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Abstract
Edit distance is a fundamental measure of distance between strings and has been widely studied
in computer science. While the problem of estimating edit distance has been studied extensively,
the equally important question of actually producing an alignment (i.e., the sequence of edits)
has received far less attention. Somewhat surprisingly, we show that any algorithm to estimate
edit distance can be used in a black-box fashion to produce an approximate alignment of strings,
with modest loss in approximation factor and small loss in run time. Plugging in the result of
Andoni, Krauthgamer, and Onak, we obtain an alignment that is a (log 𝑛)𝑂(1/𝜀2) approximation
in time �̃�(𝑛1+𝜀).

Closely related to the study of approximation algorithms is the study of metric embeddings
for edit distance. We show that min-hash techniques can be useful in designing edit distance
embeddings through three results: (1) An embedding from Ulam distance (edit distance over
permutations) to Hamming space that matches the best known distortion of 𝑂(log 𝑛) and also
implicitly encodes a sequence of edits between the strings; (2) In the case where the edit distance
between the input strings is known to have an upper bound 𝐾, we show that embeddings of
edit distance into Hamming space with distortion 𝑓(𝑛) can be modified in a black-box fashion to
give distortion 𝑂(𝑓(poly(𝐾))) for a class of periodic-free strings; (3) A randomized dimension-
reduction map with contraction 𝑐 and asymptotically optimal expected distortion 𝑂(𝑐), improving
on the previous �̃�(𝑐1+2/ log log log 𝑛) distortion result of Batu, Ergun, and Sahinalp.
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1 Introduction

The edit distance Δed(𝑥, 𝑦) between two strings 𝑥 and 𝑦 is the minimum number of character
insertions, deletions, and substitutions needed to transform 𝑥 into 𝑦. This is a fundamental
distance measure on strings, extensively studied in computer science [2–5, 9, 11, 17, 21, 24].
Edit distance has applications in areas including computational biology, signal processing,
handwriting recognition, and image compression [19]. One of its oldest and most important
uses is as a tool for comparing differences between genetic sequences [1, 19,20].

The textbook dynamic-programming algorithm for edit distance runs in time 𝑂(𝑛2)
[20, 23, 24], and can be leveraged to recover a sequence of edits, also known as an alignment.
The quadratic run time is prohibitively large for massive datasets (e.g., genomic data), and
conditional lower bounds suggest that no strongly subquadratic time algorithm exists [5].

The difficulty of computing edit distance has motivated the development of fast heuristics
[1,10,14,19]. On the theoretical side, the tradeoff between run time and approximation factor
(or distortion) is an important question (see [15, Section 6], and [16, Section 8.3.2]). Andoni
and Onak [4] (building on beautiful work of Ostrovsky and Rabani [21]) gave an algorithm
that estimates edit distance within a factor of 2�̃�(

√
log 𝑛) in time 𝑛1+𝑜(1). The current best

known tradeoff was obtained by Andoni, Krauthgamer and Onak [3], who gave an algorithm
that estimates edit distance to within factor (log 𝑛)𝑂(1/𝜀) with run time 𝑂(𝑛1+𝜀).

Alignment Recovery

While these algorithms produce estimates of edit distance, they do not produce an alignment
between strings (i.e., a sequence of edits). By decoupling the problem of numerical estimation
from the problem of alignment recovery, the authors of [4] and [3] are able to exploit
techniques such as metric space embeddings4 and random sampling in order to obtain better
approximations. The algorithm of [3] runs in phases, with the 𝑖-th phase distinguishing
between whether Δed(𝑥, 𝑦) is greater than or significantly smaller than 𝑛

2𝑖 . At the beginning
of each phase, a nuanced random process is used to select a small fraction of the positions in
𝑥, and then the entire phase is performed while examining only those positions. In total,
the full algorithm samples an �̃�

(︁
𝑛𝜀

Δed(𝑥,𝑦)

)︁
-fraction of the letters in 𝑥. Note that this is a

polynomially small fraction as we are interested in the case where Δed(𝑥, 𝑦) > 𝑛1/2 (if the
edit distance is small, we can run the algorithm of Landau et al. [18] in linear time). Given
that the algorithm only views a small portion of the positions in 𝑥, it is not clear how to
recover a global alignment between the two strings.

We show, somewhat surprisingly, that any edit distance estimator can be turned into an
approximate aligner in a black box fashion with modest loss in approximation factor and
small loss in run time. For example, plugging the result of [3] into our framework, we get an
algorithm with distortion (log 𝑛)𝑂(1/𝜀2) and run time �̃�(𝑛1+𝜀). To the best of our knowledge,
the best previous result that gave an approximate alignment was the work of Batu, Ergun,
and Sahinalp [7], which has distortion that is polynomial in 𝑛.

4 The algorithm of [4] has a recursive structure in which at each level of recursion, every substring 𝛼 of
some length 𝑙 is assigned a vector 𝑣𝛼 such that the ℓ1 distance between vectors closely approximates
edit distance between substrings. The vectors at each level of recursion are constructed from the vectors
in lower levels through a series of procedures culminating in an application of Bourgain’s embedding to
a sparse graph metric. As a result, although the distances between vectors in the top level of recursion
allow for a numerical estimation of edit distance, it is not immediately clear how one might attempt to
extract additional information from the vectors in order to recover an alignment.
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Embeddings of Edit Distance Using Min-Hash Techniques

The study of approximation algorithms for edit distance closely relates to the study of
embeddings [4, 7, 21]. An embedding from a metric space 𝑀1 to a metric space 𝑀2 is a map
of points in 𝑀1 to 𝑀2 such that distances are preserved up to some factor 𝐷, known as
the distortion. Loosely speaking, low-distortion embeddings from a complex metric space
𝑀1 to a simpler metric space 𝑀2 allow algorithm designers to focus on the simpler metric
space, rather than directly handling the more complex one. Embeddings from edit distance
to Hamming space have been widely studied [8, 9, 11, 21] and have played pivotal roles in the
development of approximation algorithms [4] and streaming algorithms [8, 9].

The second contribution of this paper is to introduce new algorithms for three problems
related to embeddings for edit distance. The algorithms are unified by the use of min-hash
techniques to select pivots in strings. We find this technique to be particularly useful for edit
distance because hashing the content of strings allows us to split strings in places where their
content is aligned, thereby getting around the problem of insertions and deletions misaligning
the strings. In several of our results, this allows us to obtain algorithms which are either
more intuitive or simpler than their predecessors. The three results are summarized below.

Efficiently Embedding the Ulam Metric into Hamming Space: For the special case of
the Ulam metric (edit distance on permutations), we present a randomized embedding 𝜑

of permutations of size 𝑛 to poly(𝑛)-dimensional Hamming space with distortion 𝑂(log 𝑛).
Given strings 𝑥 and 𝑦, the Hamming differences between 𝜑(𝑥) and 𝜑(𝑦) not only approximate
the edit distance between 𝑥 and 𝑦, but also implicitly encode a sequence of edits from 𝑥 to 𝑦.
If the output string of our embedding is stored using a sparse vector representation, then
the embedding can be computed in linear time, and its output can be stored in linear space.
The logarithmic distortion matches that of Charikar and Krauthgamer’s embedding into
ℓ1-space [11], which did not encode the actual edits and needed quadratic time and number
of dimensions. Our embedding also supports efficient updates, and can be modified to reflect
an edit in expected time 𝑂(log 𝑛) (as opposed to the deterministic linear time of [11]).

Embedding Edit Distance in the Low-Distance Regime: Recently, there has been consid-
erable attention devoted to edit distance in the low-distance regime [8, 9]. In this regime, we
are interested in finding algorithms that run faster or perform better given the promise that
the edit distance between the input strings is small. This regime is of considerable interest
from the practical point of view. Landau, Myers and Schmidt [18] gave an exact algorithm for
strings with edit distance 𝐾 that runs in time 𝑂(𝑛+𝐾2). Recently, Chakraborty, Goldenberg
and Kouckỳ [9] gave a randomized embedding of edit distance into Hamming space that has
distortion linear in the edit distance with probability at least 2/3.

Given an embedding with distortion 𝛾(𝑛) (a function of the input size), could one obtain
an embedding whose distortion is a function of 𝐾, the edit distance, instead of 𝑛? We answer
this question in the affirmative for the class of (𝐷, 𝑅)-periodic free strings. We say that a
string is (𝐷, 𝑅)-periodic free if none of its substrings of length 𝐷 are periodic with period of
at most 𝑅. For 𝐷 ∈ poly(𝐾) and 𝑅 = 𝑂(𝐾3), we show that the embedding of Ostrovksy
and Rabani [21] can be used in a black-box fashion to obtain an embedding with distortion
2𝑂
(︀√

log 𝐾 log log 𝐾
)︀

for (𝐷, 𝑅)-periodic free strings with edit distance of at most 𝐾. Our result
can be seen as building on the min-hash techniques of [11, Section 3.5] (which in turn extends
ideas from [6]). The authors of [11] give an embedding for (𝑡, 180𝑡𝐾)-non-repetitive strings
with distortion 𝑂(𝑡 log(𝑡𝐾)) [11]. The key difference is that our notion of (𝐷, 𝑅)-periodic
free is much less restrictive than the notion of non-repetitive strings studied in [11].

ICALP 2018
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Optimal Dimension Reduction for Edit Distance: The aforementioned work of Batu et
al. [7] introduced and studied an interesting notion of dimension reduction for edit distance:
An embedding of edit distance on length-𝑛 strings to edit distance on length-𝑛/𝑐 strings
(with larger alphabet size) is called a dimension-reduction map with contraction 𝑐. By first
performing dimension reduction, one can then apply inefficient algorithms to the contracted
strings at a relatively small overall cost. This idea was used in [7] to design an approximation
algorithm with approximation factor 𝑂(𝑛1/3+𝑜(1)). We provide a dimension-reduction map
with contraction 𝑐 and asymptotically optimal expected distortion 𝑂(𝑐), improving on the
distortion of �̃�(𝑐1+2/ log log log 𝑛) obtained by the deterministic map of [7].5

2 Preliminaries

Throughout the paper, we will use Σ to denote an alphabet,6 and Σ𝑛 to denote the set
of words of length 𝑛 over that alphabet. Additionally, we use 𝒫𝑛 to denote the set of
permutations of length 𝑛 over Σ, or equivalently, the subset of Σ𝑛 containing words whose
letters are distinct. Given a string 𝑤 of length 𝑛, we denote its letters by 𝑤1, 𝑤2, . . . , 𝑤𝑛,
and we use 𝑤[𝑖 : 𝑗] to denote the substring 𝑤𝑖𝑤𝑖+1 · · · 𝑤𝑗 (which is empty if 𝑗 < 𝑖).

An edit operation is either an insertion, a deletion, or a substitution of a letter with
another letter in a word. Given words 𝑥 and 𝑦, an alignment from 𝑥 to 𝑦 is a sequence
of edits transforming 𝑥 to 𝑦. The edit distance Δed(𝑥, 𝑦) is the minimum number of edits
needed to transform 𝑥 to 𝑦. Alternatively, it is the length of an optimal alignment.

For convenience, we make the Simple Uniform Hashing Assumption [12], which assumes
access to a fully independent family ℋ of hash functions mapping Θ(log 𝑛) bits to Θ(log 𝑛)
bits with constant time evaluation. For our applications, this can be simulated using the
family of Pagh and Pagh [22], which is independent on any given set of size 𝑛 with high
probability. The family can be constructed in linear time and uses 𝑂(𝑛 log 𝑛) random bits.

3 Alignment Recovery Using a Black-Box Approximation Algorithm

In this section, we show how to transform a black-box edit distance approximation algorithm
𝒜 into an approximate alignment algorithm ℬ. The algorithm ℬ appears here as Algorithm 1.
In the description of the algorithm, we rely on the following definition of a partition.

I Definition 3.1. A partition of a string 𝑢 into 𝑚 parts is a tuple 𝑃 = (𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑚)
such that 𝑝0 = 0, 𝑝𝑚 = |𝑢|, and 𝑝0 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑚. For 𝑖 ∈ {1, . . . , 𝑚}, the 𝑖-th part of 𝑃

is the subword 𝑃𝑖 := 𝑢[𝑝𝑖−1 + 1 : 𝑝𝑖], which is empty if 𝑝𝑖 = 𝑝𝑖−1. A partition of a string 𝑢

into 𝑚 parts is an equipartition if each of the parts is of size either ⌊|𝑢|/𝑚⌋ or ⌈|𝑢|/𝑚⌉.

Formally, we assume that the approximation algorithm 𝒜 has the following properties:
1. There is some non-decreasing function 𝛾 such that for all 𝑛 > 0, and for any two strings

𝑢, 𝑣 with |𝑢| + |𝑣| ≤ 𝑛, Δed(𝑢, 𝑣) ≤ 𝒜(𝑢, 𝑣) ≤ 𝛾(𝑛) · Δed(𝑢, 𝑣).
2. 𝒜(𝑢, 𝑣) runs in time at most 𝑇 (𝑛) for some non-decreasing function 𝑇 which is super-

additive in the sense that 𝑇 (𝑗) + 𝑇 (𝑘) ≤ 𝑇 (𝑗 + 𝑘) for 𝑗, 𝑘 ≥ 0.

We are now ready to state the main theorem of this section.

5 When comparing these distortions, one should note that 2/ log log log 𝑛 goes to zero very slowly; in
particular, 𝑐1+2/ log log log 𝑛 ≥ 𝑐1.66 for all 𝑛 ≤ 1082, the number of atoms in the universe.

6 We assume that characters in Σ can be represented in Θ(log 𝑛) bits, where 𝑛 is the size of input strings.
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Algorithm 1 Black-Box Approximate Alignment Algorithm.
Input: Strings 𝑢, 𝑣 with |𝑢| + |𝑣| ≤ 𝑛.
Parameters: 𝑚 ∈ N satisfying 𝑚 ≥ 2 and an approximation algorithm 𝒜 for edit distance.

1. If |𝑢| ≤ 1, then find an optimal alignment in time 𝑂(|𝑣|) naively.
2. Let 𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑚) be an equipartition of 𝑢.
3. Let 𝑆 consist of the positions in 𝑣 which can be reached by adding or subtracting a power

of (1 + 1
𝑚 ) to some 𝑝𝑖. Formally, define

𝑆 =
(︃

{𝑝0, . . . , 𝑝𝑚} ∪ {|𝑣|} ∪

{︃⌈︃
𝑝𝑖 ±

(︂
1 + 1

𝑚

)︂𝑗
⌉︃

| 𝑖, 𝑗 ≥ 0
}︃)︃

∩ {0, . . . , |𝑣|}.

4. Using dynamic programming, find a partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is
in 𝑆, and such that the cost

∑︀𝑚
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) is minimized:

a. For 𝑙 ∈ 𝑆, let 𝑓(𝑙, 𝑗) be the subproblem of returning a choice of 𝑞0, 𝑞1, . . . , 𝑞𝑗 with
𝑞𝑗 = 𝑙 which minimizes

∑︀𝑗
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖).

b. Solve 𝑓(𝑙, 𝑗) by examining precomputed answers for subproblems of the form 𝑓(𝑙′, 𝑗 −1)
with 𝑙′ ≤ 𝑙 ∈ 𝑆: if 𝑓(𝑙′, 𝑗 − 1) gives a choice of 𝑞0, 𝑞1, . . . , 𝑞𝑗−1 with

∑︀𝑗−1
𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) = 𝑡,

then we can set 𝑞𝑗 = 𝑙 to get
∑︀𝑗

𝑖=1 𝒜(𝑃𝑖, 𝑄𝑖) = 𝑡 + 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]).
(Here, 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]) is computed using 𝒜.)

5. Recurse on each pair (𝑃𝑖, 𝑄𝑖). Combine the resulting alignments between each 𝑃𝑖 and 𝑄𝑖

to obtain an alignment between 𝑢 and 𝑣.

I Theorem 3.2. For all 𝑢, 𝑣 with |𝑢|+ |𝑣| ≤ 𝑛 and 𝑚 ≥ 2, Algorithm 1 outputs an alignment
from 𝑢 to 𝑣 of size at most (3𝛾(𝑛))𝑂(log𝑚 𝑛) ·Δed(𝑢, 𝑣). Moreover, the run time is �̃�(𝑚5 ·𝑇 (𝑛)).

Before continuing, we provide a brief discussion of Algorithm 1. The algorithm first
breaks 𝑢 into a partition 𝑃 of 𝑚 equal parts. It then uses the black-box algorithm 𝒜 to
search for a partition 𝑄 of 𝑣 such that

∑︀
𝑖 Δed(𝑃𝑖, 𝑄𝑖) is near minimal; after finding such

a 𝑄, the algorithm recurses to find approximate alignments between 𝑃𝑖 and 𝑄𝑖 for each 𝑖.
Rather than considering every option for the partition 𝑄 = (𝑞0, . . . , 𝑞𝑚), the algorithm limits
itself to those for which each 𝑞𝑖 comes from a relatively small set 𝑆.

The set 𝑆 is carefully designed so that although it is small, any optimal partition 𝑄opt of 𝑣

can be in some sense well approximated by some partition 𝑄 using only 𝑞𝑖 values from 𝑆. This
limits the multiplicative error introduced at each level of recursion to be bounded by 3𝛾(𝑛);
across the 𝑂(log𝑚 𝑛) level of recursion, the total multiplicative error becomes 3𝛾(𝑛)𝑂(log𝑚 𝑛).
The fact that the recursion depth appears in the exponent of the multiplicative error is why
we partition 𝑢 and 𝑣 into many parts at each level.

Next we discuss several implications of Theorem 3.2. The parameter 𝑚 allows us to trade
off the approximation factor and the run time of the algorithm. When taken to the extreme,
this gives two particularly interesting results.

I Corollary 3.3. Let 0 < 𝜀 < 1 (not necessarily constant). Then 𝑚 can be chosen so that
Algorithm 1 has approximation ratio (3𝛾(𝑛))𝑂( 1

𝜀 ) and run time �̃� (𝑇 (𝑛) · 𝑛𝜀).

I Corollary 3.4. Let 0 < 𝜀 < 1 (not necessarily constant). Then 𝑚 can be chosen so that
Algorithm 1 has approximation ratio 𝑛𝑂(𝜀) and run time �̃�(𝑇 (𝑛)) · (3𝛾(𝑛))𝑂(1/𝜀).

We can apply Corollary 3.3 to the algorithm of Andoni et al. [3] with approximation ratio
(log 𝑛)𝑂(1/𝜀) and run time 𝑂(𝑛1+𝜀) as follows. (Note that 𝜀 may be 𝑜(1).)

ICALP 2018
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I Corollary 3.5. There exists an approximate-alignment algorithm which runs in time
�̃�(𝑛1+𝜀), and has approximation factor (log 𝑛)𝑂(1/𝜀2) with probability 1 − 1

poly(𝑛) .

3.1 Proof of Theorem 3.2
The proof of the theorem will follow from Proposition 3.6, which bounds the run time of
Algorithm 1, and Proposition 3.11, which bounds the approximation ratio.

Throughout this section, let 𝑢, 𝑣 and 𝑚 be the values given to Algorithm 1. Let 𝑃 =
(𝑝0, . . . , 𝑝𝑚) be the equipartition of 𝑢, and let 𝑆 be the set defined by Algorithm 1.

I Proposition 3.6. Algorithm 1 runs in time �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5).

Proof. If |𝑢| ≤ 1, then we can find an optimal alignment in time 𝑂(|𝑣|) naively. Suppose
|𝑢| > 1. Notice that |𝑆| ≤ 𝑂(𝑚2 log 𝑛). In particular, because (1 + 1

𝑚 )(𝑚+1) ln 𝑛 ≥ 𝑛,

𝑆 ⊆ {𝑝0, . . . , 𝑝𝑚} ∪ {|𝑣|} ∪

{︃⌈︃
𝑝𝑖 ±

(︂
1 + 1

𝑚

)︂𝑗
⌉︃

| 𝑖 ∈ [0 : 𝑚], 𝑗 ∈ [0 : (𝑚 + 1) ln 𝑛]
}︃

,

which has size at most 𝑂(𝑚2 log 𝑛).
Finding an equipartition of 𝑢 can be done in linear time, and constructing 𝑆 takes time

𝑂(|𝑆|) = �̃�(𝑚2). In order to perform the fourth step which selects 𝑄, we must compute
𝑓(𝑙, 𝑗) for each 𝑙 ∈ 𝑆 and 𝑗 ∈ [0 : 𝑚]. To evaluate 𝑓(𝑙, 𝑗), we must consider each 𝑙′ ∈ 𝑆

satisfying 𝑙′ ≤ 𝑙, and then compute the cost of 𝑓(𝑙′, 𝑗 − 1) plus 𝒜(𝑃𝑗 , 𝑣[𝑙′ + 1 : 𝑙]) (which
takes time at most 𝑇 (|𝑢| + |𝑣|) to compute). Therefore, each 𝑓(𝑙, 𝑗) is computed in time
𝑂(|𝑆| ·𝑇 (|𝑢|+ |𝑣|)) ≤ �̃�(𝑇 (|𝑢|+ |𝑣|) ·𝑚2). Because there are 𝑂(𝑚 · |𝑆|) = �̃�(𝑚3) subproblems
of the form 𝑓(𝑙, 𝑗), the total run time of the dynamic program is �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5).

So far we have shown that the first level of recursion takes time �̃�(𝑇 (|𝑢| + |𝑣|)𝑚5). The
sum of the lengths of the inputs to Algorithm 1 at a particular level of the recursion is at
most |𝑢|+ |𝑣|. It follows by the super-additivity of 𝑇 (𝑛) that the time spent in any given level
of recursion is at most �̃�(𝑇 (|𝑢| + |𝑣|)𝑚5). Because each level of recursion reduces the sizes
of the parts of 𝑢 by a factor of Ω(𝑚), the number of levels is at most 𝑂(log𝑚 𝑛) ≤ 𝑂(log 𝑛).
Therefore, the run time is �̃�(𝑇 (|𝑢| + |𝑣|) · 𝑚5). J

When discussing the approximation ratio of Algorithm 1, it will be useful to have a notion
of edit distance between partitions of strings.

I Definition 3.7. Given two partitions 𝐶 = (𝑐0, . . . , 𝑐𝑚) and 𝐷 = (𝑑0, . . . , 𝑑𝑚) of strings 𝑎

and 𝑏 respectively, we define Δed(𝐶, 𝐷) :=
∑︀

𝑖 Δed(𝐶𝑖, 𝐷𝑖).

In order to bound the approximation ratio of Algorithm 1, we will introduce, for the
sake of analysis, a partition 𝑄opt = (𝑞opt

0 , . . . , 𝑞opt
𝑚 ) of 𝑣 satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣).

Recall that 𝑃 is fixed, which allows us to use it in the definition of 𝑄opt.
We claim that some partition 𝑄opt satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣) must exist. If 𝑢

and 𝑣 differed by only a single edit, one could start from 𝑃 and explicitly define 𝑄opt so that
Δed(𝑃, 𝑄opt) = 1 (by a case analysis of which type of edit was performed). It can then be
shown by induction on the number of edits that, in general, we can obtain a partition 𝑄opt

satisfying Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣).
Our strategy for bounding the approximation ratio will be to compare Δed(𝑃, 𝑄) for the

partition 𝑄 selected by our algorithm to Δed(𝑃, 𝑄opt). We do this through three observations.
The first observation upper bounds Δed(𝑃, 𝑄). Informally, it shows that the cost in edit

distance which Algorithm 1 pays for selecting 𝑄 instead of 𝑄opt is at most 2
∑︀𝑚

𝑖=0 |𝑞𝑖 − 𝑞opt
𝑖 |.
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I Lemma 3.8. Let 𝑄 = (𝑞0, . . . , 𝑞𝑚) be a partition of 𝑣. Then

Δed(𝑃, 𝑄) ≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 |.

Proof. Observe that

Δed(𝑃, 𝑄) ≤ Δed(𝑃, 𝑄opt) + Δed(𝑄opt, 𝑄) = Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
Δed(𝑄opt

𝑖 , 𝑄𝑖).

Because 𝑄 and 𝑄opt are both partitions of 𝑣, Δed(𝑄𝑖, 𝑄opt
𝑖 ) ≤ |𝑞𝑖−1 − 𝑞opt

𝑖−1| + |𝑞𝑖 − 𝑞opt
𝑖 |.

In particular, |𝑞𝑖−1 − 𝑞opt
𝑖−1| insertions to the left side of one of 𝑄𝑖 or 𝑄opt

𝑖 (whichever has its
start point further to the right) will result in the two substrings having the same start-point;
and then |𝑞𝑖 − 𝑞opt

𝑖 | insertions to the right side of one of 𝑄𝑖 or 𝑄opt
𝑖 (whichever has its end

point further to the left) will result in the two substrings having the same end-point. Thus

Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
Δed(𝑄opt

𝑖 , 𝑄𝑖) ≤ Δed(𝑢, 𝑣) +
𝑚∑︁

𝑖=1
|𝑞𝑖−1 − 𝑞opt

𝑖−1| + |𝑞𝑖 − 𝑞opt
𝑖 |

≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 |,

where we are able to disregard the case of 𝑖 = 0 because 𝑞0 = 𝑞opt
0 = 0. J

The next observation establishes a lower bound for Δed(𝑢, 𝑣).

I Lemma 3.9. Δed(𝑢, 𝑣) ≥ 1
𝑚

∑︀𝑚
𝑖=1 |𝑝𝑖 − 𝑞opt

𝑖 |.

Proof. Because Δed(𝑃, 𝑄opt) = Δed(𝑢, 𝑣), we must have that for each 𝑖 ∈ [𝑚],

Δed(𝑢, 𝑣) = Δed(𝑢[1 : 𝑝𝑖], 𝑣[1 : 𝑞opt
𝑖 ]) + Δed(𝑢[𝑝𝑖 + 1 : |𝑢|], 𝑣[𝑞opt

𝑖 + 1 : |𝑣|]).

Notice, however, that the strings 𝑢[1 : 𝑝𝑖] and 𝑣[1 : 𝑞opt
𝑖 ] differ in length by at least |𝑞opt

𝑖 − 𝑝𝑖|.
Therefore, their edit distance must be at least |𝑞opt

𝑖 −𝑝𝑖|, implying that Δed(𝑢, 𝑣) ≥ |𝑞opt
𝑖 −𝑝𝑖|.

Thus 1
𝑚 Δed(𝑢, 𝑣) ≥ 1

𝑚 |𝑞opt
𝑖 − 𝑝𝑖|. Summing over 𝑖 ∈ [𝑚] gives the desired equation. J

So far we have shown that the cost in edit distance which Algorithm 1 pays for selecting
𝑄 instead of 𝑄opt is at most 2

∑︀𝑚
𝑖=0 |𝑞𝑖 − 𝑞opt

𝑖 | (Lemma 3.8), and that the edit distance from
𝑢 to 𝑣 is at least 1

𝑚

∑︀𝑚
𝑖=1 |𝑝𝑖 − 𝑞opt

𝑖 | (Lemma 3.9). Next we compare these two quantities. In
particular, we show that if 𝑄 is chosen to mimic 𝑄opt as closely as possible, then each of the
|𝑞𝑖 − 𝑞opt

𝑖 | will become small relative to each of the |𝑝𝑖 − 𝑞opt
𝑖 |.

I Lemma 3.10. There exists a partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is in 𝑆,
and such that for each 𝑖 ∈ [0 : 𝑚], |𝑞𝑖 − 𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 − 𝑞opt

𝑖 |.

Proof Sketch. Consider the partition 𝑄 in which 𝑞𝑖 is chosen to be the largest 𝑠 ∈ 𝑆

satisfying 𝑠 ≤ 𝑞opt
𝑖 . Observe that: (i) because 0 ∈ 𝑆, each 𝑞𝑖 always exists; (ii) because

|𝑣| ∈ 𝑆, we will have 𝑞𝑚 = |𝑣|; and (iii) because 𝑞opt
0 ≤ 𝑞opt

1 ≤ · · · ≤ 𝑞opt
𝑚 , we will have that

𝑞0 ≤ 𝑞1 ≤ · · · ≤ 𝑞𝑚. Therefore, 𝑄 is a well-defined partition of 𝑣.
It remains to prove |𝑞𝑖 −𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 −𝑞opt

𝑖 |. For brevity, we focus on the case of 𝑝𝑖 < 𝑞opt
𝑖 .

The other cases are conceptually similar and appear in the full version of this paper.
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Assume 𝑝𝑖 < 𝑞opt
𝑖 . Consider the largest non-negative integer 𝑗 such that 𝑝𝑖 + (1 + 1

𝑚 )𝑗 ≤
𝑞opt

𝑖 . One can verify that by definition of 𝑗, we must have(︂
1 + 1

𝑚

)︂𝑗

≤ 𝑞opt
𝑖 − 𝑝𝑖 ≤

(︂
1 + 1

𝑚

)︂𝑗+1
. (3.1)

It follows that

𝑞opt
𝑖 −

(︃
𝑝𝑖 +

(︂
1 + 1

𝑚

)︂𝑗
)︃

≤
(︂

1 + 1
𝑚

)︂𝑗+1
−
(︂

1 + 1
𝑚

)︂𝑗

= 1
𝑚

(︂
1 + 1

𝑚

)︂𝑗

. (3.2)

Since ⌈𝑝𝑖 + (1 + 1
𝑚 )𝑗⌉ ∈ 𝑆, the definition of 𝑞𝑖 ensures that 𝑞𝑖 is between 𝑝𝑖 + (1 + 1

𝑚 )𝑗 and
𝑞opt

𝑖 inclusive. Therefore, (3.2) implies 𝑞opt
𝑖 − 𝑞𝑖 ≤ 1

𝑚

(︀
1 + 1

𝑚

)︀𝑗 . Combining this with (3.1),
it follows that 𝑞opt

𝑖 − 𝑞𝑖 ≤ 1
𝑚 (𝑞opt

𝑖 − 𝑝𝑖), as desired. J

We are now equipped to bound the approximation ratio of Algorithm 1, thereby completing
the proof of Theorem 3.2. We will use the preceeding lemmas to bound the approximation
ratio at each level of recursion to 𝑂(𝛾(𝑛)). The approximation ratio will then multiply across
the 𝑂(log𝑚 𝑛) levels of recursion, giving total approximation ratio 𝑂(𝛾(𝑛))𝑂(log𝑚 𝑛).

I Proposition 3.11. Let 𝐸(𝑢, 𝑣) be the number of edits returned by Algorithm 1. Then

Δed(𝑢, 𝑣) ≤ 𝐸(𝑢, 𝑣) ≤ Δed(𝑢, 𝑣) · (3𝛾(𝑛))𝑂(log𝑚 𝑛).

Proof. Because Algorithm 1 finds a sequence of edits from 𝑢 to 𝑣, clearly Δed(𝑢, 𝑣) ≤ 𝐸(𝑢, 𝑣).
By Lemma 3.10 there is some partition 𝑄 = (𝑞0, . . . , 𝑞𝑚) of 𝑣 such that each 𝑞𝑖 is in 𝑆, and
such that for each 𝑖 ∈ [0 : 𝑚], |𝑞𝑖 − 𝑞opt

𝑖 | ≤ 1
𝑚 |𝑝𝑖 − 𝑞opt

𝑖 |. By Lemma 3.9, it follows that

𝑚∑︁
𝑖=1

|𝑞𝑖 − 𝑞opt
𝑖 | ≤ 1

𝑚

𝑚∑︁
𝑖=1

|𝑝𝑖 − 𝑞opt
𝑖 | ≤ Δed(𝑢, 𝑣).

Applying Lemma 3.8, we then get that

Δed(𝑃, 𝑄) ≤ Δed(𝑢, 𝑣) + 2
𝑚∑︁

𝑖=1
|𝑞𝑖 − 𝑞opt

𝑖 | ≤ 3Δed(𝑢, 𝑣).

Thus there is some 𝑄 which Algorithm 1 is allowed to select such that Δed(𝑃, 𝑄) ≤
3Δed(𝑢, 𝑣). Since the approximation ratio of 𝒜 is 𝛾(𝑛), the true partition 𝑄 selected at the
first level of recursion must satisfy Δed(𝑃, 𝑄) ≤ 3𝛾(𝑛)Δed(𝑢, 𝑣).

After the 𝑖-th level of recursion, 𝑢 has implicitly been split into a large partition 𝑃 𝑖,
𝑣 has implicitly been split into a large partition 𝑄𝑖, and the recursive subproblems are
searching for edits between pairs of parts of 𝑃 𝑖 and 𝑄𝑖. Since there is 3𝛾(𝑛) distortion
at each level, we can get by induction that Δed(𝑃 𝑖, 𝑄𝑖) ≤ (3𝛾(𝑛))𝑖Δed(𝑢, 𝑣). Since there
are 𝑂(log𝑚 𝑛) levels of recursion, the number of edits returned by the algorithm is at most
Δed(𝑢, 𝑣) · (3𝛾(𝑛))𝑂(log𝑚 𝑛). J

4 Embeddings and Dimension Reduction Using Min-Hash Techniques

4.1 Alignment Embeddings for Permutations
Here we present a randomized embedding from 𝒫𝑛, the set of permutations of length 𝑛,
into Hamming space with expected distortion 𝑂(log 𝑛). The embedding has the surprising
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Algorithm 2 Alignment Embedding for Permutations.
Input: A string 𝑤 = 𝑤1 · · · 𝑤𝑛 ∈ 𝒫𝑛.
Parameters: 𝜀 and 𝑚 ≥ log1/2+𝜀

1
𝑛 + 1.

1. At the first level of recursion only:
a. Initialize an array 𝐴 of size 2𝑚 − 1 (indexed starting at one) with zeros. The array 𝐴

will contain the output embedding.
b. Select a hash function ℎ mapping Σ to 𝑟 log 𝑛 bits for a sufficiently large constant 𝑟.

2. Let 𝑖 minimize ℎ(𝑤𝑖) out of the 𝑖 ∈ [𝑛/2 − 𝜀𝑛 : 𝑛/2 + 𝜀𝑛].8 We call 𝑤𝑖 the pivot in 𝑤.
3. Set 𝐴[2𝑚−1] = 𝑤𝑖.
4. Recursively embed 𝑤1 · · · 𝑤𝑖−1 into 𝐴[1 : 2𝑚−1 − 1].
5. Recursively embed 𝑤𝑖+1 · · · 𝑤𝑛 into 𝐴[2𝑚−1 + 1 : 2𝑚 − 1].

property that it implicitly encodes alignments between strings. If the output is stored using
run-length encoding,7 then the size of the output and the run time are both 𝑂(𝑛).

The description of the embedding appears as Algorithm 2. For simplicity, we assume
0 /∈ Σ, which allows us to use 0 as a null character. The algorithm takes two parameters: 𝜀

and 𝑚. The parameter 𝜀 controls a trade-off between the distortion and the output dimension.
The parameter 𝑚 dictates the maximum depth of recursion that can be performed within
the array 𝐴. In particular, 𝑚 needs to be chosen such that the algorithm does not run out
of space for the embedding in the recursive calls.

Since each recursive step takes as input words of size in the range [(1/2 − 𝜀)𝑛 : (1/2 + 𝜀)𝑛],
the input size at the 𝑖-th level of the recursion is at most (1/2 + 𝜀)𝑖−1𝑛. We need to choose
𝑚 such that at the 𝑚-th level of recursion, the input size will be at most 1. Therefore, it
suffices to pick 𝑚 satisfying 𝑚 ≥ log1/2+𝜀

1
𝑛 + 1.

We denote the resulting embedding of the input string 𝑤 into the output array 𝐴 by
𝜑𝜀,𝑚(𝑤). Moreover, for 𝑚 = ⌈log1/2+𝜀

1
𝑛 + 1⌉, we define 𝜑𝜀(𝑤) to be 𝜑𝜀,𝑚(𝑤). Note that

𝜑𝜀 embeds 𝑤 into an array 𝐴 of size 𝑂
(︁

2log1/2+𝜀 1/𝑛
)︁

= 𝑂
(︀
𝑛−1/ log(1/2+𝜀))︀ , which one can

verify for 𝜀 ≤ 1
4 is 𝑂(𝑛1+6𝜀).

We call 𝜑𝜀 an alignment embedding because 𝜑𝜀 maps a string 𝑥 to a copy of 𝑥 spread
out across an array of zeros. When we compare 𝜑𝜀(𝑥) with 𝜑𝜀(𝑦) by Hamming differences,
𝜑𝜀 encodes an alignment between 𝑥 and 𝑦; it pays for every letter which it fails to match
up with another copy of the same letter. In particular, every pairing of a letter with a null
corresponds to an insertion or deletion, and every pairing of a letter with a different letter
corresponds to a substitution. Thus Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) will always be at least Δed(𝑥, 𝑦).

In the rest of this subsection we will prove the following theorem.

I Theorem 4.1. For 𝜀 ≤ 1
4 , there exists a randomized embedding 𝜑𝜀 from 𝒫𝑛 to 𝑂(𝑛1+6𝜀)-

dimensional Hamming space with the following properties.
For 𝑥, 𝑦 ∈ 𝒫𝑛, 𝜑𝜀(𝑥) and 𝜑𝜀(𝑦) encode a sequence of Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) edits from 𝑥 to 𝑦.
In particular, Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦)) ≥ Δed(𝑥, 𝑦).
For 𝑥, 𝑦 ∈ 𝒫𝑛, E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))] ≤ 𝑂

(︀ 1
𝜀 log 𝑛

)︀
· Δed(𝑥, 𝑦).

For 𝑥 ∈ 𝒫𝑛, 𝜑𝜀(𝑥) is sparse in the sense that it only contains 𝑛 non-zero entries. Moreover,
if 𝜑𝜀(𝑥) is stored with run-length encoding, it can be computed in time 𝑂(𝑛).

7 In run-length encoding, runs of identical characters are stored as a pair whose first entry is the character
and the second entry is the length of the run.

8 With high probability, there are no hash collisions.
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The first property in the theorem follows from the discussion above. In order to prove
E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))] ≤ Δed(𝑥, 𝑦)𝑂

(︀ 1
𝜀 log 𝑛

)︀
, we will consider a series of at most 2Δed(𝑥, 𝑦)

insertions or deletions that are used to transform 𝑥 into 𝑦. Each substitution operation
can be emulated by an insertion and a deletion. Moreover, note that by ordering deletions
before insertions, each of the intermediate strings will still be a permutation. In the following
lemma, we bound the expected Hamming distance for just a single insertion (or equivalently,
a deletion). By the triangle inequality, we get the bound on E[Ham(𝜑𝜀(𝑥), 𝜑𝜀(𝑦))].

I Lemma 4.2. Let 𝑥 ∈ 𝒫𝑛 be a permutation, and let 𝑦 be a permutation derived from 𝑥 by
a single insertion. Let 0 < 𝜀 ≤ 1

4 and let 𝑚 be large enough so that 𝜑𝜀,𝑚 is well-defined on 𝑥

and 𝑦. Then E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂
(︀ 1

𝜀 log 𝑛
)︀
.

Proof. Observe that the set of letters in position-range [(1/2−𝜀)|𝑥| : (1/2 +𝜀)|𝑥|] in 𝑥 differs
by at most 𝑂(1) elements from the set of letters in position-range [(1/2 − 𝜀)|𝑦| : (1/2 + 𝜀)|𝑦|]
in 𝑦. Thus with probability 1 − 𝑂(1/(𝜀𝑛)), there will be a letter 𝑙 in the overlap between the
two ranges whose hash is smaller than that of any other letter in either of the two ranges. In
other words, the pivot in 𝑥 (i.e., the letter in the position range with minimum hash) will
differ from the pivot in 𝑦 with probability 𝑂(1/(𝜀𝑛)). Therefore,

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] = Pr[pivots differ] · E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots differ]
+ Pr[pivots same] · E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same]

≤ 𝑂

(︂
1

𝜀𝑛

)︂
· E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots differ]

+ E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same].

In general, Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) cannot exceed 𝑂(𝑛). Thus

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂

(︂
1

𝜀𝑛

)︂
· 𝑂(𝑛) + E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same]

≤ 𝑂

(︂
1
𝜀

)︂
+ E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦)) | pivots same].

If the pivot in 𝑥 is the same as in 𝑦, then the insertion must take place to either
the left or the right of the pivot. Clearly 𝜑𝜀,𝑚(𝑥) and 𝜑𝜀,𝑚(𝑦) will agree on the side
of the pivot in which the edit does not occur. Inductively applying our argument to
the side on which the edit occurs, we incur a cost of 𝑂(1/𝜀) once for each level in the
recursion. The maximum depth of the recursion is 𝑂

(︁
log1/2+𝜀

1
𝑛

)︁
= 𝑂(log 𝑛). This gives us

E[Ham(𝜑𝜀,𝑚(𝑥), 𝜑𝜀,𝑚(𝑦))] ≤ 𝑂
(︀ 1

𝜀

)︀
· log 𝑛. J

It remains only to analyze the run time. Notice that 𝜑𝜀(𝑥) can be stored in space Θ(𝑛)
using run-length encoding. We can compute 𝜑𝜀(𝑥) in time 𝑂(𝑛), as follows. Using Range
Minimum Query [13] we can build a data structure which supports constant-time queries
returning minimum hashes in contiguous substrings of 𝑥. This allows each recursive step in
the embedding to be performed in constant time. Since each recursive step writes one of the
𝑛 letters to the output, the total run time is bounded by 𝑂(𝑛).

4.2 Embedding into Hamming Space in the Low-Distance Regime
Assume we are given an embedding from edit distance in Σ𝑛 into Hamming space with
subpolynomial distortion 𝛾(𝑛). We wish to use such an embedding as a black box in order to
obtain a new embedding for the low edit distance regime: the new embedding, which would
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Algorithm 3 Choose Next Block (Informal).
Input: A string 𝑥, the index 𝑖 where the current block begins.
Output: The index where the next block begins.
Parameters: 𝑊 ′′ ≪ 𝑊 ′ ≪ 𝑊 set as needed.

1. Consider the window 𝑥𝑖 · · · 𝑥𝑖+𝑊 −1 of size 𝑊 . Divide the second half of the window into
non-overlapping sub-windows of size 𝑊 ′, and pick one such sub-window at random.

2. Each substring of length 𝑊 ′′ inside the sub-window is called a sub-sub-window (sub-sub-
windows may overlap). Compute a hash of each of the sub-sub-windows.9

3. Return the start position of the sub-sub-window with the smallest hash.

be parameterized by a value 𝐾, would take any two strings 𝑥, 𝑦 ∈ Σ𝑛 with Δed(𝑥, 𝑦) ≤ 𝐾

and map 𝑥 and 𝑦 into Hamming space with distortion 𝛾′(𝐾), a function of 𝐾 rather than 𝑛.
We make progress toward such an embedding with the added constraint that our strings

𝑥 and 𝑦 are (𝐷, 𝑅)-periodic free for 𝐷 ∈ poly(𝐾) of our choice and 𝑅 ∈ 𝑂(𝐾3). A string
is (𝐷, 𝑅)-periodic free if it contains no contiguous substrings of length 𝐷 that are periodic
with period at most 𝑅. Our embedding takes two such strings with Δed(𝑥, 𝑦) ≤ 𝐾 and maps
them into Hamming space with distortion 𝛾(poly(𝐾)). If we select the black-box embedding
to be embedding of Ostrovsky and Rabani [21], then this gives distortion 2𝑂

(︀√
log 𝐾 log log 𝐾

)︀
.

Our main result in this section is stated as the following theorem.

I Theorem 4.3. Suppose we have an embedding from edit distance in Σ𝑛 to Hamming
space with subpolynomial distortion 𝛾(𝑛) ≥ 2. Let 𝐾 ∈ N and pick some 𝐷 ∈ poly(𝐾).
Then there exists 𝑅 ∈ 𝑂(𝐾3) and an embedding 𝛼 from edit distance into scaled Hamming
space with the following property. For strings 𝑥 and 𝑦 that are (𝐷, 𝑅)-periodic free and
of edit distance at most 𝐾 apart, 𝛼 distorts the distance between 𝑥 and 𝑦 by at most
𝑂(𝛾(𝐾3𝐷)) ≤ 𝑂(𝛾(poly(𝐾))) in expectation.

The complete proof of Theorem 4.3 appears in the full version of the paper. Below we
discuss the key ideas, which once again make use of min-hash techniques.

The main step in our embedding is to partition the strings 𝑥 and 𝑦 into parts of length
poly(𝐾) in a way so that the sum of the edit distances between the parts equals Δed(𝑥, 𝑦)
(with some probability), and then to apply the black-box embedding to each individual part.

We select the partition of 𝑥 by going from left to right, and at each step choosing the next
index at which the current block ends and the next one begins. The algorithm for selecting
each successive block appears as Algorithm 3.

The goal of the algorithm is to find partitions of 𝑥 and 𝑦 that are aligned despite the edits.
By picking a sub-window uniformly at random, we guarantee that with high probability (as
a function of 𝑊, 𝑊 ′) no edits occur directly within that sub-window. However, if 𝑥 and 𝑦

differ by an insertion or deletion prior to that sub-window, the sub-window within 𝑥 may be
misaligned with the sub-window within 𝑦. Nonetheless, the set of 𝑊 ′′-letter sub-sub-windows
of the sub-window of 𝑥 will be almost the same as the set of 𝑊 ′′-letter sub-sub-windows
of the sub-window of 𝑦. By selecting the sub-sub-window with minimum hash as the start
position for the next block, we are then able to guarantee that with high probability (as a
function of 𝑊 ′) we pick positions in 𝑥 and 𝑦 which are aligned with each other.

9 By selecting 𝑊 ′′, 𝑊 ′, 𝑊 appropriately, we can use the (𝐷, 𝑅)-periodic free property to guarantee that
these sub-sub-windows are distinct.
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4.3 Dimension Reduction
A mapping of edit distance on length-𝑛 strings to edit distance on length-at-most-𝑛/𝑐 strings
(with larger alphabet size) is called a dimension-reduction map with contraction 𝑐 [7]. The
distortion of the map measures the multiplicative factor to which edit distance is preserved.

I Theorem 4.4. There is a randomized dimension-reduction map 𝜑 with contraction 𝑐 and
expected distortion 𝑂(𝑐). In particular, for 𝑥, 𝑦 ∈ Σ𝑛,

1
2𝑐

· Δed(𝑥, 𝑦) ≤ Δed(𝜑(𝑥), 𝜑(𝑦)),

and

E[Δed(𝜑(𝑥), 𝜑(𝑦))] ≤ 𝑂(1) · Δed(𝑥, 𝑦).

Moreover, for this definition of distortion, 𝜑 is within a constant factor of optimal. Addition-
ally, 𝜑 can be evaluated in time 𝑂(𝑛 log 𝑐).

Note that the output of a dimension-reduction map may be over a much larger alphabet
than the input. One should not be too alarmed by this, however, because alphabet reduction
can be performed after the dimension reduction (by simply hashing to Θ(log 𝑛) bits).

Below we summarize our approach to proving Theorem 4.4. The complete proof appears
in the full version of the paper. When computing our dimension-reduction map 𝜑(𝑤) on a
word 𝑤, one approach would be to split 𝑤 into blocks of size 𝑐 and to then define 𝜑(𝑤)’s
letters to correspond to blocks. This would achieve the desired reduction in dimension,
and would have the effect that a single edit to 𝜑(𝑤) would correspond to at most 𝑐 edits
in 𝑤. However, a single insertion to 𝑤 could change the content of linearly many blocks,
corresponding to a large number of edits to 𝜑(𝑤). Thus the challenge is to instead break 𝑤

into blocks in a way so that an edit to 𝑤 affects only a small number of blocks.
In order to accomplish this, our actual 𝜑 breaks 𝑤 into long periodic substrings and

non-periodic substrings. The two types of substrings are then handled as follows:

Handling Long Periodic Substrings: Within the periodic substrings, we break the substring
into blocks based on the periodic behavior. The key insight is that the embedding of the
periodic substring will consist of the same block repeating many times. If an edit occurs
in the middle of a long periodic substring, the embedding will still include the same block
repeated many times, but 𝑂(1) blocks around the edit will be modified. Since the blocks
correspond to letters in 𝜑(𝑤), the edit to 𝑤 results in 𝑂(1) edits to 𝜑(𝑤).

Handling Non-Periodic Substrings: Within the non-periodic substrings, we select markers
in a randomized fashion to determine block boundaries. The definition of non-periodic sub-
strings guarantees that for every 𝑐 adjacent letters, the 8𝑐-letter substrings 𝑤𝑖𝑤𝑖+1 · · · 𝑤𝑖+8𝑐−1
beginning at each of those 𝑐 letters 𝑤𝑖 are distinct. We utilize this property to select markers
based on the minimum hash of 8𝑐-letter substrings. A letter is selected as a marker if the
hash of the 8𝑐-letter string beginning at that letter is smaller than the hashes of any of the
8𝑐-letter strings beginning in the 𝑐/2 letters to its left or right. This localizes the selection so
that edits to the string will only affect nearby markers.

When two markers are more than 𝑐 apart, we additionally break the space between them
into sub-blocks of size at most 𝑐. By preventing blocks in 𝜑(𝑤) from exceeding 𝑂(𝑐) in size,
we can take a sequence of edits in 𝜑(𝑤) and generate a corresponding sequence of edits in 𝑤

with distortion 𝑂(𝑐). When bounding the distortion in the other direction, we risk edits in
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𝑤 taking place between two far-apart markers, which in turn could affect all of the blocks
between those markers in 𝜑(𝑤). The main technical challenge is bounding the effect this has
on the distortion. We do so by showing probabilistically that wherever there is an edit, there
will be markers nearby which mitigate the impact of that edit on the block structure of 𝜑(𝑤).
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