
Towards Unified Approximate Pattern Matching
for Hamming and L1 Distance
Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Przemysław Uznański
Department of Computer Science, ETH Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

Abstract
Computing the distance between a given pattern of length n and a text of length m is defined
as calculating, for every m-substring of the text, the distance between the pattern and the sub-
string. This naturally generalizes the standard notion of exact pattern matching to incorporate
dissimilarity score. For both Hamming and L1 distance only relatively slow Õ(n

√
m) solutions

are known for this generalization. This can be overcome by relaxing the question. For Hamming
distance, the usual relaxation is to consider the k-bounded variant, where distances exceeding k
are reported as ∞, while for L1 distance asking for a (1± ε)-approximation seems more natural.
For k-bounded Hamming distance, Amir et al. [J. Algorithms 2004] showed an Õ(n

√
k) time

algorithm, and Clifford et al. [SODA 2016] designed an Õ((m + k2) · n/m) time solution. We
provide a smooth time trade-off between these bounds by exhibiting an Õ((m + k

√
m) · n/m)

time algorithm. We complement the trade-off with a matching conditional lower bound, show-
ing that a significantly faster combinatorial algorithm is not possible, unless the combinatorial
matrix multiplication conjecture fails. We also exhibit a series of reductions that together allow
us to achieve essentially the same complexity for k-bounded L1 distance. Finally, for (1 ± ε)-
approximate L1 distance, the running time of the best previously known algorithm of Lipsky and
Porat [Algorithmica 2011] was Õ(ε−2n). We improve this to Õ(ε−1n), thus essentially matching
the complexity of the best known algorithm for (1± ε)-approximate Hamming distance.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases approximate pattern matching, conditional lower bounds, L1 distance,
Hamming distance

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.62

1 Introduction

The basic question in algorithms on strings is pattern matching, which asks for reporting
(or detecting) occurrences of a given pattern P of length m in a text T of length n. A
particularly relevant variant of this fundamental question is approximate pattern matching,
where the goal is to detect fragments of the text that are similar to the pattern. This can
be restated as computing the text-to-pattern distance, defined as the distance between P
and every m-substring of T . If both P and T are over an integer alphabet Σ, two most
natural distance functions are Hamming and L1. Abrahamson [1] showed how to compute
the text-to-pattern Hamming distance with a clever application of boolean convolution: a
single convolution can be used to count matches generated by a particular letter in time close
to linear, and by carefully partitioning the letters into frequent and non-frequent the overall
running time can be guaranteed to be O(n

√
m logm). With a somewhat similar approach,

the same complexity can be achieved for L1 distance [5]. Naturally, one would like to design

EA
T

C
S

© Paweł Gawrychowski and Przemysław Uznański;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 62; pp. 62:1–62:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:przemyslaw.uznanski@inf.ethz.ch
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

an Õ(n) time algorithm. However, an unpublished result attributed to Indyk [6] is that
any significant improvement for Hamming distance by a combinatorial algorithm implies a
significant improvement for combinatorial matrix multiplication, which is believed to be very
hard. Later, a direct reduction from Hamming distance to L1 distance was shown [14], as well
as a reverse reduction [8] together with a full suite of two-way reductions between these two
metrics and other functions, linking the corresponding complexities (up to poly-logarithmic
factors).

A natural relaxation of computing the text-to-pattern distance is to ask for its (1± ε)-
approximation. Karloff [10] showed how to use random Σ → {0, 1} projections together
with boolean convolution to approximate the Hamming distance in O(ε−2n log3m). The ε−2

dependency was believed to be tight, given the similarly looking lower bound for sketching
Hamming distance [16, 9, 4], but Porat and Kopelowitz [11] refuted this by exhibiting a
(complicated) O(ε−1n log ε−1 logn logm log |Σ|) time algorithm. Later, they presented a
much simpler solution with a slightly better complexity of O(ε−1n logn logm) [12]. For
approximating the L1 distance, it was only known how to achieve O(ε−2n logm log |Σ|) time
complexity [15], and breaking the ε−2 barrier was open.

Another natural relaxation is to cap the distances at k, that is, return ∞ if the distance
exceeds k. We will call this variant the k-bounded distance. For k-bounded Hamming distance,
the classical solution by Landau and Vishkin [13] works in O(nk) time by checking every m-
substring with k+1 constant-time longest common extension queries (also known as “kangaroo
jumps”). Later, Amir et al. [2] improved this to O(n

√
k log k) using boolean convolution

similarly as in the classical algorithm of Abrahamson, and also showed an O((k3 log k +m) ·
n/m) time algorithm. Later, Clifford et al. [7] introduced a new repertoire of tools allowing
them to further improve the latter complexity to O((k2 log k + mpolylogm) · n/m). In
particular, this is near linear-time for k = O(

√
m). At a very high level, the improvement was

obtained by partitioning both the pattern and the text into O(k) subpatterns and subtexts,
such that the total number of blocks in their run-length encoding is small. This reduces
the original problem to O(k2) instances of pattern matching with mismatches on run-length
encoded inputs, which can be solved in Õ(k2) total time, leading to an Õ((k2 +m) ·n/m) time
algorithm. For k-bounded L1 distance, only an O(n

√
k log k) time algorithm was known [3],

and designing an almost linear-time algorithm for polynomially large (in m) values of k was
open.

Our results. We provide a smooth transition between the Õ(n
√
k) time algorithm of Amir

et al. [2] and the Õ((m + k2) · n/m) solution given by Clifford et al. [7] for k-bounded
Hamming distance. This is obtained by reducing k-bounded Hamming distance to O(k)-RLE
Hamming distance, in which the run-length encodings of both the pattern and the text
consist of O(k) blocks, and then designing an efficient algorithm for the latter.

I Theorem 1. There is a deterministic algorithm that outputs k-bounded text-to-pattern
Hamming distance in time O((m log2m log |Σ|+ k

√
m logm) · n/m).

The complexity from Theorem 1 matches the previous solutions at the extreme points
k = O(

√
m) and k = Ω(m), but provides a better trade-off in-between. See Figure 1.

Furthermore, we prove that this trade-off is essentially the best possible. More precisely,
we complement the algorithm with a matching conditional lower bound, showing that a
significantly faster combinatorial algorithm is not possible, unless the popular combinatorial
matrix multiplication conjecture fails.

P. Gawrychowski and P. Uznański 62:3

1

4
3

3
2

7
6

2

1
2

2
3

1 α

β

Figure 1 Running time O(mβ) of algorithm from Theorem 1 on instances with n = Θ(m) and
k = mα. Previous algorithms are represented by dashed lines and our algorithm is represented by
the solid line. For example, for k = Θ(m2/3) we improve the complexity from Õ(m4/3) to Õ(m7/6).

I Theorem 2. For any positive ε, α, κ, such that 1
2α ≤ κ ≤ α ≤ 1 there is no combinatorial

algorithm solving pattern matching with k = Θ(nκ) mismatches in time O((k
√
m)1−ε · n/m)

for a text of length n and a pattern of length m = Θ(nα), unless the combinatorial matrix
multiplication conjecture fails.

Next, we move to computing L1 distance. For computing (1± ε)-approximate text-to-
pattern L1 distance we are able to break the quadratic dependency on 1/ε present in the
previous algorithms by designing an Õ(ε−1n) solution, thus making the complexities of the
best known algorithms for (1± ε)-approximate text-to-pattern L1 distance and Hamming
distance essentially equal.

I Theorem 3. There is a randomized Monte Carlo algorithm that outputs (1± ε)-approx-
imation of L1 distance in time O(ε−1n log3 n logm). The algorithm is correct with high
probability.

For k-bounded L1 distance we are able to obtain essentially the same trade-off as for
k-bounded Hamming distance.

I Theorem 4. There is a deterministic algorithm that outputs k-bounded text-to-pattern L1
distance in time O((m log3m+m log2 n+ k

√
m logm · log2 n) · n/m).

In fact, instead of designing a new algorithm for k-bounded L1 distance we exhibit a series
of generic reductions that together allow us to reduce computing k-bounded L1 distance to
computing k-bounded Hamming distance.

I Theorem 5. Let T (n,m, k) be the complexity for k-bounded text-to-pattern Hamming
distance. Then k-bounded L1 text-to-pattern distance can be computed in time O(n log3m+
T (m,m,O(k)) · log2 n · n/m).

Thus, if k-bounded Hamming distance can be computed in time Õ(n+ (k
√
m)1−δ · n/m)

for some δ ≥ 0 then k-bounded L1 distance can be computed in time Õ(n+ (k
√
m)1−δ ·n/m)

as well. Together with a reduction from k-RLE to k-bounded Hamming distance this gives
us a clear (although not yet complete) picture of connections between k-bounded and k-RLE
text-to-pattern distance under Hamming and L1 distance summarized in Figure 2.

ICALP 2018

62:4 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

k-bounded
Hamming distance

k-bounded
L1 distance

Boolean Matrix
Multiplication

k-RLE
Hamming distance

k-RLE
L1 distance

Thm. 10 Thm. 17

[8], Cor. 16

Thm. 2

Thm. 15

Figure 2 Existing (dashed lines) and new (solid lines) reductions.

Overview of the techniques. Our algorithm for k-bounded Hamming distance (and then
also L1 distance), is a refinement of the approach of Clifford et al. [7]. The general idea is
to first consider the periodic structure of the pattern. If the pattern is not very periodic,
then m-substrings of the text with a small distance to the pattern cannot occur too often.
This allows us to filter the possible occurrences with an algorithm for (1± ε)-approximate
Hamming distance and then manually verify the remaining possibilities. Otherwise, the
problem can be reduced to multiple smaller instances, in which both the pattern and the
text are highly compressible, i.e. their run-length encodings consist of only O(k) blocks. The
first new insight is that, instead of many small instances, it is possible to obtain a single
instance of O(k)-bounded Hamming distance, in which the run-length encoding of both the
pattern and the text consist of O(k) blocks. The second observation is that, because the
pattern and the text are still of length O(m), it (again) makes sense to partition the letters
into frequent and non-frequent, except that now the threshold is defined with respect to
the number of blocks of the pattern containing that letter. For non-frequent letters, we
produce a compact representation of their contribution by iterating through every block of
the pattern and every block of the text. For frequent letters, we essentially uncompress the
corresponding fragments and run the classical convolution.

Our algorithm for (1 ± ε)-approximate L1 distance is based on generalized weighted
mismatches, similarly as in the previous work [15]: given an arbitrary weight function
σ : Σ × Σ → Z, we output an array Sσ such that S[i] =

∑m
j=1 σ(ti+j , pj). This can be

computed as follows. For every letter c ∈ Σ, construct a new text T c by setting T c[i] = 1 if
ti = c and T c[i] = 0 otherwise. Similarly, construct a new pattern P c such that P c[i] = σ(c, pi).
Then, σ(ti+j , pj) =

∑
c∈Σ T

c[i+ j] · P c[j], so Sσ can be computed with |Σ| convolutions in
O(|Σ|n logm) time.

To connect the complexities of computing the text-to-pattern Hamming and L1 distance
we use the recently introduced notion of linearity preserving reductions [8] as a formalization
of previously existing reductions between metrics (cf. [14]). The main idea is that in order to
show a reduction between two pattern-matching problems, one can represent them as a (+, �)
convolution and a (+,�) convolution, and show how to represent � as a linear combination
of many copies of �.

2 Preliminaries

Distance between strings. Let X = x1x2 . . . xn and Y = y1y2 . . . yn be two strings
over an integer alphabet [M], for some M = poly(n). We define their L1 distance as
L1(X,Y) =

∑
i |xi − yi|, and their Hamming distance as Ham(X,Y) = |{i : xi 6= yi}|.

P. Gawrychowski and P. Uznański 62:5

Text-to-pattern distance. The text-to-pattern distance between a text T = t1t2 . . . tn
and a pattern P = p1p2 . . . pm is defined as an array S such that, for every i, S[i] =
d(T [i + 1 .. i + m], P). Thus, for L1 distance S[i] =

∑m
j=1 |ti+j − pj |, while for Hamming

distance S[i] = |{j ∈ {1, . . . ,m} : t[i + j] 6= p[j]}|. Then, (1 ± ε)-approximate distance is
an array Sε such that, for every i, (1− ε) · S[i] ≤ Sε[i] ≤ (1 + ε) · S[i]. Finally, k-bounded
distance is an array Sk such that, for every i, Sk[i] = S[i] when S[i] ≤ k and Sk[i] = ∞
otherwise. Finally, in k-RLE distance we assume that the run-length encoding of both the
pattern and the text consist of O(k) blocks, that is, they contain only O(k) maximal runs of
identical letters.

Model. We assume the standard word RAM model, in which arithmetic operations on
integers from [M] take constant time.

Linearity preserving reductions. Say that we want to show a reduction between binary
operators � and �. In order for such a reduction to be relevant in the convolutional setting,
it needs to be of a specific form. Let t be a fixed integer called the size of the reduction, and
suppose there exist integer coefficients α1, . . . , αt, and functions f1, . . . , ft, g1, . . . , gt such
that, for any x and y, there is x � y =

∑t
`=1 α` · (f`(x) � g`(y)). Then (+,�)-convolution

of T and P is computed as a linear combination of (+, �)-convolutions f`(T) with g`(P),
where f(X) = f(x1)f(x2) . . . f(xn) for X = x1x2 . . . xn. That is, a following equality holds∑

i+j=k x[i]�y[j] =
∑t
`=1 α` ·

(∑
i+j=k x[i] � y[j]

)
.

3 k-bounded Distance

The goal of this section is to prove Theorem 1. We first show how to reduce k-bounded
Hamming distance to O(n/m) instances of O(k)-RLE Hamming distance on inputs of length
O(m). We start with the standard trick of reducing the original problem to dn/me instances
with pattern P of length m and text T of length 2m and work with such formulation from now
on. Thus, now we need to reduce one such instance to an instance of O(k)-RLE Hamming
distance on inputs of length O(k).

We now highlight the kernelization technique of Clifford et al. [7]. An integer π > 0 is
an x-period of a string S[1,m] if Ham(S[π + 1,m], S[1,m− π]) ≤ x (cf. Definition 1 in [7]).
Note that compared to the original formulation, we drop the condition that π is minimal
from the definition.

I Lemma 6 (Fact 3.1 in [7]). If the minimal 2x-period of the pattern is `, then the starting
positions of any two occurrences with x mismatches of the pattern are at distance at least `.

The first step of the algorithm is to determine the minimal O(k)-period of the pattern.
More specifically, we run the (1 + ε)-approximate algorithm of Karloff [10] with ε = 1
matching the pattern P against itself. Since Karloff’s algorithm is convolution-based, it
can be adapted to computing mismatches for partial alignments, that is, between suffixes
and prefixes of equal length of the same string. This takes O(m log2m log |Σ|) time and, by
looking at the approximate outputs for offsets not larger than k, allows us to distinguish
between two cases: (1) every 4k-period of the pattern is at least k, or (2) there is an 8k-period
of the pattern that is at most k. Then we run the appropriate algorithm as described below.

No small 4k-period. We again run Karloff’s algorithm with ε = 1, but now we match the
pattern with the text. We look for positions i where the 2-approximate algorithm reports
at most k mismatches, meaning that Ham(P, T [i, i + m − 1]) ≤ 2k. By Lemma 6, there

ICALP 2018

62:6 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

T ′ = hokuspokusopensezame

h s u e z
o p s n a
k o o s m
u k p e e

s u e z #
p s n a #
o o s m #
k p e e #

P = abracadabrab

a c b $ $
b a r $ $
r d a $ $
a a b $ $

T ? = hsuez opsna koosm ukpee suez# psna# oosm# kpee#
P ? = acb$$ bar$$ rda$$ aab$$

Figure 3 Example of rearranging the text and the pattern with ` = 4.

are O(m/k) such positions, and we can safely discard all the others. Then, we test every
such position using the “kangaroo jumps” technique of Landau and Vishkin [13], using O(k)
constant-time operations per position, in total O(m) time.

Small 8k-period. Let ` ≤ k be any 8k-period of the pattern. For a string S and 1 ≤ i ≤ `,
let
{
S
}
`,i

= S[i]S[i+ `]S[i+ 2`] . . . up until end of S. We denote by
{
S
}
`
an `-encoding of

S, that is the string
{
S
}
`,1

{
S
}
`,2 . . .

{
S
}
`,`−1,

{
S
}
`,`
. Let runs(S) be the number of runs in

S. Denote runs`(S) =
∑`
i=1 runs(

{
S
}
`,i

), and observe that it upperbounds the number of
runs in

{
S
}
`
.

I Lemma 7 (Lemma 6.1 in [7]). If P has an 8k-period ` for ` ≤ k, then runs`(P) ≤ 9k.

We proceed with the kernelization argument. Let TL be the longest suffix of T [1,m]
such that runs`(TL) ≤ 11k. Similarly, let TR be the longest prefix of T [m+ 1, 2m] such that
runs`(TR) ≤ 11k. Let T ′ = TLTR. Obviously, runs`(T ′) ≤ 22k.

I Lemma 8 (Lemma 6.2 in [7]). Every T [i, i + m − 1] that is an occurrence of P with k

mismatches is fully contained in T ′.

Thus we see that k-mismatch pattern matching is reduced to a kernel where the `-encoding
of both the text and the pattern have few runs, that is, they both compress well with RLE.

From now on assume that both T ′ and P are of lengths divisible by `. If this is not the
case, we can pad them separately with at most ` − 1 < k characters each, not changing
the complexity of our solution. Let m1 and m2 be integers such that m1 · ` = |T ′| and
m2 · ` = |P |, m1 ≥ m2.

We rearrange both P and T ′ to take advantage of their regular structure. That is, we
define T ? =

{
T ′
}
`

{
T ′′
}
`
, where T ′′ = T ′[` + 1,m1 · `] #`. Observe that T ? is a string of

length 2m1 · `, composed first of m1 blocks of the form T ′[i]T ′[i + `] . . . T ′[i + (m1 − 1)`]
for 1 ≤ i ≤ `, and then of m1 blocks of the form T ′[i+ `] . . . T ′[i+ (m1 − 1)`] #. Similarly,
we define P ? =

{
P $(m1−m2)`}

`
. Again we observe that P ? is the string of length m1 · `,

composed of blocks of the form P [i]P [i+ `] . . . P [i+ (m2 − 1)`] $m1−m2 for 1 ≤ i ≤ `. An
example of this reduction is presented in Figure 3.

Next we show that T ? and P ? preserve the Hamming distance between P and any
m-substring of T ′ in the following sense:

I Lemma 9. For any integer 0 ≤ α ≤ (m1 −m2)`, let x = bα/`c and y = α mod `. Let
β = x+ y ·m1. Then

Ham(T ′[α+ 1, α+m2 · `], P) = Ham(T ?[β + 1, β +m1 · `], P ?)− (m1 −m2) · `.

P. Gawrychowski and P. Uznański 62:7

Proof. Observe that

Ham(T ′[α+ 1, α+m2 · `], P) =
m2−1∑
i=0

∑̀
j=1

δ(T ′[x`+ y + i`+ j], P [i`+ j]), (1)

where δ is indicator of character inequality. Observe that P [i` + j]) = P ?[i + j ·m1], for
1 ≤ j ≤ ` − y there is T ′[x`+ y + i`+ j] = T ?[(x + i) + (y + j)m1], and for ` − y < j ≤ `

there is T ′[x`+ y+ i`+ j] = T ′′[(x+ i)`+ (y+ j − `)] = T ?[(x+ i) + (y+ j − `)m1 + `m1] =
T ?[(x + i) + (y + j)m1]. Additionally, for m2 ≤ i < m1, P ?[i + j ·m1] = $, which always
generates a mismatch with any character in T ?. Thus

(1) =
m2−1∑
i=0

∑̀
j=1

δ(T ?[(x+ i) + (y + j)m1], P ?[i+ j ·m1]) =

=− (m1 −m2)`+
m1−1∑
i=0

∑̀
j=1

δ(T ?[(x+ i) + (y + j)m1], P ?[i+ j ·m1]). J

We see that it is enough to find all occurrences of P ? in T ? with (k + (m1 −m2) · `)
mismatches, where k + (m1 − m2) · ` ≤ 2k, |P ?| = |T ′| ≤ m and |T ?| = 2|T ′| ≤ 2m.
Additionally, runs(P ?) ≤ 9k + ` ≤ 10k and runs(T ?) ≤ 22k + ` ≤ 23k. This gives us the
following theorem.

I Theorem 10. k-bounded text-to-pattern Hamming distance reduces in O(n log3m) time to
O(n/m) instances of O(k)-RLE text-to-pattern Hamming distance on inputs of length O(m).

Now we describe how to solve an instance of O(k)-RLE Hamming distance.

I Lemma 11. There is a deterministic algorithm that outputs k-RLE Hamming text-to-
pattern distance on inputs of length O(m) in time O(m+ k

√
m logm).

Proof. Consider a letter c ∈ Σ. For a string S, we denote by runs(S, c) the number of runs in
S consisting of occurrences of c. Fix a parameter t. Call a letter c such that runs(P ?, c) > t

a heavy letter, and otherwise call it light. Now we describe how to count the number
of mismatches for each type of letters. This is reminiscent to a trick originally used by
Abrahmson [1] and later refined by Amir et al. [2].

Heavy letters. For every heavy letter c separately we use a convolution scheme. Since
both P ? and T ? are of size O(m), this takes time O(m logm) per every such letter. Since∑
c∈Σ runs(P ?, c) = runs(P ?) ≤ 10k, there are O(k/t) heavy letters, making the total time

O(mk/t · logm).

Light letters. First, we preprocess P ?, and for every light letter c we compute a list of runs
consisting of occurrences of c. Our goal is to compute the array A[0, |T ?| − |P ?|], where A[i]
counts the number of matching occurrences of light letters in T ?[i+ 1, i+ |P ?|] and P ?.

We scan T ?, and for every run of a particular light letter, we iterate through the
precomputed list of runs of this letter in P ?. Observe that, given a run of the same letter
in P ? and in T ?, denoted T ?[u, v] and P ?[y, z], respectively, their corresponding matches
can be seen as a piecewise linear function. More precisely, for all integers u ≤ i ≤ v and
y ≤ j ≤ z, we need to increase A[i− j] by one. To see that we can process pair of runs in
constant time, we work with discrete derivative, instead of original arrays.

ICALP 2018

62:8 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

DA = 1 0 0 -1

DB = 1 0 0 0 0 -1

D2(A ·B) = 1 0 0 -1 0 -1 0 0 1

Figure 4 Left: a run in the pattern and a run in the text (both represented by black boxes)
consisting of the same character and a histogram of the matches they generate. Right: first derivatives
of the indicator arrays and second derivative of the match array, without padding zeroes.

Given a sequence F , we define its discrete derivative DF as follows: (DF)[i] = F [i] −
F [i − 1]. Correspondingly, if we consider a generating function F (x) =

∑
i F [i]xi, then

(DF)(x) = F (x) · (1− x) (for convenience, we assume that arrays are indexed from −∞ to
∞).

Now consider indicator sequences Tu,v[i] = 1(u ≤ i ≤ v) and Py,z[j] = 1(−z ≤ j ≤ −y).
To perform the update, we set A[i + j] += Tu,v[i] · Py,z[j] for all i, j, or simpler using
generating functions:

A(x) += Tu,v(x) · Py,z(x), (2)

where Tu,v(x) =
∑v
i=u x

i and Py,z(x) =
∑z
j=y x

−j . However, we observe that DTu,v and
DPy,z have particularly simple forms: DTu,v(x) = xu − xv+1 and DPy,z(x) = x−z − x−y+1.
Thus it is easier to maintain second derivative of A, and (2) becomes:

D2A(x) += xu−z − xv−z+1 − xu−y+1 + xv−y+2.

All in all, we can maintain D2A in constant time per pair of runs, or in O(k · t) total
time, since every list of runs is of length at most t, and there are at most 23k runs in T ?.
Additionally, in O(m) time we can compute A[0] and A[1], allowing us to recover all other
A[i]s from the formula A[i] = (D2A)[i] + 2A[i− 1]−A[i− 2].

Setting t =
√
m logm gives the total running time O(k

√
m logm) in both cases as

claimed. J

Combining the reduction from Theorem 10 with Lemma 11 gives us Theorem 1.

4 Lower Bound for k-bounded Hamming Distance

In this section, we present a conditional lower bound for computing k-bounded Hamming
distance. The main idea expands upon the proof attributed to Indyk [6], except that we use
rectangular matrices instead of square, and use the padding accordingly. We pad using the
same character in both text and pattern, increasing the number of mismatches only by a
factor of 2.

Recall the combinatorial matrix multiplication conjecture stating that, for any ε > 0,
there is no combinatorial1 algorithm for multiplying two n× n boolean matrices working in
time O(n3−ε). The following formulation is equivalent to this conjecture.

1 It is not clear what does combinatorial mean precisely. However, FFT and so boolean convolution often
used in algorithms on strings are considered not to be combinatorial.

P. Gawrychowski and P. Uznański 62:9

I Conjecture 12 (Combinatorial matrix multiplication). For any α, β, γ, ε > 0, there is no
combinatorial algorithm for multiplying an nα × nβ matrix with an nβ × nγ matrix in time
O(nα+β+γ−ε).

The equivalence can be seen by simply cutting the matrices into square blocks (in one
direction) or in rectangular blocks (in the other direction).

Now, consider two boolean matrices, A of dimension M ′×N and B of dimension N ×M ,
for M ′ ≥M ≥ N . We encode A as a text T by writing down its elements row-by-row and
adding some padding. Namely:

T = #M2
r1 #M−N+1 r2 #M−N+1 . . . #M−N+1 rM ′#M2

where ri = ri,1 . . . ri,N and ri,j = 0 when Ai,j = 0 and ri,j = j when Ai,j = 1. Similarly, we
encode B as a pattern P by writing down its elements column-by-column, except that here
the padding is shorter by one character:

P = c1 #M−N c2 #M−N . . . #M−N cM

where cj = c1,j . . . cN,j and ci,j = 0′ when Bi,j = 0 and ci,j = i when Bi,j = 1.
Observe that, since we encode 0s from A and B using different symbols, and encoding of

1s is position-dependent, ri and cj will generate a match only if they are perfectly aligned and
there is k such that ri,k = ck,j , or equivalently Ai,k = Bk,j = 1. Since each block (encoded
row plus following padding) is either of length N + 1 for rows or N for columns, there will
be at most one aligned row-column pair for each pattern-text alignment.

The total number of mismatches, for each alignment, is at most 2NM (since there are at
most MN non-# text characters that are aligned with pattern, and at most MN non-#
pattern characters). We can determine whether any given entry of A ·B is a 1, since if so
the number of mismatches for the corresponding alignment is decreased by 1.

We have |T | = Θ(M ′M) and |P | = Θ(M2). By setting M =
√
m, M ′ = n√

m
and

N = k√
m

we obtain Theorem 2.
If we denote by ω(α, β, γ) the exponent of fastest algorithm to multiply a matrix of

dimension nα × nβ with a matrix of dimension nβ × nγ , we also have:

I Corollary 13. For any positive ε, α, κ, such that 1
2α ≤ κ ≤ α ≤ 1 there is no algorithm

solving pattern matching with Θ(nκ) mismatches in time O(nω(2−α,2κ−α,α)/2−ε) for a text of
length n and a pattern of length Θ(nα).

5 (1 ± ε)-approximation of L1 Distance

In this section we prove Theorem 3. We use a procedure generalized_weighted_matching
(T, P, score) that computes, for a text T = t1t2 . . . tn and a pattern P = p1p2 . . . pm and an
arbitrary weight function σ : Σ× Σ→ Z, the array Sσ such that S[i] =

∑m
j=1 σ(ti+j , pj) in

in O(|Σ|n logm) time.
Let δ = ε

24·(3+logM) = Θ(ε/ logn), and let b be the smallest positive integer such that
2b ≥ 1/δ. We claim that with such parameters, Algorithm 1 outputs the desired (1 ± ε)-
approximation in the claimed time. Let Sε be its output.

I Theorem 14. For any i, S[i] · (1− ε) ≤ Sε[i] ≤ S[i] · (1 + ε) with probability at least 2/3.

Proof. Consider first x = xa and y = yb, two characters of the input. We analyze how
well Algorithm 1 approximates |x − y| = sgn(x − y) · (x − y) in the consecutive calls of
generalized_weighted_matching. First, fix value of ∆ and consider the binary representa-
tions of x′ = x+ ∆ and y′ = y + ∆. More precisely, let x′ =

∑
i 2i · αi and y′ =

∑
i 2i · βi for

ICALP 2018

62:10 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

Algorithm 1: (1± ε)-approximation of text-to-pattern L1 distance.
Input: Integer strings T and P .
Output: Score vector Sε.

1 def score(x, y):
2 x0 ← x mod 2
3 y0 ← y mod 2
4 if x0 = y0 then
5 return 0
6 else if sgn(x− y) = sgn(x0 − y0) then
7 return 1
8 else
9 return −1

10

11 def approximate(T, P):
12 ∆← u.a.r. integer from 0 to 2dlogMe − 1
13 T ′ ← T + ∆
14 P ′ ← P + ∆
15 Sε ← [0 . . . 0]
16 for i← 0 to dlogMe do
17 T ′′ ← bT ′/2ic mod 2b
18 P ′′ ← bP ′/2ic mod 2b
19 S ← generalized_weighted_matching(T ′′, P ′′, score)
20 Sε ← Sε + S · 2i

21 return Sε

some αi, βi ∈ {0, 1}. Algorithm 1 in essence estimates |x−y| = sgn(x−y)
∑
i 2i(αi−βi) with

C =
∑
i 2iγi where γi ∈ {−1, 0, 1} is the estimation of a contribution of (αi − βi) · sgn(x− y)

to (x′ − y′) and depends only on values of αj − βj ∈ {−1, 0, 1} for i ≤ j < i + b in the
following way:

If, for every i ≤ j < i+ b we have αj = βj , then γi = 0.
Otherwise, let j′ be the largest j such that i ≤ j < i+b and αj 6= βj . If αj′−βj′ = 1, then
the local estimation is that x′ > y′ and so γi = αi − βi, and otherwise γi = −1 · (αi − βi).

Consider c = max{i : αi 6= βi} and d = max{i : 2i ≤ (x′ − y′)}, that is c is the position
of the highest bit on which x′ and y′ differ, and d is the position of the highest bit of x′ − y′.
In general, c ≥ d, and we say that pair x′, y′ is t-bad, if c− d = t.

We first observe that for a x, y pair to be at least t-bad, a following condition must be
met: bx′/2d+tc 6= by′/2d+tc. Since ∆ is chosen uniformly at random from a large enough
range of integers, there is∑

τ≥t

Pr(x′, y′ is τ -bad
∣∣ x, y) ≤ |x− y|/2d+t ≤ 2−t+1.

We also observe following: for any pair x′, y′, in C, all the coefficients γc, γc−1, . . . , γc−b+1
are computed correctly, since for any j such that c ≥ j ≥ c− b+ 1 there is j′ = c, and then
γj = (αj − βj) · sgn(x− y). Therefore

∣∣C − |x′ − y′| ∣∣ =

∣∣∣∣∣∣
∑
i≤c−b

2i(γi − (αi − βi) · sgn(x− y))

∣∣∣∣∣∣ ≤
∑
i≤c−b

2 · 2i < 2 · 2c−b+1.

P. Gawrychowski and P. Uznański 62:11

If a pair x′, y′ is t-bad, it immediately follows that the absolute error of estimation is at most
2c−b+2 = 2d+t−b+2 ≤ |x′ − y′|2t+2δ.

We now estimate expected error in estimation based on choice of ∆. If a particular pair
x, y is t-bad, then t ≤ 1 + dlogMe. Using the previous observations, we have

E
[∣∣C − ∣∣x′ − y′∣∣ ∣∣ ∣∣∣ x, y] =

∑
t

Pr(x′, y′ is t-bad
∣∣ x, y) · E

[∣∣C − ∣∣x′ − y′∣∣ ∣∣ ∣∣∣ x′, y′ is t-bad]
≤

1+dlogMe∑
t=0

2−t+1|x− y|2t+2δ = (3 + logM)8δ|x− y| = ε

3 |x− y|.

By linearity of expectation E
[∣∣Sε[i] − S[i]

∣∣] ≤ ε
3S[i], and by Markov’s inequality the

claim follows. J

Now, a standard amplification technique applies: it is enough to repeat Algorithm 1
independently p times and take the median value from S

(1)
ε [i], S(2)

ε [i], . . . , S(p)
ε [i] as the final

estimate Ŝε[i]. Taking p = Θ(logn) to be large enough makes the final estimate good with
high probability, and by the union bound whole Ŝε is a good estimate of S.

The complexity of Algorithm 1 is dominated by generalized_weighted_matching being
invoked O(logn) times on alphabet of size 2b = Θ(ε−1 logn). Each such invocation takes
O(2bn logm) = O(ε−1n logn logm), and Algorithm 1 takes O(ε−1n log2 n logm) time and
the total time for computing (1± ε)-approximation is O(ε−1n log3 n logm).

6 Reductions

In this section we design a series of reductions to complete the picture from Figure 2. We
start with an L1 version of Theorem 10.

I Theorem 15. k-bounded text-to-pattern L1 distance problem reduces in O(n log3m) time
to O(n/m) instances of O(k)-RLE text-to-pattern L1 distance on inputs of length O(m),
where both the pattern and the text might contain wildcards.

Proof. As in the proof of Theorem 10, we can assume that the length of T is 2m. We
observe that if the L1 distance of an m-substring of T is at most k, so must be its Hamming
distance. Therefore, we can use exactly the same filtering approach. In the case of no small
4k-period, after filtering m-substrings with more than 2k mismatches we are left with O(m/k)
possibilities, which are then verified using the “kangaroo jumps” technique of Landau and
Vishkin [13]. The only required modification is that now for every found mismatch we
calculate the corresponding increase in the L1 distance. In the case of a small 8k-period, we
use the same transformation, except that all special characters become identical wildcards ∗
with L1 distance 0 to every letter. This preserves the L1 distance by the same argument. J

Then, instead of designing an algorithm for computing k-RLE L1 distance, we apply the
following reduction.

I Corollary 16 (Theorem 2.1, Theorem 2.2 and Lemma A.1 in [8]). For any M ≥ 0, there is
a linearity preserving reduction from L1 distance between integers from [M] to O(log2M)
instances of Hamming distance. There is a converse reduction from Hamming distance to
O(1) instances of L1 distance. Both reductions allow for wildcards in the input and output
wildcard-less instances.

ICALP 2018

62:12 Towards Unified Approximate Pattern Matching for Hamming and L1 Distance

By inspecting the proof of the above reduction we see that it does not create any new
runs, that is, allows us to reduce k-RLE L1 distance to O(log2M) instances of k-RLE
Hamming distance. Therefore, together with Theorem 15 and Lemma 11, we obtain an
O((m+ k

√
m logm) · log2 n+n log3m) time algorithm for k-bounded L1 distance as claimed

in Theorem 4.
To complete the picture, we show a reduction from k-RLE Hamming distance to 2k-

bounded Hamming distance, that is, a converse to Theorem 10.

I Theorem 17. k-RLE text-to-pattern Hamming distance on inputs of length O(m) reduces
to O(1) instances of 2k-bounded Hamming distance on inputs of length O(m).

Proof. We proceed similarly as in Lemma 11. We observe that it is enough to compute
the second discrete derivative of the output array S, that is D2S defined as (D2S)[i] =
S[i+ 2]− 2S[i+ 1] + S[i], since D2S and two initial values of S (computed naively in time
O(m)) are enough to recover S. For any two blocks tutu+1 . . . tv−1tv and pypy+1 . . . pz−1pz
of the same letter, D2S needs to be updated in only 4 places, that is D2S[u − z]+ = 1,
D2S[v− z + 1]− = 1, D2S[u− y+ 1]− = 1 and D2S[v− y+ 2]. We now explain how to deal
with the first kind of updates, with the other three being implemented similarly.

We first reduce the problem to k-sparse text-to-pattern Hamming distance, where the
text and the pattern are of length O(m) and have each at most k regular characters, with
every other character being wildcard ∗ (special character having distance 0 to every other
character). We construct sparse instance as follows: for every position tu in T that starts a
block, we set Tsparse[u] = tu, and similarly in pattern for a position pz (that ends a block), we
set Psparse[z] = pz. Observe, that if tu 6= pz, then in the answer there is Ssparse[u− z]+ = 1,
and if tu = pz then Ssparse remains unchanged. That is, the answer counts mismatches, while
we want to count matches. To invert the answer, we create Tbin such that Tbin[i] = 1 iff
Tsparse[i] 6= ∗ and Tbin[i] = 0 otherwise, and Pbin in an analogous manner. Convolving Tbin
and Pbin gives us, for every alignment, the total number of non-special text characters aligned
with non-special pattern characters, and we obtain the answer with a single subtraction.

To reduce from k-sparse instances of Hamming distance to 2k-bounded Hamming distance,
we follow an analogous reduction from Lemma A.1 in [8] that reduces Hamming distance on
N+ + {∗} to Hamming distance on N. First, create a new text T1 such that T1[i] = T [i] iff
T [i] 6= ∗ and T1[i] = 0 iff T [i] = ∗, and similarly to obtain P1. Second, create a new text T2
such that T2[i] = 1 iff T2[i] 6= ∗ and T2[i] = 0 iff T [i] = ∗, and similarly to obtain P2. Now
we observe that Ham(T [i], P [j]) = Ham(T1[i], P1[j])−Ham(T2[i], P2[j]), thus it is enough to
compute exact Hamming text-to-pattern distances on these two instances and subtract them.
However, we observe that in both of them, there are in total at most 2k characters different
than 0, thus 2k-bounded Hamming distance works just as fine. J

7 Conclusion and Open Problems

Showing a reduction from either bounded RLE L1 distance, or sparse L1 distance to k-
approximated L1 distance would suffice in completing a converse to Theorem 5, and prove
that complexity of k-bounded L1 and Hamming distances is the same, up to poly-logarithmic
factors.

P. Gawrychowski and P. Uznański 62:13

References
1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,

1987.
2 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching

with k mismatches. J. Algorithms, 50(2):257–275, 2004.
3 Amihood Amir, Ohad Lipsky, Ely Porat, and Julia Umanski. Approximate matching in

the L1 metric. In CPM, pages 91–103, 2005.
4 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-

plexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012.
5 Peter Clifford, Raphaël Clifford, and Costas S. Iliopoulos. Faster algorithms for δ,γ-

matching and related problems. In CPM, pages 68–78, 2005.
6 Raphaël Clifford. Matrix multiplication and pattern matching under Ham-

ming norm. http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/
Talks/BAD09-Hammingnotes.pdf, 2009. Retrieved March 2017.

7 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In SODA, pages 2039–2052, 2016.

8 Daniel Graf, Karim Labib, and Przemyslaw Uznański. Hamming distance completeness
and sparse matrix multiplication. CoRR, abs/1711.03887, 2017. arXiv:1711.03887.

9 T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
hamming distance. Theory of Computing, 4(1):129–135, 2008.

10 Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf. Process.
Lett., 48(2):53–60, 1993.

11 Tsvi Kopelowitz and Ely Porat. Breaking the variance: Approximating the hamming
distance in 1/ε time per alignment. In FOCS, pages 601–613, 2015.

12 Tsvi Kopelowitz and Ely Porat. A simple algorithm for approximating the text-to-pattern
hamming distance. In SOSA, pages 10:1–10:5, 2018.

13 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986.

14 Ohad Lipsky and Ely Porat. L1 pattern matching lower bound. Inf. Process. Lett.,
105(4):141–143, 2008.

15 Ohad Lipsky and Ely Porat. Approximate pattern matching with the L1, L2 and L∞
metrics. Algorithmica, 60(2):335–348, 2011.

16 David P. Woodruff. Optimal space lower bounds for all frequency moments. In SODA,
pages 167–175, 2004.

ICALP 2018

http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/Talks/BAD09-Hammingnotes.pdf
http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/Talks/BAD09-Hammingnotes.pdf
http://arxiv.org/abs/1711.03887

	Introduction
	Preliminaries
	k-bounded Distance
	Lower Bound for k-bounded Hamming Distance
	(1+/-epsilon)-approximation of L_1 Distance
	Reductions
	Conclusion and Open Problems

