
ARRIVAL: Next Stop in CLS
Bernd Gärtner
Department of Computer Science, ETH Zürich, Switzerland
gaertner@inf.ethz.ch

Thomas Dueholm Hansen1

Department of Computer Science, University of Copenhagen, Denmark
dueholm@di.ku.dk

Pavel Hubáček2

Computer Science Institute, Charles University, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

Karel Král3

Computer Science Institute, Charles University, Prague, Czech Republic
kralka@iuuk.mff.cuni.cz

Hagar Mosaad
Department of Computer Science and Engineering, German University in Cairo, Egypt
hagar.omar@student.guc.edu.eg

Veronika Slívová4

Computer Science Institute, Charles University, Prague, Czech Republic
slivova@iuuk.mff.cuni.cz

Abstract
We study the computational complexity of Arrival, a zero-player game on n-vertex switch
graphs introduced by Dohrau, Gärtner, Kohler, Matoušek, and Welzl. They showed that the
problem of deciding termination of this game is contained in NP ∩ coNP. Karthik C. S. recently
introduced a search variant of Arrival and showed that it is in the complexity class PLS. In
this work, we significantly improve the known upper bounds for both the decision and the search
variants of Arrival.

First, we resolve a question suggested by Dohrau et al. and show that the decision variant
of Arrival is in UP ∩ coUP. Second, we prove that the search variant of Arrival is contained
in CLS. Third, we give a randomized O(1.4143n)-time algorithm to solve both variants.

Our main technical contributions are (a) an efficiently verifiable characterization of the unique
witness for termination of the Arrival game, and (b) an efficient way of sampling from the state
space of the game. We show that the problem of finding the unique witness is contained in
CLS, whereas it was previously conjectured to be FPSPACE-complete. The efficient sampling
procedure yields the first algorithm for the problem that has expected runtime O(cn) with c < 2.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases CLS, switch graphs, zero-player game, UP ∩ coUP

1 Partially supported by BARC which is funded by the VILLUM Foundation grant 16582.
2 Supported by the project 17-09142S of GA ČR, Charles University project UNCE/SCI/004, and Charles

University project PRIMUS/17/SCI/9. This work was done under financial support of the Neuron Fund
for the support of science.

3 The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 616787.

4 Supported by the project 17-09142S of GA ČR, Charles University project PRIMUS/17/SCI/9, and
Charles University grant SVV-2017-260452.

EA
T

C
S

© Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král, Hagar Mosaad, and
Veronika Slívová;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 60; pp. 60:1–60:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gaertner@inf.ethz.ch
mailto:dueholm@di.ku.dk
mailto:hubacek@iuuk.mff.cuni.cz
mailto:kralka@iuuk.mff.cuni.cz
mailto:hagar.omar@student.guc.edu.eg
mailto:slivova@iuuk.mff.cuni.cz
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 ARRIVAL: Next Stop in CLS

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.60

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1802.
07702.

Acknowledgements We wish to thank Karthik C. S. for helpful discussions and suggestions.

1 Introduction

Variants of switch graphs have applications and are studied for example in combinatorics
and in automata theory (cf. [11] and the references therein). Dohrau et al. [5] introduced
Arrival, a natural computational problem on switch graphs, which they informally described
as follows:

Suppose that a train is running along a railway network, starting from a designated
origin, with the goal of reaching a designated destination. The network, however, is
of a special nature: every time the train traverses a switch, the switch will change
its position immediately afterwards. Hence, the next time the train traverses the
same switch, the other direction will be taken, so that directions alternate with each
traversal of the switch.
Given a network with origin and destination, what is the complexity of deciding
whether the train, starting at the origin, will eventually reach the destination? [5]

The above rather straightforward question remains unresolved. Dohrau et al. [5] showed
that deciding Arrival is unlikely to be NP-complete (by demonstrating that it is in NP ∩
coNP), but it is currently not known to be efficiently solvable.

To determine whether the train eventually reaches its destination, it is natural to consider
a run profile, i.e., the complete transcript describing how many times the train traversed each
edge. Dohrau et al. [5] presented a natural integer programming interpretation of run profiles
called switching flows, which have the advantage of being trivial to verify. The downside of
switching flows is that they do not guarantee to faithfully represent the number of times each
edge has been traversed; a switching flow might contain superfluous circulations compared
to a valid run profile. Nevertheless, Dohrau et al. [5] proved that the existence of a switching
flow implies that the train reaches its destination, and thus a switching flow constitutes an
NP witness for Arrival.

The coNP membership was shown by an insightful observation about the structure of
switch graphs. Specifically, the train reaches its destination d if and only if it never enters a
node from which there is no directed path to d. The railway network can thus be altered so
that all such vertices point to an additional “dead-end” vertex d̄. The coNP witness is then
simply a switching flow from the origin to the dead-end d̄.

Given that the decision variant of Arrival is in NP ∩ coNP, it is natural to study the
search complexity of Arrival in the context of total search problems with the guaranteed
existence of a solution, i.e., within the complexity class TFNP (which contains the search
analogue of NP ∩ coNP). Total search problems are classified into subclasses of TFNP using
the methodology proposed by Papadimitriou [13] that clusters computational problems
according to the type of argument assuring the existence of a solution. Karthik C. S. [14]
noticed that the search for a switching flow is a prime candidate to fit into the hierarchy
of TFNP problems. He introduced S-Arrival, a search version of Arrival that seeks a
switching flow to either the destination d or the dead-end vertex d, and showed that it is
contained in the complexity class PLS [10] of total problems amenable to local search.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.60
https://arxiv.org/abs/1802.07702
https://arxiv.org/abs/1802.07702

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:3

Fearnley et al. [6] recently studied multiple variants of reachability games on switch graphs
and as one of their results gave a lower bound on the complexity of deciding ARRIVAL.
Specifically, they showed that Arrival is NL-hard.

1.1 Our Results
One of the open problems suggested by Dohrau et al. [5] was whether deciding the termination
of Arrival is contained in UP ∩ coUP (recall that UP is a subclass of NP such that for each
YES-instance there is a unique certificate). Recall that given a railway network with an
origin o and a destination d, the transcript of the route of the train captured in the run
profile from o to d (if it exists) is unique. We show that it is possible to efficiently decide
whether a switching flow corresponds to a run profile, which provides a positive answer to
the above question and places Arrival inside UP ∩ coUP. We similarly also improve the
upper bound on the search complexity of Arrival: We show that S-Arrival is contained
in the complexity class CLS. Daskalakis and Papadimitriou [4] introduced CLS to classify
problems that can be reduced to local search over continuous domains. CLS contains multiple
important search problems such as solving simple stochastic games, finding equilibria in
congestion games, and solving linear complementarity problems on P-matrices. For all of
these problems, as well as for S-Arrival, we currently do not have a polynomial time
algorithm, and they are not known to be complete for some subclass of TFNP.

We establish the containment in CLS through a reduction to End-Of-Metered-Line
(EOML), a total search problem that was recently introduced by Hubáček and Yogev [9]
who also showed that it is in CLS. In EOML we are given a source in a directed graph
with vertices of in-degree and out-degree at most one, and the task is to find a sink or a
source different from the given trivial source. The access to the graph is given locally via
information about the successor and predecessor of each vertex together with its distance
from the trivial source (for the formal definition see Definition 18).

Our result makes it unlikely for S-Arrival to be PLS-hard, which was one of the possibil-
ities suggested by the containment in PLS shown by Karthik C. S. [14]. This is due to known
black-box separations among subclasses of TFNP [12, 2], which suggest that CLS is a proper
subclass of PLS. Note that our reduction from S-Arrival to End-Of-Metered-Line
results in instances with a significantly restricted structure: the End-Of-Metered-Line
graph consists only of a single path and many isolated vertices. We believe that this structure
may in future work be used to show that S-Arrival is contained in FP.

Our reduction from S-Arrival to End-Of-Metered-Line also implies that we can use
an algorithm by Aldous [1] to solve S-Arrival. The algorithm is randomized and runs in
O(2n/2poly(n)) expected time on switch graphs with n vertices. This is the first algorithm
with expected runtime O(cn) for c < 2. (A trivial O(2npoly(n)) time algorithm can be
obtained by following the path of the train through the network.) Aldous’ algorithm, in
fact, solves any problem in PLS. It samples a large number of candidate solutions and then
performs a local search from the best sampled solution. The advantage of our reduction
is that the resulting search space for End-Of-Metered-Line is small enough to make
Aldous’ algorithm useful, unlike in the previous reduction by Karthik C. S. [14] that showed
containment in PLS.

Fearnley et al. [7] recently gave a reduction from P -matrix linear complementarity
problems (PLCP) to End-Of-Metered-Line. As in our case for Arrival, this implies
that Aldous’ algorithm can be used to solve PLCP. In fact this gives the fastest known
randomized algorithm for PLCP, running in expected time O(2n/2poly(n)) for input matrices
of dimension n × n. Fearnley et al. do not make this observation themselves, but it is

ICALP 2018

60:4 ARRIVAL: Next Stop in CLS

straightforward to check that their reduction also gives an efficient representation of the
search space. Although Aldous’ algorithm is very simple, it non-trivially improves the best
runtime of algorithms for multiple problems. We believe that this way of applying Aldous’
algorithm is a powerful technique that will produce additional results in the future.

1.2 Technical remarks
Recall that a switching flow is a run profile with additional superfluous circulations compared
to the valid run profile. Our main technical observation is a characterization of switching
flows that correspond to the valid run profile. Given a switch graph G and a switching
flow f , we consider the subgraph G∗ induced over the railway network by the “last-used”
edges; for every vertex v, we include in G∗ only the outgoing edge that was, according to the
switching flow, used by the train last time it left from v. Note that such last-used edges can
be efficiently identified simply by considering the parity of the total number of visits at every
vertex. When f is a valid run profile, then it is straightforward to see that the subgraph G∗
is acyclic. We show that this property is in fact a characterization, i.e., any switching flow
for which the induced graph G∗ is acyclic must be a run profile. Given that this property
is easy to check, we can use it to efficiently verify run profiles as UP witnesses. (The coUP
witness is then a run profile to the dead-end at d̄.)

For our reduction from S-Arrival to End-Of-Metered-Line we extend the above
observation to partial switching flows that are not required to end at the destination. The
vertices of the End-Of-Metered-Line graph created by our reduction correspond to partial
switching flows in the S-Arrival instance. The directed edges connect partial run profiles
to their natural successors and predecessors, i.e., the partial run extended or shortened by a
single step of the train. Any switching flow that does not correspond to some partial run
profile is an isolated vertex in the End-Of-Metered-Line graph. Finally, the trivial source
is the empty switching flow, and the distance from it can be computed for any partial run
simply as the number of steps taken by the train so far. Given that there is only a single path
in the resulting End-Of-Metered-Line graph and that its sink is exactly the complete
run, we get that the unique solution to the End-Of-Metered-Line instance gives us a
solution for the original instance of S-Arrival.

To make the reduction efficiently computable, we need to address the verification of
partial run profiles. As it turns out, partial run profiles can be efficiently verified using the
graph G∗, in a similar way to complete run profiles discussed above. The main difference is
that the graph of last-used edges for a partial run profile can contain a cycle, as the train
might visit the same vertex multiple times on its route to the destination. However, we show
that there is at most one cycle in G∗, which always contains the current end-vertex of the
partial run. The complete characterization of partial run profiles (which covers also full run
profiles) is given in Lemma 9, and the formal reduction is described in Section 4.2.1.

Finally, we show that every partial run profile is uniquely determined by its last-used
edges and its end-vertex. This limits the size of the search space for the EOML instances
that are produced by our reduction, which allows us to efficiently use Aldous’ algorithm [1]
to solve Arrival and S-Arrival.

2 Preliminaries

In the rest of the paper we use the following standard notation. For k ∈ N, we denote by [k]
the set {1, . . . , k}. For a graph G = (V,E), we reserve n = |V | for the number of vertices.
The basic object that we study are switch graphs, as defined by Dohrau et al. [5].

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:5

Algorithm 1: Run.
Input : a switch graph G = (V, E, s0, s1) and two vertices o, d ∈ V

Output : for each edge e ∈ E, the number of times the train traversed e

1 v ← o // position of the train
2 ∀u ∈ V set s_curr[u]← s0(u) and s_next[u]← s1(u)
3 ∀e ∈ E set r[e]← 0 // initialize the run profile
4 step← 0 while v 6= d do
5 (v, w)← s_curr[v] // compute the next vertex
6 r[s_curr[v]]++ // update the run profile
7 swap(s_curr[v], s_next[v])
8 v ← w // move the train
9 step← step + 1

10 return r

I Definition 1 (switch graph). A switch graph is a tuple G = (V,E, s0, s1) where s0, s1 : V →
V and E = {(v, s0(v)), (v, s1(v)) | ∀v ∈ V }.5 In order to avoid cumbersome notation, we
slightly overload the use of s0, s1 and treat both as functions from vertices to edges; that is
by sb(v) we denote the edge (v, sb(v)) for b ∈ {0, 1}. We use this convention throughout the
paper unless stated otherwise.

The Arrival problem was formally defined by Dohrau et al. [5] as follows.

I Definition 2 (Arrival [5]). Given a switch graph G = (V,E, s0, s1) and two vertices o, d ∈ V ,
the Arrival problem is to decide whether the algorithm Run (Algorithm 1) terminates, i.e.,
whether the train reaches the destination d starting from the origin o.

To simplify theorem statements and our proofs, we assume without loss of generality that
both s0(d) and s1(d) end in d.

A natural witness for termination of the Run procedure considered in previous work
(e.g. [5]) is a switching flow. We extend the definition of a switching flow to allow for partial
switching flows that do not necessarily end in the desired destination d.

I Definition 3 ((partial) switching flow, end-vertex). Let G = (V,E, s0, s1) be a switch graph.
For o, d ∈ V , we say that f ∈ N2n is a switching flow from o to d if the following two
conditions hold.
Kirchhoff’s Law (flow conservation):

∀v ∈ V :
∑

e=(u,v)∈E

fe −
∑

e=(v,w)∈E

fe = [v = d]− [v = o] ,

where [·] is the indicator variable of the event in brackets.
Parity Condition:

∀v ∈ V : fs1(v) ≤ fs0(v) ≤ fs1(v) + 1 .

Kirchoff’s law means that o emits one unit of flow, d absorbs one unit of flow, and at all
other vertices, in-flow equals out-flow. If d = o, we have a circulation.

Given an instance (G = (V,E, s0, s1), o, d) of Arrival, we say that f is a switching flow
if it is a switching flow from o to d. A vector f ∈ N2n is called a partial switching flow iff f

is a switching flow from o to v for some vertex v ∈ V . We say that v is the end-vertex of the
partial switching flow. We denote the end-vertex of f by vf .

5 Whenever s0(v) = s1(v) for some vertex v ∈ V we depict them as multiple edges in figures.

ICALP 2018

60:6 ARRIVAL: Next Stop in CLS

o

d

o

d

o

d

o

d

Figure 1 An example of a switch graph G and cycles in the graphs G∗ corresponding to partial
run profiles after 3, 4, and 5 steps of the train (respectively from left to right). We use hatching to
highlight the current end-vertex.

I Definition 4 ((partial) run profile). A run profile is the switching flow r returned by the
algorithm Run (Algorithm 1) upon termination. A partial run profile is a partial switching
flow corresponding to some intermediate value of r in the algorithm Run (Algorithm 1).

I Observation 5 (Dohrau et al. [5, Observation 1]). Each (partial) run profile is a (partial)
switching flow.

I Observation 6. An end-vertex vf of a switching flow f is computable in polynomial time.

Proof. It is sufficient to determine which vertex has a net in-flow of one. J

3 The Complexity of Run Profile Verification

Dohrau et al. [5] proved that it is possible to efficiently verify whether a given vector is a
switching flow. In this section we show that we can also efficiently verify whether a switching
flow is a run profile. Combining this with the results by Dohrau et al. [5], we prove that the
decision problem of Arrival is in UP ∩ coUP (see Section 4.1) and that the search problem
of Arrival lies in the complexity class CLS (see Section 4.2). As outlined in Section 1.2,
our approach for verification of run profiles is based on finding a cycle in a natural subgraph
of the railway network G defined below. Specifically, we consider the subgraph of G that
contains only the last visited outgoing edge of each vertex, i.e., every vertex has out-degree
at most one.

I Definition 7 (G∗f). Let (G = (V,E, s0, s1), o, d) be an instance of Arrival, and let
f ∈ N2n be a partial switching flow. We define a graph G∗f = (V,E∗) as follows

E∗ =
{
s0(v) : ∀v ∈ V s.t. fs0(v) 6= fs1(v)

}
∪{

s1(v) : ∀v ∈ V s.t. fs0(v) = fs1(v) > 0
}
.

I Observation 8. Given a partial switching flow f , the graph G∗f can be computed in
polynomial time.

I Lemma 9. A partial switching flow f is a partial run profile iff fs0(d) = fs1(d) = 0 and
one of the following two conditions holds:
1. There exists no cycle in G∗f .
2. There exists exactly one cycle in G∗f and this cycle contains the end-vertex of f .

The main idea of the proof is based on the following fact: a switching flow f which is not
a run profile must contain a circulation (as shown by Dohrau et al. [5]). Let f be a switching
flow that we get from a run profile r by adding some flows on cycles, then the last added
circulation (the last added cycle) must form a cycle in the corresponding graph G∗f . On the

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:7

other hand, a cycle containing the end-vertex is formed in G∗f whenever the train arrives
to a previously visited vertex. An illustration of the graph G∗ at consecutive steps of the
algorithm Run, with the corresponding evolution of the end-vertices and cycles, is given in
Figure 1.

The complete proof of Lemma 9 is provided in the full version [8].

I Lemma 10. It is possible to verify in polynomial time whether a vector is a run profile.

Proof. We can check that a vector f is a switching flow in polynomial time due to
Dohrau et al. [5]. The construction of the graph G∗f is polynomial by Observation 8.
Lemma 9 gives us a polynomial time procedure to check if f is also a run profile as it is
sufficient to check if G∗f contains more than one cycle or whether it has a cycle not containing
the end-vertex. This check can be done by a simple modification of the standard depth-first
search on G∗f . J

4 The Computational Complexity of Arrival

In this section we use our efficient structural characterization of run profiles from Lemma 9 to
improve the known results about the computational complexity of Arrival. Specifically, we
show that the decision version of Arrival is in UP ∩ coUP and the search version is in CLS.

4.1 The Decision Complexity of Arrival
Our upper bound on the decision complexity of Arrival follows directly from the work of
Dohrau et al. [5] by application of Lemma 10.

I Theorem 11. Arrival is in UP ∩ coUP.

Proof. The unique UP certificate for a YES-instance of Arrival is the run profile r returned
by the algorithm Run. Clearly, for each YES-instance there exists only one such vector r

and r does not exist for NO-instances. By Lemma 10, we can determine whether a candidate
switching flow r is a run profile in polynomial time.

The coUP membership follows directly from the reduction of NO-instances of Arrival
to YES-instances of Arrival as suggested by Dohrau et al. [5]. The reduction adds to the
original graph G a new vertex d̄, and for each vertex v ∈ V such that there is no directed path
from v to the destination d, the edges s0(v) and s1(v) are replaced with edges (v, d̄). This
alteration of the original switch graph can be performed in polynomial time. Dohrau et al. [5]
proved that the train eventually arrives either at d or d̄. The unique coUP witness for
Arrival is then a run profile from o to the dead-end d. J

4.2 The Search Complexity of Arrival
The search complexity of Arrival was first studied by Karthik C. S. [14], who introduced a
total search variant of Arrival as follows.

I Definition 12 (S-Arrival [14]). Given a switch graph G = (V,E, s0, s1) and a pair of
vertices o, d ∈ V , define a graph G′ as follows:
1. Add a new vertex d̄.
2. For each vertex v such that there is no directed path from v to d, replace edges s0(v) and

s1(v) with edges (v, d̄).
3. Edges s0(d), s1(d), s0(d̄), and s1(d̄) are self-loops.
The problem S-Arrival is to find a switching flow in G′ either from o to d or from o to d̄.

ICALP 2018

60:8 ARRIVAL: Next Stop in CLS

The above Definition 12 is motivated by the proof of membership in NP ∩ coNP by
Dohrau et al. [5]. Namely, in order to ensure that a solution for S-Arrival always exists, it
was necessary to add to the switch graph G the dead-end vertex d̄.

Note that our method for efficient verification of run profiles from Lemma 10 allows
us to define a more natural version of S-Arrival directly on the graph G without any
modifications. Instead of relying on the dead-end vertices, we can use the fact that a partial
run profile with an edge that was visited for 2n + 1 times is an efficiently verifiable witness
for NO-instances of Arrival.

I Definition 13 (S-Arrival - simplified). Given a switch graph G = (V,E, s0, s1) and a
pair of vertices o, d ∈ V , the S-Arrival problem asks us to find one of the following:
1. a run profile r ∈ N[2n] from o to d, or
2. a run profile r ∈ N[2n] from o to any v ∈ V such that

r(u,v) = 2n + 1, where u is the last vertex visited by the train before it reached the
end-vertex v of r, and
re′ ≤ 2n for all e′ 6= (u, v).

The correspondence of the above version of S-Arrival to the original one follows formally
from the following lemma.

I Lemma 14 (Karthik C. S. [14, Lemma 1]). For any G = (V,E, s0, s1) and a pair of vertices
o, d ∈ V . Let r be a run profile (thus vr = d), then re ≤ 2n for each edge e ∈ E.

To argue membership of our version of S-Arrival in TFNP, we need to show that both
types of solutions in Definition 13 can be verified efficiently. Solutions of the first type are
simply run profiles, and we have already shown that they can be verified in polynomial
time in Lemma 10. In order to be able to verify solutions of the second type, it remains to
argue that for any partial run profile, the immediate predecessor of its end-vertex can be
determined in polynomial time.

I Lemma 15. Let r be a partial run profile after R ≥ 1 steps and u be the vertex visited by
the train at step R− 1. Then
1. either u is the unique predecessor of vr in G∗r, or
2. there is a single cycle in G∗r containing vr and u is the predecessor of vr on this cycle.

Proof. First, note that if u is the end-vertex one step before vr becomes the end-vertex
then G∗r must contain the edge (u, vr), as it is the last edge used by the train to leave u.
Thus, in the first case (when vr has only one predecessor in G∗r) the immediate predecessor
of vr in the partial run r is unambiguously given by the only predecessor of vr in G∗r.

For the second case we show that G∗r contains a directed cycle C (containing the end-
vertex vr) and u is unambiguously given by the predecessor of vr in G∗r that lies on C. We
find the cycle C by constructing the longest possible directed path c0 = vr, c1, . . . , ck in G∗r
without repeating vertices. Note that it cannot happen that ck has no outgoing edge in G∗r.
Otherwise, r would have two different end-vertices vr and ck (as having no outgoing edge
in G∗r means that the train has never left this vertex). By Lemma 9, the directed edge from
ck has to end in the end-vertex vr, or else there would be a cycle in G∗r that avoids vr.

The algorithm Run takes R steps to generate the run profile r, i.e.,
∑

e∈E re = R. Let
tr : V → {0, 1, . . . , R− 1} be the function returning the last step after which a vertex was
left by the train in the partial run profile r. Observe that, except for the edge through which

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:9

the train arrived to vr,6 it holds for all edges (x, y) ∈ G∗r that tr(x) < tr(x) + 1 ≤ tr(y).
However, the above inequality cannot hold for all edges on the cycle C, and thus C has to
contain the last used edge and the train had to be in ck at step R− 1. J

I Observation 16. S-Arrival from Definition 12 reduces to simplified S-Arrival from
Definition 13.

Proof. Given a solution of the second type of the simplified S-Arrival, i.e., the long run
profile, we can get a run profile r to d̄ in polynomial time. For each vertex u we can determine
whether there is an oriented path from it to the destination d, and if there is no such path
we set rs0(v) = rs1(v) = 0. We compute the end vertex vr and set s0(vr) = 1. All other
components of r are set according to the original solution of the simplified S-Arrival. J

4.2.1 S-Arrival is in CLS
Karthik C. S. [14] showed that S-Arrival is contained in the class PLS. We improve this
result and prove that S-Arrival is in fact contained in CLS. As a by-product, we also
obtain a randomized algorithm for S-Arrival with runtime O(1.4143n) which is the first
algorithm for this problem with expected runtime O(cn) for c < 2.

The class of total search problems that are amenable to “continuous” local search was
defined by Daskalakis and Papadimitriou [4] using the following canonical problem.

I Definition 17 (CLS [4]). CLS is the class of total search problems reducible to the following
problem called CLOpt.

Given two arithmetic circuits f : [0, 1]3 → [0, 1]3 and p : [0, 1]3 → [0, 1], and two real
constants ε, λ > 0, find either a point x ∈ [0, 1]3 such that p(f(x)) ≤ p(x) + ε or a pair of
points x, x′ ∈ [0, 1]3 certifying that either p or f is not λ-Lipschitz.

Instead of working with CLOpt, we use as a gateway for our reduction a problem called
End-Of-Metered-Line (EOML) which was recently defined and shown to lie in CLS by
Hubáček and Yogev [9].

I Definition 18 (End-Of-Metered-Line). Given circuits S, P : {0, 1}m → {0, 1}m, and
V : {0, 1}m → [2m] ∪ {0} such that P (0m) = 0m 6= S(0m) and V (0m) = 1, find a string
x ∈ {0, 1}m satisfying one of the following:
1. either P (S(x)) 6= x or S(P (x)) 6= x 6= 0m,
2. x 6= 0m and V (x) = 1,
3. either V (x) > 0 and V (S(x))− V (x) 6= 1 or V (x) > 1 and V (x)− V (P (x)) 6= 1.

The circuits S, P from Definition 18 implicitly represent a directed graph with vertices
labelled by binary strings of length m, where each vertex has both out-degree and in-degree at
most one. The circuit P represents the predecessor and the circuit S represents the successor
of a given vertex as follows: there is an edge from a vertex u to a vertex v iff S(u) = v

and P (v) = u. Finally, the circuit V can be thought of as an odometer that returns the
distance from the trivial source at 0m or value 0 for vertices lying off the path starting at the
trivial source. The task in End-Of-Metered-Line is to find a sink or a source different
from the trivial one at 0m (the solutions of the second and of the third type in Definition 18
ensure that V behaves as explained above).

We are now ready to present our reduction from S-Arrival to End-Of-Metered-Line.

6 The inequality does not hold for vr , since t(vr) has not been updated to the time R yet.

ICALP 2018

60:10 ARRIVAL: Next Stop in CLS

I Theorem 19. S-Arrival can be reduced to End-Of-Metered-Line, and thus it is
contained in CLS.

Proof. Let (G, o, d) be an instance of S-Arrival. We construct an instance of EOML that
contains a vertex for each candidate partial switching flow over the switch graph G, i.e., for
each vector with 2n coordinates and values from [2n + 1] ∪ {0}. The EOML instance will
comprise of a directed path starting at the initial (empty) partial run profile 02n. Each vertex
on the path has an outgoing edge to its consecutive partial run profile. Any vertex that does
not correspond to a partial run profile becomes a self-loop. Finally, the valuation circuit V
returns either the number of steps in the corresponding partial run profile or the zero value if
the vertex does not correspond to a partial run profile. Formal description of the circuits S, P ,
and V defining the above EOML graph is provided in the full version [8]. A polynomial bound
on the size of the circuits S, P , and V follows directly from Observation 8 (computing G∗),
Lemma 10 (testing whether a given vector is a partial run profile), Observation 6 (computing
the end-vertex), and Lemma 15 (computing the previous position of the train).

Lemma 9 and Lemma 15 imply that the EOML graph indeed consists of a single directed
path and isolated vertices with self-loops. By the construction of V (it outputs the number
of steps of the train), there are no solutions of the second or the third type (cf. Definition 18).
Thus, the EOML instance has a unique solution which has to correspond to a run profile in
the original S-Arrival instance or to a partial run profile certifying that the train ran for
too long (see the second type of solution in Definition 13). J

5 An O(1.4143n) Algorithm for S-Arrival

Consider any problem that can be put into the complexity class PLS, i.e., can be reduced to
the canonical PLS-complete problem LocalOpt (see also [14, Definition 1]):

I Definition 20 (LocalOpt). Given circuits S : {0, 1}m → {0, 1}m, and V : {0, 1}m →
[2m] ∪ {0}, find a string x ∈ {0, 1}m such that V (x) ≥ V (S(x)).

Aldous [1] introduced the following simple algorithm that can be used to solve LocalOpt:
pick 2m/2 binary strings uniformly and independently at random from {0, 1}m, and let xmax
be the selected string that maximizes the value V (x). Starting from x = xmax, repeatedly
move to the successor S(x), until V (x) ≥ V (S(x)). He showed that the expected number
of circuit evaluations performed by the algorithm before finding a local optimum is at
most O(m2m/2). Note that in the case of EOML it is possible that all sampled solutions are
isolated vertices in the EOML graph. In this case the 0m string has the best known value,
and the search is started from there.

In the case of S-Arrival, the PLS membership proof of Karthik C. S. constructs the
circuits for successor and valuation with O(n2) input bits [14, Theorem 2]; the EOML
instance constructed in Theorem 19 – proving CLS and in particular PLS membership – yields
circuits of O(n2) input bits as well. This number is too high to yield a randomized algorithm
of non-trivial runtime.

This number of O(n2) input bits comes from the obvious encoding of a partial run profile:
each of the 2n edges has a nonnegative integer flow value of at most 2n + 1. But in fact,
a terminating run has at most n2n partial run profiles, as no vertex-state pair (v, s_curr)
can repeat in Algorithm 1. In other words, a partial run profile f is determined by its
end-vertex vf as well as the positions of all switches at the time of the corresponding visit of
vf . This means that a partial run profile can be encoded with n+ log2 n bits, and if we had
a PLS or CLS membership proof of S-Arrival with circuits of this many inputs only, we
could solve S-Arrival in time O(poly(n)× 2n/2).

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:11

Next, we show that such membership proofs indeed exist. For this, we show that the
above encoding (of a partial run profile by an end-vertex and the positions of all switches)
can be efficiently decoded: given an end-vertex and the positions of all switches, we can
efficiently compute a unique candidate for a corresponding partial run profile. The resulting
encoding and decoding circuits can be composed with the ones in Theorem 19 to obtain
PLS and CLS membership proofs with circuits of n + log2 n input bits, and hence yield a
randomized algorithm of runtime O(poly(n)× 2n/2) = O(1.4143n), as explained above.

5.1 Decoding Partial Run Profiles
We work with instances of S-Arrival as in Definition 12, i.e., there is always a run profile
either to d or to d̄. This is without loss of generality [5, 14].

I Definition 21. Let G = (V,E, s0, s1) be a switch graph, and let o, d, d̄ ∈ V be as in
Definition 12. The parity of a run profile f ∈ N2n is the vector pf ∈ {0, 1}n−2 defined by
pv = fs0(v) − fs1(v) ∈ {0, 1}, v ∈ V \ {d, d̄}.

Note that we do not care about (the parity of) the switches at d and d̄, since the algorithm
stops as soon as d or d̄ is reached.

Here is the main result of this section. For a given target vertex t ∈ V and given parity p,
there is exactly one candidate for a partial run profile from o to t with parity p. Moreover,
this candidate can be computed by solving a system of linear equations.

I Lemma 22. Let (G, o, d, d̄) be an instance of S-Arrival, let t ∈ V and p ∈ {0, 1}n−2.
Then there exists exactly one vector f ∈ R2(n−2) such that the following conditions hold.
Kirchhoff’s Law (flow conservation):

∀v ∈ V \ {d, d̄} :
∑

e=(u,v)∈E

fe −
∑

e=(v,w)∈E

fe = [v = t]− [v = o] (1)

where [·] is the indicator variable of the event in brackets.
Parity Condition: pf = p, i.e.,

∀v ∈ V \ {d, d̄} : fs0(v) − fs1(v) = pv. (2)

Before we prove Lemma 22, let us draw a crucial conclusion: The unique partial run profile
f ∈ N2n with end-vertex t and parity p (if such f exists – note that we are only guaranteed
a real-valued f) necessarily satisfies (1) and (2). Hence, we may use Lemma 22 to get the
entries fe for all edges except the ones leaving d and d̄. Only if all the entries are nonnegative
and integral and satisfy (1) at d and d̄ (under fs0(d) = fs1(d) = fs0(d̄) = fs1(d̄) = 0) do we
have a candidate for a partial run profile. Hence, there is a unique candidate, and given t
and a p, this candidate can be efficiently found.

Proof of Lemma 22. Set m = 2(n− 2), V ′ = V \ {d, d̄} and let A ∈ Zm×m be the coefficient
matrix of the linear system (1), (2) in the variables fe. We show that A is invertible.

Let q ∈ Rm be the vector such that q(v,si(v)) = −1 if si(v) = d and q(v,si(v)) = 0
otherwise. We show that q can be expressed as a linear combination of the rows of A in a
unique way, from which invertibility of A and the statement of the lemma follow.

Let us use coefficients λv for each v ∈ V ′ for the rows corresponding to the flow con-
servation constraints (1), and coefficients µv for each v ∈ V ′ for the rows corresponding to
the parity constraints (2). The column of A corresponding to variable f (v,si(v)), has a −1
entry from the flow conservation constraint at v, and a 1 entry (if i = 0) or a −1 entry (if

ICALP 2018

60:12 ARRIVAL: Next Stop in CLS

i = 1) from the parity constraint at v. If si(v) 6= d, d̄, there is another 1 entry from the flow
conservation constraint at si(v). All other entries are zero. The equations that express q as
a linear combination of rows of A are therefore the following.

∀v ∈ V ′ : −λv + µv + λs0(v) · [s0(v) 6= d, d̄] = q(v,s0(v)),

∀v ∈ V ′ : −λv − µv + λs1(v) · [s1(v) 6= d, d̄] = q(v,s1(v)).

Or equivalently:

λv − µv =

λs0(v), if s0(v) 6= d, d̄

1, if s0(v) = d

0, if s0(v) = d̄

v ∈ V ′, (3)

λv + µv =

λs1(v), if s1(v) 6= d, d̄

1, if s1(v) = d

0, if s1(v) = d̄

v ∈ V ′. (4)

We now show that there are unique coefficients λv, µv satisfying these equations. Let us
define λd = 1 and λd̄ = 0. Adding corresponding equations of (3) and (4) then yields

λd = 1, λd̄ = 0, λv = 1
2
(
λs0(v) + λs1(v)

)
, ∀v ∈ V ′.

These are exactly the equations for the vertex values in a stoppping simple stochastic game on
the graph G with only average or degree-1 vertices and sinks d and d̄ (stopping means that
d or d̄ are reachable from everywhere which is exactly what we require in a switch graph).
Condon proved that these values are unique [3]. This also determines the µv’s uniquely. J

6 Conclusion and Open Problems

We showed that candidate run profiles in Arrival can be efficiently verified due to their
structure. This allowed us to improve the known upper bounds for the search complexity of
Arrival and S-Arrival. Here we mention some natural questions arising from our work.

Are there any non-trivial graph properties that make Arrival or S-Arrival efficiently
solvable? Given that we currently do not know of any polynomial time algorithm for
Arrival on general switch graphs, we could study the complexity of Arrival on some
interesting restricted classes of switch graphs.
Are there other natural problems in UP ∩ coUP such that their corresponding search
variant is reducible to EOML? Does End-Of-Metered-Line capture the computational
complexity of any TFNP problem with unique solution? Fearnley et al. [7] recently gave
a reduction from the PLCP to EOML. Given that Arrival and PLCP can be both
reduced to EOML, yet another intriguing question is whether there exists any reduction
between the two.
As mentioned in Section 1.1, the reduction from PLCP to EOML by Fearnley et al. [7]
implies that PLCP can be solved faster with Aldous’ algorithm [1] than with any other
known algorithm. It would be interesting to see whether Aldous’ algorithm can similarly
give improved runtimes for other problems than Arrival and PLCP.

B. Gärtner, T.D. Hansen, P. Hubáček, K. Král, H. Mosaad, and V. Slívová 60:13

References
1 David Aldous. Minimization algorithms and random walk on the d-cube. The Annals of

Probability, 11(2):403–413, 1983.
2 Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and pro-

positional proof systems. In 19th Annual IEEE Conference on Computational Complexity
(CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67, 2004.

3 Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

4 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 790–804, 2011.

5 Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jiří Matoušek, and Emo Welzl. ARRIVAL:
A zero-player graph game in NP∩coNP. In Martin Loebl, Jaroslav Nešetřil, and Robin
Thomas, editors, A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek,
pages 367–374. Springer International Publishing, 2017.

6 John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani. Reachability switching
games. CoRR, abs/1709.08991, 2017. URL: http://arxiv.org/abs/1709.08991.

7 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. CLS: new problems and
completeness. CoRR, abs/1702.06017, 2017. URL: http://arxiv.org/abs/1702.06017.

8 Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král, Hagar Mosaad, and
Veronika Slívová. ARRIVAL: next stop in CLS. CoRR, abs/1802.07702, 2018. arXiv:
1802.07702.

9 Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Janu-
ary 16-19, pages 1352–1371, 2017.

10 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79–100, 1988.

11 Bastian Katz, Ignaz Rutter, and Gerhard J. Woeginger. An algorithmic study of switch
graphs. Acta Inf., 49(5):295–312, 2012.

12 Tsuyoshi Morioka. Classification of search problems and their definability in bounded
arithmetic. Electronic Colloquium on Computational Complexity (ECCC), 2001. URL:
https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-082/index.html.

13 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

14 Karthik C. S. Did the train reach its destination: The complexity of finding a witness. Inf.
Process. Lett., 121:17–21, 2017.

ICALP 2018

http://arxiv.org/abs/1709.08991
http://arxiv.org/abs/1702.06017
http://arxiv.org/abs/1802.07702
http://arxiv.org/abs/1802.07702
https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-082/index.html

	Introduction
	Our Results
	Technical remarks

	Preliminaries
	The Complexity of Run Profile Verification
	The Computational Complexity of Arrival
	The Decision Complexity of Arrival
	The Search Complexity of Arrival
	S-Arrival is in CLS

	An O(1.4143^n) Algorithm for S-Arrival
	Decoding Partial Run Profiles

	Conclusion and Open Problems

