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Abstract
We give optimal sorting algorithms in the evolving data framework, where an algorithm’s input
data is changing while the algorithm is executing. In this framework, instead of producing a final
output, an algorithm attempts to maintain an output close to the correct output for the current
state of the data, repeatedly updating its best estimate of a correct output over time. We show
that a simple repeated insertion-sort algorithm can maintain an O(n) Kendall tau distance, with
high probability, between a maintained list and an underlying total order of n items in an evolving
data model where each comparison is followed by a swap between a random consecutive pair of
items in the underlying total order. This result is asymptotically optimal, since there is an Ω(n)
lower bound for Kendall tau distance for this problem. Our result closes the gap between this
lower bound and the previous best algorithm for this problem, which maintains a Kendall tau
distance of O(n log logn) with high probability. It also confirms previous experimental results
that suggested that insertion sort tends to perform better than quicksort in practice.
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1 Introduction

In the classic version of the sorting problem, we are given a set, S, of n comparable items
coming from a fixed total order and asked to compute a permutation that places the items
from S into non-decreasing order, and it is well-known that this can be done using O(n logn)
comparisons, which is asymptotically optimal (e.g., see [6, 8, 14]). However, there are a
number of interesting applications where this classic version of the sorting problem doesn’t
apply.

For instance, consider the problem of maintaining a ranking of a set of sports teams
based on the results of head-to-head matches. A typical approach to this sorting problem is
to assume there is a fixed underlying total order for the teams, but that the outcomes of
head-to-head matches (i.e., comparisons) are “noisy” in some way. In this formulation, the
ranking problem becomes a one-shot optimization problem of finding the most-likely fixed
total order given the outcomes of the matches (e.g., see [5, 7, 9, 10, 15]). In this paper, we
study an alternative, complementary motivating scenario, however, where instead of there
being a fixed total order and noisy comparisons we have a scenario where comparisons are
accurate but the underlying total order is evolving. This scenario, for instance, captures the
real-world phenomenon where sports teams make mid-season changes to their player rosters
and/or coaching staffs that result in improved or degraded competitiveness relative to other
teams. That is, we are interested in the sorting problem for evolving data.

1.1 Related Prior Work for Evolving Data
Anagnostopoulos et al. [1] introduce the evolving data framework, where an input data set is
changing while an algorithm is processing it. In this framework, instead of an algorithm taking
a single input and producing a single output, an algorithm attempts to maintain an output
close to the correct output for the current state of the data, repeatedly updating its best
estimate of the correct output over time. For instance, Anagnostopoulos et al. [1] mention the
motivation of maintaining an Internet ranking website that displays an ordering of entities,
such as political candidates, movies, or vacation spots, based on evolving preferences.

Researchers have subsequently studied other interesting problems in the evolving data
framework, including the work of Kanade et al. [13] on stable matching with evolving
preferences, the work of Huang et al. [12] on selecting top-k elements with evolving
rankings, the work of Zhang and Li [18] on shortest paths in evolving graphs, the work of
Anagnostopoulos et al. [2] on st-connectivity and minimum spanning trees in evolving graphs,
and the work of Bahmani et al. [3] on PageRank in evolving graphs. In each case, the goal is
to maintain an output close to the correct one even as the underlying data is changing at a
rate commensurate to the speed of the algorithm. By way of analogy, classical algorithms
are to evolving-data algorithms as throwing is to juggling.

1.2 Problem Formulation for Sorting Evolving Data
With respect to the sorting problem for evolving data, following the formulation of
Anagnostopoulos et al. [1], we assume that we have a set, S, of n distinct items that
are properly ordered according to a total order relation, “<”. In any given time step, we are
allowed to compare any pair of items, x and y, in S according to the “<” relation and we
learn the correct outcome of this comparison. After we perform such a comparison, α pairs
of items that are currently consecutive according to the “<” relation are chosen uniformly at
random and their relative order is swapped. As in previous work [1], we focus on the case
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where α = 1, but one can also consider versions of the problem where the ratio between
comparisons and random consecutive swaps is something other than one-to-one. Still, this
simplified version with a one-to-one ratio already raises some interesting questions.

Since it is impossible in this scenario to maintain a list that always reflects a strict ordering
according to the “<” relation, our goal is to maintain a list with small Kendall tau distance,
which counts the number of inversions, relative to the correct order.2 Anagnostopoulos et
al. [1] show that, for α = 1, the Kendall tau distance between the maintained list and the
underlying total order is Ω(n) in both expectation and with high probability. They also show
how to maintain this distance to be O(n log logn), with high probability, by performing a
multiplexed batch of quicksort algorithms on small overlapping intervals of the list. Recently,
Besa Vial et al. [4] empirically show that repeated versions of quadratic-time algorithms
such as bubble sort and insertion sort seem to maintain an asymptotically optimal distance
of O(n). In fact, this linear upper bound seems to hold even if we allow α, the number of
random swaps at each step, to be a much larger constant.

1.3 Our Contributions
The main contribution of the present paper is to prove that repeated insertion sort maintains
an asymptotically optimal Kendall tau distance, with high probability, for sorting evolving
data. This algorithm repeatedly makes in-place insertion-sort passes (e.g., see [6, 8]) over
the list, lt, maintained by our algorithm at each step t. Each such pass moves the item at
position j to an earlier position in the list so long as it is bigger than its predecessor in the
list. With each comparison done by this repeated insertion-sort algorithm, we assume that
a consecutive pair of elements in the underlying ordered list, l′t, are chosen uniformly at
random and swapped. In spite of the uncertainty involved in sorting evolving data in this
way, we prove the following theorem, which is the main result of this paper.

I Theorem 1. Running repeated insertion-sorts algorithm, for every step t = Ω(n2), the
Kendall tau distance between the maintained list, lt, and the underlying ordered list, l′t, is
O(n) with exponentially high probability.

That is, after an initialization period of Θ(n2) steps, the repeated insertion-sort algorithm
converges to a steady state having an asymptotically optimal Kendall tau distance between
the maintained list and the underlying total order, with exponentially high probability.
We also show how to reduce this initialization period to be Θ(n logn) steps, with high
probability, by first performing a quicksort algorithm and then following that with the
repeated insertion-sort algorithm.

Intuitively, our proof of Theorem 1 relies on two ideas: the adaptivity of insertion sort
and that, as time progresses, a constant fraction of the random swaps fix inversions. Ignoring
the random swaps for now, when there are k inversions, a complete execution of insertion
sort performs roughly k + n comparisons and fixes the k inversions (e.g., see [6, 8]). If an ε
fraction of the random swaps fix inversions, then during insertion sort ε(k+ n) inversions are
fixed by the random swaps and (1− ε)(k + n) are introduced. Naively the total change in
the number of inversions is then (1 − 2ε)(k + n) − k and when k > 1−2ε

2ε n, the number of
inversions decreases. So the number of inversions will decrease until k = O(n).

This simplistic intuition ignores two competing forces involved in the heavy interplay
between the random swaps and insertion sort’s runtime, however, in the evolving data model,

2 Recall that an inversion is a pair of items u and v such that u comes before v in a list but u > v. An
inversion in a permutation π is a pair of elements x 6= y with x < y and π(x) > π(y).
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Algorithm 1 Repeated insertion sort pseudocode
function repeated_insertion_sort(l)

while true do
for i← 1 to n− 1 do

j ← i

while j > 0 and l[j] < l[j − 1] do
swap l[j] and l[j − 1]
j ← j − 1

which necessarily complicates our proof. First, random swaps can cause an insertion-sort pass
to end too early, thereby causing insertion sort to fix fewer inversions than normal. Second,
as insertion sort progresses, it decreases the chance for a random swap to fix an inversion.
Analyzing these two interactions comprises the majority of our proof of Theorem 1.

In Section 3, we present a complete proof of Theorem 1. The most difficult component
of Theorem 1’s proof is Lemma 6, which lower bounds the runtime of insertion sort in the
evolving data model. The proof of Lemma 6 is presented separately in Section 4.

Due to space requirements, some proofs are left to the Arxiv version of the paper.

2 Preliminaries

The sorting algorithm we analyze in this paper for the evolving data model is the repeated
insertion-sort algorithm whose pseudocode is shown in Algorithm 1.

Formally, at time t, we denote the sorting algorithms’ list as lt and we denote the
underlying total order as l′t. Together these two lists define a permutation, σt, of the indices,
where σt(x) = y if the element at index x in lt is at position y in l′t. We define the simulated
final state at time t to be the state of l obtained by freezing the current underlying total
order, l′t, (i.e., no more random swaps) and simulating the rest of the current round of
insertion sort (we refer to each iteration of the while-true loop in Algorithm 1 as a round).
We then define a frozen-state permutation, σ̂t, where σ̂t(x) = y if the element at index x in
the simulated final state at time t as at index y in l′t.

Let us denote the number of inversions at time t, in σt, with It. Throughout the paper,
we may choose to drop time subscripts if our meaning is clear. The Kendall tau distance
between two permutations π1 and π2 is the number of pairs of elements x 6= y such that
π1(x) < π1(y) and π2(x) > π2(y). That is, the Kendall tau distance between lt and l′t is
equal to It, the number of inversions in σt. Figure 1 shows the state of l, l′, I, and σ for two
steps of an insertion sort (but not in the same round).

As the inner while-loop of Algorithm 1 executes, we can view l as being divided into
three sets: the set containing just the active element, l[j] (which we view as moving to the
left, starting from position i, as it is participating in comparisons and swaps), the semi-sorted
portion, l[0 : i], not including l[j], and the unsorted portion, l[i+ 1 : n− 1]. Note that if no
random adjacent swaps were occurring in l′ (that is, if we were executing insertion-sort in
the classical algorithmic model), then the semi-sorted portion would be in sorted order.

To understand the nature of the inversions in the semi-sorted portion, we will use the
Cartesian tree [17]. Given a list, L, of m numbers with no two equal numbers, the Cartesian
tree of L is a binary rooted tree on the numbers where the root is the minimum element
L[k], the left subtree of the root is the Cartesian tree of L[0 : k − 1], and the right subtree of
the root is the Cartesian tree of L[k + 1 : m]. In our analysis, we will primarily consider the
Cartesian tree of the simulated final state at time t where L[k] = σ̂t(k) in the frozen-state
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σ0

σ1
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Figure 1 Examples of l, l′, I, and σ over two steps of an algorithm. In the first step the green
and red elements are compared in l and the red and yellow elements are swapped in l′. In the second
step the red and yellow elements are compared and swapped in l and the blue and yellow elements
are swapped in l′.

permutation σ̂t. We also choose to include two additional elements, L[−1] = −1 and L[n] = n,
for boundary cases.

We call the path from the root to the rightmost leaf of the Cartesian tree the (right-to-left)
minima path as the elements on this path are the right-to-left minima in the list. For a
minimum, l[k], denote with M(k) the index of the element in the left subtree of l[k] that
maximizes σ̂(k), i.e., the index of the largest element in the left subtree.

We use the phrase with high probability to indicate when an event occurs with probability
that tends towards 1 as n → ∞. When an event occurs with probability of the form
1− e− poly(n), we say it occurs with exponentially high probability. During our analysis, we
will make use of the following facts.

I Lemma 2 (Poisson approximation (Corollary 5.9 in [16])). Let X(m)
1 , . . . , X

(m)
n be the

number of balls in each bin when m balls are thrown uniformly at random into n bins. Let
Y

(m)
1 , . . . , Y

(m)
n be independent Poisson random variables with λ = m/n. Then for any event

ε(x1, . . . , xn):

Pr
[
ε
(
X

(m)
1 , . . . , X(m)

n

)]
≤ e
√
mPr

[
ε
(
Y

(m)
1 , . . . , Y (m)

n

)]
.

I Lemma 3 (Hoeffding’s inequality (Theorem 2 in [11])). If X1, . . . , Xn are independent
random variables and ak ≤ Xk ≤ bk for k = 1, . . . , n, then for t > 0:

Pr
[∑

k

Xk − E

[∑
k

Xk

]
≥ tn

]
≤ e−2n2t2/(

∑
k
(bk−ak)2).

3 Sorting Evolving Data with Repeated Insertion Sort

Let us begin with some simple bounds with respect to a single round of insertion sort.

ICALP 2018
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I Lemma 4. If a round of insertion sort starts at time ts and finishes at time te, then
1. te− ts = F +n−1, where F is the number of inversions fixed (at the time of a comparison

in the inner while-loop) by this round of insertion sort.
2. te − ts < n2/2
3. for any ts ≤ t ≤ te, It − Its < n.

Proof. (1): For each iteration of the outer for-loop, each comparison in the inner while-loop
either fixes an inversion (at the time of that comparison) or fails to fix an inversion and
completes the inner while-loop. Note that this “failed” comparison may not have compared
elements of l, but may have short circuited due to j ≤ 0. Nevertheless, every comparison
that doesn’t fail fixes an inversion (at the time of that comparison); hence, each non-failing
comparison is counted in F .

(2): In any round, there are at most n(n− 1)/2 comparisons, by the formulations of the
outer for-loop and inner while-loop.

(3): At time t, the round of insertion sort will have executed t− ts steps. Of those steps,
at least t− ts− (n−1) comparisons resulted in a swap that removed an inversion and at most
n− 1 comparisons did not result in a change to l. The random swaps occurring during these
comparisons introduced at most t− ts inversions. So It − Its ≤ t− ts −

(
t− ts − (n− 1)

)
=

n− 1. J

We next assert the following two lemmas, which are used in the next section.

I Lemma 5. There exists a constant, 0 < ε < 1, such that, for a round of insertion sort that
takes time t∗, at least εt∗ of the random adjacent swaps in l′ decrease I during the round,
with exponentially high probability.

Proof. Proof omitted due to space requirements. J

I Lemma 6. If a round of insertion sort starts at time ts with Its ≥ (12c2 + 2c)n and
finishes at time te, then, with exponentially high probability, te − ts ≥ cn, i.e., the insertion
sort round takes at least cn steps.

Proof. See Section 4. J

3.1 Proof of Theorem 1
Armed with the above lemmas (albeit postponing the proofs of Lemma 5 and Lemma 6), let
us prove our main theorem.

Theorem 1. There exists a constant, 0 < ε < 1, such that, when running the repeated
insertion-sort algorithm, for every step t > (1 + 1/ε)n2, the Kendall tau distance between
the maintained list, lt, and the underlying ordered list, l′t, is O(n), with exponentially high
probability.

Proof. By Lemma 5, there exists a constant 0 < ε < 1 such that at least an ε fraction of
all of the random swaps during a round of insertion sort fix inversions. Consider an epoch
of the last (1 + 1/ε)n2 steps of the repeated insertion-sort algorithm, that is, from time
t′ = t − (1 + 1/ε)n2 to t. During this epoch, some number, m ≥ 1, of complete rounds of
insertion sort are performed from start to end (by Lemma 4). Denote with tk the time at
which insertion-sort round k ends (and round k + 1 begins), and let tm denote the end time
of the final complete round, during this epoch. By construction, observe that t′ ≤ t0 and
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tm ≤ t. Furthermore, because the insertion-sort rounds running before t0 and after tm take
fewer than n2/2 steps (by Lemma 4), tm − t0 ≥ n2/ε.

The remainder of the proof consists of two parts. In the first part, we show that for some
complete round of insertion sort ending at time tk ≤ t, Itk is O(n), with exponentially high
probability. In the second part, we show that once we achieve Itk being O(n), for tk ≤ t,
then It is O(n), with exponentially high probability.

For the first part, suppose, for the sake of a contradiction, Itk >
(
12( 1

ε )
2 + 2

ε

)
n, for all

0 ≤ k ≤ m. Then, by a union bound over the polynomial number of rounds, Lemma 6 applies
to every such round of insertion sort. So, with exponentially high probability, each round
takes at least n/ε steps. Moreover, by Lemma 5, with exponential probability, an ε fraction
of the random swaps from tm to t0 will decrease the number of inversions. That is, these
random swaps increase the number of inversions by at most

(1− ε)(tm − t0)− ε(tm − t0) = (1− 2ε)(tm − t0),

with exponentially high probability. Furthermore, by Lemma 4, at least a (1/ε)−1
1/ε = 1− ε

fraction of the insertion-sort steps fix inversions (at the time of a comparison). Therefore,
with exponentially high probability, we have the following:

Itm ≤ It0 − (1− ε)(tm − t0) + (1− 2ε)(tm − t0)
= It0 − ε(tm − t0)
≤ It0 − n2.

But, since It0 < n2, the above bound implies that Itm < 0, which is a contradiction. Therefore,
with exponentially high probability, there is a k ≤ m such that Itk ≤ (12( 1

ε )2 + 2
ε )n.

For the second part, we show that the probability for a round ` > k to have It` >
(12( 1

ε )2 + 2
ε + 1)n is exponentially small, by considering two cases (and their implied union-

bound argument):
If It`−1 ≤ (12( 1

ε )2 + 2
ε )n, then Lemma 4 implies It` ≤ (12( 1

ε )2 + 2
ε + 1)n.

If (12( 1
ε )2 + 2

ε )n ≤ It`−1 ≤ (12( 1
ε )2 + 2

ε + 1)n, then, similar to the argument given above,
during a round of insertion sort, `, at least a 1− ε fraction of the steps fix an inversion,
and an ε fraction of the steps do nothing. Also at least an ε fraction of the random swaps
fix inversions, while a 1− ε fraction add inversions. Finally, the total length of the round
is t` − t`−1. Thus, with exponentially high probability, the total change in inversions is
at most −ε(t` − t`−1) and It` < It`−1 .

Therefore, by a union bound over the polynomial number of insertion-sort rounds, the
probability that any It` > (12( 1

ε )
2 + 2

ε + 1)n for k < ` ≤ m is exponentially small. By
Lemma 4, It ≤ Itm+n. So, with exponentially high probability, Itm ≤ (12( 1

ε )2+ 2
ε+1)n = O(n)

and It = O(n), completing the proof. J

3.2 Improved Convergence Rate
In this subsection, we provide an algorithm that converges to O(n) inversions more quickly.
To achieve the steady state of O(n) inversions, repeated insertion sort performs Θ(n2)
comparisons. But this running time to reach a steady state is a worst-case based on the fact
that the running time of insertion sort is O(n+ I), where I is the number of initial inversions
in the list, and, in the worst case, I is Θ(n2). By simply running a round of quicksort on l
first, we can achieve a steady state of O(n) inversions after just Θ(n logn) comparisons. See
Algorithm 2. That is, we have the following.

ICALP 2018
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Algorithm 2 Quicksort followed by repeated insertion sort pseudocode
function quick_then_insertion_sort(l)

quicksort(l)
while true do

for i← 1 to n− 1 do
j ← i

while j > 0 and l[j] < l[j − 1] do
swap l[j] and l[j − 1]
j ← j − 1

I Theorem 7. When running Algorithm 2, for every t = Ω(n logn), It is O(n) with high
probability.

Proof. By the results of Anagnostopoulos et al. [1], the initial round of quicksort takes
Θ(n logn) comparisons and afterwards the number of inversions (that is, the Kendall tau
distance between the maintained list and the true total order) is O(n logn), with high
probability. Using a nearly identical argument to the proof of Theorem 1, and the fact that
an insertion-sort round takes O(I+n) time to resolve I inversions, the repeated insertion-sort
algorithm will, with high probability, achieve O(n) inversions in an additional O(n logn)
steps. From that point on, it will maintain a Kendall tau distance of O(n), with high
probability. J

4 Proof of Lemma 6

Recall Lemma 6, which establishes a lower bound for the running time of an insertion-sort
round, given a sufficiently large amount of inversions relative to the underlying total order.

Lemma 6. If a round of insertion sort starts at time ts with Its ≥ (12c2 + 2c)n and finishes
at time te, then, with exponentially high probability, te − ts ≥ cn, i.e., the insertion sort
round takes at least cn steps.

The main difficulty in proving Lemma 6 is understanding how the adjacent random swaps
in l′ affect the runtime of the current round of insertion sort on l. Let St be the number of
steps left to perform in the current round of insertion sort if there were no more random
adjacent swaps in l′. In essence, S can be thought of as an estimate of the remaining time in
the current insertion sort round. If a new round of insertion sort is started at time ts, then
Sts−1 = 1 and Its ≤ Sts ≤ Its + n− 1. Each step of an insertion sort round decreases S by
one and the following random swap may increase or decrease S by some amount. Figure 2
illustrates an example where one random adjacent swap in l′ decreases S by a non-constant
amount (relative to n).

A random adjacent swap in l′ involving two elements in the unsorted portion of l will
either increase or decrease S by one depending on whether it introduces or removes an
inversion. Random adjacent swaps involving elements in the semi-sorted portion have more
complex effects on S.

An inversion currently in the list
(
l[a], l[b]

)
will be fixed by insertion sort if l[a] and l[b]

will be compared and the two are swapped. Because a < b, l[b] must be the active element
during this comparison. An inversion

(
l[a], l[b]

)
will not be fixed by insertion sort if l[b] was

already inserted into the semi-sorted portion or there is some element l[c] in the semi-sorted
portion with a < c < b and σ(c) < σ(b). We call an inversion with l[b] in the semi-sorted
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semisorted

unsorted
σt σt+1

Figure 2 An example where swapping the ordering of the red and blue elements in l′ creates
multiple blocked inversions between the blue element and the black elements. Recall that our list is
partitioned into the semisorted region, which contains elements that have already been compared in
this round, and the unsorted region.

unsorted element

minima path

Figure 3 In this Cartesian tree, the green-blue pair is a blocked inversion and the green-yellow
pair is a stuck inversion. Both pairs of inversions blame the red element.

portion a stuck inversion and an inversion with a smaller semi-sorted element between the
pair a blocked inversion. We say an element l[c] in the semi-sorted portion of l blocks an
inversion

(
l[a], l[b]

)
with a ≤ i and l[b] either the active element or in the unsorted portion

of l, if l[c] is in the semi-sorted portion of l with a < c < b and σ(c) < σ(b). Note that there
may be multiple elements blocking a particular inversion. Figure 3 shows examples of these
two types of inversions.

We denote the number of “bad” inversions at time t that will not be fixed with Bt. That
is, Bt is the sum of the blocked and stuck inversions. At the end of an insertion-sort round
every inversion present at the start was either fixed by the insertion sort, fixed by a random
adjacent swap in l′, or is currently stuck. No elements can be blocked at the end of an
insertion-sort round, because the semi-sorted portion is the entire list. Stuck inversions are
either created by random adjacent swaps in l′ or were blocked inversions and insertion sort
finished inserting the right element of the pair. Blocked inversions are only introduced by
the random adjacent swaps in l′. Thus Bt is unaffected by the steps of insertion sort.

Every inversion present at the start must be fixed by a step of insertion sort, be fixed
by a random swap, or it will end up “bad”. Therefore, for any given time, t, by using naive
upper bounds based on the facts that every insertion sort step can fix an inversion and every
random adjacent swap can remove an inversion, we can immediately derive the following:

I Lemma 8. For an insertion sort round that starts at time ts and ends at time te, if
ts ≤ t ≤ te, then St ≥ Its − 2(t− ts)−Bt.

Since, when an insertion sort round finishes, Ste−1 = 1, Lemma 8 implies 2(te − ts − 1) +
Bte + 1 ≥ Its . If we understand how B changes with each random adjacent swap in l′, then
we can bound how long insertion sort needs to run for this inequality to be true.

ICALP 2018
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We associate the blocked and stuck inversions with elements that we say are blamed for
the inversions. A blocked inversion

(
l[a], l[b]

)
blames the element l[c] with a < c < b and

minimum σ(c). Note than l[c] is on the minima path of the modified Cartesian tree, and
l[a] is in the left subtree of l[c]. A stuck inversion either blames the element on the minima
path whose subtree contains both l[a] and l[b] or if they appear in different subtrees, the
inversion blames the element l[c] with a < c < b and minimum σ(c). Again note that the
blamed element is on the minima path and l[a] is in the blamed element’s left subtree. The
bad inversions in Figure 3 blame the red element.

Whether stuck or blocked, every inversion blames an element on the minima path and
the left element of the inverted pair appears in that minimum’s subtree. If l[k] is on the
minima path, M(k) is the index of the element in l[k]’s subtree with maximum σ(M(k)),
and an inversion

(
l[a], l[b]

)
has l[a] in l[k]’s subtree, then both l[a] and l[b] are in the range

σ(k) to σ(M(k)). So we can upper bound Bt by
∑n−1
k=0(σ(M(k))− σ(k))2, where we extend

M to non-minima indices with M(k) = k if k is not the index of a minima in l.

4.1 Bounding the Number of Blocked and Stuck Inversions with
Counters

For the purposes of bounding Bt, we conceptually associate two counters, Inc(x) and Dec(x),
with each element, x. The counters are initialized to zero at the start of an insertion sort
round. When an element x is increased by a random swap in l′, we increment Inc(x) and
when x is decreased by a random swap in l′, we increment Dec(x). After the random swap
occurs, we may choose to exchange some of the counters between pairs of elements, but we
will always maintain the following invariant:

Invariant 1. For an element, l[k], on the minima path,

Inc
(
l[M(k)]

)
+ Dec

(
l[k]
)
≥ σ

(
M(k)

)
− σ(k).

This invariant allows us to prove the following Lemma:

I Lemma 9. If
∑n−1
k=0 Inc

(
l[k]
)2
< κ and

∑n−1
k=0 Dec

(
l[k]
)2
< κ, then Bt ≤ 4κ.

Proof.

Bt ≤
n−1∑
k=0

(
σ(M(k)

)
− σ(k)

)2

≤
n−1∑
k=0

(
Inc
(
M(k)

)
+ Dec(k)

)2
By Invariant 1 (1)

By the assumptions of this lemma, interpreting Inc and Dec as two n-dimensional vectors,
we know their lengths are both less than

√
κ. Equation 1 is the squared length of the sum of

the Dec and Inc vectors with the entries of Inc permuted by the function M . By the triangle
inequality, the length of their sum is at most 2

√
κ and so the squared length of their sum is

at most 4κ.
Therefore, Bt ≤ 4κ. J

I Lemma 10. There is a counter maintenance strategy that maintains Invariant 1 such that
after each random adjacent swap in l′, the corresponding counters are incremented and then
some counters are exchanged between pairs of elements.

Proof. Proof omitted due to space requirements. J



J. Besa, W. Devanny, D. Eppstein, M. T. Goodrich, and T. Johnson 81:11

4.2 Bounding the Counters with Balls and Bins
We model the Inc and Dec counters each with a balls and bins process and analyze the sum
of squares of balls in each bin. Each element in l is associated with one of n bins. When an
element’s Inc counter is increased, throw a ball into the corresponding bin. If a pair of Inc
counters are exchanged, exchange the set of balls in the two corresponding bins. The Dec
counters can be modeled similarly.

This process is almost identical to throwing balls into n bins uniformly at random. Note
that the exchanging of balls in pairs of bins takes place after a ball has been placed in a
chosen bin, effectively permuting two bin labels in between steps. If every bin was equally
likely to be hit at each time step, then permuting the bin labels in this way would not
change the final sum of squares and the exchanging of counters could be ignored entirely.
Unfortunately the bin for the element at l[n− 1] in the case of Inc counters or l[0] in the
case of Dec counters cannot be hit, i.e., there is a forbidden bin controlled by the counter
swapping strategy. However, even when in each round the forbidden bin is adversarially
chosen, the sum of squares of the number of balls in each bin will be stochastically dominated
by a strategy of always forbidding the bin with the lowest number of balls. Therefore, the
sum of squares of m balls being thrown uniformly at random into n− 1 bins stochastically
dominates the sum of squares of the Inc (or Dec) counters after m steps.

I Theorem 11. If cn balls are each thrown uniformly at random into n bins with c > e,
then the sum over the bins of the square of the number of balls in each bin is at most 3c2n
with exponentially high probability.

Proof. Let X1, . . . , Xn be random variables where Xk is the number of balls in bin k and
let Y1, . . . , Yn be independent Poisson random variables with λ = c.

By the Poisson approximation, Lemma 2,

Pr
[∑

k

X2
k ≥ 3c2n

]
≤ e
√
cnPr

[∑
k

Y 2
k ≥ 3c2n

]
.

Let Zk be the event that Yk ≥ ecn1/6 and Z be the event that at least one Zk occurs.

Pr[Z] ≤ nPr[Z1] by a union bound.

Pr[Z1] = e−c
∞∑

k=ecn1/6

ck

k! ≤ e
−c

∞∑
k=ecn1/6

ck

e
(
k
e

)k
= e−c−1

∞∑
k=ecn1/6

(ec
k

)k
≤ e−c−1

∞∑
k=ecn1/6

(
1

n1/6

)k
= e−c−1(n1/6)−ecn

1/6
∞∑
k=0

1
n1/6

k

≤ e−cn− ec
6 n

1/6
.

⇒ Pr[Z] ≤ n

ecn
ec
6 n

1/6 ≤ e−Ω(n1/6).

Letting Y =
∑
k Y

2
k :

E[Y |¬Z] ≤ E[Y ] = nE[Y 2
1 ] = n

(
c+ c2

)
≤ 2c2n.

Given ¬Z, (Yk)2 ∈ [0, ecn1/3]. So we can apply Hoeffding’s inequality, Lemma 3, to get:

Pr [Y − E [Y |¬Z] ≥ tn|¬Z] ≤ e−2t2n2/
(
n(ecn1/3)2)

.
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Setting t = c2, we have:

Pr
[
Y − E [Y |¬Z] ≥ c2n|¬Z

]
≤ e(−2c4n2)/

(
n(ecn1/3)2)

≤ e−2n1/3
.

Because E [Y |¬Z] ≤ 2c2n, we have Pr[Y ≥ 3c2n|¬Z] ≤ e−Ω(n1/3).

Pr
[
Y ≥ 3c2n

]
= Pr

[
Y ≤ 3c2n and Z

]
+ Pr

[
Y ≤ c2n and ¬Z

]
≤ Pr[Z] + Pr

[
Y ≤ 3c2n|¬Z

]
≤ e−Ω(n1/6) + Pr[Y − E[Y |¬Z] ≥ c2n|¬Z]

≤ e−Ω(n1/6) + e−Ω(n1/3) ≤ 2e−Ω(n1/6).

Thus, we can conclude Pr[
∑
kX

2
k ≥ 3c2n] ≤ 2e

√
cn

eΩ(n1/6)
≤ e− poly(n). J

Recall that by Lemma 8, if an insertion-sort round ends at time t, then Its ≤ 2(t −
ts) + Bt + 1. Theorem 11 and a simple union bound tell us that if t ≤ ts + cn, then∑n−1
k=0 Inc

(
l[k]
)2 ≤ 3c2(n − 1) and

∑n−1
k=0 Dec

(
l[k]
)2 ≤ 3c2(n − 1) with exponentially high

probability. So by Lemma 9, Bt ≤ 12c2n.
Recall that when the insertion sort round finishes, 2(te − ts − 1) +Bte + 1 ≥ Its . If fewer

than cn steps have been performed, the left hand side of this inequality is less than (12c2+2c)n
with exponentially high probability. Therefore, if we started with (12c2 + 2c)n inversions,
the current round of insertion sort must perform at least cn steps with exponentially high
probability; otherwise, there are unfixed but still “good” inversions. This completes the proof
of Lemma 6.

5 Conclusion

We have shown that, although it is much simpler than quicksort and only fixes at most one
inversion in each step, repeated insertion sort leads to the asymptotically optimal number of
inversions in the evolving data model. We have also shown that by using a single round of
quicksort before our repeated insertion sort, we can get to this steady state after an initial
phase of O(n logn) steps, which is also asymptotically optimal.

For future work, it would be interesting to explore whether our results can be composed
with other problems involving algorithms for evolving data, where sorting is a subcomponent.
In addition, our analysis in this paper is specific to insertion sort, and only applies when
exactly one random swap is performed after each comparison. We would like to extend this
to other sorting algorithms that have been shown to perform well in practice and to the case
in which the number of random swaps per comparison is a larger constant. Finally, it would
also be interesting to explore whether one can derive a much better ε value than we derived
in the proof of Lemma 5.
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