
On the Probe Complexity of Local Computation
Algorithms
Uriel Feige1

Weizmann Institute of Science, Rehovot, Israel
uriel.feige@weizmann.ac.il

Boaz Patt-Shamir2

Tel Aviv University, Tel Aviv, Israel
boaz@tau.ac.il

Shai Vardi3

California Institute of Technology, Pasadena, CA, USA
svardi@caltech.edu

Abstract
In the Local Computation Algorithms (LCA) model, the algorithm is asked to compute a part
of the output by reading as little as possible from the input. For example, an LCA for coloring
a graph is given a vertex name (as a “query”), and it should output the color assigned to that
vertex after inquiring about some part of the graph topology using “probes”; all outputs must be
consistent with the same coloring. LCAs are useful when the input is huge, and the output as a
whole is not needed simultaneously. Most previous work on LCAs was limited to bounded-degree
graphs, which seems inevitable because probes are of the form “what vertex is at the other end
of edge i of vertex v?”. In this work we study LCAs for unbounded-degree graphs. In particular,
such LCAs are expected to probe the graph a number of times that is significantly smaller than
the maximum, average, or even minimum degree. We show that there are problems that have
very efficient LCAs on any graph - specifically, we show that there is an LCA for the weak coloring
problem (where a coloring is legal if every vertex has a neighbor with a different color) that uses
log∗ n + O(1) probes to reply to any query. As another way of dealing with large degrees, we
propose a more powerful type of probe which we call a strong probe: given a vertex name, it
returns a list of its neighbors. Lower bounds for strong probes are stronger than ones in the edge
probe model (which we call weak probes). Our main result in this model is that roughly Ω(

√
n)

strong probes are required to compute a maximal matching.
Our findings include interesting separations between closely related problems. For weak

probes, we show that while weak 3-coloring can be done with probe complexity log∗ n + O(1),
weak 2-coloring has probe complexity Ω(logn/ log logn). For strong probes, our negative result
for maximal matching is complemented by an LCA for (1− ε)-approximate maximum matching
on regular graphs that uses O(1) strong probes, for any constant ε > 0.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Local computation algorithms, sublinear algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.50

1 Supported in part by the Israel Science Foundation (grant No. 1388/16). Work partly done in Microsoft
Research, Herzeliya, Israel.

2 Supported in part by the Israel Science Foundation (grant No. 1444/14).
3 Supported in part by the I-CORE in Algorithms Postdoctoral Fellowship, the Linde Foundation and

NSF grants CNS-1254169 and CNS-1518941. Part of the research was carried out when Shai was a
postdoctoral researcher at the Weizmann Institute of Science.

EA
T

C
S

© Uriel Feige, Boaz Patt-Shamir, and Shai Vardi;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:uriel.feige@weizmann.ac.il
mailto:boaz@tau.ac.il
mailto:svardi@caltech.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Probe Complexity of LCAs

Related Version A full version of the paper can be found at [9], https://arxiv.org/abs/1703.
07734.

Acknowledgements We thank Noga Alon for an enlightening discussion and the anonymous
reviewers for their useful comments.

1 Introduction

In classical algorithmic models, an algorithm is given an input and is required to compute an
output. When dealing with truly massive data, such as the Internet, just reading the entire
input may be impractical. The model of local computation algorithms (LCAs), as studied
by Rubinfeld et al. [33], proposes the following approach. An algorithm in the LCA model
is required to produce only a part of the output specified by a “query,” and is expected to
access only a small part of the input (without any pre-processing) using some simple “probes.”
For example, an LCA for maximal independent set (MIS) is given a vertex ID as a query,
and is expected to return a “yes/no” answer, indicating whether the queried vertex is or is
not in the MIS; all replies to queries must be consistent with the same MIS. To do that, the
LCA can use probes of the form “which vertex is the ith neighbor of vertex v?”, where v and
i are the probe arguments. One of the main goals in LCA design is to minimize the number
of probes required to produce an answer to a query.

In this paper we consider LCAs for graph problems. Almost exclusively, known LCAs for
graph problems are efficient only for graphs of bounded degrees (with the notable exception
of [20], which gives LCAs with polylog probe complexity for graphs with polylog degree).
This may appear inevitable, because edge probes don’t allow sublinear solutions to even learn
a complete neighborhood of a linear-degree vertex. Our goal in this paper is to understand
what can be done efficiently for graphs with unbounded degrees. We give two types of answers.
First, we point to problems that admit efficient solutions for any graph. In particular, we
give efficient LCAs for weak coloring [29], where the goal is to color vertices so that each
vertex has a neighbor of a different color. Weak coloring has played a key role in the study
of distributed algorithms e.g., [29, 10], in part due to its applications to resource allocations
in distributed settings [25]. Hence it is natural that we study it in the context of LCAs.
Moreover, this study has turned out to be worthwhile, because the results were unexpected:
in our model there is a separation between weak 2-coloring and weak 3-coloring that was not
observed in other models.

As another way of dealing with large degrees, we propose a more powerful probe model,
where probing a vertex returns a list of all its neighbors. We call such probes “strong,” as
opposed to the “weak” edge probes. Lower bounds in this model consider the number of
connections the LCA needs to make in order to probe the graph, even if communication
along these channels is unbounded, and are stronger than lower bounds in the weak probe
model. Strong probes can be thought of as an intermediate model that lies between the weak
probe model and the distributed LOCAL model, and helps clarify the sources of differences
between these two extremes. Our main negative result in this model is that approximately
Ω(
√
n) strong probes are required to compute a maximal matching.
Our results include the following. Let WP and SP stand for weak and strong probes,

respectively and let n denote the number of nodes in the underlying graph. We give tight
upper and lower bounds for weak 3-coloring. Our algorithm is deterministic and uses weak
probes, whereas our lower bound holds also for randomized LCAs that may use strong probes.

https://arxiv.org/abs/1703.07734
https://arxiv.org/abs/1703.07734

U. Feige, B. Patt-Shamir, and S. Vardi 50:3

I Theorem 1. There exists a deterministic WP LCA for weak 3-coloring that uses log∗ n+
O(1) probes.

I Theorem 2. Every (randomized or deterministic) SP LCA for weak 3-coloring of the cycle
graph requires Ω(log∗ n) probes.

We describe a deterministic WP LCA for weak 2-coloring, and give a matching lower
bound for graphs with maximal degree d = O

(
logn

log logn

)
.

I Theorem 3. There exists a deterministic WP LCA for weak 2-coloring that uses log∗ n+
2dv +O(1) weak probes, where dv is the degree of the queried vertex.

I Theorem 4. Any deterministic WP LCA for weak 2-coloring d-regular graphs with d =
O

(
logn

log logn

)
requires at least d/2 probes.

We design a randomized LCA for weak 2-coloring, whose probe complexity is independent
of the maximal degree and show how it can be implemented in both the strong and weak
probe models.

I Theorem 5. There exists a randomized WP LCA for weak 2-coloring that uses Θ
(

log2 n
log logn

)
probes, and a randomized SP LCA for weak 2-coloring that uses Θ

(
logn

log logn

)
probes.

We give a lower bound for vertex cover in the strong probe model. Specifically, we show
that for high degree graphs, many strong probes are necessary to approximate a minimal
vertex cover to any interesting precision.

I Theorem 6. For any ε < 1
2 , any randomized SP LCA that computes a vertex cover whose

size is a (1
2n

1−2ε)-approximation to the size of the minimal vertex cover requires at least εnε
probes.

A corollary of Theorem 6 is the following.

I Corollary 7. Any SP LCA for maximal matching on arbitrary graphs requires n1/2−o(1)

probes.

We describe an LCA that finds a matching that is a (1−ε)-approximation to the maximum
matching, for regular graphs, using a constant number of probes.

I Theorem 8. There exists an SP LCA that finds a (1− ε)-approximate maximum matching
in expectation on d-regular graphs that uses ε−O(ε−2) probes per query.

Finally, we show that for graphs with sufficiently high girth and degree, polynomially (in
ε−1) many strong probes suffice.

I Theorem 9. There exists an SP LCA that finds a (1− ε)-approximate maximum matching
in expectation on d-regular graphs of girth g, with d ≥ ε−1 and g ≥ ε−3, that uses O(ε−7)
probes per query.

1.1 Overview of Our Techniques
Our main result in this abridged version is the proof of Theorem 6. We construct a family of
bipartite graphs in which a large subset of vertices have “almost” the same view at distance
2. Exactly one of these vertices, v0, needs to be added to the vertex cover; however, there
are many vertices for which a small number of strong probes does not suffice in order to

ICALP 2018

50:4 Probe Complexity of LCAs

verify that they are not v0, and hence they must add themselves to the vertex cover. In our
construction we use vertex naming schemes based on low degree polynomials to ensure that
certain vertices do not share many neighbors. This result gives a separation between the SP
model (and hence also the WP model) and the LOCAL model, as it is possible to compute
a maximal matching in the LOCAL model in O(logn) rounds w.h.p. [24].

In the full version of the paper [9] we discuss deterministic and randomized methods of
sampling a “parent” for each vertex. No matter how the parents are chosen, the resulting
graph is a disjoint set of directed subgraphs, each one containing exactly one cycle. The
main technical content of here is the analysis of the diameter of these subgraphs, depending
on the choice of parent selection scheme.

We then address the problem of weak 3-coloring. Our LCA (the proof of Theorem 1) is
based on the following approach. Given an arbitrary graph, the directed subgraphs formed
by the parent relation (as above) span all vertices, and each of their connected components
has at least two vertices. Hence any weak coloring of every component separately induces
a weak coloring of the whole graph. Each component has one cycle, but it turns out that
the 3-coloring algorithm for rooted trees of Goldberg, Plotkin and Shannon [13] can be
adapted in order to legally 3-color (and hence also weakly 3-color) such a component. When
implemented as an LCA, the upper bound of log∗ n+O(1) on the number of probes follows
from a similar upper bound on the number of rounds of the (modified) algorithm of [13]. To
prove a nearly matching lower bound (Theorem 2) we use a reduction to the lower bound of
Naor [28] (extending [21]) for distributed algorithms that legally 6-color a cycle. Adapting
lower bounds from the distributed setting to the LCA setting also involves an argument of
Göös et al. [15].

We show how to augment the previous algorithm in order to reduce the number of colors
to 2, thus proving Theorem 3. It takes only one more probe to transform the weak 3-coloring
to a weak 2-coloring that is legal for all vertices except for those vertices that do not serve as
parents (which we refer to as leaves). The final step involves changing the colors of (some)
leaves. In order to determine whether a vertex v is a leaf, we probe all of its neighbors,
making the probe complexity linear in the degree of the queried vertex.

One natural method of proving lower bounds for LCAs is by reduction to the distributed
LOCAL model, as was done in [15] (and as we do in the proof of Theorem 2). The relationship
between LCAs and distributed algorithms has been studied before (e.g., [6, 31, 32, 33]) –
given a distributed algorithm to a problem that takes t rounds, one immediately obtains an
LCA that uses O (d t) probes (where d is the maximal degree), by probing all nodes within
distance t. The inverse reduction doesn’t work, as an LCA may probe remote (disconnected)
nodes. Consider, for example, the following artificial problem: each vertex has to color itself
blue if the node with ID 1 has an odd number of neighbors, and red otherwise. An LCA for
this problem needs a single probe, while a distributed algorithm requires time proportional
to the graph’s diameter. Göös et al. [15] show that for many natural problems, probing
remote vertices does not help. But even if we consider only probes to neighbors of discovered
vertices, the best lower bound we can hope for using such a reduction is the distributed time
lower bound: a lower bound of t rounds in the distributed model implies a lower bound of t
probes in the LCA model (recall that an upper bound of t rounds in the distributed model
implies an upper bound of O (d t) probes!). This suggests that we may need new tools to
obtain stronger lower bounds. In the proof of Theorem 4, we iteratively construct families of
d-regular graphs, where graphs in family Fi (for i ≤ d/2) contain roughly di vertices, and we
show that weak 2-coloring of graphs in family Fi requires at least i deterministic weak probes.
Every graph G in family Fi is composed of d disjoint copies of graphs H1, . . . ,Hd from family

U. Feige, B. Patt-Shamir, and S. Vardi 50:5

Fi−1 and two auxiliary vertices ai and bi. From each graph Hj a single edge is removed, and
instead one of its endpoints is connected to ai and the other to bi. Intuitively, it is reasonable
to expect that ai cannot decide on a color before it knows the color of at least one of its
neighbors. Likewise, it is reasonable to expect that each neighbor, being a member of a
graph in Fi−1, requires (by an induction hypothesis) i− 1 probes. The combination of these
two non-rigorous claims would imply that ai requires at least i probes (one to determine the
name of one of its neighbors, and i− 1 probes so as to determine the color of that neighbor).
Turning this informal intuition into a rigorous proof is nontrivial, and this is the main content
of our proof of Theorem 4.

We design a randomized LCA for weak 2-coloring. A key aspect in our randomized LCA
is that each vertex first chooses a random temporary color. This induces a weak 2-coloring
for most vertices of the graph: each vertex whose temporary color differs from the temporary
color of a neighbor can keep its color. Extending this weak 2-coloring to the remaining
vertices is done by associating a parent with each vertex, with the intended goal that the color
of the vertex will differ from the color of the parent (determining the color of the parent uses
an inductive process). This aspect has several different implementations, leading to different
probe complexities. Namely, for an arbitrary parent choice, the number of strong probes
is Θ(logn). If we implement the arbitrary choice using weak probes, the probe complexity
is Θ(log2 n). For a more clever randomized choice of parent, we get that the strong probe
complexity is Θ

(
logn

log logn

)
, and the weak probe complexity is Θ

(
log2 n

log logn

)
. All these bounds

on probe complexity hold with high probability.
We note that our results do not prove a separation between the complexities of determ-

inistic and randomized WP LCAs for weak 2-coloring (although we conjecture that there
is one), as our lower bound that is linear in the degree is proved only for regular graphs
of degree at most O

(
logn

log logn

)
, and our upper bound for randomized WP LCAs for weak

2-coloring is O
(

log2 n
log logn

)
.

Randomized LCAs generally use a pseudo-random generator in order to limit the number
of bits that they use, while ensuring consistency (e.g., [1, 20, 32]). In order to explore the
theoretical limitations of the probe complexity of LCAs, we assume that our randomized
LCAs have unbounded access to random bits. Nevertheless, we show that one can implement
the randomized WP LCA for weak 2-coloring (the one using the arbitrary parent choice
scheme) using a pseudo-random generator with a seed of length O(logn).

We give an LCA for approximate maximum matching in regular graphs. We first describe
an LCA for (1−ε) matching on graphs of degree bounded by d, that uses at most

(
d+ 1

ε

)O(ε−2)

probes per query. (Alternatively, if we wish to have a better dependency on ε and are willing
to have a dependency on n, then an LCA of Even, Medina and Ron [6] has probe complexity
dO(1

ε) +O
(1
ε2

)
log∗ n.) Our LCA A is a simple variation on a randomized LCA of Yoshida,

Yamamoto and Ito [40]: whereas [40] does not limit the number of probes used by their
LCA but instead analyze and provide upper bounds on the expected number of probes used
by their LCA (expectation taken both other choice of random edge and randomness of the
LCA), we run essentially the same LCA, but with a strict upper bound on the number of
probes. This upper bound is a factor of dε larger than the expectation. Markov’s inequality
implies that this gives a (1− ε)-approximation to the maximum matching in expectation.

To obtain an LCA for a d-regular graph G, if d < 1
ε2 we use LCA A. If d > 1

ε2 , we sparsify
the graph: for some universal constant c (independent of ε), each edge remains in the graph
with probability c

dε , and then all vertices that still have degree higher than 2c
ε are removed

from the graph. This results in a graph G′ of degree bounded by 2c
ε . Every matching in G′

ICALP 2018

50:6 Probe Complexity of LCAs

is a matching in G. Moreover, we show that the expected size of a maximum matching in
G′ (expectation taken over choice of random sparsification) is at least (1− ε

2) times the size
of the maximum matching in G. Hence it suffices to find a (1− ε

2)-approximate maximum
matching in the bounded degree graph G′, and it will serve as a (1−ε)-approximate maximum
matching in G. A sufficiently large matching in G′ can be found by A, using

(1
ε

)O(1
ε2) probes

to G′ per query. To implement A on G′, but using only probes to G, we show that each
strong probe to G′ can be simulated by O(1/ε) strong probes to G.

We show that we can find a (1− ε)-approximation to the maximum matching for regular
graphs with sufficiently high degree and girth using polynomially (in 1/ε) many probes.
Gamarnik and Goldberg [11] show that the randomized greedy algorithm finds a (1 − ε)
approximation to the maximum matching on regular graphs with sufficiently high degree and
girth. Similarly to the previous result, if the vertex degrees are sufficiently small (say, below
1
ε3), we can use an LCA of [40] (an implementation of the randomized greedy algorithm
that uses in expectation O(d) probes in graphs of maximum degree d), while placing a strict
upper bound on the number of probes (this upper bound is a factor of 1

εO(1) larger than
the expectation). If the degrees are large, our approach is once again to sparsify the graph
G prior to using the LCA of [40] (modified to have a strict upper bound on the number
of probes). Unfortunately, the resulting graph G′ is only nearly regular but not actually
regular. This requires us to extend the result of [11] from regular graphs to nearly regular
graphs. We do so without relying on the proofs of [11], by the following approach. We add
imaginary edges to G′, making it regular (while maintaining high girth). The LCA now
runs on a regular graph, and hence the bounds of [11] apply. The new problem that arises
is that the matching that is output by the LCA might contain imaginary edges. However,
we prove that the expected fraction of imaginary edges in that matching is similar to their
fraction within the input graph (our proof uses both the high girth assumption and the fact
that the randomized greedy algorithm is local in nature). This, combined with the fact that
the fraction of imaginary edges in the input graph was small (because G′ is nearly regular),
implies that the imaginary edges can be discarded from the solution without significantly
affecting the approximation ratio.

1.2 Related Work
Measures

There are several criteria by which one can measure the performance of LCAs. Rubinfeld et
al. [33] focus on the time complexity of LCAs: how long it takes to reply to a query; Alon
et al. [1] emphasize the space complexity, in particular, the length of the random seed used
(randomized LCAs need a global random seed to ensure consistency). Mansour, Patt-Shamir
and Vardi [26] introduce a unified model, that takes into account all four complexity measures:
probe complexity, time complexity (per query) and space complexity, divided into enduring
memory (in all known LCAs, this includes only the random seed) and transient space (the
computational space used per query). They show that it is possible to obtain LCAs for
which all of these are independent of n for certain problems, such as a (1− ε) approximation
to a maximal acyclic subgraph, using dO(1/ε) probes, where d is the maximal degree of the
graph. LCAs that do not use any enduring memory are called stateless [6]. Indeed, the
deterministic algorithms in this paper are stateless. Another property that is considered
desirable in LCAs is query-obliviousness [33]: the property that the replies to different queries
do not depend on the order in which the queries are given. Again, the LCAs of this paper
are all query-oblivious.

U. Feige, B. Patt-Shamir, and S. Vardi 50:7

LCAs and high-degree graphs

As mentioned above, most known results assume bounded degrees. For example, Mansour et
al. [27] describe LCAs for maximal matching and other problems that use polylogarithmic
(in the size of the graph; exponential in the degree) time and space when the degrees of the
graph are bounded by a constant. Even, Medina and Ron [6], focusing on probe complexity,
give deterministic LCAs for MIS, maximal matching and (d + 1)-coloring for graphs of
degree bounded by a constant d, which use dO(d2) log∗ n probes. Fraigniaud, Heinrich and
Kosowski [10] investigate local conflict coloring, a general distributed labeling problem, and
use their results to improve the probe complexity of (d+ 1)-vertex coloring to approximately
dO(
√
d) log∗ n probes.

Some papers allow for slightly super-constant degrees: Levi, Rubinfeld and
Yodpinyanee [20] give LCAs for MIS and maximal matching for graphs of degree 2O(

√
log logn),

using an improvement of Ghaffari [12]. Reingold and Vardi [32] give LCAs for MIS, maximal
matching and other problems that apply to graphs that are sampled from some distribu-
tion. This limitation allows them to address graphs with higher maximal degree, as long
as the average degree is O(log logn), and the tail of the distribution is sufficiently light. If
we restrict ourselves to LCAs that use polylogarithmic time and space, the approximate
maximum matching LCA of [20] accommodates graphs of polylogarithmic degree. Levi, Ron
and Rubinfeld [19] describe an LCA that constructs spanners using a number of probes
polynomial in d.

Lower bounds

There are few explicit impossibility results LCAs. Göös et al. [15] show that any LCA for
MIS requires Ω(log∗ n) probes, by showing that probing vertices that have not yet been
discovered is not useful. This implies that, on a ring, the number of probes that an LCA
needs to make is “roughly the same” as the number of rounds required by a distributed
LOCAL algorithm, implying that the lower bounds of Linial [21] and Naor [28] hold for
LCAs as well. Levi, Ron and Rubinfeld [19] show that an LCA that determines whether an
edge belongs to a sparse spanning subgraph requires Ω(

√
n) probes. Feige, Mansour and

Schapire [8], adapting a lower bound from the property testing literature [14], show that
approximating the minimum vertex cover in bounded degree bipartite graphs within a ratio
of 1 + ε (for some explicit fixed ε > 0) cannot be done with o(

√
n) probes.

Weak coloring

Weak coloring was introduced by Naor and Stockmeyer [29]. They give a LOCAL distributed
algorithm that requires log∗ d+O(1) rounds for weak 2-coloring graphs of maximal degree d,
assuming all degrees are odd. In contrast, they show that there is no constant time LOCAL
algorithm for weak c-coloring all graphs with vertices with even degrees, for constant c. Our
deterministic weak 2-coloring LCA (Theorem 3) uses log∗ n+O(dv) probes, but when cast
within the LOCAL model it takes log∗ n+O(1) rounds (independently of dv).

Additional LCA background

LCAs are not restricted to graphs. Well known examples include locally-decodable codes
(LDCs) (e.g., [18, 39]) and local reconstruction (e.g., [17, 34]). LDCs are error-correcting
codes that allow a single bit of the original message to be decoded with high probability by
querying a small number of bits of a codeword. Local reconstruction involves recovering the

ICALP 2018

50:8 Probe Complexity of LCAs

value of a function f for a particular input x given oracle access to a closely related function
g. LCAs have recently been applied to solving convex problems in a distributed fashion [22].
Traditional methods for solving distributed optimization, such as iterative descent methods
(e.g., [23]) and consensus methods (e.g., [4]), require global communication, and any edge
failure or lag in the system immediately affects the entire solution, by delaying computation
or causing it not to be computed at all; furthermore, if the network changes in a small way,
the entire solution needs to be recomputed. If an LCA is used, most of the system remains
unaffected by local changes or failures. Hence LCAs can be used to make systems more
robust to edge failures, lag, and dynamic changes. LCAs have also been used in the context of
mechanism design [16], machine learning [8], and designing distributed algorithms [7]. There
are other situations when LCAs may be useful - say we wish to perform some computation
on each of the vertices of an MIS of some huge graph. LCAs allow us to be able to begin
work on some vertices before the entire MIS is computed, and guarantee that the local replies
to the queries will be consistent with the same global solution, that will be available at some
point in the future.

LCAs can also be used as subroutines in approximation algorithms e.g., [5, 31, 30, 40].
The goal of such algorithms is to output an approximation to the size of the solution to some
combinatorial problem (such as Vertex Cover, Maximum Matching, Minimum Spanning
Tree), in time sublinear in the input size. In particular, if one has an LCA whose running
time is t that solves some problem, one can obtain an approximation to the size of the
solution (with some constant probability) by executing this LCA on a sufficiently large (but
constant) number of vertices k chosen uniformly at random, to obtain an approximation
algorithm whose running time is kt (see e.g., [30, 36] for more details).

The concept of LCAs is related to but should not be confused with local algorithms as
in [2, 3, 35]. The difference is that these local algorithms do not require the output for
different probes to satisfy a global consistency property, but rather to satisfy some local
criteria. For example, the goal might be for each vertex to output a small dense subgraph
that contains it, without requiring two different vertices to agree on whether they share the
same dense subgraph or not.

1.3 Paper Outline
Due to space restriction, we include a single result with complete proof in this version. See [9]
for the full version of this paper.

2 Preliminaries

We denote the set of integers {1, 2, . . . , n} by [n]. All logarithms are base 2. Our input is
a simple undirected graph G = (V,E), |V | = n, in which every vertex has an ID and all
IDs are distinct. For simplicity, we assume that the IDs are taken from the set [n]. The
neighborhood of a vertex v, denoted N(v), is the set of vertices that share an edge with
v: N(v) = {u : (u, v) ∈ E}. The degree of a vertex v, is |N(v)|. The girth of G, denoted
girth(G) is the length of the shortest cycle in G.

LCAs

Our definition of LCAs is slightly different from previous definitions in that it focuses on
probe complexity. We do this so as not to introduce unnecessary notation. See [26, 36] for
definitions that also take into account other complexity measures.

U. Feige, B. Patt-Shamir, and S. Vardi 50:9

I Definition 10 (Probe). We assume that the input graph is represented as a two dimensional
n by d+ 1 array, where d is the maximum degree. Rows are labeled from 1 to n by the vertex
names. For any v, the cell (v, 0) specifies the degree dv of v, the cell (v, j) for 1 ≤ j ≤ dv
specifies the name of the neighbor connected to v’s jth port. Cells (v, j) for dv < j ≤ d

contain 0. We define strong and weak probes as follows.
A strong probe (SP) specifies the ID of a vertex v; the reply to the probe is the entire
row corresponding to v (namely, the list of all neighbors of v).
A weak probe (WP) specifies a single cell (v, j) and receives its content (namely, only the
jth neighbor of v).

We note that knowing that u is v’s ith neighbor does not give us information regarding
which one of u’s ports v is connected to. This property is crucial for the proof of Theorem 4.

I Definition 11 (Local computation algorithm). A deterministic p(n)-probe local computation
algorithm A for a computational problem is an algorithm that receives an input of size n.
Given a query x, A makes at most p(n) probes to the input in order to reply. A must be
consistent; that is, the algorithm’s replies to all of the possible queries combine to a single
feasible solution to the problem.

A randomized (p(n), s(n), δ(n))-local computation algorithm A differs from a deterministic
one in the following aspects. Before receiving its input, it is allowed to write s(n) random bits
(referred to as the random seed) to memory.4 Thereafter, it must behave like a deterministic
LCA, except that when answering queries it may also read and use the random seed. For
any input G, |G| = n, the probability (over the choice of random seed) that there exists
a query in G for which A uses more than p(n) probes is at most δ(n), which is called A’s
failure probability.

When LCA A is given input graph G = (V,E) and queried on vertex v ∈ V , we denote
this by A(G, v). An LCA A is said to require k probes on a graph G = (V,E), if there is at
least one query for which A uses k probes. We say that an LCA A requires k probes for a
family F of graphs, if for some graph G ∈ F , A requires k probes.

I Definition 12 (Approximation algorithm). Given a maximization problem over graphs and a
real number 0 ≤ α ≤ 1, a (possibly randomized) α-approximation algorithm A is guaranteed,
for any input graph G, to output a feasible solution whose expected value is at least an α
fraction of the value of an optimal solution (in expectation over the random bits used by A).5

3 Lower Bound for Vertex Cover

In this section we prove Theorem 6:

I Theorem 6. For any ε < 1
2 , any randomized SP LCA that computes a vertex cover whose

size is a (1
2n

1−2ε)-approximation to the size of the minimal vertex cover requires at least εnε
probes.

In order to prove Theorem 6 , we use the minimax theorem of Yao [38], by showing a
lower bound on the expected number of probes required by a deterministic LCA when the
input is selected from a certain distribution. To this end we construct, for infinitely many
values of n, a family of graphs, parametrized by a constant k ≥ 3.

4 In this work, except where explicitly mentioned, we allow the random seed to be unbounded.
5 The definition of approximation algorithms to minimization problems is analogous, with α ≥ 1.

ICALP 2018

50:10 Probe Complexity of LCAs

Figure 1 The graph fusion(G, (u′, w′), (u′′, w′′)). The dashed edges e′ = (u′, w′) and e′′ = (u′′, v′′)
have been removed and the edge (u′, u′′) has been added.

Let p be a prime number, and Z(p) its associated field. Let G∗ = (U∗ ∪W ∗, E) be
a bipartite graph, where |U∗| = pk, |W ∗| = p2. Label each vertex in U∗ by a k-tuple
(a0, a1, . . . , ak−1), ai ∈ Z(p), i ∈ {0, 1, . . . , k − 1} and the vertices in W ∗ by a pair (b0, b1),
bi ∈ Z(p), i ∈ {0, 1}. Associate each vertex uj = (a0, a1, . . . , ak−1) ∈ U∗ with the polynomial
fj(x) = a0 + a1x+ · · ·+ ak−1x

k−1. Connect (b0, b1) ∈W ∗ to uj iff b1 = fj(b0).

I Lemma 13. For every two different vertices ui, uj ∈ U∗, N(ui) ∩N(uj) ≤ k − 1.

Proof. Consider fi and fj , the polynomials associated with ui and uj respectively. Let
g(x) = fi(x)− fj(x). As g is not the zero polynomial, it has at most k− 1 roots in Z(p). J

Let G to be a graph consisting of two identical copies of G∗. We denote these two copies
by G′ = (U ′ ∪W ′, E′) and G′′ = (U ′′ ∪W ′′, E′′). Let U = U ′ ∪ U ′′; let W = W ′′ ∪W ′′; let
n = |U ∪W | = 2(pk + p2).

We define the following operation on G (see Figure 1). Let e′ and e′′ be edges such that
e′ = (u′, w′) : u′ ∈ U ′, w′ ∈ W ′ and e′′ = (u′′, w′′) : u′′ ∈ U ′′, w′′ ∈ W ′′. Remove e′ and e′′
from G, and add an edge e = (u′, u′′). We call this operation fusion(G, e′, e′′), and call u
and u′ the fusion vertices. Note that there are pk+1 possible choices for e′ and pk+1 possible
choices for e′′.

Given a graph G = fusion(G, (u′, w′), (u′′, w′′)), the optimal size of the vertex cover of G
is at most 2p2 + 1, as W and a fusion vertex constitute a vertex cover.

Note that a vertex can locally detect whether it is in U or in W just by looking at its
own degree. However, to detect whether it is one of the fusion vertices, it needs to determine
the degrees of its neighbors, which is impossible to do with number of probes significantly
smaller than its degree.6

We now describe the graph family we use. Let G = (U ∪W,E) be as above. Let Π be the
set of all possible namings of U ∪W by the ID set [n]. Let T = E′ × E′′. Given a naming
π ∈ Π and a pair of edges τ = (e′, e′′) ∈ T , the graph G(τ, π) is defined as follows:
1. The topology of G(τ, π) is given by fusion(G, e′, e′′).
2. The vertices of G(τ, π) are named according to π.
The family of graphs we consider is G(Π, T) = {G(τ, π) | τ ∈ T, π ∈ Π}. We now analyze
the behavior of a given deterministic LCA A with proble complexity less than p/k on a

6 Compare this with a distributed algorithm in the LOCAL model, for which one round suffices to
determine this.

U. Feige, B. Patt-Shamir, and S. Vardi 50:11

graph chosen uniformly at random from G(Π, T). We first make the following simplification.
Suppose that A running on some G(τ, π) is given v as a query. If A probes w′τ or w′′τ , it
knows that v is neither u′τ nor u′′τ and hence A need not include v in the VC. For simplicity,
we also assume that if A probes u′τ or u′′τ , it knows not to add v to the VC. Note that this
only strengthens A, hence we can make this assumption without loss of generality.

We use the following definition.

I Definition 14 (View). Let A be a deterministic SP LCA. We denote by View(A, G, v) the
subgraph that A discovers when queried on vertex v in graph G, i.e., the set of all probed
vertices and their neighbors.

I Lemma 15. Let A be an SP LCA with probe complexity less than p/k. Let G ∈ G(Π, T).
Assume that A is queried on G with vertex v. Then there is some vertex w ∈ N(v) such that
w has no neighbors except v in View(A, G, v). (That is, neither w nor any of its neighbors
(except v) is probed in A(G, v).)

Proof. A probes v and, say, a vertices from U and b vertices from W , for some a, b ∈ N such
that a+ b < p/k. From Lemma 13, A sees at most a(k− 1) vertices from N(v) as a result of
probing vertices in U \ {v}. Furthermore, A sees at most b vertices from N(v) as a result of
probing vertices in W . As a(k− 1) + b < p = |N(v)|, at least one vertex in N(v) is only seen
once, while probing v. J

Consider an input graph G(τ, π), where τ = ((u′τ , w′τ), (u′′τ , w′′τ)). We use the following
notation.

Av denotes the event that A is given v as a query. Note that Av is independent of π and
τ .
Xτ,π,i denotes the event that none of u′τ , w′τ , u′′τ , w′′τ is probed when A is queried on
i ∈ [n].

I Lemma 16. Fix π and τ . Let v be a vertex in U ′ \ {u′τ}. If Av and Xτ,π,π(v) hold, there
exist π1 ∈ Π, τ1 ∈ T such that View(A,G(π1, τ1), u′τ1

) = View(A,G(π, τ), v).

Proof. By Lemma 15, there is some vertex w ∈ N(v) that has no neighbors other than v in
View(A, G(π, τ), v). Let π1 be identical to π except that v and u′τ are interchanged. Set
τ1 = ((v, w), e′′τ). The lemma follows. J

A symmetrical argument holds for v ∈ U ′′ \ {u′′τ}.

I Lemma 17. Fix G, and let i ∈ [n] be the ID of the vertex given to a deterministic SP
LCA A as a query. If the probe complexity of A is less than p/k, then Pr[Xτ,π,i] ≥ 1− 1

kp ,
where the probability is over the choice of π and τ .

Proof. Fix π. If A probes a vertices in U and b vertices in W , it will hit one of u′τ , w′τ , u′′τ , w′′τ
with probability at most a

pk
+ b

p2 , over the choice of τ . Since a, b ≥ 0 and a + b ≤ p/k,
the probability is maximized for a = 0, b = p/k. As this bound holds for any π, the result
follows. J

Lemma 16 and Lemma 17 imply that when a deterministic SP LCA is queried on a vertex
u ∈ U from a random graph in G(T,Π), it cannot discern in less than p/k probes whether u
is a fusion vertex with probability greater than 1

kp . Hence the LCA must add vertex u to
the VC, because at least one fusion vertex must be in the VC. Therefore, the size of the VC
that A computes is at least pk −O(1), whereas the optimal VC has size at most p2 + 1:

ICALP 2018

50:12 Probe Complexity of LCAs

I Theorem 18. There does not exist a deterministic SP LCA A that computes a VC that is
an (1

2n
1−2ε)-approximation to the optimal VC and uses fewer than εnε probes with probability

greater than 1
kp on a graph chosen uniformly at random from G(Π, T).

Proof. Let ε = 1/k. Recall that n = Θ(pk). We have shown that if the number of probes is less
than p/k = Θ(nε ·ε), then the approximation ratio is at least pk/p2−o(1) = n1−2/k−o(1). J

Applying Yao’s principle [38] to Theorem 18 completes the proof of Theorem 6.

I Corollary 19. Any SP LCA for maximal matching on arbitrary graphs requires Ω(n1/2−o(1))
probes.

Proof. It is well known that, given any maximal matching, taking both end vertices of every
edge gives a 2-approximation to the VC (e.g., [37]). Therefore, an LCA for maximal matching
would immediately give a 2-approximation to the minimal vertex cover. Setting 2 = Θ(n1−2ε)
in Theorem 6 gives ε = 1/2. The result follows. J

References
1 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proc. 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1132–1139, 2012.

2 Reid Andersen. A local algorithm for finding dense subgraphs. ACM Trans. Algorithms,
6(4), 2010.

3 Reid Andersen, Shayan Oveis Gharan, Yuval Peres, and Luca Trevisan. Almost optimal
local graph clustering using evolving sets. J. ACM, 63(2):15, 2016.

4 Vincent D Blondel, Julien M Hendrickx, Alex Olshevsky, and John N Tsitsiklis. Con-
vergence in multiagent coordination, consensus, and flocking. In Proceedings of IEEE
Conference on Decision and Control, pages 2996–3000. IEEE, 2005.

5 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

6 Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796, 2014. URL: http://arxiv.org/abs/
1402.3796, arXiv:1402.3796.

7 Guy Even, Moti Medina, and Dana Ron. Distributed maximum matching in bounded de-
gree graphs. In Proceedings of the 2015 International Conference on Distributed Computing
and Networking, ICDCN, pages 18:1–18:10, 2015.

8 Uriel Feige, Yishay Mansour, and Robert E. Schapire. Learning and inference in the
presence of corrupted inputs. In Proceedings of The 28th Conference on Learning Theory,
COLT, pages 637–657, 2015.

9 Uriel Feige, Boaz Patt-Shamir, and Shai Vardi. On the probe complexity of local compu-
tation algorithms. CoRR, abs/1703.07734, 2017. arXiv:1703.07734.

10 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS, pages 625–634, 2016.

11 David Gamarnik and David A. Goldberg. Randomized greedy algorithms for independent
sets and matchings in regular graphs: Exact results and finite girth corrections. Combin-
atorics, Probability and Computing, 19:61–85, 1 2010. doi:10.1017/S0963548309990186.

12 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, pages 270–277, 2016.

13 Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symmetry-
breaking in sparse graphs. SIAM J. Discret. Math., 1(4):434–446, 1988.

http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1703.07734
http://dx.doi.org/10.1017/S0963548309990186

U. Feige, B. Patt-Shamir, and S. Vardi 50:13

14 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

15 Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-local
probes do not help with many graph problems. Distributed Computing - 30th International
Symposium, DISC, pages 201–214, 2016.

16 Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism design.
ACM Trans. Economics and Comput., 4(4):21:1–21:24, 2016. doi:10.1145/2956584.

17 M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. In Proc. 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2011.

18 J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In Proc. 32nd Annual ACM Symposium on the Theory of Computing (STOC), pages
80–86, 2000.

19 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM), pages 826–842, 2014.

20 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Brief announcement: Local compu-
tation algorithms for graphs of non-constant degrees. In Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and Architectures, SPAA, pages 59–61, 2015.

21 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1), 1992.
22 Palma London, Niangjun Chen, Shai Vardi, and Adam Wierman. Distributed optimization

via local computation algorithms. http://users.cms.caltech.edu/~plondon/loco.pdf,
2017.

23 Steven H Low, Fernando Paganini, and John C Doyle. Internet congestion control. IEEE
control systems, 22(1):28–43, 2002.

24 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986.

25 Nancy A. Lynch. Upper bounds for static resource allocation in a distributed system. J.
Comput. Syst. Sci., 23(2):254–278, 1981.

26 Yishay Mansour, Boaz Patt-Shamir, and Shai Vardi. Constant-time local computation
algorithms. Theory of Computing Systems, pages 1–19, 2017.

27 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms
to local computation algorithms. In Proc. 39th International Colloquium on Automata,
Languages and Programming (ICALP), pages 653–664, 2012.

28 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
J. Discrete Math., 4(3):409–412, 1991.

29 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995.

30 Huy N. Nguyen and Krzystof Onak. Constant-time approximation algorithms via local im-
provements. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 327–336, 2008.

31 M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a
connection to distributed algorithms. Theoretical Computer Science, 381(1–3), 2007.

32 Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation
algorithms. J. Comput. Syst. Sci., 82(7):1180–1200, 2016.

33 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Proc. 2nd Symposium on Innovations in Computer Science (ICS), pages 223–238, 2011.

34 Michael E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J. Comput.,
39(7):2897–2926, 2010.

ICALP 2018

http://dx.doi.org/10.1145/2956584
http://users.cms.caltech.edu/~plondon/loco.pdf

50:14 Probe Complexity of LCAs

35 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs
and its application to nearly linear time graph partitioning. SIAM J. Comput., 42(1):1–26,
2013.

36 Shai Vardi. Designing Local Computation Algorithms and Mechanisms. PhD thesis, Tel
Aviv University, Tel Aviv, Israel, 2015.

37 Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.
38 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.

In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, FOCS
’77, pages 222–227, 1977.

39 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Com-
puter Science, 6(3):139–255, 2012.

40 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approximation
algorithms for maximum matchings and other optimization problems. SIAM J. Comput.,
41(4):1074–1093, 2012.

	Introduction
	Overview of Our Techniques
	Related Work
	Paper Outline

	Preliminaries
	Lower Bound for Vertex Cover

