
Towards Optimal Approximate Streaming Pattern
Matching by Matching Multiple Patterns in
Multiple Streams∗

Shay Golan
Bar Ilan University, Ramat Gan, Israel
golansh1@cs.biu.ac.il

Tsvi Kopelowitz
Bar Ilan University, Ramat Gan, Israel
kopelot@gmail.com

Ely Porat
Bar Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
Recently, there has been a growing focus in solving approximate pattern matching problems
in the streaming model. Of particular interest are the pattern matching with k-mismatches
(KMM) problem and the pattern matching with w-wildcards (PMWC) problem. Motivated by
reductions from these problems in the streaming model to the dictionary matching problem,
this paper focuses on designing algorithms for the dictionary matching problem in the multi-
stream model where there are several independent streams of data (as opposed to just one in the
streaming model), and the memory complexity of an algorithm is expressed using two quantities:
(1) a read-only shared memory storage area which is shared among all the streams, and (2) local
stream memory that each stream stores separately.

In the dictionary matching problem in the multi-stream model the goal is to preprocess a
dictionary D = {P1, P2, . . . , Pd} of d = |D| patterns (strings with maximum length m over
alphabet Σ) into a data structure stored in shared memory, so that given multiple independent
streaming texts (where characters arrive one at a time) the algorithm reports occurrences of
patterns from D in each one of the texts as soon as they appear.

We design two efficient algorithms for the dictionary matching problem in the multi-stream
model. The first algorithm works when all the patterns in D have the same length m and
costs O(d logm) words in shared memory, O(logm log d) words in stream memory, and O(logm)
time per character. The second algorithm works for general D, but the time cost per character
becomes O(logm + log d log log d). We also demonstrate the usefulness of our first algorithm in
solving both the KMM problem and PMWC problem in the streaming model. In particular, we
obtain the first almost optimal (up to poly-log factors) algorithm for the PMWC problem in the
streaming model. We also design a new algorithm for the KMM problem in the streaming model
that, up to poly-log factors, has the same bounds as the most recent results that use different
techniques. Moreover, for most inputs, our algorithm for KMM is significantly faster on average.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Streaming approximate pattern matching, Dictionary matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.65

∗ This work is supported in part by ISF grant 1278/16. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 683064).

EA
T

C
S

© Shay Golan, Tsvi Kopelowitz, and Ely Porat;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 65; pp. 65:1–65:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:golansh1@cs.biu.ac.il
mailto:kopelot@gmail.com
mailto:porately@cs.biu.ac.il
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 Towards Optimal Approximate Streaming Pattern Matching

1 Introduction

In the popular streaming model [2, 48] the input is given as a sequence of elements (the data
stream) that may be scanned only once, the storage space is limited, and the amount of time
spent on each element needs to be minimized. In many problems there is also a preprocessing
phase involved. For example, in the basic streaming pattern matching problem, the goal is to
find occurrences of a given pattern (to be preprocessed) of size m in the data stream [52, 18].
The preprocessing phase receives the pattern and creates a sub-linear sized data structure
that is used to locate the pattern in streaming input. Following the breakthrough result of
Porat and Porat [52], there has recently been a rising interest in solving pattern matching
problems in the streaming model [18, 30, 47, 19, 42, 23, 24, 37, 38].

Approximate Streaming Pattern Matching. While Porat and Porat [52] and Breslauer
and Galil [18] addressed the exact match case, which is the purest form of streaming pattern
matching, several papers have focused on approximate versions in the streaming model. The
term approximate pattern matching refers to any pattern matching problem that is not exact
matching. Examples include pattern matching with up to k-mismatches [46, 53, 11, 22,
21, 27, 24, 26, 28], pattern matching with w-wildcards [33, 49, 41, 43, 29, 20, 37], pattern
matching with up to e-edits [56], parameterized pattern matching [6, 12, 42, 15, 16, 17, 39],
function pattern matching [13, 4], swapped matching [10, 3, 5] and many more.

Remarkably, recent results in the streaming model for both the pattern matching with
k-mismatches (KMM) problem [24] and the pattern matching with w-wildcards (PMWC)
problem [37] (both formally defined below) use a similar approach which, in particular,
reduce the approximate pattern matching problem in the streaming model that is being
solved to the dictionary matching (DM) problem in the streaming model. In the dictionary
matching problem ([23, 31, 8, 9, 45, 34, 14, 35, 32, 7, 38]) the goal is to preprocess a dictionary
D = {P1, P2, . . . , Pd} of d = |D| patterns (strings over alphabet Σ) so that given a text T we
quickly report all of the occurrences of patterns from D in T . In the streaming model [23, 38]
the text T arrives online, one character at a time, and the goal is to report, for each arriving
character, the id of the longest pattern ending at this character1. Moreover, a pattern must
be reported as soon as it appears.

The motivation for this paper is due to realizing that the reductions to the dictionary
matching problem mentioned above all suffer from an inefficiency that is due reducing a
single stream approximate pattern matching problem to several instances of the dictionary
matching problem, where all of the instances use the same dictionary but have different
input texts. The results in [24] and [37] use a separate block of space for each instance of the
dictionary matching, even though the dictionaries are the same. If it would be possible to
share the space usage representing the dictionary among all of the instances then that would
imply an immediate improvement in the total space usage. More formally, we introduce the
dictionary matching in the multi-stream model that captures this challenge.

Dictionary matching in the multi-stream model. In the dictionary matching in the multi-
stream (DMMS) problem the input is a dictionary D to be processed, there are s independent
input streams of text T1, T2, . . . , Ts, and the goal is to report all of the occurrences of

1 This is a common simplification in which one must only report the longest pattern that has arrived (if
several patterns end at the same text location), since converting such a solution to one that reports all
the patterns is straightforward, and this way the focus is on the time cost that is independent from the
output size.

S. Golan, T. Kopelowitz, and E. Porat 65:3

patterns from D in any Ti, for 1 ≤ i ≤ s, as soon as the occurrence arrives. An algorithm
for the DMMS problem is allowed to set up a read-only block of shared memory during a
preprocessing phase, whose contents depend solely on D, and s blocks of stream memory, one
for each text stream, to be used privately for each text stream as the text is being processed.
Notice that it is enough to describe an algorithm that works on one stream, as long as the
description details which data is stored in each type of memory. Also notice that a naïve
algorithm would be to use a separate solution for dictionary matching in one stream for each
one of the text streams, where each instance is stored completely in stream memory and
there is no use of the shared memory. The most efficient algorithm for dictionary matching
in the streaming model is due to Golan and Porat [38] using O(d logm) words and the time
per character is O(log log |Σ|), which could be as large as O(log log(m · d)). All of these
complexities are in the worst-case, and their algorithm is correct with high probability. With
the naïve method, the algorithm of [38] implies a solution for DMMS that uses a total of
O(s · d logm) words. This space complexity is inherent in the algorithm of [38] since, in
particular, their algorithm always stores the last Θ(d logm) text characters in each stream,
which does not benefit from shared memory. Thus, algorithms are only of interest if they
can beat this naïve method.

1.1 Our Results
We introduce a new algorithm for the dictionary matching problem in the multi-stream
model, which is summarized in the following theorem.

I Theorem 1. There exists an algorithm for the multi-stream dictionary matching problem
where each pattern has length m that uses O(d logm) words of shared memory, O(logm log d)
words of stream memory, and O(logm) time per character. All of these complexities are in
the worst-case, and the algorithm is correct with high probability.

Notice that we focus on the case where all of the patterns in D have the same length m,
since this case suffices for our applications. Due to space limitations, the following extension
of the results to different length patterns is left for the full version.

I Theorem 2. There exists an algorithm for the multi-stream dictionary matching problem
that uses O(d logm) words of shared memory, O(logm log d) words of stream memory, and
O(logm + log d log log d) time per character, where m = mD is the length of the longest
pattern in D. All of these complexities are in the worst-case, and the algorithm is correct
with high probability.

Thus, if there are s streams of data, the total space usage becomes O(d logm+s logm log d)
words, which is substantially less than the total space usage of the naïve method. By using the
algorithm of Theorem 1 we are able to reduce the space usage for solving several approximate
streaming pattern matching problems, as we discuss next.

Streaming pattern matching with w wildcards. A wildcard character, denoted by ′?′ /∈ Σ,
is a special character that matches every character in Σ. In the streaming PMWC problem
the goal is to preprocess a pattern P [1..m] that contains w wildcard characters, so that given
a streaming text T the algorithm reports, for each arriving character, whether the current
text suffix of length m matches the pattern. The most efficient known algorithm for the
PMWC problem was given in [37] where we introduced a trade-off algorithm, which for every
0 ≤ δ ≤ 1 uses Õ(w1−δ) amortized time per character and Õ(w1+δ) words of space, where
Õ hides poly-logarithmic factors. Our results use a reduction from the PMWC problem to
the DMMS problem. Using Theorem 1 we are able to obtain the following result which is
optimal, up to polylog(m,w) factors.

ICALP 2018

65:4 Towards Optimal Approximate Streaming Pattern Matching

I Theorem 3. There exists a randomized Monte Carlo algorithm for the pattern matching
with w-wildcards problem in the streaming model that succeeds with high probability, uses Õ(w)
words of space and spends Õ(1) time per arriving text character. Moreover, any algorithm
which solves the streaming pattern matching with w wildcards with high probability must use
Ω(w) bits of space.

The proof of the upper bound for Theorem 3 is obtained by directly plugging the algorithm
from Theorem 1 into the reduction of [37]. The lower bound is based on a straightforward
reduction from the communication complexity INDEXING problem the proof of Theorem 3
is left for the full version.

Streaming pattern matching with k-mismatches. Another application is the KMM prob-
lem in the streaming model. In this problem the goal is to preprocess a pattern P [1..m]
so that given a streaming text T the algorithm reports for each arriving character whether
the number of mismatches between P and the current text suffix of length m is at most
k, and if so then the algorithm also reports the number of mismatches. The most efficient
algorithm currently published for this problem is by Clifford et al. [24]. This algorithm uses
O(k2 polylogm) words of space and takes O(

√
k log k+ polylogm) time per character. Their

results use a reduction from the streaming KMM problem to the DMMS problem. Using
Theorem 1 we are able to obtain the following result.

I Theorem 4. There exists a randomized Monte Carlo algorithm for the streaming k-
mismatch problem that succeeds with high probability, uses Õ(k) words of space and spends
Õ(k) time per arriving text character.

A proof of Theorem 4 is obtained by plugging the algorithm from Theorem 1 into
the reduction of [24] (with some minor details) which uses group testing techniques [54,
53, 51, 50, 36]. The space usage of this algorithm is optimal up to polylogm factors [40].
Clifford, Kociumaka and Porat [26] recently posted another algorithm that obtains the same
complexities (ignoring poly-logarithmic factors) but using different techniques. Nevertheless,
we provide a second stronger result.

k-mismatches and periodicity. Clifford et al. [24] introduced the notion of x-period which
captures the generalization of periodicity to work with a bounded number of mismatches.
The number of mismatches between two equal length strings S and S′ is known as the
Hamming Distance and is denoted by Ham(S, S′). The x-period of a string P of length m
is the smallest integer π > 0 such that Ham(P [1 + π..m], P [1..m− π]) ≤ x. Notice that for
small x, most strings have a high x-period.

I Theorem 5. There exists a randomized Monte Carlo algorithm for the streaming k-
mismatch problem that succeeds with high probability, uses Õ(k) words of space and spends
Õ(k) time per arriving text character. Moreover, if the 4k-period of P is Ω(k), then the
algorithm spends an average of Õ(1) time per character.

Since the typical assumption is that k is fairly small, the algorithm of Theorem 5 spends
an average of Õ(1) time per character for most patterns. Notice that Theorem 5 immediately
implies Theorem 4. Due to space considerations, the proof of Theorem 5 is left for the full
version.

Organization. In the rest of this paper we give an overview focusing on intuition and the
general ideas of how to prove Theorem 1. The missing proofs and details are left for the full
version.

S. Golan, T. Kopelowitz, and E. Porat 65:5

1.2 Related Work
As mentioned above, the current most efficient algorithm for DM in the streaming model
is due to Golan and Porat [38] where the space usage is O(d logm) words and the time
per character in T is O(log log |Σ|). Another relevant result is that of Clifford et al. [25],
which deals with pattern matching (one pattern) in multiple streams, but not in the classic
streaming model (since the space usage is not sublinear). They show how for s streams
and a pattern of size m, one can report occurrences of the pattern in all of the streams,
concurrently, using O(m+ s) words of space.

We emphasize that the Aho-Corasick automata [1] is not a multi-stream solution for the
dictionary matching problem since the shared memory usage is not sub-linear. However, the
stream memory usage is O(1) words.

2 Preliminaries

A string S of length |S| = ` is a sequence of characters S[1]S[2] . . . S[`] over alphabet Σ. A
substring of S is denoted by S[x..y] = S[x]S[x+ 1] . . . S[y] for 1 ≤ x ≤ y ≤ `. If x = 1 the
substring is called a prefix of S, and if y = `, the substring is called a suffix of S.

A prefix of S of length y ≥ 1 is called a period of S if and only if S[i] = S[i+ y] for all
1 ≤ i ≤ `− y. The shortest period of S is called the principal period of S, and its length is
denoted by ρS . If ρS ≤ |S|2 we say that S is periodic.

Fingerprints For a natural number n we denote [n] = {1, 2, . . . , n}. For the following let
u, v ∈

⋃n
i=0 Σi be two strings of size at most n. Porat and Porat [52] and Breslauer and

Galil [18] extended the fingerprint method of Karp and Rabin [44], and proved that for every
constant c > 1 there exists a fingerprint function φ :

⋃n
i=0 Σi → [nc], such that:

1. If |u| = |v| and u 6= v then φ(u) 6= φ(v) with high probability (at least 1− 1
nc−1).

2. The sliding property: Let w=uv be the concatenation of u and v. If |w| ≤ n then given
the length and the fingerprints of any two strings from u,v and w, one can compute the
fingerprint of the third string in constant time.

For two strings u and v and a fingerprint function φ, we say that the fingerprint concat-
enation of φ(u) and φ(v) is φ(uv). If we are given the lengths of u and v then computing the
fingerprint concatenation takes constant time due to the sliding property.

Remark. Our algorithm often uses fingerprints in order to quickly test if two strings are
equal or not. To ease presentation, in the rest of the paper we assume that fingerprints never
give false positives. This assumption is acceptable since the algorithm is allowed to fail with
small probability.

3 Same Length Patterns – Proof of Theorem 1

Throughout the paper, let q denote the current index of the last character in T . The
algorithm initially considers every text location as a candidate for an occurrence of a pattern.
Conceptually, a text location c is considered to be a candidate until the algorithm encounters
proof that there cannot be any pattern in D that appears at location c. This leads to a
naïve solution which stores all of the candidates, and each time a new character arrives
the candidates are tested to see if they are still candidates. Regardless of the method of
testing, this solution is too expensive, in terms of both space and time, since the number of
candidates could be Ω(m).

ICALP 2018

65:6 Towards Optimal Approximate Streaming Pattern Matching

In order to reduce the time cost per character, we borrow a technique introduced in [52]
which considers prefixes of the dictionary strings of exponentially growing length. This
technique has been extensively used for streaming pattern matching algorithms [30, 18, 23,
24, 37, 38, 42, 26, 55], but in our case the details are more delicate than usual. Our algorithm
makes use of an increasing sequence of O(logm) shift values ∆ = (δ0, δ1, . . . , δ|∆|−1) where

δk =
{

25 if k = 0
min(5b 6

25δk−1c,m) otherwise.

Notice that for 1 ≤ k < |∆| − 1 we have δk − δk−1 ≤ δk/5. Denote `k = δk/5. For each
0 ≤ k ≤| ∆| − 1 let Dk = {P [1..δk]|P ∈ D} be the set of prefixes of patterns from D of
length δk. Let Fk = {φ(P)|P ∈ Dk} be the set of fingerprints of patterns in Dk.

The intuition behind the sets Dk for δk ∈ ∆ is that our algorithm first finds occurrences of
patterns from Dk−1, and those occurrences are then used for finding occurrences of patterns
from Dk. Notice that D0 contains only constant sized prefixes of patterns (of length 25). It is
straightforward to find occurrences of these prefixes using O(d) words in shared memory, O(1)
words in stream memory and O(1) time per text character. Also notice that D|∆|−1 = D,
and so once a pattern from D|∆|−1 is found, it is reported immediately. Most of the technical
work is on patterns in Dk for 1 ≤ k < |∆| − 1. Thus, the rest of the discussion primarily
focuses on δ1, δ2, . . . , δ|∆|−2.

Testing candidates. Testing whether a candidate c is still a candidate takes place only
when q = c+ δk − 1 for some δk ∈ ∆ (so there are only O(logm) tests per each arrival of a
text character). At this point in time, the suffix of T starting at location c is of length δk.
Notice that for c to end up being an occurrence of some pattern it must be that T [c..q] ∈ Dk.
The text fingerprint φ(T [1..q]) is the fingerprint of the text up to the last character that has
arrived, and is maintained with O(1) space and in O(1) time per character. The candidate
fingerprint φ(T [1..c− 1]) is the fingerprint of the text prefix up to location c. With access to
the candidate fingerprint (which we describe below) and the text fingerprint, the algorithm
uses the sliding property to compute in constant time the fingerprint φ(T [c..q]), and then
tests whether φ(T [c..q]) ∈ Fk (thereby testing whether T [c..q] ∈ Dk) via a static hash table.

One almost trivial way of providing access to the candidate fingerprints is to store (in
local stream memory) the candidates via a linked list together with some additional O(1)
information per candidate to help compute the candidate fingerprint. Unfortunately, the
number of candidates could be as large as Ω(m), and so we cannot afford to store explicit
information for each candidate. Instead, we devise a new method for implicitly storing
the candidates so that whenever a new text character arrives we can quickly infer which
candidates need to be tested (if any), and then quickly extract the candidate fingerprints of
the tested candidates. This task is accomplished with the aid of guiding graphs.

The guiding graph. For each Dk the algorithm stores a directed edge-weighted graph Gk
in shared memory, called a guiding graph. In order to simplify the presentation, we focus
on a simplified version of the guiding graph. A pseudo-forest is an undirected graph where
each connected component contains at most one cycle. Gk is a directed pseudo-forest in
which the out-degree of each vertex is at most 1. Each edge e in Gk has a weight w(e)
and label λ(e) such that there exists a non-empty edge string Se where λ(e) = φ(Se) and
w(e) = |Se| ≥ 1. For each P ∈ Dk there is an associated vertex vP ∈ Gk. The total size of
Gk is O(|Dk|) = O(d).

S. Golan, T. Kopelowitz, and E. Porat 65:7

The algorithmic usefulness of Gk is due to a directed path (DP) property which captures
the combinatorial guarantees given by the guiding graph. We first state a stronger version
of the DP property, which unfortunately we do not know how to guarantee as stated. In
Section 4 we give a weaker version, which we do know how to guarantee, but the weaker
version introduces an extra O(log d) factor in stream memory.

I Property 1 (Strong Directed Path Property). Let S be a string where δk ≤ |S| < δk+1,
such that the prefix and suffix of S of length δk are Pb, Pe ∈ Dk, respectively. Then there
exists a single directed path π in Gk from vb to ve (which may contain cycles) such that
the concatenation of the edge strings for the sequence of edges on π is exactly S[1..|S| − δk],
which is the prefix of S until the occurrence of the suffix Pe.

If P ∈ Dk is a substring of S at location h, then the path starting from vb with total edge
weight h− 1 must exist and end at vP , so vP ∈ π2. Moreover, for any prefix of π, with total
edge weight w, the concatenation of the edge strings on this path prefix is S[1..w].

The intuition behind the usage of the guiding graph is that the guiding graph cleverly
represents all possible linked lists of candidates in the text interval Ik = (q−δk+1+1, q−δk+1]
that can ever be encountered by the algorithm. For a location c in Ik, let the entrance prefix
of c be T [c..c+ δk − 1]. Notice that c is a candidate if and only if the entrance prefix of c is
some pattern P ∈ Dk. For a candidate c with entrance prefix P ∈ Dk, we denote vc = vP .
Thus, all of the candidates in Ik are the candidates c for which the last verification took
place when the character T [c+ δk − 1] arrived, and so the entrance prefixes of candidates in
Ik are patterns from Dk. Let L be the list of candidates in Ik. Let cb (ce) be the first (last)
candidate in L, and let Pb ∈ Dk (Pe ∈ Dk) be the string of length δk occurring at location
cb (ce) in T . Both cb and ce are in Ik, and so ce − cb < δk+1 − δk. Since |Pb| = |Pe| = δk,
the substring S = T [cb..ce + |Pe| − 1] has Pb and Pe as its prefix and suffix, respectively, and
δk ≤ |S| < δk+1. Thus, by the strong DP property, there exists a path πL in Gk from vcb

to vce , and the concatenation of edge strings on πL is exactly S[1..|S| − δk] = T [cb..ce − 1].
Moreover, for any candidate c in L we have vc ∈ πL and the concatenation of the edge strings
on a prefix πc of πL from vcb

to vc is exactly S[1..c− cb] = T [cb..c− 1]. Being that T [1..c− 1]
is the concatenation of T [1..cb− 1] and T [cb..c− 1], the candidate fingerprint of c is derivable
from the candidate fingerprint of cb and concatenation of the edge strings on πc. Thus, if
Gk is stored in shared memory, then we are able to recover the candidate fingerprints of
all of the candidates in L by storing, in stream memory, a pointer to the beginning and of
πL together with locations cb, ce3, and the fingerprint candidate of cb. In some sense this
feature allows us to access information about the history of the text stream, although this
information is not stored explicitly.

Phantom Candidates. While the strong DP property guarantees that every candidate c
in L has a corresponding vertex in πL, the property does not guarantee that every vertex
in πL corresponds to a candidate in L. In particular, let πL = (v1, v2, . . . , vx) and notice
that πL may contain duplicate vertices (since πL may contain a cycle). By the strong DP
property, if the ordered list of candidates in L is (c1, c2 . . . , cy) then there exist indices
1 = i1 < i2 < · · · < iy = x such that for all 1 ≤ j ≤ y, vij corresponds to cj . However, for

2 Notice that if π contains a cycle, then there may be several prefixes of π ending at vP but only one of
them can have a specific weight.

3 The reason for storing ce is in order to know where πL ends. This is particularly important when Gk

contains a cycle.

ICALP 2018

65:8 Towards Optimal Approximate Streaming Pattern Matching

every 1 ≤ z ≤ x such that for every 1 ≤ j ≤ y, z 6= ij , we have that vz at location z in the
list4 does not correspond to a candidate in L. This means that the implicit representation of
L through πL may contain irrelevant information.

To overcome this issue, we allow the vertices on πL that do not correspond to candidates
to be considered as if they are candidates, which we call phantom candidates. A phantom
candidate is a text location that failed a test in the past, but now is implicitly considered
again because its corresponding vertex lies on a directed path that is implicitly stored via
the path’s endpoints. A crucial aspect of phantom candidates is that they do not affect the
complexity bounds or correctness of our algorithm. This will be made clear in the complexity
analysis. If c is a phantom candidate due to vertex vi ∈ πL, we say that vc = vi.

Updating πL. If L is empty and a new candidate c enters Ik, then πL becomes the single
vertex vc. If L is not empty, let cb and ce be the first and last candidates in L, respectively.
At this time it is possible that cb is a phantom candidate, but we guarantee that ce is not.
Assume by induction that πL is currently the path from vcb

to vce
where the sum of the

weights on edges of πL is ce − cb.
If a new candidate c enters Ik then by the strong DP property there must exist a path

from vce to vc. Moreover, by the strong DP property, the concatenation of edge strings (as
seen when traversing πL) from vce

to vc is T [ce..c− 1]. Thus, the only change in memory
needed for storing πL is changing the stored location of the last candidate in Ik to be c,
which is not a phantom candidate.

If cb leaves Ik, then vcb
is removed from the beginning of πL. If cb was the only candidate

in Ik then πL becomes empty and we are back to the base case. Otherwise, the new first
candidate c in Ik is reached by following the single outgoing edge e = (vcb

, vc) in Gk. By
the strong DP property, c = cb + w(e), and φ(T [1..c− 1]) is the fingerprint concatenation of
φ(T [1..cb − 1]) and λ(e).

Information stored in shared memory. For each Dk the data structure stores the guiding
graph Gk. In addition the data structure stores the fingerprints in Fk via a perfect hash
table that maps each fingerprint φ(P) to the id of P . Since the space usage per each δ ∈ ∆
is O(d) words, the total space used in shared memory is O(d logm) words.

Information stored in stream memory. The algorithm maintains the text fingerprint of
the entire text which is the fingerprint of the text up to the last character that has arrived.
This information is updated in constant time per each new character arrival, using the sliding
property of φ.

The algorithm uses a separate data structure for each of the O(logm) text intervals. The
data structure for text interval Ik maintains all the candidates in Ik by storing a pointer to
the beginning of πL, the locations of the first and last candidates in Ik, and the candidate
fingerprint of the first candidate.

Thus, the total space usage per each text interval Ik is O(1), and the total amount of
stream memory used is O(logm).

Character Arrival. We now describe the fairly straightforward processing of a new text
character. In particular, we show that the algorithm spends O(1) time per text interval
each time a text character arrives, for a total of O(logm) time per character. Let T [q] be

4 The reason for addressing the index of vz directly is due to the possibility of cycles.

S. Golan, T. Kopelowitz, and E. Porat 65:9

the new character that arrives to the stream of text T . The algorithm first updates the
text fingerprint of T in the stream memory, and if φ(T [q − 24..q]) ∈ F0 then the algorithm
inserts q − 24 as a candidate into the first text interval (recall that the last 25 characters in
the text are dealt with via maintaining their fingerprint for this purpose). The candidate
fingerprint for q − 24 is computed via the sliding window property from the text fingerprint
and φ(T [q − 24..q]).

For δk ∈ ∆ the algorithm checks for the existence of a candidate c = q− δk + 1 by probing
the head of the path for Ik. If so, the algorithm has to (1) test c, (2) remove c from Ik, and
(3) if c is still a candidate and k ≤ |∆| − 3 then add c to the data structure for Ik+1, while if
k = |∆| − 2 then use F|∆|−1 to report the id of a pattern occurrence.

To test a candidate c = q− δk + 1 the algorithm uses the sliding property of φ to compute
φ(T [c..q]) from the candidate fingerprint of c (which is stored in stream memory) and the
text fingerprint. This takes constant time. We assume from now that c is a candidate. The
process for removing a candidate from Ik and adding a candidate to Ik+1 is described above,
and costs O(1) time.

Phantom candidates do not affect complexities and correctness. The treatment of
phantom candidates is exactly the same as the treatment of non-phantom candidates since in
our algorithm we cannot distinguish between the two. In particular, a location c = q−δk+1 +1
that was a phantom candidate before the last character arrived is tested to see if c is an
occurrence of a pattern in Dk+1. Since c is a phantom candidate this test must fail and c
will not be added to the data structure of Dk+1 (but c could potentially become a phantom
candidate again later on). Thus, allowing for phantom candidates does not affect the correct-
ness of the algorithm. Notice that allowing for phantom candidates to exist does not increase
the space or time complexities: the space usage is unaffected since the phantom candidates
are maintained implicitly within the directed paths, and the time complexity is unaffected
since for each arriving character and for each δ ∈ ∆, at most one candidate (phantom or
not) needs to be considered.

4 Constructing Guiding Graphs

The main technical difficulty is in constructing the guiding graphs. We focus on the
construction of the guiding graph for Dk. Recall that `k = δk

5 and that the length of every
string in Dk is δk. A string P ∈ Dk whose prefix of length 3`k appears at least twice in P
is said to be of type τpr, (the “pr" stands for “prefix repetition"). Since the goal here is to
convey the main ideas and intuition of how to construct Gk we begin by making a simplifying
assumption that there are no strings in Dk of type τpr. Removing this assumption requires
introducing periodicity properties of strings, which we briefly address at the end of this
section.

We define the distance between two strings P, P ′ ∈ Dk to be the smallest possible distance
between an occurrence of P and an occurrence of P ′ in any text. Notice that distances are
never negative, and they do not define a metric (P may be at distance 1 from P ′ and P ′
may be at distance 1 from P ′′ but P and P ′′ might be at distance much larger than 2).

Intuition. The general idea is based on the following observation: if two strings in Dk are
within distance at most `k in the text, then the two strings must share a common substring
of length at least 4`k. However, the converse is not true. That is, not every two strings
that share a common substring of length at least 4`k have distance at most `k; see Figure 1.

ICALP 2018

65:10 Towards Optimal Approximate Streaming Pattern Matching

𝑃1 = prefsharedsubstringsuf
𝑃2 = efsharedsubstringsuffi
𝑃3 = insharedsubstringabcde
𝑃4 = minsharedsubstringabcd
𝑃5 = abcdesharedsubstringxy

Figure 1 An example of strings in the same cluster. Notice that P1 and P2 could occur in a text
within distance 2. Similarly P3 and P4 could occur in a text within distance 1. However, every other
pair of strings cannot appear in any text within distance less than 15.

cd

ab

m

abcd

𝑃4

𝑃1

𝑃2
𝑃3, 𝑃5

𝑃6

aaaadc 𝑃1 = abcdxyzxyzxyzxyaab
𝑃2 = cdxyzxyzxyzxyaabbc
𝑃3 = mcdxyzxyzxyzxyaabx
𝑃4 = aaaadcxyzxyzxyzxyx
𝑃5 = mcdxyzxyzxyzxyxyx
𝑃6 = abcdxxxxxxxxxxxxba

Figure 2 Examples of tries for clusters of strings of type τnpr.

Nevertheless, we would still benefit from clustering the strings in Dk in a way that guarantees
the following two properties: (1) if two strings from Dk are at distance at most `k then these
strings appear in the same cluster, and (2) all of the strings in the same cluster share a
common substring (possibly at different locations) of length 3`k which we call the seed of the
cluster. Notice that a string in a cluster may contain more than one occurrence of the seed.
In order for seeds to be useful, we require that for a given seed of a cluster and a string P in
that cluster, the location of the seed in P is the location of the first occurrence of the seed
in P .

Given such a clustering, for each cluster separately we construct part of the guiding graph
as follows (for an example, see Figure 2). For any pair of strings in the same cluster with
distance at most `k, the algorithm synchronizes the two strings, based on the position of
the seed in each one of the strings, as follows. Consider the prefix of each such string up
to the occurrence of the seed. Then one of the prefixes must be a suffix of the other prefix.
Thus, we consider all of the prefixes of all of the strings in a cluster, where each prefix of
a string ends right before the occurrence of the seed in that string. We then construct a
compacted trie from the reversal of all of the prefixes and associate each string P ∈ Dk with
the vertex in the trie corresponding to the reverse prefix of P . Each vertex in the trie has
a single outgoing edge e to its parent (the root has out-degree 0), and the edge string of
e is exactly the string corresponding to that edge in the compacted trie. Let T be a text
and let c and c′ be any two non-phantom candidates in Ik. Let P and P ′ be the entrance
prefixes of c and c′, respectively. The distance between P and P ′ is at most c′ − c ≤ `k, and
so P and P ′ must be in the same cluster. Moreover, T [c..(c′ − 1)] corresponds exactly to the
concatenation of the labels in the compacted trie on the single path from vP to vP ′5.

5 Notice that if we were to allow strings of type τpr then this statement would no longer be true.

S. Golan, T. Kopelowitz, and E. Porat 65:11

4.1 Creating Clusters
We consider two separate cases for the strings in Dk that are not of type τpr. The first are
strings in P ∈ Dk that have a substring of length 3`k that occurs at least twice, but since we
do not consider strings from type τpr then the prefix of P of length 3`k does not occur more
than once in P . Such strings are said to be of type τnpr (the “npr" stands for “non-prefix
repetition"). The second are strings that do not have a substring of length 3`k that occurs at
least twice. Such strings are said to be of type τnr (the “nr" stands for “no repetition").

Clustering for type τnpr. Notice that a string P of type τnpr could potentially have several
substrings of length 3`k such that each one of them appears at least twice in P . In order to
remove the ambiguity, we treat the leftmost repeated string of length 3`k in P as the only
one that counts, and call it the base of P .

We cluster the strings of type τnpr according to their base. That is, all of the strings
in the same cluster have the same base, and this base is the seed of the cluster. Thus, we
only need to show that if two strings of type τnpr are at distance at most `k then these
strings appear in the same cluster. The proof that this property holds is based on periodicity
properties and is left for the full version.

Clustering for type τnr. Unfortunately, for type τnr it is impossible to guarantee both
desired clustering properties at the same time. To see this, consider S1, S2, S3, . . . , S7 ∈ Dk

and a text that contains all of these 7 strings, where for every 1 ≤ i ≤ 6, the occurrence of
Si is exactly `k − 1 positions before the occurrence of Si+1. Then based on the properties
that we are aiming for, all of these strings must appear in the same cluster. However, it
is straightforward to construct such an example in which S1 and S7 do not share a single
common character.

To solve this problem we modify the definition of guiding graphs by generalizing the
definition of vP for P ∈ Dk, using a weaker version of the DP property, and refining the
properties that we require from the clustering. Instead of requiring each P ∈ Dk to have
a single associated vertex vP , we now allow P to be associated with a set of vertices VP .
Recall that it is possible for a vertex to be associated with more than one string.

I Property 2 (Weak Directed Path Property). Let S be a string where δk ≤ |S| < δk +
⌊
`k

log d

⌋
,

such that the prefix and suffix of S of length δk are Pb, Pe ∈ Dk, respectively, where Pb and Pe
are of type τnr. Then there exists vb ∈ Vb to ve ∈ Ve such that there exists a single directed
path π in Gk from vb to ve and the concatenation of the edge strings for the sequence of edges
on π is exactly S[1..|S| − δk], which is the prefix of S until the occurrence of the suffix Pe.

If P ∈ Dk of type τnr is a substring of S at location h, then the path starting from vb
with total edge weight h− 1 must exist and end at a vertex vP ∈ VP , so vP ∈ π. Moreover,
for any prefix of π with total edge weight w, the concatenation of the edge strings on this
prefix is S[1..w].

The strong DP property refers to strings of distance up to δk+1 − δk, but the weak DP
property only refers to strings of distance up to

⌊
`k

log d

⌋
≤
⌊
δk+1−δk

log d

⌋
. Thus, the algorithm

uses O(log d) separate paths in order to cover the candidates in Ik which is of length δk+1−δk.
This increases the space usage by a O(log d) factor, but the time cost remains the same.

Finally, the two properties we require from the clustering for type τnr are: (1) if two
strings of type τnr are at distance at most b `k

log dc then these strings appear together in some
cluster, and (2) all of the strings in a cluster share a common seed of length 3`k. The details
for finding such a clustering are non-obvious and are left for the full version.

ICALP 2018

65:12 Towards Optimal Approximate Streaming Pattern Matching

x

y
bcd

a
𝑃",𝑃$

𝑃% 𝑃& 𝑃'

𝑃" = abcdabcdabcdabcccd
𝑃# = abcdabcdabcdabcdab
𝑃$ = bcdabcdabcdabcdabc
𝑃% = xyxyxyxyxyxyxyxyx
𝑃& = yxyxyxyxyxyxyxyxy

Figure 3 Example of connected components for clusters of pattern prefixes of type τpr.

Clustering for type τpr. The general idea for treating strings of type τpr is based on the
following properties. Recall the definition of base from the clustering of τnpr. Let P ∈ Dk be
of type τpr. Notice that Since P is of length 5`k and the base of P is of length 3`k, then
the two leftmost occurrences of the base in P (one of which is the prefix of P) must overlap.
Denote the location of the second occurrence of the base by r(P) + 1. We prove (in the full
version) that the prefix of P which ends after the second occurrence of the base in P (that is
at location r(P) + 3`k) must be periodic, and the principal period of this prefix is exactly
the prefix P [1..r(P)], which is the prefix of P up to the second occurrence of the base. Using
periodicity techniques we are able to prove that for every two strings P, P ′ ∈ Dk of type τpr,
if the distance between the strings is at most `k ≥ δk+1 − δk, then: (1) r(P) = r(P ′), and
(2) P [1..r(P ′)] is a cyclic shift of P ′[1..r(P ′)]. Thus, we cluster the strings in τpr such that
for every two strings P and P ′ in the same cluster: (1) r(P) = r(P ′), and (2) P [1..r(P ′)]
is a cyclic shift of P ′[1..r(P ′)]. This will help us guarantee that the strong DP property
holds. Finally, the cyclic shift naturally defines a directed cycle in Gk which captures the
synchronization between the strings in a cluster, see Figure 3. Notice that it is possible that
the same string will occur several times in a text at locations in a range shorter than `k. This
case occurs only for strings that have a short period (less than `k), and is straightforward
to show that all of these strings must be of type τpr. Thus, the cyclic graph description
captures the relationship between possible occurrences of such a periodic string in the text,
but also leads to the possibility of having a non-simple path represent many candidates.

Combining the three types. For type τnr we are able to guarantee the weak DP property,
while for τnpr and τpr we are able to guarantee the strong DP property, but for each type
separately. That is, for two strings P, P ′ ∈ Dk of different types, there is no path in Gk from
a vertex corresponding to P to a vertex corresponding to P ′. Thus, our algorithm creates a
separate instance for each one of the three types, and runs them concurrently. Notice that it
is possible for a candidate c to be of one type when c is in Ik and of a different type when c
enters Ik+1. This is permissable since there are separate graphs for different values of k.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

3 Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein, and Noa Lewen-
stein. Pattern matching with swaps. J. Algorithms, 37(2):247–266, 2000. doi:10.1006/
jagm.2000.1120.

4 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.
SIAM J. Comput., 35(5):1007–1022, 2006. doi:10.1137/S0097539702424496.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1137/S0097539702424496

S. Golan, T. Kopelowitz, and E. Porat 65:13

5 Amihood Amir, Estrella Eisenberg, and Ely Porat. Swap and mismatch edit distance.
Algorithmica, 45(1):109–120, 2006. doi:10.1007/s00453-005-1192-8.

6 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-
erized matching. Inf. Process. Lett., 49(3):111–115, 1994. doi:10.1016/0020-0190(94)
90086-8.

7 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the gap: Essentially optimal algorithms for online dictionary matching with one
gap. In Proceedings of the 27th International Symposium on Algorithms and Computation,
ISAAC, pages 12:1–12:12, 2016. doi:10.4230/LIPIcs.ISAAC.2016.12.

8 Amihood Amir, Avivit Levy, Ely Porat, and B. Riva Shalom. Dictionary matching with
one gap. In Combinatorial Pattern Matching - 25th Annual Symposium, CPM, pages 11–20,
2014.

9 Amihood Amir, Avivit Levy, Ely Porat, and B. Riva Shalom. Dictionary matching with a
few gaps. Theor. Comput. Sci., 589:34–46, 2015.

10 Amihood Amir, Moshe Lewenstein, and Ely Porat. Approximate swapped matching. Inf.
Process. Lett., 83(1):33–39, 2002. doi:10.1016/S0020-0190(01)00302-7.

11 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching
with k mismatches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

12 Amihood Amir and Gonzalo Navarro. Parameterized matching on non-linear structures.
Inf. Process. Lett., 109(15):864–867, 2009. doi:10.1016/j.ipl.2009.04.012.

13 Amihood Amir and Igor Nor. Generalized function matching. J. Discrete Algorithms,
5(3):514–523, 2007. doi:10.1016/j.jda.2006.10.001.

14 Tanver Athar, carl Barton, Widmer bland, Jia Gao, Costas S. Illopoulos, Chang Liu, and
Solon P. Pissis. Fast circular dictionary-matching algorithm. Mathematical Structures in
Computer Science, pages 1–14, 2015.

15 Brenda S. Baker. Parameterized pattern matching by boyer-moore-type algorithms. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995.,
pages 541–550, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.313816.

16 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. J. Com-
put. Syst. Sci., 52(1):28–42, 1996. doi:10.1006/jcss.1996.0003.

17 Brenda S. Baker. Parameterized duplication in strings: Algorithms and an applica-
tion to software maintenance. SIAM J. Comput., 26(5):1343–1362, 1997. doi:10.1137/
S0097539793246707.

18 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Transactions
on Algorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

19 Dany Breslauer, Roberto Grossi, and Filippo Mignosi. Simple real-time constant-space
string matching. Theor. Comput. Sci., 483:2–9, 2013. doi:10.1016/j.tcs.2012.11.040.

20 Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching. Inf. Process.
Lett., 101(2):53–54, 2007. doi:10.1016/j.ipl.2006.08.002.

21 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to
efficient pattern matching. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 778–784, 2009. URL: http://dl.acm.org/citation.
cfm?id=1496770.1496855.

22 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. Pattern matching
with don’t cares and few errors. J. Comput. Syst. Sci., 76(2):115–124, 2010. doi:10.1016/
j.jcss.2009.06.002.

23 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In 23rd Annual European Symposium of Algorithms, ESA,
pages 361–372, 2015. doi:10.1007/978-3-662-48350-3_31.

ICALP 2018

http://dx.doi.org/10.1007/s00453-005-1192-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.12
http://dx.doi.org/10.1016/S0020-0190(01)00302-7
http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.1016/j.ipl.2009.04.012
http://dx.doi.org/10.1016/j.jda.2006.10.001
http://dl.acm.org/citation.cfm?id=313651.313816
http://dx.doi.org/10.1006/jcss.1996.0003
http://dx.doi.org/10.1137/S0097539793246707
http://dx.doi.org/10.1137/S0097539793246707
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1016/j.tcs.2012.11.040
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://dx.doi.org/10.1016/j.jcss.2009.06.002
http://dx.doi.org/10.1016/j.jcss.2009.06.002
http://dx.doi.org/10.1007/978-3-662-48350-3_31

65:14 Towards Optimal Approximate Streaming Pattern Matching

24 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 2039–2052, 2016. doi:10.1137/
1.9781611974331.ch142.

25 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Pattern matching
in multiple streams. In Proceedings of Combinatorial Pattern Matching - 23rd Annual
Symposium, CPM 2012, pages 97–109, 2012. doi:10.1007/978-3-642-31265-6_8.

26 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem.
CoRR, abs/1708.05223, 2017. arXiv:1708.05223.

27 Raphaël Clifford and Ely Porat. A filtering algorithm for k -mismatch with don’t cares. In
String Processing and Information Retrieval, 14th International Symposium, SPIRE 2007,
Santiago, Chile, October 29-31, 2007, Proceedings, pages 130–136, 2007. doi:10.1007/
978-3-540-75530-2_12.

28 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming Distance in a Stream.
In 43rd International Colloquium on Automata, Languages, and Programming (ICALP
2016), pages 20:1–20:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

29 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada, pages 592–601, 2002. doi:10.1145/509907.
509992.

30 Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. In Proceedings
of Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, 13th International Workshop, APPROX 2010, and 14th International Workshop,
RANDOM, pages 545–559, 2010.

31 Guy Feigenblat, Ely Porat, and Ariel Shiftan. An improved query time for succinct dynamic
dictionary matching. In Combinatorial Pattern Matching - 25th Annual Symposium, CPM,
pages 120–129, 2014.

32 Guy Feigenblat, Ely Porat, and Ariel Shiftan. Linear time succinct indexable dictionary
construction with applications. In Data Compression Conference , DCC, pages 13–23, 2016.

33 Michael J Fischer and Michael S Paterson. String-matching and other products. Technical
report, DTIC Document, 1974.

34 Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan,
and Yilin Yang. Space-efficient dictionaries for parameterized and order-preserving pattern
matching. In 27th Annual Symposium on Combinatorial Pattern Matching, CPM, pages
2:1–2:12, 2016.

35 Arnab Ganguly, Wing-Kai Hon, and Rahul Shah. A framework for dynamic parameter-
ized dictionary matching. In 15th Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT, pages 10:1–10:14, 2016.

36 Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. 2/2-
foreach sparse recovery with low risk. In Proceedings of Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP 2013, pages 461–472, 2013. doi:
10.1007/978-3-642-39206-1_39.

37 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming Pattern Matching with d Wild-
cards. In 24th Annual European Symposium on Algorithms (ESA), pages 44:1–44:16, 2016.

38 Shay Golan and Ely Porat. Real-time streaming multi-pattern search for constant alphabet.
In 25th Annual European Symposium on Algorithms, ESA 2017, pages 41:1–41:15, 2017.
doi:10.4230/LIPIcs.ESA.2017.41.

39 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.
ACM Trans. Algorithms, 3(3):29, 2007. doi:10.1145/1273340.1273345.

http://dx.doi.org/10.1137/1.9781611974331.ch142
http://dx.doi.org/10.1137/1.9781611974331.ch142
http://dx.doi.org/10.1007/978-3-642-31265-6_8
http://arxiv.org/abs/1708.05223
http://dx.doi.org/10.1007/978-3-540-75530-2_12
http://dx.doi.org/10.1007/978-3-540-75530-2_12
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.20
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1007/978-3-642-39206-1_39
http://dx.doi.org/10.1007/978-3-642-39206-1_39
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.41
http://dx.doi.org/10.1145/1273340.1273345

S. Golan, T. Kopelowitz, and E. Porat 65:15

40 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity
of the hamming distance problem. Inf. Process. Lett., 99(4):149–153, 2006. doi:10.1016/
j.ipl.2006.01.014.

41 Piotr Indyk. Faster algorithms for string matching problems: Matching the convolution
bound. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, pages
166–173, 1998. doi:10.1109/SFCS.1998.743440.

42 Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized matching in the stream-
ing model. In Proceedings Symposium on Theoretical Aspects of Computer Science, STACS,
pages 400–411, 2013. doi:10.4230/LIPIcs.STACS.2013.400.

43 Adam Kalai. Efficient pattern-matching with don’t cares. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pages 655–656, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545468.

44 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.
0249.

45 Tsvi Kopelowitz, Ely Porat, and Yaron Rozen. Succinct online dictionary matching with
improved worst-case guarantees. In 27th Annual Symposium on Combinatorial Pattern
Matching, CPM, pages 6:1–6:13, 2016.

46 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

47 Lap-Kei Lee, Moshe Lewenstein, and Qin Zhang. Parikh matching in the streaming model.
In String Processing and Information Retrieval - 19th International Symposium, SPIRE
2012, Proceedings, pages 336–341, 2012. doi:10.1007/978-3-642-34109-0_35.

48 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005. doi:10.1561/0400000002.

49 S. Muthukrishnan and H. Ramesh. String matching under a general matching relation. In
Foundations of Software Technology and Theoretical Computer Science, 12th Conference,
New Delhi, India, December 18-20, 1992, Proceedings, pages 356–367, 1992. doi:10.1007/
3-540-56287-7_118.

50 Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list disjunct
matrices and applications - (extended abstract). In Proceedings of Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, pages 557–568, 2011.
doi:10.1007/978-3-642-22006-7_47.

51 Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In 29th International Symposium on Theoretical Aspects
of Computer Science, STACS 2012, pages 230–241, 2012. doi:10.4230/LIPIcs.STACS.
2012.230.

52 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, pages 315–323, 2009. doi:10.1109/FOCS.2009.11.

53 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.
In Combinatorial Pattern Matching, 18th Annual Symposium, CPM 2007, London, Canada,
July 9-11, 2007, Proceedings, pages 173–182, 2007. doi:10.1007/978-3-540-73437-6_19.

54 Ely Porat and Amir Rothschild. Explicit nonadaptive combinatorial group testing
schemes. IEEE Trans. Information Theory, 57(12):7982–7989, 2011. doi:10.1109/TIT.
2011.2163296.

55 Jakub Radoszewski and Tatiana A. Starikovskaya. Streaming k-mismatch with error cor-
recting and applications. In 2017 Data Compression Conference, DCC, pages 290–299,
2017. doi:10.1109/DCC.2017.14.

ICALP 2018

http://dx.doi.org/10.1016/j.ipl.2006.01.014
http://dx.doi.org/10.1016/j.ipl.2006.01.014
http://dx.doi.org/10.1109/SFCS.1998.743440
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://dl.acm.org/citation.cfm?id=545381.545468
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1016/0304-3975(86)90178-7
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1007/3-540-56287-7_118
http://dx.doi.org/10.1007/3-540-56287-7_118
http://dx.doi.org/10.1007/978-3-642-22006-7_47
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.230
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.230
http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1007/978-3-540-73437-6_19
http://dx.doi.org/10.1109/TIT.2011.2163296
http://dx.doi.org/10.1109/TIT.2011.2163296
http://dx.doi.org/10.1109/DCC.2017.14

65:16 Towards Optimal Approximate Streaming Pattern Matching

56 Tatiana Starikovskaya. Communication and Streaming Complexity of Approximate Pattern
Matching. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017),
pages 13:1–13:11, 2017. doi:10.4230/LIPIcs.CPM.2017.13.

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.13

	Introduction
	Our Results
	Related Work

	Preliminaries
	Same Length Patterns – Proof of Theorem 1
	Constructing Guiding Graphs
	Creating Clusters

