising that it merely matches but fails to improve
the state of the art in explicit lower bounds. The value of Theorem 1 is in explaining hardness
against formulas by a single natural property, namely small bias. In contrast, shrinkage
proofs are tailored to the model in question. The proofs of [10, 18, 28] rely on shrinkage
of a random restriction, the one of [8] on simultaneous shrinkage of multiple restrictions,
while [13,14,27] use high probability shrinkage. While the role of small bias in the shrinkage
arguments is more or less self-evident in certain proofs (Propositions 1 and 3), it is less
obvious properties of small bias (Lemmas 2 and 3) that enables the others (Propositions 2, 4,
and 5).

From a wider perspective, the utility of circuit lower bounds extends far beyond separating
complexity classes, which is merely a motivating purpose. It is just as important to identify
which natural (both in the common and technical sense) properties of functions make them
intractable in specific computational models. In this sense Theorem 1 provides a new criterion
for pseudorandomness of a cryptographic function against a restricted class of distinguishers.

On the other hand, in Theorem 6 we construct a (K, ε)-biased function F with fan-in
two formula size O(n(logK)2(log 1/ε)). For ε = 2−2K , this is a (K, 2−K)-wise independent
function of formula size O(nK(logK)2), which matches our lower bounds for general formulas
in Propositions 1 and 2 up to terms polylogarithmic in K.

In the parameter regimes that yield lower bounds 1 and 2 in Theorem 1, the function F
has formula size O((n logn)2) and De Morgan formula size O(n4(logn)3). We view this as a
barrier to proving super-quadratic lower bounds for general formulas, and super-quartic ones
for De Morgan formulas.

In the notation of Razborov and Rudich, our barriers are ⊕-natural, where ⊕ is the class
of parity functions. However, they are not quasipolynomial-size-natural since our function
F is not cryptographically pseudorandom: In addition to having small formula size, F
is computable by polynomial-size, depth 3 circuit families with AND, OR, and PARITY
gates (the class AC0[⊕]), which is known not to contain cryptographic pseudorandom
functions [20,21,24]. It remains open whether our bounds can be matched (or even improved
in the case of De Morgan formulas) by a different construction that is plausibly secure with
respect to all subexponential-size circuits, of which linear tests are a very special case.

Theorems 1 and 6 suggest that small-biased functions should be studied as suitable
candidates for formula size lower bounds. In the extreme setting of parameters K = 2n,
ε = 2−Θ(n), known constructions of small-biased functions have seed lengths linear in n and
may be plausible candidates for improved formula size lower bounds. In this regime, the
general and De Morgan formula sizes of F in Theorem 6 are as large as Θ̃(n4). Do there
exist, say, (2n, 2−100n)-biased functions of smaller formula size?

Bounded independence and small bias

We will call a randomized function F : {0, 1}n → {0, 1} (k, ε)-wise independent (in qualitative
terms, almost locally independent) if for any k distinct inputs x1, . . . , xk, the distribution
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22:4 Small Bias Requires Large Formulas

(F (x1), . . . , F (xk)) is within statistical distance ε of the uniform distribution over {0, 1}k.
A random function F : {0, 1}n → {0, 1} is (K, ε)-biased (locally small-biased) if for any
nonempty set X of at most K distinct inputs,∣∣∣E[∏

x∈X
(−1)F (x)

]∣∣∣ ≤ ε. (1)

When K = 2n the family is called ε-biased (small-biased). Small bias implies bounded
independence by the following claim [15, Corollary 2.1].

I Claim 1. Every (K, ε)-biased function is (K, 2K/2ε)-wise independent.

Small-biased generators

A family of functions SBn,ε : {0, 1}s(n,ε) × {0, 1}n → {0, 1} is a small-biased generator if the
random function Fr(x) = SBn,ε(r, x) (with r uniformly random) is ε-biased for all n and
ε. If we view SBn,ε as a function from {0, 1}s(n,ε) to the set of truth-tables of functions
{0, 1}n → {0, 1}, we recover the usual representation of a pseudorandom generator as a
function of its seed.

The generator is strongly explicit if s(n, ε) = O(n + log 1/ε) and SBn,ε is uniformly
polynomial-time computable. Known constructions of small-biased sets [1, 2, 7, 15, 26] are
strongly explicit.

2 Small bias requires large formulas

We are aware of two techniques for proving general formula size lower bounds, the one of
Nečiporuk [18] and the variant due to Boppana and Sipser [8]. We show that both imply
lower bounds on the formula size of almost locally independent functions. While the second
technique yields a stronger lower bound, we find the first one instructive as the role of
almost-independence is more transparent.

In the case of De Morgan formulas, we study three proof techniques. The first one, based
on average-case shrinkage, underlies the lower bound of Andreev including improvements by
Impagliazzo and Nisan, Paterson and Zwick, Håstad, and Tal. We show that this method
also bounds the formula size of almost independent functions.

The second method for De Morgan formula lower bounds is due to Tal, who applies a
correlation-to-computation reduction in addition to bounds on average-case shrinkage. The
third method, due to Komargodski and Raz and improvements by these authors and Tal,
applies a high-probability shrinkage lemma to derive strong correlation lower bounds. We
show that these two methods give lower bounds on the size of small-biased functions.

Arbitrary formulas
A restriction f |ρ of a function f under a partial assignment ρ of its inputs is the function on
the unassigned inputs obtained by fixing all the assigned variables to their values. A random
k-restriction of f is the distribution of restrictions of f under a uniform random assignment
that leaves exactly k inputs unassigned.

The size of a formula is the number of leaves in the formula tree, namely the number
of variables occurring in the formula. The following shrinkage property of formulas follows
immediately from linearity of expectation:

I Claim 2. Assume f : {0, 1}n → {0, 1} has formula size s. Then the expected formula size
of a random k-restriction of f is at most (k/n) · s.
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We say a random function F has formula size at most s if every function in the support
of F can be computed by a formula of size at most s.

I Proposition 1. Assuming c ≤ log log k, any (2k, 1/4)-wise independent function
F : {0, 1}n → {0, 1} requires fan-in c formulas of size Ω(n · 2k/k log k).

Proof. Suppose F has formula size s. By Claim 2 and averaging, there exists a partial
assignment ρ with k unassigned variables under which the expected formula size of F |ρ is at
most ks/n. By Markov’s inequality,

PrF [size(F |ρ) ≤ 2ks/n] ≥ 1
2 (2)

for any distribution of functions F , where size denotes formula size.
A formula of size s̃ can be specified by listing its at most 2s̃ gates in depth-first order. For

a formula of fan-in c on k inputs, there are 22c possible internal gates and k possible input
gates, so the number of such formulas is at most (22c + k)2s̃ ≤ (2k)2s̃. Therefore, setting
s̃ = 2ks/n, for a uniformly random function R it holds that

PrR[size(R|ρ) ≤ 2ks/n] ≤ (2k)4ks/n

22k . (3)

The event “size(F |ρ) ≤ 2ks/n” depends on at most 2k values of F , so if F is (2k, 1/4)-wise
independent, then

PrF [size(F |ρ) ≤ 2ks/n] ≤ PrR[size(R|ρ) ≤ 2ks/n] + 1
4 . (4)

Combining (2), (3), and (4), we obtain that (2k)4ks/n/22k ≥ 1/4, from where the desired
lower bound on s follows. J

An improved lower bound

We now discuss the other proof of Nečiporuk, which gives a slightly stronger lower bound in
the regime of k < logn and for exponentially small error.

I Proposition 2. For k ≤ logn−1, any (2·2k, 2−2k )-wise independent function F : {0, 1}n →
{0, 1} requires fan-in c formulas of size Ω(n · 2k−c/k).

The proposition is proved by showing that the number of possible restrictions of a small
formula that leave the least frequently occurring inputs unrestricted is small. On the other
hand, the following lemma shows that the number of distinct restrictions of an almost
locally independent function is large, even when the set of unrestricted variables is fixed. A
U -restriction is a restriction under any assignment in which U is the set of free variables.

I Lemma 2. Assume F is (2 · 2k, 2−2k )-wise independent. For any set U of k variables, the
number of distinct U -restrictions of F is at least min{2n−k−2, 22k−3} with probability more
than half.

In particular, when k ≤ logn− 1, a (2 · 2k, 2−2k )-wise independent function family has at
least 1

8 · 2
2k distinct U -restrictions with probability more than half.

Proof. Let ρ, ρ′ be independent random partial assignments to the variables in U . Then

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ Pr[ρ = ρ′] + Pr[F |ρ = F |ρ′ | ρ 6= ρ′]. (5)

ICALP 2018



22:6 Small Bias Requires Large Formulas

The first term equals 2−n+k. To bound the second term, fix an arbitrary pair of distinct ρ, ρ′.
The event that the restricted functions F |ρ and F |ρ′ are identical depends on at most 2 · 2k
values of F . By the almost local independence of F ,

PrF [F |ρ = F |ρ′ | ρ 6= ρ′] ≤ Pr[R = R′] + 2−2k

,

where R,R′ : {0, 1}k → {0, 1} are independent uniformly random functions. Such functions
are equal with probability at most 2−2k , and so the second term in (5) at most 2−2k+1.
Therefore

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ 2−n+k + 2−2k+1.

Now assume the support size of F |ρ over random ρ is less than S for at least half the functions
F . Then the collision probability Prρ,ρ′ [F |ρ = F |ρ′ ] is at least 1/S for at least half the
functions F and so

2−n+k + 2−2k+1 ≥ 1
2S ,

from where it follows that the larger of 2−n+k and 2−2k+1 is at least 1/4S. It follows that
S ≥ min{2n−k−2, 22k−3}. J

Proof of Proposition 2. Let s be the size of F . By Claim 2 and averaging, there is a set
U of size k so that on average, F has at most (k/n) · s occurrences of variables from U .
By Markov’s inequality, at least half of the formulas in F have no more than s̃ = 2ks/n
occurrences of variables from U .

We now upper bound the number of U -restrictions of φ (for fixed φ and U). Under each
partial assignment ρ to this inputs in U , φ reduces to a formula φ|ρ of size at most s̃. This
formula can be simplified by propagating the restricted inputs and subsuming all gates of
fan-in one into their parents or children in some canonical way. The simplified formula can
then be described by specifying, say in depth first order, the truth-tables of its gates (of
fan-in at least two). As there are at most s̃ such gates and each can compute one of at most
22c possible functions, the desired number of restrictions can be at most 22cs̃.

By Lemma 2, there must then exist a formula in the support of F whose number of U -
restrictions is at most 22cs̃ = 22c+1ks/n and at least 1

8 ·2
2k . It follows that s = Ω(n·2k−c/k). J

Computation by De Morgan formulas
In this section we show that known proofs for De Morgan formula size also apply to small-
biased functions. The following proof relies on expected shrinkage of De Morgan formulas
under random restrictions [3, 10,11,19].

I Proposition 3. Assuming k ≤ n/2, any (2k, 1/4)-wise independent function F : {0, 1}n →
{0, 1} requires De Morgan formula size Ω(n2 · 2k/k2 log k).

Proof. In a p-random restriction, the unrestricted variables are sampled from the binomial
distribution with parameter p. Tal [27] showed that if f has a De Morgan formula of size
s then the expected formula size of a p-random restriction of f is s̃ = O(p2s+

√
p2s). Set

p = 2k/n. By deviation bounds, for every f in the support of F , the event that ρ has fewer
than k = 1

2pn unassigned inputs or f |ρ has formula size more than 4s̃ has probability at
most 1

2 .
By averaging, there exists a partial assignment ρ with k unassigned inputs under which

F |ρ has formula size at most 4s̃ for at least half the functions F . Since F is (2k, 1/4)-wise
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independent, the same is true for at least a quarter of truly random functions R. The number
of size 4s̃ De Morgan formulas on k inputs is at most (2k)8s̃, and these must compute at least
1
4 · 2

2k distinct functions. It follows that s̃ = Ω(2k/ log k). As s̃ = O(p2s+
√
p2s) it follows

that p2s = Ω(2k/ log k). Using the constraint k ≥ 1
2pn we obtain the desired bound. J

Tal [27] recently obtained a slight improvement to the aforementioned bounds. His
method also applies to small-biased functions as demonstrated in the following proposition:

I Proposition 4. Assume that k ≤ n/2 and 2− 7
16k2k/8

< ε ≤ 2−2k. Then every (2k, ε)-biased
F requires De Morgan formula size Ω(n2 log(1/ε)/k(log k)2).

The proof relies on the large deviation bound for small-bias distributions of Naor and
Naor [15, Section 5]. We rework it here in more convenient notation. We say a random
variable X over {−1, 1}K is ε-biased if |E[

∏
i∈S Xi]| ≤ ε for every subset S of indices.

I Lemma 3. Let t be even and X be a (t, ε)-biased random variable over {−1, 1}K . The
probability that |

∑
Xi| exceeds δK is at most δ−t · (2(t/K)t/2 + ε).

Proof. We apply a t-th moment calculation. By Markov’s inequality,

Pr
[∣∣∣∑K

i=1
Xi

∣∣∣ ≥ δK] ≤ 1
(δK)t E

[(∑K

i=1
Xi

)t]
= 1

(δK)t
(∑

S∈E
E
[∏

i∈S
Xi

]
+
∑

S∈E
E
[∏

i∈S
Xi

])
,

where E is the set of ordered terms of size t in which every index appears an even number of
times. The first expectation is upper bounded by the number of such terms, which is at most
Kt/2 · t!/(t/2)! ≤ 2 · (tK)t/2. The second expectation is upper bounded by the number of
terms times the maximum bias of each term, namely Kt · ε. The desired bound follows. J

The following consequence of the lemma is far from tight but will be of use in the
proof of Proposition 4. The correlation of two functions f, φ : {0, 1}k → {0, 1} is 〈f, φ〉 =
Ex[(−1)f(x) · (−1)g(x)], where x is uniform in {0, 1}n.

I Corollary 4. Assuming 2− 7
16k2k/8

< ε ≤ 4 · 2−2k and F : {0, 1}k → {0, 1} is (2k, ε)-biased,
for every φ : {0, 1}k → {0, 1}, the probability that |〈F, φ〉| is greater than 2−k/4 is at most
3 · ε1/4.

Proof. Assuming 4 ≤ t ≤ 2k/8, the expression (t · 2−k)t/2 is non-increasing as a function of t.
By our assumption on ε, there must exist even value 4 ≤ t < 2k/8 for which(

(t+ 2)2−k
)(t+2)/2

< ε ≤ (t2−k)t/2. (6)

Applying Lemma 3 with parameters K = 2k, δ = 2−k/4 to the truth-table X of the
(K, ε)-biased function (−1)F (x)⊕φ(x), we obtain that the desired probability is at most

(2−k/4)t ·
(
2(t2−k)t/2 + ε

)
= 3 · tt/2 · 2−kt/4.

To derive the corollary, it remains to show that tt/2 · 2−kt/4 ≤ ((t + 2)2−k)(t+2)/8. This
follows from k ≥ (4t log t)/(t− 2), which is true in the regime 4 ≤ t < 2k/8. J

Proof of Proposition 4. Initially we proceed as in the proof of Proposition 3 to obtain
a partial assignment ρ with k unassigned inputs under which F |ρ has formula size s̃ =
O((k/n)2s+

√
(k/n)2s) for at least half the functions F . Let S (for shrinkage) denote this

event so that Pr[S] ≥ 1
2 .
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Tal [28] showed that every formula of size s̃ has correlation at least δ = 2−k/4 (7) with
some formula of size s̃′ = O(

√
s̃+ s̃ log k/k). Let Φ be the set of all such formulas over inputs

in U . Then we have

E[|〈F |ρ,Φ〉|] ≥ E[|〈F |ρ,Φ〉| | S] · Pr[S] ≥ δ

2 ,

where |〈f,Φ〉| denotes the maximum value of |〈f, φ〉| over all φ ∈ Φ. By Markov’s inequality,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≥ δ

4 .

On the other hand, by a union bound and Corollary 4,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≤ 3|Φ|ε1/4.

From these two inequalities we obtain that

|Φ| ≥ 1
12 · ε

−1/4 · δ ≥ ε−1/8

12

by (7) and the assumption ε ≤ 2−2k. Since |Φ| ≤ (9k)s̃′ , it follows that s̃′ = Ω(log(1/ε)/ log k).
A calculation shows that s = Ω(n2 log(1/ε)/k(log k)2) as desired. J

Correlation with De Morgan formulas
Komargodski, Raz, and Tal [13,14,27] proved a correlation lower bound for small De Morgan
formulas. Their main technical ingredient is the following high-probability shrinkage lemma
for De Morgan formulas [14,27].

Lemma 5 and the proof of Proposition 5 use the following notation. Given a depth-(n−k)
decision tree ∆ in n variables and a seed π ∈ {0, 1}n−k, the partial assignment ∆(π) is the
one obtained by assigning values to the variables in ∆ from root to leaf according to the
sequence π (the first bit π1 is assigned to the root variable, the second bit π2 is assigned to
its child, and so on).

I Lemma 5 (High-probablity shrinkage). For every constant c > 0 there exists a constant
c′ > 0 such that for every c′ logn ≤ k ≤ n the following holds. For every formula f on n

variables of size s ≤ nc there exists a decision tree ∆ over its variables of depth at most n− k
so that f |∆(π) has formula size s̃ = (logn)O(1) · (k/n)2 · s except with probability δ = 2−Ω(k)

over the choice of π.

Without loss of generality we will assume that ∆ is a complete decision tree of depth
exactly n− k so that ∆(π) has exactly k unrestricted variables for every π.

I Proposition 5. Assuming 2− 7
16k2k/8 ≤ ε ≤ 3−8n · 2−2k and ω(logn) ≤ k ≤ n, for every

(2k, ε)-biased F , at most a 2−Ω(k)-fraction of F has correlation more than 2−Ω(k) with
formulas of size at most n2 log(1/ε)/(logn)O(1)k2.

Proof of Proposition 5. Let C (for correlating) be the event that F has correlation at least
2δ in absolute value with some formula F̂ of size at most s (which may depend on F ) so that

EF [|〈F, F̂ 〉| | C] ≥ 2δ.

We set δ = 2−Ω(k) and assume that δ ≥ 2−k/8 (8). For every complete decision tree ∆ (which
may depend on F̂ ) of depth n− k,

EF,π[|〈F |∆(π), F̂ |∆(π)〉| | C] ≥ EF
[
|Eρ[〈F |∆(π), F̂ |∆(π)〉]|

∣∣ C] = EF [|〈F, F̂ 〉| | C] ≥ 2δ, (9)
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where π ∼ {0, 1}n−k is a random seed. Let S be the event that F̂ |∆(π) has formula size at
most s̃ = (logn)C · (k/n)2 · s (10). By Lemma 5,

PrF,π[S | C] ≤ δ. (11)

By the formula for conditional expectations,

E[|〈F |∆(π), F̂ |∆(π)〉| | C] = E[|〈F |∆(π), F̂ |∆(π)〉| | CS] · Pr[S | C]

+ E[|〈F |∆(π), F̂ |∆(π)〉| | CS] · Pr[S | C]

≤ E[|〈F |∆(π), F̂ |∆(π)〉| | CS] + Pr[S | C],

so (9) and (11) imply that

EF,π[|〈F |∆(π), F̂ |∆(π)〉| | CS] ≥ δ.

Let Φ be the set of all size-s̃ formulas over k variables. Then |Φ| ≤ (9k)s̃ (12). Since
conditioned on S all formulas F̂ |∆(π) are in Φ, it must be the case that

EF,π[|〈F |∆(π),Φ〉| | CS] ≥ δ,

where 〈f,Φ〉 denotes the maximum of 〈f, φ〉 over all φ ∈ Φ. By the formula for conditional
expectations, EF,π[|〈F |∆(π),Φ〉|] must be at least δ · Pr[CS]. We can then bound Pr[CS] by

Pr[CS] ≤ 1
δ
· EF,π[|〈F |∆(π),Φ〉|] ≤

1
δ

(δ2

4 + PrF,π[|〈F |∆(π),Φ〉| ≥ δ2/4]
)
. (13)

Let Pnk denote the set of partial assignments that leave k inputs unassigned. As each input
can take value 0, take value 1, or be unassigned, Pnk has size at most 3n. By Corollary 4, (8),
and a union bound,

PrF,π[|〈F |∆(π),Φ〉| ≥ δ2/4] ≤ PrF [|〈F |ρ, φ〉| ≥ δ2/4 for some ρ ∈ Pnk and φ ∈ Φ]

≤ 3n · |Φ| · 3ε1/4.

Using (8) and the assumption ε ≤ 3−8n ·2−2k, the right hand side is at most (δ2/4) ·12|Φ|ε1/8.
By (12) and (10), this quantity is at most δ2/4 as long as s ≤ n2 log(1/ε)/(logn)Ck2.
Plugging into (13), we conclude that Pr[CS] is at most δ/2 for formulas of the desired size.

Finally, applying (11) again, we have

Pr[C] = Pr[CS]
1− Pr[S | C]

≤ δ/2
1− δ ≤ δ. J

3 Main results

Proof of Theorem 1
Let F be the random function F (x) = SBn,2−15n(s, x) for uniformly random s. To obtain
item 1, we apply Proposition 2 with k = logn − 1 and Claim 1. (Proposition 1 gives the
weaker bound Ω(n2/ logn log logn) for fan-in up to c = log log logn.)

For item 2, we apply Proposition 4 with k = 3 logn and ε = n9e−n. (Proposition 3 with
k = logn gives the weaker bound Ω(n3/(logn)2 log logn).)

For item 3, we apply Proposition 5 with ε = 3−8n · 2−2n. The conclusion is that at most a
2−Ω(k)-fraction of F can have correlation more than 2−Ω(k) with formulas of size s. Therefore
the correlation between SBn,2−15n and size s formulas can be at most 2−Ω(k). J
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Moderate formulas for small bias
I Theorem 6. For every n, k, and ε, there exists a (2k, ε)-biased F : {0, 1}n → {0, 1} of
fan-in two formula size O(nk2 · log 1/ε).

Applying Claim 1 and a suitable change of parameters we obtain the following corollary
to Theorem 6:

I Corollary 7. For every n, K, and ε there exist (K, ε)-wise independent functions with
formula size O(n · (logK)2 · (K + log 1/ε)).

Proof of Theorem 6. Let Ht : {0, 1}n → {0, 1} be the random function

Ht(x) =
{
a random bit, if Ax = b,

0, if not,

where A and b are a uniformly random t × n matrix and t-dimensional boolean vector,
respectively, and all algebra is over F2. We let

F = F1 ⊕ F2 ⊕ · · · ⊕ Fk+2,

where the Ft are independent XORs of 6 log 1/ε independent copies of Ht. Since Ht has
formula size O(tn), F has formula size O(nk2 · log 1/ε).

We now prove that F is (2k, ε)-biased. Let X be any nonempty set of at most 2k distinct
inputs. Set t = blog|X|c + 2 and let U (for unique) be the event that exactly one x in X
satisfies Ax = b for a random t× n matrix A and t-dimensional vector b. By the isolation
lemma of Valiant and Vazirani [29], U has probability at least 1/8 (see for example [4, Lemma
17.19]). By the rule of conditional expectations,∣∣∣E[∏

x∈X
(−1)Ht(x)

]∣∣∣
≤
∣∣∣E[∏

x∈X
(−1)Ht(x)

∣∣∣U]∣∣∣ · Pr[U ] +
∣∣∣E[∏

x∈X
(−1)Ht(x)

∣∣∣U]∣∣∣ · Pr[U ]

≤ |E[(−1)Ht(u) | U ]| · Pr[U ] + 1 · Pr[U ]
= 0 · Pr[U ] + 1 · Pr[U ]
≤ 7/8.

By independence, it follows that

∣∣∣E[∏
x∈X

(−1)Ft(x)
]∣∣∣ =

∣∣∣E[∏
x∈X

(−1)Ht(x)
]∣∣∣6 log 1/ε

≤
(

7
8

)6 log 1/ε
≤ ε,

so |E[
∏
x∈X(−1)F (x)]| =

∏k+2
t=1 |E[

∏
x∈X(−1)Ft(x)]| is also upper bounded by ε. J

Our small-biased function can be viewed as a simplified variant of a construction of Naor
and Naor [15, Section 3.1.1]. The simplifications can be partly explained by a difference in
objectives: Naor and Naor (and other constructions) aim to optimize the seed length, while
we are interested in minimizing formula size.

By the standard simulation of fan-in two formulas by De Morgan formulas, F has De
Morgan formula size at most O((nk2 log 1/ε)2). The De Morgan formula size analysis can
be slightly improved to O(n2k3(log 1/ε)2) by observing that the middle layer of AND gates
does not suffer from the quadratic blow-up.
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Specifically, in the parameter settings used in the proof of items 1 and 2 in Theorem 1,
the function F has fan-in two formula size O((n logn)2) and De Morgan formula size
O(n4(logn)3).

For item 3, plugging in ε = 2−k gives the (De Morgan) formula size upper bound O(n4k3).
This can be improved to O(n4(log(n/k))3): In the proof of Corollary 4 (and Proposition 5)
it is sufficient that F be (t, ε)-biased where t is the unique even integer satisfying (6). For
our choice of parameters t is on the order of n/k.
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