Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages

Valeria Vignudelli

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP Lyon, France

- Abstract -

While the theory of functional higher-order languages, starting from lambda-calculi, is a wellestablished research field, it is only in recent years that the operational semantics of higher-order languages with probabilistic operators has started to be extensively studied. A fundamental notion in the semantics of programming languages is that of program equivalence. In higherorder languages, program equivalence is generally formalized as a contextual equivalence [6], which can be hard to prove directly. This has motivated the study of proof techniques for contextual equivalence, from inductive ones, such as logical relations [7], to coinductive ones, mainly in the form of bisimulations [1]. In this talk I will discuss proof techniques for program equivalence in languages combining higher-order and probabilistic features. Several operational methods, traditionally developed in a deterministic setting, have been adapted to probabilistic higher-order languages [2, 5, 3]. I will discuss these proof methods and focus on bisimulationbased techniques, showing how probabilities, combined with different language features, force a number of modifications to the definition of bisimulation [4, 8].

2012 ACM Subject Classification Theory of computation \rightarrow Lambda calculus, Theory of computation \rightarrow Operational semantics, Theory of computation \rightarrow Probabilistic computation

Keywords and phrases Lambda Calculus, Contextual Equivalence, Bisimulation, Probabilistic Programming Languages

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.4

Category Invited Talk

Funding The author has been funded by the European Research Council (ERC) under the European Union's Horizon 2020 programme (CoVeCe, grant agreement No 678157).

- 1 Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor, Research topics in functional programming, pages 65–116. Addison-Wesley, 1990.
- 2 Ales Bizjak and Lars Birkedal. Step-indexed logical relations for probability. In Proc. FoSSaCS'15, pages 279-294, 2015.
- 3 Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and callby-value λ -calculi. In Proc. ESOP'14, LNCS 8410, pages 209–228. Springer, 2014. doi: 10.1007/978-3-642-54833-8_12.
- Raphaëlle Crubillé, Ugo Dal Lago, Davide Sangiorgi, and Valeria Vignudelli. On applicative 4 similarity, sequentiality, and full abstraction. In Roland Meyer, André Platzer, and Heike Wehrheim, editors, Correct System Design, LNCS 9360, pages 65–82. Springer, 2015.
- 5 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for higher-order probabilistic functional programs. In Proc. POPL'14, pages 297–308. ACM, 2014.

licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Editor: Hélène Kirchner; Article No. 4; pp. 4:1–4:2

⁻ References

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

4:2 Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages

- **6** James H. Morris. *Lambda-calculus models of programming languages*. PhD thesis, Massachusetts Institute of Technology., 1968.
- 7 Andrew Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, *Advanced Topics in Types and Programming Languages*, chapter 7, pages 245–289. MIT Press, 2005.
- 8 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic higher-order languages. In *Proc. POPL'16*, pages 595–607. ACM, 2016.