
A Polynomial-Time Approximation Algorithm for
All-Terminal Network Reliability
Heng Guo
School of Informatics, University of Edinburgh, Informatics Forum, Edinburgh, EH8 9AB,
United Kingdom.
hguo@inf.ed.ac.uk

https://orcid.org/0000-0001-8199-5596

Mark Jerrum1

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London,
E1 4NS, United Kingdom.
m.jerrum@qmul.ac.uk

https://orcid.org/0000-0003-0863-7279

Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for the all-terminal
network reliability problem, which is to determine the probability that, in a undirected graph,
assuming each edge fails independently, the remaining graph is still connected. Our main contri-
bution is to confirm a conjecture by Gorodezky and Pak (Random Struct. Algorithms, 2014), that
the expected running time of the “cluster-popping” algorithm in bi-directed graphs is bounded
by a polynomial in the size of the input.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures

Keywords and phrases Approximate counting, Network Reliability, Sampling, Markov chains

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.68

Related Version Also available at https://arxiv.org/abs/1709.08561.

Acknowledgements We thank Mark Huber for bringing reference [8] to our attention, Mark
Walters for the coupling idea leading to Lemma 12, and Igor Pak for comments on an earlier
version. We also thank the organizers of the “LMS – EPSRC Durham Symposium on Markov
Processes, Mixing Times and Cutoff”, where part of the work is carried out.

1 Introduction

Network reliability problems are extensively studied #P-hard problems [5] (see also [3, 22,
18, 2]). In fact, these problems are amongst the first of those shown to be #P-hard, and
the two-terminal version is listed in Valiant’s original thirteen [24]. The general setup is
that in a given (undirected or directed) graph, every edge (or arc) e has an independent
probability pe to fail, and we are interested in various kinds of connectivity notions of the
remaining graph. For example, the two-terminal connectedness [24] asks for the probability
that for two vertices s and t, s is connected to t in the remaining graph, and the (undirected)
all-terminal network reliability asks for the probability of all vertices being connected after

1 The work described here was supported by the EPSRC research grant EP/N004221/1 “Algorithms that
Count”.

EA
T

C
S

© Heng Guo and Mark Jerrum;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 68; pp. 68:1–68:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hguo@inf.ed.ac.uk
https://orcid.org/0000-0001-8199-5596
mailto:m.jerrum@qmul.ac.uk
https://orcid.org/0000-0003-0863-7279
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.68
https://arxiv.org/abs/1709.08561
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Approximating Network Reliability

edges fail. The latter can also be viewed as a specialization of the Tutte polynomial TG(x, y)
with x = 1 and y > 1, yet another classic topic whose computational complexity is extensively
studied [12, 25, 6, 7].

Prior to our work, the approximation complexity of network reliability problems remained
elusive despite their importance. There is no known efficient approximation algorithm (for
any variant), but nor is there any evidence that such an algorithm does not exist. A notable
exception is Karger’s fully polynomial-time randomized approximation scheme (FPRAS)
for (undirected) all-terminal network unreliability [15] (see also [11, 16, 17] for more recent
developments). Although approximating unreliability is potentially more useful in practice,
it does not entail an approximation of its complement.

In this paper, we give an FPRAS for the all-terminal network reliability problem, defined
below and denoted Reliability.

Name Reliability
Instance A (undirected) graph G = (V,E), and failure probabilities p = (pe)e∈E .
Output Zrel(G; p), which is the probability that if each edge e fails with probability pe, the

remaining graph is connected.

When pe is independent of e, Reliability is an evaluation of the Tutte polynomial. The
Tutte polynomial is a two-variable polynomial TG(x, y) associated with a graph G, which
encodes much interesting information about G. As (x, y) ranges over R2 or C2 we obtain
a family of graph parameters, the so-called Tutte plane. As already noted, the study of
the computational complexity of these parameters has a long history. Reliability with
a uniform failure probability 0 < p < 1 is equivalent to evaluating the Tutte polynomial
TG(x, y) on the line x = 1 and y = 1

p > 1. Our algorithm is the first positive result on the
complexity of the Tutte plane since Jerrum and Sinclair presented an FPRAS for the partition
function of the ferromagnetic Ising model, which is equivalent to the Tutte polynomial on the
positive branch of the hyperbola (x− 1)(y − 1) = 2 [14]. It also answers a well-known open
problem from 1980s, when the #P-hardness of Reliability was established [13, 22] and the
study of approximate counting initiated. This problem is explicitly proposed in, for example,
[26, Conjecture 8.7.11] and [15]. We note that many conjectures by Welsh ([26, Chapter 8.7]
and [27]) remain open, and we hope that our work is only a beginning to answering these
questions.

Another related and important reliability measure is reachability, introduced and studied
by Ball and Provan [3]. A directed graph G = (V,A) with a distinguished root r is said
to be root-connected if all vertices can reach r. Reachability, denoted Zreach(G, r; p) for
failure probabilities p = (pe)e∈A, is the probability that, if each arc e fails with probability
pe independently, the remaining graph is still root-connected.

We define the computational problem formally.

Name Reachability
Instance A directed graph G = (V,A) with root r, and failure probabilities p = (pe)e∈A.
Output Zreach(G, r; p).

Exact polynomial-time algorithms are known when the graph is acyclic [3] or has a small
number of cycles [10]. However, in general the problem is #P-hard [22].

H. Guo and M. Jerrum 68:3

Ball [1] showed that Reliability is equivalent to Reachability in bi-directed graphs.
A bi-directed2 graph is one where every arc has an anti-parallel twin with the same failure
probability. It is shown [1] that Zrel(G; p) = Zreach(−→G, r; p′), where −→G and p′ are obtained
by replacing every undirected edge in G with a pair of anti-parallel arcs having the same
failure probability in either direction, and r is chosen arbitrarily. See Lemma 12.

Our FPRAS for Reliability utilizes this equivalence via approximating Reachability
in bi-directed graphs. The core ingredient is the “cluster-popping” algorithm introduced by
Gorodezky and Pak [8]. The goal is to sample root-connected subgraphs with probability
proportional to their weights, and then the reduction from counting to sampling is via
a sequence of contractions. A cluster is a subset of vertices not including the root and
without any out-going arc. The sampling algorithm randomizes all arcs independently, and
then repeatedly resamples arcs going out from minimal clusters until no cluster is left, at
which point the remaining subgraph is guaranteed to be root-connected. This approach is
similar to Wilson’s “cycle-popping” algorithm [28] for rooted spanning trees, and to the
“sink-popping” algorithm [4] for sink-free orientations. Gorodezky and Pak [8] have noted
that cluster-popping can take exponential time in general, but they conjectured that in
bi-directed graphs, the algorithm runs within polynomial-time.

We confirm this conjecture. Let pmax be the maximum failure probability of edges (or
arcs). Let m be the number of edges (or arcs) and n the number of vertices.

I Theorem 1. There is an FPRAS for Reliability (or equivalently, Reachability in
bi-directed graphs). The expected running time is O

(
ε−2pmax(1− pmax)−3m2n3) for an

(1 ± ε)-approximation. There is also an exact sampler to draw (edge-weighted) connected
subgraphs with expected running time at most pmax(1− pmax)−1m2n.

We analyze the “cluster-popping” algorithm [8] under the partial rejection sampling
framework [9], which is a general approach to sampling from a product distribution conditioned
on avoiding a number of “bad” events. Partial rejection sampling is inspired by the Moser-
Tardos algorithm for the Lovász Local Lemma [20]. It starts with randomizing all variables
independently, and then gradually eliminating “bad” events. At every step, we need to find
an appropriate set of variables to resample. We call an instance extremal [19, 23], if any
two bad events are either disjoint or independent. For extremal instances, the resampling
set can be simply chosen to be the set of all variables involved in occurring bad events [9],
and the algorithm becomes exactly the same as the Moser-Tardos resampling algorithm [20].
In particular, all three “popping” algorithms [28, 4, 8] are special cases of partial rejection
sampling for extremal instances. In case of “cluster-popping”, the bad events are exactly
minimal clusters.

The advantage of the partial rejection sampling treatment is that we have an explicit
formula for the expected number of resampling events for any extremal instance [19, 9],
which equals to the ratio between the probability of having exactly one bad event and the
probability of avoiding all bad events. In order to bound this ratio, we use a combinatorial
encoding idea and design a mapping from subgraphs with a unique minimal cluster to
root-connected subgraphs. To make this mapping injective, we record an extra vertex and an
arc so that we can recover the pre-image. This extra cost is upper-bounded by a polynomial
in the size of the graph.

2 There are other definitions of “bi-directed graphs” in the literature. Our definition is sometimes also
called a symmetric directed graph.

ICALP 2018

68:4 Approximating Network Reliability

Cluster-popping only draws root-connected subgraphs in the bi-directed setting. In order
to sample connected subgraphs in the undirected setting, we provide an alternative proof
of the equivalence between Reliability and Reachability in bi-directed graphs, which
essentially is a coupling argument. This coupling has a new consequence that, once we have
a sample of a root-connected subgraph, it is easy to generate a connected subgraph according
to the correct distribution.

In Section 2 we introduce the “cluster-popping” algorithm and the partial rejection
framework. In Section 3 we analyze its running time in bi-directed graphs. For completeness,
in Section 4 we include the approximate counting algorithm due to Gorodezky and Pak
[8]. In Section 5 we give a coupling proof of the equivalence between Reliability and
Reachability in bi-directed graphs. In Section 6 we conclude by mentioning a few open
problems.

2 Cluster-popping

Let G = (V,A) be a directed3 graph with root r. The graph G is called root-connected
if there is a directed path in G from every non-root vertex to r. Let 0 < pe < 1 be
the failure probability of arc e, and define the weight of a subgraph S to be wt(S) :=∏

e∈S(1− pe)
∏

e 6∈S pe. Then reachability, Zreach(G, r; p), is defined as follows,

Zreach(G, r; p) :=
∑
S⊆A

(V, S) is root-connected

wt(S).

Here, p = (pe : e ∈ A) denotes the vector of failure probabilities.
Let πG(·) (or π(·) for short) be the distribution resulting from choosing each arc e

independently with probability 1− pe, and conditioning on the resulting graph being root-
connected. In other words, the support of π(·) is the collection of all root-connected
subgraphs, and the probability of each subgraph S is proportional to its weight wt(S). Then
Zreach(G, r; p) is the normalizing factor of the distribution π(·). Gorodezky and Pak [8] have
shown that approximating Zreach(G, r; p) can be reduced to sampling from π(·) when the
graph is bi-directed.

The “cluster-popping” algorithm of Gorodezky and Pak [8], to sample root-connected
subgraphs from π(·), can be viewed as a special case of partial rejection sampling [9] for
extremal instances. With every arc e of G we associate a random variable that records
whether that arc has failed. Bad events are characterized by the following notion of clusters.

I Definition 2. In a directed graph (V,A) with root r, a subset C ⊆ V of vertices is called
a cluster if r 6∈ C and there is no arc u→ v ∈ A such that u ∈ C and v 6∈ C.

We say C is a minimal cluster if C is a cluster and for any proper subset C ′ ⊂ C, C ′ is
not a cluster.

If (V,A) contains no cluster, then it is root-connected. For each vertex v, let Aout(v) be
the set of outgoing arcs from v. We also abuse the notation to write Aout(S) =

⋃
v∈S Aout(v)

for a subset S ⊂ V of vertices. Notice that Aout(S) contains edges between vertices inside S.
To “pop” a cluster C, we re-randomize all arcs in Aout(C). However, re-randomizing clusters
does not yield the desired distribution. We will instead re-randomize minimal clusters.

3 It is easy to see that in a undirected graph, reachability is the same as all-terminal reliability.

H. Guo and M. Jerrum 68:5

Algorithm 1 Cluster Popping.
Let S be a subset of arcs by choosing each arc e with probability 1− pe independently.
while There is a cluster in (V, S). do
Let C1, . . . , Ck be all minimal clusters in (V, S), and C =

⋃k
i=1 Ci.

Re-randomize all arcs in Aout(C) to get a new S.
end while
return S

I Claim 3. Any minimal cluster is strongly connected.

Proof. Let C be a minimal cluster, and v ∈ C be an arbitrary vertex in C. We claim that v
can reach all vertices of C. If not, let C ′ be the set of reachable vertices of v and C ′ (C.
Since C ′ does not have any outgoing arcs, C ′ is a cluster. This contradicts to the minimality
of C. J

I Claim 4. If C1 and C2 are two distinct minimal clusters, then C1 ∩ C2 = ∅.

Proof. By Claim 3, C1 and C2 are both strongly connected components. If C1 ∩ C2 6= ∅,
then they must be identical. J

For every subset C ⊆ V of vertices, we define a bad event BC , which occurs if C is a
minimal cluster. Observe that BC relies only on the status of arcs in Aout(C). Thus, if
C1 ∩ C2 = ∅, then BC1 and BC2 are independent, even if some of their vertices are adjacent.
By Claim 4, we know that two bad events BC1 and BC2 are either independent or disjoint.
Thus the aforementioned extremal condition is met. Moreover, it was shown [9, Theorem
8] that if the instance is extremal, then at every step, we only need to resample variables
involved in occurring bad events. This leads to the cluster-popping algorithm of Gorodezky
and Pak [8], which is formally described in Algorithm 1.

The correctness of Algorithm 1 is first shown by Gorodezky and Pak [8]. It can also be
easily verified using [9, Theorem 8].

I Theorem 5 ([8, Theorem 2.2]). The output of Algorithm 1 is drawn from πG.

An advantage of thinking in the partial rejection sampling framework is that we have a
closed form formula for the expected running time of these algorithms on extremal instances.
Let Ωk be the collection of subgraphs with k minimal clusters, and Zk :=

∑
S∈Ωk

wt(S). Then
Z0 = Zreach(G, r; p), since any subgraph in Ω0 has no cluster and is thus root-connected.

I Theorem 6 ([9]). Let T be the number of resampled events of the partial rejection sampling
algorithm for extremal instances. Then ET = Z1

Z0
. In particular, for Algorithm 1, T is the

number of popped clusters.

The less-than-or-equal-to direction of Theorem 6 was shown by Kolipaka and Szegedy [19],
which is the direction we will need later. The other direction is useful to show running-time
lower bounds, but that is not our focus in this paper.

3 Running time of Algorithm 1 in bi-directed graphs

Gorodezky and Pak [8] have given examples of directed graphs in which Algorithm 1 requires
exponential time. In the following we focus on bi-directed graphs. A graph G is called
bi-directed if u → v is present in G, then v → u is present in G as well, and the failure

ICALP 2018

68:6 Approximating Network Reliability

(V, S)
r

RU

u
u′

Figure 1 An illustration of R, U , and u→ u′.

probabilities are the same for these two arcs. We use Bi-directed Reachability to denote
Reachability in bi-directed graphs. For an arc e = u→ v, let e := v → u denote its reverse
arc. Then in a bi-directed graph, pe = pe.

I Lemma 7. Let G = (V,A) be a root-connected bi-directed graph with root r. We have that
Z1 ≤ maxe∈A

{
pe

1−pe

}
mnZ0, where n = |V |, and m = |A|.

Proof. We construct an injective mapping ϕ : Ω1 → Ω0 × V ×A. For each subgraph S ∈ Ω1,
ϕ(S) is defined by “repairing” S so that no minimal cluster is present. We choose in advance
an arbitrary ordering of vertices and arcs. Let C be the unique minimal cluster in S and v
be the first vertex in C. Let R denote the set of all vertices which can reach the root r in
the subgraph S. Since S ∈ Ω1, R 6= V . Let U = V \R. Since G is root-connected, there is
an arc in A from U to R. Let u→ u′ be the first such arc, where u ∈ U and u′ ∈ R. We let

ϕ(S) := (Sfix, v, u→ u′),

where Sfix ∈ Ω0 is defined next. Figure 1 is an illustration of these objects.
Consider the subgraph H = (U, S[U]), where

S[U] := {x→ y | x ∈ U, y ∈ U, x→ y ∈ S}.

We consider the directed acyclic graph (DAG) of strongly connected components of H, and
call it Ĥ. (We use the decoration ̂ to denote arcs, vertices, etc. in Ĥ.) To be more precise,
we replace each strongly connected component by a single vertex. For a vertex w ∈ U , let
[w] denote the strongly connected component containing w. For example, [v] is the same as
the minimal cluster C by Claim 3. We may also view [w] as a vertex in Ĥ and we do not
distinguish the two views. The arcs in Ĥ are naturally induced by S[U]. Namely, for [x] 6= [y],
an arc [x]→ [y] is present in Ĥ if there exists x′ ∈ [x], y′ ∈ [y] such that x′ → y′ ∈ S.

We claim that Ĥ is root-connected with root [v]. This is because [v] must be the unique
sink in Ĥ and Ĥ is acyclic. If there is another sink [w] where v 6∈ [w], then [w] is a minimal
cluster in H. This contradicts S ∈ Ω1.

Since Ĥ is root-connected, there is at least one path from [u] to [v]. Let Ŵ denote the set
of vertices of Ĥ that can be reached from [u] in Ĥ (including [u]), and W := {x | [x] ∈ Ŵ}.
Then W is a cluster and [u] is the unique source in Ĥ[Ŵ]. As Ĥ is root-connected, [v] ∈ Ŵ .
Define

Sflip :=
{
x→ y

∣∣ [x] 6= [y], x, y ∈W, and x→ y ∈ S
}
,

which is the set of edges to be flipped. Notice that S[W] is different from Sflip, namely all
arcs that are inside strongly connected components are ignored in Sflip. Now we are ready to
define Sfix. We reverse all arcs in Sflip and add the arc u → u′ to fix the minimal cluster.

H. Guo and M. Jerrum 68:7

r

u′
u

v

R

U

Figure 2 An example of Sflip (red arcs) in the subgraph (V, S). Dashed arcs are to be added to
Sfix. The underlying graph has more arcs than are drawn here.

Formally, let

Sfix := S ∪ {u→ u′} ∪ {y → x | x→ y ∈ Sflip} \ Sflip.

Figure 2 is an example of these objects we defined.
Let Ĥfix be the graph obtained from Ĥ by reversing all arcs induced by Sflip. Observe

that [u] becomes the unique sink in Ĥfix[Ŵ] (and [v] becomes the unique source).
We verify that Sfix ∈ Ω0. For any x ∈ R, x can still reach r in (V, Sfix) since the path

from x to r in (V, S) is not changed. Since u→ u′ ∈ Sfix, u can reach u′ ∈ R and hence r.
For any y ∈W , y can reach u as [u] is the unique sink in Ĥfix[Ŵ]. For any z ∈ U \W , z can
reach v ∈W since the path from z to v in (V, S) is not changed.

Next we verify that ϕ is injective. To do so, we show that we can recover S given Sfix,
u → u′, and v. First remove u → u′ from Sfix. The set of vertices which can reach r in
(V, Sfix \{u→ u′}) is exactly R in (V, S). Namely we can recover U and R. As a consequence,
we can recover all arcs in S that are incident with R, as these arcs are not changed.

What is left to do is to recover arcs in S[U]. To do so, we need to find out which arcs
have been flipped. We claim that Ĥfix is acyclic. Suppose there is a cycle in Ĥfix. Since Ĥ
is acyclic, the cycle must involve flipped arcs and thus vertices in Ŵ . Let [x] ∈ Ŵ be the
lowest one under the topological ordering of Ĥ[Ŵ]. Since Ŵ is a cluster, the outgoing arc
[x]→ [y] along the cycle in Ĥfix must have been flipped, implying that [y] ∈ Ŵ and [y]→ [x]
is in Ĥ[Ŵ]. This contradicts to the minimality of [x].

Since Ĥfix is acyclic, the strongly connected components of Hfix := (U, Sfix[U]) are
identical to those of H = (U, S[U]). Hence contracting all strongly connected components of
Hfix results in exactly Ĥfix. All we need to recover now is the set Ŵ . Let Ŵ ′ be the set of
vertices reachable from [v] in Ĥfix. It is easy to see that Ŵ ⊆ Ŵ ′. We claim that actually
Ŵ = Ŵ ′. For any [x] ∈ Ŵ ′, there is a path from [v] to [x] in Ĥfix. Suppose [x] 6∈ Ŵ . Since
[v] ∈ Ŵ , we may assume that [y] is the first vertex along the path such that [y]→ [z] where
[z] 6∈ Ŵ . Thus [y]→ [z] has not been flipped and is present in Ĥ. However, this contradicts
the fact that Ŵ is a cluster in Ĥ.

To summarize, given Sfix, u→ u′, and v, we may uniquely recover S. Hence the mapping
ϕ is injective. Moreover, flipping arcs does not change the weight as pe = pe, and only adding
the arc u→ u′ would. We have that wt(Sfix) = 1−pu→u′

pu→u′
wt(S). The lemma follows. J

We remark that an alternative way of repairing S in the proof above is to reverse all arcs
in S[W] without defining Sflip. The key point is that doing so leaves the strongly connected
components intact. However this makes the argument less intuitive.

ICALP 2018

68:8 Approximating Network Reliability

Let pmax = maxe∈A pe. Combining Theorem 6 and Lemma 7, we have the following
theorem. Notice that for each popping, we resample only a subset of arcs.

I Theorem 8. Let T be the expected number of popped clusters in Algorithm 1. For a
root-connected bi-directed graph G = (V,A), ET ≤ pmax

1−pmax
mn, where n = |V |, and m = |A|.

The expected running time is at most pmax
1−pmax

m2n.

4 Approximate counting

We include the approximate counting algorithm of Gorodezky and Pak [8] for completeness.
Let G = (V,A) be an instance of Bi-directed Reachability with root r and parameters p.
We construct a sequence of graphs G0, .., Gn−1 where n = |V | and G0 = G. Given Gi−1,
choose two arbitrary adjacent vertices ui and vi, remove all arcs between ui and vi (in either
direction), and identify ui and vi to get Gi = (Vi, Ai). Namely we contract all arcs between
ui and vi, but parallel arcs in the resulting graph are preserved. If one of ui and vi is r, the
new vertex is labelled r. Thus Gn−1 = ({r}, ∅). Since Ai is always a subset of A, we denote
by pi the parameters p restricted to Ai.

For i = 1, . . . , n− 1, define a random variable Ri as follows:

Ri :=
{

1 (Vi−1, Si−1) is root-connected in Gi−1;
0 otherwise,

where Si−1 ⊂ Ai−1 is a random root-connected subgraph drawn from the distribution πGi
(·),

together with all arcs e between ui and vi added independently with probability 1− pe. It is
easy to see that

ERi = Zreach(Gi−1, r; pi−1)
Zreach(Gi, r; pi)

, and Zreach(G, r; p) =
n−1∏
i=1

ERi.

Let pmax = maxe∈A pe and s = d5(1−pmax)−2(n−1)ε−2e where s is the desired precision.
We estimate ERi by the empirical mean of s independent samples of Zi, denoted by R̃i, and
let Z̃ =

∏n−1
i=1 R̃i and Z = Zreach(G, r; p). Gorodezky and Pak [8] showed the following.

I Proposition 9 ([8, Section 9]). Pr
(∣∣∣Z − Z̃∣∣∣ > εZ

)
≤ 1/4.

In order to sample Zi, we use Algorithm 1 to draw independent samples of root-connected
subgraphs. Theorem 8 implies that each sample takes at most pmax

1−pmax
m2n time in expectation.

We need O
(

n
ε2(1−pmax)2

)
samples for each Zi. Putting everything together, we obtain the

following theorem.

I Theorem 10. There is an FPRAS for Bi-directed Reachability. The expected running
time is O

(
ε−2pmax(1− pmax)−3m2n3) for an (1± ε)-approximation.

A natural question is what if 1 − pmax is close to 0. Intuitively, this means that some
arc is very likely to fail. We note that, if 1 − pe = O(n−3) for every arc e, then with
high probability, sampling from the distribution π(·) yields a rooted spanning tree (with
probability proportional to its weight). Thus, in this case, we can approximate π(·) by an
efficient rooted spanning tree sampler, for example, the cycle-popping algorithm [28] (which
runs in time O(mn) in expectation).

H. Guo and M. Jerrum 68:9

5 Coupling between reliability and bi-directed reachability

In this section, we give an alternative proof of Ball’s equivalence between Reliability and
Bi-directed Reachability [1, Corollary 1]. Our proof constructs a coupling, between the
(edge-weighted) distribution of connected subgraphs in the undirected setting, and the (edge-
weighted) distribution of root-connected subgraphs in the bi-directed setting. This coupling,
together with Algorithm 1, yields an efficient exact sampler for connected subgraphs.

We use {u, v} to denote an undirected edge, and (u, v) or (v, u) to denote a directed
one (namely an arc). Let G = (V,E) be an undirected graph, and p = (pe)e∈E be a vector
of failure probabilities. Let −→G = (V,A) be the bi-directed graph obtained by replacing
every edge in G with a pair of anti-parallel arcs. Namely, A = {(u, v), (v, u) | {u, v} ∈ E}.
Moreover, let p(u,v) = p(v,u) = p{u,v} and denote these failure probabilities by p′. For S ⊆ E
or S ⊆ A, let wt(S) =

∏
e∈S(1− pe)

∏
e 6∈S pe.

Consider the following coupling between the product distribution over edges of G and
the one over arcs of −→G . We reveal edges in a breadth-first search (BFS) fashion in both
graphs, from the same “root” vertex r. If an edge {u, v} is present in the subgraph of G, we
couple it with the arc (u, v) or (v, u), whose direction is pointing towards r in the subgraph
of −→G . The arc in the other direction is drawn independently from everything else. The key
observation is that to decide the set of vertices that can reach r, at any point, only one
direction of a bi-directed edge is useful and the other is irrelevant. One can verify that in
the end, the subgraph of G is connected if and only if the subgraph of −→G is root-connected.
We will formalize this intuition next.

Fix an arbitrary ordering of V , which will be used for the exploration, and let the first
vertex be a distinguished root r. Let P(S) denote the power set of S for a set S. Define a
mapping Φ : P(E)→ P(A) as follows. For S ⊆ E, we explore all vertices that can reach r in
(V, S) in a deterministic order, and add arcs to Φ(S) in the direction towards r. To be more
specific, we maintain the set of explored and the set of active vertices, denoted by Ve and
Va, respectively. At the beginning, Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first
vertex (according to the predetermined ordering) in Va. For all u ∈ V \ Ve, if {u, v} ∈ S, add
(u, v) to Φ(S) and add u to Va (u may be in Va already). Then move v from Va to Ve. This
process ends when all vertices that can reach r in (V, S) are explored. Let σS be the arriving
order of Ve. We will call σS the traversal order. We remark that if {u, v} ∈ S then exactly
one of the arcs (u, v) and (v, u) is in Φ(S), and otherwise neither arc is in Φ(S).

Strictly speaking, the exploration above is not a BFS (Va may contain a newly added
vertex that is lower in the predetermined ordering than all other older vertices). To perform
a BFS we need to in addition maintain a layer ordering, which seems unnecessary. The key
properties of the exploration are: 1) all edges incident to the current vertex are processed; 2)
Ve is always connected (or root-connected for Ψ below).

Similarly, define Ψ : P(A)→ P(E) as follows. For S′ ⊆ A, we again maintain Ve and Va,
and initialize Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first vertex in Va. For all
u ∈ V \ Ve, if (u, v) ∈ S, add {u, v} to Ψ(S′) and add u to Va. Then move v from Va to Ve.
This process ends when all vertices that can reach r in (V, S′) are explored. Analogously, let
σS′ be the arriving order of Ve. We remark that if (u, v) 6∈ S′, and v is visited before u, then
{u, v} 6∈ Ψ(S′), even in case of (v, u) ∈ S′.

Let Ω := {S ⊆ E | (V, S) is connected}, and −→Ω := {S ⊆ A | (V, S) is root-connected}.
We have the following lemma.

ICALP 2018

68:10 Approximating Network Reliability

I Lemma 11. Let Φ, Ψ, Ω, and −→Ω be defined as above. Then the following hold:

1. if S ∈ Ω, then Φ(S) ∈ −→Ω ;
2. if S′ ∈ −→Ω , then Ψ(S′) ∈ Ω;
3. if S ∈ Ω, then Ψ(Φ(S)) = S;
4. Ψ(−→Ω) = Ω;
5. for any S ∈ Ω, wt(S) =

∑
S′∈Ψ−1(S) wt(S′).

Proof. 1. It is easy to verify that, at any point of the construction of Φ, all vertices in Ve

can reach r, in both (V, S) and (V,Φ(S)). If S ∈ Ω, then Ve = V at the end of Φ. Hence
(V,Φ(S)) is root-connected, and Φ(S) ∈ −→Ω.

2. This item is completely analogous to item (1).
3. If {u, v} ∈ S and u is processed first during the exploration, then (v, u) ∈ Φ(S). The

traversal orderings σS and σΦ(S) are the same. Hence, during the construction of Ψ(Φ(S)),
u is still processed first, and {v, u} ∈ Ψ(Φ(S)). On the other hand, if {u, v} 6∈ S, then
neither (u, v) nor (v, u) is in Φ(S) and thus {u, v} 6∈ Ψ(Φ(S)).

4. This item is a straightforward consequence of items (1), (2), and (3).
5. By item (3), we have that Φ(S) ∈ Ψ−1(S). Let

Φc(S) :=
{

(u, v) | (u, v) 6∈ Φ(S) and v < u in the traversal order σΦ(S)
}
.

Note that Φ(S) ∪ Φc(S) covers all unordered pairs of vertices as S ∈ Ω. Moreover,∏
e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S). (∗)

Call S′ consistent with Φ(S) if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅.
We claim that S′ ∈ Ψ−1(S) if and only if S′ is consistent with Φ(S). Suppose S′ is not
consistent with Φ(S). Consider the exploration of Φ(S) and S′ in the construction of Ψ
simultaneously. Since S′ is not consistent with Φ(S), either Φ(S)\S′ 6= ∅ or S′∩Φc(S) 6= ∅.
Let v be the first vertex during the exploration so that there is an arc (u, v) ∈ Φ(S) \ S′,
or (u, v) ∈ S′ ∩ Φc(S) for some u 6∈ Ve. Since S ∈ Ω, all vertices will be processed,
and such a v must exist. (In the latter case, since (u, v) ∈ Φc(S), v is active first.) If
(u, v) ∈ Φ(S) \ S′, then {u, v} 6∈ Ψ(S′) but {u, v} ∈ Ψ(Φ(S)). If (u, v) ∈ S′ ∩ Φc(S),
{u, v} 6∈ Ψ(Φ(S)) but {u, v} ∈ Ψ(S′). In either case, Ψ(S′) 6= Ψ(Φ(S)) = S (by item (3)).
On the other hand, if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅, then we can trace through the
construction of Ψ(Φ(S)) and Ψ(S′) to verify that Ψ(S′) = Ψ(Φ(S)) = S.
The claim together with (∗) implies that∑

S′∈Ψ−1(S)

wt(S′) =
∑

S′ is consistent with Φ(S)

wt(S′) =
∏

e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S). J

I Lemma 12. Zrel(G; p) = Zreach(−→G, r; p′).

Proof. First notice that Zrel(G; p) =
∑

S∈Ω wt(S) and Zreach(−→G, r; p′) =
∑

S∈
−→Ω wt(S).

By item (4) of Lemma 11, Ψ(−→Ω) = Ω, implying that
(
Ψ−1(S)

)
S∈Ω is a partition of −→Ω.

Combining this with item (5) of Lemma 11,∑
S∈Ω

wt(S) =
∑
S∈Ω

∑
S′∈Ψ−1(S)

wt(S′) =
∑

S′∈
−→Ω

wt(S′).

The lemma follows. J

H. Guo and M. Jerrum 68:11

Lemma 12 is first shown by Ball [1, Corollary 2] via modifying edges one by one. Instead,
our proof is essentially a coupling argument and has a new consequence that Algorithm 1
can be used to sample edge-weighted connected subgraphs. Recall our notation πG(·), and
generalise it to undirected graphs. Thus, for an undirected (or directed) graph G, πG(·) is
the distribution resulting from drawing each edge (or arc) e independently with probability
1− pe, and conditioning on the graph drawn being connected (or root-connected).

I Lemma 13. If a random root-connected subgraph S′ is drawn from π−→
G

(·), then Ψ(S′) has
distribution πG(·).

Proof. Since S′ ∈
−→
G′, by item (2) of Lemma 11, Ψ(S′) ∈ Ω. Moreover, for any s ∈ Ω,

Pr[Ψ(S′) = s] =
∑

s′∈Ψ−1(s)

Pr[S′ = s′] =
∑

s′∈Ψ−1(s)

wt(s′)
Zreach(−→G, r; p′)

= wt(s)
Zrel(G; p) = πG(s),

where we used item (5) of Lemma 11 and Lemma 12 in the last line. J

There is also a coupling going the reversed direction of Lemma 13, by drawing a random
connected subgraph S from πG(·), mapping it to Φ(S), and excluding all arcs in Φc(S). All
other arcs are drawn independently. The resulting S′ has distribution π−→

G
(·). Its correctness

is not hard to prove, given Lemma 11, but it is not the direction of use to us and we omit its
proof.

Theorem 10 and Lemma 12 imply the counting part of Theorem 1. Theorem 8 and
Lemma 13 imply the sampling part of Theorem 1.

6 Concluding remarks

In this paper we give an FPRAS for Reliability (or, equivalently, Bi-directed Reachab-
ility), by confirming a conjecture of Gorodezky and Pak [8]. We also give an exact sampler
for edge-weighted connected subgraphs with polynomial running time in expectation. The
core ingredient of our algorithms is the cluster-popping algorithm to sample root-connected
subgraphs, namely Algorithm 1. We manage to analyze it using the partial rejection sampling
framework.

Reliability is equivalent to counting weighted connected subgraphs, which is the
evaluation of the Tutte polynomial TG(x, y) for points x = 1 and y > 1. An interesting
question is about the dual of this half-line, namely for points x > 1 and y = 1, whose
evaluation is to count weighted acyclic subgraphs. It is well known that for a planar graph
G, TG(x, 1) = TG∗(1, x) where G∗ is the planar dual of G [21]. Hence, Theorem 1 implies
that in planar graphs, TG(x, 1) can be efficiently approximated for x > 1. Can we remove
the restriction of planar graphs?

Another interesting direction is to generalize Algorithm 1 beyond bi-directed graphs.
What about Eulerian graphs? Is approximating Reachability NP-hard in general?

References
1 Michael O. Ball. Complexity of network reliability computations. Networks, 10(2):153–165,

1980.
2 Michael O. Ball. Computational complexity of network reliability analysis: An overview.

IEEE Trans. Rel., 35(3):230–239, 1986.
3 Michael O. Ball and J. Scott Provan. Calculating bounds on reachability and connectedness

in stochastic networks. Networks, 13(2):253–278, 1983.

ICALP 2018

68:12 Approximating Network Reliability

4 Henry Cohn, Robin Pemantle, and James G. Propp. Generating a random sink-free orient-
ation in quadratic time. Electr. J. Comb., 9(1), 2002.

5 Charles J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press,
1987.

6 Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial. Inf.
Comput., 206(7):908–929, 2008.

7 Leslie Ann Goldberg and Mark Jerrum. The complexity of computing the sign of the Tutte
polynomial. SIAM J. Comput., 43(6):1921–1952, 2014.

8 Igor Gorodezky and Igor Pak. Generalized loop-erased random walks and approximate
reachability. Random Struct. Algorithms, 44(2):201–223, 2014.

9 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovasz local
lemma. In STOC, pages 342–355, 2017.

10 Jane N. Hagstrom. Computing rooted communication reliability in an almost acyclic di-
graph. Networks, 21(5):581–593, 1991.

11 David G. Harris and Aravind Srinivasan. Improved bounds and algorithms for graph cuts
and network reliability. In SODA, pages 259–278. SIAM, 2014.

12 François Jaeger, Dirk L. Vertigan, and Dominic J. A. Welsh. On the computational complex-
ity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc., 108(1):35–53,
1990.

13 Mark Jerrum. On the complexity of evaluating multivariate polynomials. Ph.D. dissertation.
Technical Report CST-11-81, Dept. Comput. Sci., Univ. Edinburgh, 1981.

14 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

15 David R. Karger. A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM J. Comput., 29(2):492–514, 1999.

16 David R. Karger. A fast and simple unbiased estimator for network (un)reliability. In
FOCS, pages 635–644, 2016.

17 David R. Karger. Faster (and still pretty simple) unbiased estimators for network
(un)reliability. In FOCS, pages 755–766, 2017.

18 Richard M. Karp and Michael Luby. Monte-Carlo algorithms for the planar multiterminal
network reliability problem. J. Complexity, 1(1):45–64, 1985.

19 Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In
STOC, pages 235–244, 2011.

20 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local
Lemma. J. ACM, 57(2), 2010.

21 James G. Oxley. Matroid theory. Oxford University Press, 1992.
22 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing

the probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.
23 James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
24 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-

put., 8(3):410–421, 1979.
25 Dirk Vertigan and Dominic J. A. Welsh. The compunational complexity of the Tutte plane:

the bipartite case. Comb. Probab. Comput., 1:181–187, 1992.
26 Dominic J. A. Welsh. Complexity: knots, colourings and counting, volume 186 of London

Mathematical Society Lecture Note Series. Cambridge University Press, 1993.
27 Dominic J. A. Welsh. The Tutte polynomial. Random Struct. Algorithms, 15(3-4):210–228,

1999.
28 David B. Wilson. Generating random spanning trees more quickly than the cover time. In

STOC, pages 296–303, 1996.

	Introduction
	Cluster-popping
	Running time of Algorithm 1 in bi-directed graphs
	Approximate counting
	Coupling between reliability and bi-directed reachability
	Concluding remarks

