Fully Dynamic Almost-Maximal Matching:
Breaking the Polynomial Worst-Case Time Barrier

Moses Charikar!
Computer Science Department, Stanford University, Stanford, California, USA

Shay Solomon?
IBM Research, T. J. Watson Research Center, Yorktown Heights, New York, USA

—— Abstract

The state-of-the-art algorithm for maintaining an approximate maximum matching in fully dy-
namic graphs has a polynomial worst-case update time, even for poor approximation guarantees.
Bhattacharya, Henzinger and Nanongkai showed how to maintain a constant approximation to
the minimum vertex cover, and thus also a constant-factor estimate of the maximum matching
size, with polylogarithmic worst-case update time. Later (in SODA’17 Proc.) they improved the
approximation to 2 + €. Nevertheless, the fundamental problem of maintaining an approximate
matching with sub-polynomial worst-case time bounds remained open.

We present a randomized algorithm for maintaining an almost-maximal matching in fully
dynamic graphs with polylogarithmic worst-case update time. Such a matching provides (2 + €)-
approximations for both maximum matching and minimum vertex cover, for any € > 0. The
worst-case update time of our algorithm, O(poly(logn,e~!)), holds deterministically, while the
almost-maximality guarantee holds with high probability. Our result was done independently of
the (24 €)-approximation result of Bhattacharya et al., thus settling the aforementioned problem
on dynamic matchings and providing essentially the best possible approximation guarantee for
dynamic vertex cover (assuming the unique games conjecture).

To prove this result, we exploit a connection between the standard oblivious adversarial
model, which can be viewed as inherently “online”, and an “offline” model where some (limited)
information on the future can be revealed efficiently upon demand. Our randomized algorithm
is derived from a deterministic algorithm in this offline model. This approach gives an elegant
way to analyze randomized dynamic algorithms, and is of independent interest.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms, Theory of
computation — Graph algorithms analysis, Theory of computation — Dynamic graph algorithms

Keywords and phrases dynamic graph algorithms, maximum matching, worst-case bounds
Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.33

Related Version A full version of the paper can be found at [9], https://arxiv.org/abs/1711.
06883.

Acknowledgements The second author is grateful to Danupon Nanongkai and Uri Zwick for
their suggestion to study dynamic matchings in the offline model.

L Supported by NSF grant CCF-1617577 and a Simons Investigator Award.
2 Supported by the IBM Herman Goldstine Postdoctoral Fellowship.

© Moses Charikar and Shay Solomon;
oY licensed under Creative Commons License CC-BY
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Déaniel Marx, and Donald Sannella;
Article No. 33; pp. 33:1-33:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.33
https://arxiv.org/abs/1711.06883
https://arxiv.org/abs/1711.06883
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2

Dynamic Almost-Maximal Matching

1 Introduction

Consider a fully dynamic setting where we start from an initially empty graph on n fixed
vertices Gg, and at each time step i a single edge (u,v) is either inserted in the graph G;_1
or deleted from it, resulting in graph G;. The problem of maintaining a large matching or a
small vertex cover in such graphs has attracted a lot of research attention in recent years. In
general, one would like to devise an algorithm for maintaining a “good” matching and/or
vertex cover with polylog(n) update time (via a data structure that answers queries of whether
an edge is matched or not in constant time), where “good" means a good approximation to
the maximum matching and/or the minimum vertex cover, and the update time is the time
required by the algorithm to update the matching/vertex cover at each step.

One may try to optimize the amortized (i.e., average) update time of the algorithm or its
worst-case (i.e., maximum) update time, over a worst-case sequence of graphs. There is a
strong separation between the state-of-the-art amortized bounds and the worst-case bounds.
A similar separation exists for various other dynamic graph problems, such as spanning tree,
minimum spanning tree and two-edge connectivity. Next, we provide a brief literature survey
on dynamic matchings. (See [17, 2, 18, 19] for a detailed survey.)

In FOCS’11, [2] devised an algorithm for maintaining a mazimal matching with an
expected amortized update time of O(logn) under the oblivious adversarial model.® Building
on [2], [19] devised a different randomized algorithm with constant amortized update time.
Note that a maximal matching provides a 2-approximation for both the maximum matching
and the minimum vertex cover, while a better-than-2 approximate vertex cover cannot
be efficiently computed under the unique games conjecture (UGC) [14]. In SODA’15
[5] (respectively, STOC’16 [6]) devised a deterministic algorithm for maintaining (2 + €)-
approximate vertex cover (resp., matching) with amortized update time O(logn/e?) (resp.,
O(poly(logn,e~1))). All these time bounds are amortized.

All the known algorithms for maintaining a better-than-2 approximate matching (for
general graphs) require polynomial update time. In FOCS’13 [12] devised a deterministic
algorithm for maintaining (1 + €)-approximate matching with a worst-case update time
O(y/m/€?), improving over the 3/2-approximation result of [16]. [4] maintained (3/2 + ¢)-
approximate matching with an amortized update time O(m'/*/e*?), generalizing their earlier
work [3] for bipartite graphs, but the time bound in [3] is worst-case not amortized.

There are two main open questions in this area. The 1st is if one can maintain a
better-than-2 approximate matching in amortized polylogarithmic update time. The 2nd is:

» Question 1. Can one maintain a “good” (close to 2) approximate matching and/or vertex
cover with worst-case polylogarithmic update time?

In a recent breakthrough, Bhattacharya, Henzinger and Nanongkai devised a deterministic
algorithm that maintains a constant approximation to the minimum vertex cover, and
thus also a constant-factor estimate of the maximum matching size, with polylogarithmic
worst-case update time. While this result makes significant progress towards Question 1,
this fundamental question remained open.* In particular, no algorithm for maintaining a
matching with sub-polynomial worst-case update time was known, even if a polylogarithmic
approximation guarantee on the matching size is allowed!

3 In the standard oblivious adversarial model (cf. [8], [13]), the adversary knows all the edges in the graph
and their arrival order, but is not aware of the random bits used by the algorithm.

4 Later (in SODA’17 Proc. [7]) Bhattacharya et al. significantly improved the approximation to 2 + e.
However, our result was done independently to [7]. Moreover, [7] solves Question 1 only for vertex cover.
Independently of us, Arar et al. [1] solves Question 1 for matching by building on [7].

M. Charikar and S. Solomon

In this paper we devise a randomized algorithm that maintains an almost-maximal
matching (AMM) with a polylogarithmic update time. We say that a matching for G is
almost-mazimal w.r.t. some slack parameter €, or (1 — €)-mazimal in short, if it is maximal
w.r.t. any graph obtained from G after removing e - |M*| arbitrary vertices, where M* is
a maximum matching for G. Just as a maximal matching provides a 2-approximation for
matching and vertex cover, an AMM provides a (2 + €)-approximation. We show:

» Theorem 2. For any € > 0, one can maintain an AMM with worst-case update time
O(poly(logn, e~1)), where the (1 — €)-mazimality guarantee holds with high probability.

Our update time is O(max{log’ n/¢,log” n/e*}); reducing this bound towards constant lies
outside the scope of this paper; see Sec. 9 in the full version [9] (shortly, “i.t.f.v.).

The algorithm’s worst-case guarantee can be strengthened, using [20], to bound the
number of changes (replacements) to the matching. Optimizing this measure is important in
various practical applications; refer to [20] for a motivation of this measure.

Our result resolves Question 1 in the affirmative, up to the € dependency. In particular, it
is essentially the best result possible under the UGC for the dynamic vertex cover problem; it

started to circulate in Nov. 2016, and is independent of the (2 + ¢)-vertex cover result of [7].

On the way to this result, we devise a deterministic algorithm that maintains an AMM
with a polylogarithmic update time in a natural offline model that is described next. This
deterministic algorithm may be of independent interest, as the offline setting seems important
in its own right; see p. 3 i.t.f.v. for further details.

1.1 A Technical Overview

The offline model. Suppose the entire update sequence is known in advance, and is stored
in some data structure. Suppose further that for any ¢, accessing the ith edge update via the
data structure is efficient, taking polylog(n) or even O(1) time. A natural question is whether
one can exploit this knowledge of the future to obtain better algorithms for maintaining a
good matching and/or vertex cover. Consider in particular the maximal matching problem,
and a deletion of a matched edge (u,v) from the graph (which is the problematic part). If
has a free neighbor, we need to match them, and similarly for v. The algorithm may naively
scan the neighbors of u and v, which may require O(n) time. Surprisingly, this naive O(n)
bound is the state-of-the-art for general (dense) graphs, unless one allows both randomization
and amortization [2, 19]. Can one do better in the offline setting?

We argue that a dynamic maximal matching can be maintained in the offline setting
deterministically with constant amortized update time. To this end, we make the following
observation: The machinery of [2, 19] extends seamlessly to the offline setting. More
specifically, in contrast to the algorithms [2, 19], which choose the matched edge of v
uniformly at random among a subset of its adjacent edges F, that is computed carefully by
those algorithms (details below), in the offline setting we choose the matched edge to be the
one that will be deleted last among E,. (We do not choose the edge that will be deleted
last among all adjacent edges of v, as this is doomed; see the technical overview i.t.f.v). Tt is
readily verified that the analysis of [2, 19] carries over to the offline setting directly.

The resulting deterministic algorithm for the offline setting is inherently amortized,
whereas our focus is on worst-case bounds. To obtain good worst-case bounds, we build
on the machinery of [2, 19]. The price of translating the amortized bounds of [2, 19] into a
similar worst-case bound is that the maintained matching is no longer maximal, but rather

33:3

ICALP 2018

334

Dynamic Almost-Maximal Matching

almost-maximal.> This translation is highly non-trivial, and is carried out in two stages.
First, we consider the offline setting, and devise a deterministic algorithm there. Coping with
the offline setting is easier than with the standard setting, as it allows us to ignore intricate
probabilistic considerations, and to handle them separately. Second, we convert the results
for the offline setting to the standard setting. The algorithm itself remains essentially the
same. (Instead of choosing the edge that will be deleted last, choose a random edge.) On the
other hand, showing that the maintained matching remains almost-maximal requires more
work. This two-stage approach thus provides an elegant way to analyze randomized dynamic
algorithms, and we believe it would be useful in other dynamic graph problems as well.

The framework of [2, 19]. We next provide a rough description of the amortized framework
of [2, 19]. (The approach of [19] builds on the framework of [2] and extends it; for clarity, we
won’t distinguish between [2] and [19].)

Matched edges will be chosen randomly. If an edge e = (u,v) is chosen to the matching
uniformly at random among k adjacent edges of either u or v, w.l.o.g. u, we say that its
potential is k. Under the oblivious adversarial model, the expected number of edges incident
on u that are deleted from the graph before deleting edge (u,v) is k/2. Thus, following a
deletion of a matched edge (u,v) with potential k from the graph, we have time O(k) to
handle v and v in the amortized sense.

Each vertex v dynamically maintains a level £,; informally, v’s level will be logarithmic in
the potential value of the matched edge adjacent to v. Free vertices are at level —1; matched
vertices are at levels between 0 and O(logn). Based on vertices’ levels, a dynamic edge
orientation is maintained, where each edge is oriented towards the lower level endpoint.

When a vertex u becomes free, the algorithm (usually) chooses a mate for it randomly. If
this mate w is already matched, say to w’, the algorithm has to delete edge (w,w’) from the
matching in order to match u with w. However, we will be able to compensate for the loss
in potential value (caused by deleting edge (w,w’) from the matching) if it is significantly
smaller than the potential of the newly created matched edge. Since vertices’ levels are
logarithmic in their potential, all neighbors of u with lower level should have potential value
at most half the potential value of the new matched edge on u. In other words, for each of
those neighbors, we can afford to break their old matched edge. Hence, the mate w of u will
be chosen uniformly at random among wu’s neighbors with lower level.

A central obstacle is to distinguish between neighbors of u with level ¢, and those with
lower level. Indeed, it is possible that most of u’s neighbors have level £,,, and none of them
can be chosen as a mate for u. Roughly speaking, the execution of the algorithm splits into
two cases. If the current out-degree of u is not (much) larger than its out-degree at the time
its old matched edge got created, then we should be able to afford to scan all of them, due
to sufficiently many adversarial edge deletions that are expected to occur. Notice that in
this case the charging argument is based on past edge deletions.

The second case is when the out-degree of u is (much) larger than what it was when the
old matched edge got created. The time needed for distinguishing u’s neighbors at level
4, from those at lower levels could be significantly larger than the “money” we got from

5 The amortized update time analysis of the algorithm from [2] (both the FOCS’11 and subsequent journal
SICOMP’15 versions) was erroneous, but was corrected in a subsequent erratum by the same authors.
(The amortized update time analysis of the algorithm from [19] is different than the one used in [2], and
does not have that mistake.) Although our algorithm builds on the machinery of [2, 19], the mistake in
[2] does not affect the current paper, as we provide an independent analysis for a different algorithm,
which bounds the worst-case update time of our algorithm rather than the amortized update time.

M. Charikar and S. Solomon

past edge deletions. In this case the algorithm raises u to a possibly much higher level £*,
where there are not too many neighbors for u at that level as compared to the number of
neighbors at lower levels. Having raised u to that level, we can perform the random sampling
of its mate among all neighbors of level lower than ¢*. Notice that in this case the charging
argument is not based on the past, but rather on future edge deletions.

Our approach. Note that the framework of [2, 19] is inherently amortized: Every once
in a while there are “expensive” operations, which are charged to “cheap” operations that
occurred in the past or will occur in the future. To obtain a low worst-case update time, we
should be cheap in any time interval, thus we can rely neither on the past nor the future.
Consider a matched edge (u,v) deleted by the adversary. We expect the adversary to make
many edge deletions on at least one of these endpoints before deleting this edge. Alas, it
is possible that all these edge deletions occurred a long time ago, which is useless for a
worst-case algorithm. Consider the offline setting, and let e, ..., e, be n arbitrary matched
edges with potential value k. For each such edge e;, let S(e;) be its sample, i.e., the set of
edges from which e; was sampled to the matching. In the offline setting e; will be deleted
only after all k¥ — 1 other edges from its sample have been deleted. However, it is possible
that the adversary first deletes the first k — 1 edges from the samples of each of the matched
edges, and only then turn to deleting the matched edges. Assuming k is large, it takes a
long time for the adversary to delete the first n(k — 1) edges from all samples, but the
amortized algorithms of [2, 19] remain idle during all this time. An algorithm with a low
worst-case update time must be active in this time interval, as immediately afterwards the
adversary can remove the n matched edges from the graph, much faster than the algorithm
can add edges to the matching in their place, leading to a poor approximation guarantee.
Hence, at any point in time, the algorithm needs to be proactive and protect itself from such
a situation happening in the future.

Generally, while in an amortized algorithm invariants may sometimes be violated and
then restored via expensive operations, an algorithm with a low worst-case update time
should persistently “clean” the graph, making sure that it is never close to violating any
invariant. Naturally, we will need to maintain additional invariants to those maintained by
the amortized algorithms [2, 19]. To this end we employ four different data structures that
we call schedulers, each for a different purpose. Each of those schedulers consists of O(logn)
sub-schedulers, a single sub-scheduler per level. Next we fix some level ¢ ~ log k, where k is
the potential of the matched edges on that level, and focus on it.

The scheduler unmatch-schedule periodically removes edges from the matching, one
after another, by always picking a matched edge whose remaining sample (i.e., the set of
edges from the sample that have not been deleted yet from the graph) is smallest. As strange
as it might seem, this strategy enables us to guarantee that only few matched edges will ever
be deleted by the adversary. Note that removing a matched edge from the matching is not
a cheap operation, as we need to find new mates for the two endpoints of the edge. Thus,
the execution of the scheduler must be simulated over sufficiently many adversarial updates,
which may include more deletions. But, as we control the rate at which the scheduler is
working, we can make sure that it works sufficiently faster than the adversary. Therefore, in
this “game” between the scheduler and the adversary, the scheduler will always win.

The role of unmatch-schedule is to make sure that all the samples are pretty full.
Intuitively, this provides the counter-measure of relying on past adversarial edge deletions, as
done in the amortized argument. The next scheduler rise-schedule provides the counter-
measure of relying on future adversarial edge deletions. Recall that future edge deletions

33:5

ICALP 2018

33:6

Dynamic Almost-Maximal Matching

are used in the amortized argument only in the case that a vertex had to rise to a higher
level, which occurs only if its out-degree became too large for its current level. The role of
rise-schedule is to make sure that vertices’ out-degrees are always commensurate with
their level. This scheduler periodically raises vertices to the level £ of which it is in charge,
one after another, by always choosing to raise a vertex with the largest number of neighbors
at level lower than ¢. Although the two schedulers are based on the same principle, the
game that we play here is not between the scheduler and the adversary, because here the
algorithm itself may change the level of vertices and their out-degree, so rise-schedule has
to compete against both the adversary and the algorithm. In contrast to the other scheduler,
speeding up the rate at which rise-schedule works will not help winning the game. Instead,
we manage to bound the speed of this scheduler with respect to that of the (adversary +
algorithm), which enables us to show that the out-degree of all vertices is always in check.
For the offline model, these two schedulers suffice. However, in the oblivious adversarial
model, the adversary will manage to delete some matched edges from time to time. The
scheduler free-schedule periodically handles all the vertices that become free due to the
adversary, one after another. Using the property that all samples are always pretty full,
we manage to prove that only an e-fraction of the matched edges get destroyed by the
adversary at any time interval. Note that this bound is probabilistic — to make sure that it
indeed occurs with high probability, we also use another scheduler shuffle-schedule, which
periodically removes a random edge from the matching. For technical reasons, it is vital that
shuffle-schedule would work sufficiently faster than some of the other schedulers.

2 The Update Algorithm

2.1 Invariants and schedulers. Our algorithm builds on the amortized algorithms by
[2, 19], which maintain for each vertex v a level ¢, with —1 < ¢, < logy(n — 1), where
v = O(logn). (We use logarithms in base v = O(logn), whereas [2] and [19] use base 2 and
5, respectively.) Based on the levels of vertices, an edge orientation is maintained, with the
vertex out-degree serving as an important parameter. The amortized algorithms of [2, 19]
maintain the following invariants (Invariants 3(a)-3(d)) at all times. i.e., these invariants
hold at the end of the execution of the update algorithms (and before the next update
operation occurs). These invariants may become violated throughout the execution of the
update algorithms. Also, the runtime of the update algorithms of [2, 19] may be 2(n) in the
worst case, thus it may take them a lot of time to restore the validity of these invariants, once
violated. We added a comment to the right of each of these invariants, either /* maintained
/ or / partially maintained */, to indicate jf the respective invariant is maintained fully
or only partially by our new algorithm. Our algorithm will maintain Invariants 3(a) and
3(b) at all times, as in the amortized algorithms [2, 19], where Invariants 3(c) and 3(d) are
maintained only partially. Next, we make this statement precise.

» Invariant 3.

(a) Any matched vertex has level at least 0. /* maintained */

(b) The endpoints of any matched edge are of the same level, and this level remains unchanged
until the edge is deleted from the matching. (We henceforth define the level of a matched
edge, which is at least 0 by item (a), as the level of its endpoints.) /* maintained */

(c) Any free vertex has level -1 and out-degree 0. (The matching is mazimal.) /* partially
maintained */

(d) An edge (u,v) with £, > £, is oriented by the algorithm as u — v. (If £, = €, the
orientation of (u,v) is determined suitably by the algorithm.) /* partially maintained */

M. Charikar and S. Solomon

Once a matched vertex becomes free, its level will exceed -1 until the update algorithm
handles it. We say that such a vertex is temporarily free (shortly, TF), meaning that it is
not matched to any vertex yet, but its level and out-degree remain temporarily as before.
From now on, we distinguish between free and TF vertices: Free vertices are unmatched and
their level is -1, while TF vertices are unmatched and their level exceeds -1. By making this
distinction, Invariant 3(c) holds true as stated. Combining it with Invariant 3(a), we obtain:

» Invariant 4. Any vertex of level -1 is unmatched and has out-degree 0.

Invariants 3(c) and 4 do not apply to TF vertices; thus there may be edges between TF (thus
unmatched) vertices, hence the matching is not maximal. The challenge is to guarantee that
the number of TF vertices is small w.r.t. the number of matched vertices, yielding an AMM.

TF vertices are handled via data structures that we call schedulers. We distinguish
between vertices that become TF due to the adversary and those due to the update algorithm
itself. For each level £, we maintain a queue Q of level-£ vertices that become TF due to
the adversary, and the vertices in @y will be handled, one after another, via appropriate
schedulers. We will need to make sure that the total number of vertices over the queues
of all levels is in check at all times. The various schedulers need to work together, without
conflicting each other; the exact way in which they work is described soon.

A TF vertex that is being handled by some scheduler is called active, and the process
of handling it may be simulated over multiple update operations. Hence, there might be
inconsistencies in the data structures throughout this process concerning the active vertices.
To account for those inconsistencies, we hold a list of active vertices, denoted Active, and we
will make sure that this list is of size O(log, n) = O(logn) at any point in time. By bounding
the number of active vertices, we can authenticate the up-to-date information concerning
active vertices efficiently; this authentication process is described i.t.f.v in Section 2.3. Our
algorithm maintains the following relaxation of Invariant 3(d).

» Invariant 5. Any edge (u,v), with £, > £, and u,v & Active, is oriented as u — v.

For each vertex v, we maintain its neighbors and outgoing neighbors in linked lists N,
and O,, and its incoming neighbors via a more detailed structure Z,; see p. 8 i.t.f.v.

Our algorithm employs four different schedulers, each of which consists of O(log., n) =
O(logn) sub-schedulers, a single sub-scheduler per level £ = 0,1,...,log.(n — 1). It is
instructive to think of each sub-scheduler as running threads of execution, and of its scheduler
as synchronizing O(logn) threads, one per level. Each thread executed by a level-¢ sub-
scheduler, hereafter level-¢ thread, will run in the same amount of time T, = +* - @(log4 n),
by “sleeping” if finishing the execution prematurely. To achieve a low worst-case update
time, the execution of any such thread is not carried out at once, but is rather carried out
(or simulated) over multiple update operations, simulating a fixed number of computation
steps per update operation; we refer to that number as a simulation parameter, and we’ll
use two of them, A := O(log°n/e) and A’ = A-~y = A -O(logn). The schedulers
free-schedule, rise-schedule and shuffle-schedule use a simulation parameter of A’,
whereas unmatch-schedule uses a simulation parameter of A, and is thus “slower” than
the others by a factor of v = ©(logn). The simulation parameters, A or A’, determine the
number of update operations required to finish the execution of the thread, T;/A or Ty/A’,
respectively. We refer to this number as the (level £) simulation time; unlike the simulation
parameters, which do not change with the level, the simulation times grow with each level
by a factor of .

33:7

ICALP 2018

33:8

Dynamic Almost-Maximal Matching

1st scheduler. The first scheduler free-schedule handles all vertices that become TF
due to the adversary; for each level £ = 0,1, ... 7logv(n — 1), the corresponding sub-scheduler
free-schedule, handles all vertices of @)y, one after another. The exact procedure for hand-
ling a TF vertex v, handle-free(v), is described in Section 2.4. Procedure handle-free(v)
will be executed by a single level-¢ thread corresponding to v that runs in an overall time of
Ty, simulating A’ steps of this procedure following each update operation. The logv(n -1)+1
execution threads (over all levels) executed by free-schedule following every update opera-
tion are handled sequentially, by decreasing order of simulation times, and thus by decreasing
order of levels, i.e., the log, (n — 1)-level thread is handled first, then the log. (n — 1) — 1-level
thread, etc., until the O-level thread. Note that these threads execute different calls of
Procedure handle-free, which handle vertices at different levels. [[S: moved this sentence]]
Following each update operation, the log, (n — 1)-level thread simulates A’ steps of its own
call of Procedure handle-free, the log, (n — 1) — 1-level thread simulates A’ steps of its
own call, and so on, hence the total time spent by free-schedule following a single update
operation is A" - (log, (n — 1) + 1) = O(log" n/e).

By the same principle, the total time spent by rise-schedule and shuffle-schedule
following a single update operation will be bounded by A’ - (log,(n —1) +1) = O(log" n/e).
On the other hand, unmatch-schedule has a simulation parameter of A rather than A’
so the total time spent by this scheduler following a single update will be bounded by
A-(log,(n—1)+1) = O(log® n/e). This scheme gives rise to a worst-case update time of
O(log” n/e), and this bound holds deterministically.

2nd scheduler. The second scheduler unmatch-schedule removes matched edges from the
matching; for each ¢, the corresponding sub-scheduler unmatch-schedule, removes level-¢
edges from the matching, one after another, as follows. Each level-¢ matched edge e = (u,v)
is sampled uniformly at random from between (1 — €) - v* and ¢ edges. (In the offline
setting, we choose the edge that will be deleted last among those.) We refer to this edge
set, denoted by S(e), as the sample space (or sample) of e. As time progresses, some edges
of S(e) may be deleted from the graph; denote by S*(e) the original sample of e, with
(1 —¢)-9* <[S*(e)| <+, and by Si(e) = S(e) its sample remaining at time t. The goal
of unmatch-scheduley is to guarantee that the samples of all level-¢ matched edges never
reach (1 — 2¢) - v*; more accurately, unmatch-schedule, maintains the following invariant:

» Invariant 6. For any level-{ matched edges e with Ty/A > 1 and any t, |Si(e)| > (1—2¢)-.

To maintain this invariant, unmatch-schedule, will always remove a matched edge of smallest
remaining sample (can be easily carried out in O(1) time). For each level-¢ matched edge
e = (u,v) that is removed by unmatch-scheduley, its two endpoints v and v become TF,
and they are handled by appropriate calls to Procedure handle-free. More specifically, we
execute Procedure handle-free(u) and then handle-free(v) by running a level-£ thread,
which runs in an overall time of Ty, simulating A steps of execution following each update
operation. The intuition as to why unmatch-schedule, can maintain Invariant 6 is the
following. (See Section 4.2 i.t.f.v. for the formal argument.) Since Ty = 4* - ©(log* n) and
A = O(log” n/e), the simulation time T;/A of a thread run by unmatch-schedule, (which
designates the number of update operations needed for simulating its entire execution) is
O(e(v*/logn)). In other words, unmatch-schedule, can remove a level-£ matched edge
within Ty/A = O(e(y%/logn)) adversarial update operations. On the other hand, the
expected number of adversarial edge deletions needed to turn a “full” level-¢ matched edge e
(with sample |S*(e)| > (1 — €) - 7%) into an “under full” edge (with sample < (1 — 2¢) - v%) is

M. Charikar and S. Solomon

Q(e-~+*). Thus unmatch-schedule, is “faster” than the adversary by at least a logarithmic
factor, assuming Ty/A > 1 (which holds when v* = Q(logn/¢)), a property that suffices for
showing that no edge is ever under full, i.e., the samples of all level-/ matched edges are
always in check. This is the idea behind maintaining the validity of Invariant 6 in levels ¢
for which the simulation time satisfies T;/A > 1. This invariant, in turn, guarantees that
the adversary is unlikely to delete any particular edge from the matching, using which we
show (in Section 6 i.t.f.v.) that the maintained matching is always almost-maximal with
high probability. The complementary regime of levels, namely, levels ¢ for which T,/A < 1,
is trivial and does not rely on Invariant 6, as then the adversary does not make any edge
deletion within the time required by a level-¢ thread to complete its entire execution.

3rd scheduler. Let N,(¢) denote the set of neighbors of v with level strictly lower than £,
and write ¢, (£) = |N,(¢)|. For each vertex v, we will maintain the ¢, (¢) values for all levels
¢ greater than the current level ¢, of v. For any level ¢ < ¢, the corresponding value ¢, (¢)
will not be maintained, and the algorithm will have to compute it “on the fly”, if needed.
The algorithm of [2] maintains the invariant that ¢,(¢) < ~*, for any v and £ > ¢,. (Recall
that + is taken to be constant in [2], whereas here we take v to be ©(logn).) The scheduler
rise-schedule maintains the following relaxation of the invariant from [2], and it does so
by raising vertices to higher levels in a specific order, as described next.

» Invariant 7. For any vertez v and any level £ > £, $,(£) < ~' - O(log®n).

For each level ¢, the corresponding sub-scheduler rise-schedule, is responsible for main-
taining the invariant w.r.t. that level. Whenever a new level-¢ thread is initiated by
rise-scheduley, it starts by authenticating the ¢,(¢) values over all vertices v using the
Active list. (The authentication process takes time O(log” n) to guarantee that all ¢, (¢)
values are up to date, and is described in Section 2.3 i.t.f.v.) Then the thread picks a
vertex v whose ¢, (¢) value is highest among all vertices with level lower than ¢ (can be
easily carried out in O(1) time). These steps take time O(log? n), and are thus carried out
by the thread “instantly”, i.e., without simulating their execution over subsequent update
operations. The same execution thread continues to removing v’s old matched edge (v, w) (if
exists) from the matching, and raises v to level £ by executing Procedure set-level(v, /),
whose description is in Section 2.2. The runtime of this procedure is high, so its execution
is simulated over multiple update operations, simulating A’ execution steps following each
update operation. Then the same execution thread handles the two TF vertices v and w
using Procedure handle-free, i.e., it continues to executing the call to handle-free(v) and
then to handle-free(w), simulating A’ execution steps following each update operation.

4th scheduler. The fourth scheduler shuffle-schedule removes matched edges from the
matching uniformly at random. By working faster than some other schedulers (unmatch-
schedule in particular), it forms a dominant part of the algorithm, using which we show
(Section 6.2 i.t.f.v.) that it provides a near-uniform random shuffling of the matched
edges. This random shuffling facilitates the proof of the assertion that the adversary is
unlikely to delete any particular edge from the matching. For each ¢, the sub-scheduler
shuffle-schedule, always picks a matched edge uniformly at random among all remaining
level-¢ edges, and then removes it from the matching. As with unmatch-schedule,, for each
level-¢ matched edge e = (u, v) that is removed by shuffle-scheduley, its two endpoints u
and v become TF, and they are handled by calls to Procedure handle-free. We execute
these calls (to handle-free(u) and handle-free(v)) by running a level-¢ thread, which runs

33:9

ICALP 2018

33:10

Dynamic Almost-Maximal Matching

in an overall time of Ty, and we simulate A’ (rather than A as with unmatch-scheduley)
execution steps following each update operation, which ensures that shuffle-schedule is
faster than unmatch-schedule by a logarithmic factor. We only need to apply the shuffling
in levels ¢ for which the simulation time satisfies Ty/A > 1, as in the complementary regime
(Ty/A < 1) the adversary does not make any edge deletion within the time required by a
level-¢ thread to complete its entire execution, and then a random shuffling is redundant.

2.2 Procedure set-level(v,£). (This procedure is described in detail in Section 3.1
i.t.f.v.) Whenever the update algorithm examines a vertex v, it may need to re-evaluate
its level. After the new level ¢ is determined (outside this procedure, details below), the
algorithm calls Procedure set-level(v,£). Although setting the level of v to ¢ can be done
instantly, the task of Procedure set-level(v,f) is to update the relevant data structures
as a result of this level change. This process involves updating the sets of outgoing and
incoming neighbors of v and some of its neighbors (or “flipping” the respective edges) so as
to maintain Invariant 5, and also updating the ¢ values of v and its relevant neighbors. We
refer to this (possibly long) process as the falling (if £ < £,) or rising of v (if £ > ¢,); the
thread executing this procedure simulates multiple execution steps following each update
operation. We will need to make sure that any call to set-level(v,¥) is executed by a
level-¢ thread, where ¢ > 7 := max{,,/}. We show (see Lemma 3.2 i.t.f.v.) that the runtime
of this procedure is bounded by O((¢,(£ + 1) +logn) - logn), where ¢, (¢ + 1) is the number
of v’s neighbors of level < £+ 1 at the beginning of this procedure’s execution.

2.3 Procedures handle-insertion(u,v) and handle-deletion(u,wv). (These proced-
ures are described in detail in Section 3.2 i.t.f.v.) An edge insertion (u,v) is handled
(via handle-insertion(u,v)) in the obvious way in time O(log*n), which is within the
time reserved for a single update operation. An edge deletion (u,v) is handled (via
handle-deletion(u,v)) similarly, unless (u,v) is matched, in which case both u and v
become TF, and they are inserted to the queue Qg, (by Invariant 3(b) £, = ¢,). As described
above, free-schedule,, will handle u and v (by making the calls to handle-free(u) and
handle-free(v)), one after another, after handling all preceding vertices in Qg .

2.4 Procedure handle-free(v). (This procedure is described in detail in Section 3.3
i.t.f.v.) This procedure handles a TF vertex v, and is first invoked by the schedulers
as described above, but then also recursively. It starts by computing the highest level
0,0 < £ < 4, where ¢,(¢) > ~*, and the corresponding vertex set Ny(v) of v, in order to
sample a neighbor w of level < £ as v’s new mate. The sampling is done from the set N;(v) of
non-active vertices in Ny(v). To match v with w, we first delete the old matched edge (w,w’)
on w (if exists), thus rendering w’ TF. Second, we let v and w fall and rise to the same level
¢, respectively, by calling to set-level(v,¢) and set-level(w,¥). We then match v with w,
thus creating a new level-¢ matched edge (satisfying Invariant 3(b)). Finally, assuming w
was previously matched to w’, we handle w’ recursively by calling to handle-free(w’). (In
the degenerate case that no level £ as above exists, we have ¢,(0) = 0, i.e., v does not have
any neighbor at level -1, thus we call set-level(v, —1) and v becomes free.)

Our update algorithm guarantees that this procedure is executed by a level-¢, thread,
where £, is v’s level at the outset of the procedure’s execution. The same thread is used
also for all subsequent recursive calls. We show (Lemma 3.1 i.t.f.v.) that the runtime of
Procedure handle-free(v) is bounded by O(y% - log?n).

M. Charikar and S. Solomon

3 Analysis

3.1 Schedulers. The principle that governs the operation of unmatch-schedule and
rise-schedule can be described via a balls and bins game by [11, 15, 10] between two
players. Initially there are N empty bins. In each round Player I removes a bin of largest
size, then Player II may add up to b > 1 balls to bins. The game ends when no bin is left or
when the size of any bin reaches some parameter k. Player I wins (respectively, loses) in the
former (resp., latter) case. As follows from [11, 15, 10], Player I wins if b < m

To prove that unmatch-schedule and rise-schedule maintain Invariants 4 and 5,
respectively, we carefully build on this principle in several steps; see Sections 4.2 and 4.3
i.t.f.v. The analysis of rise-schedule is more intricate than that of unmatch-schedule,
as our update algorithm affects both players in the underlying balls and bins game; we
henceforth focus on rise-schedule, highlighting some insights behind our analysis. Consider
the variant of the game where the bins are not empty initially, but rather contain at most
k' < k balls each. Using the same argument, Player 1 wins if b < % We show that
Invariant 7 is maintained by translating this variant of the game appropriately.

Fix any level £ > 0. Invariant 7 requires that the ¢,(¢) values are always < v* - O(log® n),
for all v with ¢, < £. In the balls and bins game, the bins represent the respective vertex
sets N, (£) (of v’s neighbors of level < ¢ — 1), for ¢, < £. (Our algorithm does not maintain
these sets, only the ¢ values.) The sub-scheduler rise-schedule, is Player I in the game;
it always picks a vertex v whose ¢, (¢) value is highest, and raises it to level ¢. Following
this rise, £, = ¢, hence the invariant for v and level ¢ holds vacuously. Thus, the analog of
removing a bin by Player I is to raise a vertex to level /.

At the beginning the graph is empty, so all vertex levels are -1 and all vertex sets N, (¢)
are empty. Thus initially we have an empty bin for every vertex. As time progresses some
of these bins are being removed due to vertex rising. When a vertex rises to level ¢, all its
bins up to level ¢ are removed instantly. Bins are also created due to vertices falling, by
Procedure handle-free. When a vertex v starts falling from level /, to level ¢, it is as if
the corresponding vertex sets N, (j) in all levels j € {£+1,...,¢,} are created instantly; the

level of v is viewed as its destination level £ from the moment its falling to level ¢ starts.

Although the same vertex set N, (j) may be removed and created multiple times, we view
any such newly created set as a different bin that was there from the game’s outset. To
comply with the initial bound of < &’ balls in any bins, we set k' = k) as 7*, and prove
(Lemma 4.1 i.t.f.v.) that any newly created level-¢ bin contains < k’ = +* balls.

The level-¢ vertex sets N, (¢) and values ¢,(¢) may grow either due to edge insertions
(by adversary) or due to falling vertices (by update algorithm). In other words, Player II
in the game is (adversary + update algorithm). Letting Player I (rise-schedule;) work
faster than the other sub-schedulers is problematic: While this would lead to more vertices
rising, which helps Player I win, each vertex rising may trigger the fall of another vertex,
which has the opposite effect. Instead, we prove (Lemma 4.2 i.t.f.v.) that the number of
balls b = b added to the bins by Player IT while Player I removes a bin is O(y* - logn). It is

easy to verify that the number N of level-¢ bins is polynomially bounded, so In N = ©(logn).

Taking k = O(v* - log? n) completes the translation of the balls and bins game. By setting
the constant appropriately, we obtain b < %7 hence Player I wins the game. Consequently,
we showed that Invariant 7 is maintained.

3.2 Proof of (Almost-)Maximality. To prove almost-maximality, we show that the number
of TF vertices is always an e-fraction of the number of matched edges. We only consider
here TF vertices due to the adversary of levels ¢ with T;/A > 1, as the complementary case

33:11

ICALP 2018

33:12

Dynamic Almost-Maximal Matching

is easy. Any matched edge is created by the algorithm by first determining its level, and
only then performing the sampling. If the edge is matched at level £, it is chosen uniformly
at random from between (1 — €) - v* and 7* edges. We thus fix some level ¢ with T;/A > 1,
and focus on the matched edges at that level. Invariant 6 holds for level £, thus the samples
of all level-/ edges always contain with probability (w.p.) 1 at least (1 — 2¢) - ¢ edges.

Consider any time step ¢, and let V; be the set of vertices of level ¢ at time ¢t. Let
Ay = A, N A7, where A is the event that |V;| = Q(log* n/e®) and A! is the event that
an Q(e)-fraction of the vertices of V; are TF due to the adversary at time ¢t. We argue
that P(4;) = O(n=¢*2), for some (big enough) constant c. This assertion, which is given
as Lemma 6.1 i.t.f.v.; is central in our proof of the almost-maxiamlity guarantee, and the
almost-maximality guarantee is derived as a simple corollary (Theorems 6.5 and 6.6 i.t.f.v.).
Next, we give some insights behind the proof.

Any matched edge is sampled uniformly at random from between (1 — ¢) - v* and ~*
edges. Consider the edges of the sample S*(e) of e in the order they are deleted by the
adversary, even after the edge is removed from the matching, either by the adversary or by
the algorithm. A matched edge is called bad if it is one of the first (at most) 2¢ - v* edges in
this ordering; otherwise it is good. Invariant 6 guarantees that the samples of all level-¢ edges
always contain > (1 — 2¢) - v* edges, so at most 2¢ - v* edges are deleted from the sample of
any matched edge (while it is matched). It follows that a good edge cannot get deleted by
the adversary while it is matched (hereafter, get hit); a bad edge may get hit.

e

The probability of an edge to be bad is < (12_6'%, which is at most 4e for all e < 1/2.
Our argument, alas, is not applied on all matched edges created since the algorithm’s outset,
but rather on a subset of edges that are matched at a certain time step ¢, and there are
dependencies on previous coin flips of our algorithm, which are the result of edges being
removed from the matching by the update algorithm itself (not the adversary). Indeed,
given that some edge e is matched at time ', the sample of e may be significantly reduced,
which could increase the probability of e being bad. To overcome this hurdle, we use
shuffle-schedule to show that the fraction of bad edges at any time is O(e) w.h.p. To
this end, we apply a game, hereafter the shuffling game, where in each step a single edge is
either added or deleted (starting with no edges) by the following players: (1) Adder: adds an
edge, which is bad w.p. < 4e, (2) Shuffler: deletes an edge uniformly at random among
the existing edges, (3) Malicious: deletes a good edge. A newly created matched edge is
bad w.p. < 4e, thus Adder assumes the role of creating matched edges by the algorithm, and
so only an O(e)-fraction of the matched edges created by Adder are bad w.h.p. Shuffler
assumes the role of shuffle-schedule in the algorithm, deleting matched edges uniformly
at random. If the fraction of bad edges during some time interval is O(e), the fraction of bad
edges deleted by Shuffler in this interval is ©(e) w.h.p., hence Shuffler does not change
the fraction of bad edges by too much. The role of Malicious is not to model the exact
behavior of the other (non-shuffled) parts of the algorithm that remove matched edges, but
rather to capture the worst-case scenario that might happen. We show that the affect of
Malicious to the game is negligible, which implies that even if the other (non-shuffled) parts
were to delete only good edges, the fraction of bad edges would be O(e); formally, we prove
that the fraction of bad edges at any step ¢’ is w.h.p. O(€). This proof, provided in Section
6.2 i.t.f.v, is nontrivial and makes critical use of the property that Shuffler is faster than
Malicious by a logarithmic factor; we then show that the parties corresponding to Shuffler
and Malicious in the algorithm indeed satisfy this property (Lemma 6.2 i.t.f.v.).

Equipped with this bound on the fraction of bad edges at any time step, we consider
the last time ' prior to ¢ in which the queue Q, of TF level-£ vertices is empty, i.e., Qy is
non-empty in the entire time interval [t 4+ 1, ¢], thus free-scheduley is never idle during that

M. Charikar and S. Solomon

time. We need to bound the fraction of bad edges not only among the ones matched at time
t', but also among those that get matched between times ¢’ and ¢. The fraction of bad edges
among those matched at time ¢’ is O(e) w.h.p. by the shuffling game; as for those that get
created later on, there is no dependency on coin flips that the algorithm made prior to time
t', and so the probability of any of those edges to be bad is < 4e, independently of whether
previously created matched edges are bad, and by Chernoff we get that the fraction of bad
edges among them is O(e) too. The formal proof for this bound on the fraction of bad edges
among those is provided in Section 6.3 i.t.f.v., and it implies that only an O(e)-fraction of all
those edges may get hit w.h.p., and thus get into the queue. This bound, however, does not
suffice to argue that the number of vertices in @, at time ¢ is an O(e)-fraction of the matching
size, due to edges that get deleted from the matching by the algorithm itself. Nonetheless,
since free-scheduley is no slower than the other sub-schedulers (as its simulation parameter
is A’), we show in Section 6.3 i.t.f.v. that it removes vertices from @, in the interval [t/ + 1,
at least at the same rate as matched edges get deleted by the algorithm. By formalizing
these assertions and carefully combining them, we conclude with the required result, and
with the almost-maximality guarantee as a corollary. The deterministic worst-case update
time follows from the description of the algorithm (refer to the first paragraph of page 8).

—— References

1 Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic match-
ing: Reducing integral algorithms to approximately-maximal fractional algorithms. CoRR,
abs/1711.06625, 2017.

2 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(logn) update time. In Proc. of 52nd FOCS, pages 383-392, 2011 (see also SICOMP’15
version, and subsequent erratum).

3 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Proc.
42nd ICALP, pages 167-179, 2015.

4 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proc. of 26th SODA, pages 692—711, 2016.

5 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully
dynamic data structures for vertex cover and matching. In Proc. 26th SODA, pages 785—
804, 2015.

6 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic ap-
proximation algorithms for fully dynamic matching. In Proc. 48th STOC, pages 398-411,
2016.

7 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approx-
imate maximum matching and minimum vertex cover in O(log3

In Proc. of 28th SODA, pages 470-489, 2017.
8 Larry Carter and Mark N. Wegman. Universal classes of hash functions. In Proc. 9th
STOC, pages 106-112, 1977.
9 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking
the polynomial barrier for worst-case time bounds. CoRR, abs/1711.06883, 2017.
10 Paul F Dietz and Rajeev Raman. Persistence, amortization and randomization. In Proc.
of 2nd SODA, pages 78-88, 1991.
11 Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list.
In Proc. of 19th STOC, pages 365-372, 1987.
12 Manoj Gupta and Richard Peng. Fully dynamic (1 + €)-approximate matchings. In 54th
FOCS, pages 548-557, 2013.

n) worst case update time.

33:13

ICALP 2018

33:14

Dynamic Almost-Maximal Matching

13

14

15

16

17

18

19

20

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proc. of 24th SODA, pages 1131-1142, 2013.

Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2-epsilon. J. Comput. Syst. Sci., 74(3):335-349, 2008.

Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O (1) worst-
case update time. Acta Inf., 26(3):269-277, 1988.

Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proc. 45th STOC, pages 745-754, 2013.

Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Proc. of 42nd STOC, pages 457-464, 2010.

David Peleg and Shay Solomon. Dynamic (1 + €)-approximate matchings: A density-
sensitive approach. In Proc. of 26th SODA, pages 712-729, 2016.

Shay Solomon. Fully dynamic maximal matching in constant update time. In Proc. 57th
FOCS, pages 325—-334, 2016.

Shay Solomon. Dynamic approximate matchings with an optimal recourse bound. CoRR,
abs/1803.05825, 2018.

	Introduction
	A Technical Overview

	The Update Algorithm
	Analysis

