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Abstract
We study the F-center problem with outliers: given a metric space (X, d), a general down-closed
family F of subsets of X, and a parameter m, we need to locate a subset S ∈ F of centers such
that the maximum distance among the closest m points in X to S is minimized.

Our main result is a dichotomy theorem. Colloquially, we prove that there is an efficient
3-approximation for the F-center problem with outliers if and only if we can efficiently optimize
a poly-bounded linear function over F subject to a partition constraint. One concrete upshot of
our result is a polynomial time 3-approximation for the knapsack center problem with outliers
for which no (true) approximation algorithm was known.
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1 Introduction

The k-center problem is a classic discrete optimization problem with numerous applications.
Given a metric space (X, d) and a positive integer k, the objective is to choose a subset S ⊆ X
of at most k points such that maxv∈X d(v, S) is minimized, where d(v, S) = minu∈S d(v, u).
Informally, the problem is to open k centers to serve all points, minimizing the maximum
distance to service. This problem has been studied for at least 50 years [13, 14], is NP-
hard to approximate to a factor better than 2 [18], and has a simple 2-approximation
algorithm [11, 16].

In many applications one is interested in a nuanced version of the problem where instead
of serving all points in X, the objective is to serve at least a certain number of points. This
is the so-called k-center with outliers version, or the robust k-center problem. This problem
was first studied by Charikar et al. in [8] which gives a 3-approximation for the problem. A
best possible 2-approximation algorithm was recently given by Chakrabarty et al. in [6] (see
also the paper [15] by Harris et al. ).

Another generalization of the k-center problem arises when the location of centers has
more restrictions. For instance, if each point in X has a different weight and the constraint is
that the total weight of centers opened is at most k. This problem, now called the knapsack
center problem, was studied by Hochbaum and Shmoys in [17] which gives a 3-approximation
for the problem. To take another instance, X could be vectors in high dimension and the
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30:2 Generalized Center Problems with Outliers

centers picked need to be linearly independent vectors. This motivates the matroid center
problem where the set of centers must be an independent set in a matroid. Chen et al. give
a 3-approximation for this problem in [10].

Naturally, the two aforementioned generalizations can be taken together. Indeed, for
the robust matroid center problem, that is, the problem of picking centers which are an
independent set and only m points need to be served, there is a 7-approximation algorithm
in [10]. This was recently improved to a 3-approximation in [15]. The robust knapsack center
problem, however, has had no non-trivial approximation algorithm till this work. Both [10]
and [15] give bi-criteria 3-approximation algorithms which violate the knapsack constraint
by (1 + ε) (the running time of their algorithm is exponential in 1/ε).

Our Contributions

Motivated by the state-of-affairs of the robust knapsack center problem, we study a broad
generalization of the problems mentioned above. Let F be a general down-closed1 family of
subsets overX. In the robust F-center problem we are given a metric space (X, d), a parameter
m, and the objective is to select a subset S ∈ F such that minT⊆X,|T |=m maxv∈T d(v, S) is
minimized. That is, the maximum distance of service of the closest m points is minimized.

Observe that if F := {A : w(A) ≤ k} then we get the robust knapsack center problem, and
if F is the collection of independent sets of a matroid, then we get the robust matroid center
problem. But this generalization captures a host of other problems. For instance, one can
consider multiple (but constant) knapsack constraints. Indeed, this was studied in both [17]
and [10]. The former2 only looks at the version without outliers and gives a polynomial
time 3-approximation in the case when the weights are all polynomially bounded. The latter
proves that when the weights are not polynomially bounded, there can be no approximation
algorithm via a reduction to the Subset Sum problem, and gives a 3-approximation violating
each knapsack constraint by at most (1 + ε) multiplicative factor.

Another instance is a single knapsack constraint along with a single matroid constraint.
To our knowledge, this problem has not been studied earlier even in the case when outliers are
not allowed. This problem seems natural: for instance, when the points are high dimensional
vectors with weights and the collection of centers needs to be a linearly independent set with
total weight at most k.

The complexity of the robust F-center problem naturally depends on the complexity of
F. To understand this, we define the following optimization problem which depends only on
the set-system (X,F). We call it the F-maximization under partition constraints or simply
F-PCM. In this problem, one is given an arbitrary partition P of X along with F, and a
poly-bounded (the range is at most a polynomial in |X|) value val(x) on each x ∈ X. The
objective is to find a set S ∈ F maximizing val(S) such that S contains at most one element
from each part of P. Our main result stated colloquially (and formally stated as Theorem 4
and Theorem 5 in Section 2) is the following dichotomy theorem3.

1 if A ∈ F and B ⊆ A, then B ∈ F.
2 The complete proofs can be found in the STOC 1984 version of [17]
3 We are deliberately being inaccurate here. We should state the theorem for the more general supplier

version where the set X is partitioned into F ∪C and only the points in C need to be covered and only
the centers in F can be opened. Being more general, the algorithmic results are therefore stronger. On
the other hand, we weren’t able (and didn’t try too hard) to make our hardness go through for the
center version. In the Introduction we stick with the center version and switch to the supplier in the
more formal subsequent sections.
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I Informal Theorem. For any down-closed family (X,F), the robust F-center problem has
an efficient 3-approximation algorithm if the F-PCM problem can be solved in polynomial
time. Otherwise, there is no efficient non-trivial approximation algorithm for the robust
F-center problem.

Note that in general, we are not concerned about how F is represented, because the only
place the algorithm checks if a set S is in F is perhaps for solving the F-PCM problem. So
one can choose a representation that works best for the F-PCM solver.

A series of corollaries follow from the above theorem. These are summarized in Table 1.
When F = {A : w(A) ≤ k}, the F-PCM problem can be solved in polynomial time via
dynamic programming. This crucially uses that the val is poly-bounded. Therefore we
get a 3-approximation for the robust knapsack center problem. (Theorem 17)
When F is the independent set of a matroid, then the F-PCM problem is a matroid
intersection problem. Therefore we get a 3-approximation for the robust matroid center
problem recovering the result from [15]. (Theorem 19)
When F = {A : w1(A) ≤ k1, w2(A) ≤ k2, . . . , wd(A) ≤ kd} is defined by d weight functions
and each weight function wi is poly-bounded, then F-PCM can be solved efficiently using
dynamic programming. Therefore we get a 3-approximation algorithm for the robust
multi-knapsack center problem, extending the result in [17] to the case with outliers.
(Theorem 18)
When F is given by the intersection of a single knapsack and a single matroid constraint,
then we don’t know the complexity. However, when the weight function w(·) is poly-
bounded and the matroid is representable, then we can give a randomized algorithm for
the F-PCM problem via a reduction to the exact matroid intersection problem. Therefore,
we get a randomized 3-approximation for this special case of robust knapsack-and-matroid
center problem (Theorem 21).

Remark 1: The Zero Outlier Case. At this juncture, the reader may wonder about the
complexity of the F-center problem which doesn’t allow any outliers. This is related to the
following decision problem. Given (X,F) and an arbitrary sub-partition P of X, the problem
asks whether there is a set S ∈ F such that S contains exactly one element from each part of
P. We call this the F-feasibility under partition constraints or simply the F-PCF problem.
Analogous to the informal theorem from earlier, the F-center problem (without outliers)
has an efficient 3-approximation algorithm if the F-PCF problem can be solved efficiently;
otherwise the F-center problem has no non-trivial approximation algorithm. Indeed, this
theorem is much simpler to prove and arguably the roots of this lie in [17].

This raises the main open question from our paper: what is the relation between the
F-PCF and the F-PCM problem? Clearly, the F-PCF problem is as easy as the F-PCM
problem (set all values equal to one in the latter). But is there an F such that F-PCM is
“hard” while F-PCF is “easy”? One concrete example is the corollary discussed in the last
bullet point above. When F is a single knapsack constraint and a single matroid constraint,
then the F-PCF problem is solvable in polynomial time by minimizing a linear function over
a matroid polytope and another partition matroid base polytope. As noted above, we don’t
know the complexity of the F-PCM problem in this case.

Remark 2: Handling Approximations. If the F-PCM problem is NP-hard, then the robust
F-center has no non-trivial approximation algorithm. However approximation algorithms for
F-PCM translate to bi-criteria approximation algorithms for the robust F-center problem.
More precisely, if we have a ρ-approximation for the F-PCM problem (ρ ≤ 1), then we get
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30:4 Generalized Center Problems with Outliers

Table 1 All the above results can be obtained as corollary or simple extensions to our main
result. The numbers in bold indicate new results.

The constraint system F Without Outliers Robust (With Outliers)

Knapsack Constraint 3 [17] 3 (Theorem 17)

Matroid Constraint 3 [10] 3 [15]
Multiple Knapsack

(poly-bounded weights) 3 [17] 3 (Theorem 18)

Knapsack and Matroid 3 (Theorem 24) Open
3 in special case (Theorem 21)

Multiple Knapsacks
and Matroid Constraint

No uni-criteria
approximation 3, (1 + ε) violating (Theorem 27)

a (3, ρ)-bi-criteria approximation algorithm for the robust F-center problem. That is, we
return a solution S ∈ F such that the maximum distance among the closest ρ ·m points is at
most 3 times the optimum value.

There could be a different notion of approximation possible for the F-PCM problem.
Given an instance, there may be an algorithm which returns a set S whose value is at least
the optimum value but S ∈ FR for some FR ⊇ F which is a ‘relaxation’ of F. For instance, if
F is the intersection of multiple (constant) knapsack constraints which are not poly-bounded,
then for any constant ε > 0 the F-PCM problem can be solved [9, 12] returning a set with
value at least the optimum but violating each constraint by multiplicative (1+ε). We can use
the same to get a polynomial time 3-approximation for the robust multiple knapsack-center
problem if we are allowed to violate the knapsack constraints by (1 + ε).

Our Technique

Although our theorem statement is quite general, the proof is quite easy. Let us begin with
the F-center problem without outliers. For this, we follow the algorithmic ‘partitioning’ idea
outlined in paper [17] by Hochbaum and Shmoys. As is standard, we guess the optimum
distance which we assume to be 1 by scaling. Initially, all points are marked uncovered.
Subsequently, we pick any uncovered point x and consider a subset Bx of points within
distance 1 from it. Note that the optimum solution must pick at least one point from each
Bx to serve x. Next, we call x “responsible” for all uncovered points within a distance 2
from it, and mark all these points covered. Observe that all the newly covered points are
within distance 3 from any point in Bx. We continue the above procedure till all points are
marked covered. Also observe that the Bx’s form a sub-partition P of the universe where
each part has a responsible point. By the above two observations, we see that the F-PCF
problem must have a feasible solution with respect to P, and any solution to the F-PCF
problem gives a 3-approximation to the F-center problem.

Handling outliers is a bit trickier. The above argument doesn’t work since the ‘responsible’
point may be an outlier in the optimal solution and we can no longer assert that the optimal
solution must contain a point from each part. Indeed, the nub of the problem seems to
be figuring out which points should be outliers. The 3-approximation algorithm in [8] by
Charikar et al. (see also paper [1]) cleverly chooses the partitioning via a greedy procedure,
but their argument seems hard to generalize to other constraints.

A different attack used in the algorithm in [6] by Chakrabarty et al. and that in [15] by
Harris et al. is by writing an LP relaxation and using the solution of the LP to recognize
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the outliers. At a high level, the LP assigns each point x a variable (in this paper we call
it cov(x)) that indicates the extent to which x is served. Subsequently, the partitioning
procedure described in the first paragraph is run, except the responsible points are considered
in decreasing order of cov(x). The hope is that points assigned higher cov(x) in the LP
solution are less likely to be outliers, and therefore the partition returned by the procedure
can be used to recover a 3-approximate solution. This idea does work for the natural LP
relaxation of the robust matroid center problem but fails for the natural LP relaxation of
the robust knapsack center problem. Indeed, the latter has unbounded integrality gap.

Our solution is to use the round-or-cut framework that has recently been a powerful tool
in designing many approximation algorithms (see [7, 20, 19, 2, 5]). We consider the following
“coverage polytope” for the robust F-center problem: the variables are cov(x) denoting the
extent to which x is covered by a convex combination of sets S ∈ F. Of course, we cannot
hope to efficiently check whether a particular cov lies in this polytope. Nevertheless, we
show that for any cov in the coverage polytope, the partitioning procedure when run in the
decreasing order of cov, has the property that there exists a solution S ∈ F intersecting each
part at most once which covers at least m points. We can then use the algorithm for F-PCM
to find this set. Furthermore, and more crucially, if the partitioning procedure does not have
this property, then we can efficiently find a hyperplane separating cov from the the coverage
polytope. Therefore, we can run the ellipsoid algorithm on the coverage polytope each time
either obtaining a separating hyperplane, or obtaining a cov that leads to a desired partition,
and therefore a 3-approximation.

2 Preliminaries

In this section we give formal definitions and statements of our results. As mentioned in a
footnote in the Introduction, we focus on the supplier version of the problem.

I Definition 1 (F-Supplier Problem). The input is a metric space (X, d) on a set of points
X = F ∪ C with distance function d : X ×X −→ R≥0 and F ⊆ 2F a down-closed family of
subsets of F . The objective is to find S ∈ F such that maxv∈C d(v, S) is minimized.

I Definition 2 (Robust F-Supplier Problem). The input is an instance of the F-supplier
problem along with an integer parameter m ∈ {0, 1, . . . , |C|}. The objective is to find S ∈ F

and T ⊆ C for which |T | ≥ m, and maxu∈T d(u, S) is minimized.

Thus an instance I of the robust F-supplier problem is defined by the tuple (F,C, d,m,F). In
the definitions above, F and C are often called the set of facilities and customers respectively.

Given the set system F defined over F , we define the following optimization problem.

I Definition 3 (F-PCM problem). The input is J = (F,F,P, val) where F is a finite set and
F ⊆ 2F is a down-closed family, P ⊆ 2F is a sub-partition of F , and val : F −→ {0, 1, 2, · · · }
is an integer-valued function with maximum range |val| satisfying: ∀f1, f2 ∈ A ∈ P, val(f1) =
val(f2). The objective is to find:

opt(J) = max
S∈F

val(S) : |S ∩A| ≤ 1, ∀A ∈ P

The next theorem is the main result of the paper.

I Theorem 4. Given a Robust F-Supplier instance I = (F,C, d,m,F), Let A be an algorithm
that solves any F-PCM instance J = (F,F,P, val), with |val| ≤ |C|, in time bounded by TA(J).
Then, there is a 3-approximation algorithm for the Robust F-Supplier instance that runs in
time poly(|I|)TA(J).

ICALP 2018



30:6 Generalized Center Problems with Outliers

The next theorem is the (easier) second part of the dichotomy theorem. We show that if
F-PCM cannot be solved, then the corresponding Robust F-Supplier cannot be approximated.

I Theorem 5. Given any non-trivial approximation algorithm B for the Robust F-Supplier
problem that runs in time TB(|I|) on instance I, any F-PCM instance J = (F,F,P, val) can
be solved in time poly(|J|)TB(|I|), where |I| = poly(|J|).

The proof can be found in the full version of the paper.
We end this section by setting a few notations used in the remainder of the paper.

For any u ∈ F ∪ C we let BC(u, r) be the customers in a ball of radius r around u i.e.
BC(u, r) = {v ∈ C : d(u, v) ≤ r}. Similarly, define BF (u, r) as the facilities in a ball of
radius r around u i.e. for u ∈ F ∪ C, BF (u, r) = {f ∈ F : d(u, f) ≤ r}.

3 Algorithm and Analysis : Proof of Theorem 4

We fix I = (F,C, d,F,m) the instance of the Robust F-Supplier problem. We use ôpt to
denote our guess of the value of the optimal solution. Without loss of generality, we can
always assume ôpt = 1 because if not, we could scale d to meet this criteria. Our objective
henceforth is to either find a set S ∈ F such that |{v ∈ C : d(v, S) ≤ 1}| ≥ m, or prove that
opt(I) > 1.

There are two parts to our proof. The first part is a partitioning procedure which given an
assignment cov(v) ∈ R≥0 for every customer v ∈ C, constructs an instance J of F-PCM. We
call cov valuable if J has optimum value ≥ m. Our procedure ensures that if cov is valuable,
then we get a 3-approximate solution for I. This is described in Section 3.1. The second
part contains the proof of Theorem 4. In particular we show how using the round-and-cut
methodology using polynomially many calls to A (recall this is the algorithm for F-PCM)
we can either prove opt(I) > 1, or find a valuable cov. This is described in Section 3.2.

3.1 Reduction to F-PCM
Algorithm 1 inputs an assignment {cov(v) ∈ R≥0 : v ∈ C}. It returns a sub-partition P of F
and assigns val : F → {0, 1, · · · , |C|} such that all the facilities in the same part of P get the
same val. That is, it returns an F-PCM instance J = (F,F,P, val) with |val| ≤ |C|.

The algorithm maintains a set of uncovered customers U ⊆ C initialized to C (Line 1).
In each iteration, it picks the customer v ∈ U with maximum cov (Line 5) and adds it
to set Repscov (Line 6). We add the set of facilities BF (v, 1) at distance 1 from v to P

(Line 7, 8). For each such v, we eke out the subset Chld(v) = BC(v, 2) ∩ U of currently
uncovered clients “represented” by v (Line 9). For every facility f ∈ BF (v, 1) we define its
value to be: val(f) = |Chld(v)| (Line 10). At the end of the iteration, Chld(v) is removed
from U (Line 11) and the loop continues till U becomes ∅. This way, the algorithm partitions
C into {Chld(v) : v ∈ Repscov} (see fact(6)). Claim 8 shows that P is a sub-partition of F .

I Fact 6. {Chld(v) : v ∈ Repscov} is a partition of C.

I Fact 7. For a v ∈ Repscov and any u ∈ Chld(v) line 6 of the algorithm implies cov(v) ≥
cov(u).

I Claim 8. P constructed by Algorithm 1 is a sub-partition of F .

Proof. By Line 11 of the algorithm, for each u, v ∈ Repscov we have d(u, v) > 2 hence
BF (u, 1) ∩BF (v, 1) = ∅ implying P is a sub-partition of F . J
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Algorithm 1 F-PCM instance construction.
Input: Robust F-Supplier instance (F,C, d,m,F) and assignment {cov(v) ∈ R≥0 : v ∈ C}
Output: F-PCM instance (F,F,P, val)

1: U ← C . The set of uncovered customers
2: Repscov ← ∅ . The set of representatives
3: P ← ∅ . The sub-partition of F that will be returned
4: while U 6= ∅ do
5: v ← arg maxv∈U cov(v) . The first customer in U in non-increasing cov order
6: Repscov ← Repscov ∪ v
7: BF (v, 1)← {f ∈ F : d(f, v) ≤ 1} . Facilities that can cover v with a ball of radius 1
8: P ← P ∪BF (v, 1)
9: Chld(v)← {u ∈ U : d(u, v) ≤ 2} . Equals to BC(v, 2) ∩ U

10: val(f)← |Chld(v)| ∀f ∈ BF (v, 1)
11: U ← U\Chld(v)
12: end while

I Claim 9. For each v ∈ Repscov and f ∈ BF (v, 1), Chld(v) ⊆ BC(f, 3).

Proof. For any u ∈ Chld(v), we have d(u, v) ≤ 2 and since d(f, v) ≤ 1, the fact that d is
metric implies d(f, u) ≤ 3. J

I Definition 10. For S ⊆ F let R(S) = {v ∈ Repscov : BF (v, 1) ∩ S 6= ∅}, be the set of
representative customers in Repscov that are covered by balls of radius 1 around the facilities
in S.

I Claim 11. Let S ∈ F be any feasible solution of the F-PCM instance constructed by
Algorithm 1. Then,

∑
f∈S val(f) =

∑
v∈R(S)|Chld(v)|.

Proof. For an f ∈ S, according to Line 10 of the algorithm, val(f) > 0 only if f ∈ BF (v, 1)
for some v ∈ Repscov. Also, by definition of the F-PCM problem, |BF (v, 1) ∩ S| ≤ 1 for any
v ∈ Repscov. That is, there is exactly one f ∈ BF (v, 1) ∩ S for each v ∈ R(S) and again by
line 10, val(f) = |Chld(v)|. Summing this equality over all v ∈ R(S) and the corresponding
f ∈ BF (v, 1) ∩ S proves the claim. J

I Claim 12. Let I = (F,C, d,m,F) be a Robust F-Supplier instance and let cov : C → R≥0
be a coverage function. Let J = (F,F,P, val) be the F-PCM instance returned by Algorithm 1
on input I and cov. Given any feasible solution S to J, we can cover at least val(S) customers
of C by opening radius 3-balls around each facility in S.

Proof. By considering R(S) from Definition 10, Claim 11 gives:
∑

v∈R(S)|Chld(v)| =∑
f∈S val(f). From Fact 6, we get that for all u, v ∈ Repscov,Chld(u) ∩ Chld(v) = ∅. Thus,

|
⋃

v∈R(S) Chld(v)| =
∑

v∈R(S)|Chld(v)| = val(S). Furthermore, by Claim 9, {v ∈ C : d(v, S) ≤
3} ⊇

⋃
u∈R(S) Chld(u) implying the size of the former is at least val(S), thus proving the

lemma. J

The above claim motivates the following definition of valuable cov assignments, and the
subsequent lemma.

I Definition 13. An assignment {cov(v) ∈ R≥0 : v ∈ C} is valuable with respect to a Robust
F-Supplier instance I = (F,C, d,m,F), iff opt(J) ≥ m, where J is the F-PCM instance
returned by Algorithm 1 from I and cov.

ICALP 2018



30:8 Generalized Center Problems with Outliers

I Lemma 14. Given an instance I of the Robust F-Supplier problem with opt(I) = 1, and a
valuable assignment cov with respect to it, we can obtain a 3-approximate solution in time
poly(|I|) + TA(J) where J is the instance constructed by Algorithm 1 from I and cov.

Proof. Since cov is valuable, opt(J) ≥ m. We use solver A to return an optimal solution
S ∈ F with val(S) ≥ m. Claim 12 implies that S is a 3-approximate solution to I. J

3.2 The Round and Cut Approach
If the guess ôpt = 1 for I = (F,C, d,m,F) is at least opt(I), then the following polytope
must be non-empty. To see this, if S∗ ∈ F is the optimal solution to I then set zS∗ := 1 and
zS := 0 for S ∈ F\S∗.

PI
cov = {(cov(v) : v ∈ C) :

∑
v∈C

cov(v) ≥ m (PI
cov.1)

∀v ∈ C, cov(v)−
∑

S∈F:d(v,S)≤1

zS = 0 (PI
cov.2)∑

S∈F

zS = 1 (PI
cov.3)

∀S ∈ F, zS ≥ 0} (PI
cov.4)

Even though PI
cov has exponentially many auxiliary variables (zS for all S ∈ F), its dimension

is still |C|. The following gives a family of valid inequalities for PI
cov via Farkas lemma.

I Lemma 15. Let λ(v) ∈ R for every v ∈ C be such that∑
v∈C:

d(v,S)≤1

λ(v) ≤ m ∀S ∈ F (V1)

Then any cov ∈ PI
cov satisfies∑

v∈C

λ(v)cov(v) ≤ m (V2)

Proof. Given cov ∈ PI
cov, there exists {zS : S ∈ F} such that together they satisfy (PI

cov.1)-
(PI

cov.4).∑
v∈C

λ(v)cov(v) =(PI
cov.2)

∑
v∈C

λ(v)
∑

S∈F:
d(v,S)≤1

zS =
∑
S∈F

zS

∑
v∈C:

d(v,S)≤1

λ(v)

≤(V1),(PI
cov.4)

m
∑
S∈F

zS =(PI
cov.3)

m

J

The next lemma shows that all cov’s in PI
cov are valuable.

I Lemma 16. Suppose an assignment {cov(v) ∈ R≥0 : v ∈ C} is not valuable with respect to
I = (F,C, d,m,F). Then there is a hyper-plane separating it from PI

cov that can be constructed
in polynomial time.
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Proof. If
∑

v∈C cov(v) < m, this inequality itself is a separating hyper-plane and we are
done. So we may assume

∑
v∈C cov(v) ≥ m.

Let J = (F,F,P, val) be the F-PCM instance constructed by Algorithm 1 from I and cov.
Fix S ∈ F and recall from Definition 10 that R(S) = {v ∈ Repscov : BF (v, 1) ∩ S 6= ∅}. Pick
an arbitrary T ⊆ S for which |BF (v, 1) ∩ T | = 1, for all v ∈ R(S). Observe that by down-
closedness of F, we have T ∈ F which implies T is a feasible solution for J, and since cov is not
valuable val(T ) < m. Furthermore, Claim 11 applied to T gives val(T ) =

∑
v∈R(T ) |Chld(v)|.

Since R(S) = R(T ) and |Chld(v)| is integer-valued, we get:∑
v∈R(S)

|Chld(v)| ≤ m− 1 (1)

Let α = m
m−0.5 > 1. Define λ(v) for v ∈ C as:

λ(v) =
{
α|Chld(v)| v ∈ Repscov

0 for all other v ∈ C

Now observe that for any S ∈ F:∑
v∈C:d(v,S)≤1

λ(v) =
∑

v∈Repscov:d(v,S)≤1

α|Chld(v)| = α
∑

v∈R(S)

|Chld(v)| ≤ α(m− 1) < m

That is, λ(v)’s satisfy (V1). Now we prove (V2) is not satisfied thus it can be used to separate
cov from PI

cov.∑
v∈C

λ(v)cov(v) = α
∑

v∈Repscov

|Chld(v)|cov(v) = α
∑

v∈Repscov

∑
u∈Chld(v)

cov(v)

≥Fact 7 α
∑

v∈Repscov

∑
u∈Chld(v)

cov(u) =Fact 6 α
∑
v∈C

cov(v) ≥ αm > m

J

Proof of Theorem 4. Given the guess ôpt which is scaled to 1, we use the ellipsoid algorithm
to check if PI

cov is empty or not. Whenever ellipsoid asks if a given cov is in PI
cov or not,

run Algorithm 1 for this given cov to construct the corresponding F-PCM instance J and
use algorithm A, promised in the statement of Theorem 4, to solve it. If opt(J) ≥ m, then
Lemma 14 implies that we have a 3-approximate solution. Otherwise, cov is not valuable,
and we can use Lemma 16 to find a separating hyperplane. In polynomial time, either we
get a cov ∈ PI

cov which by Lemma 16 has to be valuable, or we prove PI
cov is empty and

we modify our ôpt guess. For the correct guess, the latter case won’t occur and we get a
3-approximate solution. J

4 Applications and Extensions

In this section we elaborate on the applications and extensions stated in the Introduction.
We begin with looking at specific instances of F which have been studied in the literature,
and some which have not.

Single and Multiple Knapsack Constraints. We look at

FKN := {S ⊆ F : for i = 1, . . . , d,
∑
v∈S

wi(v) ≤ ki}
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where there are d weight functions over F and ki’s are upper bounds on these weights. Of
special interest is the case d = 1 in which we get the robust knapsack supplier problem also
called the weighted k-supplier problem with outliers.

The F-PCM problem for the above FKN has the following complexity: When d = 1, the
problem can be solved in polynomial time. Indeed, given a partition P, since val(u) = val(v)
for all v in the same part, any solution which picks a facility from a part A ∈ P may as well
pick the one with the smallest weight in that part. Thus, the problem boils down to the
usual knapsack problem in which we have |P| items where the item corresponding to part
A ∈ P has weight minv∈A w(v) and value val(v). Since the values are poly-bounded, this
problem is solvable in polynomial time. Thus, we get the following corollary to Theorem 4
resolving the open question raised in [10] and [15].

I Theorem 17. There is a polynomial time 3-approximation to the robust knapsack center
problem.

When d > 1, then the F-PCM problem is NP-hard even when val is poly-bounded. However,
if the wi’s are also poly-bounded (actually one of them can be general), then the F-PCM
problem can be solved in polynomial time using dynamic programming. This problem was in
fact studied in [17] (the conference version) and is called the suitcase problem there. Thus,
we get the following corollary to Theorem 4 extending the result in [17].

I Theorem 18. There is a polynomial time 3-approximation to the robust multiple-knapsack
center problem if the number of weights is a constant and all but possibly one weight function
are poly-bounded.

Single and Multiple Matroid Constraints. We look at

FMat := {S ⊆ F : S ∈ IMi , ∀i = 1, . . . , d}

When d = 1, we get the robust matroid center problem. The F-PCM paper reduces to
finding a maximum value set in IM and a partition matroid induced by P. This is solvable in
polynomial time even when val is general and not poly-bounded, and even when IM is given
as an independent set oracle. Thus, we get the following corollary to Theorem 4 obtaining
the result in [15].

I Theorem 19. [Theorem 1.1 in [15]] There is a polynomial time 3-approximation to the
robust matroid center problem even when the matroid is described as an independent set
oracle.

When there are d > 1 matroids, then the F-PCM problem is NP-hard. Therefore, Theorem 5
implies that for instance, we can have no unicriteria approximation for the robust matroid-
intersection center problem.

Single Knapsack and Single Matroid Constraint. We look at

FKN∩Mat := {S ⊆ F :
∑
v∈S

w(v) ≤ k, S ∈ IM}

which is the intersection of a single matroid and a single knapsack constraint. To the best of
our knowledge, the resulting Robust F-Supplier problem has not been studied before. One
natural instantiation is when F is a collection of high-dimensional vectors with weights and
the constraint on the centers is to pick a linearly independent set with total weight at most k.
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The corresponding F-PCM problem asks us, given a partition P and poly-bounded values
val, to find a set S ∈ IM ∩ IP of maximum value such that w(S) ≤ k, where IP is the
partition matroid induced by P. We don’t know if this problem can be solved in polynomial
time, even in the case when M is another partition matroid.

However, the above problem is related to the exact matroid intersection problem. In this
problem, we are given two matroids M and P, and a weight function w on each ground
element and a budget W. The objective is to decide whether or not there is a set S ∈ IM∩IP

such that w(S) = W. Understanding the complexity of this problem is a long standing
challenge [4, 21, 22]. When the matroids are representable over the same field, then [4]
gives a randomized pseudopolynomial time algorithm for the problem. The following claim
shows the relation between F-PCM and the exact matroid intersection problem; this claim is
essentially present in [3] and the reader can refer to the full version of our paper for the
proof.

I Claim 20. Given an algorithm for the exact matroid intersection problem, one can solve
the F-PCM problem in polynomial time when the weights w are poly-bounded.

Armed with the non-trivial result about exact matroid intersection from [4], we get the
following.

I Theorem 21. Given a linear matroid M and a poly-bounded weight function, there is
a randomized polynomial time 3-approximation to the robust knapsack-and-matroid center
problem.

4.1 The Case of No Outliers
The F-supplier problem, that is the case of m = |C|, may be of special interest. In this
case the problem is easier and the complexity is defined by the complexity of the following
decision problem.

I Definition 22 (F-PCF problem). The input is J = (F,F,P) where F is a finite set, F ⊆ 2F

is a down-closed family and P ⊆ 2F is an arbitrary sub-partition of F . The objective is to
decide whether there exists a set S ∈ F such that |S ∩A| = 1, ∀A ∈ P.

I Theorem 23. If the F-PCF problem can be solved efficiently for any partition P, then the
F-supplier problem has a polynomial time 3-approximation. Otherwise, there is no non-trivial
approximation possible for the F-supplier problem.

Sketch. Run Algorithm 1 with an arbitrary assignment cov (and ignore the val’s). Let
J = (F,F,P) be the resulting F-PCF instance. If the guess ôpt = 1 is correct, then note that
the optimum solution S∗ must satisfy S∗∩A 6= ∅ for all A ∈ P; if not, then the corresponding
v ∈ Repscov can’t be served. Conversely, any S satisfying S ∩A 6= ∅ for all A ∈ P implies a
3-approximate solution. Therefore, an algorithm for F-PCF can either give a 3-approximate
solution or prove the guess ôpt is too low. J

Theorem 4 and Theorem 23 raise the question: is there any set of constraints for which
the problem without outliers is significantly easier than the problem with outliers? We don’t
know the answer to this question, although we guess the answer is yes. For this, it suffices to
design a set system for which F-PCF is easy but F-PCM is hard (perhaps NP-hard). To see
the difference between these problems consider the FKN∩Mat family described in the previous
subsection. We don’t know if F-PCM is easy or hard, but F-PCF is easy: this amounts to
minimizing w(S) over S ∈ IM ∩ BP where BP is the base polytope induced by P. This can
be done in polynomial time, and therefore we get the following corollary.
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I Theorem 24. There is a polynomial time 3-approximation to the knapsack-and-matroid
center problem.

4.2 Handling Approximation
The technique used to prove Theorem 4 is robust enough to translate approximation al-
gorithms for the F-PCM problem to bi-criteria approximation algorithms for the Robust
F-Supplier problem. There are two notions of approximation algorithms for the F-PCM
problem and they lead to two notions of bi-criteria approximation.

The first is the standard notion: a ρ-approximation (for ρ ≤ 1) algorithm that takes
instance J of F-PCM, returns a solution S ∈ F of value val(S) ≥ ρ ·opt(J). The corresponding
bi-criteria approximation notion for the Robust F-Supplier problem is the following: an
(α, β)-approximation algorithm for instance I of Robust F-Supplier returns a solution which
opens centers at S ∈ F and the distance of at least βm customers to S is ≤ α · opt(I). The
proof of Theorem 4 in fact implies the following.

I Theorem 25. Let A be a polynomial time ρ-approximate algorithm for the F-PCM problem.
Then there is a polynomial time (3, ρ)-bi-criteria approximation algorithm for the Robust
F-Supplier problem.

The second notion of approximation for the F-PCM problem is one which satisfies the
constraints approximately. This notion is more problem dependent and makes sense only if
there is a notion of an approximate relaxation FR for the set F. For example, an (1 + ε)-
relaxation for FKN could be the subsets S with wi(S) ≤ (1 + ε) · ki for all i. A ρ-violating
algorithm for an instance J of F-PCM would then return a set S with val(S) ≥ opt(J) but
S ∈ FR which is an ρ-relaxation for F. This defines a different bi-criteria approximation
notion for the Robust F-Supplier problem. An α-approximate β-violating algorithm for the
Robust F-Supplier problem takes an instance I and returns a solution S ∈ FR which is a
β-relaxation for F such that at least m customers in C are at distance at most α · opt(I) to S.

I Theorem 26. Let A be a polynomial time ρ-violating algorithm for the F-PCM problem.
Then there is a polynomial time 3-approximate-ρ-violating algorithm for the Robust F-Supplier
problem.

When F is described by constant d knapsack constraints (with general weights) and a
single matroid constraint, for any constant ε > 0 Chekuri et al. give an (1 + ε)-approximation
algorithm for the F-PCM in [9]. Without the matroid constraint, Grandoni et al. give an
(1 + ε)-violating algorithm in [12]. Together, we get the following corollary. The latter
recovers a result from [10].

I Theorem 27. Fix any constant ε > 0. There is a polynomial time (3, (1 + ε))-bi-criteria
approximation algorithm for the robust supplier problem with constant many knapsack con-
straints and one matroid constraint. There is a polynomial time 3-approximate (1+ε)-violating
algorithm for the robust supplier problem with constant many knapsack constraints.
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