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Abstract
Clocked Type Theory (CloTT) is a type theory for guarded recursion useful for programming
with coinductive types, allowing productivity to be encoded in types, and for reasoning about
advanced programming language features using an abstract form of step-indexing. CloTT has
previously been shown to enjoy a number of syntactic properties including strong normalisation,
canonicity and decidability of type checking. In this paper we present a denotational semantics
for CloTT useful, e.g., for studying future extensions of CloTT with constructions such as path
types.

The main challenge for constructing this model is to model the notion of ticks used in CloTT
for coinductive reasoning about coinductive types. We build on a category previously used to
model guarded recursion, but in this category there is no object of ticks, so tick-assumptions in
a context can not be modelled using standard tools. Instead we show how ticks can be modelled
using adjoint functors, and how to model the tick constant using a semantic substitution.
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1 Introduction

In recent years a number of extensions of Martin-Löf type theory [14] have been proposed
to enhance the expressiveness or usability of the type theory. The most famous of these
is Homotopy Type Theory [18], but other directions include the related Cubical Type
Theory [11], FreshMLTT [17], a type theory with name abstraction based on nominal
sets, and Type Theory in Color [4] for internalising relational parametricity in type theory.
Many of these extensions use denotational semantics to argue for consistency and to inspire
constructions in the language.

This paper is part of a project to extend type theory with guarded recursion [16], a
variant of recursion that uses a modal type operator . (pronounced ‘later’) to preserve
consistency of the logical reading of type theory. The type .A should be read as classifying
data of type A available one time step from now, and comes with a map next : A → .A
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23:2 The Clocks They Are Adjunctions

and a fixed point operator mapping a function f : .A → A to a fixed point for f ◦ next.
This, in combination with guarded recursive types, i.e., types where the recursive variable
is guarded by a ., e.g., Str ≡ N × .Str gives a powerful type theory in which operational
models of combinations of advanced programming language features such as higher-order
store [7] and nondeterminism [8] can be modelled using an abstract form of step-indexing [1].
Combining this with a notion of clocks, indexing the . operator with clock names, and
universal quantification over clocks, one can encode coinduction using guarded recursion,
allowing productivity [12] of coinductive definitions to be encoded in types [2].

The most recent type theory with guarded recursion is Clocked Type Theory (CloTT) [3],
which introduces the notion of ticks on a clock. Ticks are evidence that time has passed
and can be used to unpack elements of type .A to elements of A. In fact, in CloTT, .A is a
special form of function type from ticks to A. The combination of ticks and clocks in CloTT
can be used for coinductive reasoning about coinductive types, by encoding the delayed
substitutions of [9].

Bahr et al [3] have shown that CloTT can be given a reduction semantics satisfying strong
normalisation, confluence and canonicity. This establishes that productivity can indeed be
encoded in types: For a closed term t of stream type, the n’th element can be computed in
finite time. These syntactic results also imply soundness of the type theory. However, these
results have only been established for a core type theory without, e.g., identity types, and
the arguments can be difficult to extend to larger calculi. In particular, we are interested
in extending CloTT with path types as in Guarded Cubical Type Theory [5]. Therefore a
denotational model of CloTT can be useful, and this paper presents such a model.

The work presented here builds on a number of existing models for guarded recursion.
The most basic such, modelling the single clock case, is the topos of trees model [7], in which
a closed type is modelled as a family of sets Xn indexed by natural numbers n, together
with restriction maps of the form Xn+1 → Xn for every n. In other words, a type is a
presheaf over the ordered natural numbers. In this model . is modelled as (.X)0 = 1 and
(.X)n+1 = Xn and guarded recursion reduces to natural number recursion. The guarded
recursive type Str mentioned above can be modelled in the topos of trees as Str(n) = 1×Nn.

Bizjak and Møgelberg [10] recently extended this model to the case of many clocks, using
a category SetT of covariant presheaves over a category T of time objects, i.e., pairs of a finite
set X and a map X → N. In this model, universal quantification over clocks is modelled
by constructing an object in the topos of trees and taking the limit of that. For example,
taking the limits over the object Str gives the usual coinductive type of streams over natural
numbers.

The main challenge when adapting the model of [10] to CloTT is to model ticks, which
were not present in the language modelled in [10]. In particular, how does one model tick
assumptions of the form α : κ in a context, when there appears to be no object of ticks in
the model to be used as the denotation of the clock κ. In this paper we observe that these
assumptions can be modelled using a left adjoint Jκ to the functor Iκ used in [10] to model
.κ the delay modality associated to the clock κ. Precisely we model context extension as
JΓ, α : κK =Jκ JΓK. To clarify what is needed to model ticks, we focus on a fragment of CloTT
called the tick calculus capturing just the interaction of ticks with dependent types. We show
that the tick calculus can be modelled soundly in a category with family [13] (a standard
notion of model for dependent type theory), with an adjunction L a R of endofunctors on
the underlying category, for which the right adjoint lifts to types and terms, and there is a
natural transformation from L to the identity. This appears to be a general pattern seen
also in the model of fresh name abstraction of FreshMLTT [17] and dependent path types
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in cubical type theory [11]. Similarly challenging is how to model the special tick constant
�. Since there is no object of ticks, there is no element corresponding to � either. Still, we
shall see that there exists a semantic substitution of � for a tick variable that can be used to
model application of terms to �.

The paper is organised as follows: The tick calculus and its model theory are introduced
in Section 2. Section 3 introduces CloTT, omitting guarded recursive types and universes,
which we leave for future work. Section 4 presents the basics of the model, in particular the
presheaf category SetT and the adjunction JκaIκ. The presence of ticks in contexts leads
to a non-standard notion of substitutions, and we study the syntax and semantics of these in
Section 5. Sections 6 and 7 extend the model with universal quantification over clocks and �,
respectively. Finally, Section 8 verifies the important clock irrelevance axiom, and Section 9
concludes and discusses future work.

2 A tick calculus

Before introducing CloTT we focus on a fragment to explain the notion of ticks and how to
model these. To motivate ticks, consider the notion of applicative functor from functional
programming [15]: a type former . with maps A→ .A and .(A→ B)→ .A→ .B satisfying
a number of equations that we shall not recall. These maps can be used for programming
with the constructor ., but for reasoning in a dependent type theory, one needs an extension
of these to dependent function types. For example, in guarded recursion one can prove a
theorem X by constructing a map .X → X and taking its fixed point in X. If the theorem is
that a property holds for all elements in a type of guarded streams satisfying Str ≡ N× .Str,
then X will be of the form

∏
(xs : Str) .P . To apply the (essentially coinductive) assumption

of type .
∏

(xs : Str) .P to the tail of a stream, which has type .Str we need an extension of
the applicative functor action.

What should the type of such an extension be? Given a : .A and f : .(
∏

(x : A) .B)
the application of f to a should be something of the form .B[??/x]. If we think of . as a
delay, intuitively a is a value of type A delayed by one time, and the ?? should be the value
delivered by a one time step from now. Ticks are evidence that time has passed, and they
allow us to talk about values delivered in the future.

The tick calculus is the extension of dependent type theory with the following four rules

Γ `
Γ, α:tick `

Γ, α:tick ` A
Γ ` .(α:tick)A

Γ, α:tick ` t : A
Γ ` λ(α:tick)t : .(α:tick)A

Γ ` t : .(α:tick)A
Γ, β:tick,Γ′ ` t [β] : A[β/α]

An assumption of the form α:tick in a context is an assumption that one time step has
passed, and α is the evidence of this. Variables on the right-hand side of such an assumption
should be thought of as arriving one time step later than those on the left. Ticks can be
abstracted in terms and types, so that the type constructor . now comes with evidence that
time has passed that can be used in its scope. The type .(α:tick)A can be thought of as a
form of dependent function type over ticks, which we abbreviate to .A if α does not occur
free in A. The elimination rule states that if a term t can be typed as .(α:tick)A before the
arrival of tick β, t can be opened using β to give something of type A[β/α]. Note that the
causality restriction in the typing rule prevents a term like λx.λ(α:tick).x [α] [α] : . .A→ .A

being well typed; a tick can only be used to unpack the same term once. The context Γ′
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23:4 The Clocks They Are Adjunctions

in the elimination rule ensures that typing rules are closed under weakening, also for ticks.
Note that the clock object tick is not a type.

The equality theory is likewise extended with the usual β and η rules:

λ(α:tick)t [β] = t[β/α] λ(α:tick)(t [α]) = t

As stated, the tick calculus should be understood as an extension of standard dependent
type theory. In particular one can add dependent sums and function types with standard
rules. Variables can be introduced from anywhere in the context, also past ticks.

We can now type the dependent applicative structure as

λ(x:A)λ(α:tick)x :A→ .A

λfλyλ(α:tick)f [α](y [α]) : . (
∏

(x : A) .B)→
∏

(y : .A) . . (α:tick).B[y [α]/x]

For a small example on how ticks in combination with the fixed point operator dfix :
(.X → X) → .X can be used to reason about guarded recursive data, let Str ≡ N × .Str
be the type of guarded recursive streams mentioned above, and suppose x:N ` P (x) is a
family to be thought of as a predicate on N (where x :: xs is the pairing of x and xs). A
lifting of P to streams would be another guarded recursive type y:Str ` P̂ (y) satisfying
P̂ (x :: xs) ≡ P (x)× .(α:tick)P̂ (xs [α]). If p : Π(x:N)P (x) is a proof of P we would expect
that also Π(y:Str)P̂ (y) can be proved, and indeed this can be done as follows. Consider first

f : .(Π(y:Str)P̂ (y))→ Π(y:Str)P̂ (y)

f q (x :: xs)def= p(x) :: λ(α:tick)q [α](xs [α])

Then f(dfix(f)) has the desired type.
More generally, ticks can be used to encode [3] the delayed substitutions of [9], which have

been used to reason coinductively about coinductive data. For more examples of reasoning
using these see [9]. For reasons of space, we will not model general guarded recursive types
in this paper, but see Section 4 for how to model the types used above.

2.1 Modelling ticks using adjunctions
We now describe a notion of model for the tick calculus. It is based on the notion of category
with families (CwF) [13], which is a standard notion of model of dependent type theory.
Recall that a CwF is a pair (C, T ) such that C is a category with a distinguished terminal
object and T : Cop → Fam(Set) is a functor together with a comprehension map to be recalled
below. The functor T associates to every object Γ in C a map T (Γ) : Tm(Γ)→ Ty(Γ) and to
every morphism γ : ∆→ Γ maps Ty(γ) : Ty(Γ)→ Ty(∆) and Tm(γ) : Tm(Γ)→ Tm(∆) such
that T (∆) ◦Tm(γ) = Ty(γ) ◦ T (Γ). Following standard conventions, we write Γ ` A to mean
A ∈ Ty(Γ) and Γ ` t : A to mean t ∈ T (Γ)−1(A), and we write ∆ ` A[γ] for Ty(γ)(A) when
Γ ` A, and likewise ∆ ` t[γ] : A[γ] for Tm(γ)(t) when Γ ` t : A. We refer to the objects of C
as contexts, morphisms as substitutions, elements of Ty(Γ) as types and elements of Tm(Γ)
as terms.

Comprehension associates to each Γ ` A a context Γ.A, a substitution pA : Γ.A→ Γ and
a term Γ.A ` qA : A[pA], such that for every γ : ∆ → Γ, and ∆ ` t : A[γ] there exists a
unique substitution 〈γ, t〉 : ∆→ Γ.A such that pA ◦ 〈γ, t〉 = γ and qA[〈γ, t〉] = t.

To model the tick calculus we need an operation L modelling the extension of a context
with a tick, plus an operation R modelling .. In the simply typed setting, R would be a
right adjoint to context extension, but for dependent types this is not quite so, since these
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operations work on different objects (contexts and types respectively). In the model we
consider in this paper, the right adjoint does exist as an operation on contexts, but also
extends to types and terms in the sense of the following definition.

I Definition 1. Let (C, T ) be a CwF and let R : C → C be a functor. An extension of R to
types and terms is a pair of operations on types and term presented here in the form of rules

Γ ` A
RΓ ` RA

Γ ` t : A
RΓ ` Rt : RA

commuting with substitutions in the sense that (RA)[Rγ] = R(A[γ]) and (Rt)[Rγ] = R(t[γ])
hold for all substitutions γ, and commuting with comprehension in the sense that there exists
an operation associating to each Γ ` A a morphism ζΓ,A : RΓ.RA→ R(Γ.A) in C inverse to
〈RpA,RqA〉. A CwF with adjunction is a pair of adjoint endofunctors L a R : C → C with an
extension of R to types and terms.

Given a CwF with adjunction, one can define an operation mapping types LΓ ` A to
types Γ ` RΓA defined as RΓA = (RA)[η] where η is the unit of the adjunction.

I Lemma 2. There is a bijective correspondence between terms LΓ ` a : A and terms
Γ ` b : RΓA for which we write (−) for both directions where Γ ` a : RΓA is given by
a = (Ra)[η] and LΓ ` b : A is given by b = qA[ε ◦ L(ζLΓ,A ◦ 〈η, b〉)]. Moreover, if γ : ∆→ Γ,
LΓ ` a : A and Γ ` b : RΓA then

(RΓA)[γ] = R∆(A[Lγ]) a[Lγ] = a[γ] b[γ] = b[Lγ]

2.2 Interpretation
The notion of CwF with adjunction is almost sufficient for modelling the tick calculus, but
to interpret tick weakening, we will assume given a natural transformation pL : L → idC.
Defining

JΓ, α : tick `K = LJΓK

pL allows us to define a context projection pΓ′ : JΓ,Γ′ `K→ JΓ `K by induction on Γ′ using
pL in the case of tick variables. We can then define the rest of the interpretation as

JΓ, x : A,Γ′ ` x : AK = qA[pΓ′ ] JΓ ` .(α:tick)AK = RJΓKJAK

JΓ ` λ(α:tick)tK = JtK JΓ, α′:tick,Γ′ ` t [α′]K = JtK[pJΓ′K]

I Proposition 3. The above interpretation of the tick calculus into a CwF with adjunction
and tick weakening pL is sound.

3 Clocked Type Theory

Clocked Type Theory (CloTT) is an extension of the tick calculus with guarded recursion
and multiple clocks. Rather than having a global notion of time as in the tick calculus, ticks
are associated with clocks and clocks can be assumed and universally quantified. Judgements
have a separate context of clock variables ∆, for example, the typing judgement has the
form Γ `∆ t : A, where ∆ is a set of clock variables κ1, . . . , κn. The clock context can be
thought of as a context of assumptions of the form κ1 : Clock, . . . , κn : Clock that appear to
the left of the assumptions of Γ, except that Clock is not a type. There are no operations for
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23:6 The Clocks They Are Adjunctions

Type formation rules

Γ, α : κ `∆ A type κ ∈ ∆
Γ `∆ . (α : κ).A type

Γ `∆,κ A type Γ `∆

Γ `∆ ∀κ.A type

Typing rules

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A[κ′/κ]
Γ, α : κ `∆ t : A κ ∈ ∆
Γ `∆ λ(α : κ).t : . (α : κ).A

Γ `∆ t : . (α : κ).A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]
Γ `∆,κ t : . (α : κ).A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A[κ′/κ] [�/α]

Γ `∆ t : .κA→ A

Γ `∆ dfixκ t : .κA

Judgemental equality

(Λκ.t)[κ′] ≡ t[κ/κ′] (Λκ.t[κ]) ≡ t (λ(α′ : κ).t) [α] ≡ t [α/α′]
λ(α : κ).(t [α]) ≡ t (dfixκ t) [�] ≡ t (dfixκ t)

Figure 1 Selected typing and judgemental equality rules of Clocked Type Theory.

forming clocks, only clock variables. It is often convenient to have a single clock constant κ0
and this can be added by working in a context of a single clock variable.

The rules for typing judgements and judgemental equality are given in Figure 1. These
should be seen as an extension of a dependent type theory with dependent function and
sum types, as well as extensional identity types. The rules for these are completely standard
(ignoring the clock context), and thus are omitted from the figure. We write ≡ for judgemental
equality and t =A u for identity types. The model will also model the identity reflection rule

Γ `∆ p : t =A u

Γ `∆ t ≡ u : A

of extensional type theory.
The guarded fixed point operator dfix is useful in combination with guarded recursive

types. Suppose for example that we have a type of natural numbers N and a type of
guarded recursive streams Strκ satisfying Strκ ≡ N × .κStrκ. One can then use dfix for
recursive programming with guarded streams, e.g., when defining a constant stream of zeros
as dfixκ(λx. (0, x)). The type of dfix ensures that only productive recursive definitions are
typeable, e.g., dfixκ(λx.x) is not.

The tick constant � gives a way to execute a delayed computation t of type .κA to
compute a value of type A. In particular, if t is a fixed point, application to the tick constant
unfolds the fixed point once. This explains the need to name ticks in CloTT: substitution of
� for a tick variable α in a term allows for all fixed points applied to α in the term to be
unfolded. In particular, the names of ticks are crucial for the strong normalisation result for
CloTT in [3].
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To ensure productivity, application of � must be restricted. In particular a term such as
dfixκ(λx : Strκ.x [�]) should not be well typed. The typing rule for application to the tick
constant ensures this by assuming that the clock κ associated to the delay is not free in the
context of the term t. For example, the rule

Γ `∆,κ t : . (α : κ).A Γ `∆

Γ `∆,κ t [�] : A [�/α]

is admissible, which can be proved using weakening lemma for the clock variable context.
This rule, however, is not closed under variable substitution, which is the motivation for
the more general rule of Figure 1. The typing rule is a bit unusual, in that it involves
substitution in the term in the conclusion. We shall see in Section 7.1 that this causes extra
proof obligations for welldefinedness of the denotational semantics.

Universal quantification over clocks allow for coinductive types to be encoded using
guarded recursive types [2]. For example Str def= ∀κ.Strκ is a coinductive type of streams. The
head and tail maps hd : Str→ N and tl : Str→ Str can be defined as

hd(xs) def= π1(xs[κ0]) tl(xs) def= Λκ.((π2(xs[κ])) [�])

using the clock constant κ0.
Finally we recall the clock irrelevance axiom

Γ `∆ t : ∀κ.A Γ `∆ A type
Γ `∆ cirrκt : ∀κ′.∀κ′′.t[κ′] =A t[κ′′] (1)

crucial for correctness of the encoding of coinductive types [2]. Note that the hypothesis
implies that κ is not free in A. This rule can be used to prove that ∀κ.A is isomorphic to A
if κ is not free in A. Likewise the tick irrelevance axiom

Γ `∆ t : .κA
tirrκt : . (α : κ).. (α′ : κ).t [α] =A t [α′] (2)

states that the identity of ticks is irrelevant for the equality theory, despite being crucial for
the reduction semantics. Tick irrelevance implies fixed point unfolding

Γ `∆,κ f : .κA→ A Γ `∆ κ′ ∈ ∆
Γ `∆ pfixκ

′
f [κ′/κ] : . (α : κ).(dfixκ

′
f [κ′/κ]) [α] =A (f(dfixκ

′
f))[κ′/κ]

The type theory CloTT as defined in [3] also has guarded recursive types and a universe.
We leave these for future work, see Section 9.

4 Presheaf semantics

The setting for the denotational semantics of CloTT is a category of covariant presheaves
over a category T of time objects. This category has previously been used to give a model of
GDTT [10].

We will assume given a countably infinite set CV of (semantic) clock variables, for which
we use λ, λ′, . . . to range over. A time object is a pair (Θ;ϑ) where Θ is a finite subset of CV
and ϑ : Θ→ N is a map giving the number of ticks left on each clock in Θ. We will write the
finite sets Θ as lists writing e.g., Θ, λ for Θ∪{λ} and ϑ[λ 7→ n] for the extension of ϑ to Θ, λ,
or indeed for the update of ϑ, if ϑ is already defined on λ. A morphism (Θ;ϑ)→ (Θ′;ϑ′) is a
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23:8 The Clocks They Are Adjunctions

function τ : Θ→ Θ′ such that ϑ′τ ≤ ϑ in the pointwise order. The inequality allows for time
to pass in a morphism, but morphisms can also synchronise clocks in Θ by mapping them
to the same clock in Θ′, or introduce new clocks if τ is not surjective. Define GR to be the
category SetT of covariant presheaves on T. The topos of trees can be seen as a restriction of
this where time objects always have a single clock.

The category GR contains a special object of clocks, given by the first projection
Clk(Θ;ϑ) = Θ. If ∆ is a set, one can form the object Clk∆ as Clk∆(Θ;ϑ) = Θ∆. Let
T∆ be the category of elements of Clk∆, i.e., the objects are triples (Θ;ϑ; f) where (Θ;ϑ) ∈ T
and f : ∆→ Θ and a morphism τ : (Θ;ϑ; f)→ (Θ′;ϑ′; f ′) is a morphism τ : (Θ;ϑ)→ (Θ′;ϑ′)
such that τ ◦ f = f ′. A clock context ∆ will be interpreted as Clk∆ and contexts, types
and terms in clock context ∆ will be modelled in the category GR[∆] def= SetT∆ of covariant
presheaves over T∆. If F is a covariant presheaf over GR[∆] and τ : (Θ;ϑ; f)→ (Θ′;ϑ′; f ′)
and x ∈ F (Θ;ϑ; f) we will write τ · x for F (τ)(x) ∈ F (Θ′;ϑ′; f ′).

To describe the model of CloTT, we start by fixing a clock context ∆ and modelling the
fragment of CloTT excluding universal quantification over clocks and the tick constant �.
The resulting fragment is a version of the tick calculus with one notion of tick for each clock
κ in ∆. To model this, we need the structure of a CwF with adjunction on GR[∆] for each κ
in ∆. Recall that, like any presheaf category, GR[∆] can be equipped with the structure of a
CwF where contexts are objects, types in context Γ are presheaves over the elements of Γ
and terms are sections. Precisely, a type over Γ is a mapping associating a set A(γ) to each
γ ∈ Γ(Θ;ϑ; f) and to each τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′) a mapping τ · (−) : A(γ) → A(τ · γ)
such that id ·x = x and (ρτ) ·x = ρ · (τ ·x) for all x, τ and ρ. A term is a mapping associating
to each γ an element t(γ) ∈ A(γ) such that t(τ · γ) = τ · t(γ). We often make the underlying
T∆ object explicit writing t(Θ;ϑ;f)(γ).

As an example of a model of a type, recall the type of guarded streams satisfying
Strκ ≡ N×.Strκ from Section 3. This is a closed type in a clock context ∆ (assuming κ ∈ ∆),
and so will be interpreted as a presheaf in GR[∆] defined as JStrκK(Θ;ϑ; f) = Nϑ(f(κ))+1×{∗}.
We will assume that the products in this associate to the right, so that this is the type of tuples
of the form (nϑ(f(κ)), (. . . , (n0, ∗)) . . . ). This is needed to model the equality Strκ ≡ N×.Strκ,
rather than just an isomorphism of types. Given a predicate x:N ` P , we can lift it to a
predicate y : Strκ ` P̂ satisfying P̂ (x : xs) ≡ P (x) × . (α : κ).P̂ (xs [α]) as in Section 2, by
defining

JP̂ K(Θ;ϑ;f)(nϑ(f(κ)), (. . . , (n0, ∗)) . . . ) = {(xϑ(f(κ)), (. . . , (x0, ∗)) . . . ) | ∀i.xi ∈ JP K(Θ;ϑ;f)(ni)}

It is a simple calculation (using the definitions below) that these interpretations model the
type equalities mentioned above.

4.1 Adjunction structure on GR[∆]
For the adjunction, recall that in the topos of trees the functor I is defined as (I F )(n+1) =
Fn and (I F )(0) = {∗}. This has a left adjoint J defined as (J F )n = F (n+ 1). The right
adjoint generalises in a straight forward way to the multiclock setting of CloTT: If F is in
GR[∆], define

(Iκ F )(Θ;ϑ; f) =
{
F (Θ;ϑ[f(κ)−]; f) ϑ(f(κ)) > 0
{∗} otherwise

where ϑ[f(κ)−](f(κ)) = ϑ(f(κ))− 1 and ϑ[f(κ)−](λ) = ϑ(λ) for λ 6= f(κ). This is the same
definition as used in the GDTT model of [10].

I Lemma 4. The functor Iκ extends to types and terms.
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Proof. We just give the definitions. For γ ∈ (Iκ JΓK)(Θ;ϑ; f) define

(Iκ JAK)(Θ;ϑ;f)(γ) =
{
{∗} ϑ(f(κ)) = 0
JAK(Θ;ϑ[f(κ)−];f)(γ) otherwise

The case for terms is similar.

The isomorphism ζΓ,A is given by ζΓ,A(Θ;ϑ;f) =
{
〈∗, ∗〉 7→ ∗ ϑ(f(κ)) = 0
id otherwise

J

At first sight it would seem that one can define a left adjoint to the above functor given
by (Jκ F )(Θ;ϑ; f) = F (Θ;ϑ[f(κ)+]; f), where ϑ[f(κ)+] is defined similarly to ϑ[f(κ)−].
Unfortunately, Jκ F so described is not a presheaf because it has no well-defined ac-
tion on maps since a map τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′) does not necessarily induce a
map (Θ;ϑ[f(κ)+]; f) → (Θ′;ϑ′[f ′(κ)+]; f ′): If τ(f(κ)) = τ(λ) there is no guarantee that
ϑ′[f ′(κ)+](τ(λ)) ≤ ϑ[f(κ)+](λ).

To get the correct description of the left adjoint consider the set f−1(f(κ)) ⊆ ∆ of
syntactic clocks synchronised with κ by f . Given a morphism τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′),
more clocks can be synchronised with κ by f ′ than f , but never fewer. If we think of time as
flowing in the direction of morphisms, the left adjoint must take into account all the possible
ways that κ could have been synchronised with fewer syntactic clocks “in the past”. Such a
past is given by a subset X ⊂ f−1(f(κ)) such that κ ∈ X.

I Lemma 5. The functor Iκ has a left adjoint Jκ given by

Jκ F (Θ;ϑ; f) =
∐

κ∈X⊂f−1(f(κ))

F (Θ;ϑ; f)[X,κ+]

where (Θ;ϑ; f)[X,κ+] = (Θ,#Θ;ϑ[#Θ 7→ ϑ(f(κ)) + 1]; f [X 7→ #Θ]) for #Θ a chosen clock
name fresh for Θ.

Finally, the projection pJκ :Jκ→ id maps an element (X, γ) in Jκ F (Θ;ϑ; f) to χ · γ
where

χ : (Θ;ϑ; f)[X,κ+]→ (Θ;ϑ; f)

is defined as χ(#Θ) = f(κ) and χ(λ) = λ for λ ∈ Θ. Collectively, Lemmas 4 and 5 together
with the projection pJκ state that for each κ, GR[∆] carries the structure of a model of the
tick calculus. This is enough to model the tick abstractions and applications of CloTT.

The adjoint correspondent pJκ : id→Iκ to pJκ maps an element γ ∈ F (Θ;ϑ; f) to its
restriction in F (Θ;ϑ[f(κ)−]; f). This is the map referred to as next in [10]. Moreover, a
simple calculation shows that the interpretation of .κA, i.e., . (α : κ).A for α not free in A,
is the same as in [10], namely

JΓ `∆ .κA typeK(Θ;ϑ;f)(γ) = JAK(Θ;ϑ[f(κ)−];f)(γ|(Θ;ϑ[f(κ)−];f))

We can thus define the interpretation of dfix as in [10] by induction on ϑ(f(κ)):

Jdfix tK(Θ;ϑ;f)(γ) =
{
∗ ϑ(f(κ)) = 0
Jt (dfix t)K(Θ;ϑ[f(κ)−];f)(γ|(Θ;ϑ[f(κ)−];f)) Otherwise

Finally we note soundness of the tick irrelevance axiom (2).

I Proposition 6. If Γ `∆ t : .κA then

JΓ, α : κ, α′ : κ `∆ t [α] : AK = JΓ, α : κ, α′ : κ `∆ t [α′] : AK
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5 Substitutions

Having described the interpretation of the fragment of CloTT that lives within a fixed clock
context ∆ it remains to describe the interpretation of the universal quantification over clocks
and of the tick constant �. Quantification over clocks can be seen as a dependent product
over a type of clocks, and should therefore be modelled as a right adjoint to weakening
in the clock context. Weakening is an example of a substitution and, as we shall see, the
tick constant � will also be modelled using a form of substitution. We therefore first study
substitutions, which are non-standard in CloTT because of the two contexts, and because of
the unusual typing rules for ticks.

5.1 Syntactic substitutions

A syntactic substitution from Γ `∆ to Γ′ `∆′ is a pair (ν, σ) of a substitution ν of clocks for
clocks and a substitution σ of terms for variables and ticks for ticks variables. Substitutions
are formed according to the following rules.

If ν : ∆′ → ∆ is a map of sets, then (ν, ·) : Γ `∆→ · `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ and Γ `∆ t : A (ν, σ) then (ν, σ[x 7→ t]) : Γ `∆→ Γ′, x : A `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ and Γ, α : ν(κ),Γ′′ `∆ and Γ′, β : κ `∆′ are welformed then
(ν, σ[β 7→ α]) : Γ, α : ν(κ),Γ′′ `∆→ Γ′, β : κ `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ , κ /∈ ∆′ and κ′ ∈ ∆, then

(ν[κ 7→ ν(κ′)], σ[α 7→ �]) : Γ `∆→ Γ′, α : κ `∆′,κ

Here A (ν, σ) is the result of substituting A along (ν, σ) which is defined in the standard way.

5.2 Semantic substitutions

The clock substitution ν gives rise to a functor T∆ → T∆′ mapping an object (Θ;ϑ; f) to
(Θ;ϑ; fν), and this induces a functor ν∗ : GR[∆′]→ GR[∆] by (ν∗F )(Θ;ϑ; f) = F (Θ;ϑ; fν).
This functor extends to a morphism of CwFs [13], in particular it maps a type A in context
Γ in the CwF structure of GR[∆′] to a type ν∗A in context ν∗Γ the CwF structure of GR[∆],
and likewise for terms. For example, (ν∗A)(γ) for γ ∈ ν∗Γ(Θ;ϑ; f) = Γ(Θ;ϑ; fν) is defined
as Aγ. Moreover, this map commutes on the nose with comprehension and substitution. For
example, if A is a type in context Γ in GR[∆′] and γ : Γ′ → Γ, then (ν∗A)[ν∗γ] = ν∗(A[γ]).
Moreover, it commutes with I in the following sense.

I Lemma 7. If ν : ∆′ → ∆ and κ ∈ ∆′ then ν∗◦ Iκ=Iν(κ) ◦ν∗.

The interpretation of a substitution (ν, σ) is a morphism

J(ν, σ)K : JΓ `∆K→ ν∗JΓ `′∆′K

in GR[∆], which we will define below. But first we state the substitution lemma, which
must be proved by induction on terms and types simultaneously with the definition of the
interpretation, as is standard for models of dependent type theory.

I Lemma 8. Let (ν, σ) : Γ `∆→ Γ′ `∆′ be a substitution and let Γ′ `∆′ J be a judgement of
a wellformed type or a typing judgement. Then JJ (ν, σ)K = (ν∗JJK)[J(ν, σ)K].
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The main difficulty for defining the interpretation of substitutions is that the operator
Jκ does not commute with clock substitutions in the sense that ν∗(Jκ Γ) is not necessarily
equal to Jν(κ) (ν∗Γ). However, we can define a map in the relevant direction:

eκ,νΓ = ε
ν(κ)
ν∗(JκΓ)◦ J

ν(κ) ν∗(ηκΓ) :Jν(κ) (ν∗Γ)→ ν∗(Jκ Γ)

where ηκΓ : Γ→IκJκ Γ is the unit of the adjunction and

ε
ν(κ)
ν∗(JκΓ) :Jν(κ)Iν(κ) ν∗(Jκ Γ)→ ν∗(Jκ Γ)

is the counit. The composition type checks since ν∗ Iκ=Iν(κ) ν∗.
The map eκ,ν has a simple description in the model: eκ,νΓ maps an element (X, γ) in

Jν(κ) (ν∗Γ)(Θ;ϑ; f)

=
∐

ν(k)∈X
f(X)=f(ν(κ))

(ν∗Γ)(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f [X 7→ #Θ])

=
∐

ν(k)∈X
f(X)=f(ν(κ))

Γ(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f ◦ ν[ν−1X 7→ #Θ])

to (ν−1X, γ) in the set ν∗(Jκ Γ)(Θ;ϑ; f) which equals

Jκ Γ(Θ;ϑ; f ◦ ν) =
∐
κ∈Y

f(ν(Y ))=f(ν(κ))

Γ(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f ◦ ν[Y 7→ #Θ])

The interpretation of substitutions is defined as

J·K = x 7→ ?

J(ν, σ[x 7→ t])K = 〈J(ν, σ)K, JtK〉

J(ν, σ[β 7→ α])K = eκJΓ′K◦ J
ν(κ) J(ν, σ)K ◦ pΓ′′

J(ν[κ 7→ ν(κ′)], σ[α 7→ �])K = ν∗J([κ 7→ κ′], [α 7→ �])K ◦ J(ν, σ)K

where we have assumed the types as in the rules for forming substitutions and pΓ′′ is the
context projection defined as in Section 2.2. The last case uses J([κ 7→ κ′], [α 7→ �])K which
will be defined in Section 7 below.

The rest of this section is a sketch proof of the substitution lemma for the fragment of
CloTT modelled so far, i.e., excluding quantification over clocks and �. As we extend the
interpretation we will also extend the proof of the substitution lemma.

The proof is by induction over judgements and is simultaneous with the definition of the
interpretation of substitutions. The cases of standard dependent type theory (dependent
functions and sums, identity types) can be essentially reduced to the standard proof of the
substitution lemma for dependent type theory in presheaf models as follows (although the
non-standard notion of substitution requires some new lemmas). Since GR[∆] is the object of
presheaves over T∆, the category of elements of J∆K = Clk∆, given a context Γ `∆ one can
form the comprehension J∆K.JΓK as an object of GR. Types and terms in context J∆K.JΓK in
the CwF structure associated to GR are then in bijective correspondence with those over JΓK
in the CwF structure of GR[∆]. A substitution (ν, σ) : Γ `∆→ Γ′ `∆′ induces a morphism
J∆K.JΓK→ J∆′K.JΓ′K in GR and the substitution defined above corresponds to substitution
along this map. Thus the interpretation of the standard type theoretic constructions are
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23:12 The Clocks They Are Adjunctions

the same as the standard ones in the presheaf model GR, and the corresponding cases of the
substitution lemma can be proved similarly to the standard proof of the substitution lemma
for presheaf models of type theory.

The cases corresponding to the constructions from the tick calculus follow from the
following two equations.

Iν(κ) eκ,ν ◦ ην(κ)
ν∗ = ν∗(ηκ) : ν∗ →Iν(κ) ν∗ Jκ= ν∗ IκJκ (3)

ν∗(εκ) ◦ eκ,νIκ = ε
ν(κ)
ν∗ :Jν(κ) ν∗ Iκ=Jν(κ)Iν(κ) ν∗ → ν∗ (4)

For example, the case of . (α : κ).A can be proved as follows (writing JσK for J(ν, σ)K)

ν∗JΓ′ `∆′ . (α : κ).AK[JσK] = ν∗
(

(Iκ JΓ′, α : κ `∆′ AK) [ηκJΓ′K]
)

[JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[ν∗ηκJΓ′K][JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[Iν(κ) eκ ◦ ην(κ)

ν∗JΓ′K ◦ JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[Iν(κ) (eκ◦ Jν(κ) JσK) ◦ ην(κ)

ν∗JΓ′K]

=
(
Iν(κ) (ν∗JΓ′, α : κ `∆′ AK) [eκ◦ Jν(κ) JσK]

)
[ην(κ)
ν∗JΓ′K]

=
(
Iν(κ) JΓ, β : ν(κ) `∆ A (ν, σ[α 7→ β])K

)
[ην(κ)
ν∗JΓ′K]

= JΓ `∆ . (β : ν(κ)).(A (ν, σ[α 7→ β]))K
= JΓ `∆ (. (α : κ).A) (ν, σ)K

6 Interpretation of clock quantification

Universal quantification over clocks should be modelled as a right adjoint to the semantic
correspondent to clock weakening. Syntactically, clock weakening from context Γ `∆ to
Γ `∆,κ corresponds to the substitution (i, idΓ), where i is the inclusion of ∆ into ∆, κ. Recall
from Section 5 that types and terms in context JΓ `∆K in the CwF structure of GR[∆]
correspond to types and terms in context J∆K.JΓ `∆K in GR, and recall that J∆K = Clk∆.
By the substitution lemma, clock weakening from context Γ `∆ to Γ `∆,κ corresponds to
substitution along the composition

J∆, κK.JΓ `∆,κK
J∆,κK.J(i,idΓ)K−−−−−−−−−→ J∆, κK.i∗JΓ `∆K→ J∆K.JΓ `∆K

All such substitutions have right adjoints, but to get a simple description of this (and to
satisfy the substitution lemma), we will give a concrete description which can be briefly
described as follows: To model ∀κ.A, open a fresh semantic clock #, map κ to # and take
the limit of JAK as # ranges over all natural numbers. To type this description we need the
following lemma.

I Lemma 9. Let (Θ;ϑ; f) be an object of GR[∆], let # be fresh for Θ and let ι : Θ→ Θ,# be
the inclusion. The component of J(i, idΓ)K at (Θ,#;ϑ[# 7→ n]; f [κ 7→ #]) is an isomorphism

JΓ `∆,κK(Θ,#;ϑ[#7→n];f [κ7→#]) → i∗JΓ `∆K(Θ,#;ϑ[#7→n];f [κ7→#]) = JΓ `∆K(Θ,#;ϑ[#7→n];ιf)

If κ′ ∈ ∆, the inverse to J(i, idΓ)K(Θ,#;ϑ[# 7→n];f [κ 7→#]) is given by the component of

i∗(J(id∆[κ 7→ κ′], idΓ)K) : i∗JΓ `∆K→ i∗(id∆[κ 7→ κ′])∗JΓ `∆,κK = JΓ `∆,κK

at (Θ,#;ϑ[# 7→ n]; f [κ 7→ #])).
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We can now define the interpretation of universal quantification over clocks:

JΓ `∆ ∀κ.A typeK(Θ;ϑ;f)(γ)def=

{(ωn) ∈
∏
n∈N

JΓ `∆,κ A typeK(Θ,#;ϑ[#7→n];f [κ7→#])(J(i, idΓ)K−1(ι · γ)) | ∀n.ωn = (ωn+1)|n}

Here, by assumption γ ∈ JΓ `∆K(Θ;ϑ;f)(γ) and so

ι · γ ∈ JΓ `∆K(Θ,#;ϑ[#7→n];ιf) = i∗JΓ `∆K(Θ,#;ϑ[#7→n];f [κ7→#])

which means that J(i, idΓ)K−1(ι · γ) ∈ JΓ `∆,κK(Θ,#;ϑ[# 7→n];f [κ7→#]) and thus the type of each
ωn is a welldefined set. In the condition for the families, (ωn+1)|n is the restriction of ωn+1
along the map (Θ,#;ϑ[# 7→ n+ 1]; f [κ 7→ #])→ (Θ,#;ϑ[# 7→ n]; f [κ 7→ #]) given by the
identity on Θ,#. For the interpretation of terms define

JΓ `∆ Λκ.t : ∀κ.AK(Θ;ϑ;f) = (JΓ `∆,κ t : AK(Θ,#;ϑ[#7→n];ιf)(J(i, idΓ)K−1(ι · γ)))n
JΓ `∆ t[κ′] : A[κ′/κ]K(Θ;ϑ;f) = [# 7→ f(κ′)] · (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))ϑ(f(κ′))

To see that the latter type checks, note first that

JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))ϑ(f(κ′)) ∈ JΓ `∆,κ A typeK(Θ,#;ϑ[# 7→ϑ(f(κ′))];f [κ 7→#])(J(i, idΓ)K−1(ι · γ))

and since [# 7→ f(κ′)] : (Θ,#;ϑ[# 7→ ϑ(f(κ′))]; f [κ 7→ #])→ (Θ;ϑ; f [κ 7→ f(κ′)]), the right
hand side of the definition is in

JΓ `∆,κ A typeK(Θ;ϑ;f [κ7→f(κ′)])([# 7→ f(κ′)] · J(i, idΓ)K−1(ι · γ))

=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)([# 7→ f(κ′)] · J(i, idΓ)K−1(ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)([# 7→ f(κ′)] · J(id∆[κ 7→ κ′], idΓ)K(ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)(J(id∆[κ 7→ κ′], idΓ)K([# 7→ f(κ′)] · ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)(J(id∆[κ 7→ κ′], idΓ)K(γ))
=JΓ `∆ A[κ′/κ] typeK(Θ;ϑ;f)(γ)

where the last equality is by the substitution lemma.

I Lemma 10. The β and η rules for universal quantification over clocks are sound for the
interpretation.

7 Interpretation of �

To interpret the rule for the tick constant �, we define a substitution

J([κ 7→ κ′], [α 7→ �])K : JΓ `∆K→ [κ 7→ κ′]∗JΓ, α : κ `∆,κK

for every context Γ `∆ with κ /∈ ∆. The interpretation of application to � can then be
defined as

JΓ `∆ t[κ′/κ] [�] : A[κ′/κ][�/α]K = ([κ 7→ κ′]∗JΓ, α : κ `∆,κ t : AK)[J([κ 7→ κ′], [α 7→ �])K]

which has type

([κ 7→ κ′]∗JΓ, α : κ `∆,κ A typeK)[J([κ 7→ κ′], [α 7→ �])K]
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which equals the required JΓ, α : κ `∆,κ A[κ′/κ][�/α] typeK by the substitution lemma.
Suppose γ ∈ JΓ `∆K(Θ;ϑ;f). We define

J([κ 7→ κ′], [α 7→ �])K(γ) def=
(
{κ}, J(i, idΓ)K−1(ι · γ))

)
where ι : (Θ;ϑ; f) → (Θ,#;ϑ[# 7→ n+ 1]; f) is the inclusion for n = ϑ(f(κ′)). We must
show that this defines an element of [κ 7→ κ′]∗JΓ, α : κ `∆,κK(Θ;ϑ;f). To see this, note first
that

ι · γ ∈ JΓ `∆K(Θ,#;ϑ[# 7→n+1];f) = i∗JΓ `∆K(Θ,#;ϑ[# 7→n+1];f [κ 7→#])

so by Lemma 9,

J(i, idΓ)K−1(ι · γ) ∈ JΓ `∆,κK(Θ,#;ϑ[#7→n+1];f [κ7→#])

and(
{κ}, J(i, idΓ)K−1(ι · γ))

)
∈

∐
κ∈X⊂f−1(f(κ))

JΓ `∆,κK(Θ,#;ϑ[#7→n+1];f [κ7→f(κ′)][X 7→#])

= JΓ, α : κ `∆,κK(Θ;ϑ;f [κ 7→f(κ′)])

= [κ 7→ κ′]∗JΓ, α : κ `∆,κK(Θ;ϑ;f)

We note that this satisfies the equality for � in Figure 1.

I Lemma 11. The interpretations of (dfixκ
′
t) [�] and t (dfixκ

′
t) are equal.

7.1 Welldefinedness

As mentioned in Section 3 the unusual typing rule for t [�] introduces a problem of welldefined-
ness of the interpretation: If t is a term, a proof of the typing judgement Γ `∆ t [�] : A[�/α]
consists of a term s such that s[κ′/κ] = t, a type B such that B[κ′/κ] = A and a proof of
a typing judgement Γ `∆,κ s : B. In general there may be different possible choices of s
and B, but the next lemma states that the interpretation of the term t [�] is independent of
this choice. This means that the interpretation of a welltyped term is a welldefined object,
independent of the choice of typing derivation.

I Proposition 12. If Γ `∆,κ s : B and Γ `∆,κ u : C are such that Γ `∆ s[κ′/κ] : B[κ′/κ] is
equal to Γ `∆ u[κ′/κ] : C[κ′/κ] then

[κ 7→ κ′]∗Js [α]K[J([κ 7→ κ′], [α 7→ �])K] = [κ 7→ κ′]∗Ju [α]K[J([κ 7→ κ′], [α 7→ �])K]

Proof. The assumption implies that also

Γ, α : κ′ `∆ (s [α])[κ′/κ] : B[κ′/κ] and Γ, α : κ′ `∆ (u [α])[κ′/κ] : B[κ′/κ]

are equal, and so by the substitution lemma

([κ 7→ κ′]Js [α]K)[J(i, idΓ[α 7→ α])K] = ([κ 7→ κ′]Ju [α]K)[J(i, idΓ[α 7→ α])K]
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Now, if γ ∈ JΓ `∆K(Θ;ϑ;f) then

[κ 7→ κ′]∗Js [α]K[J([κ 7→ κ′], [α 7→ �])K](γ)

= [κ 7→ κ′]∗Js [α]K
(
{κ}, J(i, idΓ)K−1(ι · γ)

)
= [κ 7→ κ′]∗Js [α]K ({κ}, J([κ 7→ κ′], idΓ)K(ι · γ))
= [κ 7→ κ′]∗Js [α]KJ([κ 7→ κ′], idΓ[α 7→ α])K ({κ}, (ι · γ))
= [κ 7→ κ′]∗Ju [α]KJ([κ 7→ κ′], idΓ[α 7→ α])K ({κ}, (ι · γ))
= [κ 7→ κ′]∗Ju [α]K[J([κ 7→ κ′], [α 7→ �])K](γ) J

8 Clock irrelevance

We now show how to model the clock irrelevance axiom (1). For this it suffices to show that
if Γ `∆ t : ∀κ.A, Γ `∆ A type and κ′, κ′′ ∈ ∆ then

JΓ `∆ t[κ′] : AK = JΓ `∆ t[κ′′] : AK

Recall that for γ ∈ JΓ `∆K(Θ;ϑ;f)

JΓ `∆ t[κ′] : AK(Θ;ϑ;f)(γ) = [# 7→ f(κ′)] · (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n

where n = ϑ(f(κ′)). Here the element (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n lives in

JΓ `∆,κ A typeK(Θ,#;ϑ[# 7→n];f [κ7→#])(J(i, idΓ)K−1(ι · γ))

= i∗(JΓ `∆ A typeK)(Θ,#;ϑ[#7→n];f [κ7→#])(J(i, idΓ)K(J(i, idΓ)K−1(ι · γ)))
= JΓ `∆ A typeK(Θ,#;ϑ[# 7→n];f)(ι · γ)

Clock irrelevance will follow from the following lemma.

I Lemma 13. Suppose Γ `∆ A type and γ ∈ JΓ `∆K(Θ;ϑ;f). The map

ι · (−) : JΓ `∆ A typeK(Θ;ϑ;f) → JΓ `∆ A typeK(Θ,#;ϑ[#7→n];f)(ι · γ)

is an isomorphism.

In particular, there is an element x such that ι · x = (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n and so

JΓ `∆ t[κ′] : AK(Θ;ϑ;f)(γ) = [# 7→ f(κ′)] · ι · x = x

Likewise JΓ `∆ t[κ′′] : AK(Θ;ϑ;f)(γ) = x proving clock irrelevance.
Lemma 13 can be proved by induction on A using the techniques of [10]. In particular, [10]

proves that the statement of the lemma is equivalent to the statement that the context
projection map JΓ, x : A `∆K→ JΓ `∆K (considered as a morphism in GR) is orthogonal to
all objects of the form y(λ, n) where y is the yoneda embedding. Here, orthogonality means
that for all squares as below, there exists a unique filling diagonal:

y(λ, n)×X JΓ, x : A `∆K

X JΓ `∆K

π

where π is the second projection. In particular, this implies that the condition is closed under
Π- and Σ-types, and substitutions, see [10] for details. This proof can be easily extended to
the cases of . (α : κ).A and ∀κ.A.
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9 Conclusion and future work

We have constructed a model of CloTT modelling ticks on clocks using an adjunction where
the right adjoint extends to types and terms. The description of the left adjoint Jκ is fairly
heavy to work with, but by abstracting away the required properties needed to model the
tick calculus, the model can be described in reasonable space.

Future work includes extending the model to universes, which we expect to be easy
using the universes constructed in [10]. As noted there the axiom of clock irrelevance forces
universes to be indexed by syntactic clock contexts. Fortunately, we can model a notion of
universe polymorphism in the clock context: inclusions of clock contexts induce inclusion of
universes, and these commute with type constructions on the nose. These results, however,
must be adapted to CloTT, in particular the code for the . type constructor should be
extended to the tick abstracting generalisation used in CloTT. We expect this to be a simple
adaptation. Using universes, guarded recursive types can be encoded [6], indeed these can
also be added as primitive, given that many of them exist in the model [10].

Our motivation for constructing this model is to study extensions of CloTT. In particular,
we would like to extend CloTT with path types as in [5]. This requires an adaptation of the
model to the cubical setting, using T indexed families of cubical sets [11] rather than just
sets.
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Erratum

The description of the left adjoint given in Lemma 5 in this paper is incorrect. The left adjoint
does exist, but should be constructed differently. This error has consequences in the rest of the
paper since some proofs rely on the concrete description. However, the overall approach for
the model construction is still feasible. We refer to the paper [1] for a newer and considerably
simplified approach to modelling Clocked Type Theory, based on the ideas presented in the
present paper.
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