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Abstract
We consider integer programming problems max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Znt} where
A has a (recursive) block-structure generalizing n-fold integer programs which recently received
considerable attention in the literature. An n-fold IP is an integer program where A consists of
n repetitions of submatrices A ∈ Zr×t on the top horizontal part and n repetitions of a matrix
B ∈ Zs×t on the diagonal below the top part. Instead of allowing only two types of block matrices,
one for the horizontal line and one for the diagonal, we generalize the n-fold setting to allow for
arbitrary matrices in every block. We show that such an integer program can be solved in time
n2t2ϕ · (r s∆)O(rs2+sr2) (ignoring logarithmic factors). Here ∆ is an upper bound on the largest
absolute value of an entry of A and ϕ is the largest binary encoding length of a coefficient of c.
This improves upon the previously best algorithm of Hemmecke, Onn and Romanchuk that runs
in time n3t3ϕ · ∆O(st(r+t)). In particular, our algorithm is not exponential in the number t of
columns of A and B.

Our algorithm is based on a new upper bound on the `1-norm of an element of the Graver
basis of an integer matrix and on a proximity bound between the LP and IP optimal solutions
tailored for IPs with block structure. These new bounds rely on the Steinitz Lemma.

Furthermore, we extend our techniques to the recently introduced tree-fold IPs, where we
again present a more efficient algorithm in a generalized setting.
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49:2 Faster Algorithms for IPs with Block Structure

1 Introduction

An integer program (IP) is an optimization problem of the form

max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Zn} (1)

which is described by a constraint matrix A ∈ Zm×n, an objective function vector c ∈ Zn a
right-hand side vector b ∈ Zm and lower and upper bounds l ≤ x ≤ u. Integer programming
is one of the most important paradigms in the field of algorithms as a breadth of combinatorial
optimization problems have an IP-model, see, e.g. [17, 20]. Since integer programming is
NP-hard, there is a strong interest in restricted versions of integer programs that can be solved
in polynomial time, while still capturing interesting classes of combinatorial optimization
problems. A famous example is the class of integer programs with totally unimodular
constraint matrix, capturing flow, bipartite matching, and shortest path problems for
example. This setting has been extended to bimodular integer programming recently [1].

Another such polynomial-time solvable restriction is n-fold integer programming [6].
Given two matrices A ∈ Zr×t and B ∈ Zs×t and a vector b ∈ Zr+ns for some r, s, t, n ∈ Z+.
An n-fold Integer Program (n-fold IP) is an integer program (1) with constraint matrix

A =



A A . . . A

B 0 . . . 0

0 B
...

...
. . . 0

0 . . . 0 B

 (2)

Clearly, one can assume that t ≥ r and t ≥ s holds, as linearly dependent equations can be
removed. Notice that the number of variables of an n-fold integer program is t · n. The best
known algorithm to solve an n-fold IP is due to Hemmecke, Onn and Romanchuk [10] with a
running time of O(n3t3ϕ) ·∆O(st(r+t)), where ∆ is the absolute value of the largest entry in
A and ϕ is the logarithm of the largest absolute value of a component of c. For fixed ∆, r, s
and t, the running time depends only polynomially (cubic) on the number of variables and
is therefore more efficient than applying algorithms for general IPs based on lattice-basis
reduction [12, 16] or dynamic programming [7, 19].

The n-fold setting has gained strong momentum in the last years, especially in the fields of
parameterized complexity and approximation algorithms. An algorithm is fixed parameter
tractable (fpt) with respect to a parameter k derived from the input, if its running time is of
the form f(k) · nO(1) for some computable function f . The result of Hemmecke et al. [10]
shows that integer programming is fixed parameter tractable with respect to ∆, s, r and t.

This opens the possibility to model combinatorial optimization problems with a fixed
parameter as an n-fold integer program, see for instance [3, 13] and thereby obtain novel
new results in the area of parameterized complixity. Very recently Jansen, Klein, Maack and
Rau [11] used n-fold IPs to formulate an enhanced configuration IP, that is capable to track
additional properties of configurations. With this enhanced IP they were able to develop
approximation algorithms for several scheduling problems that involve setups. Not only for
the scheduling problems, but also in the design of efficient algorithms for string and social
choice problems, n-fold IPs have been successfully applied [14, 15].

A generalization of the classical n-fold IP, called tree-fold IP, was very recently introduced
by Chen and Marx [2]. A matrix A is of tree-fold structure, if it is of recursive n-fold
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structure, i.e. the matrices B(i) in IP (2) are of n′-fold structure themselves, and so on. Chen
and Marx presented an algorithm to solve tree-fold IPs which runs in time f(L) · n3ϕ, where
ϕ is the encoding length and L involves parameters of the tree like the height of the tree and
the number of variables and rows of the involved sub-matrices. They applied the tree-fold
IP to a special case of the traveling salesman problem, where m clients have to visit every
node of a weighted tree and the objective is to minimize the longest tour over all clients.
Using the framework of tree-fold IPs, they obtained an fpt algorithm with a running time of
f(K) · |V |O(1), where K is the longest tour of a client in the optimal solution and V is the set
of vertices of the tree. However, the function f involves a term with a tower of K exponents.

1.1 Graver Bases and Augmentation Algorithms
Before we discuss our contributions, we have to review the core concepts of the algorithm of
Hemmecke, Onn and Romanchuk [10] in a nutshell.

Suppose we are solving a general integer program (1) with constraint matrix A ∈ Zm×n
and that we have a feasible solution z0 at hand. Let z? be an optimal solution. The vector
z? − z0 lies in the kernel of A, i.e., A(z? − z0) = 0. An integer vector y ∈ ker(A) is called a
cycle of A. Two vectors u, v ∈ Rn are said to be sign compatible if ui · vi ≥ 0 for each i. A
cycle y ∈ ker(A) is indecomposable if it is not the sum of two sign-compatible and non-zero
cycles of A. The set of indecomposable and integral elements from the kernel of A is called
the Graver basis of A, [8], see also [18, 5].

A result of Cook, Fonlupt and Schrijver [4] implies that there exist 2n Graver-basis
elements g1, . . . , g2n ∈ ker(A) each sign compatible with z? − z0 such that

z? − z0 =
2n∑
i=1

λigi

holds for λi ∈ N0. For each i one has that z0 + λigi is a feasible integer solution of (1).
Furthermore, there exists one i with cT (z?−z0)/(2n) ≤ λicT gi. Thus there exists an element
g of the Graver basis of A and a positive integer λ ∈ N such that z0 + λ g is feasible and the
gap to the optimum value has been reduced by a factor of 1− 1/(2n).

Why should it be any simpler to find such an augmenting vector g as above? The crucial
ingredient that is behind the power of this approach are bounds on the `1-norm of elements
of the Graver basis of A. In some cases, these bounds are much more restrictive than the
original lower and upper bounds l ≤ x ≤ u and thus help in dynamic programming. In fact,
each element g of the Graver basis of A has `1-norm bounded by ‖g‖1 ≤ δ · (n−m) where δ
is the largest absolute value of a sub-determinant of A, see [18]. Applying the Hadamard
bound, this means that

‖g‖1 ≤ mm/2∆m · (n−m), (3)

where ∆ is a largest absolute value of an entry of A. Let us denote mm/2∆m · (n−m) by
GA. In order to find an augmenting solution which reduces the optimality gap by a factor of
(roughly) 1− 1/n one solves the following augmentation integer program with a suitable λ,

max{cT y : Ay = 0, l − z0 ≤ λ · y ≤ u− z0, ‖y‖1 ≤ GA, y ∈ Zn}. (4)

and replaces z0 by z0 + λ · y?, where y? is the optimal solution of (4). The number of
augmenting steps can be bounded by O(n log(cT (z? − z0))).

At first sight, it seems that one has not gained much with this approach, except that the
right-hand side vector b has disappeared. In the case of n-fold integer programming however,
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49:4 Faster Algorithms for IPs with Block Structure

the `1-norm of an element of the Graver basis of A is bounded by a function in r, s, t and ∆
and thus much smaller than the bound (3). This can be exploited in dynamic programming
approaches.

Contributions of this paper. We present several elementary observations that, together,
result in a much faster algorithm for integer programs with block structure including n-fold
and tree-fold integer programs. We start with the following.
i) The `1-norm of an element of the Graver basis of a given matrix A ∈ Zm×n is bounded

by (2m ·∆ + 1)m, where ∆ is an upper bound on the absolute value of each entry of A.
This is shown with the Steinitz lemma and uses similar ideas as in [7]. Compared to the
previous best bound (3), this new bound is independent on the number of columns n of
A.

We then turn our attention to integer programming problems

max{cTx : Ax = b, l ≤ x ≤ u, x ∈ Zn×t} (5)

with constraint matrix of the form

A =



A(1) A(2) . . . A(n)

B(1) 0 . . . 0

0 B(2) ...
...

. . . 0
0 . . . 0 B(n)

 ,

where A(1), . . . , A(n) ∈ Zr×t and B(1), . . . , B(n) ∈ Zs×t are arbitrary matrices. This is a more
general setting than n-fold integer programming, since the matrices on the top line and on
the diagonal respectively do not have to repeat. In this setting, we obtain the following
results.
ii) The `1-norm of an element of the Graver basis of A is bounded by O(r s∆)(r+1)(s+1)

which is independent on the number of columns t of the A(i) and B(i).
iii) We next provide a special proximity bound for integer programs with block structure (5).

Let x? be an arbitrary optimal solution of the linear programming relaxation of (5). We
show that there exists an optimal solution z? of (5) with

‖x? − z?‖1 ≤ n t (r s∆)O(r s).

iv) We then exploit the bounds ii) and iii) in a new dynamic program to solve (5). Its
running time is bounded by

n2t2ϕ log2 nt · (rs∆)O(r2s+rs2) + LP

where ϕ denotes the largest binary encoding length of c, and LP denotes the time needed
to solve the LP relaxation of (5).

The main advantage of the running time of our algorithm is the improved dependency
on the parameter t. In contrast, the previous best known algorithm by Hemmecke, Onn
and Romanchuk [10] for classical n-fold IPs invovles a term ∆O(st2) and therefore has an
exponential dependency on t. Recall that we can assume that t ≥ r, s holds. The number of
columns t can be very large. Even if we do not allow column-repetitions, t can be as large as
∆r+s and in applications involving configuration IPs this is often the order of magnitude one
is dealing with. Knop, Koutecky and Mnich [14] improved the dependency of t in a special
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setting of n-fold to a factor tO(r). In their setting, the matrix B on the diagonal consists of
one line of ones only. Our running time is an improvement of their result also in this case.

Next, we generalize the notion of tree-fold IPs of [2] where we allow for arbitrary matrices
at each node. This yields a rather natural description of a generalized tree-fold IP. We refer
to Section 4 for the precise definition.

In this setting we obtain the following result.
v) We present an algorithm for generalized tree-fold IPs with a running time that is roughly

doubly exponential in the height of the tree (for a precise running time we refer to
Lemma 10). With this algorithm we improve upon the algorithm by Chen and Marx [2],
which has a running time involving a term that has a tower of τ exponents, where τ is
the height of the tree.

vi) Using the tree-fold IP formulation of [2], this implies an fpt algorithm for the the
traveling salesman problem on trees with m clients with running time 22poly(K) · |V |O(1),
where K is the longest tour of an optimal solution over all clients.

Notation. We use the following notation throughout this paper. For positive numbers
n, r, s, t ∈ N and index i = 1, . . . , n, let A(i) ∈ Zr×t, B(i) ∈ Zs×t with

∣∣∣∣A(i)
∣∣∣∣
∞,
∣∣∣∣B(i)

∣∣∣∣
∞ ≤ ∆

for some constant ∆. Columns of matrices are denoted with a lower index, i.e. the j-th
column of the matrix A(i) is denoted by A(i)

j , and so on. With log x, we denote the logarithm
to the basis 2 of some number x.

We will often subdivide the set of entries in a vector y ∈ Rnt or a vector Ay ∈ Rr+ns into
bricks. A vector y ∈ Rnt will consist of n bricks with t variables each, i.e.

yT =
(
(y(1))T , (y(2))T , . . . , (y(n))T

)
with the brick y(i) ∈ Rt corresponding to the block B(i). A vector g = Ay ∈ Rr+ns will
consist of n+ 1 bricks,

(Ay)T =
(
(g(0))T , (g(1))T , . . . , (g(n))T

)
,

where the first brick g(0) ∈ Rr consists of the first r entries and corresponds to the block row
(A(1), . . . , A(n)) of A, and every other block g(i), i ≥ 1, consists of s entries and corresponds
to the block B(i). We will always use upper indices with brackets when referring to the
bricks, and the indices will coincide with the index of the block B(i) they correspond to
(except brick g(0)). A simple but crucial observation we will use several times is the following.
If y is a cycle of A, then each brick y(i) is already a cycle of the matrix B(i).

2 The norm of a Graver-basis element

In this section, we provide the details of the contributions i) and ii). We will make use of the
following lemma of Steinitz [9, 21]. Here ‖ · ‖ denotes an arbitrary norm.

I Lemma 1 (Steinitz Lemma). Let v1, . . . , vn ∈ Rm be vectors with ||vi|| ≤ ∆ for i = 1, . . . , n.
If
∑n
i=1 vi = 0, then there is a reordering π ∈ Sn such that for each k ∈ {1, . . . , n} the partial

sum pk :=
∑k
i=1 vπ(i) satisfies ||pk|| ≤ m∆ (for the same norm ‖ · ‖).

I Lemma 2. Let A ∈ Zm×n be an integer matrix, let ∆ be an upper bound on the absolute
value of each component of A, and let y ∈ Zn be an element of the Graver basis of A. Then
‖y‖1 ≤ (2m∆ + 1)m.

ICALP 2018



49:6 Faster Algorithms for IPs with Block Structure

Proof. We define a sequence of vectors v1, . . . , v‖y‖1 ∈ Zm in the following manner. If yj ≥ 0,
we add yj copies of the j-th column of A to the sequence, if yj < 0 we add |yj | copies of the
negative of column j to the sequence.

Clearly, the vi sum up to zero and their `∞-norm is bounded by ∆. Using Steinitz, there
is a reordering uπ(1), . . . , uπ(‖y‖1) of this sequence s.t. each partial sum pk :=

∑k
j=1 uπ(j) is

bounded by m∆ in the l∞-norm. Clearly,

|{x ∈ Zm : ‖x‖∞ ≤ m∆}| = (2m∆ + 1)m .

Thus, if ‖y‖1 > (2m∆ + 1)m, then two of these partial sums are the same and we have
a sequence uπ(k) + · · · + uπ(k+`) = 0. But then we can decompose y into two vectors
corresponding to this sequence and the remaining vectors uπ(i). This shows the claim. J

We will now apply the Steinitz lemma to bound the `1-norm of an element of the Graver
basis of

A =



A(1) A(2) . . . A(n)

B(1) 0 . . . 0

0 B(2) ...
...

. . . 0
0 . . . 0 B(n)

 ,

where A(1), . . . , A(n) ∈ Zr×t and B(1), . . . , B(n) ∈ Zs×t are arbitrary matrices. Lemma 2
shows that the `1-norm of an element of the Graver basis of a matrix B(i) is bounded by
(2 s∆ + 1)s =: LB .

I Lemma 3. Let y be a Graver-basis element of A, then

||y||1 ≤ LB (2r∆LB + 1)r =: LA.

Proof. Let g be a Graver basis element of B(i). Note that as ||g||1 ≤ LB and
∣∣∣∣A(i)

∣∣∣∣
∞ ≤ ∆,

the infinity-norm of the vector A(i)g is bounded by∣∣∣∣∣∣A(i)g
∣∣∣∣∣∣
∞
≤ ∆LB . (6)

Now consider a Graver basis element y ∈ Znt of A and split it according to the matrices
B(i) into bricks, i.e. yT = ((y(1))T , . . . , (y(n))T ) with each y(i) ∈ Zt being a cycle of B(i).
Hence, each y(i) can be decomposed into the sum of Graver basis elements y(i)

j of B(i), i.e.
y(i) = y

(i)
1 + · · ·+ y

(i)
Ni

. Thus, we have a decomposition

0 = (A(1), . . . , A(n))y

= A(1)y(1) + · · ·+A(n)y(n)

= A(1)y
(1)
1 + · · ·+A(1)y

(1)
N1

+ · · ·+A(n)y
(n)
1 + · · ·+A(n)y

(n)
Nn

=: v1 + · · ·+ vN ∈ Zr

for some N =
∑n
i=1Ni and ||vi||∞ ≤ ∆LB for i = 1, . . . , N , using (6). Now we apply

Steinitz to reorder the vi s.t. each partial sum is bounded by r∆LB in the l∞-norm. Again,
if two partial sums were the same, we could decompose y, thus the number N of vectors
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vi is bounded by (2r∆LB + 1)r. Each vi is of the form A(j)y
(j)
k for some j and k with

‖y(j)
k ‖1 ≤ LB , hence

||y||1 ≤ LB (2r∆LB + 1)r

= LA,

finishing the proof. J

As LB ∈ O(s∆)s in our case, this shows LA ∈ O(rs∆)(r+1)(s+1), as stated in point ii) in the
previous chapter.

3 Solving the Generalized n-fold IP

Given a feasible solution x of the IP (5) we now follow the principle that we outlined in
Section 1.1. There exists an element y of the Graver basis of A and a positive integer λ ∈ N
such that x+λ y is feasible and reduces the gap to the optimum value by a factor of 1−1/(2n).
Suppose that we know λ. With our bound on ‖y‖1 ≤ LA we will find an augmenting vector
of at least this quality by solving (a relaxation of) the following augmentation IP:

max cT y (7)
Ay = 0
||y||1 ≤ LA

l − z ≤ λy ≤ u− z
y ∈ Znt

The vector y we compute might violate the condition ||y||1 ≤ LA, but we will have that cT y
is at least as big as the optimum value of (7).

I Lemma 4. Let λ be a fixed positive integer. In time nt (rs∆)O(r2s+rs2), we can find an
integral vector y with Ay = 0, l − z ≤ λy ≤ u− z and cT y ≥ cT y?, where y? is an optimum
solution for (7).

Proof. As λ is fixed, it will be convenient to rewrite the bounds on the variables as

l? ≤ y ≤ u? with (8)

l?i = max
{⌈

li − zi
λ

⌉
,−LA

}
u?i = min

{⌊
ui − zi
λ

⌋
, LA

}
.

In particular, u? <∞. First observe that for each y ∈ Znt with ||y||1 ≤ LA, one has

||Ay||∞ ≤ ∆LA. (9)

We can decompose y = (y(1), . . . , y(n)) into bricks according to the matrices B(i), and
B(k)y(k) = 0 has to hold independently of the other variables. Let U ⊆ Zr+s be the set of
integer vectors of infinity norm at most ∆LA. To find an optimal y? for the augmentation
IP (7) we construct the following acyclic digraph. There are two nodes 0start and 0target,
together with nt copies of the set U , arranged in n blocks of t layers as

U
(1)
1 , . . . , U

(1)
t , U

(2)
1 , . . . , U

(2)
t , . . . , U

(n)
1 . . . U

(n)
t ,

ICALP 2018



49:8 Faster Algorithms for IPs with Block Structure

where the k-th block will correspond to the matrix

M (k) :=
(
A(k)

B(k)

)
(and thus to the brick y(k) of y). Writing M (k)

j for the j-th column of the matrix M (k), the
arcs are given as follows. There is an arc from 0start to v ∈ U (1)

1 if there is an integer y1 such
that

v = y1M
(1)
1 and l?1 ≤ y1 ≤ u?1

holds. The weight of this arc is c1y1.
For two nodes u ∈ Uki−1 and v ∈ Uki of two consecutive layers in the same block, we add

an arc (u, v) if there is an integer y(k−1)t+i such that

v − u = y(k−1)t+iM
(k)
i and l?(k−1)t+i ≤ y(k−1)t+i ≤ u?(k−1)t+i

holds, i.e. if we can get from u to v by adding the i-th column of
(
A(k)

B(k)

)
multiple times. The

weight is c(k−1)t+i · y(k−1)t+i. It remains to define the arcs between two blocks. If we fix a
path through the whole block U (k)

1 , . . . , U
(k)
t , this corresponds to fixing a brick y(k). Note

that M (k)y(k) has to be zero in the last s components, since continuing with this path in
the next block will not change the entries of Ay corresponding to B(k) any more. Thus, for
placing an arc between two nodes u ∈ Ukt and v ∈ Uk+1

1 in two consecutive layers of different
blocks, also the constraints ur+1 = · · · = ur+s = 0 have to be fulfilled.

Finally, we add arcs from u ∈ U (n)
t to 0target if there exists an integer ynt such that

−u = yntM
(n)
t and l?nt ≤ ynt ≤ u?nt

holds. Again, the weight is cntynt.
Clearly, a longest (0start − 0target)-path corresponds to an optimum solution of the

augmentation IP (7), hence it is left to limit the time needed to find such a path.
The out-degree of each node is bounded by u?i − l?i ≤ 2LA + 1 using (8). Therefore, the

number of arcs is bounded by

nt · |U | · (2LA + 1) = nt (2∆LA + 1)r+s (2LA + 1)

≤ nt (2∆LA + 1)r+s+1

≤ nt (2∆LB (2r∆LB + 1)r + 1)r+s+1

= nt · O(∆r)r
2s+rs2+o(r2s+rs2)O(s)r

2+rs+r.

We can find a shortest path by a Breadth-First Search in time linear in the number of
edges. J

In the following lemma we consider the value Γ := maxi(ui − li). In the case u <∞, we can
estimate Γ ≤ 2ϕ and obtain a fixed running time in combination with Lemma 4. However, if
there are variables present that are not bounded from above, we will combine this lemma
with the proximity result of the next Section 3.1 which allows us to introduce artificial upper
bounds u′ <∞.

I Lemma 5. Consider the n-fold IP (5) with u <∞. Let Γ := maxi(ui−li). Given an initial
feasible solution, we can find an optimum solution of the IP by solving the augmentation
IP (7) for a constant λ ∈ Z+ at most

O (nt log(Γ) (log(ntΓ) + ϕ))

times, where ϕ is the logarithm of the largest number occurring in the objective function c.
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Proof (sketch). As previously discussed, for every feasible z there exists a pair (λ, y) s.t.
z + λy is feasible and reducing the gap to the optimum value by 1− 1/(2nt). This leads to
roughly nt log(nt ||c||∞ Γ) iterations. If we only guess values for λ that are a power of 2, we
only lose a constant factor but are able to limit the number of guesses. We refer to the full
version of the paper for details. J

3.1 Proximity for n-fold IPs
If no explicit upper bounds are given (i.e. ui =∞ for some indices i), we cannot bound the
number of necessary augmentation steps directly. To overcome this difficulty, we will present
a proximity result in this section, stating that for an optimum rational solution x?, there
exists an optimum integral solution z? with ||x? − z?||1 ≤ ntLA.

With this proximity result, we can first compute an optimum LP solution x?, and then
introduce artificial box constraints l(x?) ≤ z ≤ u(x?), depending on x?, knowing that at
least one optimum IP solution lies within the introduced bounds.

I Lemma 6. Let x? be an optimum solution to the LP relaxation of (5). There exists an
optimum integral solution z? to (5) with

||x? − z?||1 ≤ ntLA = nt(rs∆)O(rs).

Proof. Let x? be an optimum vertex solution of the LP relaxation of (5) and z? be an
optimum (integral) solution of (5) that minimizes the l1-distance to x?.

We say a vector y dominates a cycle y′ if they are sign-compatible and |y′i| ≤ |yi| for each
i. The idea is to show that if the l1-distance is too large, we can find a cycle dominated
by z? − x? and either add it to x? or subtract it from z? leading to a contradiction in both
cases. However, as z? − x? is fractional, we cannot decompose it directly but have to work
around the fractionality.

To this end, denote with bx?e the vector x? rounded towards z? i.e. bx?i e = bx?i c if z?i ≤ x?i
and bx?i e = dx?i e otherwise. Denote with {x?} the fractional rest i.e. {x?} = x? − bx?e.
Consider the equation

A (z? − x?) = A (z? − bx?e)−A{x?} = 0.

Consider the integral vector A{x?}. For each index i, we will obtain an integral vector wi
out of {x?}iAi by rounding the entries suitably such that

A{x?} =
nt∑
i=1

({x?}iAi) = w1 + · · ·+ wnt.

To be more formal, fix an index j and let a1, . . . , ant denote the j-th entry of the vectors
{x?}iAi. Define f :=

(∑nt
i=1 ai − baic

)
∈ Z+ as the sum of the fractional parts. We round

up f of the fractional entries ai, and we round down all other fractional entries. If some ai is
integral already, it remains unchanged. After doing this for each component j, we obtain the
vectors wi as claimed. As ||{x?}||∞ ≤ 1, each vector wi is dominated by either Ai or −Ai,
in particular it inherits the zero entries.

Define the matrix

A′ := (w1, . . . , wnt) .

After permuting the columns, the matrix (A,−A′) has n-fold structure with parameters
r, s, 2t. As Lemma 3 does not depend on t, the Graver basis elements of (A,−A′) are bounded
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by LA as well. We can now identify

A(z? − x?) = (A,−A′)
(
z? − bx?e

1nt

)
= 0,

and decompose the integral vector
(
z?−bx?e

1nt

)
into Graver basis elements of l1-norm at most

LA. But if

ntLA < ||z? − x?||1 ≤
∣∣∣∣∣∣∣∣(z? − bx?e1nt

)∣∣∣∣∣∣∣∣
1
,

we obtain at least nt+ 1 cycles. As ||1nt||1 = nt, this grants a cycle
(
ȳ

0nt

)
and hence a cycle

ȳ of A.
Case 1: cT ȳ ≤ 0: As ȳ is dominated by z? − bx?e, removing cycle ȳ from the solution

gives a new solution z̄ = z?− ȳ with cT z̄ ≥ cT z?, which is closer to the fractional solution x?.
However, this contradicts the fact that z? was chosen to be a solution with minimal distance
||x? − z?||1.

Case 2: cT ȳ > 0: As we rounded x? towards z? and ȳ is dominated by z? − bx?e, we
can add ȳ to x? and obtain a better solution, contradicting its optimality. J

We are now able to state our main theorem.

I Theorem 7. The generalized n-fold IP (5) can be solved in time

n2t2ϕ log2 nt · (rs∆)O(r2s+rs2) + LP

where ϕ denotes the logarithm of the largest number occurring in the input, and LP denotes
the time needed to solve the LP relaxation of (5).

We refer to the full paper for a detailed analysis of the running time.

4 Tree-Fold IPs

Given matrices A(i) ∈ Zmi×n and vectors b(i) ∈ Zmi for i = 1, . . . , N and c, l, u ∈ Zn for
some n,N ∈ Z+, m1, . . . ,mN ∈ Z+. We consider the following IP consisting of a system of
(systems of) linear equations

max cTx (10)

A(1)x = b(1)

...

A(N)x = b(N)

l ≤ x ≤ u
x ∈ Zn.

We call (10) a tree-fold IP, if for every matrix A(i) there is an index set S(i) containing all
indices of the non-zero columns of A(i), i.e.

S(i) ⊇
{
j | A(i)

j 6= 0
}
,

such that the following two conditions hold. For all i, j, the sets S(i), S(j) are either disjoint,
or one of the sets is contained in the other. There is a matrix A(i0) for which S(i0) contains
all column indices.
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A(4) A(5) A(6) A(7) A(8)

A(2) A(3)

A(1)

Â(1)

Â(2) 0 0 0

0 0 Â(3)

Â(4) 0 0 0 0

0 Â(5) 0 0 0

0 0 Â(6) 0 0

0 0 0 Â(7) 0

0 0 0 0 Â(8)




Figure 1 A matrix tree T and the induced tree-fold matrix T , where Â(i) denotes the part of

A(i) that consists of the columns with index in S(i). Note that if A(1) was not present, the set of
columns of T could be bipartitioned into two sets orthogonal to each other.

Intuitively, the partial ordering induced by the sets S(i) forms a tree T on the matrices
A(i) (if the arcs stemming from transitivity are omitted). The root of this tree is the matrix
A(i0) with the largest set S(i0).

Analogously to our n-fold results, we will provide an upper bound on the l1-norm of
Graver basis elements of tree-fold matrices, together with a proximity result for optimum
solutions. This will be sufficient to obtain an algorithm with a comparable running time.

Throughout this section, T will denote a tree as in Figure 1, we will denote the depth by
τ and enumerate the layers starting at the deepest leaves (the leaves are not necessarily all
in the same layer). The whole matrix induced by a tree-fold IP will be denoted by T . This
is, the IP (10) can be rewritten as

max cTx (11)
T x = b

l ≤ x ≤ u
x ∈ Zn

I Lemma 8. Let T be a tree-fold matrix where the corresponding matrix tree T has τ layers.
Let the matrices of layer i have at most si rows and define s =

∏τ
i=1(si+ 1) and ∆ := ||T ||∞.

Then the Graver basis elements of T are bounded in their l1-norm by

Lτ ≤ (3s∆)s−1
.

Proof (sketch). We enumerate the layers of T starting at the layer with the deepest leaves.
We prove the claim by induction on the number τ of layers in the tree T . First observe that
for τ = 1, the claim follows by Lemma 2, as

L1 ≤ (2s1∆ + 1)s1 ≤ (3s∆)s−1.

For the induction step, note that every child matrix A(i) of the root in T can be seen as
the root matrix of a subtree Ti in T of depth τ − 1 with at most s1, . . . , sτ−1 rows in the
corresponding layers. More formal, delete the root A(1) in T and let Ti be the connected
component A(i) is in. Write

s̃ =
τ−1∏
i=1

(si + 1),
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i.e. s = s̃(sτ + 1). By induction, we know that all Graver basis elements of the subtree-fold
IPs Ti induced by Ti are bounded by

Lτ−1 ≤ (3s̃∆)s̃−1 ≤ (3s∆)s̃−1. (12)

The rest of the induction step works similar to the proof of Lemma 3. We pick a cycle y of T ,
decompose it into Graver basis elements for the subtree-fold matrices Ti and obtain a Steinitz
sequence of vectors bounded by the induction hypothesis. However, due to space constraints,
we omit the remaining part of this proof and refer to the full version of the paper. J

The following lemma states a proximity result for tree-fold IPs in the flavour of Lemma 6
for n-fold IPs. The proof uses that the bound in Lemma 8 only depends on the shape of
the matrix but is independent of the number of columns in each block A(i), precisely as in
Lemma 6. We refer to the full version of the paper for details on the proof.

I Lemma 9. Let T be a matrix of tree-fold structure corresponding to the IP (10) and let
x? be an optimum solution to the LP relaxation of (10). There exists an optimum integral
solution z? to (10) with

||x? − z?||1 ≤ nLτ .

We conclude with the following theorem that states the running time of our algorithm to
solve a tree-fold IP. For a detailed analysis of the running time, we refer to the full version of
the paper.

I Theorem 10. Let T be of tree-fold structure with infinity-norm ∆ and corresponding tree
T . Let τ denote the number of layers of T and let the matrices of layer i have at most si
rows.

Define s =
∏τ
i=1(si + 1) and σ =

∑τ
i=1 si. Let n denote the number of columns of T and

l, u ∈ (Z ∪ {∞})n. We can solve the IP (11),

max cTx
T x = b

l ≤ x ≤ u
x ∈ Zn

in time

n2ϕ log2 n(s∆)O(σs) + LP

where ϕ denotes the logarithm of the largest number occurring in the input, and LP denotes
the time needed to solve the LP relaxation of (11).
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