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Abstract
We revisit the complexity of the classical k-Coloring problem parameterized by clique-width.
This is a very well-studied problem that becomes highly intractable when the number of colors
k is large. However, much less is known on its complexity for small, concrete values of k. In this
paper, we completely determine the complexity of k-Coloring parameterized by clique-width for
any fixed k, under the SETH. Specifically, we show that for all k ≥ 3, ε > 0, k-Coloring cannot
be solved in time O∗

(
(2k − 2− ε)cw), and give an algorithm running in time O∗

(
(2k − 2)cw).

Thus, if the SETH is true, 2k − 2 is the “correct” base of the exponent for every k.
Along the way, we also consider the complexity of k-Coloring parameterized by the related

parameter modular treewidth (mtw). In this case we show that the “correct” running time, under
the SETH, is O∗

((
k
bk/2c

)mtw). If we base our results on a weaker assumption (the ETH), they
imply that k-Coloring cannot be solved in time no(cw), even on instances with O(logn) colors.
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1 Introduction

Graph Coloring (from now on simply Coloring) is one of the most intensely studied
problems in theoretical computer science. In this classical problem we are given a graph
G = (V,E) and an integer k and are asked if we can partition V into k sets inducing edge-less
graphs. Coloring is a notoriously hard problem as it remains NP-hard even in very restricted
cases (e.g. 4-regular planar graphs [10]) and is essentially completely inapproximable in
general [11, 30]. This intractability has motivated the study of the problem in the framework
of parameterized complexity, especially with respect to structural graph parameters.1

Treewidth is by far the most widely studied among such graph parameters, and Coloring
has long been known to be FPT by treewidth. This can be seen by either invoking Courcelle’s
theorem [4], or by applying a straightforward dynamic programming technique which, for
each bag of a tree decomposition of width tw considers all possible ktw colorings. Remarkably,
thanks to the work of Lokshtanov, Marx, and Saurabh [23], we know that this basic algorithm
is likely to be optimal, or at least that improving it would require a major breakthrough on
SAT-solving, as, for any k ≥ 3, ε > 0, the existence of a (k− ε)tw algorithm would contradict
the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [18, 19]. More recently,
these lower bounds were strengthened, as Jaffke and Jansen showed that a (k− ε)w algorithm
would contradict the SETH when w is the graph’s vertex edit distance from being a path

1 In the remainder, we assume that the reader is familiar with the basics of parameterized complexity,
such as the class FPT, as given in relevant textbooks [8, 13]
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[20]. The same paper showed that the trivial algorithm can, however, be improved when one
considers more restrictive parameters, such as vertex cover, but still not to the point that
the base of the exponent becomes a constant. These results thus paint a very clear picture of
the complexity of Coloring with respect to treewidth and its restrictions.

One of the drawbacks of treewidth is that it does not cover dense graphs, even if they
have a very simple structure. This has led to the introduction of clique-width, which is
by now (arguably) the second most well-studied parameter. The complexity of Coloring
parameterized by clique-width has also been investigated. Even though Coloring is
polynomial-time solvable when clique-width is constant, the best known algorithm for this
case runs in time n2O(cw) [21]. Fomin et al. [14] showed that Coloring is not FPT for
clique-width (under standard assumptions), and this was recently followed up by Golovach
et al. [17] who showed, somewhat devastatingly, that the aforementioned algorithm is
likely to be optimal, as an algorithm running in n2o(cw) would contradict the ETH. The
problem thus seems to become significantly harder for clique-width, and this has, in part,
motivated the study of alternative dense graph parameters, such as split-matching width
[28], modular-width [15], and twin cover [16], all of which make Coloring FPT.

Contribution. Although the results mentioned above demonstrate a clear jump in the
complexity of Coloring when moving from treewidth to clique-width, we observe that
they leave open a significant hole: all the aforementioned hardness results for clique-width
([14, 17]) only apply to the case where k is large (polynomially related to the size of the
graph). It is not hard to see that the problem becomes significantly easier if both cw and
k are assumed to have moderate values; indeed Coloring is FPT when parameterized by
cw+k [21]. Since the case where k is relatively small is arguably the most interesting scenario
for most applications, we are strongly motivated to take a closer look at the complexity
of Coloring parameterized by clique-width, in order to obtain a more fine-grained and
quantitative estimate of the “price of generality” for this problem for each fixed value of
k. Our aim is to reach tight bounds that paint a crisper picture of the complexity of the
problem than what can be inferred by lower bounds parameterized only by clique-width, in
the same way that the results of [23] do for k-Coloring on treewidth.

The main result of this paper is a lower bound which states that for all k ≥ 3, ε > 0,
k-Coloring cannot be solved in time O∗

(
(2k − 2− ε)cw), unless the SETH is false. This

result gives a concrete, detailed answer to the question of how much the complexity of 3-
Coloring, 4-Coloring, and generally k-Coloring, increases as one moves from treewidth
to clique-width. As in the lower bound of [23], this result is established through a reduction
from SAT. The main challenge here is that we need to pack a much larger amount of
information per unit of width, and in particular that the graph induced by most label sets
must be edge-less (otherwise many of the 2k − 2 choices we need to encode would be invalid).
We work around this difficulty by a delicate use of the rename operation used in clique-width
expressions.

Though having 2k − 2 in the base of the running time may seem somewhat curious (and
certainly less natural than the ktw bounds of [23]), we then go on to prove that this is the
“correct” bound by giving a matching algorithm. The algorithm is based on standard DP
techniques (including subset convolution [1, 29]), but requires a non-standard trick that
“looks ahead” in the decomposition to lower the table size from (2k− 1)cw to (2k− 2)cw. This
improves the previously known DP algorithm of [21], which runs in O∗

(
4k·cw).

Beyond these results for clique-width we also consider the closely related parameters
modular treewidth and modular pathwidth, which have more recently been considered as
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more restricted versions of clique-width [25, 27]. The modular treewidth of a graph G is
defined as the treewidth of the graph obtained from G if one collapses each twin class into
a single vertex, where two vertices are twins if they have the same neighbors. By slightly
altering our results for clique-width we tightly characterize the complexity of k-Coloring
for these parameters: the problem is solvable in time O∗

((
k
bk/2c

)mtw), but not solvable in

O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
under the SETH. Using the same reduction but relaxing the hypothesis

to the ETH, we show that k-Coloring cannot be solved in time no(mpw), and hence neither
in time no(cw) even on instances where k = O(logn). This can be seen as a strengthening of
the lower bound of [14], which applies only to clique-width and uses Ω(n) colors. Our result
is incomparable to the more recent double-exponential bound of [17] as it applies to the more
restricted case where the number of colors is logarithmic, and is tight for this case. Indeed,
any reduction giving a double-exponential bound, such as the one in [17], must inevitably
use more than logn colors, otherwise it would contradict the aforementioned algorithms.

Non-binary CSPs. We mention as a secondary contribution of this paper a proof that, under
the SETH, n-variable CSPs over an alphabet of size B cannot be solved in time (B − ε)n,
for any B, ε. The interest of such a result is not so much technical (its proof is implicit
in previous SETH-based bounds, going back to [23]), as conceptual. Such CSPs provide a
convenient starting point for a SETH-based lower bound for any base of the exponential and
hence allow us to isolate a technical part of such proofs from the main part of the reduction.
This explicit statement on the hardness of CPSs has allowed the proofs of this paper to be
significantly shortened, and may facilitate the design of other SETH-based hardness proofs.

2 Definitions and Preliminaries

We use standard graph-theoretic notation and assume that the reader is familiar with the
basics of parameterized complexity, as well as standard notions such as treewidth [8, 13]. Let
us recall the definition of clique-width (see [6, 5] for more details). A labeled graph G has
clique-width w if it can be constructed using w labels and the following four basic operations:
Introduce(i), for i ∈ {1, . . . , w}, which constructs a single-vertex graph whose vertex has label
i; Union(G1, G2), which constructs the disjoint union of two labeled graphs of clique-width w;
Rename(i, j) which changes the label of all vertices labeled i to j; and Join(i, j) which adds
all possible edges between vertices labeled i and vertices labeled j. Computing a graph’s
clique-width is NP-hard [12], and the best currently known approximation is exponential
in clique-width [26]. In this paper, we will often assume that we are given together with a
graph G, a clique-width expression constructing G. Since most of our results are negative,
this only makes them stronger, as it shows that our lower bounds do not rely on the hardness
of computing clique-width. We view a clique-width expression as a rooted binary tree, where
the sub-tree rooted in each internal node represents the corresponding sub-graph of G. We
use cw(G) to denote the minimum number of labels needed to construct a clique-width
expression of G, and tw(G), pw(G) to denote the treewidth and pathwidth of G respectively.

In a graph G = (V,E) we say that u, v ∈ V are false twins if N(u) = N(v) and true twins
if N [u] = N [v], where N [u] = N(u)∪ {u} denotes the closed neighborhood of u. We say that
u, v are twins if they are true or false twins. We note that in any graph G the partition of
vertices into twin classes is always unique, as the property of being twins is an equivalence
relation [22]. Let Gt be the graph obtained from G by deleting from each twin class all but
a single vertex. We define (following [25]) the modular treewidth of G, denoted mtw(G), as
tw(Gt), and similarly the modular pathwidth mpw(G) as pw(Gt).

ICALP 2018
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I Lemma 1. For all G, pw(G) ≥ mpw(G) ≥ cw(G)− 2 and pw(G) ≥ mpw(G) ≥ mtw(G).

The Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19] states
that there exists a constant c3 > 1 such that 3-SAT on instances with n variables cannot be
solved in time cn

3 . If the ETH is true then we can define, for all q ≥ 3 a constant cq > 1 such
that q-SAT, that is, SAT on instances where clauses have maximum size q, cannot be solved
in time cn

q . The Strong Exponential Time Hypothesis (SETH) [18] states that limq→∞ cq = 2,
or equivalently that, for each ε > 0 there exists a q such that q-SAT cannot be solved in
(2− ε)n. We note that sometimes a slightly weaker form of the SETH is used, which states
simply that SAT cannot be solved in (2− ε)n for any ε > 0. The two formulations are not
currently known to be equivalent. In this paper we use the original, stronger formulation of
[18] (see also e.g. [7]) which assumes that cq tends to 2.

For any q,B ≥ 2 we define the q-CSP-B problem as follows: we are given a set X of n
variables which take values in {1, . . . , B}, and a set C of q-constraints onX. A q-constraint c is
defined by an ordered tuple V (c) of q variables of X, and a set S(c) ⊆ {1, . . . , B}q of satisfying
assignments for c. The question is whether there exists an assignment σ : X → {1, . . . , B}
which satisfies all constraints c ∈ C. We say that a constraint c ∈ C is satisfied if applying σ
to V (c) produces a tuple of assignments that appears in S(c). To simplify presentation, we
will assume that in the input the list S(c) of the at most Bq satisfying assignments of each
constraint is given explicitly, and that a q-CSP-B instance is allowed to contain constraints
on fewer than q variables (as we can add dummy variables to a constraint).

3 SETH and Non-binary CSPs

The SETH states, informally, that as SAT clauses become larger, eventually the best
algorithm for SAT is simply to try out all possible assignments to all variables. In this
section we show that the same is essentially true for CSP with a larger, non-binary alphabet.
The interest in presenting such a result is that very often we seek to prove a SETH-based
lower bound showing that a problem does not admit an algorithm running in cw, for some
constant c and width parameter w (such as treewidth, or in our case clique-width). This
becomes complicated when we reduce directly from SAT if c is not a power of 2 as one
cannot make a one-to-one correspondence between binary SAT variables and “units of width”
(in our case labels) in the new instance, which are intended to encode c choices. As a result,
essentially all known SETH lower bounds of this form include as part of their construction
a group gadget, which maps every t variables of the original SAT instance to p elements
of the new problem, for appropriately chosen integers p, t (see e.g. [3, 9, 20, 23]). Such
gadgets are, however, often cumbersome to design, because they require a problem-specific
trick that expresses a mapping of assignments from a binary to a non-binary domain. We
therefore prefer to construct a custom-made CSP with a convenient running time bound,
which will later allow us to reduce directly to the problem we are interested in (Coloring
on clique-width), in a way that maps exactly one variable to one clique-width label. This
will allow our SETH-based bounds to be significantly simplified, as we will no longer have to
worry about a discrepancy between the bases of the exponentials.

I Theorem 2. For any B ≥ 2, ε > 0 we have the following: if the SETH is true, then there
exists a q such that n-variable q-CSP-B cannot be solved in time O∗ ((B − ε)n).
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4 SETH-based Lower Bound for Clique-width

In this section we present our main lower bound result stating that k-Coloring cannot be
solved in time O∗

(
(2k − 2− ε)cw), for any k ≥ 3, ε > 0, under the SETH. In Section 4.1 we

present some basic gadgets that will also be of use in our lower bound for modular pathwidth
(Section 5). We then present the main part of the proof in Section 4.2.

4.1 List Coloring and Basic Gadgets
The high-level machinery that we will make use of in our reduction consists of two major
points: first, we would like to be able to express implication constraints, that is, constraints
of the form “if vertex u received color c1, then vertex v must receive color c2”; second, we
would like to express disjunction constraints of the form “at least one of the vertices of the
set S ⊆ V must take a special color 1”. We build this machinery in the following steps: first,
we show that we can (almost) equivalently produce an instance of the more general List
Coloring problem; then we use the ability to construct lists to make weak edge gadgets,
which for a given pair of vertices (u1, u2) rule out a specific pair of assigned colors; using
these weak edges we construct the aforementioned implication gadgets; and finally we are
able to implement OR constraints using paths on vertices with appropriate lists.

We give all details for these constructions below. We remark however, for the convenience
of the reader, that a high-level understanding of the informal meaning of implication gadgets
and OR gadgets (precisely stated in Lemmata 7, 10) is already sufficient to follow the
description of the main part of the reduction, given in Section 4.2. See also Figure 1.

List Coloring. To simplify the presentation of our reduction it will be convenient to use
a slightly more general problem. In List Coloring, we are given a graph G and a list of
possible colors associated with each vertex and are asked if there is a proper coloring such
that each vertex uses a color from its list. This problem clearly generalizes k-Coloring, as
all lists may be {1, . . . , k}. We will make use of a reduction in the opposite direction.

I Lemma 3. There is a polynomial-time algorithm which, given an instance of List Col-
oring on a graph G where all lists are subsets of {1, . . . , k}, transforms it into an equivalent
instance of k-Coloring on a graph G′. Furthermore, the algorithm transforms a clique-width
expression of G with cw labels, to a clique-width expression of G′ with cw + k labels. If all
twins of G share the same list, the algorithm transforms a modular path decomposition of
width mpw for G, to a modular path decomposition of G′ of width mpw + k.

Weak Edges and Implications. Normally, the existence of an edge (u, v) in an instance of
Coloring forbids the vertices u, v from obtaining the same color, whatever that color may
be. We will find it convenient to construct edges that forbid only a specific pair of colors
from appearing on u, v, while allowing any other combination of colors to be used on these
two vertices. Similar versions of this gadget have appeared before, for example [23, 24].

I Definition 4. For two vertices u1, u2 of a graph G and two colors c1, c2 a (c1, c2)-weak
edge from u1 to u2 consists of the following:
1. Three new vertices v1, v2, v3 such that {u1, v1, v2, v3, u2} induces a path in this order,

with endpoints u1, u2, and v1, v2, v3 having no edges to the rest of G.
2. If c1 6= c2 let c′ be a color distinct from c1, c2. We assign to v1, v2, v3 the lists
{c1, c2}, {c2, c

′}, {c2, c
′}. If c1 = c2, we assign lists {c1, c

′}, {c′, c′′}, {c1, c
′′} to v1, v2, v3

respectively, where c′, c′′ are two distinct colors, different from c1.

ICALP 2018
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{1, 5}

{2, 5}

{2, 5}

(1,5)
≡

(1 → 2)
≡

(1, 1)
(1, 3)

(1, k)
. . .

{2, 3}

{1, 2, 3}{1, 2, 3} {1, 2, 3}

{2, 3} {3}{2}

Figure 1 Basic gadgets, where empty vertices are internal and solid vertices are endpoints that
will be connected to the rest of the graph. On the left, a weak edge that forbids the combination
(1, 5) on its endpoints. In the middle, an implication that forces color 2 on the right if color 1 is
used on the left. On the right an OR gadget: one of the solid vertices must take color 1.

I Lemma 5. Let G be an instance of List Coloring that contains a (c1, c2)-weak edge
from u1 to u2. Then G does not admit a valid coloring that assigns colors (c1, c2) to (u1, u2).
Furthermore, if G′ denotes the graph obtained by deleting the internal vertices of the weak
edge, any proper list coloring of G′ that does not assign c1 to u1 or does not assign c2 to u2
can be extended to a proper list coloring of G.

Let us now use the weak edges we have defined above to construct an implication gadget.
The intuitive meaning of placing an implication gadget from a vertex u1 to a vertex u2 is to
impose the constraint that if u1 is assigned color c1, then u2 must be assigned color c2.

I Definition 6. For two vertices u1, u2 and two colors (c1, c2) a (c1 → c2)-implication from
vertex u1 to vertex u2 is constructed as follows: for each color c′ 6= c2, we add a (c1, c

′)-weak
edge from u1 to u2.

I Lemma 7. Let G be an instance of List Coloring that contains a (c1 → c2)-implication
from u1 to u2. Then G does not admit a list coloring that gives color c1 to u1 and a color
c′ 6= c2 to u2. Furthermore, if G′ is the graph obtained from G by deleting the internal
vertices of the implication gadget, any coloring of G′ that either does not assign c1 to u1, or
assigns c2 to u2 can be extended to a coloring of G.

I Lemma 8. Let G be an instance of List Coloring, and G′ be the graph obtained from
G by replacing every (c1, c2)-weak edge or (c1 → c2)-implication gadget with endpoints u1, u2
with an edge (u1, u2) (or simply deleting the internal vertices of the weak edge if (u1, u2)
already exists). Then pw(G) ≤ pw(G′) + 3.

OR gadgets. We will also make use of a gadget that forces any valid list coloring of a
graph to assign a special color 1 to one vertex out of a set of vertices. Invariably, the idea
will be that this will be a color that activates some implications, allowing us to propagate
information about the coloring between parts of the graph. We recall that a similar version
of an OR gadget was also used in [23].

I Definition 9. An OR gadget on an independent set of vertices S, denoted OR(S), is
constructed as follows: we assign list {1, 2, 3} to all vertices of S; we construct a new set S′
of internal vertices (that will not be connected to the rest of G), such that |S′| = |S|+ 1 and
S ∪ S′ induces a path alternating between vertices of S and S′; we assign list {2, 3} to all
vertices of S′, except the two endpoints of the path, which receive lists {2}, {3}, respectively.
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...

S0 S1 S2 S3 S4

V 0
1

U0
1

V 0
2

U0
2

V 4
1

U4
1

V 4
2

U4
2

...

a1 a2 a3 a4

V 0,a1
1

V 0,a2
1

V 0,a3
1 V 0,a4

1

U0,a4
1

U0,a2
1U0,a1

1

U0,a3
1

Figure 2 Left: high-level view of the reduction. Rows correspond to variables, columns to
constraints. Here, variable x1 appears in constraints c0, c1, c3, c4. Right: connections between the
OR gadgets OR(Sj) and the V j

i , U j
i sets. Giving color 1 to a1 represents selecting this assignment.

This forces the use of some colors in V 0,a1
1 and the complementary set in U0,a1

1 .

I Lemma 10. If G is a List Coloring instance that contains an OR(S) gadget then G
does not admit a list coloring that does not use color 1 in any vertex of S. Furthermore, for
any vertex u ∈ S, there exists a proper list coloring of the graph induced by the gadget that
assigns color 1 only to u.

4.2 Reduction for Clique-width
I Theorem 11. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(
(2k − 2− ε)cw), where cw is the input graph’s clique-width, then the SETH is false.

The proof of Theorem 11 consists of a reduction from a CSP produced by Theorem 2.
Before giving details, let us give some intuition. Our new instance will be a graph and a
clique-width expression with, roughly, n labels, where n is the number of variables of the
CSP instance. The set of colors used in each label will encode the value given to a variable
in a satisfying assignment. As a result, with k colors, we will have 2k − 2 encodings available,
as every label set uses at least one color, but will never use all k colors. To verify that these
assignments are correct, we will construct for each constraint an OR gadget which forces the
use of color 1 on a vertex representing a particular assignment. This assignment dictates the
value of each variable of the constraint, and therefore the set of colors used in some of our
label sets. To verify that the assignment is consistent we use implication gadgets that force
some auxilliary vertices to receive the complement of the colors dictated by the constraint
assignment, and then connect these with the vertices encoding the true assignment. If the
assignment used is truly consistent, these edges will end up being properly colored.

Construction. We are given k ≥ 3, ε > 0. Let B = 2k−2. Let q be the smallest integer such
that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. According to Theorem
2, q exists if the SETH is true, and it depends only on B, ε. Consider an arbitrary n-variable
instance of q-CSP-B, call it φ. We use the existence of the supposed O∗

(
(2k − 2− ε)cw)

algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ, contradicting the SETH.
We define in some arbitrary way a translation function T which, given a value v ∈

{1, . . . , B} returns a non-empty proper subset of {1, . . . , k}. We make sure that T is defined
in such a way that it is one-to-one; this is possible since the number of non-empty proper
subsets of {1, . . . , k} is exactly B = 2k − 2.

ICALP 2018
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Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and C =
{c0, . . . , cm−1} the set of its m constraints. Let L = 3m(nk + 1). We now construct our
graph, where if we don’t specify the list of a vertex it can be assumed to be {1, . . . , k}. For
each j ∈ {0, . . . , L− 1} we do the following:
1. Let j′ = j mod m and let S be the set of satisfying assignments of the constraint cj′ . We

construct an independent set of vertices Sj that contains a vertex for every assignment of
S. We construct an OR(Sj) gadget on these vertices.

2. For each xi which appears in cj′ and for each assignment a ∈ S we do the following:
a. Let v ∈ {1, . . . , B} be the value given to xi by the assignment a. Construct an

independent set V j,a
i of |T (v)| vertices and an independent set U j,a

i of k − |T (v)|
vertices. Recall that T (v), the translation function, returns a set of size between 1 and
k − 1, so both these sets are non-empty.

b. For each color c ∈ T (v) select a distinct vertex in V j,a
i and add a (1→ c)-implication

gadget from the vertex that represents the assignment a in Sj to this vertex of V j,a
i .

c. For each color c ∈ {1, . . . , k} \ T (v) select a distinct vertex in U j,a
i and add a (1→ c)-

implication gadget from the vertex that represents the assignment a in Sj to this
vertex of U j,a

i .
d. Connect all vertices of U j,a

i with all vertices of previously constructed sets V l,a′

i , for
all l < j and all assignments a′.

This completes the construction, and we call the constructed List Coloring instance
G(φ). The intended meaning is that the sets V j,a

i will use a set of colors that encodes the
value of the variable xi, while the sets U j,a

i will use colors from the complement of this set.

I Lemma 12. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

Proof. Suppose that we have a satisfying assignment for φ which gives value vi to variable
xi. The invariant we will maintain is that for all j, a, all vertices of sets V j,a

i will use only
colors from T (vi), while all vertices of sets U j,a

i will use only colors from {1, . . . , k} \ T (vi).
As a result, all edges added in step 2d will be properly colored. The rest of the graph will be
easy to color if we respect the informal meaning of OR and implication gadgets.

More specifically, for each OR(Sj) gadget we let j′ = j mod m and consider the constraint
cj′ . The supposed assignment to φ assigns to the variables of the constraint values consistent
with a satisfying assignment a of cj′ . We give color 1 to the corresponding vertex of Sj . We
use colors {2, 3} to color all remaining vertices of the OR gadget. Note that the OR gadget
is connected to the rest of the graph only through implication gadgets activated by color 1.
Hence, by Lemma 7 we can remove all non-activated implication gadgets. For the remaining,
activated implication gadgets we color their other endpoints, which are found in the sets V j,a

i

and U j,a
i with the unique viable color. For every other assignment a′ 6= a we color all vertices

of V j,a′

i using a color we used in V j,a
i , and the vertices of U j,a′

i using a color we used in U j,a
i .

The promised invariant is maintained, as the vertices of V j,a
i are forced to receive colors

from T (vi), while vertices of U j,a
i are forced to receive colors from the complementary set.

Thus, all edges of step 2d are properly colored, and since we also properly colored the OR
gadgets and implication gadgets, we have a proper coloring of the whole graph. J

I Lemma 13. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

Proof. Suppose we have a list coloring of G(φ) given by the function c : V → {1, . . . , k}. For
a set V ′ ⊆ V we will write c(V ′) to denote the set of colors used by c for vertices of V ′, that
is, c(V ′) = {c | ∃u ∈ V ′, c(u) = c }. Let j ∈ {0, . . . , L− 1}, j′ = j mod m, and S be the set
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of satisfying assignment of the constraint cj′ , which contains a variable xi. Consider the set
V j

i = ∪a∈SV
j,a

i . We define the candidate assignment of xi at index j as vj
i := T−1(c(V j

i )).
In other words, to obtain the candidate assignment for xi at index j, we take the union of
all colors used in V j,a

i , and then translate this set back into a value in {1, . . . , B}.
We observe that for all i, j, such that xi appears in cj′ , where j′ = j mod m, there exists

an assignment a such that c(V j,a
i ) = {1, . . . , k} \ c(U j,a

i ). To see this, note that by Lemma
10, one of the vertices of the OR(Sj) gadget must have received color 1, say the vertex
that corresponds to assignment a. All the implications incident on this vertex are therefore
activated, which means that, if a gives value v ∈ {1, . . . , B} to xi, then c(V j,a

i ) = T (v) and
c(U j,a

i ) = {1, . . . , k} \ T (v) (because of the implications of steps 2b,2c and Lemma 7).
A key observation now is the following: for all j2 > j1 and for all i such that variable xi

appears in constraints cj′
1
, cj′

2
with j′1 = j1 mod m, j′2 = j2 mod m, we have c(V j1

i ) ⊆ c(V j2
i ).

In other words, the set of colors used in V j
i can only increase as j increases. To see this,

suppose that there exists c ∈ c(V j1
i ) \ c(V j2

i ). As argued in the previous paragraph, there
exists an assignment a2 such that c(V j2

i ) ⊇ c(V j2,a2
i ) = {1, . . . , k} \ c(U j2,a2

i ). Because
c 6∈ c(V j2,a2

i ) we must have c ∈ c(U j2,a2
i ), but because of step 2d, all vertices of U j2,a2

i are
connected to all of V j1

i . Since c ∈ c(V j1
i ), this contradicts the correctness of the coloring.

The property established in the previous paragraph implies that for each i there exist
at most k distinct candidate assignments vj

i we can obtain for different values of j, as each
assignment is obtained by translating the set of colors used in V j

i , this set only increases,
it always contains at least one color and at most k colors. Let us say that an index j1 is
problematic if, for some i ∈ {1, . . . , n} we have the following: xi appears in constraint cj′

1
,

where j′1 = j1 mod m; and if j2 is the minimum index such that j2 > j1 and xi appears in
constraint cj′

2
, where j′2 = j2 mod m, then vj1

i 6= vj2
i . In other words, an index is problematic

if the candidate assignment it produces for a variable disagrees with the candidate assignment
produced for the same variable in the next index that involves this variable. It is not hard
to see that there are at most kn problematic indices, because for each variable there are at
most k problematic indices. Therefore, since L = 3m(nk + 1), by pigeonhole principle, there
exists an interval L′ of at least 3m consecutive non-problematic indices.

We now obtain an assignment for the original instance as follows: for each variable i we
take an index j ∈ L′ such that xi appears in constraint cj′ , where j′ = j mod m, and give xi

the candidate value vj
i from that index. Observe that, by the definition of L′ the index we

select is irrelevant, as all candidate values are constant throughout the interval L′.
We claim that this is a satisfying assignment. Suppose not, so there exists an unsatisfied

constraint cj′ . Because L′ contains 3m consecutive indices, there exists three indices j1 <

j2 < j3 ∈ L′ such that j′ = j1 mod m = j2 mod m = j3 mod m. We observe that for all
variables xi appearing in cj′ we have given value vj2

i , that is the candidate value obtained at
index j2, since all indices in L′ give the same candidate values to all variables.

Now, there exists a vertex in Sj2 that received color 1, representing an assignment a. If
the assignment we produced is not consistent with a, there exists a variable xi such that we
have given xi value v = vj2

i , while a gives it value v′ 6= v. Consider now the set V j2,a
i . Because

of the implication gadgets, it uses the colors T (v′) 6= T (v). If there exists c ∈ T (v) \ T (v′)
then c ∈ c(U j2,a

i ). But U j2,a
i is connected to all vertices of V j1

i , which, we assumed use all
colors of T (v), therefore also color c, contradicting the correctness of the coloring. If on the
other hand there exists c ∈ T (v′) \ T (v), then since c(V j3

i ) = T (v), there exists an a′ such
that c(U j3,a′

i ) = {1, . . . , k} \ T (v). Therefore, c ∈ c(U j3,a′

i ), while c ∈ c(V j2,a
i ), and by step

2d these sets are connected, again obtaining a contradiction. We therefore conclude that we
must have a consistent satisfying assignment. J
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I Lemma 14. G(φ) can be constructed in time polynomial in |φ|, and we have cw(G(φ)) ≤
n+O(qk2Bq) = n+ f(ε, k) for some function f .
Proof. For fixed k ≥ 3, ε > 0, we have that B = 2k− 2 and q is a constant that only depends
on B, ε (that is, on k, ε). Each constraint of the q-CSP-B instance has at most Bq satisfying
assignments. Therefore, it is not hard to see that the whole construction can be performed
in polynomial time, if k, ε, B, q are constants. For clique-width we use the following labels:
1. n main labels, representing the variables of φ.
2. A single junk label. Its informal meaning is that a vertex that receives this label will not

be connected to anything else not yet introduced in the graph.
3. O(Bq) constraint work labels.
4. O(qk2Bq) variable-constraint incidence work labels.

To give a clique-width expression we will describe how to build the graph, following
essentially the steps given in the description of the construction by maintaining the following
invariant: before starting iteration j, all vertices of the set

⋃
j′<j V

j′,a
i (where we take the

union over all assignments a), have label i, and all other vertices have the junk label.
This invariant is vacuously satisfied before the first iteration, since the graph is empty.

Suppose that for some j ∈ {0, . . . , L− 1} the invariant is true. We use the O(Bq) constraint
work labels to introduce the vertices of the OR(Sj) gadget of step 1, giving each vertex a
distinct label. We use join operations to construct the internal edges of the OR gadget.

Then, for each variable xi that appears in the current constraint we do the following:
we use O(k2Bq) of the variable-constraint incidence work labels to introduce the vertices
of V j,a

i , U j,a
i as well as the implication gadgets connecting these to Sj . Again we use a

distinct label for each vertex, but the number of vertices (including internal vertices of the
implication gadgets) is O(k2Bq), so we have sufficiently many labels to use distinct labels for
each of the q variables of the constraint. We use join operations to add the edges inside all
implication gadgets. Then we use join operations to connect U j,a

i to all vertices
⋃

j′<j V
j′,a

i ,
for j′ < j. This is possible, since the invariant states that all the vertices of

⋃
j′<j

V j′,a
i have

the same label. We then rename all the vertices of U j,a
i , for all a to the junk label, and do

the same also for internal vertices of all implication gadgets. We proceed to the next variable
of the same constraint and handle it using its own O(k2Bq) labels. Once we have handled
all variables of the current constraint, we rename all vertices of each V j,a

i to label i for all a.
We then rename all vertices of the OR(Sj) gadget to the junk label and increase j by 1. It is
not hard to see that we have maintained the invariant and constructed all edges induced by
the vertices introduced in steps up to j, so repeating this process constructs the graph. J

5 Modular Pathwidth and ETH

We present a lower bound on the complexity of k-Coloring parameterized by modular
pathwidth. Specifically, we show that, under the SETH, no algorithm can solve k-Coloring
in O∗

(
(
(

k
bk/2c

)
− ε)mpw

)
. This bound is somewhat weaker than the one in Theorem 11,

which is natural since modular pathwidth is more restrictive than clique-width. As we see in
Section 6, however, this bound is tight. We complete this section by performing the same
reduction with the ETH, rather than the SETH, as a starting point. Under this weaker
assumption we prove that k-Coloring does not admit an algorithm running in no(mpw), even
when k = O(logn), which implies that the problem does not admit an algorithm running
in 2o(k·mpw). This is tight, and also applies to clique-width (Lemma 1). In this way, our
reduction gives an alternative proof that k-Coloring is unlikely to be FPT parameterized
by clique-width, even in instances with a logarithmic number of colors.
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5.1 SETH-based Lower Bound
I Theorem 15. For any k ≥ 3, ε > 0, if there exists an algorithm solving k-coloring in time
O∗
(

(
(

k
bk/2c

)
− ε)mpw

)
, where mpw is the graph’s modular pathwidth, then the SETH is false.

As in Theorem 11, we begin our reduction from a q-CSP-B instance, where the alphabet
size B is equal to the base of the exponential in our lower bound. The intuition will be
that the “important” vertices of the bags in a modular tree decomposition of our graph will
correspond to classes of bk/2c true twin vertices. The set of bk/2c colors used to color them
will encode the value of one variable of the original instance.

Construction. We are given some k ≥ 3, ε > 0. Let B =
(

k
bk/2c

)
. Let q be the smallest

integer such that n-variable q-CSP-B does not admit an O∗ ((B − ε)n) algorithm. Consider
an arbitrary n-variable instance of q-CSP-B, call it φ. We use the existence of the supposed
algorithm to obtain an O∗ ((B − ε)n) algorithm that decides φ, contradicting the SETH.

As in Theorem 11 we define a one-to-one translation function T . This time, when T

is given as input a value v ∈ {1, . . . , B}, it returns a subset of {1, . . . , k} of cardinality
bk/2c. Let X = {x1, . . . , xn} be the set of the n variables of the q-CSP-B instance and
C = {c0, . . . , cm−1} the set of its m constraints. We construct our graph G(φ) as follows,
where if we don’t specify a list for a vertex its list is {1, . . . , k}:
1. For each variable i ∈ {1, . . . , n} we construct a clique Vi on bk/2c vertices.
2. For each j ∈ {0, . . . ,m− 1}, let S be the set of satisfying assignments of the constraint cj .

We construct an independent set Sj with one vertex for each element of S. We construct
an OR(Sj) gadget on the set Sj .

3. For each j ∈ {0, . . . ,m− 1}, each satisfying assignment a for the constraint cj , and each
variable xi appearing in cj we do the following:
a. We construct a set U j,a

i of dk/2e vertices.
b. Suppose a assigns value v to xi. For each color c ∈ {1, . . . , k} \ T (v) we select a vertex

of U j,a
i . We construct a (1→ c)-implication gadget from the vertex representing a in

Sj to this vertex of U j,a
i .

c. We connect all vertices of U j,a
i with all vertices of Vi.

I Lemma 16. If φ is a satisfiable q-CSP-B instance, then G(φ) admits a proper list coloring.

I Lemma 17. If G(φ) admits a proper list coloring, then φ is a satisfiable q-CSP-B instance.

I Lemma 18. G(φ) can be constructed in time polynomial in |φ|, and mpw(G) ≤ n+O(1).

5.2 ETH-based Lower Bound
I Theorem 19. If there exists an algorithm that solves k-Coloring on instances with n
vertices and k = O(logn) in time no(mpw), then the ETH is false. As a result, if there is an
algorithm solving k-Coloring in time 2o(k·mpw), then the ETH is false.

6 Algorithms

We present two algorithms establishing that the lower bounds of Sections 4,5 are essentially
tight. Though both algorithms are based on standard techniques, we remark that the
algorithm for clique-width requires some extra effort to obtain a DP of the promised size.

ICALP 2018
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6.1 Clique-width algorithm
Our algorithm is based on standard DP. Its basic idea is that a partial solution is characterized
by the set of colors it uses to color a set of vertices that share the same label. This leads to a
DP table of size (2k − 1)cw, by observing that for any non-empty label set, any viable partial
solution will use at least one color, hence there are 2k − 1 possible subsets of {1, . . . , k} to
consider. To improve this to (2k − 2)cw, which would match the lower bound of Theorem 11
we need a further idea which will allow us to also rule out the set that uses all k colors.

Let t be a node of the binary tree representing the clique-width expression of G, and let
V i

t be the set of vertices that have label i ∈ {1, . . . , cw} in the labeled graph Gt produced by
the sub-expression rooted at t. We will say that V i

t is a live label set if there exists an edge
in G that is incident on a vertex of V i

t and does not appear in Gt. In other words, a label set
is live if there is a join operation that involves its vertices which has not yet appeared in t.
The main observation is that live label sets cannot use all k colors in a valid partial solution,
since then the subsequent join operation will fail. Non-live label sets, on the other hand, are
irrelevant, since if the coloring is already valid for such a set it is guaranteed to remain valid.
Our DP algorithm will therefore keep track of the partial colorings only of live label sets,
and thus produce a DP table of size (2k − 2)cw. In this sense, our DP algorithm is slightly
non-standard, as part of its procedure involves “looking ahead” in the graph to determine if
a label set is live or not. What remains is the problem of implementing the DP so that it
takes time linear in the table size; this is handled using the techniques introduced in [1, 29].

I Theorem 20. There is an algorithm which, given a graph G, an integer k, and a clique-
width expression for G with cw labels decides if G is k-colorable in time O∗

(
(2k − 2)cw).

6.2 Modular Treewidth Algorithm
For modular treewidth, we remark that k-Coloring for this parameter can be seen as an
equivalent version of Multi-Coloring parameterized by treewidth. In Multi-Coloring,
each vertex v has a demand b(v), and we are asked to assign b(v) distinct colors to each
vertex so that neighboring vertices have disjoint colors (see e.g. [2]). In our context, the
vertex representing a class of b true twins corresponds to a vertex with demand b.

I Theorem 21. There is an algorithm which, given a graph G, an integer k, and a modular
tree decomposition of G of width mtw, decides if G is k-colorable in time O∗

((
k
bk/2c

)mtw).
7 Conclusions – Open Problems

We have given tight bounds for k-Coloring parameterized by clique-width, complementing
previously known bounds for treewidth. A natural question is now how robust these bounds
are, especially in the context of approximation. Specifically, does there exist a constant factor
approximation algorithm for k-Coloring running in O∗ ((k − ε)tw) or O∗

(
(2k − 2− ε)cw)?

Current knowledge cannot even rule out the existence of such algorithms with a small additive
approximation error and this area is still largely unexplored.
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