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Preface

The 3rd International Conference on Formal Structures for Computation and Deduction
(FSCD 2018) was held 9 – 12 July 2018 in Oxford, UK as part of FLoC 2018, 6 – 19 July
2018.

FSCD (http://fscd-conference.org/) covers all aspects of formal structures for com-
putation and deduction from theoretical foundations to applications. Initially building on
two communities, RTA (Rewriting Techniques and Applications) and TLCA (Typed Lambda
Calculi and Applications), FSCD embraces their core topics and broadens their scope to
closely related areas in logics and proof theory, new emerging models of computation (e.g.
homotopy type theory or quantum computing), semantics and verification in new challenging
areas (e.g. blockchain protocols or deep learning algorithms). A special effort was made
in 2018 to address some of these new topics through invited speakers. The FSCD program
featured four invited talks given by Stéphanie Delaune (CNRS/IRISA, France), Grigore Rosu
(U.of Illinois at Urbana-Champaign, US), Peter Selinger (Dalhousie U., Canada), and Valeria
Vignudelli (ENS, Lyon, France).

FSCD 2018 received 65 submissions with contributing authors from 21 countries. The
program committee consisted of 29 members from 20 countries. Most of the submitted
papers were reviewed by at least three PC members (two had only two reviewers) with the
help of 112 external reviewers. The reviewing process, which included a rebuttal phase, took
place over a period of nine weeks. A total of 27 papers, 26 regular research papers and one
system description, were accepted for publication and are included in these proceedings. As
an example of tools comparison, the Confluence Competition (CoCo) was presented and took
place during the conference.

The Programme Committee awarded the FSCD 2018 Best Paper Award for Junior
Researcher to Ambrus Kaposi and András Kovács for their paper “A Syntax for Higher
Inductive-Inductive Types”. The first author got his PhD less than three years ago and the
second is a PhD student, at the time of the Conference.

FSCD 2018 was part of the Federated Logic Conference (FLoC) that brings together
several international conferences related to mathematical logic and computer science. FSCD
was co-located with SAT, LICS, ITP and CSF, back-to-back with CAV, IJCAR, ICLP and
FM.

FSCD 2018 was preceded by the Corrado Bohm Memorial, organised by Mariangiola
Dezani, with two invited talks by Henk Barendregt (Radboud University, Nijmegen, The
Netherlands) and Silvio Micali (MIT Computer Science & Artificial Intelligence Lab, US).

In addition to the main program, 15 FSCD-associated workshops were planned on three
days mostly before the conference:

7th International Workshop on Classical Logic and Computation CL&C 2018
10th International Workshop on Computing with Terms and Graphs TERMGRAPH 2018
7th International Workshop on Confluence IWC 2018
Higher-Dimensional Rewriting and Algebra HDRA 2018 - 4th edition
9th Workshop on Higher Order Rewriting HOR 2018
Workshop on Homotopy Type Theory and Univalent Foundations HoTT/UF 2018 - 4th
edition
IFIP Working Group 1.6: Rewriting IFIP Meeting 2018 - 20th edition
9th Workshop on Intersection Types and Related Systems ITRS 2018
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2018 Joint Workshop on Linearity & TLLA (5th International Workshop on Linearity
and 2nd Workshop on Trends in Linear Logic and Applications)
International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
LFMTP 2018 - 12th edition
7th Workshop on Mathematically Structured Functional Programming MSFP 2018
Workshop on Modular Knowledge (Tetrapod) - 1st edition
Programming And Reasoning on Infinite Structures PARIS 2018 - 1st edition
5th International Workshop on Rewriting Techniques for Program Transformations and
Evaluation WPTE 2018
32nd International Workshop on Unification UNIF 2018

This volume of FSCD 2018 is published in the LIPIcs series under a Creative Common
license: online access is free to all and authors retain rights over their contributions. We
thank in particular Michael Wagner from the Leibniz Center for Informatics at Schloss
Dagstuhl for his efficient and reactive support during the production of these proceedings.

Many people helped to make FSCD 2018 a successful meeting. On behalf of the Program
Committee, I thank the many authors of submitted papers for considering FSCD as a
venue for their work and the invited speakers who have agreed to speak at this meeting.
The Program Committee and the external reviewers deserve big thanks for their careful
review and evaluation of the submitted papers (the members of the Program Committee
and the list of external reviewers can be found in the following pages). The many associated
workshops made a big contribution to the lively scientific atmosphere of this meeting and
I thank the workshop organizers for their efforts to bring their meetings to Oxford. The
EasyChair conference management system was a useful tool in all phases of the work of
the Programme Committee. Paula Severi, the Conference Chair for FSCD 2018, deserves
warm thanks for producing the Web site, for the smooth functioning of this year’s meeting
and for coordination with the FLoC organizers. Sandra Alves, as Publicity Chair, made a
great contribution in advertising the Conference. The steering committee, lead by Luke Ong,
provided valuable guidance in setting up this meeting and is ensuring that FSCD will have a
bright and enduring future. Finally, I thank all participants of the conference for creating a
lively and interesting event.

FSCD 2018 benefited from being held in-cooperation with the ACM SIGLOG and ACM
SIGPLAN.

Hélène Kirchner
Program Chair of FSCD 2018
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Département d’informatique, École normale
supérieure, Paris Sciences et Lettres and
Université Paris 13, Sorbonne Paris Cité,
LIPN, CNRS, France

Naoki Nishida (26, 32)
Graduate School of Informatics, Nagoya
University, Japan

Ian Orton (22)
University of Cambridge, Dept. Computer
Science & Technology, UK

Roy Overbeek (14)
Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, Netherlands

Paweł Parys (27)
University of Warsaw, Poland

Brigitte Pientka (19)
McGill University, Montreal, Canada

Andrew M. Pitts (22)
University of Cambridge, Dept. Computer
Science & Technology, UK

Grigore Rosu (2)
University of Illinois at Urbana-Champaign
and Runtime Verification, Inc., USA

Pierre Réty (6)
LIFO - Université d’Orléans, France

David Sabel (28)
Goethe-University Frankfurt, Germany

Manfred Schmidt-Schauß (28)
Goethe-University Frankfurt, Germany

Peter Selinger (3)
Dalhousie University, Halifax, Canada

Kiraku Shintani (32)
School of Information Science, JAIST, Japan

Matthieu Sozeau (29)
Inria Paris & IRIF, Paris, France

Bas Spitters (22)
Aarhus University Dept. Computer Science,
DK

David Thibodeau (19)
McGill University, Montreal, Canada

https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.21
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.11
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.24
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.15
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.18
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.7
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.24
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.25
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.14
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.27
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.2
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.6
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.28
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.28
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.3
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.29
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19


Authors 0:xix

Amin Timany (29)
imec-Distrinet, KU Leuven, Belgium

Valeria Vignudelli (4)
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon
1, LIP, France

Mateu Villaret (9)
Departament d’Informàtica, Matemàtica
Aplicada i Estadística, Universitat de Girona,
Spain

Sarah Winkler (30)
Department of Computer Science, University
of Innsbruck, Austria

Harald Zankl (32)
Innsbruck, Austria

FSCD 2018

https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.29
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.4
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32




Analysing Privacy-Type Properties in
Cryptographic Protocols
Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France
stephanie.delaune@irisa.fr

Abstract
Cryptographic protocols aim at securing communications over insecure networks such as the
Internet, where dishonest users may listen to communications and interfere with them. For
example, passports are no more pure paper documents. Instead, they contain a chip that stores
additional information such as pictures and fingerprints of their holder. In order to ensure privacy,
these chips include a mechanism, i.e. a cryptographic protocol, that does not let the passport
disclose private information to external users except the intended terminal. This is just a single
example but of course privacy appears in many other contexts such as RFIDs technologies or
electronic voting.

Formal methods have been successfully applied to automatically analyse traditional protocols
and discover their flaws. Privacy-type security properties (e.g. anonymity, unlinkability, vote
secrecy, . . . ) are expressed relying on a notion of behavioural equivalence, and are actually more
difficult to analyse than confidentiality and authentication properties. We will discuss some recent
advances that have been done to analyse automatically equivalence-based security properties, and
we will review some issues that remain to be solved in this field.

2012 ACM Subject Classification Security and privacy → Logic and verification

Keywords and phrases cryptographic protocols, symbolic models, privacy-related properties,
behavioural equivalence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.1

Category Invited Talk

Funding This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agreement
No 714955-POPSTAR) and the ANR project TECAP.

1 Introduction

Cryptographic protocols are widely used today to secure communications with the aim of
achieving various security goals. For instance, TLS (Transport Layer Security) is a protocol
that is widely used to provide authentication and encryption in order to send sensitive data
such as credit card numbers to a vendor. Those protocols use cryptographic primitives as
building blocks such as encryptions, signatures, and hashes.

For a long time, it was believed that designing a strong encryption scheme was sufficient to
ensure secure message exchanges. Starting from the 1980’s, researchers understood that even
with perfect encryption schemes, message exchanges were still not necessarily secure due to
some logical attacks coming from the poor design of the protocol itself. As an example, we can
cite the well-known man-in-the-middle attack on the Needham Schroeder protocol [55] that
has been discovered by Lowe seventeen years after the publication of the original protocol [53].
This is just a single example for which Lowe proposed a simple fix: the second message
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{Na, Nb}pub(B) is replaced by {B,Na, Nb}pub(B) in the fixed version of the protocol, i.e. the
name of the sender has been simply added into the ciphertext. Such a modification was
sufficient to discard the man-in-the-middle attack and to prove the protocol secure. Even if
protocols are relatively small programs, they are rather difficult to analyse and the difference
between a secure protocol and an insecure one may be rather subtle. For instance, replacing
the second message by {Na, Nb, B}pub(B), i.e. the name of B is now appended at the end of
the original message, results in a protocol on which a man-in-the-middle attack similar to
the one discovered by Lowe is again possible (see [37] for a description of this attack).

One successful approach when designing and analysing security protocols, is the use of
formal methods. The purpose of formal verification is to provide rigorous frameworks and
techniques to analyse protocols and find their flaws. For example, a flaw has been discovered
in the Single-Sign-On protocol used e.g. by Google Apps. It has been shown that a malicious
application could very easily get access to any other application (e.g. Gmail or Google
Calendar) of their users [7]. This flaw has been found when analysing the protocol using
the Avantssar validation platform [5]. Another example is a flaw on vote secrecy discovered
during the formal and manual analysis of an electronic voting protocol [42]. All these results
have been obtained using formal symbolic models, where most of the cryptographic details are
ignored using abstract structures, and the communication network is assumed to be entirely
controlled by an omniscient attacker. Although less precise than computational models
used by cryptographers, this symbolic approach benefits from automation and can thus
target more complex protocols and scenarios than those analysed using the computational
approach. The techniques used in symbolic models have become mature and several tools for
protocol verification are nowadays available, e.g. Avantssar platform [5], ProVerif [15], and
Tamarin [58].

Most of the results existing in this field focus on reachability properties such as au-
thentication or secrecy: for any execution of the protocol, it should never be the case that
an attacker learns some secret (confidentiality property) or that an attacker makes Alice
think she’s talking to Bob while Bob did not engage a conversation with her (authentication
property). However, privacy properties such as vote secrecy, anonymity, or untraceability
cannot be expressed as reachability properties. Formally the behaviour of a protocol can be
modelled through a process algebra such as the pi-calculus, enriched with terms to model
cryptographic messages. Then, privacy-type properties are expressed relying on a notion of
behavioural equivalence between processes. For example, Alice’s identity remains private if
an attacker cannot distinguish a session where Alice is talking from a session where Bob is
talking. As mentioned above, many results and tools have been developed in the context of
reachability properties. Results for equivalence properties are more rare but a lot of attention
has been devoted to its study during the ten past years.

In this paper, we will review existing results and tools dedicated to the study of equivalence-
based properties. We will present some recent advances that have been done in this area,
and discuss some challenges that remain to be solved.

2 Some examples

We briefly describe in this section some cryptographic protocols on which privacy-type
properties are particularly relevant. For illustrative purposes, we first consider a rather
simple RFID protocol following a description given in [61] before explaining two protocols
coming from the e-passport application: the BAC protocol and its successor the PACE
protocol.
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Tag
k, id

Reader
k, id

new nR
nR

new nT id⊕ nT , h(nR, k)⊕ nT

id ⊕ (id ⊕ nT ) ⊕ (h(nR, k) ⊕ nT )
?=

h(nR, k)

Figure 1 Description of an RFID protocol due to Kim et al. [51].

2.1 A simple RFID protocol
To illustrate our formalism along this paper, we will consider a rather simple RFID protocol
proposed by Kim et al. [51] in 2007. We follow the description given in [61]. In this protocol,
the reader and the tag id share a secret symmetric key k. The protocol does not rely on
any encryption algorithm but instead uses a hash function, denoted h, and the exclusive or
operator, denoted ⊕, which is commutative and associative. Moreover, it has the property
that equal terms cancel each other out, i.e. t⊕ t = 0 where 0 is the neutral element.

The reader starts by sending a nonce, i.e. a fresh random number nR. Once it receives
this first message, the tag generates its own nonce nT and computes its answer relying on
the hash function and the exclusive-or operator. When receiving this second message, the
reader will be able to retrieve nT from the first component by cancelling out the value id.
Then, it will xor this value with the second component and check whether the result is equal
to h(nR, k). Note that since the reader knows nR and k, it can indeed easily compute the
message h(nR, k).

The aim of this protocol is not only to authenticate the tag but also to ensure its
unlinkability. An attacker should not be able to observe whether he has seen the same
tag twice or two different tags. Actually, this unlinkability property is not satisfied. An
attacker can simply send his own nonce n0

R and infer whether the tag in presence is the same
or not from the message he received. For this, the attacker simply apply the exclusive-or
operator on the two components of the message sent by the tag. The result of this operation
is id⊕ h(n0

R, k) and once n0
R is fixed, this value only depends on the identity of the tag.

We will formalise this later on as an indistinguishability property, relying on the notion
of trace equivalence.

2.2 Electronic passport
An e-passport is no more a pure paper document but instead contains an RFID chip that
stores the critical information printed on the passport. The International Civil Aviation
Organisation (ICAO) standard specifies several protocols through which this information
can be accessed. In particular, access to the data stored on the passport are protected by
the Basic Access Control (BAC) protocol, or now its successor the Password Authenticated
Connection Establishment (PACE) protocol.

FSCD 2018
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Tag
ke, km

Reader
ke, km

get_Challenge

new nT
nT

new nR, new kR

xenc← {nR, nT , kR}ke
xmac← mac(xenc, km)

〈xenc, xmac〉

new kT

yenc← {nT , nR, kT }ke
ymac← mac(yenc, km)
yseed ← kT ⊕ kR

〈yenc, ymac〉

xseed ← kT ⊕ kR

Figure 2 Basic Access Control protocol.

BAC protocol

This is a password-based authenticated key exchange protocol (see Figure 2) whose security
relies on two master keys, namely ke and km. Actually, before executing the BAC protocol,
the reader optically scans a low entropy secret from which these two keys ke and km are
derived. Thus, these keys are symmetric keys shared between the passport (the RFID tag)
and the reader. Then, the BAC protocol establishes a key seed from which two sessions
keys kenc and kmac are derived. The session keys are then used to prevent skimming and
eavesdropping on the subsequent communication with the e-passport. In particular, they are
used to encrypt and mac the messages exchanged during the execution of the subsequent
protocols.

First, we may note that the nonces nR and nT are not placed in the same order in the
two ciphertexts: {nR, nT , kR}ke and {nT , nR, kT }ke. Actually, this is not an insignificant
choice. This choice prevents a replay attack which would be possible otherwise since it would
be possible for an attacker to answer to the message send by a reader without knowing the
keys ke and km. Indeed, an attacker could simply replay the message he just received, and
this will lead to the computation of the seed xseed = kR ⊕ kR = 0.

Second, the low entropy secret printed in the first page of a passport and from which the
keys ke and km are derived makes the BAC protocol vulnerable to off-line guessing attacks.
Indeed, an attacker who listens to the communication will learn e.g. {nR, nT , kR}ke. Then,
he can simply try to decrypt this ciphertext using all possible values for ke until he finds a
value that allows him to obtain nT (nonce that has been sent in clear and that is therefore
known by the attacker).

Third, we may note that when the passport receives an incorrect message 〈xenc, xmac〉,
the behaviour of the passport is not specified, Due to this, some implementations of the
BAC protocol breaches unlinkability [29]: in the french implementation, the passport tag
replies different error messages depending on whether the problem comes from an incorrect
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Tag
k

Reader
k

new sT , new nT {sT }k

new nRgnR

gnT

yG ← gen(sT , (gnR)nT )
new n′

T

xG ← gen(sT , (gnT )nR)
new n′

R
x

n′
R

G

y
n′

T

G

x
n′

R

G 6= y
n′

T

G

x′
k ← (yn′

T

G )n′
R = y

n′
Rn′

T

G
y′

k ← (xn′
R

G )n′
T = x

n′
Rn′

T

G
mac(yn′

T

G , x′
k)

mac(xn′
R

G , y′
k)

Figure 3 Password Authenticated Connection Establishment protocol.

mac or an incorrect nonce (i.e. the nonce nT inside the ciphertext is not the one previously
generated by the passport). An attacker could then trace a passport (without knowing the
keys ke and km) in the following way:
1. he listens to a first session between a reader and a tag T and store m = 〈xenc, xmac〉;
2. then, in a different session, he sends the message m and wait for the tag’s response;

a. if he receives a nonce error then he knows that the tag succeeded to mac xenc with
his own key ke and so this tag is T ;

b. if he receives a mac error then he knows that the tag is not T .
This gives the attacker a way to distinguish between two different passports. Such a flaw
does not exist in other implementations where the same error messages is sent in both cases.

PACE protocol

The Password Authenticated Connection Establishment protocol [56] (PACE) has been
proposed by the Bundesamt für Sicherheit in der Informationstechnik (BSI) to replace the
BAC protocol. Similarly to BAC, the purpose of PACE is to establish a secure channel
based on an optically-scanned key k. A description is given in Figure 3. The tag and the
reader perform a first Diffie-Hellman exchange and derive G. Then, they perform a second
Diffie-Hellman exchange based on the parameter G computed at the previous step, and they
derive a session key k′. In a final stage, they confirm the values that have been exchanged
using message authentication codes.

First, we may note that the low entropy of the secret k is not a problem anymore assuming
that the decryption operation on the ciphertext {sT }k will not fail when the key used to
decrypt is not k. This means that the resulting computation sdec({sT }k, kI) will be a valid
message even if k 6= kI , and thus the protocol will pursue its execution normally.

FSCD 2018
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Second, we would like to comment on the disequality test performed by the reader. Such a
test is important to prevent an attacker to execute with success the PACE protocol. Without
such a test, an attacker can eavesdrop a message {sT }k from an honest session, and then
reuse it to execute a session with a reader. He simply has to send the ciphertext, and then
answer to the reader by replaying the message he just received. This means that the attacker
would not have to know k to successfully execute the protocol whereas he is supposed to
know it to compute G. Of course, this directly leads to an authentication issue that can be
turned into a linkability attack.

Third, the fact that the format of the two last messages are similar is surprising. Due
to this, an attacker can send {sT }k (eavesdrop during a previous session) to two different
readers and then simply forward the messages from one reader to another. Both readers will
be able to compute the two rounds of Diffie-Hellman, and the mac verification phase will not
prevent this behaviour. Even if in practice, this flaw seems hard to exploit, it could be a
real privacy concern in some other contexts. Actually, as proposed in [48], this flaw can be
fixed by adding tags in the two last messages in order to avoid confusions between reader’s
messages and tag’s messages.

3 Modelling protocols

Several symbolic models have been proposed for cryptographic protocols. The first one has
been described by Dolev and Yao [45] and several other models have been proposed since
then (e.g. strand spaces [59], multiset rewriting [19], spi-calculus [3]). A unified model would
enable better comparisons between the different existing results but unfortunately such a
model does not exist currently. Nevertheless, all existing models share some common features:
messages are modelled using first-order terms, and they propose some constructions for
modelling communication and taking into account the concurrency nature of these programs.

3.1 Messages as terms
In symbolic models, messages are a key concept. Whereas messages are bitstrings in the real-
world (and in the computational approach as well), they are modelled using first-order terms
within the symbolic model. Formally, we consider an infinite set N of names to represent
atomic data such as keys, nonces, and we also consider two infinite sets of variables X
and W. The variables in X are used to model unknown parts of the messages expected by
a participant, whereas variables in W, called handles, are used as pointers. They refer to
messages that have been previously sent on the network and that are therefore known to the
attacker.

To model cryptographic primitives, such as encryptions, signatures, hashes, etc, we rely on
function symbols, namely a signature, that allows one to build terms representing messages
sent over the network by the participants. The set of terms built from a set of atomic data A
by applying function symbols in a signature Σ are denoted T (Σ, A).

I Example 1. To model the BAC and the RFID protocols described in Section 2, we may
consider the signature:

Σex = {senc, sdec, 〈 〉, proj1, proj2,mac, h,⊕, 0}.

The function symbols senc and sdec (both of arity 2) represent symmetric encryption, whereas
〈 〉 (arity 2) is used to concatenate messages. The two components of such an operator can
be retrieved using the projection functions proj1 and proj2 (both of arity 1). We also consider



S. Delaune 1:7

a function symbol to model an hash function, the symbol h (arity 1), as well as a function
symbol mac (arity 2) to model message authentication codes. Lastly, the function symbol ⊕
(arity 2) is used to model the exclusive-or operator, and the constant 0 is its neutral element.

Then, we assign a meaning to the function symbols through an equational theory. Formally,
we consider a set of equations between terms (without names), and we denote =E the smallest
congruence relation which is closed under the substitution of terms for variables.

I Example 2. Going back to our previous example, we will typically consider the following
set Eex of equations:

proj1(〈x, y〉) = x x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ 0 = x

proj2(〈x, y〉) = y x⊕ y = y ⊕ x x⊕ x = 0
sdec(senc(x, y), y) = x

Considering m = senc(〈nR, 〈nT , kR〉〉, ke), we have that proj1(proj2(sdec(m, ke))) =Eex nT . We
may note that the symbols mac and h are not involved in any equation. Those primitives are
modelled using free function symbols since they are one-way functions which are typically
assumed to be collision resistant.

Sometimes, function symbols are split into two sets: constructors and destructors. In such
a case, a rewriting system is used to assign a meaning to the function symbols. Constructors
symbols, typically senc, 〈 〉, etc are used to build messages, whereas destructor symbols, such
as sdec, proj1, and proj2, are only there to perform computations meaning that a rewriting
rule has to apply to make them disappear. If no rewriting rule applies, and the destructor is
still there, it means that the computation fails, and the resulting term is not considered as a
message. This gives us two slightly different ways to model e.g. symmetric encryption. Both
are useful when modelling protocols depending on the properties of the encryption scheme.
For instance, going back to the PACE protocol, it is important here to model encryption
relying on an equation to take into account the fact that sdec(senc(sT , k), k′) is a computation
that does not lead to a failure but instead gives a result, i.e. a message, and the reader will
proceed with the resulting value.

At a particular point in time, while engaging in one or more sessions of one or more
protocols, an attacker may know a sequence of messages (i.e. terms without variable)
u1, . . . , un. This means that he knows all messages and also their order. When analysing
equivalence-based security properties, it is not enough to say that the attacker knows the set
of terms {u1, . . . , un}. In the applied-pi calculus [2], such a sequence of messages is organised
into a frame, i.e. a substitution of the form:

φ = {w1 7→ u1, . . . , wn 7→ un}.

The handle wi ∈ W enables us to refer to the message ui, and these variables will allow us
to make explicit the order in which these messages are sent. Given a frame φ, we denote
dom(φ) its domain, i.e. dom(φ) = {w1, . . . , wn}.

We need also to consider computations feasible by an attacker. We call such a computation
a recipe. Formally, a recipe is a term built from (public) function symbols and handles
from W.

I Definition 3. Given a frame φ and a term u ∈ T (Σ,N ), we say that u is deducible
from φ, denoted φ `E u, when there exists a recipe R, i.e. a term in T (Σ, dom(φ)), such that
Rφ =E u.

FSCD 2018
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3.2 Protocols as processes
A popular way to model protocols is to rely on a process algebra. Several calculus have been
proposed to model protocols, e.g. CSP [49], spi-calculus [3], applied-pi calculus [2]. They
have similar constructs as those in the pi-calculus introduced by Milner in 1999 [54]. However,
instead of exchanging atomic data, terms that are exchanged are first-order terms. This
allows us to model in a more faithful way cryptographic protocols that use cryptographic
messages. Typically, considering a set Ch of public channel names, processes are generated
by a grammar as follows:

P,Q := 0 null
| P | Q parallel
| in(c, x).P input
| out(c, u).P output
| !P replication
| new n.P restriction
| if u1 = u2 then P else Q conditional

where u1, u2, u ∈ T (Σ,N ∪ X ), c ∈ Ch, and n ∈ N .
Most of the constructions are rather standard in process algebra. As usual, the null

process, denoted 0, represents the process that does nothing. Such a process is often omitted
for sake of conciseness. The process P | Q runs P and Q in parallel meaning that we do
not know in which order the actions of P and Q will be done. All the interleavings should
be considered. The process in(c, x).P waits to receive a message on the public channel c,
and then continues as indicated in P . However, the occurrence of the variable x in P will
be replaced by the received message. The process out(c, u).P outputs the message u on the
public channel c, and then continues as P . The process !P represents an infinite number of
copies of P running in parallel, i.e. P | . . . | P . The restriction newn.P is used to model the
creation in a process of new random numbers (e.g., nonces or key material). The process
if u1 = u2 then P else Q first checks whether u1 is equal to u2 (modulo the equational theory),
and runs P if equality holds or runs Q otherwise. Note that the terms u, u1, and u2 that
occur in the grammar may contain variables. However, these variables will be instantiated
during the execution, and these terms will become ground when the evaluation will take
place.

The constructions newn.P and in(c, x).P are binding constructs, respectively for the
name n and for the variable x, and in both cases the scope of the binding is P .

I Example 4. To illustrate our syntax, we consider the RFID protocol described in Section 2.1.
Using our formalism, the two roles of this protocol are modelled as follows:

Ptag = in(cT , x). newnT . out(cT , 〈id⊕ nT , h(〈x, k〉)⊕ nT 〉). 0
Preader = newnR. out(cR, nR). in(cR, y). if (proj1(y)⊕ id)⊕ proj2(y)

= h(〈nR, , k〉) then 0 else 0.

where cT , cR ∈ Ch, id ∈ N , and x, y ∈ X .
Then, we may consider the process new k. new id.(Ptag | Preader) which corresponds to

one instance of each role. We may also consider more complex scenario. For instance, the
process new k. new id.! (Ptag | Preader) represents multiple instances of the tag id (with key k)
and multiple instances of a reader ready to communicate with tag id. Lastly, the process
! new k. new id.! (Ptag | Preader) represents a situation with many tags (and readers), each of
them being able to execute many instances of the protocol.
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Then ({if u1 = u2 then P1 else P2} ] P;φ) τ−→ (P1 ] P;φ) when u1 =E u2

Else ({if u1 = u2 then P1 else P2} ] P;φ) τ−→ (P2 ] P;φ) when u1 6=E u2

In ({in(c, z).P} ] P;φ) in(c,R)−−−−→ (P{z 7→ u} ] P;φ) when φ `E u

Out ({out(c, u).P} ] P;φ) out(c,w)−−−−−→ (P ] P;φ ∪ {wi+1 7→ u}) where i = |dom(φ)|.

New ({new n.P} ] P;φ) τ−→ (P{n 7→ n′} ] P;φ) where n′ ∈ N is fresh
Par ({P1 | P2} ] P;φ) τ−→ ({P1, P2} ] P;φ)
Repl ({!P} ] P;φ) τ−→ ({!P, P} ] P;φ)

Figure 4 Semantics of our processes.

Configurations represent processes together with a frame representing the knowledge of
the attacker so far.

I Definition 5. A configuration is a pair (P;φ) where
P is a multiset of ground processes; and
φ = {w1 7→ u1, . . . ,wn 7→ un} is a frame.

The applied-pi calculus, as introduced in [2], does not consider this notion of configurations
but rely instead on a notion of extended processes and a notion of structural equivalence to
identify processes that are equal modulo e.g. associativity and commutativity of the parallel
operator. Our notion of configurations, also used in some other works, can be seen as a more
canonical way to represent an extended process.

Then, we define the operational semantics of our calculus through a labelled transition
system over configurations explaining how a process can evolve (see Figure 4). All the rules
are rather standard and correspond to the informal semantics introduced at the beginning of
this section. For instance, when outputting a message u on the public channel c, the resulting
message is stored into the frame φ and is given to the attacker through the handle wi. The
rule In is more involved. The idea is that the attacker can build any term using his current
knowledge and then send the resulting message to the participant. Therefore, the participant
is ready to accept any term deducible by the attacker form φ. The rules Then and Else
allow one to execute a conditional. Note that the equality is done modulo E. The three
remaining rules allow one to execute a restriction, split a parallel composition, and unfold a
replication. The In and Out rules are the only observable actions.

I Example 6. To continue with our running example, we consider Psame = {Ptag, Ptag}, and
Pdiff = {Ptag, P ′tag} where P ′tag is as Ptag but id and k have been replaced by id′ and k′. Let
φ0 = {w1 7→ id,w2 7→ id′}. We have that:

({Pdiff};φ0)
in(cT ,n

0
R)−−−−−−→ τ−→ ({out(cT , 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉), P ′
tag};φ0)

out(cT ,w3)−−−−−−→ ({P ′
tag};φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉})
in(cT ,n

0
R)−−−−−−→ τ−→ ({out(cT , 〈id′ ⊕ n′

T , h(〈n0
R, k′〉)⊕ n′

T 〉).0}, φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉})

out(cT ,w4)−−−−−−→ ({0}, φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉, w4 7→ 〈id′ ⊕ n′

T , h(〈n0
R, k′〉)⊕ n′

T 〉})

We denote φdiff the resulting frame. The same sequence of actions is also feasible starting
from (Psame;φ0). Indeed, we have that:
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(Psame;φ0) in(cT ,n
0
R)·τ ·out(cT ,w3)·in(cT ,n

0
R)·τ ·out(cT ,w4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (0;φsame)

where φsame = φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉, w4 7→ 〈id⊕ n′T , h(〈n0

R, k〉)⊕ n′T 〉}.

4 Modelling privacy-type properties

In order to express privacy-type properties such as the unlinkability property briefly discussed
in Section 2, we need to formally define the notion of indistinguishability we are interested in.
The notion of trace equivalence is formally introduced in Section 4.1, and then we explain
how to express privacy-type security properties such as vote-privacy, unlinkability, or strong
flavours of secrecy relying on this notion.

4.1 Trace equivalence
To start, we consider two protocols P and Q, and we assume a passive attacker who simply
listens to the communication. We would like to know whether such a passive attacker is
able (by simply listening to the communication) to tell which protocol is currently under
execution: i.e. P or Q. Typically, the attacker will observe two sequences of messages, i.e.
two frames, and he will try to distinguish them. Intuitively, two frames φ and ψ are in static
equivalence if an attacker cannot distinguish them, i.e. any test that holds in φ also holds in
ψ.

I Definition 7. Two frames φ and ψ are in static equivalence, written φ ∼E ψ, if they have
the same domain, i.e. dom(φ) = dom(ψ), and for any recipes R, R′ ∈ T (Σ, dom(φ)), we
have that: Rφ =E R′φ if, and only if, Rψ =E R′ψ.

I Example 8. Consider the two following frames:
φdiff = φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉,w4 7→ 〈id′ ⊕ n′T , h(〈n0
R, k′〉)⊕ n′T 〉}, and

φsame = φ0 ] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉,w4 7→ 〈id⊕ n′T , h(〈n0

R, k〉)⊕ n′T 〉}.
The following test holds in φsame: proj1(w3)⊕ proj2(w3) ?= proj1(w4)⊕ proj2(w4).
Indeed, we have that:

[proj1(w3)⊕ proj2(w4)]φsame =Eex (id⊕ nT )⊕ (h(〈n0
R, k〉)⊕ nT ) =Eex id⊕ h(〈n0

R, k〉), and
[proj1(w3)⊕ proj2(w4)]φsame =Eex (id⊕ n′T )⊕ (h(〈n0

R, k〉)⊕ n′T ) =Eex id⊕ h(〈n0
R, k〉).

However, this test does not hold in φdiff since id 6= id′ and k 6= k′. This means that an attacker
can observe a difference between these two frames by xoring the two components of each
message and checking whether this computation yields an equality, therefore retrieving the
attack described in Section 2.1. Note that such an equality crucially relies on the algebraic
properties of the exclusive-or operator.

Then, trace equivalence is the active counterpart of static equivalence taking into account
the fact that the attacker may interfere during the execution of the process in order to
distinguish between the two situations. Given a configuration K = (P ;φ), we define trace(K)
as follows: trace(K) = {(tr, φ′) | (P;φ) tr−→ (P ′;φ′) for some configuration (P ′;φ′)}.

I Definition 9. Given two configurations KP and KQ, KP vt KQ if for every (tr, φ) ∈
trace(KP ), there exists (tr′, ψ) ∈ trace(KQ) such that tr and tr′ are equal up to τ actions,
and φ ∼E ψ. The configuration KP and KQ are in trace equivalence, denoted KP ≈t KQ, if
KP vt KQ and KQ vt KP .
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4.2 Some security properties
We show here how the notion of trace equivalence can be used to model interesting privacy-
type properties.

Unlinkability

Intuitively, protocols are said to provide unlinkability (or untraceability) according to the
ISO/IEC 15408-2 standard, if they

[...] ensure that a user may make multiple uses of [them] without others being able to
link these uses together.

Formally, this is often defined as the fact that an attacker should not be able to distinguish
a scenario in which the same agent (i.e. the user) is involved in many sessions from one
that involved different agents in each session. Going back to our BAC protocol, this can be
expressed through the following equivalence:

! new ke. new km. ! (Ptag(ke, km) | Preader(ke, km))
≈t

! new ke. new km.(Ptag(ke, km) | Preader(ke, km)).

In case of the french implementation of the BAC protocol, as explained in Section 2.2, it
has been shown that this equivalence does not hold [4].

I Example 10. To illustrate our notion of trace equivalence, we consider the RFID protocol
given in Section 2.1. In order to simplify the setting, we consider a simple scenario which
consists of two sessions of the role of the tag. We assume that one session is executed by the
tag with identity id and key k, whereas the second one is executed either by the same tag or
another one. We would like to know whether the attacker is able to distinguish these two
situations. This corresponds to the configurations Ksame = (Psame;φ0) and Kdiff = (Pdiff ;φ0)
described in Example 6. Actually, we have that Ksame and Kdiff are not in trace equivalence.
More precisely, we have that Ksame 6vt Kdiff. Indeed, we have shown that:

Ksame
in(cT ,n

0
R)·τ ·out(c,w3)·in(cT ,n

0
R)·τ ·out(cT ,w4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (0, φsame) (see Example 6); and

[proj1(w3)⊕ proj2(w3)=Eex proj1(w4)⊕ proj2(w4)]φsame (see Example 8).
However, the only configuration (P ′, φ′) such that (up to some τ actions)

Kdiff
in(c,n0

R)·out(c,w3)·in(c,n0
R)·out(c,w4)−−−−−−−−−−−−−−−−−−−−−−−→ (P ′, φ′)

is (0, φdiff) and we have seen that proj1(w3)⊕ proj2(w3) ?= proj1(w4)⊕ proj2(w4) does not hold
in φdiff (see Example 8).

This corresponds to the attack scenario briefly described in Section 2.1.

Vote secrecy

In the context of electronic voting, privacy means that the vote of a particular voter is not
revealed to anyone. This is one of the fundamental security properties that an electronic
voting system has to satisfy.

Vote secrecy is typically defined (see e.g. [44]) by the fact that an observer should not
observe when two honest voters swap their votes, i.e. distinguish between a situation where
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Alice votes yes and Bob votes no and a situation where these two voters have swapped their
vote. This security property is formally expressed as follows:

S[V (A, yes) | V (B,no)] ≈t S[V (A,no) | V (B, yes)].

Ideally, such an equivalence should be established considering an empty context S.
However, very often such a property holds under some trusted assumptions. For instance, we
may have to trust the tallying authority. The context S makes explicit all these assumptions.

Strong flavours of secrecy

The notion of secrecy usually considered by symbolic approaches is a weak form of secrecy
expressed as a non-deducibility property. However, relying on trace equivalence, we can also
express strong forms of secrecy. Intuitively, strong secrecy means that an attacker cannot see
any difference when the value of the secret changes [14]. One way to express this it to let the
attacker choose the values of the secret:

in(c, x1).in(c, x2).P (x1) ≈t in(c, x1).in(c, x2).P (x2).

Intuitively, in the equivalence above, P (x) is the protocol in which the value of the secret is
replaced by x, i.e. by a value chosen by the attacker. Another flavour of secrecy of interest is
real-or-random secrecy. The idea is to let the attacker interact with the protocol, and once
the secret value has been established, typically a fresh session key k, we want to see if the
attacker is able to distinguish the real situation (the one in which the fresh established key k
will be used) from an ideal situation in which the key k is replaced by fresh random value r.
If the adversary is unable to distinguish these two scenarios, we say that the protocol satisfies
real-or-random secrecy of the secret key.

The notion of trace equivalence can also be used in presence of low entropy secret such
as the values ke and km in the BAC protocol to check resistance of the protocol to off-line
guessing attacks. This can be modelled relying on trace equivalence by checking whether the
attacker can see the difference between a scenario where the real password is revealed at the
end, and another one where a wrong password is revealed (see e.g. [36]).

5 Verifying equivalence-based properties

The formal symbolic approach allows one to benefit from existing verification tool that rely
on various techniques ranging from model-checking to resolution, and rewriting techniques.
This is appealing as manual proofs are tedious and error-prone. However, verifying in such
a setting the most simple form of secrecy (expressed as a non-deducibility of a term) is a
difficult problem which is well-known to be undecidable. Privacy-type properties are actually
more difficult to handle and have been shown undecidable even for some classes where secrecy
is actually decidable [32].

5.1 Warm-up
Several papers are devoted to the study of the intruder deduction problem, i.e. the problem
of deciding whether a term (typically the secret) is deducible from a given set of terms
representing the knowledge of the attacker. This problem has been shown decidable (often
in PTIME) for various equational theories, e.g. homomorphic encryption, blind signatures,
various equational theories with an associative and commutative symbol (AC). However,
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Theory E Deduction Static Equivalence
subterm convergent PTIME [1]
blind sign., addition, decidable [1]

homo. encryption

ACU NP-complete decidable [1]
PTIME [39]

ACUN/AG PTIME [27] PTIME [1, 39]
ACUh NP-complete [52] decidable [39]

ACUNh/AGh PTIME [43] decidable [39]
AGh1 . . . hn decidable [39] decidable [39]

Figure 5 Some decidability and complexity results for deduction and static equivalence.

when considering equivalence-based properties, the natural question we have to solve is not to
decide whether a term is deducible or not, but rather whether two frames are indistinguishable
or not. This problem can be formally stated as follows:

Static equivalence problem:
Input Two frames φ and ψ having the same domain.
Output Are φ and ψ in static equivalence, i.e. φ ∼E ψ ?

Again depending on the equational theory under study, this problem may or may not be
decidable. Actually, even if such a problem is often more complex to solve than the intruder
deduction problem, this problem is now well-understood. Efficient (often PTIME) algorithms
and tools (e.g. FAST [35], and KISS [33]) have been developed to solve this problem for
various equational theories. Some existing results for deduction and static equivalence are
briefly summarised in Figure 5. Moreover, thanks to the combination result provided in [39],
deduction and static equivalence are also decidable for the union of any disjoint theories of
this tabular.

5.2 Bounded number of sessions
When analysing a protocol, a reasonable assumption under which the verification problem
has been shown decidable is the so-called bounded number of sessions assumption. This
amounts to consider processes without replication. Note that processes without replication
allows us to consider traces of bounded length, but the problem remains difficult: the labelled
transition system representing all the possible interactions of the honest participants with the
attacker is still infinitely branching. This issue has been tackled in various ways using forms
of symbolic execution and the development of dedicated procedures. Obtaining a symbolic
semantics to avoid potentially infinite branching of execution trees due to inputs from the
environment is often a first step towards automation of equivalence.

Some theoretical results. Under such an assumption, the problem of deciding trace equi-
valence has been first shown decidable in [50], where a fragment of the spi-calculus (no
replication, no else branch) is considered. In 2005, Baudet designs a constraint solving
procedure that is not only able to solve satisfiability problems (sufficient for reachability
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properties) but also to establish equivalences (i.e. two systems have the same sets of solu-
tions), which are needed when one wants to verify equivalence-based security properties [13].
Few years later, a shorter proof of this result was proposed by Chevalier and Rusinowitch
in [28]. In this work, it is shown that when two processes are not in trace equivalence, then
there exists a small witness of this fact. The main issue with the results mentioned so far is
practicality. Consequently, they have not been implemented.

Since then, a lot of progress has been made leading to more efficient procedures imple-
mented in various verification tools. We review the most popular ones and briefly explain
their features.

Spec. This tools implements a decision procedure for the notion of open bisimulation: a
notion that is strictly stronger than trace equivalence [60]. Processes given in input are written
in the spi-calculus syntax and else branches are not allowed. Regarding the cryptographic
primitives, the tool has been recently extended to deal with asymmetric primitives, and
therefore is now able to handle all the standard primitives.

Akiss. The procedure described in [20] deals with rich user-defined term algebras provided
that they can be defined using a convergent rewriting system enjoying the finite variant
property [34].This includes all the standard primitives, but also some other primitives such
blind signatures, and trapdoor commitment used e.g. in electronic voting protocols. However,
due to some approximations, this procedure is only able to check trace equivalence for the
class of determinate processes. Moreover, its termination is only guaranteed for subterm
convergent equational theories. Regarding the input syntax, processes are written as linear
roles and originally the tool only allows inputs, outputs, and equality tests. Recently, some
extensions have been implemented. In particular, the procedure has been extended to deal
with the exclusive-or operator [8], and various RFID protocols have been analysed such as
the RFID protocol presented in Section 2.1. The tool has also been extended to deal with
else branches [47].

Apte/DeepSec. The tool Apte [21] implements the decision procedure described in [23].
Such a procedure deals with all the standard cryptographic primitives. Actually, the procedure
presented in [23] allows for slightly more general processes than those presented in Section 3
since it deals with private channels and internal communications. This procedure has been
extended to deal with some forms of side-channel attacks regarding the length of messages [25],
and the computation time [24]. Recently, getting some inspiration from the Apte tool, a
new verification tool DeepSec has been implemented [26]. It deals with a large variety
of cryptographic primitives that encompasses all the standard primitives. Moreover, it is
significantly more efficient than other existing tools, namely Spec, Akiss, and its predecessor
Apte.

SAT-Equiv. Following an approach originally developed for checking reachability proper-
ties [6], SAT-Equiv relies on more general verification techniques, namely graph planning
and SAT-solving [38]. The procedure deals with symmetric encryption and pairs, and only
consider simple processes (each process in parallel works on a dedicated channel) without
else branches. However, an extension is currently under preparation and the tool will be
able to cover all standard primitives soon. In order to benefit from graph planning and
SAT-solvers, the size of messages has to be bounded and this bound needs to be practical.
The soundness of the tool is based on a typing result [30] guaranteeing the existence of a



S. Delaune 1:15

witness of non-equivalence where messages comply to a certain format (induced by a typing
system). The resulting implementation, SAT-Equiv, outperforms other existing tools. It
can analyse several sessions (typically more than 20 for rather simple protocols) where most
existing tools have to stop after few sessions. Termination has been established, and this
is the most efficient tool able to decide trace equivalence. However, the class of processes
that it is able to consider is rather limited (e.g. no else branch, simple processes satisfying a
type-compliance assumption).

5.3 Unbounded number of sessions
The decidability results and the tools mentioned so far only consider a bounded number
of sessions, and thus assume that the protocol is executed a limited number of times. The
problem is that even if the protocol has been proved secure for n sessions, there is no
guarantee that the protocol will remain secure if it is executed one more time.

Some theoretical results. It is well-known that replication allowing us to model an un-
bounded number of sessions leads to undecidability even when considering a simple secrecy
property. The first decidability result for trace equivalence has been obtained for a rather
restricted class: the class of ping-pong protocols built using standard primitives (but without
pairs) [32]. This result has been obtained through a characterisation of equivalence of
protocols in terms of equality of languages of (generalised, real-time) deterministic pushdown
automata.

Assuming finitely many nonces and keys, another decidability result has been obtained
in [30] for the class of simple processes built using symmetric encryptions and pairs. Such
a decidability result is based on a typing result which means that messages comply to a
certain format. A well-known class of protocols that satisfies such a requirement, is the class
of tagged protocols. The typing result mentioned above has also been used to establish the
first decidability result in presence of fresh nonces [31]. This decidability result inherits the
restrictions of the typing result (symmetric encryption only, type-compliance) on which it is
based. Additionally, a notion of dependency graph allowing one to represent the dependencies
between the actions of the protocols is carefully designed. In case this graph is acyclic, a
bound on the length of an attack trace can be deduced, giving us an algorithm to decide
trace equivalence.

ProVerif, Tamarin, and Maude-NPA. Since the problem of checking trace equivalence
for rich class of protocols is undecidable, many works aim at developing procedures that
are sound but not complete w.r.t. trace equivalence. In particular, several tools consider
the notion of diff-equivalence (a notion stronger than trace equivalence). This notion has
been introduced in [16] and implemented in the ProVerif tool. Since then, this notion of
diff-equivalence has been integrated in Tamarin [12] and Maude-NPA [57]. Due to the fact
that the equivalence under study is the so-called notion of diff-equivalence, these tools are
not well-suited to analyse some privacy-type properties such as unlinkability, or vote secrecy.

To extend the scope of the ProVerif tool, several extensions have been recently proposed
to go beyond diff-equivalence, e.g. [22, 17]. For instance, ProSwapper [17] allows one to go
beyond diff-equivalence by rearranging automatically processes before launching ProVerif.
This front end is particularly relevant to analyse vote secrecy. ProVerif has also been used as
a back end to analyse anonymity and unlinkability properties [48]. This approach proposes
sufficient conditions that are actually checkable using ProVerif, and from which the security of
the protocol can be established. This method allows to automatically verify unlinkability and
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anonymity of some protocols that were out of the scope of existing tools, e.g. unlinkability
of the fixed version of the BAC protocol has been established for the first time relying on
this technique, and some of the weaknesses presented in Section 2.2 on the PACE protocol
have been discovered using this method.

Whereas ProVerif and Maude-NPA are completely automatic, Tamarin provides two
ways of constructing proofs: an efficient, fully automated mode that uses heuristics to guide
proof search and an interactive mode. Regarding the cryptographic primitives, these tools
support a rich term algebra including all the standard primitives. In addition, Tamarin
also supports Diffie-Hellman exponentiation, and recently exclusive-or has been added into
the tool. The Maude-NPA tool also supports a rich term algebra but the tool suffers from
termination issues, especially when considering the exclusive-or operator. Despite some
non-termination issues that may happen from time to time, these tools are efficient. For
instance, ProVerif generally concludes within few seconds. These good performances are due
to some well-chosen over-approximations that are done on the protocols at the beginning of
the security analysis that may lead sometimes to false attacks.

Type-Eq. Recently, an approach based on type systems has been developed and implemented
in the tool Type-Eq [40, 41]. This approach is very efficient and can prove security of protocols
that require a mix of bounded and unbounded number of sessions This tool only consider
the standard cryptographic primitives, and requires the user to enter all the information
regarding types. While this approach allows to go beyond diff-equivalence, e.g. allowing else
branches to be matched with then branches, it is not yet possible to analyse e.g. unlinkability
of the BAC protocol.

6 Some challenges

In the past ten years, equivalence-based properties have received a lot of attention and we now
have tools to check automatically privacy-type security properties when considering rather
simple protocols. However, new applications are coming or are already there (electronic
voting, contactless payment, keyless systems, . . . ) and these applications often rely on
security protocols that can not be analysed relying on existing verification tools due to
various reasons.

State-explosion problem. Systems we are interested in are highly concurrent and all the
existing methods and tools which naively explore all possible symbolic interleavings are
causing the so called state-explosion problem. This problem seriously limits the practical
impact of tools such as Akiss, Spec, Apte and, to a lesser extent, DeepSec. Actually,
recent works [9, 10] have partially addressed this issue by developing dedicated partial order
reduction (POR) techniques to dramatically reduce the number of interleavings to explore.
They have been implemented in Apte, Akiss, and DeepSec, and brought significant speed-up.
However, these techniques can only be applied on action-deterministic processes, and this is
not sufficient to analyse e.g. unlinkability. To mitigate this problem, it should be possible to
leverage classical POR techniques for use in the specific security setting. A recent result in
this direction has been obtained in [11] regarding the persistent and sleep sets techniques,
and other POR techniques deserve attention to obtain performance gains.

Cryptographic primitives. Most of the tools deal with standard primitives, i.e. encryptions,
signatures, and hashes. However, many protocols, such as RFID protocols or electronic
voting protocols rely on primitives that do not fall into this class. For instance, protocols
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that contain some time-critical steps often rely on low-level operator to reduce computation
(and communication) time. As demonstrated by some recent works (e.g. [8]), dealing with a
simple operator such as the exclusive-or and its algebraic properties in the symbolic setting is
actually challenging. Electronic voting protocols have to achieve antagonist security properties
and they often rely on exotic cryptographic primitives to try to achieve them, e.g. blind
signatures, zero-knowledge proofs, homomorphic encryptions, . . . To avoid missing attacks,
these primitives together with their algebraic properties have to be modelled faithfully when
performing the formal security analysis.

Mutable global states. Many modern protocols involve a notion of state meaning that
some data are conveyed from one session to another through e.g. a register. This is the
case for instance of many RFID protocols as those presented in [18, 61]. Several protocols
proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G
mobile network communications are also stateful. For instance, the Authentication and Key
Agreement (AKA) protocol relies on a state to store a counter across different sessions, and a
state is also used in a crucial way to store temporary identifiers (namely TMSI) in the TMSI
reallocation procedure. Moreover, these protocols are supposed to guarantee unlinkability.
Existing results regarding the formal verification of such protocols model states in a very
abstract way, considering for instance that the client and the server already (magically) share
a fresh name instead of modelling the sequence number mechanism. Recent advances have
been made in this direction though an extension of the Tamarin prover [46]. Nevertheless,
methods for checking trace equivalence on stateful protocols are in their infancy.
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This invited paper describes recent, ongoing and planned work on the use of the rewrite-based
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1 Introduction and Motivation

Many of the recent expensive cryptocurrency bugs and exploits are due to flaws or weaknesses
of the underlying blockchain programming languages or virtual machines [6, 4, 1, 3, 12].
The usual post-mortem approach to formal language semantics and verification, where the
language is firstly implemented and used in production for many years before a need for
formal semantics and verification tools naturally arises, does simply not work anymore. New
blockchain languages or virtual machines are proposed at an alarming rate, followed by new
versions of them every few weeks, sometimes every few days, together with programs (a.k.a.
smart contracts) in these languages that are responsible for financial transactions totaling
more than $1B/day only on the Ethereum blockchain [7]. Formal analysis and verification
tools for such languages and virtual machines are therefore needed immediately.

In order to formally verify a program in any given language, a formal model of the
program is necessary. Such a program model can be developed manually, in mechanical
theorem provers such as Coq [10] or Isabelle [13], but this is usually expensive and thus
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done rarely, mostly in the context of mission critical systems and in combination with other
activities, such as defining model abstractions and protocol/algorithm/model validation. The
norm is for tools to extract such program models automatically, based either on translations
of the program to particular intermediate languages such as Boogie [2] or Why [8] that serve
as input to specialized program verifiers, or on direct implementations of Hoare logics or
verification condition (VC) generators for the target programming language.

The translation approach has the advantage that the same verifier can be used across
various target languages, but it has the drawback that program behaviors may be lost in
translation, so a trusted formal semantics of the original language and a proof of correctness
of the translation are needed for increased confidence. Additionally, backwards translations
of failed proofs need to be engineered, so users see error messages specific to their original
language and not to the level of the intermediate language. The direct approach avoids both
the translation correctness and the translation of failed proofs problems, but it is usually
significantly more complex to implement, which can lead to subtle implementation errors
that are hard or impossible to expose by testing (Hoare logics are not easily executable).
Therefore, to increase confidence in such direct program verifiers, the underlying Hoare logic
or VC generation procedure needs to be proved sound with respect to some trusted reference
model of the target programming language, typically an operational semantics.

Therefore, a formal trusted semantics of the target programming language is required for
increased confidence of program verification. The K framework [11] (http://kframework.
org) takes the firm position that a formal language semantics should be needed to validate
not only program verifiers, but essentially all the target language tools. Moreover and
more importantly, that no other formal or informal, direct or indirect semantics of the
target language should be required for any of the tools, and that the tools should be either
generated automatically from or take as input the formal language semantics. That is, that
all the language-specific tools for a given language should be produced automatically by the
framework, correct-by-construction, from the formal semantics of the language. Figure 1
depicts the K belief and approach. This is nevertheless the best we can hope for in our field.
But does it really work? Isn’t it too idealistic? Aren’t the tools too inefficient to be practical?

Some initial practical instances of the K approach were reported in [5], where existing
formal semantics of C, Java and JavaScript were used as inputs to K’s language-parametric
program verifier, to yield program verifiers specific to these three languages. The resulting
program verifiers were comparable in performance with existing state-of-the-art verifiers
developed specifically for these languages. Here we bring additional evidence for the feasibility
of the K approach, this time in the context of the blockchain. Specifically, we discuss recent
academic and commercial results in designing blockchain languages and virtual machines
by formalizing their semantics. Implementations for these are generated automatically from
their semantics, in a correct-by-construction fashion, and so are program verifiers for them.

Why target the blockchain as an application domain for the K approach? First, because
it is a new field in desperate need of formal verification; if cryptocurrencies are the future
of money, then we ought to do our best to increase the security, safety and reliability of
blockchain transactions. Second, because the entire blockchain space is a moving target,
with paradigms and languages that change on a daily basis with no time to develop program
verifiers following the traditional Hoare logic or VC generation approaches; therefore, it is
a sweet spot for our language-parametric approach. Third, because two major blockchains
holding cryptocurrencies, Ethereum and Cardano, showed unreserved interest in pushing
formal methods in the design and implementation of their languages, and even deploy new
versions of the blockchain using technology resulting from this research initiative. Finally,
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module LAMBDA
imports SUBSTITUTION
syntax Val ::= Id

| "lambda" Id "." Exp [binder]
syntax Exp ::= Val

| Exp Exp [strict, left]
| "(" Exp ")" [bracket]

syntax KVariable ::= Id
syntax KResult ::= Val

rule (lambda X:Id . E:Exp) V:Val => E[V / X]

syntax Val ::= Int | Bool
syntax Exp ::= Exp "*" Exp [strict, left]

| Exp "/" Exp [strict]
> Exp "+" Exp [strict, left]
> Exp "<=" Exp [strict]

rule I1 * I2 => I1 *Int I2
rule I1 / I2 => I1 /Int I2
rule I1 + I2 => I1 +Int I2
rule I1 <= I2 => I1 <=Int I2

syntax Exp ::= "if" Exp "then" Exp
"else" Exp [strict(1)]

rule if true then E else _ => E
rule if false then _ else E => E

syntax Exp ::= "let" Id "=" Exp "in" Exp
rule let X=E in E’ => (lambda X . E’) E

syntax Exp ::=
"letrec" Id Id "=" Exp "in" Exp

| "mu" Id "." Exp [binder]
rule letrec F:Id X = E in E’

=> let F = mu F . lambda X . E in E’
rule mu X . E => E[(mu X . E) / X]

syntax Exp ::= "callcc" Exp [strict]
syntax Val ::= cc(K)
rule <k> (callcc V:Val => V cc(K))

~> K </k>
rule <k> cc(K) V ~> _ => V ~> K </k>

endmodule

Figure 1 Left: the K framework approach to language design, implementation and verification.
Center and right: the K definition of a call-by-value lambda calculus with arithmetic and callcc.

because it offers an environment where a language framework like K can be pushed even
beyond its original, already ambitious goal: it can serve as a universal language of languages,
where language semantics (or more exactly their hashes) are stored on the blockchain, and
then correct-by-construction compilers and interpreters for such languages are generated
automatically; this way, smart contract developers can program and verify them using their
favorite languages, provided that they have a formal semantics on the blockchain.

2 K Framework

K is a rewrite-based executable semantic framework in which programming languages, type
systems and formal analysis tools can be defined using configurations, computations and
rules. Configurations organize the state in units called cells, which are labeled and can
be nested. Computations carry computational meaning as special nested list structures
sequentializing computational tasks, such as fragments of program. Computations extend
the original language abstract syntax. K (rewrite) rules make it explicit which parts of the
term they read-only, write-only, read-write, or do not care about. This makes K suitable for
defining truly concurrent languages even in the presence of sharing. Computations are like
any other terms in a rewriting environment: they can be matched, moved from one place to
another, modified, or deleted. This makes K suitable for defining control-intensive features
such as abrupt termination, exceptions or call/cc. Figure 1 left depicts the K architecture.

Figure 1 center and right shows the complete K definition of a simple call-by-value
lambda calculus language with builtin arithmetic, conditional, let, letrec, and call/cc. Note
that syntax is define using conventional BNF, with terminals in quotes. The | separates
production of same precedence, while > states that the previous productions bind tighter
than the subsequent ones. A parser is generated automatically and is used to parse both
the programs and the semantic rules; i.e., rules can use concrete syntax. Syntax and rule
declarations can be tagged with attributes. Some attributes have meaning for the parser,
such as left for left associativity, others have semantic meaning, such as binder (used
by the builtin variable-capture free substitution) and strict (which defines appropriate
evaluation contexts). For K’s internal substitution to work out of the box, we also need to tell
it which syntactic categories act as variables, by subsorting them to KVariable. Similarly,
for efficiency we need to tell it which categories build non-reducible results by subsorting to
KResult. Most of the semantic rules are self-explanatory. The call/cc rules use K’s specific
local rewriting: rewriting takes place in context, specifically in the <k/> cell, and not at the
top level. This gives K additional convenience and modularity in language definitions.
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Taking such formal language definitions as input, K generates a variety of tools for the
defined language as shown in Figure 1, without any other piece of knowledge about the
given language except its formal syntax and semantics. Complete languages semantics for
real-world languages like C, Java and JavaScript have been defined this way, and tools for
them have been generated and shown to have acceptable performance when compared to
existing adhoc tools for the same languages [5].

3 Current Progress

KEVM: Ethereum, the second largest blockchain cryptocurrency after Bitcoin, implements
a general-purpose replicated “world computer” that allows for the development of arbitrary
programs, called “smart contracts”, that execute in blockchain transactions using the block-
chain to synchronize their state globally. Smart contracts are written in various high-level
languages, but are ultimately translated to a low-level language called the Ethereum Virtual
Machine (EVM) [14]. Among other features, these contracts can tally user votes, commu-
nicate with other contracts, store or represent digital assets, and send or receive money in
cryptocurrencies, without requiring trust in any third party to faithfully execute the contract.
Their correct and secure operation relies entirely on the correctness of their EVM code. Any
code error can be immediately exploited resulting in significant financial loss [6, 4, 1, 3, 12].

To enable the formal verification of smart contracts, in a project partially funded by the
research and engineering company IOHK (http://iohk.io, the creators of the Cardano
blockchain and the ADA cryptocurrency), we have formalized the semantics of the EVM [9].
Our K semantics of the EVM, which we refer to as KEVM, is as complete as it can be.
We know this because we tested it by running the automatically generated interpreter
(see Figure 1) against the comprehensive 40,000-program test suite that comes with the
official C++ implementation of the EVM, which serves as a conformance suite for EVM
implementations. Building upon KEVM, the startup Runtime Verification has formally
verified several smart contracts as part of their commercial verification services (https:
//runtimeverification.com/smartcontract/).

A pleasant surprise was that the EVM interpreter automatically generated from KEVM
turned out to be only one order of magnitude slower on average than the official C++
implementation offered by the Ethereum Foundation [9]. Since smart contracts are small
and fast executing programs, the above suggests that KEVM can serve not only as a
reference executable model of the EVM, but also as an actual production implementation.
We are grateful to IOHK for launching a testnet on Cardano in Summer 2018 to test this
hypothesis in a real-world setting. If successful, this experiment can be the first step towards
a world where virtual machines are generated automatically from their formal specifications,
correct-by-construction. If performance is not a problem, why should it be any other way?

IELE: One of the major lessons we learned during the EVM formalization effort was that
EVM can be improved along various dimensions, improvements that could make both
implementations and smart contract verification easier and faster. Instead of doing so, we
preferred to design and implement a new virtual machine, IELE: https://github.com/
runtimeverification/iele-semantics. Unlike the EVM, which is a stack-based machine,
IELE is a register-based machine, like LLVM. IELE also directly supports functions, like
LLVM, and is human readable. It has an unbounded number of registers and also supports
unbounded integers. Like KEVM, the design of IELE was also done in a semantics-based
style, using K, and a VM was automatically generated from its formal specification. To our
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knowledge, IELE is the first VM that was completely designed and implemented using formal
methods. There is no line of low-level code written by humans; all code is automatically
generated from its formal specification. The IELE project was funded by IOHK, with
the explicit objective of eventually powering real-world blockchains, including Cardano.
The project is complete and like with KEVM, a test net will be deployed in Summer
2018 by IOHK to evaluate IELE in a real-world setting. To make migration of existing
Ethereum smart contracts to IELE possible, we have also developed a IELE compiler
for the most commonly used smart contract language, Solidity: https://github.com/
runtimeverification/solidity. We are currently also working on a IELE compiler for
Plutus, a high-order functional programming language for future smart contracts developed by
IOHK under the supervision of Philip Wadler: https://github.com/kframework/plutus-
core-semantics.

Vyper, Casper: Vyper (https://github.com/ethereum/vyper) is a novel programming
language for smart contracts that aims for increased security, simplicity, and human readabil-
ity; Vyper currently compiles to the EVM. Casper (https://github.com/ethereum/casper)
is a novel consensus protocol implemented in Vyper, meant to save wasteful electricity ex-
penditures and at the same time provide greatly increased security. Vyper and Casper are both
proposed by the Ethereum Foundation and, unfortunately, both are moving targets. Inconsist-
encies and bugs are found and fixed in Vyper on a weekly basis, which may potentially influence
the Casper implementation, which itself still changes due to other forces. Funded by Ethereum
Foundation, we have formalized the semantics of Vyper in K, discovering several bugs and in-
consistencies in the process: https://github.com/kframework/vyper-semantics; and we
are also formally verifying the Casper code in Vyper, as compiled to EVM: https://github.
com/runtimeverification/verified-smart-contracts/tree/master/casper. For veri-
fication purposes, we are currently regarding Casper as a smart contract eventually executed
on the EVM, but its inherent complexity makes it highly non-trivial to correctly specify
its intended behavior. To reduce the risk of misspecifying its Vyper code correctness, in a
joint effort with the Etherum Foundation and the University of Texas at Austin we are also
formalizing the actual protocol in Coq and in Isabelle, and validate the model by proving
its intended safety and liveness properties. Then we will show that the proved Vyper code
properties are consistent with the Coq and Isabelle models. All these are necessary due to
the extremely important role that Casper will play in the near future for Ethereum.

4 Conclusion and Future Work

While K may not be the final answer to our quest for an ideal language framework, we believe
that it has demonstrated that it is possible, and feasible, to generate a variety of formal
execution and analysis tools for a given language from the formal semantics of that language.
Moreover, only one, executable semantics for any given language suffices in order to generate
all the tools, and that the so generated tools can be correct-by-construction, thus eliminating
the need for redundant semantics and complex proofs of correctness.

Some years may still need to pass before sufficient evidence is accumulated to convince
the skeptical formal methodist that the approach has merit even with mainstream languages
like C and Java, for which well-engineered formal verification tools already exist. But for
emerging fields like the blockchain, which come with new languages that routinely change
every few days and require mostly small but tricky programs, the language-parametric
semantic framework approach appears to be the only solution quickly available.
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We hope that this wave of interest in language frameworks like K will lead to the
development of several important advances in the field, which will then be applicable across
all languages. On the foundational side, we need to develop language-/paradigm-independent
logics that allow us to specify any desired properties about any programs in any programming
languages. On the practical side, automation is critical for the success of any verification
environment. Also, generation of proof objects to act as correctness certificates for the
various formal tools generated for a given language would increase demand and adoption of
such tools, especially in the blockchain domain.
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Abstract
In this talk, I will give an overview of some recent progress and current challenges in the design of
quantum programming languages. Unlike classical programs, which can in principle be debugged
by stopping the program at critical moments and examining the contents of variables, quantum
programs are not amenable to traditional debugging because the state of a quantum system
cannot usually be examined in a meaningful way. Therefore, we need other methods for ensuring
the correctness of quantum programs, such as formal verification. For this reason, I advocate
the use of strongly typed, functional programming languages for quantum computing. As far as
functional quantum programming languages are concerned, there is currently a relatively wide
gap between theory and practice. On the one hand, we have languages with strong theoretical
foundations, such as the quantum lambda calculus, which operate at a relatively low level of
abstraction and lack many features that would be useful to practical quantum programmers. On
the other hand, we have practical functional quantum programming languages such as Quipper,
which is implemented as an embedded language in Haskell, has many high-level features, and
has been used in large-scale projects, but lacks a theoretical basis and a strong type system
[1, 2, 3, 6]. We have recently attempted to narrow this gap through a family of languages called
Proto-Quipper, which are designed to offer Quipper-like features while having sound theoretical
foundations [5, 4]. I will give an overview of Quipper and its most useful features, report on
the progress we made with formalizing fragments of Quipper, and outline several of the still
remaining challenges.
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Abstract
While the theory of functional higher-order languages, starting from lambda-calculi, is a well-
established research field, it is only in recent years that the operational semantics of higher-order
languages with probabilistic operators has started to be extensively studied. A fundamental
notion in the semantics of programming languages is that of program equivalence. In higher-
order languages, program equivalence is generally formalized as a contextual equivalence [6],
which can be hard to prove directly. This has motivated the study of proof techniques for
contextual equivalence, from inductive ones, such as logical relations [7], to coinductive ones,
mainly in the form of bisimulations [1]. In this talk I will discuss proof techniques for program
equivalence in languages combining higher-order and probabilistic features. Several operational
methods, traditionally developed in a deterministic setting, have been adapted to probabilistic
higher-order languages [2, 5, 3]. I will discuss these proof methods and focus on bisimulation-
based techniques, showing how probabilities, combined with different language features, force a
number of modifications to the definition of bisimulation [4, 8].
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Abstract
In this paper we define a framework to address different kinds of problems related to type inhabit-
ation, such as type checking, the emptiness problem, generation of inhabitants and counting, in a
uniform way. Our framework uses an alternative representation for types, called the pre-grammar
of the type, on which different methods for these problems are based. Furthermore, we define a
scheme for a decision algorithm that, for particular instantiations of the parameters, can be used
to show different inhabitation related problems to be in PSPACE.
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1 Introduction

Inhabitation of simply typed λ-terms and its related problems, such as type checking, the
emptiness problem, generation of inhabitants, counting algorithms, etc. have been extensively
studied throughout the years [2, 3, 5, 15, 14, 10, 12, 13, 6], using a variety of formalisms such
as context-free grammars [15], tree-based methods [4], automata theory [13], amongst others.
Despite the diversity of methods, there are common fundamental features that emerge from
the different approaches.

One of these features is the implicit relation between the structure of a type and its
normal inhabitants. The Formula-Tree Method by Broda and Damas [4] explores this relation
by looking at a tree representation of the type, identifying what are called the primitive parts,
which are then combined following a set of rules determined by the structure of the type.
In the case of the inhabitation machines defined by Schubert et al. [13], the states of the
automata used to recognize the inhabitants of a given type, as well as the transition relation
between configurations of the machines, are obtained directly from the sub-expressions of the
type. More recently, while studying the complexity of the principal inhabitation problem,
Dudenhefner and Rehof [6] use the structure of the type to define a path relation identifying
subformulas with the same atomic type. This path relation is then used in the definition
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of an algorithm that addresses principal inhabitation. Types and their structure are also
fundamental in the definition of the context-free grammars by Takahashi et al. [15].

In this paper we highlight the importance of the underlying structure of types in the
definition of methods for type inhabitation related problems. To that end, we present an
alternative unifying representation of the type’s structure, which we call the pre-grammar of
the type. From this simple, yet powerful, device we extract rewriting methods to deal with
type-checking, counting and generation of inhabitants.

Secondly, we explore the uniformity of decision algorithms defined over the years to prove
that different inhabitation related problems are in PSPACE. Complexity of inhabitation
related problems was first addressed by Statman [14] in the realm of propositional intuitionistic
logic. The decidability of the logic was proved to be PSPACE complete, and therefore also
the emptiness problem for the simply typed lambda calculus, due to the well-known Curry-
Howard correspondence [11]. A direct syntactic proof of the same result, for the simply
typed λ-calculus, was later given by Urzyczyn [16]. PSPACE completeness of the infiniteness
problem was proved by Hirokawa [10], by reducing the emptiness problem to the infiniteness
problem. In [6], PSPACE completeness was proved for the problem of principal inhabitation,
by means of a non-deterministic algorithm for choosing a particular path relation for a
given type. Also in the case of inhabitation machines [13], a PSPACE completeness result is
obtained for the emptiness problem by means of a polynomial time alternating algorithm. In
fact, several of the results mentioned above rely on polynomial time alternating algorithms.
Note that the class of problems decidable in alternating polynomial time (AP) corresponds
to the class of problems decidable in polynomial space (PSPACE). Following that, we define
a scheme for a polynomial time alternating decision algorithm, which operates on the rules
of the pre-grammar of the type. By instantiating the parameters of the algorithm scheme,
we obtain different PSPACE decision algorithms for the problems of emptiness, counting and
principal inhabitation.

We will restrict our methods and definitions to terms in normal form. In fact, most of
the interesting questions related to inhabitation can be reduced to, or even just make sense
for, normal terms. For instance, an inhabited type may have only a finite number of normal
inhabitants, but has always an infinite number of (not necessarily normal) inhabitants. Also,
every inhabited type is the principal type of an infinite number of terms, while it may not be
the principal type of a term in normal form [9].

The rest of the paper is structured as follows. In the next section we introduce some
preliminary notions. In Section 3, we present the notion of pre-grammars and prove some
basic results. Using the pre-grammar representation, in Section 4, we define rewriting
methods to address type checking and the emptiness problem, and explore closure properties,
for intersection and union types. In Section 5 we define the scheme of an alternating decision
algorithm, and its instances. Finally, in Section 6, we draw some conclusions and highlight
some future work.

2 Preliminaries

In this paper we assume familiarity with the simply typed λ-calculus à la Curry [8]. We
denote type variables (atoms) by a, b, c, . . . and arbitrary types by lower-case Greek letters
α, β, γ, σ, τ, . . .. The set of simple types is denoted by T . We denote λ-terms by M,N, . . .,
which are built from an infinite countable set of term variables V. Unless stated otherwise,
we identify terms modulo α-equivalence. For type assignment we consider the system TAλ as
described in [8] and consider its inference rules for terms in β-normal form. Note that every
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β-normal λ-term is of the form λx.N or xN1 · · ·Ns, where N,N1, . . . , Ns are in normal form
and s ≥ 0. Different from [8] we define the depth of a λ-term by depth(λx.N) = 1+depth(N),
and depth(xN1 · · ·Ns) = 1 + max(depth(N1), . . . , depth(Ns)) for s ≥ 1, and depth(x) = 1.
With this definition the depth of a term M , such that Γ `M : τ , corresponds directly to the
height of the unique TAλ-deduction of this fact, as defined below. A context is a finite set Γ
of declarations x : σ, where x ∈ V and σ ∈ T , such that all term variables occurring in Γ
are distinct from each other. The set of term variables occurring in Γ is denoted by Subj(Γ).
The union of contexts is consistent if it does not contain different type declarations for the
same term variable.

I Definition 1. We write Γ ` M : τ and say that type τ can be assigned to term M in
context Γ, if this formula can be obtained by applying the rules below a finite number of
times.

If Γ ` N : σ2 and Γ ∪ {x : σ1} is consistent, then Γ \ {x : σ1} ` λx.N : σ1 → σ2.
if Γi ` Ni : σi, for 1 ≤ i ≤ s (s ≥ 0), then Γ ` xN1 · · ·Ns : σ, if Γ = Γ1 ∪ · · · ∪ Γs ∪ {x :
σ1 → · · · → σs → σ} is consistent;

If Γ = ∅, then we also write `M : τ instead of Γ `M : τ and say that M is an inhabitant of
type τ . The set of all (normal) inhabitants of τ is denoted by Nhabs(τ).

One knows that Γ `M : τ implies that the set of term variables in Γ coincides with the set
of free variables in M , i.e. Subj(Γ) = FV(M), cf. Lemma 2A10 in [8]. Furthermore, for every
derivable formula Γ `M : τ there is exactly one deduction in TAλ.

I Example 2. Consider type α = ((o→ o)→ o→ o)→ o→ o, which will be our running
example throughout this paper. Normal inhabitants of α are, for instance,M1 = λxy.x(λz.y)y
and M2 = λx.x(λy.y), for which one has depth(M1) = 5 and depth(M2) = 4.

I Definition 3. The polarity of occurrences of subtypes in a type τ is defined as follows.
τ is a positive occurrence in τ ;
if ρ→ σ occurs positively (resp. negatively) in τ , then that occurrence of ρ is negative
(resp. positive) and that occurrence of σ is positive (resp. negative) in τ .

Following the notation in [8], we will on occasions write o when referring to a particular
occurrence of an object o. Every type τ can be uniquely written as τ = τ1 → . . .→ τl → a,
where a is a type variable and l ≥ 0. Type variable a is called the tail of τ and denoted by
tail(τ). If l ≥ 1, then τ1, . . . , τl are called the arguments of τ . An occurrence σ in τ is called
a negative subpremise of τ iff it is the argument of a positive occurrence of a subtype in τ .

Consider a term M and a type τ such that ` M : τ , as well as a formula Γ ` N : σ,
appearing in the unique TAλ-deduction of ` M : τ . In the following, we assign to each
X ∈ Subj(Γ) ∪ {N} an occurrence st(X) of a subtype in τ . The definition of st is bottom-up,
starting with `M : τ .

For `M : τ , let st(M) = τ .
Now consider Γ \ {x : σ1} ` λx.N : σ1 → σ2, because Γ ` N : σ2 and because Γ∪{x : σ1}
is consistent. Consider st(λx.N) = σ1 → σ2 for Γ \ {x : σ1} ` λx.N : σ1 → σ2. Then, for
Γ ` N : σ2 let st(N) be the occurrence of σ2 in st(λx.N). If x ∈ Subj(Γ), then st(x) is
the occurrence of σ1 in σ1 → σ2. All other variables in Subj(Γ) are assigned the same
occurrences as for the formula Γ \ {x : σ1} ` λx.N : σ1 → σ2.
Finally let Γ ` xN1 · · ·Ns : σ, because Γi ` Ni : σi, for 1 ≤ i ≤ s (s ≥ 0), and because
Γ = Γ1 ∪ · · ·Γs ∪ {x : σ1 → · · · → σs → σ} is consistent. If st(x) = σ1 → · · · → σs → σ,
then st(Ni) is the occurrence of σi in st(x), for Γi ` Ni : σi and 1 ≤ i ≤ s (s ≥ 0). The
variables in Subj(Γi) are assigned the same occurrences as for Γ ` xN1 · · ·Ns : σ.
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The following lemma, cf. [4], establishes the relationship between occurrences of variables
in abstraction sequences and occurrences of subterms in M , respectively with negative
subpremises and positive occurrences of subtypes in τ and can be easily proved using the
definition of st above, as well as Definition 3. The established relationship will be explored
in the definition of pre-grammars in the next section.

I Lemma 4. Consider a term M in β-normal form and a type τ such that `M : τ , as well
as a formula Γ ` N : σ, appearing in the unique TAλ-deduction of `M : τ . If x : σx ∈ Γ, then
st(x) = σx is a negative subpremise in τ . Furthermore, st(N) = σ is a positive occurrence of
subtype σ in τ .

3 Pre-grammars

In this section we describe how to obtain for a type τ a set of rewriting rules, which we
call the pre-grammar of τ and denote by pre(τ). We start by associating to each type τ
a set occT(τ) that contains for each type occurrence σ a tuple (σ, n, l), where n ∈ N, and
l ∈ {var} ∪ { n → m | n,m ∈ N }. Distinct occurrences of subtypes are assigned distinct
tuples. This set is uniquely defined, up to isomorphism between integers used in the tuples.

I Definition 5. Given a type τ ∈ T let occT(τ) be the smallest set satisfying the following.
For each occurrence of a type variable a in τ there is a tuple (a, n, var) ∈ occT(τ);
if ρ → σ is an occurrence of a subtype of τ , and (ρ, n, lρ), (σ,m, lσ) ∈ occT(τ) are the
tuples corresponding to ρ and σ in this occurrence, then (ρ→ σ, k, n→ m) ∈ occT(τ);
for each n ∈ N there is at most one tuple (σ, n, l) ∈ occT(τ).

Furthermore, given a particular occurrence σ of a subtype of τ we denote by n(σ) the unique
integer n such that (σ, n, l) ∈ occT(τ). We frequently will refer to n(σ) as the identifier of σ
w.r.t. occT(τ). Finally, t(n) = σ, lab(n) = l, and N(τ) = { n | (σ, n, l) ∈ occT(τ) }.

In order to deal correctly with the correspondence between occurrences of subtypes and
occurrences of subterms, polarities have to be taken into account. With this purpose, and
whenever convenient, we might superscript an integer n with ’+’ if n corresponds to a positive
occurrence of a subtype, i.e. an occurrence that can be the type of a subterm of an inhabitant,
and with ’−’ if it corresponds to a negative subpremise, i.e. if it corresponds to an occurrence
that can be the type of a variable in an abstraction sequence. Integers that correspond to a
negative occurrence, which is no subpremise, will not be superscripted.

I Definition 6. We say that two integers n,m ∈ N(τ) are equivalent w.r.t. occT(τ), and
write n ≡occT m, if and only if t(n) = t(m). The binary relation T (τ) ⊆ N(τ)×N(τ) is defined
by (p2, p3) ∈ T (τ) iff (β, p3, p1 → p2) ∈ occT(τ), i.e. β = β1 → β2, n(β1) = p1, n(β2) = p2,
and n(β) = p3. Furthermore, for (p2, p3) ∈ T (τ) let q(p2, p3) = p1.

I Lemma 7. If τ contains s occurrences a1, . . . , as, of type variables, then the graph of T (τ),
whose set of nodes is N(τ), consists of s unary trees with roots n(a1), . . . , n(as), respectively.

I Example 8. For α = ((o → o) → o → o) → o → o from Example 2 the set occT(α)
contains eleven tuples (β, n, l), where β, n and l are given below.

β n l
o 0 var
o 1 var
o 2 var
o 3 var

β n l
o 4 var
o 5 var

o → o 6 0 → 1
o → o 7 2 → 3

β n l
o → o 8 4 → 5

(o → o) → o → o 9 6 → 7
α 10 9 → 8
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The equivalence relation ≡occT partitions N(α) into four equivalence classes, which are {10+},
{9−}, {6+, 7, 8+}, and {0−, 1+, 2+, 3, 4−, 5+}. The associated graph T (α) is depicted below.

5+

8+

10+

1+

6+

2+ 3

7

9−

4− 0−
4

9

0 2

6

Now, pre(τ) can be computed from occT(τ) and T (τ) as follows.

I Definition 9. Given a type τ and a set of tuples occT(τ), we denote by pre(τ) the smallest
set of rules satisfying the following conditions.

If m+, k−, n+ ∈ N(τ), (β,m, k → n) ∈ occT(τ), then m := λk.n ∈ pre(τ);
if m+, p−0 ∈ N(τ) and (ps, ps−1), . . . , (p2, p1), (p1, p0) ∈ T (τ), for some s ≥ 0, m+ ≡occT ps,
q(pi, pi−1) = ni for 1 ≤ i ≤ s, then m := p0 n1 · · ·ns ∈ pre(τ).

I Note 10. If τ is inhabited, then there is exactly one rule for n(τ) in pre(τ). This rule is of
the form n(τ) := λk.n, for some k−, n+ ∈ N(τ). Also, n(τ) occurs in no other rule.

It is straightforward to verify the following two properties of pre(τ).

I Lemma 11.
1. Consider a positive occurrence of a subformula ρ→ σ in τ and the corresponding tuple

in (ρ→ σ,m, k → n) ∈ occT(τ). Then, m := λk.n ∈ pre(τ), and there is no other rule of
the form m := λk′.n′ in pre(τ).

2. Consider a negative subpremise ρ = σ1 → · · · → σs → σ in τ and let (σ1, n1, l1), . . .,
(σs, ns, ls), (σ, n, ln), (ρ, k, lk) be the tuples in occT(τ) corresponding to σ1, . . . , σs, σ, ρ,
respectively. If m+ ∈ occT(τ), such that m+ ≡occT n, then m := k n1 · · ·ns ∈ pre(τ).
Furthermore, there is no other rule of the form m := k n′1 · · ·n′t (t ≥ 0) in pre(τ).

I Example 12. From occT(α) and T (α) in Example 8 we obtain the following set pre(α)
containing fourteen rewriting rules.

10 := λ9.8 6 := λ0.1 | 9 6 2 := 9 6 2 | 4 | 0
8 := λ4.5 | 9 6 5 := 9 6 2 | 4 | 0 1 := 9 6 2 | 4 | 0

4 Inhabitation

4.1 Type Checking
In the following we describe a rewriting algorithm that, given a type τ and a term M , verifies
if `M : τ , i.e. checks if M ∈ Nhabs(τ). During the rewriting process we use objects with the
structure of λ-terms, but such that integers can be used as placeholders for variables. We
refer to these objects as extended terms. We denote by N [k/x] the (extended) term obtained
from N by replacing all free occurrences of variable x in N by placeholder k.

I Definition 13. Given a type τ , we write (M,m) ↪→ (N1, n1) · · · (Ns, ns), (s ≥ 0), where
M,N1, . . . , Ns are extended terms and m,n1, . . . , ns ∈ N(τ), if one of the following applies.

If m := λk.n ∈ pre(τ), then (λx.N,m) ↪→ (N [k/x], n);
if m := k n1 · · ·ns ∈ pre(τ), then (k N1 · · ·Ns,m) ↪→ (N1, n1), . . . , (Ns, ns).
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The definition of ↪→ extends, in the usual way, to rewriting of sequences of pairs, where
we assume that sequences of pairs are processed from left to right. Then, ↪→∗ denotes the
reflexive, transitive closure of ↪→.

Note that, by Lemma 11, in each step of (M, n(τ)) ↪→∗ ε, at most one rule of pre(τ) applies
to each pair. Consequently, the type-checking algorithm is deterministic and the sequence
from (M, n(τ)) to ε is unique.

I Example 14. Consider α as before and M1 = λxy.x(λz.y)y from Example 2. Then,

(λxy.x(λz.y)y, 10) ↪→ (λy.9(λz.y)y, 8) ↪→ (9(λz.4)4, 5)
↪→ (λz.4, 6), (4, 2) ↪→ (4, 1), (4, 2) ↪→ (4, 2) ↪→ ε.

I Theorem 15. Nhabs(τ) = {M | (M, n(τ)) ↪→∗ ε }.

Proof. We show that for any term M , context Γ = {x1 : σ1, . . . , xn : σn} and type σ,
if Γ ` M : σ, then (M [n(σ1)/x1, · · · , n(σn)/xn], n(σ)) ↪→∗ ε, using M [Γ] as an abbrevi-
ation for M [n(σ1)/x1, · · · , n(σn)/xn]. As a consequence it follows that Nhabs(τ) ⊆ { M |
(M, n(τ)) ↪→∗ ε }. We proceed by induction on depth(M). First, consider M = xN1 · · ·Ns
and suppose that Γ ` xN1 · · ·Ns : σ, because Γi ` Ni : σi, for 1 ≤ i ≤ s (s ≥ 0), and because
Γ = Γ1 ∪ · · · ∪ Γs ∪ {x : σ1 → · · · → σs → σ} is consistent. By Lemma 4, we know that there
is a negative subpremise st(x) = σ1 → · · · → σs → σ in τ , as well as a positive occurrence
st(xN1 · · ·Ns) of σ in τ , corresponding to Γ ` xN1 · · ·Ns : σ. Let n and m be respectively
the identifier of the occurrence of σ in st(x), and of the positive occurrence st(xN1 · · ·Ns) of
σ in τ . Then, m+ ≡occT n and it follows from Lemma 11 that m := k n(σ1) · · · n(σs) ∈ pre(τ),
where k = n(σ1 → · · · → σs → σ). Thus (M [Γ],m) ↪→ (N1[Γ], n(σ1)), . . . , (Ns[Γ], n(σs)). But
Ni[Γ] = Ni[Γi], for 1 ≤ i ≤ s. Consequently, the result follows from the induction hypothesis.
Now, consider M = λx.N and suppose that we have Γ \ {x : σ1} ` λx.N : σ1 → σ2,
because Γ ` N : σ2 and Γ ∪ {x : σ1} is consistent. It follows from Lemma 4 that
st(λx.N) = σ1 → σ2 is a positive occurrence of σ1 → σ2 in τ . We consider the corres-
ponding tuple (σ1 → σ2,m, k → n) ∈ occT(τ), where n(σ1 → σ2) = m, n(σ1) = k, and
n(σ2) = n. By Lemma 11, there is a rule m := λk.n ∈ pre(τ). Furthermore, Subj(Γ) = FV(N)
and Subj(Γ \ {x : σ1}) = FV(λx.N). Thus, we have (M [Γ \ {x : σ1}],m) ↪→ (N [Γ], n). The
result follows from the induction hypothesis.

For the other inclusion consider a term M , such that (M, n(τ)) ↪→∗ ε. Let (E, p) be any
pair appearing in the corresponding rewriting sequence, where E is an extended term and
p = n(σ), for some type occurrence σ in τ , i.e. σ = t(p). Naturally, we have (E, p) ↪→∗ ε. Let
P = {p1, . . . , pl} be the set of placeholders that occur in E. Furthermore, let us interpret each
of the integers in P as the name of a term variable. We will show, by induction on the length
of (E, p) ↪→∗ ε, that ΓP ` E : t(p), where ΓP = {p1 : t(p1), . . . , pl : t(pl)}. In particular,
it follows that ` M : τ . First, consider E = λx.E′ such that (λx.E′, p) ↪→ (E′[k/x], n)
by rule p := λk.n ∈ pre(τ). This means that there is a positive occurrence of a subtype
t(p) = t(k)→ t(n) in τ . By the induction hypothesis, we have ΓE′∪{k : t(k)} ` E′[k/x] : t(n).
Thus, ΓE′ ` λk.E′[k/x] : t(p), but λk.E′[k/x] ≡α λx.E′. Finally, consider E = k E1 · · ·Es,
such that (k E1 · · ·Es, p) ↪→ (E1, n1), . . . , (Es, ns) by rule p := k n1 · · ·ns ∈ pre(τ), where
s ≥ 0. Then, t(k) = t(n1) → · · · → t(ns) → t(p) is a negative subpremise in τ . By the
induction hypothesis, we have ΓEi ` Ei : t(ni), for 1 ≤ i ≤ s and s ≥ 0. Furthermore,
ΓE = ΓE1 ∪ · · · ∪ ΓEs

∪ {k : t(k)} is consistent by definition. Thus, ΓE ` E : t(p). J
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4.2 The Emptiness Problem
In this subsection we define a rewriting algorithm to decide if a given type τ has a normal
inhabitant. Contrary to the previous one, this algorithm is non-deterministic, since more
than one rule may apply at each step. On the other hand, it provides us with a simple tool
to show that the emptiness problem for simple types is in PSPACE, and can be used for
generation as well as for counting.

I Definition 16. Given a type τ , an identifier m ∈ N(τ) and a set V ⊆ N(τ), we write
(m,V ) (n1, V

′), . . . , (ns, V ′) if one of the following applies.
If m := λk.n ∈ pre(τ), then (m,V ) (n, V ∪ {k});
if m := k n1 · · ·ns ∈ pre(τ) and k ∈ V , then (m,V ) (n1, V ), . . . , (ns, V ).

The definition of  extends, in the usual way, to rewriting of sequences of pairs. Then,  ∗
denotes the reflexive, transitive closure of  .

I Definition 17. For a particular rewriting sequence of (n(τ), ∅) ∗ ε, we define a function
pair that computes for each (m,V ) in that rewriting sequence a tuple (M,Γ) = pair(m,V ).
For convenience we will use identifiers as indexes of term variables in such a way that the
type assigned to a variable with name xn, for n ∈ N(τ), is always t(n). The function pair is
recursively defined as follows.

If (m,V ) (n, V ∪{k}) because m := λk.n ∈ pre(τ), then pair(m,V ) = (λxk.N,Γ \ {xk :
t(k)}), where (N,Γ) = pair(n, V ∪ {k});
if (m,V )  (n1, V ), . . . , (ns, V ) because m := k n1 · · ·ns ∈ pre(τ) and k ∈ V , then
pair(m,V ) = (xk N1 · · ·Ns, {xk : t(k)} ∪ Γ1 ∪ · · · ∪ Γs), where (Ni,Γi) = pair(ni, V ), for
1 ≤ i ≤ s (s ≥ 0).

Note that function pair actually does not depend on set V , but on the identifier m and on
the rule in pre(τ), which is used in each step of the rewriting sequence. The rule is implicitly
given by the pairs appearing on the right of  in Definition 16, unless it is of the form
m := k. In that case (m,V ) ε and there might be more than one identifier k ∈ V such that
m := k ∈ pre(τ). To guarantee that pair is well-defined, we suppose that in each rewriting
step, the corresponding rewriting rule is given, either implicitly or explicitly. The correctness
of function pair is stated in the following lemma.

I Lemma 18. If (m,V )  ∗ ε and (M,Γ) = pair(m,V ) for some corresponding rewriting
sequence, then Γ `M : t(m).

Proof. By structural induction on M . We first consider the case where pair(m,V ) =
(λxk.N,Γ \ {xk : t(k)}), which follows from (m,V )  (n, V ∪ {k})  ∗ ε because m :=
λk.n ∈ pre(τ) and (N,Γ) = pair(n, V ∪ {k}). By the induction hypothesis, Γ ` N : t(n)
and by definition Γ ∪ {xk : t(k)} is always consistent. Therefore, Γ ` λxk.N : t(k)→ t(n).
Now consider pair(m,V ) = (xkN1 · · ·Ns, {xk : t(k)} ∪ Γ1 ∪ · · · ∪ Γs), which follows from
(m,V ) (n1, V ), . . . , (ns, V ) ∗ ε because m := k n1 · · ·ns ∈ pre(τ) and k ∈ V , (Ni,Γi) =
pair(ni, V ), for 1 ≤ i ≤ s (s ≥ 0). By the induction hypothesis Γi ` Ni : t(ni) and by
definition {xk : t(k)} ∪ Γ1 ∪ · · · ∪ Γs is consistent. It follows from m := k n1 · · ·ns ∈ pre(τ)
that t(k) = t(n1)→ · · · → t(ns)→ t(m). Therefore {xk : t(k)}∪Γ1 ∪ · · · ∪Γs ` xkN1 · · ·Ns :
t(m). J

I Example 19. Consider α and pre(α) from Example 8. Then,

(10, ∅)  (8, {9}) (5, {4, 9}) ε. Similarly,

(10, ∅)  (8, {9}) (6, {9}) (1, {0, 9}) (6, {0, 9}), (2, {0, 9})
 (1, {0, 9}), (2, {0, 9}) (2, {0, 9}) ε.
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For the first two pairs in this last rewriting sequence we have respectively pair(10, ∅) =
(λx9.x9(λx0.x9(λx0.x0)x0), ∅) and pair(8, {9}) = (x9(λx0.x9(λx0.x0)x0), {x9 : t(9)}), where
t(9) = (o → o) → o → o. Also, ` λx9.x9(λx0.x9(λx0.x0)x0) : t(10) and {x9 : t(9)} `
x9(λx0.x9(λx0.x0)x0) : t(8), where t(8) = o→ o and t(10) = α.

For the first rewriting sequence we have pair(10, ∅) = (λx9x4.x4, ∅), pair(8, {9}) =
(λx4.x4, ∅), and pair(5, {4, 9}) = (x4, {x4 : t(4)}), where t(4) = o. Also, ` λx9x4.x4 : t(10),
` λx4.x4 : t(8), and {x4 : t(4)} ` x4 : t(5), with t(5) = o.

I Theorem 20. Nhabs(τ) 6= ∅ if and only if (n(τ), ∅) ∗ ε.

Proof. The ’if’ part follows from Lemma 18. For the ’only if’ part, we show that for any term
M , context Γ and type σ, if Γ `M : σ, then (n(σ), VΓ) ∗ ε, where VΓ = { n(ρ) | x : ρ ∈ Γ }.
First, consider M = λx.N and suppose that we have Γ \ {x : σ1} ` λx.N : σ1 → σ2, because
Γ ` N : σ2 and Γ ∪ {x : σ1} is consistent. It follows from Lemma 4 that st(λx.N) =
σ1 → σ2 is a positive occurrence of σ1 → σ2 in τ . We consider the corresponding tuple
(σ1 → σ2,m, k → n) ∈ occT(τ), where n(σ1 → σ2) = m, n(σ1) = k, and n(σ2) = n. By
Lemma 11, there is a rule m := λk.n ∈ pre(τ). Thus, (m,VΓ\{x:σ1}) (n, VΓ\{x:σ1} ∪ {k}).
But, VΓ\{x:σ1} ∪ {k} = VΓ and (n, VΓ)  ∗ ε follows from the induction hypothesis. Now,
consider M = xN1 · · ·Ns and suppose that Γ ` xN1 · · ·Ns : σ, because Γi ` Ni : σi,
for 1 ≤ i ≤ s (s ≥ 0), and because Γ = Γ1 ∪ · · · ∪ Γs ∪ {x : σ1 → · · · → σs → σ}
is consistent. By Lemma 4, st(x) = σ1 → · · · → σs → σ is a negative subpremise of τ .
It follows from Lemma 11 that m := k n(σ1) · · · n(σs) ∈ pre(τ), where m = n(σ) and
k = n(σ1 → · · · → σs → σ). Thus (m,VΓ) (n(σ1), VΓ), . . . , (n(σs), VΓ). By the induction
hypothesis, we have (n(σi), VΓi

)  ∗ ε, for 1 ≤ i ≤ s. Since VΓi
⊆ VΓ, we conclude that

(n(σ1), VΓ), . . . , (n(σs), VΓ) ∗ ε. J

4.3 Closure Properties
In this section we combine the pre-grammars of two types τ1 and τ2 in order to obtain
pre-grammars for Nhabs(τ1) ∩ Nhabs(τ2) and for Nhabs(τ1) ∪ Nhabs(τ2), respectively. This
allows us to extend our methods to a bigger range of types, such as sum types of rank 1.

I Definition 21. Given types τ1 and τ2, we define N(τ1 ∩ τ2) = N(τ1)× N(τ2). Furthermore,
let pre(τ1 ∩ τ2) denote the smallest set of rules satisfying the following.

If mi := λki.ni ∈ pre(τi) (i = 1, 2), then (m1,m2) := λ(k1, k2).(n1, n2) ∈ pre(τ1 ∩ τ2);
if mi := ki n

i
1 · · ·nis ∈ pre(τi) for i = 1, 2 and s ≥ 0, then

(m1,m2) := (k1, k2) (n1
1, n

2
1) · · · (n1

s, n
2
s) ∈ pre(τ1 ∩ τ2).

I Example 22. For α from Example 2 and β = ((a → b) → a → b) → (a → b) → a → b,
pre-grammar pre(β) consists of the following rewriting rules.

14 := λ12.13 11 := λ6.7 | 12 8 | 10 7 := 12 8 2 | 10 4 4 := 0 | 6
13 := λ10.11 | 12 8 := λ0.1 | 12 8 1 := 12 8 2 | 10 4 2 := 0 | 6

After removing obsolete rules we obtain the following set of rules for pre(α ∩ β).

(10, 14) := λ(9, 12).(8, 13) (8, 13) := λ(4, 10).(5, 11) (5, 11) := (4, 10)

It is easy to see that a term M passes the type checking algorithm for this grammar if and
only if M ≡α λxy.y, which is the only normal term that inhabits both types.
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Note that the definition above can be extended in the obvious way to a finite number of
intersections, i.e. types of the form τ1 ∩ · · · ∩ τn, for n ≥ 1, where τ1, . . . , τn are simple types.
This corresponds to the set of intersection types of rank 1 [7]. We prove the correctness of
our construction for the case of one intersection.

I Theorem 23. Consider two simple types τ1, τ2, and a term M . Then, one has M ∈
Nhabs(τ1) ∩ Nhabs(τ2) if and only if (M, (n(τ1), n(τ2)) ↪→∗ ε, with pre-grammar pre(τ1 ∩ τ2).

Proof. Consider two pairs (E1,m1) and (E2,m2) such that there is some λ-term Q and for
i = 1, 2: there are placeholders pi1, . . . , pir ∈ N(τi) and {x1, . . . , xr} ⊇ FV(Q), such that Ei =
Qθi for θi = [pi1/x1, . . . , p

i
r/xr]; and Ei is either of the form λx.(Q′θi) or pij (Q1θi) · · · (Qnθi).

It follows from Definition 13 that, if some rule ri ∈ pre(τi) applies to (Ei,mi) (i = 1, 2), then
both pairs rewrite to a sequence of pairs of equal length, i.e. there is some s ≥ 0 such that
(Ei,mi) ↪→ (Ei1,mi

1) · · · (Eisi
,mi

si
) (i = 1, 2), and for each j = 1, . . . , s we have that (E1

j ,m
1
j )

and (E2
j ,m

2
j) verify the suppositions made on (E1,m1) and (E2,m2). Furthermore, this

guarantees that (r1, r2) ∈ pre(τ1 ∩ τ2), where (r1, r2) denotes the rule in pre(τ1 ∩ τ2), built
from r1 and r2 as described in Definition 21.

If M ∈ Nhabs(τ1) ∩ Nhabs(τ2), then we have by Theorem 15 that (M, n(τi)) ↪→∗ ε, for
i = 1, 2, in which pairs are assumed to be processed from left to right. The conditions
above clearly apply to (M, n(τ1)) and (M, n(τ2)), and consequently to every other couple
of pairs (E1,m1) and (E2,m2) in these rewriting sequences. One obtains a rewriting
sequence for (M, (n(τ1), n(τ2))) ↪→∗ ε using Q(θ1, θ2) instead of Qθi (i = 1, 2), where
(θ1, θ2) = [(p1

1, p
2
1)/x1, . . . , (p1

r, p
2
r)/xr]. The proof in the other direction is symmetrical, using

the projections on the first or on the second coordinate in each step, in order to obtain
rewriting sequences for (M, n(τ1)) ↪→∗ ε or for (M, n(τ2)) ↪→∗ ε, respectively. J

In order to address sum types of rank 1 we will now define pre-grammars for the union of two
languages. Consider rank 1 types τ1 and τ2, with sets N(τ1) and N(τ2) for which, without
loss of generality, we assume we use two distinct sets of identifiers. Consequently, there is no
overlapping of the corresponding grammars.

I Definition 24. Consider rank 1 types τ1 and τ2 and the corresponding identifiers n(τi) ∈
N(τi), for i = 1, 2. Let N(τ1 ∪ τ2) = {(n(τ1), n(τ2))} ∪ N(τ1) ∪ N(τ2). Furthermore, consider
the unique rule n(τi) := λki.ni in pre(τi) and let pre(τi)′ = pre(τi) \ {n(τi) := λki.ni}, for
i = 1, 2. We define,

pre(τ1 + τ2) = {(n(τ1), n(τ2)) := λk1.n1; (n(τ1), n(τ2)) := λk2.n2} ∪ pre(τ1)′ ∪ pre(τ2)′.

Again, it is straightforward to extend this definition to finite sums of rank 1 types.

I Theorem 25. Consider two rank 1 types τ1, τ2, and a term M . Then, one has M ∈
Nhabs(τ1) ∪ Nhabs(τ2) if and only if M ↪→∗ ε, with pre-grammar pre(τ1 + τ2).

Proof. Straightforward, using Note 10 and Definition 24. J

5 Proving Inhabitation Related Problems to be in PSPACE

In this section we present the scheme of an alternating decision algorithm operating on tuples
of the form (m,V, i), where {m}∪V ⊆ N(τ) and i ∈ N. The algorithm takes as input a simple
type τ , a positive integer depth, a vector/register reg, a function f : N× pre(τ)× reg −→ reg
manipulating the contents of reg depending on the values of (i, r) ∈ N× pre(τ), as well as an
accepting condition ac : reg −→ {>,⊥}. Functions f and ac are supposed to be computable
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in linear time w.r.t. the size of their input. The integer depth is the limit for recursion, such
that a loop of the algorithm aborts with failure, whenever this limit is exceeded. In each
step, during the execution of the algorithm, one rule r ∈ pre(τ) is applied to a tuple (m,V, i),
and the values in reg are updated to f(i, r, reg). Upon a terminated run, condition ac(regf )
determines on success or failure, where regf is the configuration of reg at that point. We
represent the empty register by ∅. Furthermore, let f∅ be such that f∅(i, r, reg) = reg for all
(i, r) ∈ N× pre(τ), and ac> such that ac>(reg) = > for any configuration of reg. Depending
on the instantiation of the parameters, the algorithm can be used to show that different
inhabitation related problems, such as the emptiness problem, infiniteness, or principal
inhabitation, are in PSPACE.

I Definition 26 (PS). Consider a simple type τ , a positive integer depth, a register reg,
as well as (linear) functions f : N × pre(τ) × reg −→ reg and ac : reg −→ {>,⊥}. Then,
PS(τ, depth, reg, f, ac) operates as follows, starting with the initial tuple (m,V, i) = (n(τ), ∅, 0):

if i > depth the loop aborts with failure;
otherwise the algorithm:

non-deterministically chooses a rule in r ∈ pre(τ) such that:

(m,V ) (n1, V
′), . . . , (ns, V ′);

updates reg according to f(i, r, reg);
universally applies to (n1, V

′, i+ 1), . . . , (ns, V ′, i+ 1).
A run is successful if ac(regf ) = >, where regf is the final configuration of reg.

Note that, other than by failure, a loop finishes if the rule chosen from pre(τ) is such that
s = 0. In order to show that PS is an alternating polynomial time algorithm w.r.t. the size
|τ | of τ , we start by defining some measures on τ .

I Definition 27. Given a type τ , let |τ | = |τ |v + |τ |→, where |τ |v represents the number of
occurrences of type variables in τ and |τ |→ the number of occurrences of→ in τ . Furthermore,
let |τ |+ and |τ |− denote the number of positive occurrences of subformulas and the number
of negative subpremises in τ , respectively. Similarly, we use |τ |+v and |τ |−v respectively for
the number of positive and negative occurrences of type variables in τ .

The following lemma is a direct consequence of the definitions of occT(τ), N(τ), and pre(τ).

I Lemma 28. One has, |τ |+ ≤ |τ |, |τ |− ≤ |τ |→ < |τ |, as well as |N(τ)| = |τ |. For the
number of rules in pre(τ) we have |pre(τ)| ≤ |τ |+ · |τ |− + |τ |→. Furthermore, the number of
elements of N(τ) occurring in a rule of pre(τ) is always ≤ |τ |+ + 1.

I Example 29. For α = ((o→ o)→ o→ o)→ o→ o, we have |α| = |α|v + |α|→ = 6 + 5 =
11 = N(α). Furthermore, |α|+ · |α|− + |α|→ = 6 · 3 + 5 = 23 ≥ 14 = |pre(α)|. Finally, the
maximum number of identifiers occurring in the rules of pre(α) is 4 and 4 ≤ 6 + 1 = |α|+ + 1.

I Proposition 30. Consider a type τ and constants k1, k2 ∈ N. Suppose that depth ≤ |τ |k1 ,
|reg| ≤ k2 · |τ |, and that functions f : N × pre(τ) × reg −→ reg and ac : reg −→ {>,⊥} are
computable in linear time w.r.t. the size of their input. Then, PS(τ, depth, reg, f, ac) is an
alternating polynomial time algorithm w.r.t. |τ |.

Proof. The algorithm is alternating by design. Polynomial time is a consequence of the
conditions imposed on the complexity of depth, reg, f and ac. J
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In the following we establish the relationship between a successful run of algorithm PS
with reg = ∅, f∅ and ac>, and the existence of a rewriting sequence for (n(τ), ∅) ∗ ε. Note,
that each rewriting sequence of (n(τ), ∅) ∗ ε can be represented in the usual way by a unique
derivation tree t, whose internal nodes are labelled with pairs (m,V, i) and such that all leafs
are labelled with ε. The root of t is (N(τ), ∅, 0), and whenever a rule r ∈ pre(τ) is applied to
a pair (m,V ), such that (m,V ) (n1, V

′), . . . , (ns, V ′), then the corresponding node in t,
labelled with (m,V, i), has s children labelled with (n1, V

′, i+ 1), . . . , (ns, V ′, i+ 1) if s > 0,
and it has one child labelled with ε if s = 0. Conversely, we can replace each pair (m,V ) in
the rewriting sequence by the label (m,V, i) of the corresponding node in t. Furthermore,
the height of t is height(t) = depth(M), where (M, ∅) = pair(N(τ), ∅), corresponding to that
rewriting sequence of (n(τ), ∅) ∗ ε.

I Example 31. The annotated version of the second rewriting sequence from Example 19 is
as follows.

(10, ∅, 0)  (8, {9}, 1) (6, {9}, 2) (1, {0, 9}, 3) (6, {0, 9}, 4), (2, {0, 9}, 4)
 (1, {0, 9}, 5), (2, {0, 9}, 4) (2, {0, 9}, 4) ε.

The corresponding derivation tree has height 6. Also, depth(λx9.x9(λx0.x9(λx0.x0)x0)) = 6
and pair(10, ∅) = (λx9.x9(λx0.x9(λx0.x0)x0), ∅).

I Lemma 32. Consider a type τ and an integer d > 0. Then, PS(τ, d,∅, f∅, ac>) succeeds
if and only if there is a rewriting sequence for (n(τ), ∅)  ∗ ε, whose derivation tree t has
height ≤ d + 1. Furthermore, height(t) = depth(M), where (M, ∅) = pair(n(τ), ∅) for that
rewriting sequence of (n(τ), ∅) ∗ ε.

Proof. It is easy to see that PS(τ, d,∅, f∅, ac>) succeeds if and only if there is some tree
t with root (n(τ), ∅, 0) and such that for every node (m,V, i) in that tree, there is a rule
r ∈ pre(τ) such that (m,V )  (n1, V

′), . . . , (ns, V ′), and node (m,V, i) has s children
(n1, V

′, i+ 1), . . . , (ns, V ′, i+ 1) if s > 0, and one child labelled with ε if s = 0. The value of
i in a node of t labelled with (m,V, i) is ≤ d, and all leaf nodes are labelled with ε. Thus, the
height of t is at most d+ 1. On the other hand, every tree t satisfying the conditions above
corresponds to an (annotated) rewriting sequence of (n(τ), ∅) ∗ ε and vice-versa. It remains
to show that height(t) = depth(M), where (M, ∅) = pair(n(τ), ∅) for that rewriting sequence
of (n(τ), ∅) ∗ ε. Consider a subtree t′ of t, whose root is labelled with a tuple (m,V, i), and
the corresponding rewriting sequence of (m,V ) ∗ ε. We show by induction on the height of
this subtree that height(t′) = depth(M), where (M,Γ) = pair(m,V ). If height(t′) = 1, then
(m,V )  ε because m := k ∈ pre(τ) and k ∈ V . Thus, pair(m,V ) = (xk, {xk : t(k)}) and
depth(xk) = 1. If (m,V, i) has s > 0 children labelled with (n1, V, i + 1), . . . , (ns, V, i + 1)
because m := k n1 · · ·ns ∈ pre(τ) and k ∈ V , then (m,V )  (n1, V ), . . . , (ns, V ) and
pair(m,V ) = (xk N1 · · ·Ns, {xk : t(k)} ∪ Γ1 ∪ · · · ∪ Γs), where (Ni,Γi) = pair(ni, V ), for
1 ≤ i ≤ s. Furthermore, height(t′) equals 1 plus the maximum of the heights of the subtrees
rooted in (n1, V, i+1), . . . , (ns, V, i+1), while depth(xk N1 · · ·Ns) equals 1 plus the maximum
of the depths of N1, . . . , Ns. Thus, the result follows from the induction hypothesis. Finally,
suppose that (m,V, i) has one child labelled with (n, V ∪{k}, i+1) becausem := λk.n ∈ pre(τ).
Then, height(t′) equals 1 plus the height of the subtree rooted in (n, V ∪ {k}, i + 1). On
the other hand, pair(m,V ) = (λxk.N,Γ \ {xk : t(k)}), where (N,Γ) = pair(n, V ∪ {k}). We
have depth(λxk.N) = 1 + depth(N) and consequently the result follows from the induction
hypothesis. J
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5.1 Emptiness
In the following we reprove the well-known result [14, 16], stating that the emptiness problem
for TAλ is in PSPACE, by instantiation of algorithm PS. We say that a derivation tree t
corresponding to a particular rewriting sequence of (N(τ), ∅) ∗ ε has a repetition, if and
only if there is a branch in t containing two nodes with labels (m,V, i) and (m,V, i′) such that
i 6= i′. Furthermore, we have (N(τ), ∅) ∗ ε if and only if there is some rewriting sequence
for that fact, whose derivation tree t contains no repetition. By Lemma 32 it suffices to
execute algorithm PS with a value for depth that guarantees that every derivation tree with
depth > depth has a repetition. For this, we define D(τ) = |τ |+ · |τ |−.

I Proposition 33. PS(τ,D(τ),∅, f∅, ac>) succeeds if and only if Nhabs(τ) 6= ∅.

Proof. The limit D(τ) is chosen so that for a pair (m,V, d) with d > D(τ), there is a repetition
in the corresponding derivation tree t. Since there are at most |τ |+ different identifiers m
and at most |τ |− different sets V , there has to be a repetition in the branch leading from the
root of t to (m,V, d). Thus, the result follows from Lemma 32. J

5.2 Counting
In [2], Ben-Yelles defined a counting algorithm that answers the question of how many
normal inhabitants a given type τ has. The main focus, when asking this question, is usually
on determining if Nhabs(τ) is empty, finite or infinite. In [10], the infiniteness of Nhabs(τ)
was shown to be PSPACE complete. In the following, we show how algorithm PS can be
instantiated in order to prove this problem to be in PSPACE.

We already argued that Nhabs(τ) 6= ∅ if and only if there is some derivation tree for
(N(τ), ∅) ∗ ε of height ≤ D(τ) + 1 = |τ |+ · |τ |− + 1. In the following we establish a lower
limit d(τ), such that the existence of a tree of height > d(τ) guarantees that |Nhabs(τ)| =∞.
Consider a tree t containing a branch with two nodes n = (m,V, d) and n′ = (m,V ′, d′),
with d < d′. Then, V ⊆ V ′ and one can construct a new derivation tree by replacing in t
the subtree tn′ rooted in n′ by the subtree tn rooted in n, changing every label (m′′, V ′′, i)
to (m′′, V ′′ ∪ V ′, i+ (d′ − d)). Repeating this process, it is possible to construct an infinite
number of derivation trees of increasing height. Thus, Nhabs(τ) is infinite. On the other hand,
for d(τ) = |τ |+, if t has some branch of length > d(τ), then this branch contains necessarily
two such nodes n and n′. Now, suppose that the height of t is ≤ d(τ) and that some branch
in t contains two nodes n and n′ as above. Then d, d′ ≤ d(τ) and 0 < (d′ − d) < d(τ). Then,
it is clear that repeating the process described above, at some point, one obtains a derivation
tree of height D, with d(τ) ≤ D ≤ D(τ), as long as |τ |− > 1. We conclude that for τ , such
that |τ |− > 1, we have Nhabs(τ) =∞ if and only if there is some derivation tree of height
D, with d(τ) + 1 ≤ D ≤ D(τ) + 1.

I Lemma 34. If |τ |− ≤ 1, then Nhabs(τ) 6= ∅ iff τ = a→ a, for which |Nhabs(τ)| = 1.

Proof. If |τ |− = 0, then τ = a and Nhabs(τ) = ∅. For |τ |− = 1, it is easy to show, by
induction on the number of implications in τ , that τ is of the form (a1 → · · · → an → b)→ a,
which is inhabited exactly if n = 0 and a = b. J

I Proposition 35. The counting problem for Nhabs(τ) is in PSPACE.

Proof. If |τ |− ≤ 1, then |Nhabs(τ)| = 1 if τ = a→ a, and |Nhabs(τ)| = ∅ otherwise.
If |τ |− > 1, then |Nhabs(τ)| = ∞ if and only if there is some derivation tree of height

D such that d(τ) < D ≤ D(τ) + 1. This can be checked by instantiating algorithm PS as
follows:
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depth = D(τ);
|reg| = 1 and reg[0] = 0;
f(i, r, reg) = (if (i == d(τ)) then reg[0] := 1);
ac(reg) = (reg[0] == 1).

If the algorithm succeeds, then |Nhabs(τ)| =∞. Otherwise, according to Lemma 32 we can
run PS(τ, d(τ)− 1,∅, f∅, ac>) in order to check if Nhabs(τ) is finite, but not empty. J

5.3 Principal Inhabitation
We now use our algorithm to address the closely related problem of principal inhabitation,
which although more complex, is still PSPACE-complete [6]. The principal inhabitation
problem is about the existence of a normal inhabitant M of τ , such that τ is the principal
type of M . A term M is a principal inhabitant of τ , if ` M : τ and if every type σ,
such that ` M : σ, is an instance of τ . Then, τ is called the principal type of M . When
searching for principal inhabitants, it is sufficient to consider principal inhabitants in long
normal form, for which a characterisation was given in [4] in terms of proof trees, in the
context of the formula-tree method. In this section we instantiate the algorithm PS to
decide principal inhabitation, based on that characterisation. This characterisation was
used in [1] to define deterministic principal inhabitation machines for normal inhabitants
obtained from pre-grammars, following the formalism of Schubert et al. An inhabitant M
of a type is called long, if every variable occurrence, which is in function position, is given
as many arguments as allowed by its type. It is straightforward to change the definition of
pre(τ) in order to apply exactly to the set of long normal inhabitants of τ . For this, it is
sufficient to drop in pre(τ) all rules of the form m := k n1 · · ·ns such that lab(m) 6= var. The
pre-grammar thereby obtained is denoted by preL(τ) and verifies the following. If m+ ∈ N(τ)
and lab(m) = k → n, then there is exactly one rule for m in preL(τ), which is m := λk.n. If
m+ ∈ N(τ) and lab(m) = var, then all rules for m are of the form m := k n1 · · ·ns (s ≥ 0),
such that t(k) = t(n1) → · · · → t(ns) → t(n), where lab(n) = var and t(m) = t(n), i.e. m
and n are different occurrences of the same type variable. For convenience we denote n by
tail(k). Note that tail(k) is the root of the (unary) tree in graph T (τ), that contains k.

I Example 36. The pre-grammar preL(α) for the set of long normal inhabitants of α from
Example 2 is the following.

10 := λ9.8 6 := λ0.1 2 := 9 6 2 | 4 | 0
8 := λ4.5 5 := 9 6 2 | 4 | 0 1 := 9 6 2 | 4 | 0

The approach in [4] establishes that, initially all occurrences of type variables in τ have
to be made different. Here, this is already achieved by the association of different identifiers
to different occurrences of subtypes. During the search of an inhabitant, the application of a
rule m := k n1 · · ·ns, as described above, forces that m and n must represent the same type
variable in any type of that inhabitant3. When instantiating the algorithm, this information
will be kept in register reg and the execution will only be successful if all occurrences of
the same type variable are unified. The remaining condition in the characterisation of
principal inhabitants in [4] states that all composed negative subpremises have to be used.
This information will also be stored in reg. We denote the number of composed negative
subpremises in τ by |τ |−c and define P(τ) = |τ |+ · |τ |− · |τ |v · |τ |−c for the limit of recursion.

3 Note that, limiting the search to long inhabitants avoids dealing with the unification of composed types,
but restricts this operation to occurrences of type variables.
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For practicality, we convention that type variables and negative subpremises have identifiers
0, . . . , |τ |v − 1, and |τ |v, . . . , |τ |v + |τ |−c − 1, respectively4. Finally, we denote by var(τ) the
number of different type variables in τ .

I Example 37. In our running example there are three negative subpremises, respectively
with identifier 9, 4 and 0. We have tail(9) = 3, tail(4) = 4 and tail(0) = 0. Only t(9) is
composed. Thus, |α|−c = 1 and P(α) = 6 · 3 · 6 · 1 = 108, while var(α) = 1.

Now, we define a function fP that stores the information concerning unification of different type
variable occurrences and the use of composed negative subpremises in reg. For this, initially
the identifier of each variable is stored in the first |τ |v positions of reg, each representing
its own class, which at that point is a singleton. The number of different classes, which is
initially |τ |v, is stored in the last position of reg and decreased whenever two classes are
merged. In this case, all elements (positions in reg) of these classes are represented by the
same identifier. The intermediate positions of reg are used to register the application of
composed negative subpremises.

fP(i, r, reg):
if r == (m := k n1 · · ·ns) then

n := tail(k);
min := min(reg[m], reg[n]);
max := max(reg[m], reg[n]);
if min 6= max then

reg[|τ |v + |τ |−c ] := reg[|τ |v + |τ |−c ]− 1;
for (j = 0 to |τ |v − 1) do
∗ if (reg[j] == max) then reg[j] := min;

if (s > 0) then reg[k] := 1;

In order to determine success or failure of a run, function acP checks if all |τ |−c composed
have been used and if there are exactly as many classes of occurrences of type variables as
there are different type variables in τ .

acP(reg):
count := 0;
for (j = |τ |v to |τ |v + |τ |−c − 1) do

count := count + reg[j];
if (count 6= |τ |−c ) then (return ⊥)
else (return (reg[|τ |v + |τ |−c ] == var(τ)));

I Proposition 38. The principal inhabitation problem for Nhabs(τ) is in PSPACE.

Proof. This can be checked by instantiating algorithm PS as follows:
depth = P(τ);
|reg| = |τ |v + |τ |−c + 1, reg[j] = j (for 0 ≤ j ≤ |τ |v − 1),
reg[j] = 0 (for |τ |v ≤ j ≤ |τ |v + |τ |−c − 1), and reg[|τ |v + |τ |−c ] = |τ |v;
f = fP and ac = acP.

Function fP registers (during the execution of PS) all necessary information for deciding
on principality in reg, which is checked by acP after completion of a run. Thus, there is

4 This convention does not hold for the composed negative subpremise with identifier 9 in our example.
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some principal inhabitant of τ iff there is a successful run using a limit of recursion, possibly
bigger than depth = P(τ). We consider such a successful run (for a principal inhabitant),
and the corresponding derivation tree t. Finally, we argue that it is possible to obtain a
new derivation tree from t, corresponding to a successful run, within the established limit
P(τ). Consider any node n = (m,V, i) in t. We associate to node n the number Eqn of
equivalence classes, as well as the set Cn of negative composed subpremises, that are induced
by the derivation steps in the subtree rooted in n. There is a repetition in a branch of t if it
contains two nodes n = (m,V, i) and n′ = (m,V, i′) with i < i′, such that Eqn = Eqn′ and
Cn = Cn′ . If that is the case, one can replace the subtree rooted in n by the smaller subtree
rooted in n′, obtaining a tree still corresponding to a successful run. Since i < i′ implies that
Eqn ≤ Eqn′ ≤ |τ |v, as well as |τ |−c ≥ |Cn| ≥ |Cn′ |, there is a repetition in every branch of
length ≥ P(τ). Consequently, the process described above can be repeated until one obtains
a derivation tree, thus a successful run, within the limit established for depth. J

6 Conclusions

In this paper we presented a unifying framework to study type inhabitation related problems
and their complexity, using the notion of pre-grammar. From the pre-grammar of a type
we obtained different methods to address several inhabitation related problems. A scheme
for a decision algorithm was given, which we instantiated to decide emptiness, counting
and principal inhabitation. Since each instantiation produces a polynomial time alternating
algorithm, this also shows these problems to be in PSPACE. For principal inhabitants we
focused on terms in long normal form, for which we used a simplified and smaller set of
rules. In a similar way, one could define different sets of pre-grammar rules, corresponding
to particular subclasses of terms, such as terms in total discharge form, term-schemes, etc.
This is left for future work, where we also would like to further develop the study of closure
properties, in particular study an instantiation of our algorithm for union types of rank 1.
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Abstract
Prefix-constrained rewriting is a strict extension of context-sensitive rewriting. We study the
confluence of prefix-constrained rewrite systems, which are composed of rules of the form L : l→ r

where L is a regular string language that defines the allowed rewritable positions. The usual
notion of Knuth-Bendix’s critical pair needs to be extended using regular string languages, and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems, which
makes the word problem decidable. Moreover we present an extended Knuth-Bendix completion
procedure, to transform a non-confluent prefix-constrained rewrite system into a confluent one.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases prefix-constrained term rewriting, confluence, critical pair

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.6

1 Introduction

Term rewriting is a rule-based formalism that can be used to study properties of functional
programs, security protocols, musical rhythmics,... More generally, it provides a finite
abstraction of a system whose configurations are represented by ranked terms. In this
framework, and also to ensure the termination of rewrite computations, it is often necessary
to restrict the possible rewrite positions, using strategies, or by allowing only some redex
positions. In context-sensitive rewriting [10], some arguments of a function symbol may be
defined as being non-rewritable. Prefix-constrained rewriting [8] is an extension of context-
sensitive rewriting, where rewritable positions are defined by a regular string language that
indicates the allowed prefixes.

Given a term t, a normal form of t is an irreducible term (denoted t↓) obtained by
rewriting t. Termination of a rewrite relation →R ensures the existence of normal forms,
whereas confluence ensures their uniqueness. Together, termination and confluence ensure
that the word problem is decidable, because t =R t′ is equivalent to t↓= t′ ↓. On the
other hand, from a functional programming point of view, termination ensures that any
program run will terminate, and confluence ensures that all functions are deterministic, i.e.
each function call yields at most one result. These properties have also been addressed for
context-sensitive rewriting ([5] for termination and [11] for confluence). On the other hand,
the termination of prefix-constrained rewriting has been addressed in [1]. Both [5] and [1]
consist in transforming the context-sensitive or prefix-constrained rewrite system into an
ordinary one by a termination-preserving transformation, and studying the termination of
the ordinary rewrite system.
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6:2 Confluence of Prefix-Constrained Rewrite Systems

In this paper, we study the confluence of prefix-constrained rewrite systems. In contrast
to ordinary rewriting, prefix-constrained rewriting (and context-sensitive rewriting) is not
closed under context application, which is a major difference. This is why the usual notion
of Knuth-Bendix’s critical pair needs to be extended (using regular string languages), and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems,
which makes the word problem decidable. Moreover we present an extended Knuth-Bendix
completion procedure, to transform a non-confluent prefix-constrained rewrite system into a
confluent one.

The paper is organized as follows. The preliminaries are introduced in Section 2. Local-
confluence is studied in Section 3, and a comparison with [11] is given at the end of the
section. The operational point of view to handle string languages is given in Section 4. An
extended Knuth-Bendix completion procedure is presented in Section 5. Further work is
outlined in Section 6.

2 Preliminaries

Term and Substitution. Consider a finite ranked alphabet Σ and a set of variables X. Each
symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-order term, position
and substitution are defined as usual. T (Σ, X) denotes the set of terms over Σ∪X, and T (Σ)
denotes the set of ground terms (without variables) over Σ. For a term t, Var(t) is the set of
variables of t, Pos(t) is the set of positions of t, PosVar(t) is the set of variable positions of
t, PosNonVar(t) = Pos(t)\PosVar(t), and ε is the root position. For p ∈ Pos(t), t(p) is the
symbol of Σ ∪X occurring at position p in t, and t|p is the subterm of t at position p. For
p, p′ ∈ Pos(t), p < p′ means that p occurs in t strictly above p′, whereas p ‖ p′ means that
p 6= p′ and p ≮ p′ and p′ ≮ p. The term t is linear if each variable of t occurs only once in t.
The term t[t′]p is obtained from t by replacing the subterm at position p by t′.

Given σ and σ′ two substitutions, σ ◦σ′ denotes the substitution such that for all variable
x, σ ◦ σ′(x) = σ(σ′(x)). The substitution σ is a unifier of the terms t and t′ if σ(t) = σ(t′).
If in addition, for all unifier θ of t and t′, there exists a substitution γ such that θ = γ ◦ σ,
then σ is called the most general unifier of t and t′ (denoted mgu(t, t′)). If it exists, the
most general unifier is unique up to a variable renaming.

Term Rewrite System (TRS). A rewrite rule is an oriented pair of terms, written l→ r.
We always assume that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a
finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation →R is defined as follows: t→R t

′ if there exist a non-variable position p ∈ Pos(t), a
rule l→ r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p (also denoted t→p

R t
′).

→+
R denotes the transitive closure of →R, and →∗R denotes the reflexive-transitive closure of
→R. t′ is a descendant of t if t→∗R t′. If I is a set of ground terms, R∗(I) denotes the set
of descendants of elements of I. The rewrite rule l→ r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is
linear if R is both left and right linear. l→ r is said collapsing if r is a variable.

Let l1 → r1 and l2 → r2 be rewrite rules such that l1|p and l2 are unifiable for some
p ∈ PosNonVar(l1). Let σ = mgu(l1|p, l2). Then the pair of terms (σ(r1), σ(l1)[σ(r2)]p) is
called critical pair1.

1 As usual, we do not consider trivial critical pairs (σ(r1), σ(r1)) coming from the case where l1 = l2 and
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Context-Sensitive Term Rewrite System (CS-TRS) [4, 10]. A context-sensitive rewrite
relation is a sub-relation of the ordinary rewrite relation in which rewritable positions are
indicated by specifying arguments of function symbols. A mapping µ : Σ→ P (IN) is said to be
a replacement map (or Σ-map) if µ(f) ⊆ {1, . . . , ar(f)} for all f ∈ Σ. A context-sensitive term
rewriting system (CS-TRS) is a pair R = (R,µ) composed of a TRS and a replacement map.
The set of µ-replacing positions2 Posµ(t) (⊆ Pos(t)) is recursively defined: Posµ(t) = {ε} if t
is a constant or a variable, otherwise Posµ(f(t1, . . . , tn)) = {ε}∪{i.p | i ∈ µ(f), p ∈ Posµ(ti)}.
The rewrite relation induced by a CS-TRS R is defined: t ↪→R t′ if t →p

R t′ for some
p ∈ Posµ(t).

I Example 1. Let Σ = {f\2, g\2, a\0, b\0} and R = {a→ b} with µ(f) = {1} and µ(g) = {2}.
The positions allowed by µ in the term f(a, a) are written in bold. Then the only derivation
issued from this term is f(a, a) ↪→R f(b, a). On the other hand, consider t = f(g(a,a), a).
Then the only derivation issued from this term is f(g(a, a), a) ↪→R f(g(a, b), a).

String Language. Given an alphabet Σ, the set of all strings over Σ is denoted by Σ∗, and
ε denotes the empty string. Symbol ’.’ denotes the concatenation.

String Automaton. A finite string automaton is a 5-tuple A = (Σ, Q,QI , Qf ,∆) where Q
is a set of states, QI ⊆ Q is the set of initial states, Qf ⊆ Q is the set of final states, and
∆ ⊆ Q× Σ×Q is the set of transitions. The transition relation 7→∆ between elements of
Q×Σ∗ is defined as follows: for q, q′ ∈ Q, a ∈ Σ, w ∈ Σ∗, (q, a.w) 7→∆ (q′, w) iff (q, a, q′) ∈ ∆.
The reflexive-transitive closure of 7→∆ is written 7→∗∆. The language recognized by A is
LA = {w ∈ Σ∗ | ∃qI ∈ QI , ∃qf ∈ Qf , (qI , w) 7→∗∆ (qf , ε)}. A regular string language is a
set of strings recognized be some finite string automaton. It is well known that regular
languages are closed under union, intersection, complement, and membership and emptiness
are decidable.
A is said deterministic (resp. complete) if QI contains at most (resp. at least) one state,

and for each q ∈ Q and a ∈ Σ, there exists at most (resp. at least) one q′ ∈ Q such that
(q, a, q′) ∈ ∆. It is well known that every automaton can be determinized and completed
into an automaton that recognizes the same language. However the determinization step
is exponential in the number of states. Let us write Ā = (Σ, Q,QI , Q\Qf ,∆). If A is
deterministic and complete, it is well known that Ā is deterministic and complete, and
LĀ = Σ∗\LA, i.e. Ā recognizes the complement of the language of A.

Consider the automata A1 = (Σ, Q1, Q1
I , Q

1
f ,∆1) and A2 = (Σ, Q2, Q2

I , Q
2
f ,∆2).

Let us define the automaton A1 ∩ A2 = (Σ, Q1×Q2, Q1
I ×Q2

I , Q
1
f ×Q2

f , ∆1⊗∆2) with
∆1⊗∆2 = {((q1, q2), a, (q′1, q′2)) | (q1, a, q

′
1) ∈ ∆1 ∧ (q2, a, q

′
2) ∈ ∆2}. It is well known that

LA1∩A2 = LA1 ∩ LA2 , i.e. the automaton A1 ∩ A2 recognizes the language intersection.
Moreover if A1 and A2 are deterministic and complete, so is A1 ∩ A2.

Prefix Constrained Term Rewrite System (pCTRS) [8]. Prefix constrained rewriting
allows rewrite steps only at the positions p of t s.t. the path from the root of t and p

belongs to a given regular string language. More precisely, consider the set of directions
Dir(Σ) = {〈g, i〉 | g ∈ Σ, 1 ≤ i ≤ ar(g)}. For a variable x ∈ X, let path(x, ε) = ε and for

r1 = r2 and p = ε.
2 Also called positions allowed by µ.
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a term t = g(t1, . . . , t(ar(g))) ∈ T (Σ, X) and a position p, path(t, p) ∈ Dir(Σ)∗ is defined
recursively by:

path(g(t1, . . . , t(ar(g))), ε) = ε

path(g(t1, . . . , t(ar(g))), i.p) = 〈g, i〉.path(ti, p) with 1 ≤ i ≤ ar(g) and i.p ∈ Pos(t)

A prefix constrained rewrite system is a finite set R of prefix constrained rewrite rules of
the form L : l→ r s.t. L ⊆ Dir(Σ)∗ is a regular string language over Dir(Σ), l ∈ T (Σ,X )\X ,
and r ∈ T (Σ, var(l)). A term t is rewritten to t′ in one step by a pCTRS R, denoted by
t ↪→R t

′, if there exist a prefix-constrained rewrite rule L : l→ r in R, a position p ∈ Pos(t)
s.t. path(t, p) ∈ L, and a substitution σ s.t. t|p = σ(l) and t′ = t[σ(r)]p. The reflexive-
transitive closure of ↪→R is denoted by ↪→∗R. The equality =R is the reflexive, symmetric
and transitive closure of the pCTRS rewriting ↪→R. A rewrite step t ↪→R t

′ at position p of t
by rewrite rule L : l→ r through substitution σ is noted t ↪→[p,L:l→r,σ] t

′. Let us note that
prefix-constrained rewriting is stable under instantiation.

I Example 2. Let Σ = {f\2, g\2, a\0, b\0} and R = {(〈f, 1〉.〈g, 2〉)∗ : a → b}. Let
t = f(g(a,a), a). Note that t(1.2) = a (in bold in t) and path(t, 1.2) = 〈f, 1〉.〈g, 2〉 ∈
(〈f, 1〉.〈g, 2〉)∗. Then this position can be reduced by prefix constrained rewriting, i.e.
t = f(g(a,a), a) ↪→R f(g(a, b), a), whereas the other occurrences of a are not reducible.
Note that the term f(a, a) is not reducible by the pCTRS R, whereas it is reducible by the
CS-TRS of Example 1. However the pCTRS R1 = {(〈f, 1〉|〈g, 2〉)∗ : a→ b} is equivalent to
the CS-TRS of Example 1.

I Remark. Context-sensitive rewriting is a particular case of prefix-constrained rewriting [8].

Confluence and Church-Rosser Property. For any binary relation S over the set of terms,
let S∗ be the reflexive-transitive closure of S, and =S be the reflexive-symmetric-transitive
closure of S.
We say that the pair of terms (t1, t2) converges for S (denoted t1 ↓S t2) if there exists a term
t′ such that t1 S∗ t′ and t2 S∗ t′.
S is said locally confluent if t S t1 and t S t2 implies t1 ↓S t2, for all terms t, t1, t2.
S is said confluent if t S∗ t1 and t S∗ t2 implies t1 ↓S t2, for all terms t, t1, t2.
S has the Church-Rosser property if t1 =S t2 implies t1 ↓S t2, for all terms t, t1, t2.

I Theorem 3. [3] Church-Rosser property and confluence are equivalent.

S is said terminating (or well-founded) if there is no infinite sequence of terms t1 S t2 S t3 S . . ..

I Theorem 4. (Newman’s lemma) [6] If S is locally confluent and terminating, then S is
confluent.

Now, let us consider a TRS R and the associated binary relation →R.

I Theorem 5. (Knuth-Bendix’s theorem) [9] R is locally confluent3 if and only if all critical
pairs of R are convergent.

3 I.e. →R is locally confluent.
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3 Local Confluence of pCTRSs

When positions p1 and p2 are parallel, rewriting at p1 does not change the prefix of p2, and
conversely. Therefore such a peak converges as for ordinary TRSs.

I Lemma 6. Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪R′ be a pCTRS.
If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p1 ‖ p2,
then t1 ↪→[p2,L2:l2→r2,σ2] t3 and t2 ↪→[p1,L1:l1→r1,σ1] t3.

Proof. Since p1||p2, we have t1|p2 = t|p2 and path(t1, p2) = path(t, p2) ∈ L2. Then t1 ↪→ t3.
Since p1||p2, we have t2|p1 = t|p1 and path(t1, p1) = path(t, p1) ∈ L1. Then t2 ↪→ t3. J

With an ordinary TRS, a peak coming from an overlap in a variable position converges. It
may be wrong when considering a pCTRS. Consequently, a pCTRS without critical pairs
may not be locally confluent.

I Example 7. Consider the pCTRS R = {{ε} : f(x) → g(x), {〈f, 1〉} : a → b}. So
f(a) ↪→R g(a) and f(a) ↪→R f(b) ↪→R g(b). Note that g(a) is irreducible by R because the
second rewrite rule needs a prefix with symbol f to be applied. Then this peak starting
from f(a) does not converge, therefore R is not locally confluent. Moreover R does not have
critical pairs.

In the previous example, the non-convergent peak comes from the fact that along the step
f(a) ↪→R g(a), the occurrence of a in f(a) is allowed to be reduced by the second rule,
whereas it is forbidden in g(a). In other words, the prefix 〈f, 1〉 of a in f(a) belongs to the
language of the second rule, whereas the prefix 〈g, 1〉 of a in g(a) does not. We introduce the
notion of prefix-preserving to avoid this situation, which is based on the same idea as in the
context-sensitive case (Definition 4.4 of [11]).

Notations: for a variable x and a term t, let Pos(t, x) = {p ∈ Pos(t) | t(p) = x}. On the
other hand, we use the character ’.’ to denote the string concatenation.

I Definition 8. The pCTRS R is prefix-preserving if for all rewrite rules L1 : l1 → r1 and
L2 : l2 → r2 of R, for all x ∈ V ar(l1), for all p, p′ ∈ Pos(l1, x), for all p′′ ∈ Pos(r1, x), for all
u,w ∈ Dir(Σ)∗:

u ∈ L1 ∧ u.path(l1, p).w ∈ L2 =⇒ u.path(l1, p′).w ∈ L2 ∧ u.path(r1, p
′′).w ∈ L2

In the previous definition, p′ is for considering the case where l1 is not linear. The pCTRS of
Example 7 is not prefix-preserving (with u = w = ε).

I Example 9. Consider the pCTRS R = {L : if(true, x, y) → x, L : if(false, x, y) → y},
where L is the set of all words of Dir(Σ)∗ except the words that contain at least one
occurrence of 〈if, 2〉 or 〈if, 3〉. Thus, the first argument (the condition) of if should be
evaluated before the second or the third argument. R is prefix-preserving because the
position of x (resp. y) in the left-hand-side of the first (resp. second) rule is forbidden
with respect to L, i.e. the pre-condition of the implication of Definition 8, that means more
precisely, ∀u ∈ Dir(Σ)∗,∀w ∈ Dir(Σ)∗ u.path(l, pos(l, x)).w ∈ L, is always wrong.

I Lemma 10. Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪ R′ be a prefix-preserving pCTRS.
If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p2 = p1.v.w with v ∈ Pos(l1, x) for
some variable x, then there exist t3 and t4 such that t1 ↪→∗[p1.v′1.w,...,p1.v′m.w,L2:l2→r2,σ2] t4 and
t2 ↪→∗[p1.v1.w,...,p1.vn.w,L2:l2→r2,σ2] t3 ↪→[p1,L1:l1→r1,σ′1] t4, with Pos(r1, x) = {v′1, . . . , v′m} and
Pos(l1, x) = {v, v1, . . . , vn}.
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Proof. Let us write u = path(t, p1). Then we have u ∈ L1 and path(t, p1.v.w) ∈ L2. But
path(t, p2) = path(t1, p1.v.w) = u.path(l1, v).path(σ1(x), w) ∈ L2.
Since R is prefix-preserving, we have ∀i, u.path(l1, vi).path(σ1(x), w) ∈ L2, then t2 →∗ t3
and u.path(r1, v

′
i).path(σ1(x), w) ∈ L2, then t1 →∗ t4.

Furthermore, path(t3, p1) = path(t, p1) ∈ L1 then t3 ↪→[p1,L1:l1→r1,σ′1] t4 with σ′1(x) =
σ1(x)[σ2(r2)]w and ∀y, s.t. y 6= x, σ′1(y) = σ1(y). J

Prefix-preserving is helpful to get local confluence, but it is not always necessary. The
following pCTRS is locally confluent, whereas it is not prefix-preserving.

I Example 11.

R = {{ε} : f(x) 1→ g(x), {〈f, 1〉.〈h, 1〉} : a 2→ b, {〈g, 1〉} : h(a) 3→ h(b)}

The only peak is f(h(a)) ↪→ g(h(a)) by rule 1, and f(h(a)) ↪→ f(h(b)) by rule 2. This peak
is convergent since g(h(a)) ↪→ g(h(b)) by rule 3 and f(h(b)) ↪→ g(h(b)) by rule 1. Therefore
R is locally confluent, and consequently confluent since R is terminating. Note the use of
rule number 3 to get confluence.
Let L1 and L2 be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because using the notations of Definition 8, let u = ε ∈ L1 and w = 〈h, 1〉, and we have
u.path(f(x), 1).w = 〈f, 1〉.〈h, 1〉 ∈ L2 whereas u.path(g(x), 1).w = 〈g, 1〉.〈h, 1〉 6∈ L2.
If we replace rule 3 by {〈g, 1〉} : h(x) 3′→ h(b), the pCTRS is not terminating anymore, but it
is still locally confluent and not prefix-preserving.

As seen above, the prefix-constraints of a pCTRS could be annoying to get local confluence.
However, they could also be favorable.

I Example 12. The TRS R = {f(a)→ c, a→ b} is not locally confluent because f(a)→R c,
f(a)→R f(b), and c and f(b) are irreducible. Actually there is a critical pair (c, f(b)), which
is not convergent.

Now, Consider the pCTRS R′ = {{ε} : f(a) → c, {ε} : a → b}. Now there is only one
derivation issued from f(a), i.e. f(a) ↪→R′ c, because the occurrence of a in f(a) is forbidden
for the second rule. Actually, the pCTRS R′ is locally confluent, and the previous critical
pair (c, f(b)) is not relevant for R′.

The definition of critical pairs should be modified to fit pCTRSs.

I Definition 13. (critical pair for a pCTRS) Let L1 : l1 → r1 and L2 : l2 → r2 be
prefix-constrained rewrite rules such that l1|p and l2 are unifiable for ∀p ∈ PosNonVar(l1).
Let σ = mgu(l1|p, l2) and L = {u ∈ L1 | u.path(l1, p) ∈ L2}. If L 6= ∅, the triple
(σ(r1), σ(l1)[σ(r2)]p, L) is called a critical pair.

Let us notice that L is necessarily regular.
When considering the rules of the pCTRS R′ of Example 12, we get p = 1 and L = ∅.

Therefore the critical pair (c, f(b)) of the TRS R does not produce a critical pair for the
pCTRS R′.

If there is a peak coming from an overlap at a non-variable position, then there is a
critical pair.

I Lemma 14 (extended critical pair lemma). Let R = {L1 : l1 → r1, L2 : l2 → r2} ∪ R′
be a pCTRS. If t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2 and p2 = p1.v with v ∈
PosNonVar(l1), then there exists a critical pair (s1, s2, L) and a substitution γ such that
path(t, p1) ∈ L and t1 = t[γ(s1)]p1 and t2 = t[γ(s2)]p1 .
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Proof. Let us assume V ar(l1) ∩ V ar(l2) = ∅. Since t ↪→ t1, we have path(t, p1) ∈ L1
and t|p1 = σ1(l1). Since t ↪→ t2, we have path(t, p2) ∈ L2 and t|p2 = σ2(l2). Then
σ2(l2) = t|p2 = (t|p1)|v = (σ1(l1))|v = (σ1(l1|v)) because v ∈ PosNonV ar(l1). Let us
write θ = σ1 ∪ σ2. Then l1|v and l2 are unifiable by θ and there exists a substitution γ s.t
θ = γ ◦mgu(l|v, l2). Let us write L = {u ∈ L1 | u.path(l1, v) ∈ L2} and α = mgu(l1|v, l2).
Then path(t, p1) ∈ L because path(t, p1) ∈ L1 and path(t, p2) = path(t, p1).path(l1, v) ∈ L2.
Then L 6= ∅, consequently (α(r1), (α(l1)[α(r2)]v, L) is a critical pair. Let us write s1 = α(r1)
and s2 = α(l1)[α(r2)]v. Then t[γ(s1)]p1 = t[γ(α(r1))]p1 = t[θ(r1)]v = t[σ1(r1)]v = t1.
Moreover t[γ(s2)]p1 = t[γ(α(l1))[γ(α(r2))]v]p1 = t[θ(l1)[θ(r2)]v]p1 = t[σ1(l1)[σ2(r2)]v]p1 =
t[σ2(r2)]p1.v = t[σ2(r2)]p2 = t2 J

Conversely, if there is a critical pair, then there is a peak.

I Lemma 15. Let L1 : l1 → r1 and L2 : l2 → r2 be prefix-constrained rewrite rules. If
(σ(r1), σ(l1)[σ(r2)]v, L) is a critical pair, then for each term t and p1 ∈ Pos(t):

t|p1 = σ(l1)∧path(t, p1) ∈ L =⇒ t ↪→[p1,L1:l1→r1] t[σ(r1)]p1∧t ↪→[p1.v,L2:l2→r2] t[σ(r2)]p1.v

Note that at least one pair (t, p1) exists since L 6= ∅.

Proof. Since L ⊆ L1 then path(t, p1) ∈ L1 therefore t ↪→[p1,L1:l1→r1] t[σ(r1)]p1 . On the
other hand, path(t, p1.v) = path(t, p1).path(t|p1 , v) = path(v, p1).path(l1, v). Moreover,
path(t, p1) ∈ L, consequently path(t, p1.v) ∈ L2. t|p1.v = (t|p1)|v = (σ(l1))|v = σ(l1|v) =
σ(l2). Therefore t ↪→[p1.v,L2:l2→r2] t[σ(r2)]p1.v J

I Definition 16. The critical pair (s1, s2, L) is said convergent if

∀t ∈ T (Σ, X), ∀p ∈ Pos(t), (path(t, p) ∈ L =⇒ t[s1]p ↓R t[s2]p)

I Theorem 17. (extended Knuth-Bendix’s theorem) Let R be a prefix-preserving pCTRS. R
is locally confluent if and only if all critical pairs of R are convergent.

Proof.
1. "=⇒ "

Let us write s1 = σ(r1) and s2 = σ(l1[σ(r2)]v and t′ = t[σ(l1)]p. Through Lemma 15
applied on t′ and p, we get t′ ↪→ t′[s1]p = t[s1]p and t′ ↪→ t′[σ(r2)]p.v = t[σ(l1)[σ(r2)]v]p =
t[s2]p. Through the local confluence property, t[s1]p ↓R t[s2]p.

2. " ⇐="
Assume t ↪→[p1,L1:l1→r1,σ1] t1 and t ↪→[p2,L2:l2→r2,σ2] t2

if p1||p2, through Lemma 6, t1 ↪→ t3 ←↩ t2
without loss of generality, assume p1 < p2

if p2.p1 6∈ PosNonV ar(l1), through Lemma 10, we have t1 ↪→∗ t4 ←↩∗ t2.
otherwise through lemma 14, there exist a substitution γ, and a critical pair
(s1, s2, L), s.t. path(t, p1) ∈ L and t1 = t[γ(s1)]p1 and t2 = [γ(s2)]p1 . This critical
pair is convergent and since path(t, p1) ∈ L, we have t[s1]p1 ↪→∗ ←↩∗ t[s2]p1 . Since,
pCTRS rewriting is stable through instantiation, t1 ↪→∗ ←↩∗ t2 J

In general, to check the convergence of a critical pair according to Definition 16, infinitely
many contexts t should be tried, which is impossible. Therefore we need to define a stronger
sufficient condition. Let us first introduce the notion of rewriting under a prefix language.
As usual, for a string w and a string language L, we define L.w by L.w = {v.w | v ∈ L}.
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I Definition 18. Let R = {L : l→ r} ∪R′ be a pCTRS, and L′ ⊆ Dir(Σ)∗.
t
L′

↪→[p,L:l→r,σ] t
′ if L′.path(t, p) ⊆ L and σ is a substitution s.t. t|p = σ(l) and t′ = t[σ(r)]p.

We also write t L
′

↪→R t
′, and L′

↪→R
∗ will denote the reflexive-transitive closure of L′

↪→R.

I Remark. t ↪→[p,L:l→r] t
′ ⇐⇒ t

{ε}
↪→[p,L:l→r] t

′.

I Lemma 19. If t L
′

↪→[p,L:l→r] t
′ then

∀t0 ∈ T (Σ, X), ∀p′ ∈ Pos(t0), (path(t0, p′) ∈ L′ =⇒ t0[t]p′ ↪→[p′.p,L:l→r] t0[t′]p′)

Proof. Through the hypothesis t L
′

↪→[p,L:l→r] t
′, we have t→[p,l→r] t

′ and L′.path(t, p) ⊆ L.
Assume path(t0, p′) ∈ L′. Then path(t0[t]p′ , p′.p) = path(t0, p′).path(t, p) ∈ L. Then

t0[t]p′ ↪→[p′.p,L:l→r] t0[t′]p′ . J

I Corollary 20. If L′ 6= ∅ and t1
L′

↪→R t2
L′

↪→R · · ·
L′

↪→R tn,
then there exists t0 ∈ T (Σ, X) and p′ ∈ Pos(t0) s.t. t0[t1]p′ ↪→R t0[t2]p′ ↪→R · · · ↪→R t0[tn]p′ .

I Corollary 21. If L′ 6= ∅ and L′

↪→R is not terminating, then ↪→R is not terminating.
Consequently, if ↪→R is terminating, then L′

↪→R is terminating.

I Definition 22. The critical pair (s1, s2, L) is said strongly convergent if there exits a term
t such that s1

L
↪→R
∗ t and s2

L
↪→R
∗ t.

Therefore, if the pCTRS R is terminating, the strong convergence of a critical pair (s1, s2, L)
can be checked by computing all descendants of s1 and of s2 under prefix-language L, which
are finitely many, and looking for common elements.

I Lemma 23. Strong convergence implies convergence.

Proof. We have s1
L
↪→∗s3 and s2

L
↪→∗s3. Let t0 ∈ T (Σ), p ∈ Pos(t0) s.t path(t0, p) ∈ L.

Through corollary 20
t0[s1]p ↪→∗ t0[s3]p and t0[s2]p ↪→∗ t0[s3]p then the critical pair is convergent. J

I Theorem 24. Let R be a prefix-preserving pCTRS.
If all critical pairs of R are strongly convergent, then R is locally confluent.

Proof. It is naturally deduced from Lemma 23 and Theorem 17. J

Let us note that the converse is wrong as illustrated by the following Example .

I Example 25. Consider the pCTRS

R = {{〈h, 1〉} : f(a)→ c, {〈h, 1〉.〈f, 1〉} : a→ b, {ε} : h(f(b))→ h(c)}

R is prefix-preserving since the rewrite rules do not contain variables.
There is only one critical pair (c, f(b), {〈h, 1〉}), which is convergent because h(f(b)) ↪→R h(c).
From Theorem 17, R is locally confluent. However, the critical pair is not strongly convergent
since according to Definition 18, c and f(b) are irreducible by

{〈h,1〉}
↪→ R .
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The context-sensitive case
In this section we compare the previous results with those of [11]. A CS-TRS (R0, µ) may
be viewed as a particular pCTRS R = {Lk : lk → rk | (lk → rk) ∈ R0}, where all languages
Lk are the same (say L), and L is composed of all strings (including the empty string) over
the alphabet {〈f, i〉 | f ∈ Σ, i ∈ µ(f)}.

I Example 26.

R0 = {f(h(x, y), y)→ g(x, y), h(a, b)→ i(a), a→ b}s.t.

µ(f) = µ(h) = 1,

then we can view this CS-TRS as the following pCTRS

R = {L : f(h(x, y), y)→ g(x, y), L : h(a, a)→ i(a), L : a→ b}s.t.

L = (〈f, 1〉 | 〈h, 1〉)∗.

In this framework, note that u, v, w ∈ L ⇐⇒ u.v.w ∈ L, and path(t, p) ∈ L ⇐⇒ p ∈
Posµ(t). Consequently, the pCTRS R is prefix-preserving if and only if the CS-TRS (R0, µ)
is with left homogeneous replacing variables (Definition 4.4 of [11]).

According to Definition 13, a critical pair between L : l1 → r1 and L : l2 → r2 is of the
form (σ(r1), σ(l1)[σ(r2)]p, L′) where L′ = {u ∈ L | u.path(l1, p) ∈ L} 6= ∅. Since L′ 6= ∅,
there exists at least one string u ∈ L s.t. u.path(l1, p) ∈ L. Therefore path(l1, p) ∈ L,
then p ∈ Posµ(l1). On the other hand, for all u ∈ L, we have u.path(l1, p) ∈ L (because
path(l1, p) ∈ L). Consequently L′ = L.

For instance, for the example 26 we have two critical pairs

(f(i(a), a)), g(a, a), L)
(h(b, a), i(a), L).

Since all critical pairs have the same language, we can omit it, and we get the same
notion (called µ-critical pair) as in Definition 4.7 of [11].

Therefore, Theorem 17 gives the same result as Theorem 4.9 of [11]. However, as
mentioned previously, with a pCTRS infinitely many contexts should be tried to check the
convergence of a critical pair. Fortunately ε ∈ L, and when using Definition 16 we can
consider p as the root position, i.e. the critical pair should also converge without context.
Conversely, if the critical pair converges without context, it also converges with any context t
assuming p ∈ Posµ(t), which holds because path(t, p) ∈ L is assumed. Thus, the convergence
of a critical pair can be checked without using a context, i.e. as in [11].

As a conclusion, if the pCTRS is context-sensitive, thanks to Theorem 17 we get the
same result as [11]. If the pCTRS is not context-sensitive, we can ensure local-confluence
using Theorem 24.

4 Working with String Automata

From an operational point of view, Section 3 does not say anything for handling prefix
languages, for checking whether a pCTRS is prefix-preserving, for computing the language of
a critical pair, and for computing L

↪→R steps. This is why we consider in this section that for
a pCTRS R = {Lk : lk → rk | 1 ≤ k ≤ n}, each language Lk ⊆ Dir(Σ)∗ is defined by a finite
string automaton Ak = (Dir(Σ), Qk, QkI , Qkf ,∆k).
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For efficiency of further computations, we assume that each each Ak is deterministic and
complete. In other words, we consider that the automata are determinized and completed at
the beginning, and the new automata generated by the computations will be still deterministic
and complete.

For any automaton A = (Σ, Q,QI , Qf ,∆) and q ∈ Q, let us define LA(q) = {w ∈ Σ∗ |
∃qf ∈ Qf , (q, w) 7→∗∆ (qf , ε)}. Note that LA = ∪qI∈QI

LA(qI), and LA(q) is recognized by
the automaton (Σ, Q, {q}, Qf ,∆).

Let w be a string and L ⊆ Σ∗ be a string language. Let us define Lw− = {u ∈ Σ∗ | w.u ∈
L} and L−w = {u ∈ Σ∗ | u.w ∈ L}.

For a string w, let Qw−I = {q ∈ Q | ∃qI ∈ QI , (qI , w) 7→∗∆ (q, ε)}, and let Q−wf =
{q ∈ Q | ∃qf ∈ Qf , (q, w) 7→∗∆ (qf , ε)}. Let Aw− = (Σ, Q,Qw−I , Qf ,∆) and A−w =
(Σ, Q,QI , Q−wf ,∆).

I Lemma 27. LAw− = (LA)w− and LA−w = (LA)−w. Moreover, if A is deterministic and
complete, so are Aw− and A−w.

Proof.
1. Let us prove that LAw− ⊆ (LA)w−

Let u ∈ LAw− . There exists q ∈ Qw−I and qf ∈ Qf such that (q, u) 7→∗∆ (qf , ε). Then there
exists qI ∈ QI such that (qI , w) 7→∗∆ (q, ε). Consequently, (qI , w.u) 7→∗∆ (q, u) 7→∗∆ (qf , ε).
Then w.u ∈ LA, then u ∈ (LA)w−.

2. Let us prove (LA)w− ⊆ LAw−

Let u ∈ (LA)w−. Then w.u ∈ LA. Consequently, there exists qI ∈ QI , qf ∈ Qf and
q ∈ Q such that (qI , w.u) 7→∗∆ (q, u) 7→∗∆ (qf , ε). Then (qI , w) 7→∗∆ (q, ε), that is q ∈ Qw−I .
Consequently, u ∈ (LA)w−.

3. If A is deterministic and complete, then |Qw−I | = |{q ∈ Q | ∃qI ∈ QI , (qI , w) 7→∗∆ (q, ε)}|,
where |A| denotes the number of elements of the set A, as usual. But |QI | = 1 and ∆ is
the set of the transitions in A. Then |Qw−I | = 1. On the other part, the transitions in
Aw− and A are the same.

4. Let us prove LA−w ⊆ (LA)−w
Let u ∈ LA−w . There exists qI ∈ QI , q ∈ Q−wf such that (qI , u) 7→∗∆ (q, ε). Then there
exists qf ∈ Qf , (q, w) 7→∗∆ (qf , ε). Consequently, (qI , u.w) 7→∗∆ (q, w) 7→∗∆ (qf , ε). Then
u.w ∈ LA, the u ∈ (LA)−w.

5. (LA)−w ⊆ LA−w

Let u ∈ (LA)−w. Then u.w ∈ LA. Consequently, there exists qI ∈ QI , qf ∈ Qf and
q ∈ Q such that (qI , u.w) 7→∗∆ (q, w) 7→∗∆ (qf , ε). Then q ∈ Q−wf and (qI , u) 7→∗∆ (q, ε).
Consequently, u ∈ LA−w .

6. The initial states and the transitions of A−w and A are the same. J

Prefix preserving. To check whether a pCTRS is prefix-preserving (Definition 8), we use
the following result.

I Theorem 28. For the prefix-constrained rewrite rules L1 : l1 → r1 and L2 : l2 → r2,
let A1 = (Σ, Q1, Q1

I , Q
1
f ,∆1) and A2 = (Σ, Q2, Q2

I , Q
2
f ,∆2) be deterministic and complete

automata that recognize L1 and L2 respectively. Let S1,2 =
{q ∈ Q2 | ∃(q1

I , q
2
I ) ∈ Q1

I × Q2
I ,∃u ∈ Dir(Σ)∗,∃q1

f ∈ Q1
f , ((q1

I , q
2
I ), u) 7→∗∆1⊗∆2 ((q1

f , q), ε)},
which can be computed by saturating {(q1

I , q
2
I )} with the transitions of ∆1 ⊗∆2.

The pCTRS R is prefix-preserving if and only if for all rewrite rules L1 : l1 → r1 and
L2 : l2 → r2 of R, ∀x ∈ V ar(l1), ∀p, p′ ∈ Pos(l1, x), ∀p′′ ∈ Pos(r1, x), ∀q ∈ S1,2:

LA2(q)path(l1,p)− = LA2(q)path(l1,p′)− ⊆ LA2(q)path(r1,p
′′)−
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Proof.
Let us begin by proving the implication "=⇒".
Let us assume u ∈ L1 and u.path(l1, p).w ∈ L2. Then there exists q1

I ∈ Q1
I , q

2
I ∈ Q2

I , q
1
f ∈

Q1
f , q ∈ Q2 such that (q1

I , u)→∗∆1 (q1
f , ε) and (q2

I , u)→∗∆2(q, ε). Then q ∈ S1,2. Moreover,
path(l1, p).w ∈ LA2(q), then w ∈ LA2(q)path(l1,p)−. Through the hypothesis, we have
w ∈ LA2(q)path(l1,p′)− and w ∈ LA2(q)path(l1,p′′)−. Then path(l1, p′).w ∈ LA2(q) and
path(r1, p

′′).w ∈ LA2(q). As (q2
I , u)→∗∆2(q, ε), we get u.path(l1, p′).w ∈ LA2 = L2 and

u.path(r1, p
′′).w ∈ LA2 = L2. Consequently, R is prefix-preserving.

Let us continue by proving the implication "⇐=".
Let q ∈ S1,2 and w ∈ LA2(q)path(l1,p)−. There exists u ∈ Dir(Σ)∗, q1

I ∈ Q1
I , q

2
I ∈

Q2
I , q

1
f ∈ Q1

f such that (q1
I , u)→∗∆1(q1

f , ε) and (q2
I , u)→∗∆2(q, ε). Then u ∈ L1. Moreover

path(l1, p).w ∈ LA2(q), then there exists q2
f ∈ Q2

f such that (q, path(l1, p).w)→∗∆2(q2
f , ε).

Consequently, u.path(l1, p).w ∈ L2. As R is prefix-preserving, we have u.path(l1, p′).w ∈
L2 = LA2 and u.path(r1, p

′′).w ∈ L2 = LA2 . Then path(l1, p′).w ∈ LA2(q) and
path(r1, p

′′).w ∈ LA2(q), then w ∈ LA2(q)path(l1,p′)− and w ∈ LA2(q)path(r1,p
′′)−. There-

fore, LA2(q)path(l1,p)− ⊆ LA2(q)path(l1,p′)− and LA2(q)path(l1,p)− ⊆ LA2(q)path(r1,p
′′)−.

On the other hand, we prove that LA2(q)path(l1,p′)− ⊆ LA2(q)path(l1,p)− by exchanging p
and p′. J

Critical pair. Let A1 and A2 be two deterministic and complete automata that recognize the
languages L1 and L2 of the two rules in the critical pair Definition 13. Then the language L of
the critical pair is recognized by the automaton A1 ∩A−path(l1,p)

2 , which is still deterministic
and complete.

Rewriting under context. Let A′ and A be deterministic and complete automata that
recognizes the languages L′ and L of Definition 18. To check whether L′.path(t, p) ⊆ L, we
use the following result:

I Lemma 29. L′.path(t, p) ⊆ L ⇐⇒ L(A′∩(Ā)−path(t,p)) = ∅.

Proof.
1. "⇐="

By contradiction. Let us assume there exists u ∈ L′ such that u.path(t, p) 6∈ L. Then
u.path(t, p) ∈ L̄ = LĀ. Then u ∈ (LĀ)−path(t,p) = L(Ā)−path(t,p) . Since u ∈ L′, we have
u ∈ LA′ , then u ∈ LA′∩(Ā)−path(t,p) = ∅ according to the hypothesis. Contradiction.

2. "=⇒"
By contradiction. Let assume there exists u ∈ LA′∩(Ā)−path(t,p) . Then u ∈ L′ and
u.path(t, p) ∈ L̄, that is u.path(t, p) 6∈ L and u.path(t, p) ∈ L′.path(t, p). Consequently,
L′.path(t, p) 6⊆ L. Contradiction. J

Note that checking equalities or inclusions of languages as in Theorem 28, or computing the
complement as in Lemma 29, is polynomial since automata are deterministic and complete.

5 Extended Knuth-Bendix Completion

The goal of extended completion is to transform an arbitrary initial pCTRS R (or a set
of equalities) into a confluent and terminating pCTRS R′ without changing the equality
modulo the pCTRS, i.e. such that =R and =R′ are identical. To do it, we use the result of
Theorem 24, therefore the pCTRS needs to be prefix-preserving. However, with the notations
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of Definition 8, whenever u ∈ L1 ∧ u.path(l1, p).w ∈ L2 whereas u.path(r1, p
′′).w 6∈ L2, i.e.

the pCTRS is not prefix-preserving, we could make it prefix-preserving by extending L2 into
L′2 so that u.path(r1, p

′′).w ∈ L′2. Unfortunately, this may change the equality modulo the
pCTRS.

I Example 30. Let Σ = {f, g, a, b, c, d} and

R = {{ε} : f(x) 1→ g(x, c), {〈f, 1〉} : a 2→ b}

Let L1 and L2 be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because, let u = ε ∈ L1 and w = ε, and we have u.path(f(x), 1).w = 〈f, 1〉 ∈ L2 whereas
u.path(g(x, c), 1).w = 〈g, 1〉 6∈ L2. Note that R is not confluent since there is the peak
f(a) ↪→ g(a, c) by rule 1, and f(a) ↪→ f(b) ↪→ g(b, c) by rules 1 and 2, which is not convergent
since g(a, c) and g(b, c) are irreducible.
Now let us extend L2 by considering the pCTRS:

R′ = {{ε} : f(x) 1→ g(x, c), {〈f, 1〉} ∪ {〈g, 1〉} : a 2′→ b}

R′ is prefix-preserving. However g(a, d) ↪→R′ g(b, d) whereas g(a, d) 6=R g(b, d). In other
words, =R and =R′ are not identical.

This difficulty may depend on the orientation of rewrite rules. The pCTRS R of Example 30
is terminating, however let us reverse the first rule of R, i.e. let

R′′ = {{ε} : g(x, c) 1′′→ f(x), {〈f, 1〉} : a 2→ b}

R′′ is prefix-preserving and is also terminating. Moreover =R and =R′′ are identical. Un-
fortunately, changing the orientation does not always make the pCTRS prefix-preserving,
and may not preserve termination. In other words, extended completion will fail when one
cannot get a prefix-preserving pCTRS.

The usual Knuth-Bendix completion generates an inter-reduced TRS R, which means
(roughly) that the left-hand-side and the right-hand-side of each rule of R are not reducible
by the other rules of R. This notion cannot be extended to pCTRSs in an easy way.

I Example 31. Consider the TRS R = {f(x) 1→ g(x), g(x) 2→ h(x)}. Then R is not
inter-reduced since the right-hand-side of rule 1 is reducible by rule 2. Now let

R′ = {{〈i, 1〉} ∪ {〈j, 1〉} : f(x) 1′→ g(x), {〈i, 1〉} : g(x) 2′→ h(x)}

So, the right-hand-side of rule 1 is reducible by rule 2 under context i, but not under context
j. An inter-reduced pCTRS R′′ such that =R′ and =R′′ are identical, could be

R′′ = {{〈i, 1〉} : f(x) 1′′→ h(x), {〈j, 1〉} : f(x) 1′′′→ g(x), {〈i, 1〉} : g(x) 2′′→ h(x)}

In this paper, we present a basic extended Knuth-Bendix completion, which does not
attempt to produce an inter-reduced pCTRS. It is described by inference rules, as in [2], and
computes (Pi+1, Ri+1) from (Pi, Ri) using a derivation relation denoted `, where Pi, Pi+1
are sets of prefix-constrained equalities of the form L : p = q4 and Ri, Ri+1 are sets of
prefix-constrained rewrite rules of the form L : l→ r.

4 We assume that = is commutative, i.e. L : p = q is the same equality as L : q = p.
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1. Orient

P ∪ {L : p = q}, R
P, R ∪ {L : p→ q}

if R ∪ {L : p→ q} is prefix-preserving and terminating

2. Deduce
P, R

P ∪ {L : p = q}, R
if (p, q, L) is a critical pair between rules of R

3. Simplify

P ∪ {L : p = q}, R
P ∪ {L : p′ = q}, R

if p L
↪→R p′

4. Delete

P ∪ {L : p = p}, R
P, R

Orient needs to check that R ∪ {L : p → q} is terminating. This can be done by
transforming the pCTRS into an ordinary TRS [1], which preserves termination, and checking
the termination of the ordinary TRS using the usual techniques and tools. This transformation
can even be done incrementally: each time Orient is run, new rewrite rules are added into
the ordinary TRS.

With our basic completion above, inference rules Simplify and Delete are only applied
on (non-oriented) equations of P . During the completion procedure, oriented rules of R are
neither simplified nor deleted.

I Lemma 32 (Soundness). If (P,R) ` (P ′, R′), then =P∪R and =P ′∪R′ are identical.

Proof.
1. Orient :

t =L:p=q t
′ ⇐⇒ t =L:p→q t

′ because =L:p=q is a symmetric relation.
2. Deduce :

Let us consider the critical pair (p, q, L) obtained from the rewriting rules L1 : l1 → r1 ∈ R
and L2 : l2 → r2 ∈ R. Then (p, q, L) = (σ(r1), σ(l1)[σ(r2)]v, L). If t′ =[p′,L:p=q,θ] t

′′, then
t′ = t0[θ(p)]p′ , t′′ = t0[θq]p′ and path(t0, p′) ∈ L. Let us write t = t0[σ(l1)]p′ . Through
Lemma 15, we have t ↪→[p′,L1:l1→r1 t[σ(r1)]p′ = t0[p]p′ and t ↪→[p′.v,L2:l2→r2] t[σ(r2)]p′.v =
t0[σ(l1[σ(r2)]v]p′) = t0[q]p′ . Since t′ =[p′,L:p=q,θ] t

′′, let us assume V ar(p) ∩ V ar(t′) = ∅
and V ar(q) ∩ V ar(t′′) = ∅. Then V ar(p) ∩ V ar(t0) = ∅ and V ar(q) ∩ V ar(t0) = ∅.
Consequently, θ(t) ↪→[p′,L1:l1→r1] t0[θ(p)]p′ = t′ and θ(t) ↪→[p′.v,L2:l2→r2] t0[θ(q)]p′ = t′′.
Then t′ =R t

′′.
3. Simplify

a. "=⇒ "
If t =[u,L:p=q,σ] t

′, then we have t|u = σ(p)] and t′ = t[σ(q)] and path(t, u) ∈ L. But
p

L
↪→[v,L′:l′→r′,θ] p

′, then p|v = θ(l′) and p′ = p[θ(r′)]v and L.path(p, v) ⊆ L′. Con-
sequently, t ↪→[u.v,L′:l′→r′,σθ] t[σ(θ(p′)]u.v = t[t|u[σ(θ(r′)]v]u = t[(σ(p)[σ(θ(r′))]v]u =
t[σ(p([θ(r′))]v]u = t[σ(p′)]u since path(t, u.v) = path(t, u).path(p, v) ∈ L′ (note that
path(t, u) ∈ L). Furthermore, t[σ(p′)]u =[L,p′=q] t[σ(q)]u = t′ since path(t, u) ∈ L.
Consequently t =R∪{L:p′=q} t

′.
b. "⇐= "

The converse is similar since the direction of the rewrite step p ↪→ p′ does not matter.
4. Delete

If t =L:p=p t
′, then t = t′. Thus t =P∪R t

′. J
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Consider a derivation (P0, R0) ` · · · ` (Pn, Rn). Note that R0 ⊆ R1 ⊆ · · · ⊆ Rn.

I Lemma 33. (Completeness) Let (p, q, L) be a critical pair between some rules of Rn. If
p

L
↪→Rn
∗ p′ and q L

↪→Rn
∗ q′, then (p, q, L) is strongly convergent in Rn ∪ {L : p′ → q′}.

Proof. p′ L↪→[ε,p′→q′] q
′ since L.path(p′, ε) = L ⊆ L. Consequently, p L

↪→Rn
∗ p′

L
↪→[ε,L:p′→q′] q

′

and q L
↪→Rn
∗ q′. Then the critical pair is strongly convergent in Rn ∪ {L : p′ → q′}. J

Fairness hypothesis. (P0, R0) ` · · · ` (Pn, Rn) is fair if for all critical pair (p, q, L) between
rules of Rn, there is some i ∈ {0, . . . , n} such that (L : p = q) ∈ Pi. In other words, all
critical pairs have been computed thanks to Deduce. From Lemmas 32, 33 and Theorems 24,
4 we get:

I Corollary 34. If (P0, R0) ` · · · ` (Pn, Rn) is fair and R0 = Pn = ∅, then Rn is confluent
and terminating. Moreover the relations =P0 and =Rn are identical.

However, like the usual Knuth-Bendix completion, the extended Knuth-Bendix completion
fails if we cannot obtain Pn = ∅ for some n. In particular, it arises if Orient cannot orient a
persistent critical pair because the resulting pCTRS would not be prefix-preserving or would
not be terminating.

The above basic completion could be improved by including more inference rules like
Simplifiying and Deleting oriented rules of R. However, the proof of correctness and com-
pleteness of such completion procedure would be more complicated and could be done, for
instance, by extending the proof transformation method of [2].

6 Conclusion and Further Work

In this paper, we present a sufficient condition that ensures the local confluence of prefix-
constrained rewrite systems, and consequently the confluence of terminating ones. This
result subsumes that of [11] about local-confluence of context-sensitive rewrite systems.
Prefix-preserving and critical-pair strong convergence assumptions are sufficient, but are not
necessary. Finding weaker assumptions is an interesting challenge.

The second contribution of this paper is an extended Knuth-Bendix completion procedure
for prefix-constrained rewrite systems. This procedure could be improved to get inter-reduced
systems, by adding some inference rules, which could also improve the efficiency.

Controlled rewriting [7] is an extension of prefix-constrained rewriting, where rewritable
positions are defined by a regular tree language that considers the entire term (i.e. not only
prefixes). It could be interesting to study local-confluence, and define a completion procedure
for controlled rewrite systems.
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Abstract
We propose a new axiomatisation of the alpha-equivalence relation for nominal terms, based on a
primitive notion of fixed-point constraint. We show that the standard freshness relation between
atoms and terms can be derived from the more primitive notion of permutation fixed-point, and
use this result to prove the correctness of the new alpha-equivalence axiomatisation. This gives
rise to a new notion of nominal unification, where solutions for unification problems are pairs of
a fixed-point context and a substitution. Although it may seem less natural than the standard
notion of nominal unifier based on freshness constraints, the notion of unifier based on fixed-
point constraints behaves better when equational theories are considered: for example, nominal
unification remains finitary in the presence of commutativity, whereas it becomes infinitary when
unifiers are expressed using freshness contexts.
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1 Introduction

This paper presents a new axiomatisation of α-equivalence for nominal terms via permutation
fixed points, and revisits nominal unification in this setting.

In nominal syntax [16], atoms are used to represent object-level variables and atom
permutations to implement renamings, following the nominal-sets approach advocated by
Gabbay and Pitts [10, 12, 14]. Atoms can be abstracted over terms, the syntax [a]s represents
the abstraction of a in s. To rename an abstracted atom a to b, a swapping permutation
π = (a b) is applied. Thus, the action of π over [a]s, written as (a b) · [a]s, produces the
nominal term [b]s′, where s′ is the result of replacing all occurrences of a in s by b, and all
occurences of b in s by a. The α-equivalence relation between nominal terms is specified
using swappings together with a freshness relation between atoms and terms, written b#s,
which roughly corresponds to b not occurring free in s.

In this setting, checking α-equivalence requires another first-order specialised calculus to
check freshness constraints. For instance, checking whether [a]s ≈α [b]t reduces to checking
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whether s ≈α (b a) · t and a#t. The action of a permutation propagates down the structure
of nominal terms, until a variable is reached: permutations suspend over variables. Thus,
π · s represents the action of a permutation over a nominal term, but is not itself a nominal
term unless s is a variable; for instance, π ·X is a suspension (also called moderated variable),
which is a nominal term.

The presence of moderated variables and atom-abstractions makes reasoning about
equality of nominal terms more involved than in standard first-order syntax. For example,
π ·X ≈?

α ρ ·X is only true when X ranges over nominal terms, say s, for which all atoms in
the difference set of π and ρ (i.e., the set {a : π(a) 6= ρ(a)}) are fresh in s.

If the support of a permutation π is fresh for X then π · X ≈α id · X. Thus a set of
freshness constraints (i.e., a freshness context) can be used to specify that a permutation will
have no effect on the instances of X. This is why in nominal unification [16], the solution for
a problem is a pair consisting of a freshness context and a substitution.

The use of freshness contexts is natural when dealing with “syntactic” nominal unification,
but in the presence of equational axioms (i.e., equational nominal unification) it is not
straightforward. For example, in the case of C-nominal unification (nominal unification
modulo commutativity), to specify that a permutation has no effect on the instances of
X modulo C, in other words, to specify that the permutation does not affect a given C-
equivalence class, we need something more than a freshness constraint (note that (a b)(a+b) =
b+ a =C a+ b, so the permutation (a b) fixes the term a+ b, despite the fact that a and b
are not fresh).

In this paper, we propose to axiomatise α-equivalence of nominal terms using permutation
fixed-point constraints: we write π f t (read “π fixes t”) if t is a fixed-point of π. We show
how to derive fixed-point constraints from primitive constraints of the form π fX, and show
the correctness of this approach by proving that the α-equivalence relation generated in
this way coincides with the one axiomatised via freshness constraints. We then show how
fixed-point constraints can be used to solve nominal unification problems modulo C.

In [4, 3, 2], the authors have proposed techniques to deal with α-equivalence modulo the
equational theories A, C and AC using the standard approach via freshness constraints. The
works [3, 2] show that despite the fact that C-unification problems have solutions generated
by a finite family of fixed-point equations, there is no finitary representation of the admissible
set of solutions using only freshness constraints and substitutions. Also, in [15] it is shown
how nominal unification problems in a language with recursive let operators gives rise to
solutions expressed in terms of freshness constraints and nominal fixed-point equations.

In this paper, we will develop an extension of fixed-point constraints modulo commutativity,
namely, fC , and provide a set of rules for checking fixed-point judgements and α-equivalence
judgements modulo C, which will provide a finitary representation of nominal C-unification
solutions, consisting only of primitive fixed-point constraints and substitutions.

Overview

Section 2 presents the required preliminaries on nominal syntax. Section 3 introduces
nominal α-equivalence using fixed-point constraints instead of freshness constraints. Section
4 introduces a sound and complete rule-based algorithm for nominal unification using fixed-
point constraints. Before concluding, Section 5 shows how fixed-point constraints are used to
finitely represent solutions of fixed-point equations, and so of nominal C-unification problems.
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2 Preliminaries

We assume the reader is familiar with the notions of nominal set and nominal syntax. In this
section we recall the main concepts and notations that are needed in this paper; for more
details we refer the reader to [14, 16].

2.1 Nominal Terms
Let A be a fixed and countably infinite set of elements a, b, c, . . ., which will be called atoms
(atomic names). A permutation on A is a bijection on A with finite domain.

Fix a countably infinite set X = {X,Y, Z, . . .} of variables and a countable set F =
{f, g, . . .} of function symbols.

I Definition 1 (Nominal grammar). Nominal terms are generated by the following grammar.

s, t := a | [a]t | (t1, . . . , tn) | f t | π ·X

where a is an atom term, [a]t denotes the abstraction of the atom a over the term t, (t1, . . . , tn)
is a tuple, f t denotes the application of f to t and π ·X is a moderated variable or suspension,
where π is an atom permutation.

We follow the permutative convention [11, Convention 2.3] for atoms throughout the
paper, i.e., atoms a, b, c range permutatively over A so that they are always pairwise different,
unless stated otherwise.

Atom permutations are represented by finite lists of swappings, which are pairs of different
atoms (a b); hence, a permutation π is generated by the following grammar:

π := Id | (a b)π.

We call Id the identity permutation, which is usually omitted from the list of swappings
defining a permutation. Suspensions of the form Id ·X will be represented just by X. We
write π−1 for the inverse of π, and use ◦ to denote the composition of permutations. For
example, if π = (a b)(b c) then π(c) = a and c = π−1(a).

The difference set of two permutations π, π′ is ds(π, π′) = {a | π(a) 6= π′(a)}.
We write Var(t) for the set of variables occurring in t. Ground terms are terms without

variables, that is Var(t) = ∅. A ground term may still contain atoms, for example a is a
ground term and X is not.

I Definition 2 (Permutation action). The action of a permutation π on a term t is defined
by induction on the number of swappings in π:

Id · t = t and ((a b)π) · t = (a b) · (π · t), where

(a b) · a = b,

(a b) · b = a,

(a b) · c = c

(a b) · (π ·X) = ((a b) ◦ π) ·X,
(a b) · f t = f (a b) · t,

(a b) · [c]t = [(a b) · c](a b) · t
(a b) · (t1, . . . , tn) = ((a b) · t1, . . . , (a b) · tn)

I Definition 3 (Substitution). Substitutions are generated by the grammar

σ ::= id | [X 7→ s]σ.

Postfix notation is used for substitution application and ◦ for composition: t(σ ◦ σ′) = (tσ)σ′.
Substitutions act on terms elementwise in the natural way: t id = t, t[X 7→ s]σ = (t[X 7→ s])σ,
where

a[X 7→ s] = a

(f t)[X 7→ s] = f(t[X 7→ s])
([a]t)[X 7→ s] = [a](t[X 7→ s])

(t1, . . . , tn)[X 7→ s] = (t1[X 7→ s], . . . , tn[X 7→ s])
(π ·X)[X 7→ s] = π · s
(π · Y )[X 7→ s] = π · Y

FSCD 2018
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2.2 Nominal sets and support
Let S be a set equipped with an action of the group Perm(A) of finite permutations of A.

I Definition 4. A set A ⊂ A is a support for an element x ∈ S if for all π ∈ Perm(A), the
following holds

((∀a ∈ A) π(a) = a)⇒ π · x = x (1)

A nominal set is a set equipped with an action of the group Perm(A), that is, a Perm(A)-set,
all of whose elements have finite support.

As in [14], we denote by suppS(x) the least finite support of x, that is,

suppS(x) :=
⋂
{A ∈ P(A) | A is a finite support for x}.

We write supp(x) when S is clear from the context. Clearly, each a ∈ A is finitely supported
by {a}, therefore supp(a) = {a}.

3 Constraints

The native notion of equality on nominal terms is α-equivalence, written s ≈α t. This
relation is usually axiomatised using a freshness relation between atoms and terms, written
a#t – read “a fresh for t”, which, intuitively, corresponds to the idea of an atom not occurring
free in a term (see for instance [16, 8]). However, freshness is not a primitive notion in
nominal sets; it is derived using the quantifier Ncombined with a notion of fixed-point, as
shown by Pitts [14]:

a#X ⇔ Na′.(a a′) ·X = X.

In this work, instead of defining α-equivalence using freshness, we define it using the
more primitive notion of fixed-point under the action of permutations. We will denote this
relation f

≈α, and show that it coincides with ≈α on ground terms, i.e., the relation defined
using fixed-points of permutations corresponds to the relation defined using freshness. For
non-ground terms, there is also a correspondence, but under different kinds of assumptions
(fixed-point constraints vs. freshness constraints).

3.1 Fixed-points of permutations and term equality
We start by defining a binary relation that describes which elements of a nominal set S are
fixed-points of a permutation π ∈ Perm(A):

I Definition 5 (Fixed-point relation). Let S be a nominal set. The fixed-point relation
f ⊆ Perm(A)×S is defined as: π f x⇔ dom(π) ∩ supp(x) = ∅. Read “π f x” as “π fixes x”.

The fixed-point relation between permutations and terms will play an important role
in the definition of α-equality. Below we define the fixed-point constraints and equality
constraints using predicates f and f

≈α and then give deduction rules to derive fixed-point
and equality judgements. Intuitively,

s
f
≈α t will mean that s and t are α-equivalent, i.e., equivalent modulo renaming of

abstracted atoms.
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π(a) = a
(fa)

Υ ` π f a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X))
(fvar)

Υ ` π f π′ ·X

Υ ` π f t
(ff)

Υ ` π f f t

Υ ` π f t1 . . . Υ ` π f tn
(ftuple)

Υ ` π f (t1, . . . , tn)

Υ, (c1 c2) f Var(t) ` π f (a c1) · t
(fabs), c1 and c2

new namesΥ ` π f [a]t

Figure 1 Fixed-point rules.

π f t will mean that the permutation π fixes the nominal term t, that is, π · t f
≈α t. This

means that π has “no effect” on t except for the renaming of bound names, for instance,
(a b) f [a]a but not (a b) f f a.

I Definition 6 (Fixed-point and equality constraints). A fixed-point constraint is a pair π f t

of a permutation π and a term t. An α-equivalence constraint is a pair of the form s
f
≈α t.

We call a fixed-point constraint of the form πfX a primitive fixed-point constraint and a set
of such constraints is called a fixed-point context. Υ,Ψ, . . . range over fixed-point contexts.
We write π f Var(t) as an abbreviation for the set of constraints {π fX | X ∈ Var(t)}.

The set of variables Var(Υ) is defined as expected. The set of permutations of a fixed-point
context Υ with respect to the variable X ∈ Var(Υ), denoted by perm(Υ|X), is defined as
perm(Υ|X) := {π | π fX ∈ Υ}. For a substitution σ and a fixed-point context Υ we define
Υσ := {π fXσ |π fX ∈ Υ}.

To define the relation f, we rely on the notion of conjugation of permutations. The
conjugate of π with respect to ρ, denoted as πρ, is the result of the composition: ρ ◦ π ◦ ρ−1.

πρ : A
ρ−1

→ A
π→ A

ρ→ A

a 7→ ρ−1(a) 7→ π(ρ−1(a)) 7→ ρ(π(ρ−1(a)))

I Definition 7 (Judgements). A fixed-point judgement is a tuple Υ ` π f t of a fixed-point
context and a fixed-point constraint. An α-equivalence judgement is a tuple Ψ ` s f

≈α t of a
fixed-point context and an equality constraint. The derivable fixed-point and α-equivalence
judgements are defined by the rules in Figures 1 and 2.

I Example 8. The term [a]fa is a fixed-point for the permutation (a b), since (a b)[a]fa ≈α
[b]fb, therefore, (a b) f [a]fa. However, fa is not a fixed-point for (a b), since (a b) · fa ≈α/ fb.

Rule (fa) states that if a /∈ dom(π), then a is a fixed-point of π.
In rule (fvar), the condition supp(ππ′

−1
) ⊆ supp(perm(Υ|X)) means that the permuta-

tion can be generated from perm(Υ|X), hence it fixes X. Rules (ff) and (ftuple) are
straightforward. Rule (fabs) is the most interesting one. The intuition behind this rule is
the following: [a]t is a fixed-point of π if π · [a]t is α-equivalent to [a]t, that is, [π(a)]π · t is
α-equivalent to [a]t; the latter means that the only atom that could be affected by π is a,
hence, if we replace occurrences of a in t with another, new atom c1, π should have no effect.

The α-equality relation is defined in terms of fixed-point constraints. Rules (f≈α a),
(f≈α f), (f≈α [a]) and (f≈α tuple) are defined as expected, whereas the intuition behind rule
(f≈α var) is similar to the corresponding rule in Figure 1. The most interesting rule is (f≈α ab).

FSCD 2018
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(
f
≈αa)

Υ ` a
f
≈α a

supp((π′)−1 ◦ π) ⊆ supp(perm(Υ|X))
(
f
≈αvar)

Υ ` π ·X
f
≈α π′ ·X

Υ ` t
f
≈α t′

(
f
≈α f)

Υ ` f t
f
≈α f t′

Υ ` t1
f
≈α t′1 . . . Υ ` tn

f
≈α t′n (

f
≈α tuple)

Υ ` (t1, . . . , tn)
f
≈α (t′1, . . . , t′n)

Υ ` t
f
≈α t′

(
f
≈α [a])

Υ ` [a]t
f
≈α [a]t′

Υ ` s
f
≈α (a b) · t Υ, (c1 c2) f Var(t) ` (a c1) f t

(
f
≈α ab)

Υ ` [a]s
f
≈α [b]t

Figure 2 Rules for equality. In rule (
f
≈α ab), c1 and c2 are new names.

Intuitively, it states that for two abstractions [a]s and [b]t to be equivalent, we must obtain
equivalent terms if we rename in one of them, in our case t, the abstracted atom b to a, so
that they both use the same atom. Moreover, the atom a should not occur free in t, which is
checked by stating that (a c1) fixes t for some new atom c1 that is not in the support of the
variables occurring in t.

We prove below that f
≈α is indeed an equivalence relation, for which we need to study

the properties of the relations f
≈α and f, starting with inversion and equivariance.

I Lemma 9 (Inversion). The inference rules for f
≈α are invertible.

The notion of equivariance relies on the conjugation of the permutation π by ρ, πρ. The
following basic property is used in the proofs in this section.

I Lemma 10. Let ρ be a permutation in Perm(A) and a, b atoms in A. Then (a b)ρ =
(ρ(a) ρ(b)).

I Lemma 11.
i.) Υ ` π f t if and only if supp(π) ∩ supp(t) = ∅.
ii.) If Υ ` s f

≈α t then supp(s) = supp(t).

Proof. Both parts are proved by induction. In part (i), we analyse cases depending on the
last rule applied in the derivation of Υ ` π f t. We show the cases for rules (fvar) and
(fabs), the other cases follow directly by induction.

If the last rule applied is (fvar) then t = π′ ·X and Υ ` πfπ′ ·X if and only if (Inversion
Lemma) supp(ππ′

−1
) ⊆ supp(perm(Υ|X)), if and only if supp(π) ⊆ π′ · supp(perm(Υ|X)).

Since supp(X)∩supp(perm(Υ|X)) = ∅ by Definition 5, we deduce supp(π)∩supp(π′ ·X) = ∅
as required.

If the last rule applied is (fabs), then t = [a]t′ and Υ ` π f [a]t′ if and only if (Inversion
Lemma) Υ, (c1 c2)f Var(t′) ` πf (a c1) · t′. By induction, supp(π)∩ supp((a c1)t′) = ∅ and
since supp([a]t′) = supp((a c1) · t′)− {c1} (because c1 is a new atom and (c1 c2) f Var(t′)),
we obtain supp(π) ∩ supp([a]t′) = ∅ as required.

The proof for part (ii), by induction on the derivation of Υ ` s f
≈α t, is similar. In the

case of rule (f≈α var), the premise implies that ds(π, π′)∩supp(X) = ∅, hence supp(π ·X) =
supp(π′ ·X). In the case of rule (f≈α ab), by induction hypothesis supp(s) = supp((a b) · t)
and since we know that (a c1) f t, using part 1 we obtain the result. J



M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:7

I Lemma 12 (Equivariance).
i.) Υ ` π f t iff Υ ` πρ f ρ · t, for any permutation ρ.
ii.) If Υ ` s f

≈α t then Υ ` π · s f
≈α π · t.

Proof. By induction on the rules of Figures 1 and 2. J

I Lemma 13 (f preservation under f
≈α). If Υ ` s f

≈α t and Υ ` π f s then Υ ` π f t.

Proof. Direct consequence of Lemma 11. J

I Proposition 14 (Strengthening for f). If Υ, πfX ` π′fs and supp(π) ⊆ supp(perm(Υ|X))
or X /∈ Var(s) then Υ ` π′ f s.

I Proposition 15 (Strengthening for f
≈α). If Υ, π fX ` s

f
≈α t and

supp(π) ⊆ supp(perm(Υ|X)) or X /∈ Var(s, t), then Υ ` s f
≈α t.

I Proposition 16 (Weakening). Suppose that Υ ` Υ′σ. Then,
1. Υ′ ` π f s =⇒ Υ ` π f sσ.
2. Υ′ ` s f

≈α t =⇒ Υ ` sσ f
≈α tσ.

Proof. By induction on the rules of Figures 1 and 2. J

I Example 17. Notice that (a c) fX ` (a b) f (b c) ·X, for

(a c) fX ` (a b)(b c) fX ⇔ (a c) fX ` (a c) fX (by Equivariance) (2)

The following correctness property states that f is indeed the fixed-point relation:

I Theorem 18. Let Υ, π and t be a fixed-point context, a permutation and a nominal term,
respectively. Υ ` π f t iff Υ ` π · t f

≈α t.

Sketch. In both directions the proof follows by induction on the structure of the term t and by
case analysis on the last rule applied in the derivation. We show only Υ ` πft⇒ Υ ` π·t f

≈α t.
Below we sketch the interesting cases, the other cases follow by induction hypothesis easily.
1. The last rule is (fvar). In this case, t = π′ ·X and supp((π′)−1◦π◦π′) ⊆ supp(perm(Υ|X))

and therefore, π · (π′ ·X) f
≈α π′ ·X, via rule (f≈α var).

2. The last rule is (fabs). In this case, t = [a]t′ and π f t has a derivation of the form:
Π

Υ, (c1 c2) f Var(t′) ` π f (a c1) · t′

Υ ` π f [a]t′
From Υ, (c1 c2) f Var(t′) ` π f (a c1) · t′ it follows, from Lemma 11:

supp(π) ∩ supp((a c1) · t′) = ∅. (3)

We need to prove that Υ ` [π(a)]π · t′ f
≈α [a]t′, that is, Υ ` π · t′ f

≈α (π(a) a) · t′ and also
Υ, (c1 c2) f Var(t′) ` (π(a) c1) f t′ for some new atoms c1, c2.
By IH, there exist a proof Π′ for Υ, (c1 c2) f Var(t′) ` π · ((a c1).t′) f

≈α (a c1) · t′. Let
Υ′ = Υ, (c1 c2) f Var(t′). The following equivalence holds:

Υ′ ` π.((a c1) · t′) f
≈α (a c1) · t′ ⇐⇒ Υ′ ` (π(a) c1) · (π · t′) f

≈α (a c1) · t′ (4)

Also, Υ′ ` (π · t′) f
≈α (π(a) c1) · ((a c1) · t′) by Equivariance. And since Υ′ ` (π(a) c1) ·

((a c1) · t′) f
≈α (π(a) a) · t′, we are done. J
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(#a)
∆ ` a#b

π−1(a)#X ∈ ∆
(#var)

∆ ` a#π′ ·X

∆ ` a#t
(#f)

∆ ` a#f t
∆ ` a#t1 . . . ∆ ` a#tn

(#tuple)
∆ ` a#(t1, . . . , tn)

(#[a])
∆ ` a#[a]t

∆ ` a#t
(#abs)

Υ ` a#[b]t

Figure 3 Rules for freshness.

(≈α a)
∆ ` a ≈α a

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ` π ·X ≈α π′ ·X

∆ ` t ≈α t′
(≈α f)

∆ ` f t ≈α f t′
∆ ` t1 ≈α t′1 . . . ∆ ` tn ≈α t′n (≈α tuple)

∆ ` (t1, . . . , tn) ≈α (t′1, . . . , t′n)

∆ ` t ≈α t′
(≈α [a])

∆ ` [a]t ≈α [a]t′
∆ ` s ≈α (a b).t ∆ ` a#t

(≈α ab)
Υ ` [a]s ≈α [b]t

Figure 4 Rules for α-equality via freshness.

3.2 From freshness to fixed-point constraints
In this section we show that the α-equivalence relation defined in terms of freshness constraints,
denoted as ≈α, is equivalent to f

≈α, given that a transformation [_]f from freshness to
fixed-point constraints and a transformation [_]# from fixed-point to freshness constraints
can be defined. In the standard approach [13, 8], the freshness relation (a#t) and the
α-equivalence relation s ≈α t (w.r.t. #), are axiomatised using the rules in Figures 3 and 4,
respectively.

To define ≈α we use the difference set of two permutations in rule (≈α var), and
ds(π, π′)#X = {a#X | a ∈ ds(π, π′)}.

The symbols ∆ and ∇ denote freshness contexts, that is, sets of freshness constraints of
the form a#X, meaning that a is fresh in X. The domain of a freshness context ∆, denoted
by dom(∆), consists of the atoms occurring in ∆; ∆|X consists of the restriction of ∆ to the
freshness constraints on variable X, that is, the set {a#X | a#X ∈ ∆}. Below we denote
by F# the family of freshness contexts, and by Ff the family of fixed-point contexts. The
mapping [_]f below associates each freshness constraint in ∆ with a fixed-point constraint:

[_]f : ∆ −→ Ff

a#X 7→ (a ca) fX where ca is a new name.

We denote by [∆]f the image of ∆ under [_]f.
The mapping [_]f below associates each fixed-point constraint in Υ with a freshness

constraint:
[_]# : Υ −→ F#

π fX 7→ supp(π)#X.

We denote by [Υ]# the image of Υ under [_]#.
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I Lemma 19.
1. ∆ ` a#t⇔ [∆]f, (c2 c1) f Var(t) ` (a c1) f t.
2. Υ ` π f t⇔ [Υ]# ` supp(π)#t.

I Theorem 20. f
≈α coincides with ≈α on ground terms, that is, ` s ≈α t ⇐⇒ ` s

f
≈α t.

More generally,
1. ∆ ` s ≈α t⇒ [∆]f ` s

f
≈α t.

2. Υ ` s f
≈α t⇒ [Υ]# ` s ≈α t.

Sketch.
1. The proof is by induction on the derivation of ∆ ` s ≈α t. The interesting case is when

the derivation is an instance of (≈α var):
ds(π, π1)#X ⊆ ∆

(≈α var)
∆ ` π ·X ≈α π1 ·X
We want to show that [∆]f ` π ·X

f
≈α π1 ·X. To use rule (f≈α var), we need to show that

supp(π−1
1 ◦π) ⊆ supp(perm(([∆]f)|X)). Let b ∈ supp(π−1

1 ◦π) and suppose b /∈ ds(π, π1).
Then π(b) = π1(b) and π−1

1 (π(b)) = b, contradiction. Therefore, b ∈ ds(π, π1) and
(b cb) fX ∈ [∆]f (for cb a new name), and the result follows. J

As a corollary, since ≈α is an equivalence relation [16], we deduce that f
≈α is also an

equivalence relation.

I Theorem 21. f
≈α is an equivalence relation.

4 Nominal Unification via fixed-point constraints

In this section we define the notion of nominal unification in terms of fixed-point constraints.

I Definition 22. A unification problem Pr consists of a finite set of equations and fixed-point
constraints of the form s

f
≈

?
α t and π f? t, respectively.

We design a unification algorithm via the simplification rules presented in Table 1. These
rules act on unification problems Pr. We abbreviate (t1, . . . , tn) as (t̃)n, and for a set S,
π f S = {π fX | X ∈ S}.

We write Pr =⇒ Pr′, when Pr′ is obtained from Pr by applying a simplification rule from
Table 1 and we write ∗=⇒ for the reflexive and transitive closure of =⇒.

I Lemma 23. There is no infinite chain of reductions =⇒ starting from a problem Pr.

Proof. Termination of the simplification rules follows directly from the fact that the following
measure of the size of Pr is strictly decreasing:
[Pr] = (n1,M) where n1 is the number of different variables used in Pr, andM is the multiset
of sizes of equality constraints and non-primitive fixed-point constraints occurring in Pr.

Each simplification step either eliminates one variable (when an instantiation rule is
used) and therefore decreases the first component of the interpretation, or leaves the first
component unchanged but replaces a constraint with smaller ones and/or primitive ones. J

The normal form of Pr by =⇒ is defined as expected and denoted by 〈Pr〉nf.

We say that an equality constraint s f
≈

?
α t is reduced when one of the following holds:

1. s := a and t := b are distinct atoms;
2. s and t are headed with different function symbols, that is, s := f s′ and t := g t′;
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Table 1 Simplification Rules for Problems. In (fabs) and (
f
≈α abs2), c1 and c2 are new names.

(fat) Pr ] {π f? a} =⇒ Pr, if π(a) = a

(ff) Pr ] {π f? ft} =⇒ Pr ∪ {π f? t}
(ft) Pr ] {π f? (t̃)n} =⇒ Pr ∪ {π f? t1, . . . , π f? tn}
(fabs) Pr ] {π f? [a]t} =⇒ Pr ∪ {π f? (a c1) · t, (c1 c2) f? Var(t)}
(fvar) Pr ] {π f? π′ ·X} =⇒ Pr ∪ {π(π′)−1

f? X}, if π′ 6= Id

(
f
≈α a) Pr ] {a

f
≈

?
α a} =⇒ Pr

(
f
≈α f) Pr ] {f t

f
≈

?
α f t′} =⇒ Pr ∪ {t ≈α? t′}

(
f
≈α t) Pr ] {(t̃)n ≈α? (t̃′)n} =⇒ Pr ∪ {t1

f
≈

?
α t
′
1, . . . , tn

f
≈

?
α t
′
n}

(
f
≈α abs1) Pr ] {[a]t

f
≈

?
α [a]t′} =⇒ Pr ∪ {t

f
≈

?
α t
′}

(
f
≈α abs2) Pr ] {[a]t

f
≈

?
α [b]s} =⇒ Pr ∪ {t

f
≈

?
α (a b) · s, (a c1) f? s, (c1 c2) f? Var(s)}

(≈α var) Pr ] {π ·X
f
≈

?
α π
′ ·X} =⇒ Pr ∪ {(π′)−1 ◦ π f? X}

(≈α inst1) Pr ] {π ·X
f
≈

?
α t}

[X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

(≈α inst2) Pr ] {t
f
≈

?
α π ·X}

[X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

3. s and t have different term constructors, that is, s = [a]s′ and t = f t′, for some term
former f, or s = π ·X and t = a, etc.

A fixed-point constraint π f? s is reduced when it is of the form π f? a and π(a) 6= a, or
π f? X, the former is called inconsistent whereas the latter is called consistent.

I Example 24. For Pr = [a]f(X, a) f
≈

?
α [b]f((b c) ·W, (a c) · Y ), we obtain the following

derivation chain:

[a]f(X, a) f
≈

?
α [b]f((b c) ·W, (a c) · Y ) =⇒


f(X, a) f

≈
?
α f((a b) ◦ (b c) ·W, (a b) ◦ (a c) · Y ),

(a c1) f? f((b c) ·W, (a c) · Y ),
(c2 c1) f? W, (c2 c1) f? Y


=⇒

{
X

f
≈

?
α (a b) ◦ (b c) ·W,a f

≈
?
α (a b) ◦ (a c) · Y,

(a c1) f? (b c) ·W, (a c1) f? (a c) · Y, (c2 c1) f? W, (c2 c1) f? Y

}
[Y 7→b]=⇒

{
X

f
≈

?
α (a b) ◦ (b c) ·W, (a c1)(b c) f? W, (a c1) f? b, (c2 c1) f? W, (c2 c1) f? b

}
∗=⇒
{
X

f
≈

?
α (a b) ◦ (b c) ·W, (a c1) f? W, (c2 c1) f? W

}
[X 7→(a b)◦(b c)·W ]=⇒

{
(a c1) f? W, (c2 c1) f? W

}
= 〈Pr〉nf.

I Definition 25. Let Pr be a problem such that 〈Pr〉nf = Pr′. We say that 〈Pr〉nf is
reduced when it consists of reduced constraints, and successful when Pr′ = ∅ or contains only
consistent reduced fixed-point constraints; otherwise, 〈Pr〉nf fails.

I Definition 26. A solution for a problem Pr is a pair of the form 〈Φ, σ〉 where the following
conditions are satisfied:
1. Φ ` π f tσ, if π f? t ∈ Pr;

2. Φ ` sσ f
≈

?
α tσ, if s

f
≈

?
α t ∈ Pr.

3. Xσ = Xσσ for all X ∈ Var(Pr) (the substitution is idempotent).
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The solution set for a problem Pr is denoted by U(Pr).
The simplification rules (Table 1) specify a unification algorithm: we apply the simplifica-

tion rules in a problem Pr until we reach a normal form 〈Pr〉nf. In the case 〈Pr〉nf fails or
contains reduced equational constraints, we say that Pr is unsolvable; otherwise, 〈Pr〉nf is
solvable and its solution consists of the composition σ of substitutions applied through the
simplification steps and the fixed-point context Φ = {π fX |π f? X ∈ 〈Pr〉nf}.

I Example 27 (Continuing example 24). Notice that 〈Ψ, σ〉, where Ψ = {(a c1)fW, (c2 c1)f
W} and σ = {Y 7→ b,X 7→ (a b) ◦ (b c) ·W}, is a solution for Pr.

I Theorem 28 (Correctness). Let Pr be a unification problem and 〈Pr〉nf = Pr′, then
1. U(Pr) = U(Pr′), and
2. if Pr′ contains equational or inconsistent reduced fixed-point constraints then U(Pr) = ∅.

Proof. The proof is by induction on the length of the derivation Pr n=⇒ Pr′.

Base Case. n = 0. Then Pr = Pr′ and the result is trivial.

Induction Step. Suppose, n > 0 and consider the reduction chain

Pr = Pr1 =⇒ . . . =⇒ Prn−1 =⇒ Prn = Pr′.

The proof follows by case analysis on the last rule applied in Prn−1.
1. The rule is (fat). In this case, Prn−1 = Pr′n−1]{πf? a} =⇒ Pr′n−1 = Prn, and π(a) = a.

Let 〈Ψ, σ〉 ∈ U(Prn−1), then
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′n−1

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′n−1;

c. Xσ = Xσσ, for all X ∈ Var(Pr′n−1).
Therefore, 〈Ψ, σ〉 ∈ U(Prn) and U(Prn−1) ⊆ U(Prn). The other inclusion is trivial.

2. The rule is (fvar). In this case, Prn−1 = Pr′n−1]{πf?π′·X} =⇒ Pr′n−1∪{π(π′)−1
f?X} =

Prn, and π′ 6= Id.
Let 〈Ψ, σ〉 ∈ U(Prn−1), then
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′n−1, and Ψ ` π f π′ ·Xσ.

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′n−1;

c. Xσ = Xσσ, for all X ∈ Var(Pr′n−1).
Notice that

Ψ ` π f π′ ·Xσ ⇒ Ψ ` π · (π′ ·Xσ) f
≈α (π′ ·Xσ), hence

Ψ ` (π′)−1 ◦ π ◦ π′ · (Xσ) f
≈α Xσ via Lemma 12

⇒ Ψ ` π(π′)−1
fXσ.

Therefore, 〈Ψ, σ〉 ∈ U(Prn) and U(Prn−1) ⊆ U(Prn). The other inclusion is similar.
3. The rule is (fabs). Then

Prn−1 = Pr′ ] {π f? [a]s} =⇒ Pr′ ∪ {(c1 c2) f? Var(s), π f? (a c1).s} = Prn.

where c1 and c2 are new names not occurring anywhere in the problem.
Let 〈Ψ, σ〉 ∈ U(Prn−1) be a solution for Prn−1:
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′ and Ψ ` π f ([a]s)σ.

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′.
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Since Ψ ` π f ([a]s)σ and ([a]s)σ = [a]sσ, it follows that Ψ ` π f ([a]s)σ. From inversion
and rule (f[a]), this implies that there exists a proof for Ψ, (c1 c2)fVar(sσ) ` πf(a c1).sσ.
Notice that we can always choose c1 and c2 such that supp((c1 c2))∩ supp(sσ) = ∅, from
Lemma 11, it follows that Ψ ` (c1 c2) f sσ. Since Ψ, (c1 c2) f Var(sσ) ` π f (a c1).sσ, it
follows that Ψ ` π f (a c1).sσ, by Proposition 16. J

I Remark. Theorem 18 guarantees the equivalence between ≈α and f
≈α, therefore, we can

associate the unification algorithm proposed, with the standard nominal unification algorithm
proposed in [16]. The problem Pr introduced in Example 24, is equivalent to the nominal
unification problem P = {[a]f(X, a) ≈α? [b]f((b c) ·W, (a c) · Y }, and using the standard
simplification rules [16]:

P ∗=⇒[Y 7→b]=⇒ ∗=⇒ P ′ = {X ≈α? (a b) · ((b c) ·W ), a#?W}
[X 7→(a b)◦(b c)·W ]=⇒ {a#?W} = P ′

(5)

The pair 〈P〉sol = 〈{a#W}, δ〉, where δ = {Y/b,X 7→ (a b) ◦ (b c) ·W} is a solution for
P. Using the translation [_]f, we obtain [〈P〉sol]f = 〈{[a#W ]f}, δ〉 = 〈(a ca) f W, δ〉,
where ca is a new name, which is equivalent to 〈(a ca) fW, (ca c1) fW, δ〉, for ca and c1

not occurring anywhere in P. Therefore, [〈Psol〉]f is a solution for Pr = {[a]f(X, a) f
≈

?
α

[b]f((b c) ·W, (a c) · Y }. Similarly, from the solution 〈Ψ, σ〉 proposed in Example 27, we
obtain 〈[Ψ]#, σ〉 = 〈a#W, c1#W, c2#W,σ〉, which is a solution for P.

In the theorem below Prf denotes a unification problem w.r.t. f
≈α and f, and P# denotes

a unification problem w.r.t. ≈α and #.

I Theorem 29. Let Prf and P# be unification problems such that [Prf]# = P# and
〈Ψ, σ〉 ∈ U(Prf) and 〈∆, δ〉 ∈ U(P#) be solutions for Prf and P#, respectively. Then
1. 〈[Ψ]#, σ〉 ∈ U(P#).
2. 〈[∆]f, δ〉 ∈ U(Prf).

5 Nominal C-unification via fixed-point constraints

In this section we propose an approach to nominal unification modulo commutativity via the
notion of fixed-point constraints.

For example, assuming + is commutative, i.e., X + Y = Y +X, a problem of the form

+〈(a b) ·X, a〉 f
≈

?
α +〈Y,X〉 (6)

can be solved by unifying (a b) ·X with Y and a with X, or (a b) ·X with X and a with Y .
In [2], a simplification algorithm for solving nominal C-unification was proposed. This

algorithm was based on the standard nominal unification algorithm [16] where α-equivalence
is defined w.r.t. the notion of freshness. Upon the input of a unification problem P, the
algorithm outputs a finite family of triples of the form 〈∇, σ, P 〉, where ∇ is a freshness
context, σ a substitution and P is a set of fixed-point constraints. In [3] we proved that even
a simple unification problem, as (a b) ·X ≈α X could produce an infinite and independent
set of solutions, whenever the signature contains commutative function symbols: {X/a +
b,X/f(a+ b), X/[e]〈a+ b, b+a〉, . . .}. Therefore, we could not provide a finite set of solutions
consisting only of freshness constraints and substitutions. However, we remark that the
problem +〈(a b) · X, a〉 f

≈
?
α 〈Y,X〉 mentioned above has in fact a finite number of most

general solutions (indeed, two) if we solve it using fixed-point constraints. The most general
unifiers are {X 7→ a, Y 7→ b} and {Y 7→ a, (a b) fX}.
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π(a) = a
(fCa)

Υ ` π fC a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X))
(fCvar)

Υ ` π fC π
′ ·X

Υ ` π fC t
f 6= + (fCf)

Υ ` π fC ft
Υ ` π · t0

f
≈α,C ti Υ ` π · t1

f
≈α,C t(i+1) mod 2

i = 0, 1(fC+)
Υ ` π fC +(t0, t1)

Υ ` π fC t1 . . . Υ ` π fC tn
(fCtuple)

Υ ` π fC (t1, . . . , tn)
Υ, (c1 c2) fC Var(t) ` π fC (a c1) · t

(fCabs)
Υ ` π fC [a]t

Figure 5 Fixed-point rules modulo commutativity.

(
f
≈α,C a)

Υ ` a
f
≈α,C a

Υ ` (π′)−1 ◦ π fC X
(
f
≈α,C var)

Υ ` π ·X
f
≈α,C π′ ·X

Υ ` t
f
≈α,C t′

(
f
≈α,C f, f 6= +)

Υ ` ft
f
≈α,C ft′

Υ ` t1
f
≈α,C t′1 . . . Υ ` tn

f
≈α,C t′n (

f
≈α,C tuple)

Υ ` (t1, . . . , tn)
f
≈α,C (t′1, . . . , t′n)

Υ ` t
f
≈α,C t′

(
f
≈α,C [a])

Υ ` [a]t
f
≈α,C [a]t′

Υ ` s
f
≈α,C (a b)t Υ, (c1 c2) fC Var(t) ` (a c1) fC t

(
f
≈α,C ab)

Υ ` [a]s
f
≈α,C [b]t

Υ ` s0
f
≈α,C ti s1

f
≈α,C t(i+1) mod 2

i = 0, 1 (
f
≈α,C +)

Υ ` +〈s0, s1〉
f
≈α,C +〈t0, t1〉

Figure 6 Rules for equality modulo commutativity.

I Definition 30 (C-constraints). A C-fixed-point constraint is a pair of the form π fC t, of a
permutation π and a term t. A C-α-equality constraint (for short, C-equality constraint) is a
pair of the form s

f
≈α,C t, for nominal terms s and t.

Intuitively, s f
≈α,C t will mean that s and t are α-equivalent modulo commutativity of some

function symbols, and π fC t will mean that the permutation π has no effect on term t

except for the commutativity of some subterms. For instance, (a c) fC +〈a, c〉, but not
(a c) fC f〈a, c〉, if f is not a commutative symbol

The notions of C-fixed-point contexts and C-judgements are defined as expected, and
derivable according to the rules in Figures 5 and 6.

Rule (fCvar) is similar to the previous one. Rule (f≈α,C var) relies on the primitive notion
of fixed-point constraints, it is equivalent to the rule given earlier. There is a branching rule
(fC+) for C-fixed-point constraints and a branching rule (f≈α,C +) for C-equality constraints
(more precisely, in the case of C operators, there are two possible rules to apply, but we have
written them in a compact way as one rule with parameter i). Technical results proven in
Section 3 can be extended to C-constraints.

I Theorem 31. Let Υ, π and t be a C-fixed-point context, a permutation and a nominal
term, respectively. Υ ` π fC t iff Υ ` π · t f

≈α,C t.

Proof. The proof is by induction on the structure of t, and follows the same lines of the
proof of Theorem 18. J
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∇ ` s ≈{α,C} t
, E 6= C or both s and t are not pairs (≈{α,C} app)

∇ ` fEk s ≈{α,C} fEk t

∇ ` s0 ≈{α,C} ti, ∇ ` s1 ≈{α,C} t(i+1)mod 2
, i = 0, 1 (≈{α,C} C)

∇ ` fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉

Figure 7 Additional rules for {α,C}-equivalence.

5.1 From freshness to C-fixed-point constraints
In [2] the relation ≈{α,C} was defined as an extension of ≈α (see the rules in Figures 3 and
4) with rules for commutative symbols:

Using the functions [_]f and [_]# defined in Section 3.2, we can obtain results that
extend Lemma 19 and Theorem 20.

I Lemma 32. ∆ ` a#t⇒ [∆]Cf, (c1 c2) fC Var(t) ` (a c1) fC t,
where [∆]Cf = {π fC X | π fX ∈ [∆]f}.

I Theorem 33.
1. Υ ` s f

≈α,C t⇒ [Υ]# ` s ≈{α,C} t.

2. ∆ ` s ≈{α,C} t⇒ [∆]Cf ` s
f
≈α,C t.

5.2 Solving nominal C-unification problems via fixed-point constraints
Similarly to Section 4, we define the notion of nominal C-unification in terms of C-fixed-point
constraints.

I Definition 34. A C-unification problem Pr consists of a finite set of C-equality and
C-fixed-point constraints of the form s

f?
≈C t and π f?

C t, respectively3.

We write Pr =⇒C Pr′ when Pr′ is obtained from Pr by applying a simplification rule
from Table 2 and we write ∗=⇒C for the reflexive and transitive closure of =⇒C . We omit
the subindex when it is clear from the context.

I Lemma 35. There is no infinite chain of reductions =⇒C starting from a C-unification
problem Pr.

The simplification rules (Table 2) specify a C-unification algorithm: we apply the simpli-
fication rules in a problem Pr until we reach a normal form 〈Pr〉nf. The notions of solution,
consistency, failure, correctness, etc. obtained in Section 4 can be extended to C-unification.

I Remark. As with standard nominal unification, one can use the functions [_]# and
[_]f to represent solutions 〈∇, σ, P 〉 of nominal C-unification problems w.r.t. freshness
constraints [2, 3] (where P is a set of fixed-point equations of the form π.X ≈?

{α,C} X) as
solutions 〈[∇]f ∪ {PfC

}, σ〉 of nominal C-unification problems via C-fixed-point constraints,
where PfC

= {π fC X | π.X ≈?
{α,C} X ∈ P}.

3 To ease the notation, we will denote s
f?
≈C t by s ≈? t.
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Table 2 Simplification Rules for C-unification problems. In rules (fCabs) and (
f
≈α,C abs2), c1

and c2 are new names.

(fC at) Pr ] {π f?
C a} =⇒ Pr, if π(a) = a

(fCf) Pr ] {π f?
C ft} =⇒ Pr ∪ {π f?

C t}, f 6= +
(fC + 1) Pr ] {π f?

C +〈t0, t1〉} =⇒ Pr ∪ {π · t0 ≈? t0, π · t1 ≈? t1}
(fC + 2) Pr ] {π f?

C +〈t0, t1〉} =⇒ Pr ∪ {π · t0 ≈? t1, π · t1 ≈? t0}
(fC tuple) Pr ] {π f?

C (t̃)n} =⇒ Pr ∪ {π f?
C t1, . . . , π f?

C tn}
(fCabs) Pr ] {π f?

C [a]t} =⇒ Pr ∪ {π f?
C (a c1) · t, (c1 c2) f?

C Var(t)}
(fCvar) Pr ] {π f?

C π
′ ·X} =⇒ Pr ∪ {π(π′)−1

f?
C X}, if π′ 6= Id

(
f
≈α,C a) Pr ] {a ≈? a} =⇒ Pr

(
f
≈α,C f) Pr ] {ft ≈? ft′} =⇒ Pr ∪ {t ≈? t′}, f 6= +

(
f
≈α,C +1) Pr ] {+〈t0, t1〉 ≈? +〈s0, s1〉} =⇒ Pr ∪ {t0 ≈? s0, t1 ≈? s1}

(
f
≈α,C +2) Pr ] {+〈t0, t1〉 ≈? +〈s0, s1〉} =⇒ Pr ∪ {t0 ≈? s1, t1 ≈? s0}

(
f
≈α,C t) Pr ] {(t̃)n ≈? (t̃′)n} =⇒ Pr ∪ {t1 ≈? t′1, . . . , tn ≈? t′n}

(
f
≈α,C abs1) Pr ] {[a]t ≈? [a]t′} =⇒ Pr ∪ {t ≈? t′}

(
f
≈α,C abs2) Pr ] {[a]t ≈? [b]s} =⇒ Pr ∪ {t ≈? (a b) · s, (a c1) f?

C s,

(c1 c2) f?
C Var(s)}

(
f
≈α,C var) Pr ] {π ·X ≈? π′ ·X} =⇒ Pr ∪ {(π′)−1 ◦ π f?

C X}

(
f
≈α,C inst1) Pr ] {π ·X ≈? t} [X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

(≈α inst2) Pr ] {t ≈? π ·X} [X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

6 Conclusions and Future Work

The notion of fixed-point constraints allowed us to obtain a finite representation of solutions
for nominal C-unification problems. This brings a novel alternative to standard nominal
unification approaches in which just the algebra of atom permutations and the logic of
freshness constraints are used to implement equational reasoning (e.g., [1, 5, 6, 7, 9]), and in
particular to their extensions modulo commutativity, for which only infinite representations
were possible in the standard approach. With the new proposed approach the development
of algorithms for the generation of solutions of nominal equational problems modulo theories
such as C, AC, etc would be simplified avoiding with the use of fixed-point constraints the
development of procedures for the generation of infinite independent sets of solutions.

In future work we plan to extend this approach to matching and unification modulo
different equational theories as well as to the treatment of equational problems in nominal
rewriting modulo.
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Abstract
The infinitary lambda calculi pioneered by Kennaway et al. extend the basic lambda calculus by
metric completion to infinite terms and reductions. Depending on the chosen metric, the res-
ulting infinitary calculi exhibit different notions of strictness. To obtain infinitary normalisation
and infinitary confluence properties for these calculi, Kennaway et al. extend β-reduction with
infinitely many ‘⊥-rules’, which contract meaningless terms directly to ⊥. Three of the resulting
Böhm reduction calculi have unique infinitary normal forms corresponding to Böhm-like trees.

In this paper we develop a corresponding theory of infinitary lambda calculi based on ideal
completion instead of metric completion. We show that each of our calculi conservatively extends
the corresponding metric-based calculus. Three of our calculi are infinitarily normalising and con-
fluent; their unique infinitary normal forms are exactly the Böhm-like trees of the corresponding
metric-based calculi. Our calculi dispense with the infinitely many ⊥-rules of the metric-based
calculi. The fully non-strict calculus (called 111) consists of only β-reduction, while the other
two calculi (called 001 and 101) require two additional rules that precisely state their strictness
properties: λx.⊥ → ⊥ (for 001) and ⊥M → ⊥ (for 001 and 101).

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases lambda calculus, infinitary rewriting, Böhm trees, meaningless terms,
confluence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.8
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1 Introduction

In their seminal work on infinitary lambda calculus, Kennaway et al. [10] study different
infinitary variants of the lambda calculus, which are obtained by extending the ordinary
lambda calculus by means of metric completion. Different variants of the calculus are obtained
by choosing a different metric. The ‘standard’ metric on terms measures the distance between
two terms depending on how deep one has to go into the term structure to distinguish two
terms. For example the term x y is closer to the term x z than to the term x, because in the
former case both terms are applications whereas in the latter case one term is an application
and the other is a variable.

The different metric spaces arise by changing the way in which we measure depth.
Kennaway et al. [10] indicate this using a binary triple abc with a, b, c ∈ {0, 1}, where a = 0
indicates that we do not count lambda abstractions when calculating the depth, and b = 0
or c = 0 indicates that we do not count the left or the right side of applications, respectively.
More intuitively these three parameters can be interpreted as indicating strictness. For
example, a = 0 indicates that lambda abstraction is strict, i.e. if M diverges, then so does
λx.M .
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8:2 Strict Ideal Completions of the Lambda Calculus

Since the set of infinite terms is constructed from the set of finite terms by means of
metric completion, each calculus has a different universe of terms, as well as a different mode
of convergence, which is based on the topology induced by the metric. For instance, from
the lambda term N = (λx.x x y)(λx.x x y), we can derive the infinite reduction N → N y →
N y y → . . . . In the fully non-strict calculus, where abc = 111, this reduction converges to
the infinite term M = . . . y y y (i.e. M satisfies M = M y). By contrast, in the calculus 101,
which is strict on the left-hand side of every application, this reduction does not converge.
In fact, M is not even a valid term in the 101 calculus.

In order to deal with divergence as exemplified for the 101 calculus above, Kennaway
et al. [10] extend standard β-reduction to Böhm reduction by adding rules of the form
M → ⊥, for each term M that causes divergence such as the term N in the 101 calculus. The
resulting 001, 101, and 111 calculi based on Böhm reduction have unique normal forms, which
correspond to the well-known Böhm Trees [14, 6], Levy-Longo Trees [13, 15] and Berarducci
Trees [7], respectively.

In this paper, we introduce infinitary lambda calculi that are based on ideal completion
instead of metric completion with the goal of directly dealing with diverging terms without the
need for additional reduction rules that contract diverging terms immediately to ⊥. To this
end, we devise for each metric of the calculi of Kennaway et al. [10] a corresponding partial
order with the following property: Ideal completion of the set of finite lambda terms yields
the same set of infinite lambda terms as the corresponding metric completion (Section 3).
We also find a strong correspondence between the modes of convergence induced by these
structures: Each ideal completion yields a complete semilattice structure, which means
that the limit inferior is always defined. We show that this limit inferior is a conservative
extension of the limit in the corresponding metric completion in the sense that both modes
of convergence coincide on total lambda terms, i.e. terms without ⊥ (Section 3).

Based on these partial order structures we define infinitary lambda calculi by a straight-
forward instantiation of transfinite abstract reduction systems [2]. We find that the ideal
completion calculi form a conservative extension of the metric completion calculi of Kennaway
et al. [10] (Section 4). Moreover, in analogy to Blom [9] and Bahr [3], we find that the
differences between the ideal completion approach and the metric completion approach are
compensated for by adding ⊥-rules to the metric calculi in the style of Kennaway et al. [11]
(Section 5). Finally, we also show infinitary normalisation for our ideal completion calculi
and infinitary confluence for the 001, 101, and 111 calculi (Section 5). However, in order
to obtain infinitary confluence for 001 and 101, we need to extend β-reduction with two
additional rules that precisely capture the strictness properties of these calculi: λx.⊥ → ⊥
(for 001) and ⊥M → ⊥ (for 001 and 101). In Section 6, we give a brief overview of related
work.

2 The Metric Completion

In this section, we introduce infinite lambda terms as the result of metric completion of the
set of finite lambda terms. Before we get started, we introduce some basic notions about
transfinite sequences and lambda terms. We presume basic familiarity with metric spaces
and ordinal numbers.

A sequence over a set A of length α is a mapping from an ordinal α into A and is written
as (aι)ι<α, which indicates the mapping ι 7→ aι; the notation |(aι)ι<α| denotes the length α
of (aι)ι<α. If α is a limit ordinal, then (aι)ι<α is called open; otherwise it is called closed.
If (aι)ι<α is finite, it is also written as 〈a0, . . . , aα−1〉; in particular, 〈〉 denotes the empty
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sequence. We write S · T for the concatenation of two sequences S and T ; S is called a
(proper) prefix of T , denoted S ≤ T (resp. S < T ) if there is a (non-empty) sequence S′ such
that S · S′ = T . The unique prefix of a sequence S of length β ≤ |S| is denoted by S|β .

We consider lambda terms with an additional symbol ⊥; the resulting set of lambda terms
Λ⊥ is inductively defined by the following grammar:

M,N ::= ⊥ | x | λx.M |MN

where x is drawn from a countably infinite set V of variable symbols. The set of total lambda
terms Λ is the subset of lambda terms in Λ⊥ that do not contain ⊥. Occurrences of a variable
x in a subterm λx.M are called bound; other occurrences are called free. We use the notation
M [x→ y] to replace all free occurrences of the variable x in M with the variable y. We use
finite sequences over {0, 1, 2}, called positions, to point to subterms of a lambda term; we
write P for the set of all positions. For each M ∈ Λ⊥, P(M) denotes the set of positions
of M (excluding ‘⊥’s) recursively defined as follows: P(⊥) = ∅, P(x) = {〈〉}, P(M1 M2) =
{〈〉} ∪ {〈i〉 · p | i ∈ {1, 2} , p ∈ P(Mi)}, and P(λx.M) = {〈〉} ∪ {〈0〉 · p | p ∈ P(M)}.

A conflict [10] between two lambda terms M,N is a position p ∈ P(M)∪P(N) such that:
(a) if p = 〈〉, then M and N are not identical variables, not both ⊥, not both applications,
and not both abstractions; (b) if p = 〈i〉 · q and i ∈ {1, 2}, then M = M1M2, N = N1N2,
and q is a conflict of Mi and Ni; (c) if p = 〈0〉 · q, then M = λx.M ′, N = λy.N ′, and q is a
conflict of M ′[x→ z] and N ′[y → z], where z is a fresh variable occurring neither in M nor
N . The terms M and N are said to be α-equivalent if they have no conflicts. By convention
we identify α-equivalent terms (i.e. Λ⊥ and Λ are assumed to be quotients by α-equivalence).

I Definition 2.1. Given a triple a = a0a1a2 ∈ {0, 1}3, called strictness signature, a position
is called a-strict if it is of the form q · 〈i〉 with ai = 0; otherwise it is called a-non-strict. If a
is clear from the context, we only say strict resp. non-strict.

That is, a strictness signature indicates strictness by 0 and non-strictness by 1. For example,
if a = 011, lambda abstraction is strict, and application is non-strict both from the left and
the right. We shall see what this means shortly: Following Kennaway et al. [10], we derive,
from a strictness signature a, a depth measure |·|a, which counts the number of non-strict,
non-empty prefixes of a position. From this depth measure we then derive a corresponding
metric da on lambda terms.

I Definition 2.2. Given a strictness signature a, the a-depth of a position p, denoted |p|a, is
recursively defined as |〈〉|a = 0 and |q · 〈i〉|a = |q|a + ai. The a-distance da(M,N) between
two terms M,N ∈ Λ⊥ is 0 if M and N are α-equivalent and otherwise 2−d, where d is the
least number satisfying d = |p|a for some conflict p of M and N .

Kennaway et al. [10] showed that the pair (Λ⊥,da) forms an ultrametric space for any a.
Intuitively, the consequence of the definition of these metric spaces is that sequences of terms,
such as the sequence N,N y,N y y, . . . , only converge if conflicts between consecutive terms
are guarded by an increasing number of non-strict positions. In the example, conflicts between
consecutive terms are guarded by an increasing stack of applications to y. If a1 = 1, these
applications correspond to non-strict positions, and thus the sequence converges. However, if
a1 = 0, the sequence does not converge.

We turn now to the metric completion. To facilitate later definitions and to illustrate the
resulting structures, we use a partial function representation in the form of lambda trees taken
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from Blom [9], which will serve as mediator between metric completion and ideal completion.1
A lambda tree is a (possibly infinite) labelled tree where a label λ indicates abstraction and
@ indicates application; labels in V indicate free variables and a label p ∈ P indicates a
variable that is bound by an abstraction at position p. There is no label corresponding to ⊥,
which instead is represented as a ‘hole’ in the tree. We write D(f) to denote the domain of a
partial function f , and f(p) ' g(q) to indicate that the partial functions f and g are either
both undefined or have the same value at p and q, respectively.

I Definition 2.3. A lambda tree is a partial function t : P ⇀ L with L = {λ,@} ] P ] V so
that

(a) p · 〈0〉 ∈ D(t) =⇒ t(p) = λ,
(b) p · 〈1〉 ∈ D(t) or p · 〈2〉 ∈ D(t) =⇒ t(p) = @, and
(c) t(p) = q, where q ∈ P =⇒ q ≤ p and t(q) = λ.

As one would expect, the domain D(t) of a lambda tree t is prefix closed.
The set of all lambda trees is denoted T ∞⊥ . The set of ⊥-positions in t, denoted D⊥(t),

is the smallest set satisfying (a) 〈〉 6∈ D(t) implies 〈〉 ∈ D⊥(t); (b) t(p) = λ, p · 〈0〉 6∈ D(t)
implies p · 〈0〉 ∈ D⊥(t); and (c) t(p) = @, p · 〈i〉 6∈ D(t), i ∈ {1, 2} implies p · 〈i〉 ∈ D⊥(t). A
lambda tree t is called total if D⊥(t) is empty. The set of all total lambda trees is denoted
T ∞. A lambda tree t is called finite if D(t) is a finite set. The set of all finite (total) lambda
trees is denoted T⊥ (respectively T ). A renaming of a lambda tree t is a lambda tree s such
that there is a bijection f : V → V with the following properties: s(p) = t(p) if t(p) ∈ L \ V,
s(p) = f(t(p)) if t(p) ∈ V, and otherwise s(p) is undefined.

In order to avoid confusion, we use upper case letters M,N for lambda terms and lower case
letters s, t, u for lambda trees. Below, we give a bijection from lambda terms to finite lambda
trees that should help illustrate the idea behind lambda trees. At the heart of this bijection
are the following constructions based on Blom [9]:

I Definition 2.4. Given lambda trees t, t1, t2 ∈ T ∞⊥ and a variable x ∈ V , let ⊥, x, λx.t and
t1 t2 be partial functions of type P ⇀ L defined by their graph as follows:

⊥ = ∅ x = {(〈〉, x)}
λx.t = {(〈〉, λ)} ∪ {(〈0〉 · p, l) | l ∈ {λ,@} ] V \ {x} , (p, l) ∈ t}

∪ {(〈0〉 · p, 〈0〉 · q) | q ∈ P, (p, q) ∈ t} ∪ {(〈0〉 · p, 〈〉) | (p, x) ∈ t}
t1 t2 = {(〈〉,@)} ∪ {(〈i〉 · p, l) | i ∈ {1, 2} , l ∈ {λ,@} ] V, (p, l) ∈ ti }

∪ {(〈i〉 · p, 〈i〉 · q) | i ∈ {1, 2} , q ∈ P, (p, q) ∈ ti }

One can easily check that each of the above four constructions yields a lambda tree, where
⊥ is the empty lambda tree, x the lambda tree consisting of a single free variable x, λx.t is a
lambda abstraction over x with body t, and t1 t2 is an application of t1 to t2. The following
translation of lambda terms to finite lambda trees illustrates the use of these constructions:

I Definition 2.5. Let J·K : Λ⊥ → T⊥ be defined recursively as follows:
J⊥K = ⊥ Jλx.MK = λx. JMK JxK = x JM NK = JMK JNK

One can easily check that J·K : Λ⊥ → T⊥ is indeed a bijection, which, if restricted to Λ, is
a bijection from Λ to T . Moreover, one can show that each t ∈ T ∞⊥ with some 〈i〉 · p ∈ D(t)

1 In the companion report [5] we give a direct proof of the correspondence between metric and ideal
completion based on the meta theory of Majster-Cederbaum and Baier [16].
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is equal to λx.t′ if i = 0 and to t1 t2 if i ∈ {1, 2}, for some t′, t1, t2 ∈ T ∞⊥ . Following this
observation, we define, for each t ∈ T ∞⊥ and p ∈ D(t), the subtree of t at p, denoted t|p, by
induction on p as follows: t|〈〉 = t, λx.t|〈0〉·p = t|p, and t1 t2|〈i〉·p = ti|p for i ∈ {1, 2}. One
can easily check that t|p is uniquely defined modulo renaming of free variables.

I Definition 2.6. An infinite branch in a lambda tree t ∈ T ∞⊥ is an infinite sequence S such
that each proper prefix of S is in D(t). We call a proper prefix of S a position along S.

Note that by instantiating König’s Lemma to lambda trees, we know that a lambda tree
is infinite iff it has an infinite branch.

The idea of the metric da on lambda terms is to disallow (in the ensuing metric completion)
infinite branches that have only finitely many non-strict positions along them. The following
definition makes this restriction explicit on lambda trees:

I Definition 2.7. An infinite branch S of a lambda tree t is called a-bounded if the a-depth
of all positions along S is bounded by some n < ω, i.e. |p|a < n for all p < S. The lambda
tree t is called a-unguarded if it has an a-bounded infinite branch S. Otherwise, t is called
a-guarded. The set of all a-guarded (total) lambda trees is denoted T a⊥ (respectively T a). In
particular, T 000

⊥ = T⊥ and T 111
⊥ = T ∞⊥ .

For example, the lambda tree s with s = s y is 101-unguarded while t with t = λy.t y is
101-guarded as each application is guarded by an abstraction (which is non-strict).

For each strictness signature a, we give a metric daT on lambda trees that corresponds to
the metric da on lambda terms.

I Definition 2.8. For each two lambda trees s, t ∈ T ∞⊥ , define daT (s, t) = 0 if s = t and
otherwise daT (s, t) = 2−d, where d is the least |p|a with s(p) 6' t(p).

From the characterisation of the metric completion of (Λ⊥,da) from Kennaway et al. [10,
Lemma 7] we know that the metric space of a-guarded lambda trees (T a⊥ ,daT ) is indeed
the metric completion of (Λ⊥,da) with the isometric embedding J·K : Λ⊥ → T⊥ (cf. the
companion report [5]). Analogously, (T a,daT ) is the metric completion of (Λ,da).

3 The Ideal Completion

In this section, we present an alternative to the metric completion from Section 2 that is
based on a family of partial orders on lambda terms indexed by strictness signatures. In the
following we assume basic familiarity with order theory.

I Definition 3.1. Given a strictness signature a, the partial order ≤a⊥ is the least transitive,
reflexive order on Λ⊥ satisfying the following for all M,M ′, N,N ′ ∈ Λ⊥ and x ∈ V:

(a) ⊥ ≤a
⊥ M

(b) λx.M ≤a
⊥ λx.M ′ if M ≤a

⊥ M ′ and M 6= ⊥ or a0 = 1
(c) MN ≤a

⊥ M ′N if M ≤a
⊥ M ′ and M 6= ⊥ or a1 = 1

(d) MN ≤a
⊥ MN ′ if N ≤a

⊥ N ′ and N 6= ⊥ or a2 = 1

For the case that a = 111, we obtain the partial order ≤⊥ that is typically used for
ideal completions. This order is fully monotone, i.e. M ≤⊥ M ′ implies λx.M ≤⊥ λx.M ′,
MN ≤⊥ M ′N and NM ≤⊥ NM ′. By contrast, ≤a⊥ restricts monotonicity of abstraction in
case a0 = 0 and of application in case a1 = 0 or a2 = 0. Intuitively, we have M ≤a⊥ N iff N
can be obtained from M by replacing occurrences of ⊥ in M at non-strict positions with
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8:6 Strict Ideal Completions of the Lambda Calculus

arbitrary terms. For example, if a = 001, then neither λx.⊥ ≤a⊥ λx.x x nor λx.⊥x ≤a⊥ λx.x x;
but we do have that λx.x⊥ ≤a⊥ λx.x x.

With this intuition in mind, we translate ≤a⊥ to a corresponding order Ea⊥ on lambda
trees as follows:

I Definition 3.2. Given lambda trees s, t ∈ T ∞⊥ , we have s Ea⊥ t if
(a) D(s) ⊆ D(t),
(b) s(p) = t(p) for all p ∈ D(s), and
(c) p ∈ D(s) =⇒ p · 〈i〉 ∈ D(s) for all a-strict positions p · 〈i〉 ∈ D(t).

Conditions (a) and (b) alone would give us the corresponding order for the standard partial
order ≤⊥. Condition (c) ensures that the partial order Ea⊥ may not fill a hole in a strict
position in the left-hand side tree.

One can check that (T ∞⊥ ,Ea⊥) forms a partially ordered set. Moreover, we have the
following correspondence between the two families of orders ≤a⊥ and Ea⊥:

I Proposition 3.3. J·K : (Λ⊥,≤a⊥)→ (T⊥,Ea⊥) is an order isomorphism.

For the remainder of this section, we turn our focus to the partial orders Ea⊥ on lambda
trees. In particular, we show that (T a⊥ ,Ea⊥) forms a complete semilattice and that it is
(order isomorphic to) the ideal completion of (Λ⊥,≤a⊥). A complete semilattice is a partially
ordered set (A,≤) that is a complete partial order (cpo) and that has a greatest lower bound
(glb)

d
B for every non-empty set B ⊆ A.2 A partially ordered set (A,≤) is a cpo if it has a

least element, and each directed set D in (A,≤) has a least upper bound (lub)
⊔
D; a set

D ⊆ A is called directed if for each two a, b ∈ D there is some c ∈ D with a, b ≤ c.
In particular, for any sequence (aι)ι<α in a complete semilattice, its limit inferior, defined

by lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
, exists. While the metric completion lambda calculi

are based on the limit of the underlying metric space, our ideal completion lambda calculi
are based on the limit inferior.

To show that (T a⊥ ,Ea⊥) forms a complete semilattice structure, we construct the appro-
priate lubs and glbs:

I Theorem 3.4 (cpo (T a⊥ ,Ea⊥)). The partially ordered set (T a⊥ ,Ea⊥) forms a complete partial
order. In particular, the lub t of a directed set D satisfies the following:

D(t) =
⋃
s∈D D(s) s(p) = t(p) for all s ∈ D, p ∈ D(s)

Proof sketch. The lambda tree ⊥ is the least element in (T a⊥ ,Ea⊥). Construct the lub t of
D as follows: t(p) = s(p) iff there is some s ∈ D with p ∈ D(s). One can check that t indeed
is a well-defined lambda tree that is a-guarded and is the least upper bound of D. J

I Proposition 3.5 (glbs of Ea⊥). Every non-empty subset T of T a⊥ has a glb
d
T in (T a⊥ ,Ea⊥)

such that D(
d
T ) is the largest set P satisfying the following properties:

(1) If p ∈ P , then there is some l ∈ L such that s(p) = l for all s ∈ T .
(2) If p · 〈i〉 ∈ P , then p ∈ P .
(3) If p ∈ P , ai = 0, and p · 〈i〉 ∈ D(s) for some s ∈ T , then p · 〈i〉 ∈ P .

2 Equivalently, complete semilattices are bounded complete cpos. Hence, complete semilattices are a
generalisation of Scott domains (which in addition have to be algebraic).
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Proof sketch. Let P ⊆ P be the largest set satisfying (1) to (3). As these properties are
closed under union, P is well-defined. We define the partial function t : P ⇀ L as the
restriction of an arbitrary lambda tree in T to P . Using (1) and (2), one can show that t is
indeed a well-defined a-guarded lambda tree. One can then check that t is the glb of T . J

For instance
d
{λx.x y, λx.y x} is λx.⊥⊥ for 011, λx.⊥ for 110, and ⊥ for 001.

I Theorem 3.6. (T a⊥ ,Ea⊥) is a complete semilattice for any a.

Proof. Follows from Theorem 3.4 and Proposition 3.5. J

We conclude this section by establishing the partially ordered set (T a⊥ ,Ea⊥) as (order
isomorphic to) the ideal completion of (Λ⊥,≤a⊥). Recall that, given a partially order set
(A,≤), its ideal completion is an extension of the original partially ordered set to a cpo. A
set B ⊆ A is called an ideal in (A,≤) if it is directed and downward-closed, where the latter
means that for all a ∈ A, b ∈ B with a ≤ b, we have that a ∈ B. The ideal completion of
(A,≤), is the partially ordered set (I,⊆), where I is the set of all ideals in (A,≤) and ⊆ is
standard set inclusion.

I Theorem 3.7. The ideal completion of (Λ⊥,≤a⊥) is order isomorphic to (T a⊥ ,Ea⊥).

Proof sketch. By Proposition 3.3, it suffices to show that the ideal completion (I,⊆) of
(T⊥,Ea⊥) is order isomorphic to (T a⊥ ,Ea⊥). To this end, we define two functions φ : T a⊥ → I
and ψ : I → T a⊥ as follows: φ(t) =

{
s ∈ T⊥

∣∣ s Ea⊥ t}; ψ(T ) =
⊔
T . Well-definedness of φ and

ψ follows from König’s Lemma and Theorem 3.4, respectively. Both φ and ψ are obviously
monotone and one can check that φ and ψ are inverses of each other. Hence, (I,⊆) is order
isomorphic to (T a⊥ ,Ea⊥) J

Now that we have established the connection between T a⊥ and the metric completion resp.
the ideal completion of Λ⊥, we turn our focus to T a⊥ for the rest of this paper.

The characterisation of lubs and glbs for the complete semilattice (T a⊥ ,Ea⊥) allows us to
relate the corresponding notion of limit inferior with the limit in the complete metric space
(T a⊥ ,daT ) as summarised in the following theorem:

I Theorem 3.8. Let (tι)ι<α be a sequence in T a⊥ .

(i) If limι→α tι = t in (T a⊥ ,daT ), then lim infι→α tι = t in (T a⊥ ,Ea⊥).
(ii) If lim infι→α tι = t in (T a⊥ ,Ea⊥) and t is total, then limι→α tι = t in (T a⊥ ,daT ).

The key to establish the correspondence above is the following characterisation of the
limit t of a converging sequence (tι)ι<α in (T a⊥ ,daT ):

D(t) =
⋃
β<α

⋂
β≤ι<αD(tι), and t(p) = l ⇐⇒ ∃β < α∀β ≤ ι < α : tι(p) = l

The proof of the correspondence result makes use of a notion of truncation similar Arnold
and Nivat’s [1] but generalised to be compatible with the Ea⊥-orderings.

From the above findings we can conclude that the limit inferior in (T a⊥ ,Ea⊥) restricted to
total lambda trees coincides with the limit in (T a,daT ). In other words, the limit inferior is
a conservative extension of the limit. In the next section, we transfer this result to (strong)
convergence of reductions.
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8:8 Strict Ideal Completions of the Lambda Calculus

4 Transfinite Reductions

In this section, we study finite and transfinite reductions on lambda trees. To this end, we
assume for the remainder of this paper a fixed strictness signature a such that all subsequent
definitions and theorems work on the same universe of lambda trees T a⊥ and its associated
structures daT and Ea⊥ (unless stated otherwise). Moreover, we need a suitably general
notion of reduction steps beyond the familiar β- and η-rules in order to accommodate Böhm
reductions in Section 5.

I Definition 4.1. A rewrite system R is a binary relation on T a⊥ such that (s, t) ∈ R implies
that s 6= ⊥. Given s, t ∈ T a⊥ and p ∈ P, an R-reduction step from s to t at p, denoted
s →R,p t, is inductively defined as follows: if (s, t) ∈ R, then s →R,〈〉 t; if t →R,p t

′, then
λx.t→R,〈0〉·p λx.t′, t s→R,〈1〉·p t

′ s, and s t→R,〈2〉·p s t
′ for all s ∈ T a⊥ . If R or p are irrelevant

or clear from the context, we omit them in the notation →R,p. If (t, t′) ∈ R, then t is called
an R-redex. If s→R,p t, then s is said to have an R-redex occurrence at p. A lambda tree t
is called an R-normal form if no R-reduction step starts from t. The prefix “R-” is dropped
if R is irrelevant or clear from the context.

I Example 4.2. The familiar β- and η-rules form rewrite systems as follows:

� =
{

((λx.t) s, t [x/s])
∣∣ s, t ∈ T a⊥ } � =

{
(λx.t x, t)

∣∣ t ∈ T a⊥ , x 6∈ Range(t)
}

where substitution t [x/s] is defined as follows: for each p ∈ P we have t [x/s] (p) = t(p) if
t(p) ∈ L\ {x}; t [x/s] (p) = s(p2) if p = p1 · p2, t(p1) = x, s(p2) ∈ L\P ; t [x/s] (p) = p1 · s(p2)
if p = p1 · p2, t(p1) = x, s(p2) ∈ P; and t [x/s] (p) is undefined otherwise.

The resulting �-reduction step relation →� on lambda trees is isomorphic (via the
isomorphism of Theorem 3.7) to the lifting of the ordinary finitary β-reduction step relation
on lambda terms to the ideal completion via the lifting operator [·〉 of Blom [8]. An analogous
correspondence can be shown for � as well.

I Definition 4.3. A sequence S = (tι →R,pι tι+1)ι<α of R-reduction steps is called an
R-reduction; S is called total if each tι is total. If S is finite, we also write S : t0 →∗R tα.

The above notion of reductions is too general as it does not relate lambda trees tβ at
a limit ordinal index β to the lambda trees (tι)ι<β that precede it. This shortcoming is
addressed with a suitable notion of convergence and continuity. In the literature on infinitary
rewriting one finds two different variants of convergence/continuity: a weak variant, which
defines convergence/continuity only according to the underlying structure (metric limit or
limit inferior), and a strong variant, which also takes the position of contracted redexes into
consideration. While both the metric and the partial order lend themselves to either variant,
we only consider the strong variant here and refer the reader to the companion report [5] for
the weak variant.

We use the name m-convergence and p-convergence to distinguish between the metric-
and the partial order-based notion of convergence, respectively. Our notion of (strong)
m-convergence is the same notion of convergence that Kennaway et al. [10] used for their
infinitary lambda calculi. For our notion of (strong) p-convergence we instantiate the
abstract notion of strong p-convergence from our previous work [2]. The key ingredient of
p-convergence is the notion of reduction context, which assigns to each reduction step s→ t

a lambda tree c with c Ea⊥ s, t. Intuitively, this reduction context c comprises the (maximal)
fragment of s that cannot be changed by the reduction step, regardless of the reduction rule.
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For instance, the reduction context of λx.(λy.y) x → λx.x is λx.⊥ if a0 = 1, and ⊥ otherwise.
The notion of p-convergence is defined using the limit inferior of the sequence of reduction
contexts (instead of the original lambda trees themselves). The canonical approach to derive
such a reduction context for any complete semilattice is to take the greatest lower bound of
the involved lambda trees s and t that does not contain any position of the redex:

I Definition 4.4. The reduction context of a reduction step s→p t is the greatest lambda
tree c in (T a⊥ ,Ea⊥) with c Ea⊥ s, t and p 6∈ D(c); we write s →c t to indicate the reduction
context c.

In order to simplify reasoning and provide an intuitive understanding of the concept, we
give a direct construction of reduction contexts as well:

I Definition 4.5. Given t ∈ T ∞⊥ and p ∈ D(t), we write t \ p for the restriction of t to the
domain {q ∈ D(t) | p 6≤ q }, and p↓a for the longest non-strict prefix of p.

That is, t \ p is obtained from t by replacing the subtree at p with ⊥. Moreover, ↓a can be
characterised as follows: 〈〉↓a = 〈〉; (p · 〈i〉)↓a = p · 〈i〉 if ai = 1; and (p · 〈i〉)↓a = p↓a if ai = 0.

I Lemma 4.6. The reduction context of s→p t is equal to s \ p↓a and t \ p↓a.

Proof sketch. By a straightforward induction on p. J

That is, the reduction context of s →p t is obtained from s by removing the most deeply
nested subtree that both contains the redex and is in a non-strict position. The ensuing
notions of strong convergence of reductions are spelled out as follows:

I Definition 4.7. An R-reduction S = (tι →pι,cι tι+1)ι<α m-converges to tα, denoted
S : t0 �m R tα, if limι→γ tι = tγ and (|pι|a)ι<γ tends to infinity for all limit ordinals γ ≤ α. S
p-converges to tα, denoted S : t0 �p R tα, if lim infι→γ cι = tγ for all limit ordinals γ ≤ α. S
is called m-continuous resp. p-continuous if the corresponding convergence conditions hold
for limit ordinals γ < α (instead of γ ≤ α).

Intuitively, strong convergence under-approximates convergence in the underlying structure
(i.e. weak convergence) by assuming that every contraction changes the root symbol of the
redex. Thus, given a reduction step s→p t, strong convergence assumes that the shortest
position at which s and t differ is p.

The semilattice structure underlying p-convergence ensures that p-continuous reductions
always p-converge, whereas m-convergence does not necessarily follow from m-continuity:

I Example 4.8. Given Ω = (λx.x x)(λx.x x) and t = (λx.x Ω) y, we consider the �-reduction
S : t→ t→ . . . that repeatedly contracts the redex Ω in t. S is trivially m- and p-continuous.
However, it is not m-convergent, since contraction takes place at a constant a-depth, namely
|〈1, 0, 2〉|a. But it p-converges to t \ 〈1, 0, 2〉↓a, which is also the reduction context of each
reduction step in S and is equal to (λx.x⊥) y if a2 = 1, to (λx.⊥) y if a2 = 0 but a0 = 1, to
⊥ y if a = 010, and to ⊥ if a = 000.

Similarly to the correspondence between the limit and the limit inferior in Theorem 3.8,
we find a correspondence between p- and m-convergence.

I Proposition 4.9. For each reduction S : s�m t, we also have that S : s�p t.
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Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. If S m-converges, then (|pι|a)ι<γ tends to infinity
for all limit ordinals γ < α, i.e. for each d < ω we have that |pι|a ≥ d after some δ < γ. With
the help of Lemma 4.6, one can show that the latter implies that tι and cι coincide up to
a-depth d for all δ ≤ ι < γ. Consequently, limι→γ tι = limι→γ cι, which, by Theorem 3.8 (i),
implies limι→γ tι = lim infι→γ cι. Since this holds for all limit ordinals γ ≤ α, we know that
S also p-converges to t. J

With the proposition above, we derive the other direction of the correspondence:

I Proposition 4.10. S : s�p t implies S : s�m t whenever S and t are total.

Proof sketch. One can show that the totality of S and t implies that the a-depth of contracted
redexes in each open prefix of S tends to infinity. Using Proposition 5.5 from [2], we can
show that the latter implies that S also m-converges. Then according to Proposition 4.9, S
must m-converge to the same lambda tree t. J

Note that it is not sufficient that the two trees s and t are total. For example, the �-reduction
S : (λx.y) Ω�p (λx.y)⊥ → y p-converges to y but does not m-converge.

Putting Propositions 4.9 and 4.10 together we obtain that p-convergence is a conservative
extension of m-convergence:

I Corollary 4.11. S : s�m t iff S : s�p t whenever S and t are total.

5 Beta Reduction

So far we have only studied the properties of p-convergence independent of the rewrite
system. In this section, we specifically study �-reduction and show infinitary normalisation
for all of our calculi, and infinitary confluence for three of them. However, considering
pure �-reduction, infinitary confluence only holds for the 111 calculus. We can construct
counterexamples for the other calculi:

I Example 5.1 ([10]). Given a2 = 0 and t = (λx.y) Ω, we find reductions t�p � ⊥ and t→� y.
Given a2 = 1, a1 = 0, and t = (λx.x y) Ω, we have t�p � (λx.x y)⊥ →� ⊥ y and t→� Ω y�p � ⊥.
Similarly, given a2 = 1, a0 = 0, and t = (λx.λy.x) Ω, we have t�p � (λx.λy.x)⊥ →� λy.⊥ and
t→� λy.Ω�p � ⊥.

Infinitary confluence of pure �-reduction fails for all m-convergence calculi of Kennaway
et al.[10] – including the 111 calculus. On the other hand, the Böhm reduction calculi of
Kennaway et al. [11], which extend pure �-reduction with infinitely many rules of the form
t→ ⊥, do satisfy infinitary confluence for the 001, 101, and 111 calculi.

We would like to obtain similar confluence results for the 001, 101, and 111 p-convergence
calculi. However, the gap we have to bridge to achieve infinitary confluence is much narrower
in our p-convergence calculi. Intuitively, confluence fails for 001 and 101 because p-convergence
only captures partiality that is due to infinite reductions, but not partiality that can propagate
via finite reductions: For example, in the 101 calculus we have Ω y�p � ⊥ but ⊥ y 6�p � ⊥. In
order to obtain the desired confluence properties, we have to add the rules λx.⊥ → ⊥ (for
001) and ⊥ t → ⊥ (for 001 and 101). More generally we define these S-rules formally as
follows:

S =
{

(t1 t2,⊥)
∣∣ t1, t2 ∈ T a⊥ , ti = ⊥, ai = 0

}
∪ {(λx.⊥,⊥)) | a0 = 0}

We use the notation �S to denote � ∪ S. Abusing notation, we also write �(S) to refer to �
or �S, e.g. if a property holds for either system. Note that for the 111 calculus, �S = �.
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In addition, we continue studying the relation between m-convergence and p-convergence:
In general, they are subtly different, but we show that a p-converging �(S)-reduction can be
adequately simulated by an m-converging B-reduction and vice versa, where B is an extension
of �, called Böhm rewrite system, which additionally contains rules of the form t→ ⊥. This
result uses the same construction used by Kennaway et al. [11] to study so-called meaningless
terms.

In the remainder of this section we first characterise the set of lambda trees that p-
converge to ⊥ (Section 5.1); we then establish a correspondence between pure p-convergence
and m-convergence extended with rules t → ⊥ for lambda trees t that p-converge to ⊥
(Section 5.2); and finally we prove infinitary confluence and normalisation for p-convergent
�S-reductions in the 001, 101, and 111 calculi (Section 5.3). For the infinitary confluence
result, we make use of the correspondence between p-convergence and m-convergence.

5.1 Partiality
We begin with the characterisation of lambda trees that p-converge to ⊥:

I Definition 5.2. Given an open reduction S = (tι →pι tι+1)ι<α, a position p is called
volatile in S if, for each β < α, there is some β ≤ γ < α with pγ↓a ≤ p ≤ pγ . If p is volatile
in S but no proper prefix of p is, then p is called outermost-volatile in S.

For instance, in the �-reduction in Example 4.8, 〈1, 0, 2〉 is volatile and 〈1, 0, 2〉↓a is
outermost-volatile. Note that outermost-volatile positions must be non-strict, because if p is
volatile, then so is p↓a.

The presence of volatile positions characterises partiality in p-convergent reductions,
which by Corollary 4.11 can be stated as follows:

I Proposition 5.3. S : s�m t iff no prefix of S has volatile positions and S : s�p t.

Proof sketch. Let S = (tι →pι tι+1)ι<α. The “only if” direction follows from Proposition 4.9
and the fact that if (|pι|a)ι<β tends to infinity, then S|β has no volatile positions. For the
“if” direction, the infinite pigeonhole principle yields that (|pι|a)ι<β tends to infinity. Using
this fact, one can show that S : s�m t. J

More specifically, outermost-volatile positions pinpoint the exact location of partiality in
the result of a p-converging reduction.

I Lemma 5.4. If p is outermost-volatile in S : s�p t, then p ∈ D⊥(t).

Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. Since p is volatile in S, we find for each β < α

some β ≤ ι < α with pι↓a ≤ p. Hence, by Lemma 4.6, we know that p 6∈ D(cι). Consequently,
by Theorem 3.4 and Proposition 3.5, we have that p 6∈ D(t). If p = 〈〉, then p ∈ D⊥(t) follows
immediately. If p = q · 〈0〉, then one can use the fact that no prefix of q is volatile to show
that t(q) = λ, which means that p ∈ D⊥(t). The argument for the cases p = q · 〈1〉 and
p = q · 〈2〉 is analogous. J

This characterisation of partiality in terms of volatile positions motivates the following
notions of destructiveness and fragility:

I Definition 5.5. A reduction S is called destructive if it is p-continuous and 〈〉 is volatile in
S. A lambda tree t ∈ T a⊥ is called fragile if there is a destructive �-reduction starting from t.
The set of all fragile total lambda trees is denoted Fa.
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Note that fragility is defined in terms of destructive �-reductions. However, one can show
that a destructive �-reduction exists iff a destructive �S-reduction exists.

The following proposition explains why destructive reductions have deserved their name:

I Proposition 5.6. An open reduction is destructive iff it p-converges to ⊥.

Proof sketch. The “only if” direction follows from Lemma 5.4; the converse direction can
be shown using the characterisation of the limit inferior (Theorem 3.4, Proposition 3.5). J

For example, the �-reduction Ω→ Ω→ . . . (cf. Example 4.8) p-converges to ⊥ and is thus
destructive. As a corollary from the above proposition, we obtain that every fragile lambda
tree – such as Ω – can be contracted to ⊥ by an open p-convergent reduction.

5.2 Correspondence
To compare m- and p-converging reductions, we employ Böhm rewrite systems and the
underlying notion of ⊥-instantiation from Kennaway et al.’s work on meaningless terms [11].

I Definition 5.7. Let U ⊆ T ∞ and t ∈ T ∞⊥ . A lambda tree s ∈ T ∞ is called a ⊥-instance of
t w.r.t. U if s is obtained from t by inserting elements of U into t at each position p ∈ D⊥(t),
i.e. s(p) = t(p) for all p ∈ D(t) and s|p ∈ U for all p ∈ D⊥(t). The set of lambda trees that
have a ⊥-instance w.r.t. U that is in U itself is denoted U⊥. In other words, t ∈ U⊥ iff there
is a lambda tree s ∈ U such that s is obtained from t by replacing occurrences of ⊥ in t by
lambda trees from U .

In particular, we will use the above construction with the set of fragile total lambda trees
Fa, which gives us the set Fa⊥.

Finally, we give the construction of Böhm rewrite systems.

I Definition 5.8. For each set U ⊆ T a, we define the following two rewrite systems:

á(U) = {(t,⊥) | t ∈ U⊥ \ {⊥}} , B (U) = � ∪ á(U)

If U is clear from the context, we instead use the notation á and B, respectively.

In particular, we consider the Böhm rewrite system w.r.t. fragile total lambda trees, denoted
by B

(
Fa
)
. We start with one direction of the correspondence between p-converging �(S)-

reductions and m-converging B
(
Fa
)
-reductions:

I Theorem 5.9. If s�p �S t, then s�m B t, where B = B
(
Fa
)
.

Proof sketch. Given S : s�p �S t, we construct a B-reduction T from S that also p-converges
to t but that has no volatile positions in any of its open prefixes. Thus, according to
Proposition 5.3, T : s �m B t. The construction of T removes steps in S that take place at
or below any outermost-volatile position of some prefix of S and replaces them by a single
á-step. Such a á-step can be performed since a fragile lambda tree must be responsible for
an outermost-volatile position. Moreover, S-steps in S are á-steps in T since S ⊆ á

(
Fa
)
.

Lemma 5.4 can then be used to show that the resulting B-reduction T p-converges to t. J

The converse direction of Theorem 5.9 does not hold in general. The problem is that
á-steps can be more selective in which fragile lambda subtree to contract to ⊥ compared
to p-convergent reductions with volatile positions. If p is a volatile position, then so is
p↓a. Consequently, volatile positions and thus ‘⊥’s in the result of a p-converging reduction
are propagated upwards through strict positions. For example, let a0 = 0, and t = λy.Ω.
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Since Ω is fragile, we have the reduction t→á λy.⊥. On the other hand, via p-convergent
�-reductions, t only reduces to itself and ⊥. This phenomenon, however, does not occur if
we restrict ourselves to the strictness signature 111 or if we only consider á-normal forms.
Indeed, in the above example, λy.⊥ is not a á-normal form and can be contracted to ⊥ with
a á-step.

I Theorem 5.10. Let B = B
(
Fa
)
and s�m B t such that s is total. Then s�p � t if a = 111

or t is a á-normal form.

Proof sketch. The reduction s�m B t can be factored into S : s�m � s
′ and T : s′ �m á t (by the

same proof as Lemma 27 of Kennaway et al. [11]). Moreover, we may assume w.l.o.g. that T
contracts disjoint á-redexes in s′ (using an argument similar to Lemma 7.2.4 of Ketema [12]).
By Proposition 4.9, we have that S : s�p � s

′ and that T : s′ �p á t. For each step u→á,p v in
T we find a reduction Tp : u�p � v

′ in which p is volatile since u|p must be fragile. Given that
a = 111 or that t is a á-normal form, we can show that p is in fact outermost-volatile in Tp.
Hence, the equality v = v′ follows from Lemma 5.4. Therefore, we may replace each step
u→á,p v in T by Tp, which yields a reduction s′ �p � t. J

That is, in general we get one direction of the correspondence – namely from metric to
partial order reduction – only for reductions to normal forms. However, this does not matter
that much as p-converging �(S)-reductions (an thus also m-converging B

(
Fa
)
-reductions)

are normalising as we show below.

5.3 Infinitary Normalisation and Confluence
We begin by recalling the notion of active lambda trees [11], which we use to establish
infinitary normalisation and as an alternative characterisation of fragile lambda trees (in the
001, 101, and 111 calculi).

I Definition 5.11. A lambda tree t is called stable if no lambda tree t′ with t→∗� t′ has a
�-redex occurrence at a-depth 0; t is called active if no lambda tree t′ with t→∗� t′ is stable.
The set of all active total lambda trees is denoted by Aa.

To construct normalising p-convergent reductions, we follow the idea of Kennaway et al. [11]:
We contract all subtrees of the initial lambda tree into stable form. The only way to achieve
this for active subtrees is to annihilate them by a destructive reduction. The basis for that
strategy is the following observation:

I Lemma 5.12. Every active lambda tree is fragile.

Proof. If t0 is active, we find a reduction t0 →∗� t′0 to a �-redex at a-depth 0. By contracting
this redex we get a lambda tree t1 that is active, too. By repeating this argument we obtain
a destructive reduction t0 →∗� t′0 →� t1 →∗� t′1 →� . . . . J

The following normalisation result then follows straightforwardly:

I Theorem 5.13. For each s ∈ T a⊥ , there is a normalising reduction s�p �(S) t.

Proof sketch. Similar to Theorem 1 of Kennaway et al. [11]: an active subtree at position
p is by Lemma 5.12 also fragile. Hence, there is a �-reduction in which a prefix of p is
outermost-volatile. By Lemma 5.4, such a reduction annihilates the active subtree at p. This
yields a reduction s�p � t to �-normal form t, which can be extended by a reduction t�p S u

to a �S-normal form u. J

FSCD 2018
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From the above we immediately obtain the corresponding result for m-convergence:

I Theorem 5.14. For each s ∈ T a⊥ there is a normalising reduction s�m B(Fa) t.

Proof. By Theorem 5.13 and 5.9, as �S-normal forms are also B
(
Fa
)
-normal forms. J

Consequently, we can derive the following correspondence result.

I Corollary 5.15. For each s ∈ T a with s�m B(Fa) t, there is a reduction t�m B(Fa) t
′ such

that s�p � t
′.

Proof. According to Theorem 5.14, there is a normalising reduction t �m B(Fa) t
′. Then a

reduction s�p � t
′ exists by Theorem 5.10. J

A shortcoming of this correspondence property and the correspondence properties es-
tablished in Section 5.2 is that they consider m-convergence in the system B

(
Fa
)
, which is

unsatisfactory since Fa is defined using p-convergence. A more appropriate choice would be
the set Aa of active terms, which is defined in terms of finitary reduction only. To obtain a
correspondence in terms of Aa, we will show that Fa = Aa for strictness signatures 001, 101,
and 111. To prove this equality of fragility and activeness, we need the following key lemma,
which can be proved using descendants and complete developments.

I Lemma 5.16 (Infinitary Strip Lemma). Given S : s �p �S t1 and T : s →∗�S t2, there are
reductions S′ : t1 �p �S t and T ′ : t2 �p �S t, provided a ∈ {001, 101, 111}.

Recall that �S = � for a = 111, i.e. the infinitary strip lemma holds for pure �-reduction in
the 111 calculus; but it does not hold for 001 and 101 as Example 5.1 demonstrates. Hence,
the need for S-rules. By contrast, in the metric calculi of Kennaway et al. [10] the infinitary
strip lemma does not hold for any a. In order to obtain the infinitary strip lemma and
confluence, Kennaway et al. extended β-reduction to Böhm reduction.

We use the Infinitary Strip Lemma to show that p-convergent reductions to ⊥ can be
compressed to length at most ω.

I Lemma 5.17. If a ∈ {001, 101, 111} and S : t�p �S ⊥, then there is a reduction T : t�p �S ⊥
of length ≤ ω. If t is total, then T is a �-reduction of length ω.

Proof sketch. If |S| ≤ ω, we are done. Otherwise, we can construct a finite reduction
t →∗�S t′ with at least one contraction at a-depth 0 either using a finite approximation
property of p-convergence (in case S contracts �-redex at a-depth 0) or by an induction
argument (in case S contracts S-redex at root position). By Lemma 5.16, there is a reduction
S′ : t′ �p �S ⊥. Thus, we can repeat the argument for S′. Iterating this argument yields either
a reduction t→∗�S ⊥ or a reduction t�p �S s

′ of length ω with infinitely many contractions
at a-depth 0, and thus s′ = ⊥. If s is total, then T cannot be finite, as finite �S-reductions
preserve totality. Hence, no step in T can be an S-step. J

I Lemma 5.18. If a ∈ {001, 101, 111}, a total lambda tree is active iff it is fragile.

Proof. The “only if” direction follows from Lemma 5.12. For the converse direction let t be
total and fragile, and let t→∗� t1. Since t is fragile, there is a reduction t�p �S ⊥ according
to Proposition 5.6. Hence, by Lemma 5.16, there is a reduction T : t1 �p �S ⊥, which we
can assume, according to Lemma 5.17, to be a �-reduction of length ω. Since T is, by
Proposition 5.6, destructive, there is a proper prefix T ′ : t1 �p � t2 of T such that t2 has a
redex occurrence at a-depth 0. Because T is of length ω, T ′ is finite i.e. T ′ : t1 →∗� t2. J
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The above lemma allows us to derive confluence w.r.t. p-convergent reductions from the
confluence results w.r.t. m-convergence of Kennaway et al. [10]:

I Theorem 5.19 (infinitary confluence). Given a ∈ {001, 101, 111}, we have that s �p �S t1
and s�p �S t2 implies that t1 �p �S t and t2 �p �S t.

Proof. According to Theorem 5.13, we can extend the existing reductions by normalising
reductions t1 �p �S t′1 and t2 �p �S t′2. By Theorem 5.9 and Lemma 5.18, the resulting
normalising reductions s �p �S t′1 and s �p �S t′2 are also m-convergent B

(
Aa
)
-reductions.

Kennaway et al. [10] have shown that such reductions are confluent. Hence, t′1 = t′2 (as
�S-normal forms are B

(
Aa
)
-normal forms too). J

Together with the earlier normalisation result, this means that the 001, 101, and 111
calculi have unique normal forms w.r.t. �p �S. By the correspondence results between the
metric and the partial order calculi, these normal forms are the same as the unique normal
forms w.r.t. �m B(Aa) [10], which in turn correspond to Böhm Trees, Levy-Longo Trees, and
Berarducci Trees, respectively.

6 Related Work

The use of ideal completion in lambda calculus to construct infinite terms has a long history
(see e.g. Ketema [12] for an overview), in particular in the form of constructing infinite normal
forms such as Böhm Trees. In that line of work, the ideal completion is typically based on
the fully monotone partial order ≤⊥ generated by ⊥ ≤⊥ M for any term M . Different kinds
of infinite normal forms are then obtained by modulating the set of rules that are used to
generate the normal forms. In this paper, we instead modulated the partial order and we
have constructed full infinitary calculi in the style of Kennaway et al. [10]. Blom’s abstract
theory of infinite normal forms and infinitary rewriting based on ideal completion [8] has
been crucial for developing our infinitary calculi.

In previous work, we have compared infinitary rewriting based on partial orders vs. metric
spaces in a first-order setting [3, 4]. However, in that work we have only considered fully
non-strict convergence, whereas we consider varying modes of strictness in the present paper.

Blom’s work [9] on preservation calculi is similar to our ideal completion calculi. Blom
also considers different calculi indexed by strictness signatures and relates them to the
corresponding metric calculi. However, he uses the same partial order E111

⊥ for all calculi;
the different calculi vary in the notion of reduction contexts they use. Blom’s reduction
contexts are the same as our reduction contexts, and his Ω-rules are more general variants of
our S-rules. However, his approach of using a single partial order has some caveats:

Firstly, there is no corresponding weak notion of preservation sequences that corresponds
to weak m-convergence. Secondly, the partially ordered set (T a⊥ ,E111

⊥ ) is only a complete
semilattice for a = 111; otherwise it is not even a cpo and limit inferiors do not always
exist. For example, let t be an a-unguarded lambda tree (i.e. t 6∈ T a⊥), and for each i < ω

let ti be the restriction of t to positions of depth < i, which means that ti ∈ T a⊥ . Then
lim infi→ω ti w.r.t. E111

⊥ is t itself and thus not in T a⊥ even though all ti are. This does not
cause a problem, if one only considers reduction contexts of p-continuous reductions, though.

For the comparison of his preservation calculi with the metric calculi, Blom uses a notion
of 0-active terms, which is different from the notion of active terms as used here and by
Kennaway et al. [10, 11] (under the names 0-activeness resp. abc-activeness). Blom defines
that a lambda tree is 0-active iff there is a destructive reduction of length ω starting from
it. 0-activeness is demonstrably different from activeness for any strictness signature with
a2 = 0 as Example 5.1 shows. But 0-activeness and activeness do coincide for 001, 101, and
111 as we have shown with the combination of Lemma 5.17 and Lemma 5.18.

FSCD 2018
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Abstract
We study anti-unification for possibly cyclic, unranked term-graphs and develop an algorithm,
which computes a minimal complete set of generalizations for them. For bisimilar graphs the
algorithm computes the join in the lattice generated by a functional bisimulation. These results
generalize anti-unification for ranked and unranked terms to the corresponding term-graphs, and
solve also anti-unification problems for rational terms and dags. Our results open a way to widen
anti-unification based code clone detection techniques from a tree representation to a graph
representation of the code.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Cyclic term-graps, anti-unification, least general generalization

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.9

Funding Supported by the Austrian Science Fund (FWF) under the projects P 28789-N32 and J
3909-N31, by MINECO/FEDER projects TIN2015-71799-C2-1-P (RASO) and TIN2015-66293-R
(LoCos), and by UdG project MPCUdG2016/055.

1 Introduction

Term-graphs are rooted, directed, labeled graphs, which may contain cycles. They can be
used to represent functional expressions compactly and to process them efficiently with
the help of graph transformations. Rewriting with term-graphs has been studied quite
intensively, see, e.g., [4, 6, 15, 19, 20, 27]. Term-graphs can be represented in various ways, for
instance, as constraints [6], hypergraphs [27], systems of recursion equations [4], or arrows in
a category [15]. With cycles, term-graphs can express infinite terms and can model regular
infinite data structures. Some related (not necessarily equivalent) representations, that are
widely used in computer science, include dags, µ-terms, control flow graphs, abstract semantic
graphs, program dependency graphs, certain kinds of flowcharts, process graphs, etc.
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In this paper, we study the anti-unification problem for term-graphs: Given two such
graphs G1 and G2 (maybe with cycles), our goal is to find a graph G, which is a least general
common generalization of G1 and G2. It means, there should exist variable substitutions σ1
and σ2 such that the instances of G with respect to them, i.e., the graphs Gσ1 and Gσ2, are
equivalent to G1 and G2, respectively.

Our representation of term-graphs follows the approach from [4], based on recursion
equations. The difference is that we are not restricted to ranked alphabets. Variadic function
symbols are permitted and, to take the advantage of such variadicity, hedge variables are used
together with individual variables. The latter stands for single graphs, while the former can
be instantiated by hedges (finite sequences) of graphs. The equivalence relation is bisimilarity.

It has already been shown in [22] that anti-unification for unranked finite terms is finitary:
There are, in general, finitely many least general generalizations (lggs). The same holds for
unranked term-graphs, discussed in this paper. We develop an algorithm, which computes
such lggs. Equivalence class of a term-graph with respect to bisimilarity is a complete lattice.
For bisimilar terms, our algorithm computes the lgg, which is the join in this lattice.

The intuition behind lggs is that they should contain “maximal similarities” between the
input graphs and should abstract differences between them by variables uniformly. While
this might sound similar to the problem of computing maximal common subgraphs (mcs)
between graphs [23,24], lggs, in general, might contain more edges than mcs’s and also give
information about differences, which is usually neglected in mcs’s.

The results reported in this paper extend our previous results for unranked finite terms
[8,22] to unranked cyclic graphs. In particular, we extend rigid anti-unification from terms
to graphs. The rigid version is a more efficient variant of the unranked anti-unification
algorithm, since it computes only certain kind of generalizations. It is guided by a rigidity
function, which, essentially, decides which nodes of the input graphs should be retained in
the generalization. Rigidity function is a parameter of the algorithm. Properties of the latter
are proved for arbitrary values of this parameter. As special cases of our results, we obtain
anti-unification for ranked term-graphs, rational trees, µ-terms, and dags. To the best of our
knowledge, generalization for these structures has not been addressed yet in the literature.

Anti-unification has a pretty wide scope of interesting applications. Originally, it was
introduced for inductive reasoning [26]. As a method of computing generalizations, variants of
anti-unification are important ingredients of techniques and tools that have found applications
in various areas of artificial intelligence, machine learning, reasoning, linguistics, program
synthesis, analysis, transformation, verification, etc. We can not give an exhaustive overview
of all related work here. A couple of recent references (motivated by different applications)
include, e.g., [1, 2, 7, 9, 10, 13, 18, 21, 25]. A particularly interesting motivation comes from
software code clone detection, where anti-unification has been successfully incorporated at
the level of abstract syntax trees [14, 16, 28]. Our results can serve as a starting point to
extend these techniques for graph-based representation of code (e.g., abstract semantic graphs
or program dependence graphs) or graph-based languages (e.g., for model transformation).
Besides, term-graph anti-unification can be used to construct an index for sets of dags (e.g.,
substitution tree indexing), which can be useful in declarative programming and reasoning.

The paper is organized as follows: In Sect. 2, we introduce the notions related to unranked
term-graphs. Sect. 3 briefly recalls results about term-graph bisimilarity. The notions related
to substitutions and generalizations are introduced in Sect. 4. The term-graph generalization
algorithm is described in Sect. 5. Conclusions and the future work are discussed in Sect. 6.

An experimental implementation of our anti-unification algorithm can be accessed online:
http://www.risc.jku.at/projects/stout/software/tgau.php.

http://www.risc.jku.at/projects/stout/software/tgau.php
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Figure 1 Unranked terms and their tree representations.

2 Unranked Cyclic Term-Graphs

We start by defining unranked (possibly infinite) terms. A position p ∈ N∗ is a sequence of
natural numbers. We use a period to separate numbers in a position, e.g. 1.2.3. The empty
sequence is denoted by ε.

I Definition 1. Given pairwise disjoint sets of unranked function symbols F (symbols
without fixed arity), term variables Vt, and hedge variables Vs, an unranked term is a partial
mapping t : N∗ → F ∪ Vt ∪ Vs such that

the domain of t, denoted dom(t), is non-empty and prefix-closed (i.e., if p1, p2 ∈ N∗ and
p1.p2 ∈ dom(t), then p1 ∈ dom(t)),
for all p ∈ N∗, if t(p) ∈ F , then there exists a natural number n ≥ 0 such that p.i ∈ dom(t)
for all 1 ≤ i ≤ n and p.i /∈ dom(t) for all i > n,
for all p ∈ N∗, if t(p) ∈ Vt ∪ Vs, then for all n we have p.n /∈ dom(t).
t(ε) /∈ Vs.

A term t is finite if dom(t) is a finite set. Otherwise it is infinite. A term is rational if it
has finitely many distinct subterms. Hedges are finite (possible empty) sequences of terms
and hedge variables. The set of terms (respectively, hedges) over F , Vt, and Vs is denoted by
T (F ,Vt,Vs) (respectively, H(F ,Vt,Vs)). We use the letters f, g, h, a, b, c, and d for function
symbols, x, y, z and u for term variables, X,Y, Z, and U for hedge variables, χ,ν,υ and ω
for a term variable or a hedge variable, t and r for terms, s and q for a hedge variable or a
term, and s̃ and q̃ for hedges. The empty hedge is denoted by ε. Given a sequence s̃, the
ith element of s̃ is denoted by s̃|i. Furthermore, s̃|ji denotes the subsequence between the
positions i and j where i < j, that is, s̃|i+1, . . . , s̃|j−1. Unranked terms (resp. hedges) can
be naturally represented as unranked trees (resp. forests).

I Example 2. In Fig. 1 we visualize three examples of a finite, infinite non-rational, and
infinite rational terms in form of trees. The triangles represent infinite subtrees:

For a term t, we denote by Vt(t), Vs(t), and V(t) respectively the sets of term variables,
hedge variables, and all variables occurring in t. The notation extends to hedges as well.

Now we define unranked cyclic term-graphs with the help of recursion equations. We
start with a very general notion of a system of recursion equations and subsequently impose
restrictions to get to the interesting concept.

I Definition 3. A system of recursion equations over F , Vt, and Vs is a set of equations
{x1

.= t1, . . . , xn
.= tn, X1

.= s̃1, . . . , Xm
.= s̃m}, where for all i, j, 1 ≤ i < j ≤ n, xi 6= xj , all

t’s are finite terms, for all i, j, 1 ≤ i < j ≤ m, Xi 6= Xj , and s̃’s are hedges consisting of
finite terms or hedge variables. The variables x1, . . . , xn, X1, . . . , Xm are called recursion
variables. They are bound in the system. All other variables occurring in the system are free.
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9:4 Term-Graph Anti-Unification

We will use different notation for free and bound variables in systems of recursion
equations, writing the latter in bold font. One recursion variable (usually, the leading
variable of the first equation) is a designated one and we call it the root of the system Γ,
denoted by root(Γ). It is always a term variable.

A recursion variable ν is reachable from a recursion variable χ in a system Γ if Γ contains
an equation of the form χ .= s̃ ∈ Γ and either ν ∈ V(s̃), or ν is reachable from some recursion
variable υ ∈ V(s̃). In particular, we say that a hedge variable Y is horizontally reachable
from a hedge variable X in Γ, if Γ contains an equation X

.= s̃ such that either s̃ has the
form (s̃1,Y , s̃2), or it has the form (s̃1,Z, s̃2) and Y is horizontally reachable from Z. An
equation is called useless in Γ if its leading recursion variable is not reachable from root(Γ).

A system Γ is called horizontally bounded if no hedge variable is reachable from itself in Γ,
i.e., Γ contains no horizontal cycle.1 For instance, {x .= f(x),X .= (x, Y )} is a horizontally
bounded system, while {x .= f(x),X .= (x,X)} is not.

We do not distinguish between two systems of recursion equations if they differ from each
other only by renaming of bound variables.

A system of recursion equations is called flat, if the equations have one of the following
three possible forms: x

.= f(χ1, . . . ,χn), x
.= u where u is a free or bound term variable, and

X
.= (υ1, . . . ,υn) where n ≥ 0 and each υi is a free or bound term or hedge variable.
A system of recursion equations Γ is in canonical form if it does not contain useless

equations and each equation in Γ has one of the following forms:
x
.= f(χ1, . . . ,χn), where the χ’s are (not necessarily distinct) recursion variables, or

x
.= y, where y is a free variable, or

X
.= Y , where Y is a free variable.

For instance, {x .= f(y,X,X),y .= g(x),X .= Y } and {x .= f(y, z, z),y .= g(x), z .= a}
are in canonical form, while {x .= f(g(x),X),X .= Y }, {x .= f(y, X),y .= g(x)}, {x .=
f(y,X),y .= g(x),X .= a}, and {x .= f(y,X),y .= g(x),X .= Y ,Y

.= Z} are not.
Every canonical system is flat and horizontally bounded. On the other hand, each flat

horizontally bounded system can be transformed to the canonical form by performing the
following canonicalization steps as long as possible:

Remove useless equations.
Remove trivial equations of the form x

.= y and replace all occurrences of x by y. If
y = x, then replace the equation by x

.= •, where • is some predefined constant from F .
Replace equations of the form X

.= (υ1, . . . ,υn), n > 1, where υ’s are free or bound term
or hedge variables, by n new equations Yi

.= υi, 1 ≤ i ≤ n, where Yi’s are fresh hedge
variables, and replace each occurrence of X by (Y1, . . . ,Yn).
Replace equations of the form X

.= u by x
.= u and replace each occurrence of X by x,

where u is a free or bound term variable and x is a fresh term variable.
Remove trivial equations of the form X

.= Y and replace all occurrences of X by Y .
Remove equations of the form X

.= ε and remove each occurrence of X.

Essentially, this canonicalization extends the canonicalization from [4] by four steps
dealing with hedge variables. These steps split each equation of the form X

.= (s1, . . . , sn)
into n new equations (one for each si), and, eventually only those are retained for which si

is a free variable. The bound si’s at the end replace their leading recursion variables.

1 Systems that are not horizontally bounded can be used to define cyclic term-graphs where cycles are
formed both vertically and horizontally. Such term-graphs can model infinitely branching trees of
infinite depth. These structures go beyond the scope of this paper.
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Intuitively, canonical systems of recursion equations can be naturally represented by
graphs: The nodes will be the recursion variables; a node x will be connected to a node χ by
an edge if the system contains an equation x

.= f(. . . ,χ, . . .); each node x will have a label f
for an equation x

.= f(. . .) or the label y for an equation x
.= y, each node X will have a

label Y for an equation X
.= Y . Every node is reachable from the root. Cycles and sharings

are defined by the occurrences of recursion variables. This intuition justifies the definition:

I Definition 4. A term-graph is a system of recursion equations in canonical form.

I Example 5. We show some term-graphs and their defining recursion equations.
f

a

x

y

Equations: x
.= f(y, x)

y
.= a

1. Graph:

f

g

x

y

2. Graph: Equations: x
.= f(x, y)

y
.= g(y, x)

f

fx

y

zu

3. Graph: Equations: y
.= f(u, z)

z
.= f(u, y)

u
.= x

A flat horizontally bounded system and its canonical form have the same (possibly infinite)
term unwinding. In the rest of the paper we consider only canonical systems of recursion
equations. The words “system of recursion equations” and “(term)-graphs” will be used
interchangeably. The letter G will be used to denote term-graphs.

Given a term-graph G and an equation x
.= t, the subgraph of G rooted at x is the set

subgraph(G,x) = {x .= t} ∪ {χ .= s | χ .= s ∈ G, where χ is reachable from x}. Obviously,
subgraph(G, root(G)) = G.

The set of nodes of a term-graph G is denoted by nodes(G). If x ∈ nodes(G) and
ν is its ith successor (i.e., x

.= t ∈ G for some t and ν is ith argument of t), we will
write x →i ν. An access path of ν ∈ nodes(G) is a possibly empty finite sequence of
positive natural numbers (i1, . . . , ij) such that there exist χ1, . . . ,χj−1 ∈ nodes(G) with
root(G)→i1 χ1 →i2 · · · →ij−1 χj−1 →ij

ν. A node may have several access paths. The set
of all access paths of a node χ is denoted by acc(χ).

We will also consider term-graph hedges, defined analogously to hedges: they are finite,
possibly empty sequences of term-graphs and hedge variables. We will use G̃ to denote them.

3 Bisimilarity Relation

It is straightforward to adapt the notions of bisimulation and bisimilarity [4] to our graphs:

I Definition 6. Let Γ1 = {χ1
.= s1, . . . ,χn

.= sn} and Γ2 = {ν1
.= q1, . . . ,νm

.= qm} be two
systems of recursion equations. Then R is a bisimulation from Γ1 to Γ2 iff

R is a binary relation with the domain {χ1, . . . ,χn} and codomain {ν1, . . . ,νm}.
The roots of Γ1 and Γ2 are related: χ1 Rν1.
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9:6 Term-Graph Anti-Unification

If χi Rνj , χi
.= l1(χi

1, . . . ,χ
i
ki

) ∈ Γ1, ki ≥ 0, and νj
.= l2(νj

1, . . . ,ν
j
kj

) ∈ Γ2, kj ≥ 0, then
l1 = l2, ki = kj , and χu Rνu for all 1 ≤ u ≤ ki. (It applies also when l1 and l2 are
variables: In this case ki = kj = 0.)

In short, bisimulation means that the roots are related, related nodes have the same label,
and their successor nodes are again related.

I Definition 7. Two graphs are bisimilar, if there exists a bisimulation from one to another.

Bisimilarity is an equivalence relation, see, e.g., [4]. We write G1 ∼ G2 if G1 and G2
are bisimilar, and G1 B∼ G2 if there exists a functional bisimulation from G1 to G2 (i.e., a
bisimulation which is a function).

Functional bisimulation collapses a graph into a smaller one. For the other way around,
one says that the graph gets expanded, copied, unwinded, or unraveled. In [4] it is shown
that the equivalence class of a term-graph G with respect to bisimilarity is a complete
lattice, partially ordered by functional bisimulation. The least upper bound in this lattice
is a rational term, denoted by MG, and the greatest lower bound is a fully collapsed graph,
denoted by OG. Hence, MG B∼ G B∼ OG.

I Example 8. Let G be the term graph {x .= f(y, z),y .= a, z = f(y,x)}. Then 4G is the
infinite rational term depicted in Fig. 1 in Example 2, and OG is the first graph in Example 5.

Given a bisimulation relation R from a term-graph G1 to a term-graph G2, its associated
graph GA

R is defined as follows: (i) nodes(GA
R) = R, root(GA

R) = (root(G1), root(G2)), the label
of each (χ1,χ2) ∈ nodes(GA

R) is that of χ1 (which is the same as the label of χ2); (ii) if
χ1 ∈ nodes(G1), χ2 ∈ nodes(G2), (χ1,χ2) ∈ R, χ1 →i χ

′
1, and χ2 →i χ

′
2, then in GA

R we have
(χ1,χ2)→i (χ′1,χ′2).

4 Substitutions and Generalizations

The notions related to substitutions, formulated for finite unranked terms and hedges in [22],
can be reused with a slight modification for (possibly) infinite terms and hedges.

A substitution is a mapping from term variables to terms and from hedge variables to
hedges, which is the identity almost everywhere. We use the traditional finite set repres-
entation of substitutions, e.g., {x 7→ f(a, f(a, . . .)), X 7→ ε, Y 7→ (X, g(Y, g(Y, . . . , Y ), Y ))},
which stands for the substitution that maps every variable to itself except x, X, and Y that
are mapped respectively to f(a, f(a, . . .)), ε, and (X, g(Y, g(Y, . . . , Y ), Y )).

The lower case Greek letters are used to denote substitutions, with the exception of the
identity substitution for which we write Id. The domain and range of a substitution σ are
defined in the usual way: dom(σ) = {χ ∈ V | σ(χ) 6= χ} and ran(σ) = {σ(χ) | χ ∈ dom(σ)}.

Substitutions can be applied to terms and hedges using the congruences σ(f(s1, . . . , sn)) =
f(σ(s1), . . . , σ(sn)) and σ(s1, . . . , sn) = (σ(s1), . . . , σ(sn)). We call σ(s) and σ(s̃) the in-
stances of respectively s and s̃ and use postfix notation to denote them, writing sσ and s̃σ.
We also say that s̃ is more general than q̃ if q̃ is an instance of s̃ and denote this fact by
s̃ � q̃. If s̃ � q̃ and q̃ � s̃, then we write s̃ ' q̃. If s̃ � q̃ and s̃ 6' q̃, then we say that s̃ is
strictly more general than q̃ and write s̃ ≺ q̃.

The composition of two substitutions σ and ϑ, written as σϑ, is defined as the composition
of two mappings: We have s(σϑ) = (sσ)ϑ for all s. A substitution σ1 is more general than
σ2 with respect to a set of variables X ⊆ V, written σ1 �X σ2, if there exists ϑ such that
χσ1ϑ = χσ2, for each χ ∈ X . The relations ' and ≺ are extended to substitutions: σ1 'X σ2
means σ1 �X σ2 and σ2 �X σ1, and σ1 ≺X σ2 means σ1 �X σ2 and σ1 6'X σ2.
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Next we define substitutions directly for term-graphs, i.e., for systems of recursion
equations (in canonical form). Instead of writing the whole systems of recursion equations in
the range of substitutions, only the roots of the corresponding term-graphs appear there.
Hedge variables in the image remain unchanged. For instance, assume the term-graphs G1
and G2 are given by the systems of recursion equations: G1 = {x .= f(y,x),y .= a}, and
G2 = {x .= g(X,x,X),X .= Y }. Then the substitution {x 7→ f(a, f(a, . . .)), X 7→ ε, Y 7→
(X, g(Y, g(Y, . . . , Y ), Y ))} we considered above can be written as {x 7→ root(G1), X 7→ ε, Y 7→
(X, root(G2))}. The bound variables in G1 and G2 should be appropriately renamed to
guarantee that the names are distinct from each other and from free variables.

To define application of such a substitution to a term-graph, we assume that all term-
graphs are in canonical form and the bound variables are appropriately renamed. Let σ be a
substitution and G be a term-graph. Then the term-graph σ(G), the instance of G under
σ, is obtained by canonicalizing the following flat horizontally bounded system of recursion
equations: {χ .= σ(s̃) | χ .= s̃ ∈ G}∪G1∪ · · ·∪Gn, where G1, . . . ,Gn are all term-graphs whose
roots appear in ran(σ). Substitution application naturally extends to term-graph hedges.

I Example 9. Let G be the term-graph:

G = {x0
.= f(x0,X1,x1,X1,x2), X1

.= X, x1
.= g(X2,x2,X2), X2

.= Y, x2
.= x}.

Let σ = {x 7→ root(G1), X 7→ (root(G2), X), Y 7→ ε}, G1 = {y .= f(y)}, G2 = {z .= a}. Then

σ(G) = {x0
.= f(x0, z,Z,x1, z,Z,y), z

.= a, Z
.= X, x1

.= g(y), y
.= f(y)}.

The notion of more general term-graphs and term-graph hedges is defined modulo
bisimilarity: G̃1 is more general than G̃2, if there is a substitution σ such that G̃1σ ∼ G̃2.
We reuse the symbol � for this relation over term-graphs and term-graph hedges, and also
write G̃1 ' G̃2 if G̃1 � G̃2 and G̃2 � G̃1. For the strict part of � we reuse ≺. Analogously
for substitutions: A substitution over term-graphs σ1 is more general than a substitution
over term-graphs σ2 with respect to a set of variables X ⊆ V, if there exists ϑ such that
χσ1ϑ ∼ χσ2 for each χ ∈ X . Also in this case we reuse the � symbol and write σ1 �X σ2
(and similarly for the relations ' and ≺ for substitutions).

A term-graph hedge G̃ is called a generalization of two term-graph hedges G̃1 and G̃2 if
G̃ � G̃1 and G̃ � G̃2. We say that a term-graph G̃ is a least general generalization (lgg in
short) of G̃1 and G̃2 if G̃ is a generalization of G̃1 and G̃2 and there is no generalization G̃′ of
G̃1 and G̃2 that satisfies G̃ ≺ G̃′. That means, there are no generalizations of G̃1 and G̃2 that
are strictly less general than their least general generalization.

An anti-unification triple, AUT in short, is written χ : G̃1 , G̃2, where χ does not occur
in G̃1 and G̃2. Intuitively, χ is a variable that stands for the most general generalization of G̃1
and G̃2. An anti-unifier of χ : G̃1 , G̃2 is a substitution σ such that dom(σ) ⊆ {χ} and χσ is
a generalization of both G̃1 and G̃2. An anti-unifier σ of an AUT χ : G̃1 , G̃2 is least general
(or most specific) if there is no anti-unifier ϑ of the same problem that satisfies σ ≺{χ} ϑ. If
σ is a least general anti-unifier of an AUT χ : G̃1 , G̃2, then χσ is an lgg of G̃1 and G̃2.

A complete set of generalizations of two term-graph hedges G̃1 and G̃2 is a set G of
term-graph hedges that satisfies the properties:

Soundness: Each G̃ ∈ G is a generalization of both G̃1 and G̃2.
Completeness: For each generalization G̃′ of G̃1 and G̃2, there exists G̃ ∈ G such that G̃′ � G̃.

G is a minimal complete set of generalizations (mcsg) of G̃1 and G̃2 if, in addition to
soundness and completeness, it satisfies also the following property:
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9:8 Term-Graph Anti-Unification

Minimality: For each G̃′1, G̃′2 ∈ G, if G̃′1 � G̃′2 then G̃′1 = G̃′2.

I Lemma 10. For any hedges s̃ and q̃ there exists their minimal complete set of generaliza-
tions. This set is finite and unique modulo '.

Proof. Similar to the analogous lemma for hedges with finite terms, see [22]. J

I Theorem 11. For any term-graph hedges G̃1 and G̃2 there exists their minimal complete
set of generalizations. This set is finite and unique modulo ' and ∼.

Proof. Note that G ∼ MG for all G. Let G̃1 = (G1
1 , . . . ,G1

n) and G̃2 = (G2
1 , . . . ,G2

m). By
Lemma 10, the hedges (MG1

1 , . . . ,MG1
n) and (MG2

1 , . . . ,MG2
m) have a finite minimal complete

set of generalizations, unique modulo '. J

Our goal is not to compute minimal complete sets of generalizations. We would rather
focus on so called rigid generalizations, which we define below. The motivation comes from
the experience with finite unranked term anti-unification, where unrestricted mcsg can grow
too big and it makes sense to restrict consecutive hedge variables in the generalization. For
the details, see [22].2

I Definition 12 (Alignment, Rigidity Function). Let w1 and w2 be strings of symbols. Then
the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0, is an alignment if i’s and j’s are positive integers
such that 0 < i1 < · · · < in < |w1| and 0 < j1 < · · · < jn < |w2|, and ak = w1|ik

= w2|jk
for

all 1 ≤ k ≤ n. A rigidity function R is a function that returns, for every pair of strings of
symbols w1 and w2, a set of alignments of w1 and w2.

For instance, if R computes the set of all longest common subsequences, then R(abcda,
bcad) = {b[2, 1]c[3, 2]a[5, 3], b[2, 1]c[3, 2]d[4, 4]}.

The top symbol of a term is defined as top(x) = x for any variable x, and top(f(s̃)) = f

for any term f(s̃). The notion is extended to hedges: top(X) = X and top(s1, . . . , sn) =
(top(s1), . . . , top(sn)). If {χ1

.= s1, . . . ,χ1
.= sn} ⊆ G, n > 0, then we define top(χ1, . . . ,χn,G)

as top(s1, . . . , sn). Moreover, we define top(G) = top(root(G),G).

I Definition 13 (R-Generalization). Given two term-graphs G1 and G2 (without common free
and bound variables) and the rigidity function R, we say that a term-graph G that generalizes
both G1 and G2 is their generalization with respect to R, or, shortly, an R-generalization, if
either
R(top(G1), top(G2)) ∈ {∅, {ε}} and G = {x .= y}, where x is a new bound term variable
and y is a new free term variable, or
f [1, 1] ∈ R(top(G1), top(G2)) for some f and G = {root(G) .= f(χ̃)} ∪ Y ∪ G′1 ∪ · · · ∪ G′n,
where χ̃ does not contain pairs of consecutive hedge recursion variables.
The sequence χ̃, the set Y, and the graphs G′1, . . . ,G′n are defined as follows:
For i = 1, 2, the original graph Gi contains an equation root(Gi)

.= f(ν̃i) and there exists
an alignment g1[i1, j1] · · · gn[in, jn] ∈ R(top(ν̃1,G1), top(ν̃2,G2)), satisfying the following
conditions:
1. If we remove all hedge recursion variables that occur as elements of χ̃, we get a sequence

of term recursion variables (x1, . . . ,xn), such that xk = root(G′k) and each G′k contains
an equation of the form xk

.= gk(υ̃k) for all 1 ≤ k ≤ n, and

2 Note that unrestricted unranked term anti-unification (i.e., without a rigidity function) can be also
modeled as associative anti-unification with the unit element. The latter problem has been studied, e.g.,
in [2, 3].
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2. For every 1 ≤ k ≤ n, there exists a pair of term recursion variables y1
k and y2

k such
that ν̃1|ik

= y1
k, ν̃2|jk

= y2
k, and G′k is an R-generalization of subgraph(G1,y

1
k) and

subgraph(G2,y
2
k).

3. Y = {Y1
.= Z1, . . . ,Ym

.= Zm}, where Y1, . . . ,Ym are all hedge recursion variables in χ̃
and Z1, . . . , Zm are new free hedge variables.

I Example 14. LetR compute the set of all longest common subsequences and let G1 = {x0
.=

f(x1,x2), x1
.= g(x2,x2), x2

.= a} and G2 = {y0
.= f(y1,y0,y2,y0), y1

.= g, y2
.= a}.

The term graph {z0
.= f(z1,Z1, z2,Z1), z1

.= g(Z2), z2
.= a, Z1

.= Z1, Z2
.= Z2} is an

R-generalization of G1 and G2 while {z0
.= f(z1,Z1, z2,Z1), z1

.= g(Z2,Z2), z2
.= a, Z1

.=
Z1, Z2

.= Z2} and {z0
.= f(z1,Z1, z2,Z1), z1

.= z, z2
.= a, Z1

.= Z1} are not.

5 The Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on quadruples
A;S;T ;G, called configurations. Here A, S, and T are sets of anti-unification triples and G is
a term-graph. The rules transform configurations into configurations. Intuitively, the problem
set A contains AUTs that have not been solved yet, the store S contains the already solved
AUTs, the trail T keeps track of the names of recursion variables, and G is the generalization
which becomes more and more specific as the algorithm progresses by applying the rules.

To keep the notation short, in anti-unification triples we only use variables from the
graphs to be generalized. Those graphs are not explicitly present in the configurations, but
are global parameters, denoted by G1 and G2. For simplicity, we assume that G1 and G2 do
not contain free variables. This is not a restriction, because we can replace free variables
by new constants, use the algorithm defined below, and in the generalization replace those
constants back with variables. (In case of hedge variables, we might need to replace their
corresponding generalization term variables by generalization hedge variables.) The rigidity
function R is yet another global parameter. In the rules below, generalization term-graphs
are assumed to be implicitly transformed into the canonical form.

Step: Simplification Step
{x : y , z} ·∪A; S; T ; G =⇒ A0 ∪A; S; T ∪ {u : y , z}; G{x 7→ u} ∪ {u .= t},
where y

.= l(ν̃) ∈ G1, z
.= l(υ̃) ∈ G2, l[1, 1] ∈ R(top(y,G1), top(z,G2)), T does not contain an

AUT of the form _ : y , z, and u is a fresh recursion term variable. If ν̃ = υ̃ = ε then t = l

and A0 = ∅, otherwise t = l(X) and A0 = {X : ν̃ , υ̃} where X is a fresh hedge variable.

Dec-S: Decomposition and Solving
{X : ν̃ , υ̃} ·∪A; S; T ; G =⇒

A ∪ {yk : ν̃|ik
, υ̃|jk

| 1 ≤ k ≤ n};
S ∪{Y0 : ν̃|i1

0 , υ̃|j1
0 }∪{Yk : ν̃|ik+1

ik
, υ̃|jk+1

jk
| 1 ≤ k ≤ n− 1}∪{Yn : ν̃||ν̃|+1

in
, υ̃||υ̃|+1

jn
};

T ; Gσ ∪ {Z0
.= Y0, . . . ,Zn

.= Yn},
if R(top(ν̃,G1), top(υ̃,G2)) contains a sequence l1[i1, j1] · · · ln[in, jn], n > 0. The y’s are fresh
term variables, the Y ’s are fresh hedge variables, the Z’s are fresh recursion hedge variables,
and the substitution is σ = {X 7→ (Z0, y1,Z1, . . . ,Zn−1, yn,Zn)}. For each 1 ≤ i ≤ n, if the
new AUT has the form Yi : ε , ε, then it is not added to S and Zi does not appear in σ.
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9:10 Term-Graph Anti-Unification

Solve: Solving
{χ : ν̃ , υ̃} ·∪A; S; T ; G =⇒ A; S ∪ {χ : ν̃ , υ̃}; T ; G{χ 7→ω} ∪ {ω .= χ},
if R(top(ν̃,G1), top(υ̃,G2)) = ∅ or R(top(ν̃,G1), top(υ̃,G2)) = {ε}. The variable ω is a fresh
recursion variable. If χ ∈ Vt, then ω ∈ Vt and if χ ∈ Vs, then ω ∈ Vs.

Share: Sharing
{x : y , z} ·∪A; S; {u : y , z} ·∪ T ; G =⇒ A; S; {u : y , z} ∪ T ; G{x 7→ u}.

Merge: Merging Nodes in the Store
∅; {χ1 : ν̃ , υ̃, χ2 : ν̃ , υ̃} ·∪ S; T ; {ω1

.= χ1,ω2
.= χ2} ·∪ G =⇒

∅; S ∪ {χ1 : ν̃ , υ̃}; T ; G{ω2 7→ω1} ∪ {ω1
.= χ1},

where χ1,χ2 ∈ Vt ∪ Vs such that if χ1 ∈ Vs, then χ2 /∈ Vt.
The rules never generate the AUTs of the form X : ε , ε. To compute R-generalizations

of G1 and G2, we start with {x : root(G1) , root(G2)}, ∅, ∅, {x .= x} and apply the rules on
the selected AUTs in all possible ways. The obtained procedure is denoted by Gen(R).

The notation =⇒∗ abbreviates finite (possible empty) sequence of rule applications. If
we want to make it clear which rule is used to transform a configuration, we will write
the rule name as the index at the arrow like, e.g., A;S : T ;G =⇒Step A

′;S′ : T ′;G′ for the
transformation with the rule Simplification Step.

I Example 15. Let R be the longest common subsequence. Then the term-graphs G1 and
G2 below have a unique R-lgg G:

G1 = {x0
.= f(x1,x2,x3,x0,x3,x2,x3), x1

.= g(x1,x2), x2
.= b, x3

.= a}.
G2 = {y0

.= f(y1,y0,y3), y1
.= g(y1,y2), y2

.= b, y3
.= a}.

G = {z0
.= f(z1,Z1, z0, z3,Z1), z1

.= g(z1, z2), Z
.= U, z3

.= a, z2
.= b}.

Graphically:
G1: fx0

g

x1

b

x2

a

x3

G2: f y0

gy1

b y2

a y3

G: fz0

gz1

b z2

a

z3

U

Z

The algorithm Gen(R) computes G, e.g., in the following way:

{u0 : x0 , y0}; ∅; ∅; {z0
.= u0} =⇒Step

{U0 : (x1,x2,x3,x0,x3,x2,x3) , (y1,y0,y3)}; ∅; {z0 : x0 , y0};
{z0

.= f(Z0), Z0
.= U0} =⇒Dec-S

(Choosing the common subsequence: g[1, 1]f [4, 2]a[5, 3]), corresponding to the
node pairs x1 and y1, x0 and y0, the second occurrence of x3 and y3.)
{u1 : x1 , y1, u2 : x0 , y0, u3 : x3 , y3}; {U1 : (x2,x3) , ε, U2 : (x2,x3) , ε};
{z0 : x0 , y0};
{z0

.= f(u1,Z1,u2,u3,Z2),
u1

.= u1, Z1
.= U1, u2

.= u2, u3
.= u3, Z2

.= U2} =⇒Step

{u2 : x0 , y0, u3 : x3 , y3, U3 : (x1,x2) , (y1,y2)};
{U1 : (x2,x3) , ε, U2 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1};
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{z0
.= f(z1,Z1,u2,u3,Z2),
z1

.= g(Z3), Z1
.= U1, u2

.= u2, u3
.= u3, Z2

.= U2, Z3
.= U3} =⇒Share

{u3 : x3 , y3, U3 : (x1,x2) , (y1,y2)};
{U1 : (x2,x3) , ε, U2 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1};
{z0

.= f(z1,Z1, z0,u3,Z2),
z1

.= g(Z3), Z1
.= U1, u3

.= u3, Z2
.= U2, Z3

.= U3} =⇒Step

{U3 : (x1,x2) , (y1,y2)};
{U1 : (x2,x3) , ε, U2 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1, z3 : x3 , y3};
{z0

.= f(z1,Z1, z0, z3,Z2),
z1

.= g(Z3), Z1
.= U1, z3

.= a, Z2
.= U2, Z3

.= U3} =⇒Dec-S

(Choosing the common subsequence: g[1, 1]b[2, 2]), corresponding to the
node pairs x1 and y1, x2 and y2.)
{u4 : x1 , y1, u5 : x2 , y2};

{U1 : (x2,x3) , ε, U2 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1, z3 : x3 , y3};
{z0

.= f(z1,Z1, z0, z3,Z2),
z1

.= g(u4,u5), Z1
.= U1, z3

.= a, Z2
.= U2, u4

.= u4, u5
.= u5} =⇒Share

{u5 : x2 , y2};
{U1 : (x2,x3) , ε, U2 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1, z3 : x3 , y3};
{z0

.= f(z1,Z1, z0, z3,Z2),
z1

.= g(z1,u5), Z1
.= U1, z3

.= a, Z2
.= U2, u5

.= u5} =⇒Step

∅; {U1 : (x2,x3) , ε, U2 : (x2,x3) , ε};
{z0 : x0 , y0, z1 : x1 , y1, z3 : x3 , y3, z2 : x2 , y2};
{z0

.= f(z1,Z1, z0, z3,Z2),
z1

.= g(z1, z2), Z1
.= U1, z3

.= a, Z2
.= U2, z2

.= b} =⇒Merge

∅; {U1 : (x2,x3) , ε}; {z0 : x0 , y0, z1 : x1 , y1, z3 : x3 , y3, z2 : x2 , y2};
{z0

.= f(z1,Z1, z0, z3,Z1), z1
.= g(z1, z2), Z1

.= U1, z3
.= a, z2

.= b}.

The obtained generalization is equal to G modulo renaming variables. The store and the
trail suggest how to obtain the original term-graphs from the computed generalization. For
instance, to obtain G1 from G, we just apply the substitution {U1 7→ (x2,x3)} to G. In the
obtained term-graph we will have x2

.= b and x3
.= a alongside to z2

.= b and z3
.= a, but it

will be bisimilar to G1.

I Example 16. Let G1 = {x0
.= f(x1,x2),x1

.= g(x0,x3),x2
.= a,x3

.= b} and G2 = {y0
.=

f(y1,y2),y1
.= h(y0,y3),y2

.= a,y3
.= b}. Then the algorithm ends with ∅, {z : x1 , y1},

{z0 : x0 , y0, z2 : x2 , y2}, {z0
.= f(z1, z2), z1

.= z, z2
.= a}. Obtaining G1 from the

computed generalization can be illustrated as {z0
.= f(z1, z2), z1

.= z, z2
.= a}{z 7→ x1} =

{z0
.= f(x1, z2), z2

.= a,x1
.= g(x0,x3),x0

.= f(x1,x2),x2
.= a,x3

.= b} ∼ G1.

I Theorem 17 (Termination). The procedure Gen(R) terminates on any input and produces
a configuration ∅; S; T ; G, where S is irreducible with respect to the merging rule.

Proof. Let the size of a hedge, size(s̃), be the number of symbols in it. the size of an AUT
x : t1 , t2 be size(t1) + size(t2) + 1, and the size of X : s̃1 , s̃2 be size(s̃1) + size(s̃2) + 2.
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The size of a set of AUTs is the multiset of the sizes of its elements. Then the only rule
that increases the size of A is Step. However, this step can be applied only finitely many
times, since each time it strictly decreases the number of unvisited node pairs (χ1,χ2), where
χ1 ∈ G1 and χ2 ∈ G2. Any other rule strictly decreases the size of A or, in case of Merge, the
size of S. Moreover, Merge does not change the size of A. The rule Dec-S can introduce only
finite branching. Therefore, the algorithm terminates. J

I Definition 18. Given a set A of AUTs where all the generalization variables are pairwise
distinct. We define two substitutions that can be obtained from A:

σL(A) := {χ 7→ ν̃ | χ : ν̃ , υ̃ ∈ A} σR(A) := {χ 7→ υ̃ | χ : ν̃ , υ̃ ∈ A}

I Lemma 19 (Transformation Invariant). Let G1, G2 be the two term graphs to be generalized
and let A;S;T ;G be a configuration such that all the generalization variables from A,S, T

are unique among all the other variables from A,S, T , including those occurring in graphs or
hedges. Furthermore, let GσL(T )σL(S)σL(A) = G1 and GσR(T )σR(S)σR(A) = G2, and let G
be a rigid generalization of G and Gi where i ∈ {1, 2}.

If A;S;T ;G =⇒ A′;S′;T ′;G′ is a transformation step applying one of the defined rules
then all the generalization variables from A′, S′, T ′ are unique among all the other variables
from A′, S′, T ′. Moreover, G′σL(T ′)σL(S′)σL(A′) = G1 and G′σR(T ′)σR(S′)σR(A′) = G2,
and G′ is a rigid generalization of G′ and Gi where i ∈ {1, 2}.

Proof. We prove that each rule preserves those properties. We can omit the proof for
G′σR(T ′)σR(S′)σR(A′) = G2, since it is equivalent to proving G′σL(T ′)σL(S′)σL(A′) = G1.
For the same reason, we omit the proof that G′ is a rigid generalization of G′ and G2.

In Step we have two cases, namely (i) ν̃ = υ̃ = ε, and (ii) ν̃ 6= ε or υ̃ 6= ε. We only
illustrate the more general case (ii) since the two proofs are largely identical. Therefore,
we have A = {x : y , z} ·∪ (A′ \ {X : ν̃ , υ̃}), S = S′, T ∪ {u : y , z} = T ′, and
G{x 7→ u} ∪ {u .= l(X)} = G′, where y

.= l(ν̃) ∈ G1, z
.= l(υ̃) ∈ G2 and u, X are fresh.

Since u, X are fresh, all the generalization variables from A′, S′, T ′ are still unique among all
the other variables from A′, S′, T ′. Obviously, GσL(T )σL(S)σL(A) = GσL(T )σL(S′)σL({x :
y , z} ·∪ (A′ \ {X : ν̃ , υ̃})) = G1. From the uniqueness of x, and by definition of
substitution application follows that G1 = G{x 7→ y}σL(T )σL(S′)σL(A′ \ {X : ν̃ , υ̃}) =
(G{x 7→ y} ∪ {y .= l(ν̃)})σL(T )σL(S′)σL(A′ \ {X : ν̃ , υ̃}). From the uniqueness of X
follows G1 = (G{x 7→ y} ∪ {y .= l(X)})σL(T )σL(S′)σL(A′). Finally, from the uniqueness
of u follows G1 = (G{x 7→ y} ∪ {y .= l(X)}){y 7→ u}σL(T ∪ {u : y , z})σL(S′)σL(A′) =
G′σL(T ′)σL(S′)σL(A′).

Since Step can’t lead to consecutive hedge variables and l[1, 1] ∈ R(top(y,G1), top(z,G2)),
it follows that G′ is a rigid generalization of G′ and G1.

Now we analyze Dec-S, which is a bit more involved. We have A = {X : ν̃ , υ̃} ·∪(A′\{yk :
ν̃|ik

, υ̃|jk
| 1 ≤ k ≤ n}), S ∪ {Y0 : ν̃|i1

0 , υ̃|j1
0 } ∪ {Yk : ν̃|ik+1

ik
, υ̃|jk+1

jk
| 1 ≤ k ≤

n − 1} ∪ {Yn : ν̃||ν̃|+1
in

, υ̃||υ̃|+1
jn

} = S′, T = T ′, and Gσ ∪ {Z0
.= Y0, . . . ,Zn

.= Yn} = G′,
where R(top(ν̃,G1), top(υ̃,G2)) contains a sequence l1[i1, j1] · · · ln[in, jn], n > 0, the y’s,
Y ’s, and Z’s are fresh, and σ = {X 7→ (Z0, y1,Z1, . . . ,Zn−1, yn,Zn)}. Since all the vari-
ables introduced by the transformation are fresh, all the generalization variables from
A′, S′, T ′ are still unique. We get GσL(T )σL(S)σL(A) = GσL(T ′)σL(S′ \ ({Y0 : ν̃|i1

0 ,

υ̃|j1
0 } ∪ {Yk : ν̃|ik+1

ik
, υ̃|jk+1

jk
| 1 ≤ k ≤ n − 1} ∪ {Yn : ν̃||ν̃|+1

in
, υ̃||υ̃|+1

jn
}))σL({X :

ν̃ , υ̃} ·∪ (A′ \ {yk : ν̃|ik
, υ̃|jk

| 1 ≤ k ≤ n})) = G1. By uniqueness of X, fol-
lows G1 = G{X 7→ ν̃}σL(T ′)σL(S′ \ ({Y0 : ν̃|i1

0 , υ̃|j1
0 } ∪ {Yk : ν̃|ik+1

ik
, υ̃|jk+1

jk
| 1 ≤
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k ≤ n − 1} ∪ {Yn : ν̃||ν̃|+1
in

, υ̃||υ̃|+1
jn

}))σL(A′ \ {yk : ν̃|ik
, υ̃|jk

| 1 ≤ k ≤ n}). Now
observe that G{X 7→ ν̃} is equivalent to G{X 7→ (Y0, y1, Y1, . . . , Yn−1, yn, Yn)}{Y0 7→
ν̃|i1

0 }{Yk 7→ ν̃|ik+1
ik

| 1 ≤ k ≤ n − 1}{Yn 7→ ν̃||ν̃|+1
in

}{yk 7→ ν̃|ik
| 1 ≤ k ≤ n}, therefore

G1 = G{X 7→ (Y0, y1, Y1, . . . , Yn−1, yn, Yn)}{yk 7→ ν̃|ik
| 1 ≤ k ≤ n}σL(T ′)σL(S′)σL(A′\{yk :

ν̃|ik
, υ̃|jk

| 1 ≤ k ≤ n}) = G{X 7→ (Y0, y1, Y1, . . . , Yn−1, yn, Yn)}σL(T ′)σL(S′)σL(A′) =
(G{X 7→ (Z0, y1,Z1, . . . ,Zn−1, yn,Zn)} ∪ {Z0

.= Y0, . . . ,Zn
.= Yn})σL(T ′)σL(S′)σL(A′) =

G′σL(T ′)σL(S′)σL(A′).
Since Dec-S cannot lead to consecutive hedge variables, it follows that G′ is a rigid

generalization of G′ and G1.
We omit the case of Solve because it is very similar to the case of Step.
In Share we have A = {x : y , z} ·∪ A′, S = S′, T = T ′, and G{x 7→ u} = G′,

where {u : y , z} ∈ T . Uniqueness of generalization variables from A′, S′, T ′ is obviously
maintained. We get GσL(T )σL(S)σL(A) = GσL(T ′)σL(S′)σL({x : y , z} ·∪ A′) = G1 and
by uniqueness of x follows G1 = G{x 7→ y}σL(T ′)σL(S′)σL(A′). The trail {u : y , z} ∈ T
tells us that there is already a recursion variable u in G that represents the node y in G1.
Therefore, instead of substituting x with y we may as well substitute it with u. This
consideration leads to G1 = G{x 7→ u}σL(T ′)σL(S′)σL(A′).

The property that G′ is a rigid generalization of G′ and G1 is obviously maintained during
this transformation.

In Merge we have A = A′ = ∅, S = {χ2 : ν̃ , υ̃} ·∪ S′, T = T ′, G = {ω1
.= χ1,ω2

.=
χ2} ·∪ G′′, and G′ = G′′{ω2 7→ ω1} ∪ {ω1

.= χ1}, where {χ1 : ν̃ , υ̃} ∈ S′. We get
GσL(T )σL(S)σL(∅) = ({ω1

.= χ1,ω2
.= χ2} ·∪ G′′)σL(T ′)σL({χ2 : ν̃ , υ̃} ·∪ S′) = G1 and

by uniqueness of χ2 follows G1 = ({ω1
.= χ1,ω2

.= χ2} ·∪ G′′){χ2 7→ ν̃}σL(T ′)σL(S′). Since
σL(S′) also contains the mapping {χ1 7→ ν̃} we get G1 = ({ω1

.= χ1,ω2
.= χ2} ·∪ G′′){χ2 7→

χ1}σL(T ′)σL(S′) = (G′′{ω2 7→ω1} ∪ {ω1
.= χ1})σL(T ′)σL(S′).

The property that G′ is a rigid generalization of G′ and G1 is maintained because of the
condition that from χ1 ∈ Vs follows χ2 /∈ Vt forbids the instantiation of a term variable by a
hedge variable. J

I Theorem 20 (Soundness). If {x : root(G1) , root(G2)}; ∅; ∅; {x .= x} =⇒∗ ∅;S;T ;G is a
derivation in Gen(R), then G is an R-generalization of G1 and G2.

Proof. The assumptions of Lemma 19 hold for the initial configuration {x : root(G1) ,
root(G2)}; ∅; ∅; {x .= x}. Since Gen(R) terminates on any input (Theorem 17), it follows
that all the generalization variables from S and T are unique among all the other variables
from S and T . Moreover, GσL(T )σL(S) = G1 and GσR(T )σR(S) = G2, and G is a rigid
generalization of G and Gi where i ∈ {1, 2}. Obviously G is a generalization of G1 and G2. To
prove that G is an R-generalization, it remains to show that the recursion from Definition 13
item 2 has been applied exhaustively. This follows from the fact that the store is complete,
i.e., GσL(T )σL(S) = G1 and GσR(T )σR(S) = G2, and from the condition of the rule Solve
that R(top(ν̃,G1), top(υ̃,G2)) is either ∅ or {ε}. J

I Corollary 21 (Soundness of the Store). If {x : root(G1) , root(G2)}; ∅; ∅; {x .= x} =⇒∗
∅;S;T ;G is a derivation in Gen(R), then GσL(T )σL(S) = G1 and GσR(T )σR(S) = G2.

Notice that Gen(R) computes generalizations that do not have free term variables.
Therefore, they are not considered in the completeness theorem. However, we show in [12]
that this restriction can be lifted by adding an additional transformation rule.

I Theorem 22 (Completeness). Let G be an R-generalization of G1 and G2. Then Gen(R)
computes an R-generalization G′ of G1 and G2 such that G � G′.
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Proof. By our assumption, G1 and G2 do not contain free variables. If G has a form {root(G) .=
x}, then x must be a fresh variable and any generalization computed by Gen(R) satisfies
the theorem. Now assume root(G) .= f(υ̃) ∈ G. Then we should have root(G1) .= f(χ̃) ∈ G1
and root(G2) .= f(ν̃) ∈ G2 and we can start the derivation with Step. We can make the next
step immediately by Dec-S rule, taking the same alignment (from R(top(χ̃,G1), top(ν̃,G2)))
which is used in f(υ̃) (since G is an R-generalization, such an alignment exists). Further, if
Merge is applicable, we make this step as long as possible.

After these steps, in the set of new AUTs we will have only those which have counterparts
for term variables occurring in υ̃. In the store there will be those AUTs which are generalized
by hedge variables in υ̃. It can be that we merged more variables than it is done in υ̃, but it
does not harm, since we are going to compute a generalization that is less general than G.
The trail will store the seen pair of the nodes (in this case the roots of G1 and G2). The
generalization graph will contain the equation root(G′) .= f(ω̃), that corresponds to the root
equation of G, maybe with more shared variables. The bound term variables from υ̃ will
have their counterparts in ω̃, but the equations which correspond to those variables in the
current version of G′ will have fresh free variables in the right hand side.

Next, we will pick an AUT in the new configuration. Its generalization variable has a
unique counterpart in G, which suggests how to make the next step, basically repeating the
reasoning as above, unless the AUT has the form z : x , y and z′ : x , y is already in the
trail. We will use the Sharing rule to make the step. It can be horizontal or vertical sharing.

If it is a horizontal sharing, then it does not matter whether those nodes in G which
correspond to z and z′ are shared. If they are, then our construction of G′ at this place
directly imitates the structure of G. If they are not, the G at this place is an expansion of G′,
but this operation preserves bisimilarity. In the vertical sharing, in addition to the above
considered ones, it is also possible that at this place G is a collapsed version of G′. But again,
bisimilarity is preserved. Note that the construction of our derivation is not influenced by
whether a particular node of G has already been seen or not. They are used to guide the
construction, and the same node might guide more than one steps.

Iterating this process, eventually we stop with a generalization G′ such that G � G′. J

I Theorem 23. For two bisimilar term-graphs, Gen(R) computes their join in the lattice
generated by functional bisimulation.

Proof. It is easy to see that our algorithm returns only one answer for bisimilar graphs (since
there is no branching at Dec-S rule) and the computed generalization contains no new free
variables (the store is empty). Then the set T gives exactly a bisimulation, which justifies
bisimilarity between the original term-graphs: RT = {(ν,υ) | χ : ν , υ ∈ T for some χ}.
The computed generalization G is the same as the term-graph GA

RT
associated to RT . (The

node χ ∈ G can be seen as the node (ν,υ) ∈ GA
RT

for each χ : ν , υ ∈ T .) By construction
of T , for each (ν,υ) ∈ RT , the access paths are not disjoint: acc(ν) ∩ acc(υ) 6= ∅ (otherwise
there would be a new free variable in the generalization introduced by Dec-S). By Proposition
3.13 in [4], it implies that RT is a minimal bisimulation. Therefore, from the constructive
proof of Theorem 3.19 in [4] we conclude that GA

RT
(i.e. G) is the join of G1 and G2. J

I Example 24. Let G1 = {x0
.= f(x1),x1

.= f(x2),x2
.= f(x3),x3

.= f(x4),x4
.= f(x5),

x5
.= f(x3)} and G2 = {y0

.= f(y1),y1
.= f(y2),y2

.= f(y3),y3
.= f(y4),y4

.= f(y5),y5
.=

f(y6),y6
.= f(y7),y7

.= f(y2)}. They are bisimilar. The algorithm computes their lgg
G = {z0

.= f(z1), z1
.= f(z2), z2

.= f(z3), z3
.= f(z4), z4

.= f(z5), z5
.= f(z6), z6

.= f(z7),
z7

.= f(z8), z8
.= f(z3)}. It is the join in the lattice of the bisimilarity class of G1 and G2 [4].
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6 Conclusion

We have presented an anti-unification algorithm for (unranked) term-graphs, which are given
as systems of recursion equations. The algorithm is sound, complete, and terminating, and
uses a parameter, called rigidity function. The function selects common edges outgoing
from the pair of nodes to be generalized. While longest common subsequence is the most
intuitive instance of the rigidity function, the properties of the algorithm hold for any concrete
rigid instance of the parameter. As a future work, extending simply typed lambda term
anti-unification [11] to cyclic lambda terms [5] would provide a generalization of our results
from a first-order language to a higher-order one.
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Abstract
Bi-Intuitionistic Linear Logic (BILL) is an extension of Intuitionistic Linear Logic with a par,
dual to the tensor, and subtraction, dual to linear implication. It is the logic of categories with
a monoidal closed and a monoidal co-closed structure that are related by linear distributivity,
a strength of the tensor over the par. It conservatively extends Full Intuitionistic Linear Logic
(FILL), which includes only the par.

We give proof nets for the multiplicative, unit-free fragment MBILL-. Correctness is by local
rewriting in the style of Danos contractibility, which yields sequentialization into a relational
sequent calculus extending the existing one for FILL. We give a second, geometric correctness
condition combining Danos-Regnier switching and Lamarche’s Essential Net criterion, and demon-
strate composition both inductively and as a one-off global operation.
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1 Introduction

Obtaining good proof-theoretic characterizations of FILL [17], intuitionistic linear logic with
a “par” connective dual to the tensor, and BILL, which further adds “subtract” dual to linear
implication, has proved difficult. The main challenge is in combining par, whose natural
home is a multi-conclusion calculus, and linear implication, which is most naturally expressed
by a single-conclusion calculus. The dual situation holds for tensor and subtraction (below
on the right), where tensor naturally prefers multiple assumptions, but subtraction a single
assumption. These are the natural sequent rules:

Γ ` ∆ C D

Γ ` ∆ C℘D

Γ A ` B

Γ ` A(B

A B Γ ` ∆
A⊗B Γ ` ∆

D ` C ∆
D−C ` ∆

A system with the above rules, however, does not satisfy cut-elimination [22, 3]: the
single-conclusion and single-assumption rules for linear implication and subtraction are too
restrictive. But their multi-conclusion and multi-assumption variants,

Γ A ` B ∆
Γ ` A(B ∆

Γ D ` C ∆
Γ D−C ` ∆

© Gianluigi Bellin and Willem Heijltjes;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gianluigi.bellin@univr.it
mailto:w.b.heijltjes@bath.ac.uk
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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are unsound: they collapse the logic into MLL, since mapping linear implication A( B onto
A⊥ ℘ B and subtraction D − C onto D ⊗ C⊥ preserves provability (in both directions) [6].
Intermediate ground between these variants is found by annotating the rules with a relation
between the antecedent and the consequent, and requiring that the discharged assumption A

in a rule introducing A( B is not related to any additional conclusions ∆ (and dually for
D − C). With this side-condition, and without describing the development of the relation R

into S, the rules are as below. The sequent calculus (for FILL) with relational annotation
enjoys cut-elimination [4, 11].

Γ A `R B ∆
Γ `S A(B ∆

(A�R∆)
Γ D `R C ∆
Γ D−C `S ∆

(Γ�RC)

Traditionally, the sequent calculus is a meta-calculus, describing the construction of
natural deduction proofs. For linear logic, naturally described in sequent style, the question
of what underlying proof objects were constructed led to the development of proof nets [12].
In this paper we ask the same question for BILL: what are the underlying, canonical proof
objects of BILL?

Our answer is a notion of proof nets, presented as a graph-like natural deduction calculus,
that embodies the perfect duality between tensor and par, and between implication and
subtraction. It exposes the relational annotation of the sequent calculus as recording the
directed paths through the proof net constructed by the sequent proof. We give two
correctness conditions: one by local rewriting in the style of Danos contractibility [8] and the
parsing approach of Lafont, Guerrini and Masini [18, 14]; and a global, geometric criterion
that combines Danos–Regnier switching [9] and Lamarche’s essential net condition [19]. We
introduce our proof nets with an example in Section 1.2.

We have aimed for canonical proof nets: those that factor out all sequent calculus per-
mutations. To this end we have restricted ourselves to the fragment MBILL−, multiplicative
bi-intuitionistic linear logic without units. MBILL with units, even though it omits negation,
includes unit-only MLL, where canonical proof nets are unavailable: the proof equivalence
problem, which canonical proof nets would solve efficiently, is PSPACE-complete [15].

1.1 Background and related work
In the late 1960s Lambek initiated the study of substructural logics, which restrict contraction
and weakening, through category theory and with a particular focus on non-commutative
variants [20]. The central point of FILL, the relation between par and linear implication,
was investigated in the early 1980s by Grishin [13]. The advent of linear logic in the late
1980s [12] created an interest also in intuitionistic variants. Schellinx observed that for a
multi-conclusion sequent calculus with single-conclusion ( R rule, cut-elimination fails [22,
p.555].

To obtain cut-elimination, Hyland and De Paiva formalize FILL through a sequent
calculus annotated by a term calculus [17]. The terms describe natural deduction derivations
whose open assumptions, identified by free variables in the terms, give a side-condition to a
multi-conclusion ( R-rule similar to that of the current relational calculus. Unfortunately,
as pointed out by Bierman, the term assignment introduces spurious dependencies that break
cut-elimination. Three solutions to this problem were proposed: a modification of the term
assignment by the first author, in private communication to Hyland and Bierman (cfr. [1]);
a different term assignment using pattern matching by Bierman, [3]; and a sequent calculus
with relational annotation by Braüner and De Paiva [4]. This is the calculus we adopt here,
extended with subtraction. Eades and De Paiva [11] later revisited the term-annotated
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calculus, with the first author’s correction, to prove semantic correctness. In the late 90s the
first author developed proof nets for FILL (including the MIX rule) that sequentialize into
the term-annotated sequent calculus [1]. Around the same time Cockett and Seely gave a
graph-like natural deduction calculus for FILL, and for the variant of BILL corresponding to
the plain, un-annotated multi-conclusion sequent calculus, which collapses onto MLL [6].

Recently, Clouston, Dawson, Goré and Tiu gave annotation-free alternatives to sequent
calculi, in the form of deep-inference and display calculi for BILL that enjoy cut-elimination [5].

1.2 Proof nets for MBILL– via contractibility
We will introduce our proof nets through an example. It is shown below, in two modes of
representation. On the left, it is viewed as a dag-like natural deduction proof. It is built from
links, the equivalent of a natural deduction inference, shown as solid or dashed horizontal lines
connecting premises above to conclusions below. The bottom link in the example, labelled
x, introduces a linear implication, and as in natural deduction, closes the corresponding
assumption by a matching link also labelled x. The (green) links from negative to positive
atomic formulas, a− to a+, are axiom links.

In a multiplicative linear logic such as MBILL−, each connective in the conclusion
of a sequent proof is introduced once, by exactly one proof rule; that is, connectives in
the conclusion are 1–1 related to inferences in the sequent proof. Proof nets are similar:
connectives in open assumptions and conclusions correspond 1–1 to (non-axiom) links. Via
this correspondence, proof nets can be represented by only the sequent of open assumptions
and conclusions, plus the axiom links, connected to the atomic subformulas in the sequent.
This gives the second representation below.

(a ℘ d)−
a− d−

(a( b)− a+ d+

b− c− (d − c)+

b+ c+

(b ℘ c)+

((a( b)( b ℘ c)+

x

x

(a−℘ d−)−

((a+( b−)−( b+℘ c+)+ (d+− c−)+

We stress that these are two different representations of one and the same graphical object,
and thus the same proof net. Because the former is more explicit on logical inference, we
choose it as our main representation, and as the basis of our definitions (we could have
chosen either). We make axiom links explicit to emphasize the connection with the second
presentation.

We may explicitly annotate formulae with their polarity, in the standard notion that
reverses on the left of an implication. In BILL, it also reverses on the right of a subtraction.
In a proof net, polarity is positive for conclusions and negative for assumptions, and indicates
whether a formula is being introduced (+) or eliminated (−). An axiom link indicates a
change from an elimination phase (above) to an introduction phase (below). In a sequent
calculus, the negative formulae would be those in the antecedent Γ of a sequent Γ ` ∆, and
the positive those in the consequent ∆.

Figure 1 sequentializes the above example by contraction. It is initiated by giving an
axiom for each axiom link (matched by colouring). Contraction is driven by the coloured
links; in the second row, the links on a and b have contracted the(-elimination link between
them, and the links on c and d have contracted the −-introduction link. The corresponding
sequent rules are added on the right.

FSCD 2018
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a ℘ d
a d

a( b a d
b c d− c
b c

b ℘ c
(a ( b)( b ℘ c

x

x

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d− c

a( b , a ℘ d `R b , c , d− c

a( b , a ℘ d `S b ℘ c , d− c

a ℘ d ` (a( b)( b ℘ c , d− c

a ℘ d
a( b a d

b c d− c
b ℘ c

(a ( b)( b ℘ c

x

x

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d− c

a( b , a ℘ d `R b , c , d− c

a( b , a ℘ d `S b ℘ c , d− c

a ℘ d ` (a( b)( b ℘ c , d− c

a( b a ℘ d
b c d− c

b ℘ c
(a ( b)( b ℘ c

x

x

R

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d− c

a( b , a ℘ d `R b , c , d− c

a( b , a ℘ d `S b ℘ c , d− c

a ℘ d ` (a( b)( b ℘ c , d− c

a( b a ℘ d
b ℘ c d− c

(a( b)( b ℘ c

x

x

S

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d− c

a( b , a ℘ d `R b , c , d− c

a( b , a ℘ d `S b ℘ c , d− c

a ℘ d ` (a( b)( b ℘ c , d− c

a ℘ d
(a( b)( b ℘ c d− c

a ` a b ` b
a( b , a ` b

d ` d c ` c
d ` c , d− c

a( b , a ℘ d `R b , c , d− c

a( b , a ℘ d `S b ℘ c , d− c

a ℘ d ` (a( b)( b ℘ c , d− c

R = { (a( b , b) , (a ℘ d , b) , (a ℘ d , c) , (a ℘ d , d− c) }
S = { (a( b , b ℘ c) , (a ℘ d , b ℘ c) , (a ℘ d , d− c) }

Figure 1 An example contraction and sequentialization sequence.
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A `T A T = A

A

Γ `R ∆ A A Γ′ `S ∆′
Γ Γ′ `T ∆ ∆′

T = R ?
A

A
? S

A B Γ `R ∆
A⊗B Γ `T ∆ T = A⊗B

A B
? R

Γ `R ∆ A Γ′ `S ∆′ B

Γ Γ′ `T ∆ ∆′ A⊗B
T = (R∪S) ?

A B

A⊗B

C Γ `R ∆ D Γ′ `S ∆′
C℘D Γ Γ′ `T ∆ ∆′

T = C℘D

C D
? (R∪S)

Γ `R ∆ C D

Γ `T ∆ C℘D
T = R ?

C D

C℘D

Γ `R ∆ A B Γ′ `S ∆′
Γ A(B Γ′ `T ∆ ∆′

T = R ?
A(B A

B
? S

Γ A `R B ∆
Γ `T A(B ∆ A�R∆ T =

A
? R ?

B

A(B

Γ D `R C ∆
Γ D−C `T ∆ Γ�RC T = D−C

D
? R ?

C Γ `R ∆ D C Γ′ `S ∆′
Γ Γ′ `T ∆ D−C ∆′

T = R ?
D

C D−C
? S

Figure 2 Relational sequent calculus for MBILL−.

The next step contracts both active links with the ℘-elimination link, and introduces
an explicit relation R between the premises and the conclusions of the resulting link. Its
purpose is to maintain the connectedness by directed (top-down) paths through the proof
net. In this case, there was no directed path from a( b to c or to d− c, and to reflect this
in the link created by the contraction, the relation R connects a( b only to b. In the third
step, the ℘-introduction link is contracted. It uses a dashed line because it is switched, and
may only contract if both premises connect to the same link.

Preserving top-down connectedness is the key to showing the correctness of(-introduction
links, in the last step, which must (at least) fulfil the standard intuitionistic condition: all
directed paths from the discharged assumption to an (open) conclusion must pass through
the discharging(-introduction link (see [19]). The contraction step comes with the following
side-condition, analogous to that of the sequent rule: the assumption a( b may only be
related by S to the premise of the (-introduction link, b ℘ c, and not to other conclusions,
here d − c. For simplicity we omit the annotation for the final link again, as it is the full
relation between premises and conclusions.

This concludes the example: the net contracts to a single link, and is thus correct.

2 MBILL–

The language of MBILL− is given by the following grammar.

A, B, C ::= a | A⊗B | A( B | A ℘ B | A−B

We use a, b, c, . . . to range over propositional atoms. The connectives are tensor, (linear)
implication, par, and subtraction. The subformula occurrences of a formula have an implicit
polarity + or −, inherited from the parent formula but reversing to the left of an implication
and to the right of a subtraction: (A( B)+ induces A− and (A− B)+ induces B−, and
similarly with + and − reversed.

Figure 2 gives the relational sequent calculus of Braüner and De Paiva [4], adapted for
MBILL− by introducing rules for subtraction, dual to implication. A sequent is of the form
Γ `R ∆, where Γ and ∆ are multisets of formulae and R ⊆ Γ ×∆ is a relation from Γ to
∆. (We assume that occurrences of the same formula can be distinguished, for instance by
naming them.)

The relational annotation maintains a notion of logical dependence between the formulas
of a sequent. Intuitively, it traces the subformula relation through a proof, and in addition

FSCD 2018
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A+ B+

(A⊗B)+ ⊗I

A−
x

...
B+

(A( B)+ (I,x
A+ B+

(A ℘ B)+ ℘I
B+

A− (B −A)+ −I
A−

A+ ax

(A⊗B)−

A− B−
⊗E

(A( B)− A+

B−
(E

(A ℘ B)−

A− B−
℘E

(B −A)−

B−
−E,x

...
A+

x

A+

A−
cut

Figure 3 Links for the construction of MBILL− proof nets.

connects across axioms. An introduction rule for a linear implication A( B then requires
that no formula other than B depends on the assumption A. This is closely related to the
correctness condition of Lamarche’s essential nets [19] for intuitionistic linear logic: all paths
from A must converge on A( B. The subtraction rule has a corresponding side-condition.

We use the following standard notation: relational composition R; S of R ⊆ Γ×∆ with
S ⊆ ∆× Λ, the identity relation IDΓ on a sequent Γ, and ARB for (A, B) ∈ R. We extend
the latter by writing ΓR∆ if ARB for some A in Γ and B in ∆, and Γ�R∆ for the negation
of this proposition. We further adopt a useful notion of relational composition of Braüner
and De Paiva [4]. The star-composition R ? S of two relations R ⊆ Γ × (∆ ∪ ∆′) and
S ⊆ (∆′ ∪∆′′)× Λ, where ∆, ∆′, and ∆′′ are pairwise disjoint, is

R ? S = (R ∪ ID∆′′) ; (ID∆ ∪ S) ⊆ (Γ ∪∆′′)× (∆ ∪ Λ)

The above composition consists of three parts: R restricted to Γ×∆, S restricted to ∆′′×Λ,
and R; S restricted to Γ × Λ. It is a relational equivalent of linear distributivity [7], and
a generalization of both union (if ∆′ is empty) and composition (if ∆ and ∆′′ are empty).
For ease of presentation, we write Γ

∆ for the full relation Γ×∆. Note that A stands for the
empty relation from the empty sequent to A; it is used, with (?)-composition, to restrict the
domain of a relation by removing A.

3 Proof nets

We shall define our proof nets for MBILL− as a graph-like natural deduction calculus. We
make axioms and cuts explicit, as inference rules that only change the polarity of a formula.
This gives a closer connection with sequent calculus and traditional proof nets, and simplifies
the definition of contractibility. First we define the underlying graphs, or pre-nets; then we
will introduce contractibility as a correctness condition, and define our proof nets as the
pre-nets satisfying contractibility.

I Definition 1 (Pre-nets). MBILL− pre-nets are built from the following notions.
Link: a node with n ≥ 0 premise ports and m ≥ 0 conclusion ports labelled with
formulas A1 . . . An and B1 . . . Bm and a possibly empty label `. A relational link is
labelled with a relation R ⊆ {A1, . . . , An} × {B1 . . . Bm}. A link is drawn as follows.

A1 . . . An

B1 . . . Bm
`

Edge: a connection from a premise port to a conclusion port labelled with the same
formula, of the same polarity.



G. Bellin and W.B. Heijltjes 10:7

A
A

ax
ax
 A

A
A×A

R
Γ
∆ A Γ′

S
∆′

?
 

∆∩Γ′=∅

Γ Γ′
R?S

∆ ∆′
A
A

cut
cut
 A

A
A×A

A⊗B

A B Γ
R

∆

⊗E
 

A⊗B Γ (A⊗B × A B)?R
∆

A B

A⊗B
⊗I
 

A B
A B × A⊗B

A⊗B

A(B A

B
(E
 

A(B A
A(B A × B

B

A
x Γ

R
B

x
∆

A(B

(I
 

A�R∆

Γ IDΓ ; R?(B × A(B)
A(B ∆

D ℘ C

D C

℘E
 

D ℘ C
D℘C × D C

D C

Γ
R

D C ∆
D ℘ C

℘I
 

Γ
R?(D C × D℘C)

D ℘ C ∆

D − C
x

D Γ
R

C
x

∆

−E
 

Γ�RC

D− C Γ (D−C × D)?R ; ID∆
∆

D

C D−C
−I
 

D
D × C D−C

C D−C

Figure 4 Contraction rules.

Pre-net: an acyclic directed graph N = (V, E) with V a set of links as in Figure 3,
and E a set of edges such that no two edges connect to the same port, satisfying the
following conditions. A premise / conclusion port with no attached edge is an open
assumption / conclusion. The (I /−E links are in bijection with the closed as-
sumption / conclusion links, defined by the variable labels x in Figure 3. A relational
pre-net may contain also relational links.

In Figure 3, note that the illustrations for (I and −E links each show two links: the (I

link itself, plus a closed assumption link; and the −E link plus a closed conclusion link.

Γ
∆ R

We abbreviate a pre-net with open assumptions Γ and open conclusions ∆ by a
double-lined link, as on the left. We may annotate it with a relation R that relates
A in Γ to B in ∆ if (and only if) there is a directed downward path from A to B.

3.1 Contractibility

Our correctness condition is in the style of Danos contractibility [8].1 Contractibility for MLL
proof nets is, in essence, top-down sequentialization [18, 14], starting from the axioms rather
than the conclusion of a proof net. In our current natural deduction style, contraction is
inside-out, from axioms to assumptions and conclusions. Contracting a proof net corresponds
to the construction of a sequent proof or other inductive proof object. This can be made
explicit by carrying the constructed object as a label on the contracting links, which we will
do in Section 4.

The links of a proof net being contracted correspond to sequents of the proof being
constructed. As such, we will be contracting relational links (see Definition 1), corresponding
to relational sequents.

1 The second author has also used the term coalescence for the generalization of contractibility that
includes the additives—but as these are not currently present, we feel it is more appropriate to use the
terminology that was established earlier.
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A `T A Z⇒ A−

A+
Γ `R ∆ A A Γ′ `S ∆′

Γ Γ′ `T ∆ ∆′
Z⇒

R
Γ
∆ A+

A− Γ′
S

∆′

A B Γ `R ∆
A⊗B Γ `T ∆ Z⇒

A⊗B

A B Γ
R

∆

Γ `R ∆ A Γ′ `S ∆′ B

Γ Γ′ `T ∆ ∆′ A⊗B
Z⇒

R
Γ Γ′

S

∆ A B ∆′
A⊗B

Γ `R ∆ C D

Γ `T ∆ C℘D
Z⇒

Γ
R

D C ∆
D ℘ C

C Γ `R ∆ D Γ′ `S ∆′
C℘D Γ Γ′ `T ∆ ∆′

Z⇒
C ℘ D

R
Γ C C Γ′

S

∆ ∆′

Γ A `R B ∆
Γ `T A(B ∆ A�R∆ Z⇒

A
x Γ

R

B
x

∆
A(B

Γ `R ∆ A B Γ′ `S ∆′
Γ A(B Γ′ `T ∆ ∆′

Z⇒
R

Γ
∆ A A(B

B Γ′
S

∆′

Γ D `R C ∆
Γ D−C `T ∆ Γ�RC Z⇒

D − C
x

D Γ
R

C
x

∆

Γ `R ∆ D C Γ′ `S ∆′
Γ Γ′ `T ∆ D−C ∆′

Z⇒
R

Γ
∆ D

D−C C Γ′
S

∆′

Figure 5 De-sequentialization.

I Definition 2 (Contractibility). Contraction is the rewrite relation on relational pre-nets
given by the rewrite rules in Figure 4. Contraction is successful if it terminates with a single
link. A pre-net contracts, or is contractible, if it has a successful contraction path. It
strongly contracts if every contraction path is eventually successful.

I Definition 3 (Proof nets). A MBILL− proof net is a contractible MBILL− pre-net whose
open assumptions and conclusions have negative respective positive polarity.

An example contraction sequence was given in Figure 1 in the introduction. An example
of how contraction excludes incorrect nets is the following.

I Example 4. Below left is an incorrect pre-net. After several ax, ℘E, ⊗I and ? steps, we
obtain the pre-net below right, where R = { (a ℘ b , a) , (a ℘ b , b⊗ c) , (c , b⊗ c) }. Because
of the relation (a ℘ b , b⊗ c) this prevents further contraction: there are two potential steps,
a(I-step and a −E-step, and for both the side-condition is not met.

a ℘ b c− (b⊗ c)
a b c
a b c

(a ℘ b)( a b⊗ c

x

y

x

y

c− (b⊗ c)
a ℘ b c
a b⊗ c

(a ℘ b)( a

x y

x y

R

4 Sequentialization and de-sequentialization

To de-sequentialize a sequent proof to a proof net, intuitively, is to take each sequent rule,
and separate the logical inference (e.g. from A( B and A to B) from the context (Γ and
∆). We visualize this in Figure 5, where the premises of each rule de-sequentialize to the
given (double-lined) pre-nets.
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I Definition 5. A sequent proof de-sequentializes ( Z⇒) to a proof net as illustrated in
Figure 5.

I Proposition 6. The de-sequentialization of a sequent proof contracts.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization Γ
∆ R

contracts to the relational link Γ
∆ R. J

Sequentialization is by contraction. First, we introduce a notion of open proof, a sequent
proof from (open) premise sequents `A and B`. We abbreviate an open proof by a double
line, as below left. The given open proof will result from contracting a pre-net with negative
assumptions Γ− and positive conclusions ∆+, plus positive assumptions A+

1 . . . A+
n and

negative conclusions B−1 . . . B−m, below right. The domain and range of the annotating relation
of a sequent are extended to include the open permises: R ⊆ (Γ A1 . . . An)× (∆ B1 . . . Bm).
The relation is otherwise constructed as before.

`A1 . . . `An B1` . . . Bm`
Γ `R ∆

Γ− A+
1 . . . A+

n

∆+ B−1 . . . B−m
R

For sequentialization, we define a mapping from the contracting links of a proof net to
sequent proofs. For a star-composition,

R
Γ− A+

1 . . . A+
n

∆+ B−1 . . . B−m C+ Γ′− A+
n+1 . . . A+

p S
∆′+ B−m+1 . . . B−q

?
 

Γ− Γ′− A+
1 . . . A+

p R?S
∆+ ∆′+ B−1 . . . B−q

if the links in the redex map onto the open proofs

Π =
`A1 . . . `An B1` . . . Bm`

Γ `R ∆ C
Φ =

`C `An+1 . . . `Ap Bm+1` . . . Bq `
Γ′ `S ∆′

then the contractum is mapped onto the open proof

`A1 . . . `Ap B1` . . . Bq `
Γ Γ′ `R?S ∆ ∆′

obtained by replacing the open premise `C of Φ with the open proof Π, and adding the
conclusions Γ and ∆ to each inference from `C down to the conclusion of Φ.

To the contractum of the steps ax, cut, ⊗I,(E, ℘E, −I we assign the respective proofs:

A ` A
` C C `

`
` A ` B
` A⊗B

` A B `
A( B `

C ` D `
C ℘D `

` C D `
` C −D
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To the remaining steps we assign proofs as follows, where Γ = Γ− A+
1 . . . A+

n and ∆ =
∆′ B−1 . . . B−m.

A⊗B

A B Γ
R

∆

⊗E
 

A⊗B Γ (A⊗B × A B)?R
∆

`A1 . . . `An B1` . . . Bm`
A B Γ′ `R ∆′

A⊗B Γ′ `T ∆′

A
x Γ

R
B

x
∆

A(B

(I
 

A�R∆

Γ IDΓ ; R?(B × A(B)
A(B ∆

`A1 . . . `An B1` . . . Bm`
Γ′ A `R B ∆′

Γ′ `T A(B ∆′ A�R∆′

Γ
R

D C ∆
D ℘ C

℘I
 

Γ
R?(D C × D℘C)

D ℘ C ∆

`A1 . . . `An B1` . . . Bm`
Γ′ `R C D ∆′

Γ′ `T C ℘ D ∆′

D − C
x

D Γ
R

C
x

∆

−E
 

Γ�RC

D− C Γ (D−C × D)?R ; ID∆
∆

`A1 . . . `An B1` . . . Bm`
Γ′ D `R C ∆′
Γ′ D−C `T ∆′ Γ

′�RC

Finally, recall that a proof net has only negative assumptions and positive conclusions. If
it contracts to a single link, this link maps to a regular (relational) sequent proof, without
open premises.

I Definition 7 (Sequentialization). A proof net sequentializes to a proof Π if it contracts
to a single link that maps onto Π.

I Proposition 8. The de-sequentialization of a sequent proof Π sequentializes to Π.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization Γ
∆ R

of Π contracts to the relational link Γ
∆ R mapping to Π. J

5 A geometric characterization

In this section we give a geometric correctness condition for MBILL− proof nets, and
demonstrate that a pre-net contracts if and only if it is correct. The condition has two
components: a switching condition in the style of Danos and Regnier [9] that integrates the
condition on Lamarche’s essential nets [19], and a bi-functionality condition that further
refines the essential net condition. We begin by giving the necessary definitions.

I Definition 9 (Switching). In a pre-net N :
Switched / solid. The switched links are ℘I, ⊗E, (I, and −E; other links are solid. A

switched edge is one connecting to an auxiliary port of a switched link or to a closed
assumption or conclusion link; other edges are solid.

Targets. The targets of a switched link are as follows:
the targets of a ℘I or ⊗E link are the two links connected by a switched edge;
the targets of a (I link A( B are the link connected to the auxiliary port B plus
all links on a directed downward path starting from the associated closed assumption
link A, but not passing through A( B;
the targets of a −E link D −C are the link connected to the auxiliary port D plus all
links on a directed downward path ending at the associated closed conclusion link C,
but not passing through D − C.
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Switching graph. A switching graph G for N is an undirected graph (V, E) whose vertices
V are the links of N , and whose edges E connect:

any two links connected by a solid edge in N ;
any switched link to exactly one of its targets.

Switching condition. A pre-net satisfies the switching condition if every switching graph
is acyclic and connected.

I Definition 10 (Bi-functionality). A pre-net satisfies the bi-functionality condition if
a directed path from a closed assumption x to an open conclusion passes through (I, x;
a directed path from an open assumption to a closed conclusion y passes through −E, y;
a directed path from a closed assumption x to a closed conclusion y passes through(I, x

or −E, y.

I Remark. Closer observation will reveal that the first two components of the bi-functionality
condition are equivalent to assuming an implicit ℘I-link connecting all open conclusions, and
a ⊗E-link connecting open assumptions. The third component is equivalent to considering a
closed assumption x and its implication introduction link(I, x to be one and the same link
for the purpose of the switching graph (though not for downward reachability).

I Definition 11 (Geometric correctness). A pre-net N is geometrically correct if it satisfies
both the switching condition and the bi-functionality condition.

A switching path is an undirected path in a switching graph G, which we will indicate
by ( G ). A single, switched edge will be written ( G ), and we may omit the superscript if G

is understood. For simplicity, we will refer to a link by its principal formula when indicating
switching paths. For a link A and switched link B in a switching graph G, write A�G B if
A is on a switching path between two targets B1 and B2 of B, i.e. if there is a switching
path B1

G A G B2.

I Definition 12. A link A is in scope of a switched link B, written A � B, if A �G B

for some G. The scope of a link B is the set {A | A� B}.

We take the scope relation (�) as ranging over all links, though note that for a solid link
B there is never any A� B.

I Lemma 13. In a pre-net satisfying the switching condition, (�) is a strict partial order.

Proof. Irreflexivity: A��� A. Immediate, since a switching path A1 A A2 (with A

switched to A2) creates a cycle A1 A A1 by switching A to A1.
Transitivity: if A� B � C then A� C. Let B be a switched link with jump targets

B1, B2, and B3, and C a switched link with targets C1 and C2. Let A � B � C be
witnessed by switching graphs G and H, so that A�G B �H C, via the following paths.

B2
G A G B3 C1

H B1
H B H C2

We allow the possiblity that B1 is the same as either of B2 and B3, as is necessarily the case
for a binary switched link. First, we create a switching K which agrees with H everywhere
except the links on the below path, where it agrees with those links.

B B2
G A G B3

Crucially, no other path in G from B may connect to the above path, and so any path in K

not ending with a switched edge of B must agree with H. In particular this includes the path
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B C2. Moreover, in H no path from the principal port of B reaches C1, since there is
already a path C1 B1 B. Then also in K no path from the principal port of B, which
must all agree with H, can reach C1. Instead, C1 and B must then be connected as follows.

C1
K B2

K B

Let X be the link where this path first intersects the path B2
G A G B3, where K agrees

with G; without loss of generality, assume thats X comes before A. This gives the following.

C1
K X K B2 B2

K X K A K B3

Switching B to B3 we have the following path.

C1
K X K A K B3 B K C2

Then A� C, as required. J

Our notion of scope is related to the first author’s notion of loop for MLL nets with Mix
[1]. It is further closely related to the De Naurois–Mogbil correctness condition [10]. This
uses the relation (�G), over a fixed switching graph G. Unlike (�) the relation (�G) is
not necessarily transitive. We write (�∗G) for the transitive closure and (�n

G) for the n-fold
relational composition,

A0 �n
G An = A0 �G A1 �G · · · �G An .

I Proposition 14. In a pre-net satisfying the switching condition, A�∗G B if and only if
A� B.

Proof. From left to right, A �G B implies A � B, and (�) is transitive. From right to
left, we proceed by induction on the distance between A and B in (�). First consider the
case where A and B are immediate neighbours (distance 1), i.e. there is no C such that
A � C � B. Then there is a path between the premises of B that does not contain any
switched links. Whichever way G switches on B, we have A�G B. In the case where there
is a C such that A � C � B, by induction we have A �∗G C and C �∗G B, and hence
A�∗G B. J

The scope of a link A includes exactly those links that must be contracted before A

can be contracted itself. (We will use this to prove that a correct pre-net contracts, by
demonstrating that any link that is minimal in (�) may be contracted, as part of the proof
of Theorem 16 below.) The scope of A then corresponds to the smallest open subproof of
A in any sequentialization. In this way, the notion of scope is also closely related to the
standard notion of kingdom [2]: the kingdom kA of a subformula A corresponds to the
smallest subproof of A in any sequentialization.

For an MLL proof net, the kingdom kA is the smallest subgraph such that A ∈ kA and:
1. if B ∈ kA and B is in an axiom link with B⊥, then B⊥ ∈ kA;
2. if B ⊗ C ∈ kA then B ∈ kA and C ∈ kA;
3. If B ℘ C ∈ kA then kA includes the scope of B ℘ C: if D � B ℘ C then D ∈ kA.
Observe that (2) corresponds to the fact that a subproof containing B ⊗C must contain also
subproofs for B and for C; however, an open subproof need not. Because scope is transitive,
and because it does not need to be closed under (2) like kingdoms, we may avoid an inductive
definition. Interestingly, this implies that (smallest) open subproofs are a geometric concept,
not an inductive one.
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We will now show that contractibility and geometric correctness are equivalent conditions.
First, we establish that if N contracts to M , then if either of N and M is geometrically
correct, both are. This is a straightforward induction on the contraction sequence.

(a)
R

Γ
∆ A Γ′

S
∆′

?
 

Γ Γ′
R?S

∆ ∆′

(b)
A

x Γ
R

B
x

∆
A(B

(I
 

A�R∆

Γ IDΓ ; R?(B × A(B)
A(B ∆

I Lemma 15. Contraction preserves and reflects geometric correctness.

Proof. We will treat the star-contraction rule (a) and the contraction rule for linear implica-
tion (b); the other rules are similar, or trivial.

Let N  M by a ?-step. The composition R?S ensures that directed paths are maintained
through the contraction step. It follows that the targets of any(I or −E link are the same
in both N and M , save that if one of both contracted links in N is a target then the resulting
link in M is a target, and vice versa. This leaves the geometry of the switching graphs in N

and M unchanged.
Next, let N  M by a(I-step. Because of the side-condition A�R∆, the only target of

the link A( B is the contraction link R. It follows that there is a one-to-one correspondence
between switching graphs in N and in M , preserving their geometry. J

I Theorem 16. A pre-net N contracts if and only if it is geometrically correct.

Proof. From left to right, assume that N contracts. The end result, a single contracted link,
is geometrically correct. Since contraction reflects geometric correctness, by Lemma 15, by
induction on the contraction sequence N is geometrically correct.

From right to left, it must be shown that if N is geometrically correct, a contraction step
applies. As contraction preserves geometric correctness (Lemma 15), it then follows that N

contracts, by induction on its size.
Contraction steps on solid links have no side conditions, and the star-contraction rule (a)

applies to any adjacent relational links. Applying these steps first, we may assume that N

consists solely of relational links separated by switched links. Consider a switched link that
is minimal in (�). We will treat the case of a (I link A(B and show that a (I-step (b)
applies; the other three cases are similar.

Let X be the link connected to the port A of the closed assumption of A(B, and Y

the link connected to the auxiliary port B of the link A(B. In any switching graph G

the links X and Y must be connected, and since both are targets of A(B, they cannot
be connected through its principal port, as this would violate irreflexivity of (�). Because
A(B is minimal in (�) there can be no switched link on the switching path X Y , and
since relational links are not adjacent (they would have been contracted), there can be only
one. Then X = Y is the unique relational link to which both ports A and B connect, as
required by the (I contraction step (b).

Finally, we show that the side condition A�R∆ is satisfied. Suppose there is a port D in
∆ such that ARD. By the bi-functionality condition D cannot be an open conclusion, and
cannot connect to a closed one. The link L connected at D must then be a switched link
(since adjacent relational links were assumed to have been contracted). Note that L is a
target of A(B. If L is a ⊗E,(I, or ℘I link, also at least one link connected at an auxiliary
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A B
A⊗B
A⊗B
A B

[⊗]
 

A B
A B

A...
B

A(B
A(B A

B

x

x
[(]
 

A
A...
B
B

A
A
A

ax
cut

[R]
 A

C D
C ℘ D
C ℘ D
C D

[℘]
 C D

C D

D
C D − C

D − C
D...
C

x

x

[−]
 

D
D...
C
C

C
C
C

cut
ax

[L]
 C

Figure 6 Proof net normalization rules.

port of L (possibly X) is a target of A(B. This would mean L� (A(B), contradicting
the assumption that A(B was minimal. It follows that A�R∆, and a (I-contraction step
applies to A(B. J

To be effective, it is crucial to have strong contractibility, where any contraction path
(eventually) terminates with a single link. If only some paths would eventually be successful,
an algorithm for correctness would need to backtrack (or have a guaranteed strategy). Instead,
we should be able to use any contraction sequence, without the chance of failure. This is
established by the following theorem.

I Theorem 17 (Strong contractibility). MBILL− proof nets are strongly contractible.

Proof. Since proof nets are correct (Theorem 16), and contraction preserves correctness
(Lemma 15), any contraction step yields a correct proof net, which must then contract
(Theorem 16). J

6 Normalization

We give proof reduction as a graph-rewrite relation on pre-nets. There are six reduction
steps, one for each connective and two for axioms, given in Figure 6. Since proof nets strictly
reduce in size, termination is immediate. So is confluence: the only redexes that may overlap
are [L] and [R], but this critical pair converges trivially. A pre-net is in normal form if it
has no cuts, and in expanded normal form if in addition the formulas of axiom links are
atomic. The unique expanded normal form of a net N is denoted N↓. The example in the
introduction is in expanded normal form.

I Theorem 18 (Normalization preserves correctness). A proof net reduces to a proof net.

Proof. By inspection of the normalization steps, geometric correctness is preserved. J

6.1 One-step composition
Proof nets in expanded normal form have a compact alternative representation. In a purely
multiplicative logic such as MBILL−, a proof (or proof net) has exactly one rule (or link)
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for every connective in the conclusion sequent. Identifying links with connectives, we can
display a proof net by drawing its open assumptions (above) and conclusions (below), and
connecting these with the axiom links. An example was given in the introduction; here is
another.

a
a ( b a

b
b

(a( b)( b ℘ c a ( b
b ℘ c

b c
d b − d c
d

z

z

(a( b)( b ℘ c a( b

d b− d c

We will formalize such proof nets as the compact form of a net in expanded normal form.
As in classical and intuitionistic MLL [16], composition of compact forms in MBILL− is
particularly nice: it is path-composition along the axiom links of both nets, as connected
through the formula along which they are composed. This is demonstrated below. On the left
are the net from the introduction, in blue, and that from above in red (with the assumption
a ( b re-positioned on the left), with their common open conclusion and assumption
superimposed. Composing these nets along that common formula gives the net below right.

a ℘ d

a( b (a( b)( b ℘ c d− c

d b− d c

a( b a ℘ d

d b− d c d− c

We will formalize this concisely, as follows.

I Definition 19. The compact form bNc = Λ: Γ ` ∆ of a pre-net N in expanded normal
form consists of the open assumptions Γ, the open conclusions ∆, and the axiom links Λ of
N .

Given two compact forms bMc = ΛM : ΓM ` ∆M A+ and bKc = ΛK : A− ΓK ` ∆K ,
define their composition along A as Λ: ΓM ΓK ` ∆M ∆K where Λ consists of all
maximal paths in the undirected graph formed by ΛM , ΛK , and connecting corresponding
atoms in A+ and A−. Correspondingly for (non-compact) pre-nets, the cut-composition
along A of pre-nets M with open conclusion A+ and K with open assumption A−, is the
(disjoint) union of both graphs together with a cut-link with premise A+ and conclusion A−.

I Theorem 20. If N is the cut-composition along A of proof nets M and K in expanded
normal form, then bN↓c is the composition along A of bMc and bKc.

Proof. By induction on the cut-formula. J
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A Relations with existing syntax.

Lamarche [19] (see also Murawski and Ong [21]) developed a system of essential nets for ILL
where nets are polarized, edges are directed and the polarization of links reflects the structure
of ILL sequent calculus inferences. Notice that a ℘− link is not switched and ℘+ links have a
canonical right switch. The links of polarized classical MLL− formuas correspond to the
intuitionistic ILL− inferences in red.

+ + −
��

−
��

− + + −
~~

+ ((
ax − − 55cut +

⊗+

^^ @@

℘−

��
℘+

>>

⊗−
``

��
+

OO

− +
OO

−

⊗R ⊗L ( R ( L ax cut

I Definition 21. An essential net E is a structure satisfying the following conditions:
1. (acyclicity) there is no cycle of directed edges in E ;
2. (functionality of implications) for every ℘+ link with premises A− and B+, every directed

path from (the only positive) conclusion of E to A− passes through B+.
Lamarche proves that every correct proof net can be sequentialized into an ILL sequent
derivation.

I Example 22. Essential net for q ⊗ (q( r) ` (r( p)( p, where X = q ⊗ (q( r) and
Y = (r( p)( p.

R

ax ax ax

q−
��

q+

oo

cc r−
��

||
r+

oo

p−
��

p+

oo

==

⊗− ⊗−
bb

{{

℘−
��

!! L1 {{
℘+
L2

OO

X Y

In order to extend the above representation to FILL− and BILL− we may add links for
intuitionistic par and subtraction, below left. However, in this extension it is no longer
possible to verify the acyclicity condition on directed paths. There is no directed cycle in the
pre-net below right:

+ + −
!!

−
}}

+ −
||

−
""

+

℘+ +

aa ==

⊗− −
��

⊗+ −

bb

℘− +

��
+
OO

− +

OO

−

℘R ℘L −R −L

ax

ax

B−
$$

��
A−

zz

��
A+

oo

B+

oo

⊗− −
��

⊗+
bb <<

OO

A solution is first test the MLL− acyclicity and connectedness condition of undirected DR-
graphs with switchings on par-like links, namely, links representing MBILL− ⊗L, ℘R (for
( R and −L the switching is canonical), and then test a specific correctness condition, the
bifunctionality condition on ( R and −L.

The first author [1] sequentializes proof nets for FILL into Hyland and De Paiva’s labelled
sequent calculus.

I Definition 23. A proof net R for FILL- is a polarized MLL- structure satisfying the
following conditions:
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1. (DR condition) for every switching s, sR is acyclic and connected;
2. (functionality of implications) for every ℘+ link with premises A− and B+, and conclusion

(A℘B)+ every directed path from any positive conclusion X+ of R to A− passes through
(A℘B)+.

To prove sequentialization the following lemma is needed:

Lemma. Let D be a labelled sequent calculus derivation of S and let D− be the polarized
proof net resulting from de-sequentializing D−. Then x : A occurs in t : B in some sequent
of D iff there is a directed path from (B′)+ to (A′)− in D−, where (B′)+ and (A′)− are the
translations of B and A in polarized MLL.

I Example 24.

R

ax ax ax

q−
��

q+

oo

cc r+

//

<< r−
��

p−
��

p+

oo

==

⊗+ ⊗−−
$$ yy

℘+OO
L1

;;

℘+
L2

OO

X Y

Here X = q( (q⊗ r), Y = (r℘p)( p and there is a directed path from X to the premise r℘p of Y
against the functionality of implication. In the following sequent derivation

y : q ` y : q z : r ` z : r
y : q, z : r ` y ⊗ z : q ⊗ r x : p ` x : p

v : r℘p, y : q ` let v be zr − in y ⊗ z : q ⊗ r, let v be − x in x : p
( R

v : r℘p ` λy.let v be zr − in y ⊗ z : q( q ⊗ r, let v be− xp in x : p
( R` λy.let v be zr − in y ⊗ z : q( q ⊗ r, λv.let v be− xp in x : (r℘p)( p

the last inference ( R is incorrect because v still occurs free in the succedent.
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Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A
closure is a pair consisting of a lambda-term and an environment, whereas an environment is
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Following a somewhat similar path, Bendkwoski, Grygiel and Zaionc investigated later the
asymptotic properties of normal-order reduction in combinatory logic, in particular the
normalisation cost of large random combinators [7, 4]. Alas, normalisation in λ-calculus
has not yet been studied in such a combinatorial context. Nonetheless, static, quantitative
properties of λ-terms, form an active stream of recent research. Let us mention, non-
exhaustively, investigations into the asymptotic properties of large random λ-terms [15, 6] or
their effective counting and random generation ensuring a uniform distribution among terms
with equal size [8, 23, 22, 9].

In the current paper, we take a step towards the average-case analysis of reduction com-
plexity in λ-calculus. Specifically, we offer a quantitative analysis of environments and closures
— two types of structures frequently present at the core of abstract machines modelling λ-term
evaluation, such as for instance the Krivine or U- machine [13, 28]. In Section 3 we discuss
the combinatorial representation of environments and closures, in particular the associated
de Bruijn notation. In Section 4 we list the analytic combinatorics tools required for our
analysis. Next, in Section 5 and Section 6 we conduct our quantitative investigation into
so-called plain and closed environments and closures, respectively, subsequently concluding
the paper in Section 7.

2 A combinatoric approach to higher order rewriting systems

As said in the introduction, viewing the λ-calculus from the perspective of counting is new,
especially in the scientific community of structures for computation and deduction and
requires motivation to be detailed.

First, clearly a new perspective on λ-calculus enlightens the semantics and opens new
directions, especially by adding a touch of efficiency and a discussion on how the size
of structures with binders (like λ-terms) can be measured. However, despite advanced
mathematical techniques are used, the goal is more practical and connected to operational
semantics and implementation. Counting allows assigning a precise measure on how a specific
algorithm performs. In [24]2 Knuth calls analysis of Type A an analysis of a particular
algorithm and shows how important it is in computer science. He adds (p. 3): “Complexity
analysis provides an interesting way to sharpen our tools for the more routine problems we
face from day to day.”

Furthermore, a notion of probabilistic distribution as used in the average-case analysis of
algorithm, after Sedgewick and Flajolet [35], is deduced. In particular a notion of uniform
distribution is inferred in order to evaluate the average case efficiency of algorithms w.r.t.
this distribution. In this paper, the algorithms the authors have in mind are the several
reduction machines for the λ-calculus, especially the Krivine machine and the U-machine,
for which analyses of Type A and more specifically average case analyses are expected to
be built. Another application is random generation of terms and several kinds of structures
for computation and deduction as used for instance in QuickCheck [12]. A fully and
mathematically justified random generator can only be built using the kind of tools developed
in this paper.

But average case analysis based on uniform distribution is not the only one. The so-called
smoothed analysis of algorithms [36] is another family of tools which is based on measures of
size. Here the distribution is no more uniform and this method has promising applications,
hopefully in structures for computation and deduction.

2 This paper is part of the book “Selected Papers on Analysis of Algorithms” [25] dedicated to Professor
N. G. de Bruijn.
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Figure 1 Three representations of the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z).

3 Environments and closures

In this section we outline the de Bruijn notation and related concepts deriving from λ-calculus
variants with explicit substitutions used in the subsequent sections.

3.1 De Bruijn notation
Though the classic variable notation for λ-terms is elegant and concise, it poses considerable
implementation issues, especially in the context of substitution resolution and potential
name clashes. In order to accommodate these problems, de Bruijn proposed an alternative
name-free notation for λ-terms [16]. In this notation, each variable x is replaced by an
appropriate non-negative integer n (so-called index) intended to encode the distance between
x and its binding abstraction. Specifically, if x is bound to the (n+ 1)st abstraction on its
unique path to the term root in the associated λ-tree, then x is replaced by the index n.
In this manner, each closed λ-term in the classic variable notation is representable in the
de Bruijn notation.

I Example 1. Consider the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z). Figure 1 depicts
three different representations of T as tree-like structures. The first one uses explicit variables,
the second one uses back pointers to represent the bound variables, whereas the third one
uses de Bruijn indices.

In order to represent free occurrences of variables, one uses indices of values exceeding
the number of abstractions crossed on respective paths to the term root. For instance, λx.yz
can be represented as λ12 since 1 and 2 correspond to two different variable occurrences.

Recall that in the classic variable notation a λ-term M is said to be closed if each of its
variables is bound. In the de Bruijn notation, it means that for each index occurrence n in
M one finds at least n+ 1 abstractions on the unique path from n to the term root of M . If
a λ-term is not closed, it is said to be open. If heading M with m abstractions turns it into
a closed λ-term, then M is said to be m-open. In particular, closed λ-terms are 0-open.

I Example 2. Note that λλλλ(3(λλ1)) (λ(λ0)0) is closed. The λ-term 3(λλ1) is 4-open,
however it is not 3-open. Indeed, λλλ(3(λλ1)) is 1-open instead of being closed. Similarly,
λ(3(λλ1)) is 3-open, however it is not 2-open.

FSCD 2018



11:4 Counting Environments and Closures

Certainly, the set Lm of m-open terms is a subset of the set of (m+ 1)-open terms. In
other words, if M is m-open, it is also (m+ 1)-open. The set of all λ-terms is called the set
of plain terms. It is the union of the sets of m-open terms and is denoted as L∞. Hence,

L0 ⊆ L1 ⊆ · · · ⊆ Lm ⊆ Lm+1 · · · ⊆
∞⋃
i=0
Li = L∞ . (1)

Let us note that de Bruijn’s name-free representation of λ-terms exhibits an important
combinatorial benefit. Specifically, each λ-term in the de Bruijn notation represents an
entire α-equivalence class of λ-terms in the classical variable notation. Indeed, two variable
occurrences bound by the same abstraction are assigned the same de Bruijn index. In
consequence, counting λ-terms in the de Bruijn notation we are, in fact, counting entire
α-equivalence classes instead of their inhabitants.

3.2 Closures and β-reduction
Recall that the main rewriting rule of λ-calculus is β-reduction, see, e.g. [14]

(β) (λM) N → M{0← N} (2)

where the operation {n←M}, i.e. substitution of λ-terms for de Bruijn indices, is defined
inductively as follows:

(M N){n← P} = M{n← P} N{n← P}
(λM){n← P} = λ(M{(n+ 1)← P})

m{n← P} =


m− 1 if m > n

τn0 (P ) if m = n

m if m < n .

(3)

Th first rule distributes the substitution in an application, the second rule pushes a substitu-
tion under an abstraction and the third rule tells how a substitution acts when the term is
an index. τn0 (P ) tells how to update the indices of a term which is substituted for an index.
The operation τni (M) is defined by induction on M as

τni (M N) = τni (M) τni (N)
τni (λM) = λ(τni+1(M))

τni (m) =
{
m+ n− 1 if m > i

m if m ≤ i .
(4)

A λ-term in the form of (λM) N is called a β-redex (or simply a redex). Lambda terms
not containing β-redexes as subterms, are called (β-)normal forms. The computational
process of rewriting (reducing) a λ-term to its β-normal form by successive elimination of
β-redexes is called normalisation. There exists an abundant literature on normalisation in
λ-calculus; let us mention, not exhaustively [27, 33, 29, 13, 30].

One of the central concepts present in various formalisms dealing with normalisation in
λ-calculus are environments and closures. An environment is a list of values meant to be
assigned to indices 0, 1, 2, . . . ,m− 1 of an m-open λ-term. A closure, on the other hand, is
a couple consisting of a λ-term and an environment. Such couples are meant to represent
closed, not yet fully evaluated, λ-terms. For instance, the closure 〈M,�〉 consists of the
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λ-term M evaluated in the context of an empty environment, denoted as �, and represents
simply M . The closure 〈1 0, 〈λ0,�〉 : 〈λλ0,�〉 : �〉 represents the λ-term (1 0) evaluated
in the context of an environment 〈λ0,�〉 : 〈λλ0,�〉 : �. Here, intuitively, the index 1 is
receiving the value λ0 whereas the index 0 is being assigned λλ0. Finally, λ0 is applied
to λλ0. And so, reducing the closure 〈1 0, 〈λ0,�〉 : 〈λλ0,�〉 : �〉 : �, for instance using a
Krivine abstract machine [13], we obtain λλ0.

Let us notice that following the outlined description of environments and closures, we can
provide a formal combinatorial specification for both using the following mutually recursive
definitions:

Clos ::= 〈Λ, Env〉
Env ::= � | Clos : Env (5)

In the above specification, Λ denotes the set of all plain λ-terms. Moreover, we introduce two
binary operators “〈_,_〉”, i.e. the coupling operator, and “:”, i.e. the cons operator, heading
its left-hand side on the right-hand list. When applied to a λ-term and an environment,
the coupling operator constructs a new closure. In other words, a closure is a couple of a
λ-term and an environment whereas an environment is a list of closures, representing a list
of assignments to free occurrences of de Bruijn indices.

Such a combinatorial specification for closures and environments plays an important
rôle as it allows us to investigate, using methods of analytic combinatorics, the quantitative
properties of both closures and environments.

4 Analytic tools

In the following section we briefly3 outline the main techniques and notions from the theory
of generating functions and singularity analysis. We refer the curious reader to [19, 37, 21]
for a thorough introduction.

Let (fn)n be a sequence of non-negative integers. Then, the generating function F (z)
associated with (fn)n is the formal power series F (z) =

∑
n≥0 fnz

n. Following standard
notational conventions, we use [zn]F (z) to denote the coefficient standing by zn in the
power series expansion of F (z). Given two sequences (an)n and (bn)n we write an ∼ bn to
denote the fact that both sequences admit the same asymptotic growth order, specifically
lim
n→∞

an
bn

= 1. Finally, we write ϕ .= c if we are interested in the numerical approximation c
of an expression ϕ.

Suppose that F (z), viewed as a function of a single complex variable z, is defined in some
region Ω of the complex plane centred at z0 ∈ Ω. Then, if F (z) admits a convergent power
series expansion in form of

F (z) =
∑
n≥0

fn(z − z0)n (6)

it is said to be analytic at point z0. Moreover, if F (z) is analytic at each point z ∈ Ω,
then F (z) is said to be analytic in the region Ω. Suppose that there exists a function G(z)
analytic in a region Ω∗ such that Ω ∩ Ω∗ 6= ∅ and both F (z) and G(z) agree on Ω ∩ Ω∗,
i.e. F |Ω∩Ω∗ = G|Ω∩Ω∗ . Then, G(z) is said to be an analytic continuation of F (z) onto Ω∗. If

3 In such a short presentation of a non-trivial theory, many terms, like “branch”, “Newton-Puiseux series”,
“locally convergent” etc. are not defined. They are defined in the references [19, 37, 21].
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F (z) defined in some region Ω \ {z0} has no analytic continuation onto Ω, then z0 is said
to be a singularity of F (z). When a formal power series F (z) =

∑
n≥0 fnz

n represents an
analytic function in some neighbourhood of the complex plane origin, it becomes possible
to link the location and type of singularities corresponding to F (z), in particular so-called
dominating singularities residing at the respective circle of convergence, with the asymptotic
growth rate of its coefficients. This process of singularity analysis developed by Flajolet and
Odlyzko [18] provides a general and systematic technique for establishing the quantitative
aspects of a broad class of combinatorial structures.

While investigating environments and closures, a particular example of algebraic combin-
atorial structures, the respective generating functions turn out to be algebraic themselves.
The following prominent tools provide the essential foundation underlying the process of
algebraic singularity analysis based on Newton-Puiseux expansions, i.e. extensions of power
series allowing fractional exponents.

I Theorem 3 (Newton, Puiseux [19, Theorem VII.7]). Let F (z) be a branch of an algebraic
equation P (z, F (z)) = 0. Then, in a circular neighbourhood of a singularity ρ slit along a ray
emanating from ρ, F (z) admits a fractional Newton-Puiseux series expansion that is locally
convergent and of the form

F (z) =
∑
k≥k0

ck(z − ρ)k/κ (7)

where k0 ∈ Z and κ ≥ 1.

Let F (z) be analytic at the origin. Note that [zn]F (z) = ρ−n[zn]F (ρz). In consequence,
following a proper rescaling we can focus on the type of singularities of F (z) on the unit
circle. The standard function scale provides then the asymptotic expansion of [zn]F (z).

I Theorem 4 (Standard function scale [19, Theorem VI.1]). Let α ∈ C \ Z≤0. Then, F (z) =
(1− z)−α admits for large n a complete asymptotic expansion in form of

[zn]F (z) = nα−1

Γ(α)

(
1 + α(α− 1)

2n + α(α− 1)(α− 2)(3α− 1)
24n2 +O

(
1
n3

))
(8)

where Γ:C \ Z≤0 → C is the Euler Gamma function defined as

Γ(z) =
∫ ∞

0
xz−1e−xdx for <(z) > 0 (9)

and by analytic continuation on all its domain.

Given an analytic generating function F (z) implicitly defined as a branch of an algebraic
function P (z, F (z)) = 0 our task of establishing the asymptotic expansion of the corresponding
sequence ([zn]F (z))n reduces therefore to locating and studying the (dominating) singularities
of F (z). For generating functions analytic at the complex plane origin, this quest simplifies
even further due to the following classic result.

I Theorem 5 (Pringsheim [19, Theorem IV.6]). If F (z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then the
point z = R is a singularity of F (z).

We can therefore focus on the real line while searching for respective singularities. Since
√
z

cannot be unambiguously defined as an analytic function at z = 0 we primarily focus on roots
of radicand expressions in the closed-form formulae of investigated generating functions.
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4.1 Counting λ-terms
Let us outline the main quantitative results concerning λ-terms in the de Bruijn notation,
see [6, 22]. In this combinatorial model, indices are represented in a unary encoding using
the successor operator S and 0. In the so-called natural size notion [6], assumed throughout
the current paper, the size of λ-terms is defined recursively as follows:

|0| = 1
|S n| = |n| = |n|+1

|M N | = |M |+|N |+1
|λM | = |M |+1 .

And so, for example, |λ12|= 7. We briefly remark that different size notions in the de Bruijn
representation, alternative to the assumed natural one, are considered in the literature.
Though all share similar asymptotic properties, we choose to consider the above size notion
in order to minimise the technical overhead of the overall presentation. We refer the curious
reader to [22, 9] for a detailed analysis of various size notions in the de Bruijn representation.

Let ln denote the number of plain λ-terms of size n. Consider the generating function
L∞(z) =

∑
n≥0 lnz

n. Using symbolic methods, see [19, Part A. Symbolic Methods] we note
that L∞(z) satisfies

L∞(z) = zL∞(z) + zL∞(z)2 +D(z) where D(z) = z

1− z =
∞∑
n=0

zn+1. (10)

In words, a λ-term is either (a) an abstraction followed by another λ-term, accounting for
the first summand, (b) an application of two λ-terms, accounting for the second summand,
or finally, (c) a de Bruijn index which is, in turn, a sequence of successors applied to 0.
Solving (10) for L∞(z) we find that the generating function L∞(z), taking into account that
the coefficients ln are positive for all n, admits the following closed-form solution:

L∞(z) =
1− z −

√
(1− z)2 − 4z

1−z

2z . (11)

In such a form, L∞(z) is amenable to the standard techniques of singularity analysis. In
consequence we have the following general asymptotic approximation of ln.

I Theorem 6 (Bendkowski, Grygiel, Lescanne, Zaionc [6]). The sequence ([zn]L∞(z))n cor-
responding to plain λ-terms of size n admits the following asymptotic approximation:

[zn]L∞(z) ∼ Cρ−nL∞n
−3/2 (12)

where

ρL∞ = 1
3

 3
√

26 + 6
√

33− 4 22/3

3
√

13 + 3
√

33
− 1

 .= 0.29559 and C
.= 0.60676. (13)

In the context of evaluation, the arguably most interesting subclass of λ-terms are closed
or, more generally, m-open λ-terms. Recall that an m-open λ-term takes one of the following
forms. Either it is (a) an abstraction followed by an (m+1)-open λ-term, or (b) an application
of two m-open λ-terms, or finally, (c) one of the indices 0, 1, . . . ,m− 1. Such a specification
for m-open λ-terms yields the following functional equation defining the associated generating
function Lm(z):

Lm(z) = zLm+1(z) + zLm(z)2 + 1− zm

1− z . (14)
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Since Lm(z) depends on Lm+1(z), solving (14) for Lm(z) one finds that

Lm(z) =
1−

√
1− 4z2

(
Lm+1(z) + 1−zm

1−z

)
2z . (15)

Such a presentation of Lm(z) poses considerable difficulties as Lm(z) depends on Lm+1(z)
depending itself on Lm+2(z), etc. If developed, the formula (15) for Lm(z) consists of an
infinite number of nested radicals. In consequence, standard analytic combinatorics tools do
not provide the asymptotic expansion of [zn]Lm(z), in particular [zn]L0(z) associated with
closed λ-terms. In their recent breakthrough paper, Bodini, Gittenberger and Gołębiewski [9]
propose a clever approximation of the infinite system associated with Lm(z) and give the
following asymptotic approximation for the number of m-open λ-terms.

I Theorem 7 (Bodini, Gittenberger and Gołębiewski [9]). The sequence ([zn]Lm(z))n cor-
responding to m-open λ-terms of size n admits the following asymptotic approximation:

[zn]Lm(z) ∼ Cmρ−nL∞n
−3/2 (16)

where ρL∞ is the dominant singularity corresponding to plain λ-terms, see (13), and Cm is a
constant, depending solely on m.

Let us remark that for closed λ-terms, the constant C0 lies in between 0.07790995266 and
0.0779099823. In what follows, we use the above Theorem 7 in our investigations regarding
what we call closed closures.

5 Counting plain closures and environments

In this section we start with counting plain environments and closures, i.e. members of Env
and Clos, see (5). We consider a simple model in which the size of environments and closures
is equal to the total number of abstractions, applications and the sum of all the de Bruijn
index sizes. Formally, we set

|〈M, e〉| = |M |+ |e| |c : e| = |c|+ |e| |�| = 0 .

I Example 8. The following two tables list the first few plain environments and closures.

size environments total
0 � 1
1 〈0,�〉 : � 1

〈0,�〉 : 〈0,�〉 : �
2 〈0, 〈0,�〉 : �〉 : � 4

〈λ0,�〉 : �, 〈1,�〉 : �

size closures total
0 0
1 〈0,�〉 1

〈0, 〈0,�〉〉
2 〈λ0,�〉 〈1,�〉 3

By analogy with the notation L∞ for the set of plain λ-terms, we write E∞ and C∞ to denote
the class of plain environments and closures, respectively. Reformulating (5) we can now
give a formal specification for both E∞ and C∞ as follows:

E∞ = C∞ : E∞ | �
C∞ = 〈L∞, E∞〉 . (17)

In such a form, both classes E∞ and C∞ become amenable to the process of singularity
analysis. In consequence, we obtain the following asymptotic approximation for the number
of plain environments and closures.
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I Theorem 9. The numbers en and cn of plain environments and closures of size n, respect-
ively, admit the following asymptotic approximations:

en ∼ Ce · ρ−nn−3/2 and cn ∼ Cc · ρ−nn−3/2 (18)

where

Ce =

√
5
47
(
109 + 35

√
545
)

8
√
π

.= 0.699997,

Cc =

√
10(48069

√
5−10295

√
109)

65
√

109−301
√

5
√
π
(
77− 3

√
545
) .= 0.174999 (19)

and

ρ = 1
10

(
25−

√
545
)
.= 0.165476 giving ρ−n

.= 6.04315n. (20)

Proof. Consider generating functions E∞(z) and C∞(z) associated with respective counting
sequences, i.e. the sequence (en)n of plain environments of size n and (cn)n of plain closures
of size n. Based on the specification (17) for E∞ and C∞ and the assumed size notion, we
can write down the following system of functional equations satisfied by E∞(z) and C∞(z):

E∞(z) = C∞(z)E∞(z) + 1
C∞(z) = L∞(z)E∞(z). (21)

Next, we solve (21) for E∞(z) and C∞(z). Though (21) has two formal solutions, the
following one is the single one yielding analytic generating functions with non-negative
coefficients:

E∞(z) =
1−

√
1− 4L∞(z)

2L∞(z) and C∞(z) = 1
2

(
1−

√
1− 4L∞(z)

)
. (22)

Since L∞(z) > 0 for z ∈ (0, ρL∞) there are two potential sources of singularities in (22).
Specifically, the dominating singularity ρL∞ of L∞(z), see (13), or roots of the radicand
expression 1− 4L∞(z). Therefore, we have to determine whether we fall into the so-called
sub- or super-critical composition schema, see [19, Chapter VI. 9]. Solving 1− 4L∞(z) = 0
for z, we find that it admits a single solution ρ equal to

ρ = 1
10

(
25−

√
545
)
.= 0.165476 . (23)

Since ρ < ρL∞ the outer radicand carries the dominant singularity ρ of both E∞(z) and C∞(z).
We fall therefore directly into the super-critical composition schema and in consequence
know that near ρ both E∞(z) and C∞(z) admit Newton-Puiseux expansions in form of

E∞(z) = aE∞ + bE∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣)
and

C∞(z) = aC∞ + bC∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (24)

FSCD 2018
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with aE∞ , aC∞ > 0 and bE∞ , bC∞ < 0. At this point, we can apply the standard function
scale, see Theorem 4, to the presentation of E∞(z) and C∞(z) in (24) and conclude that

[zn]E∞(z) ∼ CE∞ρ−nn−3/2 and [zn]C∞(z) ∼ CC∞ρ−nn−3/2 (25)

where CE∞ = bE∞
Γ(− 1

2 )
and CC∞ = bC∞

Γ(− 1
2 )

, respectively, with Γ(− 1
2 ) = 2

√
π. In fact,

reformulating (22) so to fit the Newton-Puiseux expansion forms (24) we find that

aE∞ = 2, bE∞ = −1
4

√
5
47

(
109 + 35

√
545
)

(26)

and

aC∞ = 1
2 , bC∞ =

2
√

10(48069
√

5−10295
√

109)
65
√

109−301
√

5

3
√

545− 77
(27)

Numerical approximations of CE∞ = bE∞
Γ(− 1

2 )
and CC∞ = bC∞

Γ(− 1
2 )

yield the declared asymp-

totic behaviour of (en)n and (cn)n, see (18). J

Let us notice that as both generating functions E∞(z) and C∞(z) are algebraic, they are
also holonomic (D-finite), i.e. satisfy differential equations with polynomial (in terms of z)
coefficients. Using the powerful gfun library for Maple [34] one can automatically derive
appropriate holonomic equations for E∞(z) and C∞(z), subsequently converting them into
linear recurrences for sequences (en)n and (cn)n.

I Example 10. We restrict the presentation to the linear recurrence for the number of plain
environments, omitting for brevity the, likely verbose, respective recurrence for plain closures.
Using gfun we find that en satisfies the recurrence of Figure 2. Despite its appearance, this
recurrence is an efficient way of computing en. Indeed, holonomic specifications for C∞(z)
and E∞(z) allow computing the coefficients [zn]C∞(z) and [zn]E∞(z) using a linear number
of arithmetic operations, as opposed to a quadratic number of operations as following their
direct combinatorial specification. Let us remark that the computations involved operate on
large, having linear in n space representation, integers. For instance, e1000 has about 600
digits. In consequence, single arithmetic operations on such numbers cannot be performed in
constant time.

I Remark. The analytic approach utilising generating functions exhibits an important benefit
in the context of generating random instances of plain environments and closures. With
analytic generating functions at hand and effective means of computing both [zn]E∞(z) and
[zn]C∞(z), it is possible to design efficient samplers, constructing uniformly random (condi-
tioned on the outcome size n) structures of both combinatorial classes. For instance, using
holonomic specifications it becomes possible to construct exact-size samplers following the
so-called recursive method of Nijenhuis and Wilf, see [31, 20]. Moreover, since corresponding
generating functions are analytic, it is possible to design effective Boltzmann samplers [17],
either in their approximate-size variant constructing structures within a structure size inter-
val [(1− ε)n, (1 + ε)n] in time O(|ω|) where ω is the outcome structure, or their exact-size
variants running in time O(n2). Remarkably, both sampler frameworks admit effective tuning
procedures influencing the expected internal shape of constructed objects, e.g. frequencies of
desired sub-patterns [5]. With the growing popularity of (semi-)automated software testing
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(125n3 − 125n) en +
(−475n3 − 150n2 + 325n) en+1 +
(−1625n3 − 13650n2 − 29125n− 17100) en+2 +
(5925n3 + 65550n2 + 204825n+ 190800) en+3 +
(−10950n3 − 149850n2 − 609000n− 744300) en+4 +
(43599n3 + 638460n2 + 3028701n+ 4633680) en+5 +
(−97781n3 − 1680378n2 − 9481237n− 17550960) en+6 +
(122749n3 + 2388066n2 + 15211685n+ 31648968) en+7 +
(−184402n3 − 3954630n2 − 27717140n− 63149544) en+8 +
(280081n3 + 6826380n2 + 54868451n+ 145130568) en+9 +
(−205649n3 − 5654610n2 − 51851989n− 158722620) en+10 +
(37439n3 + 1339686n2 + 16635271n+ 70682784) en+11 +
(−68686n3 − 3028038n2 − 43616336n− 205972920) en+12 +
(222029n3 + 9258780n2 + 128417911n+ 592399800) en+13 +
(−241115n3 − 10519830n2 − 152823475n− 739190880) en+14 +
(134151n3 + 6201222n2 + 95476551n+ 489605640) en+15 +
(−42231n3 − 2067834n2 − 33729375n− 183277332) en+16 +
(7470n3 + 386418n2 + 6659316n+ 38233296) en+17 +
(−678n3 − 36972n2 − 671670n− 4065240) en+18 +
(24n3 + 1380n2 + 26436n+ 168720) en+19 = 0.

e0 = 1,
e1 = 1,
e2 = 4,
e3 = 17,
e4 = 77,
e5 = 364,
e6 = 1776,
e7 = 8881,
e8 = 45296,
e9 = 234806,

e10 = 1233816,
e11 = 6558106,
e12 = 35202448,
e13 = 190568779,
e14 = 1039296373,
e15 = 5704834700,
e16 = 31494550253,
e17 = 174759749005,
e18 = 974155147162.

Figure 2 Linear recurrence defining en with corresponding initial conditions.

techniques, see [12], combinatorial samplers for environments and closures exhibit potential
applications in testing normalisation frameworks and abstract machines implementations,
such as the Krivine machine. We briefly remark that randomly generated λ-terms already
proved useful in finding optimisation bugs in compilers of functional programming languages,
see [32]. Our prototype samplers for environments and closures, within above sampler
frameworks, are available at Github4.

6 Counting closed closures

In this section we address the problem of counting so-called closed closures5. A closure is
said to be closed if it consists of an m-open term associated with an environment of length
m made itself out of closed closures. Note that such closures correspond to not yet fully
evaluated m-open λ-terms. With such a description, the set Clos0 of closed closures can be
given using the following combinatorial specification:

Clos0 ::= L0×� | L1×〈Clos0〉 | L2×〈Clos0, Clos0〉 | L3×〈Clos0, Clos0, Clos0〉 | · · · (28)

4 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
5 We acknowledge that speaking of closed closures is a bit odd, however terms “closure” and “closed”
form a consecrated terminology that we merely associate together.
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I Example 11. The following table lists the first few closed closures.

size closures total
0, 1 0
2 〈λ0,�〉 1
3 〈λλ0,�〉 〈0, 〈λ0,�〉〉 2

〈λλλ0,�〉 〈λλ1,�〉 〈λ(00),�〉
4 〈λ0, 〈λ0,�〉〉 〈0, 〈λλ0,�〉〉 〈0, 〈0, 〈λ0,�〉〉〉 6

Establishing the asymptotic growth rate of the sequence (c0,n)n corresponding to closed
closures of size n poses a considerable challenge, much more involved than its plain counterpart.
In the following theorem we show that there exists two constants ρ, ρ < ρL∞ such that

lim
n→∞

ρ−n

c0,n
= 0 and lim

n→∞

c0,n
ρ−n

= 0. In other words, the asymptotic growth rate of (c0,n)n is

bounded by two exponential functions of n.

I Theorem 12. There exist ρ < ρ satisfying ρ < ρ < ρL∞ and functions θ(n), κ(n) satisfying
lim sup
n→∞

θ(n)1/n = lim sup
n→∞

κ(n)1/n = 1 such that for sufficiently large n we have ρ−nθ(n) <

c0,n < ρ−nκ(n).

Proof. Let us start with the generating function C0(z) associated with closed closures Clos0.
Note that from the specification (28) C0(z) is implicitly defined as

C0(z) =
∑
m≥0

Lm(z)C0(z)m. (29)

We can therefore identify a closed closure c with a tuple (t, c1, . . . , cm) where m ≥ 0, t is an
m-open λ-term and c1, . . . , cm are closed closures themselves. We proceed with defining two
auxiliary lower and upper bound classes C0(z) and C0(z) such that [zn]C0(z) ≤ [zn]C0(z) ≤
C0(z) for all n. Next, we establish their asymptotic behaviour and, in doing so, provide
exponential lower and upper bounds on the growth rate of closed closures.

We start with C0(z) =
∑
m≥0 L0(z)C0(z)m. Note that C0(z) is associated with closures

in which each term is closed, independently of the corresponding environment length. Hence,
as closed λ-terms are m-open for all m ≥ 0, we have [zn]C0(z) ≤ [zn]C0(z). Furthermore

C0(z) =
∑
m≥0

L0(z)C0(z)m = L0(z)
∑
m≥0

C0(z)m = L0(z)
1− C0(z) . (30)

Solving the above equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L0(z)

)
. In such a

form, it is clear that there are two potential sources of singularities, i.e. the singularity ρL∞
of L0(z), see Theorem 7, or the roots of the radicand 1− 4L0(z). Since L0(z) is increasing
and continuous in the interval (0, ρL∞) we know that if L0(ρL∞) > 1

4 then there exists a
ρ < ρL∞ such that L0(ρ) = 1

4 . Unfortunately, we cannot simply check that L0(ρ) > 1
4 as

there exists no known method of evaluating L0(z), defined by means of an infinite system of
equations, at a given point. For that reason we propose the following approach.

Recall that a λ-termM is said to be h-shallow if all its de Bruijn index values are (strictly)
bounded by h, see [22]. Let L(h)

m (z) denote the generating function associated with m-open
h-shallow λ-terms. Note that L(h)

0 (z), i.e. the generating function corresponding to closed
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h-shallow λ-terms, has a finite computable representation. Indeed, we have

L
(h)
0 (z) = zL

(h)
1 (z) + zL

(h)
0 (z)L(h)

0 (z)

L
(h)
1 (z) = zL

(h)
2 (z) + zL

(h)
1 (z)L(h)

1 (z) + z

L
(h)
2 (z) = zL

(h)
3 (z) + zL

(h)
2 (z)L(h)

2 (z) + z + z2

. . .

L
(h)
h−1(z) = zL

(h)
h (z) + zL

(h)
h−1(z)L(h)

h−1(z) + z + z2 + · · ·+ zh−1

L
(h)
h (z) = zL

(h)
h (z) + zL

(h)
h (z)L(h)

h (z) + z + z2 + · · ·+ zh (31)

Consider m < h. Each m-open h-shallow λ-term is either (a) in form of λM where M is an
(m+ 1)-open h-shallow λ-term due to the head abstraction, (b) in form of MN where both
M and N are m-open h-shallow λ-terms, or (c) a de Bruijn index in the set {0, 1, . . . ,m− 1}.
When m = h, we have the same specification with the exception of the first summand zL(h)

h (z)
where, as we cannot exceed h, terms under abstractions are h-open, instead of (h+ 1)-open.

Using such a form it is possible to evaluate L(h)
0 (z) at each point z ∈ (0, ρ(h)) where

ρ(h) > ρL∞ is the dominating singularity of L(h)
0 (z) satisfying ρ(h) −−−→

h→∞
ρ, see [22]. Certainly,

each closed h-shallow λ-term is in particular a closed λ-term. In consequence, [zn]L(h)
0 (z) ≤

[zn]L0(z) for each n. Moreover, for all sufficiently large n we have [zn]L(h)
0 (z) < [zn]L0(z).

This coefficient-wise lower bound transfers onto the level of generating function values and
we obtain L(h)

0 (z) < L0(z). Following the same argument, we also have L(h)
0 (z) < L

(h+1)
0 (z)

for each h ≥ 1. We can therefore use L(h)
0 (z) to approximate L0(z) from below — the higher

h we choose, the better approximation we obtain. Using computer algebra software6 it is
possible to automatise the evaluation process of L(h)

0 (ρL∞) for increasing values of h and
find that for h = 153 we obtain

L
(153)
0 (ρL∞) .= 0.25000324068941554 . (32)

Hence indeed, the asserted existence of ρ < ρL∞ such that L0(ρ) = 1
4 follows (interestingly,

taking h = 152 does not suffice as L152
0 (ρL∞) < 1

4 ). We fall hence in the super-critical
composition schema7 and note that C0(z) admits a Newton-Puiseux expansion near ρ as
follows:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (33)

for some constants a0 > 0 and b0 < 0. Hence, [zn]C0(z) grows asymptotically faster than

ρ−nθ(n) where θ(n) =
b0

Γ(− 1
2 )
n−3/2.

For the upper bound we consider C0(z) =
∑
m≥0 L∞(z)C0(z)m, i.e. the generating

function associated with closures in which all terms are plain (either closed or open),
independently of the constraint imposed by the corresponding environment length. Following
the same arguments as before, we note that [zn]C0(z) > [zn]C0(z). Now

C0(z) =
∑
m≥0

L∞(z)C0(z)m = L∞(z)
∑
m≥0

C0(z)m = L∞(z)
1− C0(z)

. (34)

6 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
7 Supercriticality ensures that meromorphic asymptotics applies and entails strong statistical regularities
(see [19] Section V.2 and Section IX.6).
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Solving the equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L∞(z)

)
. Note that in

this case, we can easily handle the radicand expression 1 − 4L∞(z) and find out that, as
in the lower bound case, we are in the super-critical composition schema. Specifically, ρ =
1
10
(
25−

√
545
) .= 0.165476, cf. (20), is the dominating singularity of C0(z). In consequence,

C0(z) admits the following Newton-Puiseux expansion near ρ:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (35)

for some constants a0 > 0 and b0 < 0. In conclusion, [zn]C0(z) grows asymptotically slower

than (ρ)−nθ(n) where θ(n) = b0

Γ(− 1
2 )
n−3/2, finishing the proof. J

With an implicit expression defining C0(z), see (29), efficient random generation of closed
closures poses a difficult task. Though we have no efficient Boltzmann samplers, it is possible
to follow the recursive method and an obtain exact-size samplers for a moderate range of
target sizes. We offer a prototype sampler of this kind, available at Github8.

7 Conclusions

We view our contribution as a small step towards the quantitative, average-case analysis
of evaluation complexity in λ-calculus. Using standard tools from analytic combinatorics,
we investigated some combinatorial aspects of environments and closures — fundamental
structures present in various formalisms dealing with normalisation in λ-calculus, especially
in its variants with explicit substitutions [28]. Though plain environments and closures
are relatively easy to count and generate, their closed counterparts pose a considerable
combinatorial challenge. The implicit and infinite specification of closed closures based on
closed λ-terms complicates significantly the quantitative analysis, namely estimating the
exponential factor in the asymptotic growth rate, or effectively generating random closed
closures. In particular, getting more parameters of the asymptotic growth will require more
sophisticated methods, like, for instance, the recent infinite system approximation techniques
of Bodini, Gittenberger and Gołębiewski [9].
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Abstract
We consider anti-unification for simply typed lambda terms in associative, commutative, and
associative-commutative theories and develop a sound and complete algorithm which takes two
lambda terms and computes their generalizations in the form of higher-order patterns. The
problem is finitary: the minimal complete set of generalizations contains finitely many elements.
We define the notion of optimal solution and investigate special fragments of the problem for
which the optimal solution can be computed in linear or polynomial time.
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1 Introduction

Anti-unification algorithms aim at computing generalizations for given terms. A generalization
of t and s is a term r such that t and s are substitution instances of r. Interesting
generalizations are those that are least general (lggs). However, it is not always possible
to have a unique least general generalization. In these cases the task is either to compute
a minimal complete set of generalizations, or to impose restrictions so that uniqueness is
guaranteed.

Anti-unification, as considered in this paper, uses both of these ideas. The theory is
simply-typed lambda calculus, where some function symbols may be associative, commutative,
or associative-commutative. A-, C-, and AC-anti-unification is finitary even for first-order
terms, and a modular algorithm has been proposed in [1] to compute the corresponding
minimal complete set of generalizations. Anti-unification for simply typed lambda terms can
be restricted to compute generalizations in the form of Miller’s patterns [13], which makes it
unitary, and the single least general generalization can be computed in linear time by the
algorithm proposed in [8]. These two approaches combine nicely with each other when one
wants to develop a higher-order equational anti-unification algorithm, and we illustrate it in
this paper. Basically, it extends the syntactic1 generalization rules from [8] by equational
decomposition rules inspired by those from [1], getting a modular algorithm in which different
equational axioms for different function symbols can be combined automatically. The

1 We refer to the higher-order anti-unification algorithm from [8] as syntactic, although it works modulo
βη-conversion.
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algorithm takes a pair of simply typed lambda terms and returns a set of their generalizations
in the form of higher-order patterns. It is terminating, sound, and complete. However, the
number of nondeterministic choices when decomposing may result in a large search tree.
Although each branch can be developed in linear time, there can be too many of them to
search efficiently.

This is the problem that we address in the second part of the paper. The idea is to use
a greedy approach: introduce an optimality criterion, use it to select an anti-unification
problem among different alternatives obtained by a decomposition rule, and try to solve
only that. In this way, we would only compute one generalization. Checking the criterion
and selecting the right branch should be done “reasonably fast”. To implement this idea,
we introduce conditions on the form of anti-unification problems which are guarantee to
compute “optimal” solutions, and study the corresponding complexities. In particular, we
identify conditions for which A-, C-, and AC-generalizations can be computed in linear time.
We also study how the complexity changes by relaxing these conditions.

Higher-order anti-unification has been investigated by various authors from different
application perspective. Research has been focused mainly on the investigation of special
classes for which the uniqueness of lgg is guaranteed. Some application areas include proof
generalization [14], higher-order term indexing [15], cognitive modeling and analogical
reasoning [9, 17], recursion scheme detection in functional programs [3], inductive synthesis of
recursive functions [16], just to name a few. Two higher-order anti-unification algorithms [6, 8]
are included in an online open-source anti- unification library [4, 5]. This related work does
not consider anti-unification with higher-order terms in the presence of equational axioms.
However, such a combination can be useful, for instance, for developing indexing techniques
for higher-order theorem provers [12] or in higher order program manipulation tools.

The organization of the paper is as follows: In Section 2 we introduce the main notions
and define the problem. In Section 3 we recall the higher-order anti-unification algorithm
from [8]. In Section 4 we extend the algorithm with equational decomposition rules. Section 5
is devoted to the introduction of computationally well-behaved fragments of anti-unification
problems. The next sections describe the behavior of equational anti-unification algorithms
on these fragments: In Section 6 we discuss associative generalization and speak about
optimality. Sections 7 and 8 are about C- and AC-generalizations. Sections 9 summarizes
the results and contains a discussion of future work and open problems.

2 Preliminaries

This work builds upon the formulations and results of [7, 8]. Higher-order signatures are
composed of types constructed from a set of base types (typically δ) using the grammar
τ ::= δ | τ → τ . We will consider → to be associative right unless otherwise stated. Variables
(typically X,Y, Z, x, y, z, a, b, . . .) as well as constants (typically f, c, . . .) are assigned types
from the set of types constructed using the above grammar. λ-terms (typically t, s, u, . . .)
are constructed using the grammar t ::= x | c | λx.t | t1 t2 where x is a variable and c is a
constant, and are typed using the type construction mentioned above. Terms of the form
(. . . (h t1) . . . tm), where h is a constant or a variable, will be written as h(t1, . . . , tm), and
terms of the form λx1. . . . .λxn.t as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn.
This basic language will be extended by higher-order constants satisfying equational axioms.
When necessary, we write a λ-term t together with its type α as t : α.

Every higher-order constant c will have an associated set of axioms, denoted by Ax(c). If
Ax(c) is empty then c does not have any associated properties and is called free. Otherwise,
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Ax(f) ⊆ {A,C} where A is associativity, i.e. f(a, f(b, c)) ≡ f(f(a, b), c) and C is commutativ-
ity, i.e. f(a, b) ≡ f(b, a). Note that only functions of the type α→ α→ α are allowed to have
equational properties. We assume that terms are written in flattened form, obtained by re-
placing all subterms of the formf(t1, . . . , f(s1, . . . , sm), . . . tn) by f(t1, . . . , s1, . . . , sm, . . . tn),
where A ∈ Ax(f). Also, by convention, the term f(t) stands for t, if A ∈ Ax(f). Other
standard notions of the simply typed λ-calculus, like bound and free occurrences of variables,
α-conversion, β-reduction, η-long β-normal form, etc. are defined as usual (see [2, 10]). By
default, terms are assumed to be written in η-long β-normal form. Therefore, all terms
have the form λx1, . . . , xn.h(t1, . . . , tm), where n,m ≥ 0, h is either a constant or a variable,
t1, . . . , tm have this form, and the term h(t1, . . . , tm) has a basic type.

The set of free variables of a term t is denoted by Vars(t). When we write an equality
between two λ-terms, we mean that they are equivalent modulo α, β and η equivalence.

The size of a term t, denoted |t|, is defined recursively as |h(t1, . . . , tn)| = 1 +
∑n
i=1 |ti|

and |λx.t| = 1 + |t|. The depth of a term t, denoted depth(t) is defined recursively as
depth(h(t1, . . . , tn)) = 1 + maxi∈{1,...,n} depth(ti) and depth(λx.t) = 1 + depth(t). For a term
t = λx1, . . . , xn.h(t1, . . . , tm) with n,m ≥ 0, its head is defined as head(t) = h.

A higher-order pattern is a λ-term where, when written in η-long β-normal form, all
free variable occurrences are applied to lists of pairwise distinct (η-long forms of) bound
variables. For instance, λx.f(X(x), Y ), f(c, λx.x) and λx.λy.X(λz.x(z), y) are patterns,
while λx.f(X(X(x)), Y ), f(X(c), c) and λx.λy.X(x, x) are not.

Substitutions are finite sets of pairs {X1 7→ t1, . . . , Xn 7→ tn} where Xi and ti have
the same type and the X’s are pairwise distinct variables. They can be extended to type
preserving functions from terms to terms as usual, avoiding variable capture. The notions of
substitution domain and range are also standard and are denoted, respectively, by Dom and
Ran.

We use postfix notation for substitution applications, writing tσ instead of σ(t). As
usual, the application tσ affects only the free occurrences of variables from Dom(σ) in t.
We write #»xσ for x1σ, . . . , xnσ, if #»x = x1, . . . , xn. Similarly, for a set of terms S, we define
Sσ = {tσ | t ∈ S}. The composition of σ and ϑ is written as juxtaposition σϑ and is defined
as x(σϑ) = (xσ)ϑ for all x. Another standard operation, restriction of a substitution σ to a
set of variables S, is denoted by σ|S .

A substitution σ1 is more general than σ2, written σ1 � σ2, if there exists ϑ such that
Xσ1ϑ = Xσ2 for all X ∈ Dom(σ1) ∪ Dom(σ2). The strict part of this relation is denoted
by ≺. The relation � is a partial order and generates the equivalence relation which we
denote by '. We overload � by defining s � t if there exists a substitution σ such that
sσ = t. The focus of this work is generalization in the presence of equational axioms thus
we need a more general concept of ordering of substitutions/terms by their generality. We
say that two terms s, t are s =E t if they are equivalent modulo E ⊆ {A,C}. For example,
f(a, f(b, c)) 6= f(f(a, b), c) but, f(a, f(b, c)) ={A} f(f(a, b), c). Under this notion of equality
we can say that a substitution σ1 is more general modulo an equational theory E ⊆ {A,C} than
σ2 written σ1 �E σ2 if there exists ϑ such that Xσ1ϑ =E Xσ2 for all X ∈ Dom(σ1)∪Dom(σ2)
Note that ≺ and ' and the term extension are generalized accordingly. Form this point on
we will use the ordering relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E
of two terms t1 and t2 if t �E t1 and t �E t2. It is a higher-order pattern generalization if
additionally t is a higher-order pattern. It is the least general generalization (lgg in short),
aka a most specific anti-instance, of t1 and t2, if there is no generalization s of t1 and t2
which satisfies t ≺E s. An anti-unification problem (shortly AUP) is a triple X( #»x ) : t , s

FSCD 2018
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where
λ #»x .X( #»x ), λ #»x .t, and λ #»x .s are terms of the same type,
t and s are in η-long β-normal form, and
X does not occur in t and s.

The variable X is called a generalization variable. The term X( #»x ) is called the generalization
term. The variables that belong to #»x , as well as bound variables, are written in the lower
case letters x, y, z, . . .. Originally free variables, including the generalization variables, are
written with the capital letters X,Y, Z, . . .. This notation intuitively corresponds to the usual
convention about syntactically distinguishing bound and free variables. The size of a set of
AUPs is defined as |{X1( # »x1) : t1 , s1, . . . , Xn( # »xn) : tn , sn}| =

∑n
i=1 |ti|+ |si|. Notice that

the size of Xi( #»xi) is not considered. An anti-unifier of an AUP X( #»x ) : t , s is a substitution
σ such that Dom(σ) = {X} and λ #»x .X( #»x )σ is a term which generalizes both λ #»x .t and λ #»x .s.

An anti-unifier of X( #»x ) : t , s is least general (or most specific) modulo an equational
theory E if there is no anti-unifier ϑ of the same problem that satisfies σ ≺E ϑ. Obviously, if
σ is a least general anti-unifier of an AUP X( #»x ) : t , s, then λ #»x .X( #»x )σ is a lgg of λ #»x .t

and λ #»x .s.
Here we consider a variant of higher-order equational anti-unification problem:

Given: Higher-order terms t and s of the same type in η-long β-normal form and an equational
theory E ⊆ {A,C}.

Find: A higher-order pattern generalization r of t and s modulo E ⊆ {A,C}.

Essentially, we are looking for r which is least general among all higher-order patterns
which generalize t and s (modulo E). There can still exist a term which is less general than
r, generalizes both s and t, but is not a higher-order pattern. In [8] there is an instance
for syntactic anti-unification: if t = λx, y.f(h(x, x, y), h(x, y, y)) and s = λx, y.f(g(x, x, y),
g(x, y, y)), then r = λx, y.f(Y1(x, y), Y2(x, y)) is a higher-order pattern, which is an lgg of t
and s. However, the term λx, y.f(Z(x, x, y), Z(x, y, y)), which is not a higher-order pattern,
is less general than r and generalizes t and s.

Another important distinguishing feature of higher-order pattern generalization modulo
E is that there may be more than one least general pattern generalization (lgpg) for a given
pair of terms. In the syntactic case there is a unique lgpg. The main contribution of this
paper is to find conditions on the AUPs under which there is a unique lgpg for equational
cases, and introduce weaker-optimality conditions which allow one to greedily search the
space for a less general generalization compared to the syntactic one. We formalize these
concepts in the following sections.

3 Higher Order Pattern Generalization in the Empty Theory

Below we assume that in the AUPs of the form X( #»x ) : t , s and the term λ #»x .X( #»x ) is a
higher-order pattern. We now introduce the rules for the higher-order pattern generalization
algorithm from [8], which works for E = ∅. It produces syntactic higher-order pattern
generalizations in linear time and will play a key role in our optimality conditions introduced
in later sections.

These rules work on triples A;S;σ, which are called states. Here A is a set of AUPs
of the form {X1( # »x1) : t1 , s1, . . . , Xn( # »xn) : tn , sn} that are pending to anti-unify, S is a
set of already solved AUPs (the store), and σ is a substitution (computed so far) mapping
variables to patterns. The symbol ] denotes disjoint union.
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Dec: Decomposition
{X( #»x ) : h(t1, . . . , tm) , h(s1, . . . , sm)} ]A; S; σ =⇒
{Y1( #»x ) : t1 , s1, . . . , Ym( #»x ) : tm , sm} ∪A; S; σ{X 7→ λ #»x .h(Y1( #»x ), . . . , Ym( #»x ))},

where h is a free constant or h ∈ #»x , and Y1, . . . , Ym are fresh variables of the appropriate
types.

Abs: Abstraction Rule
{{X( #»x ) : λy.t , λz.s}} ]A; S; σ =⇒
{X ′( #»x , y) : t , s{z 7→ y}} ∪A; S; σ {X 7→ λ #»x , y.X ′( #»x , y)} ,

where X ′ is a fresh variable of the appropriate type.

Sol: Solve Rule
{X( #»x ) : t , s} ]A; S; σ =⇒ A; {Y ( #»y ) : t , s} ∪ S; σ {X 7→ λ #»x .Y ( #»y )}

where t and s are of a basic type, head(t) 6= head(s) or head(t) = head(s) = Z 6∈ #»x . The
sequence #»y is a subsequence of #»x consisting of the variables that appear freely in t or in s,
and Y is a fresh variable of the appropriate type.

Mer: Merge Rule
A; {X( #»x ) : t1 , t2, Y ( #»y ) : s1 , s2} ] S; σ =⇒
A; {X( #»x ) : t1 , t2} ∪ S; σ {Y 7→ λ #»y .X( #»xπ)}

Where π : { #»x} → { #»y } is a bijection, extended as a substitution with t1π = s1 and t2π = s2.
Note that in the case of the equational theory we will consider later we would use =E instead
of =.

We will refer to these generalization rules as Gbase. To compute generalizations for two
simply typed lambda-terms in η-long β-normal form t and s, the algorithm from [8] starts
with the initial state {X : t , s}; ∅; ∅, where X is a fresh variable, and applies these rules as
long as possible. The computed result is the instance of X under the final substitution. It is
the syntactic least general higher-order pattern generalization of t and s, and is computed in
linear time in the size of the input.

We will use this linear time procedure in the following section to obtain “optimal” least
general higher-order pattern generalizations of terms modulo an equation theory. These
optimal generalizations are dependent on the generalizations the syntactic algorithm produces.
When we need to check more than one decomposition of a given AUP in order to compute the
optimal generalizations modulo an equational theory, we compute the optimal generalization
for each decomposition path and than compare the results. The details are explained below.

We assume that terms are written in flattened form, obtained by replacing all subterms
of the formf(t1, . . . , f(s1, . . . , sm), . . . tn) by f(t1, . . . , s1, . . . , sm, . . . tn), where A ∈ Ax(f).
Also, by convention, the term f(t) stands for t, if A ∈ Ax(f).

4 Equational Decomposition Rules

In this section we discuss an extension of the basic rules concerning higher-order pattern
generalization by decomposition rules for A, C, and AC function symbols. Here, we consider
the general, unrestricted case. Efficient special fragments are discussed in the subsequent
section.
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We start from decomposition rules for associative generalization:

Dec-A-L: Associative Decomposition Left
{X( #»x ) : f(t1, . . . , tn) , f(s1, . . . , sm)} ]A; S; σ =⇒
{Y1( #»x ) : f(t1, . . . , tk) , s1, Y2( #»x ) : f(tk+1, . . . , tn) , f(s2, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1( #»x ), Y2( #»x ))},

where Ax(f) = {A}, 1 ≤ k ≤ n−1, n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate
types.

Dec-A-R: Associative Decomposition Right
{X( #»x ) : f(t1, . . . , tn) , f(s1, . . . , sm)} ]A; S; σ =⇒
{Y1( #»x ) : t1 , f(s1, . . . , sk), Y2( #»x ) : f(t2, . . . , tn) , f(sk+1, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1( #»x ), Y2( #»x ))},

where Ax(f) = {A}, 1 ≤ k ≤ m−1, n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate
types.

We refer to the extension of Gbase by the above associativity rules as GA and extend the
termination, soundness and completeness results for Gbase to GA.

I Theorem 1 (Termination). The set of transformations GA is terminating.

Proof. Termination follows from the fact that Gbase terminates [8] and the rules Dec-A-L
and Dec-A-R can be applied finitely many times. J

I Theorem 2 (Soundness). If {X : t , s}; ∅; ∅ =⇒∗ ∅;S;σ is a transformation sequence of
GA, then Xσ is a higher-order pattern in η-long β-normal form and Xσ � t and Xσ � s.

Proof. It was shown in [8] that Gbase is sound. Let us assume as a base case that all
occurrences of associative function symbols in t , s have two arguments. Then the rules
Dec-A-L and Dec-A-R are equivalent to the Dec rule. As an induction hypothesis (IH),
assume soundness holds when all occurrences of associative function symbols in t , s have
≤ n arguments. We show that it holds for n+ 1. Let t , s be of the form f(t1, . . . , tm) ,
f(s1, . . . , sk) for max{k,m} ≤ (n + 1) and let associative function symbols occurring in
t1, . . . tm, s1, . . . sk have at most n arguments. Any application of Dec-A-L or Dec-A-R will
produce two AUPs for which the IH holds, and thus, the theorem holds. We can extend this
argument to an arbitrary number of associative function symbols with n+ 1 arguments with
another induction. J

I Theorem 3 (Completeness). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s be a
higher-order pattern such that λ #»x .s is a generalization of both λ #»x .t1 and λ #»x .t2 modulo
associativity. Then there exists a transformation sequence {X( #»x ) : t1 , t2}; ∅; ∅ =⇒∗ ∅;S;σ
in GA such that λ #»x .s � Xσ.

Proof. We can reason similarly to the previous proof. It was shown in [8] that Gbase is
complete. Let us assume as a base case that all occurrences of associative function symbols
in t , s have two arguments. Then the rules Dec-A-L and Dec-A-R are equivalent to the Dec
rule and completeness holds. When we have n+ 1 arguments there are n ways to group the
arguments associatively and the decompositions rules Dec-A-L and Dec-A-R allow one to
consider all groupings. J
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The addition of associative function symbols allows for more than one decomposition
and thus more than one lgg in contrast to higher-order pattern generalization which results
in a unique lgg . If we wish to compute the complete set of lggs we would simply exhaust
all possible applications of the above rules. However, for most applications an “optimal”
generalization is sufficient. We postpone discussion till the next section.

The decomposition rule for commutative symbols is also pretty intuitive:

Dec-C: Commutative Decomposition
{X( #»x ) : f(t1, t2) , f(s1, s2)} ]A; S; σ =⇒
{Y1( #»x ) : t1 , si, Y2( #»x ) : t2 , s(i mod 2)+1} ∪A; S; σ{X 7→ λ #»x .f(Y1( #»x ), Y2( #»x ))},

where Ax(f) = {C}, i ∈ {1, 2}, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the commutativity rule as GC . We can easily extend
the termination, soundness, and completeness results to GC. Notice that also for commutative
generalization, the lgg is not necessarily unique.

Unlike commutativity, which considers a fixed number of terms, and associativity, which
enforces an ordering on terms, AC function symbols allow an arbitrary number of arguments
with no fixed ordering on the terms. The corresponding decomposition rules take it into
account:

Dec-AC-L: Associative-Commutative Decomposition Left
{X( #»x ) : f(t1, . . . , tn) , f(s1, . . . , sm)} ]A; S; σ =⇒
{Y1( #»x ) : f(ti1 , . . . , til) , sk, Y2( #»x ) : f(ti(l+1) , . . . , tin)
, f(s1, . . . , sk−1, sk+1, . . . , sm)} ∪A;
S; σ{X 7→ λ #»x .f(Y1( #»x ), Y2( #»x ))},

where Ax(f) = {A,C}, {i1, . . . , in} ≡ {1, . . . , n}, l ∈ {1, . . . , n−1}, k ∈ {1, . . . ,m}, n,m ≥ 2,
and Y1 and Y2 are fresh variables of appropriate types.

Dec-AC-R: Associative-Commutative Decomposition Right
{X( #»x ) : f(t1, . . . , tn) , f(s1, . . . , sm)} ]A; S; σ =⇒
{Y1( #»x ) : tk , f(si1 , . . . , sil), Y2( #»x ) : f(t1, . . . , tk−1, tk+1, . . . , tn)
, f(si(l+1) , . . . , sim)} ∪A;
S; σ{X 7→ λ #»x .f(Y1( #»x ), Y2( #»x ))},

where Ax(f) = {A,C}, {i1, . . . , im} ≡ {1, . . . ,m}, l ∈ {1, . . . ,m − 1}, k ∈ {1, . . . , n},
n,m ≥ 2, and Y1 and Y2 are fresh variables of appropriate types.

We refer to the extension of Gbase by the AC decomposition rules as GAC. Again,
termination, soundness and completeness are easily extended to this case.

5 Towards Special Fragments

This section is devoted to computing special kind of “optimal” generalizations, which can be
done more efficiently than the general unrestricted cases considered in the previous section.

The idea is the following: The equational decomposition rules introduce branching in the
search space. Each branch can be developed in linear time, but there can be too many of
them. However, if the branching factor is bounded, we could choose one of the alternative
states (produced by decomposition) based on some “optimality” criterion, and develop only
that branch. Such a greedy approach will give one “optimal” generalization.
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In order to have a “reasonable” complexity, we should be able to choose such an optimal
state from “reasonably” many alternatives in “reasonable” time. For this, our idea is to
treat all the alternative states obtained by an equational decomposition step as syntactic
anti-unification problems, compute lggs for each of them (which can be done in linear time),
choose the best one among those lggs (e.g., less general than the others, or, if there are
several such results, use some heuristics), and restart equational anti-unification algorithm
from the state which led to the computation of that best syntactic lgg. When the branching
factor is constant, this leads to a quadratic algorithm, and when it is linearly bounded, we get
a cubic algorithm. These are the cases we consider below. We would also need to decompose
in a more clever way than in the rules above, where the decomposition was based on an
arbitrary choice of a subterm.

Hence, we need to identify fragments of equational anti-unification problems which
would have the decomposition branching factor constant or linearly bounded. We start by
introducing the following concepts.

I Definition 4 (E-refined generalization). Given two terms t and s and their E-generalizations
r and r′, we say that r is at least as good as r′ with respect to E if either r′ �E r or they are
not comparable with respect to �E .

An E-generalization r of t and s is called their E-refined generalization iff r is at least as
good (with respect to E) as a syntactic lgg of t and s.

Note that every syntactic generalization is also an E-generalization. A direct consequence
of this definition is that every element of the minimal complete set of E-generalizations
(where E is A, C, or AC) of two terms is an E-refined generalization of t and s. However,
there might exist E-refined generalizations which do not belong to the minimal complete set
of generalizations.

Looking back at the informal description of the construction above, we can say that at
each branching point we will be aiming at choosing the alternative that would lead to “the
best” E-refined generalization.

The concept of E-refined allows us to compute better generalizations than the base
procedure would do, without concerning ourselves with certain difficult to handle decomposi-
tions. We will outline what we mean by “difficult” in later sections. Some of these difficult
decompositions can be handled by finding alignments between two sequences of terms.

I Definition 5 (Alignment, Rigidity Function). Let w1 and w2 be strings of symbols. Then
the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0 and ak are not variables, is an alignment if

i’s and j’s are integers such that 0 < i1 < · · · < in < |w1| and 0 < j1 < · · · < jn < |w2|,
and
ak = w1|ik = w2|jk

, for all 1 ≤ k ≤ n. An alignment of the form a1[i, j] will be referred
to as a singleton alignment, where t|α denote the subterm at position α.

The set of all alignments will be denoted by A. A (singleton) rigidity function R is a
function that returns, for every pair of strings of symbols w1 and w2, a set of (singleton)
alignments of w1 and w2.

The main intuition behind the use of rigidity functions for generalization is to capture the
structure (modulo a given rigidity property) of as many nonvariable terms as possible.

I Definition 6 (Pair of argument head sequences and multisets). Let t = f(t1, . . . , tn) and
s = f(s1, . . . , sm). Then the pair of argument head sequences and the pair of argument head
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multisets of t and s, denoted respectively as pahs(t, s) and pahm(t, s), are defined as follows:

pahs(t, s) = 〈(head(t1), . . . , head(tn)), (head(s1), . . . , head(sm))〉 .
pahm(t, s) = 〈{{head(t1), . . . , head(tn)}}, {{head(s1), . . . , head(sm)}}〉 .2

These notions extend to AUPs: A pair of argument head sequences (resp. multisets) of
an AUP X( #»x ) : t , s is the pair of argument head sequences (resp. multisets) of the terms t
and s.

There is a subset of AUPs, referred to as 1-Determined AUPs, which contain associative
function symbols and have interesting E-refined generalizations are computable in linear time.
The more general r-determined AUPs allow a bounded number of possible choices, that is r
choices, whenever associative decomposition may be applied. Even for 2-determined AUPs
computing the set of lggs is of exponential complexity. Therefore, we introduce the notion
of (R, C,G)-optimal generalization where R is a so called rigidity function [11] and C is a
choice function picking one of available decompositions. Under such optimality conditions,
we are able to compute an E-refined generalization in quadratic time for k-determined AUPs
and in cubic time for arbitrary AUPs with associative function symbols.

The equational decomposition rules above are too non-deterministic and the computed
set of generalizations has to be minimized to obtain minimal complete sets of generalizations.
However, even if we performed more guided decompositions, obtaining e.g., terms with
the same head in new AUPs (as in [11]), there would still be alternatives. For instance,
consider the following AUP where f is associative: X( #»x ) : f(t1, . . . ti, . . . , tj , . . . , tn) ,
f(s1, . . . si, . . . , sj , . . . , sm). Now let head(ti) = head(sj), head(si) = head(tj), and for every
other term comparison whose index is ≤ j the head symbols are not equivalent. Under these
assumptions there is not enough information to decide which decomposition is less general.
Furthermore, this can be generalized from two possible decompositions to k possibilities.

Under certain conditions we can force a term to have a single decomposition path, what
we will refer to as a 1-determined condition which is equivalent to unique longest common
subsequence of head symbols. We formally define k-determined AUPs using the following
sequence of definitions:

I Definition 7 (k-determinate set). Given the pair of sequences of symbols 〈s1, s2〉 with
s1 = (a1, . . . , an) and s2 = (b1, . . . , bm), and a positive integer k, the (strict) k-determinate
set of s1 and s2, denoted det (k, s1, s2) (dets (k, s1, s2)), is defined as follows:

If n = 0 and m 6= 0 or vice versa, then det (k, s1, s2) = ∅.
Otherwise, let 1 ≤ i ≤ min(n,m) be a number such that for the multiset Mi =
({{a1}} ∩ {{b1}}) ∪ ({{a2, . . . , ai}} ∩ {{b2, . . . , bi}}) 6= ∅ we have Mi ∩ {{bi+1, . . . , bm}} =
Mi ∩ {{ai+1, . . . , an}} = ∅. Let K (Ks) be the set of pairs {aj1 [j1, j2] | aj1 = bj2 and j1 =
1 iff j2 = 1} ( {aj1 [j1, j2] | aj1 = bj2}). If K has at most k elements, then

det(k, s1, s2) :=
⋃

aj1 [j1,j2]∈K

add(aj1 [j1, j2], det (k, (aj1+1, . . . , an), (bj2+1, . . . , bm))).

add(a,A) =
{
{(a,A)} A 6= ∅
∅ otherwise

Otherwise, det(k, s1, s2) = {∅} .

2 {{◦}} denotes a multiset.
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12:10 Higher-order Equational Anti-Unification

Note that dets (k, s1, s2) is defined analogously using Ks instead of K. We will refer to the
pairs (a,A) where a is a singleton alignment and A a k-determinate set as blocks.

We will use dets (k, s1, s2) when considering commutativity in Section 7.

I Example 8. We illustrate the previous definition:
det (1, (a, b), (a, b)) = {(a[1, 1] ; {(b[1, 1] ; {∅})})}.
det (1, (a, a), (b, a)) = {({a[2, 2] ; {∅})}.
det (1, (a, c, c, b, a, c), (a, d, b, a, c)) = {(a[1, 1] ; {(b[3, 2] ; {(a[1, 1] ; {(c[1, 1] ; {∅})})})})}.
det (1, (a, b, a), (c, a, c, b)) = {∅}
det (1, (a, b, d), (c, a, b, c)) = {(b[2, 3] ; {∅})}
det (2, (a, b, a), (c, a, b, c)) = {(b[2, 3] ; {∅})}
dets (1, (a, b), (b, a)) = {(a[1, 2] ; {∅}) , (b[2, 1] ; {∅})}
det (2, (c, a, b, c), (d, b, a, d)) = {(a[2, 3] ; {∅}) , (b[3, 2] ; {∅})}.
det (3, (a, b, a, c, d), (c, a, b, a, d)) =
{(b[2, 3] ; {(a[1, 1] ; {∅})}) , (a[3, 2] ; {(d[2, 3] ; {∅})}) , (a[3, 4] ; {∅})}.
det (k, (a, a), (b, c, d)) = {∅}.
det (k, (a, b), (a)) = ∅.
det (k, (a, a), (a)) = {∅}.

Even though det (k, (a, b), (a)) and det (k, (a, a), (a)) are related the formalism does not
handle them as similar. This merely makes the formalism a little more restricted. Notice
that a unique longest common subsequence of two symbol sequences is not equivalent to
k-determined. Consider the following example:

det (k, (c, a, a, d), (c, a, b, a, d)) = {(c[1, 1] ; {(a[1, 1] ; {(d[2, 3] ; {∅})})})}.
The alignment representing its longest common subsequence is

c[1, 1]a[2, 2]a[3, 4]d[4, 5]

I Definition 9 (k-determined term pairs). A pair of terms 〈t, s〉 is k-determined iff either
head(t) 6= head(s) or head(t) = head(s) = f and Ax(f) = ∅, or Ax(f) = {A} and
det (k, pahs(t, s)) 6= ∅. Furthermore we say that the pair 〈t, s〉 is total k-determined if
t = λx1, . . . , xn.t

′, s = λy1, . . . , yn.s
′ and t′ and s′ are η-equivalent to t′′ and s′′ with

|t′′| = |s′′| = 1, or for each (a[i, j], S) ∈ det (k, pahs(t, s)) where ti is the term at the
ith position of t and sj is the term at the jth position of s the term pair 〈ti, sj〉 is total
k-determined.

I Proposition 1. The complexity of checking if the terms of an AUP

X(x̄) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk.f(s1, . . . , sm)

is 1-determined is O(n) and total 1-determined is O(n2), where n is maximum of the length
of the two terms.

Checking k-determinedness of an AUP is a harder problem complexity-wise. For example,
given the sequences (a, . . . , a) and (a, . . . , a) there are n2 ways to align the terms which have
to be checked. Moreover, if we want to check total k-determinedness we have to again do a
quadratic check for each pair of aligned terms resulting in an O(n4) procedure.
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6 Associative Generalization: Special Fragments and Optimality

6.1 Associativity and 1-Determined AUPs
We provide a linear time algorithm for higher-order {A}-refined pattern generalization of
AUPs which are 1-determined. Essentially, at every step there is a single decomposition
choice which can be made.

I Theorem 10. A higher-order {A}-refined pattern generalizer for a total 1-determined
AUP can be computed in linear time.

Proof. If the AUP does not contain an associative function symbol, then its E-refined
generalization, which is also an lgg, can be computed in linear time [8]. If it does contain
an associative function symbol, we have two alternatives: either every occurrence of the
associative function symbol has two arguments (remember that our terms are in flattened
form), or not. In the former case, the associative decomposition rules do not differ from the
syntactic decomposition rule Dec and we can only apply the latter. It means that we can
still use the linear algorithm from [8]. The rest of the proof is about the case when there are
occurrences of associative function symbols with more than two arguments. The proof goes
by induction on the maximal number of such arguments.

We assume for the induction hypothesis that if every instance of the associative function
symbol in the AUP has at most n arguments, then it is solvable in linear time, and show
that the same holds for n + 1. Let us assume that the AUP we are currently considering
has the following form X( #»x ) : f(t1, . . . , tm) , f(s1, . . . , sk) where f is associative and
max{m, k} = n+ 1. Assume without loss of generality that k = n+ 1. Also, assume that
no other occurrence of f in the given AUP has more than n arguments. We make this
assumption in order to reduce the complexity of associative decomposition in the AUP and
thus, apply the induction hypothesis. If head(t1) = head(s1),then their lgg should not be
a variable. Therefore, we can apply Dec-A-L, which results in the AUPs X( #»x ) : t1 , s1
(whose further decomposition will make sure that they t1 and s1 are not generalized by a
generalization variable) and X( #»x ) : f(t2, . . . , tm) , f(s2, . . . , sn+1). Notice that both of the
resulting AUPs, by our assumptions, only contain f with not more than n arguments. Thus,
by the induction hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that (h[l, l], S) ∈
det (1, pahs(t, s)) s.t. Ax(h) = {A}. Therefore, we can perform Dec-A-L only on the first
argument l − 1 times, which gives the following new AUPs: {X1( #»x ) : t1 , s1, . . . , Xl−1( #»x ) :
tl−1 , sl−1, Xl( #»x ) : f(tl . . . , tm) , f(sl, . . . , sn+1)}. All the resulting AUPs, by our
assumptions, only contain f with not more than n arguments, thus by the induction
hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that (h[i, j], S) ∈
det (1, pahs(t, s)) s.t. Ax(h) = {A} and i 6= j. This is similar to the previous case except
there is more than one possible way to apply associative decomposition. More precisely, the
number of possible ways is F (l − j + 1) where

F (0) = 1, F (r + 1) =
r+1∑
w=1

F (r + 1− w) for r ≥ 0.

which is roughly F (r) = 2(r−1). Note that F (·) is derived from the combinatorics of the
associative decomposition rule and concerns the number of possible pairings with respect to
1-determinacy. However, being that none of the head symbols of obtained term-pairs are

FSCD 2018
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equivalent nor can their head symbols be equivalent to f , we know that none of the resulting
AUPs will require further decomposition. Thus, we need to apply associative decomposition.
This can be easily performed be performed by some heuristic. The result will be a set of
AUPs containing X( #»x ) : f(tj . . . tm) , f(sl, . . . sn+1) and thus by the induction hypothesis
and our assumptions, the theorem holds.

For the final step we just need to apply a simple induction argument on the number
of times in a term the associative symbol f occurs with arity n+ 1. The above argument
provides the step case and base case being that we prove the theorem for one occurrence and
can use the proof for p occurrences. Thus, the theorem holds. J

In the next section we consider AUPs which are k-determined for k > 1. This will requires
a new concept of optimality based on a choice function greedily applied during decomposition.

6.2 Choice Functions and Optimality
In this section procedures and optimality conditions for total k-determined AUPs, for k > 1,
that is AUPs where there are at most k ways to apply equational decomposition.

If we were to compute the set of E-refined generalizations for a total k-determined AUP
by testing every decomposition, even for k = 2 the size of search space is too large to deal
with efficiently. However, we can find a (R, C,G)-optimal E-refined generalization (precisely
defined below) in quadratic time, where R is a singleton rigidity function, C a R-choice
function, G is a set of state transformation rules. Essentially, (R, C,G)-optimality means the
R-choice function chooses the “right” computation path via G based on the singleton rigidity
function R. The effect is that we reduce the problem of total k-determined AUPs to the
case of total 1-determined AUPs with the additional complexity of computing the choice
function at each step. We will provide a choice function with linear time complexity based
on the procedure for Gbase.

We will denote the set of all AUPs by A. We will need the concept for the following
definitions.

I Definition 11 ((P, a)-decomposition). Let P ≡ X(x̄) : λx1, . . . , xl.f(t1, . . . , tn) ,
λy1, . . . , yk.f(s1, . . . , sm), a is an alignment of 〈w1, w2〉P (see Definition 6). An (P, a)-
decomposition of P is dec(P, a) = {Y(i,j)( #»y (i,j)) : ti , sj | h[i, j] ∈ a }, where Y(i,j) are new
variables of appropriate type and #»y (i,j) are bound variables from #»x , which appear in ti , sj .

I Definition 12 (G-feasible). Let A;S;σ be a state s.t. P ∈ A where P ≡ X( #»x ) :
λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk.f(s1, . . . , sm), a be an alignment of 〈w1, w2〉P and
Gbase ⊆ G be a set of state transformation rules. We say that dec(P, a) is G-feasible if there
exists A;S;σ =⇒∗ A′;S′;σ′ using G such that A′ = (A \ P ) ∪ dec(P, a).

I Definition 13 ((R, P,G)-branching). Let P ≡ X( #»x ) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . ,

yk.f(s1, . . . , sm), 〈w1, w2〉P be its pair of argument head sequences, R be a singleton rigidity
function, and Gbase ⊆ G be a set of state transformation rules. An (R, P,G)-branching is a
set B(R, P ) = {dec(P, a) | a ∈ R(w1, w2) and dec(P, a) is G-feasible}.

I Definition 14 (R-Choice function). Let R be a singleton rigidity function and Gbase ⊆ G
be a set of state transformation rules. An R-choice function C(R,G) : A → A is a partial
function from AUPs to alignments such that if for some P ∈ A , C(R,G)(P ) = a, then
dec(P, a) ∈ B(R, P ).

I Definition 15 ((R, C,G)-optimal generalization). Let A be {X(x̄) : t , s}, R be a singleton
rigidity function, C be an R-choice function, and Gbase ⊆ G be a set of state transformation



D.M. Cerna and T. Kutsia 12:13

rules, which compute generalizations. We say that a generalization k of the terms t and s
is an (R, C,G)-optimal generalization if r = Xσ, where σ is resulting from the derivation
A; ∅; ∅ =⇒∗ ∅;S;σ using the rules of G, in which every decomposition is either syntactic or
respects C-equivalence.

In the following subsection we show how the above definitions can lead to a more general
result (compared to the one in the previous section) concerning associative generalization.

6.3 k-Determined Associative Generalization
Before defining our concrete choice function, we must define the singleton rigidity function
we will use. Intuitively, it should select alignments from prefixes of involved sequences. The
prefixes are of the same length and should be maximal among those that contain at most k
common elements. Formally, it is defined as follows:

I Definition 16. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols and
k ≥ 1 be an integer. We define the singleton rigidity function RkA as

RkA(w1, w2) =
{
{al [l, k] | (al [l, k] , S) ∈ det (k,w1, w2)} det (k,w1, w2) 6= ∅

∅ otherwise
(1)

Now we define a choice function taking an arbitrary singleton rigidity function.

I Definition 17. Let P ≡ X( #»x ) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk. f(s1, . . . , sm) be
an AUP and f a function symbol such that Ax(f) 6≡ ∅. We define the choice function C(R,G),
where R is a singleton rigidity function, and G is a set of state transformation rules containing
Gbase, as follows:

C(R,G)(P ) =
{

amin B(R, P ) 6≡ ∅
undef otherwise

(2)

where amin is an alignment of (head(t1), . . . , head(tn)) and (head(s1), . . . , head(sm)) such
that

dec(P, amin) ∈ B(R, P ),
for dec(P, a) ∈ B(R, P ), let D(a) be the derivation D(a) = {P}; ∅; ∅ =⇒∗G dec(P, a);S′;
σ′ =⇒∗Gbase

∅;S;σa.
Then for each a 6= amin, the corresponding D(a) computes σa such that Xσa is more
general than Xσamin , where σamin is computed by D(amin). If there are several such
amin’s, C(R,G)(P ) is defined as one of them (chosen by some heuristics).

The choice function outlined above uses the linear time procedure Gbase to make a
choice between the various possible alignments. Notice that we use associative decom-
position for {P}; ∅; ∅ =⇒∗ dec(P, a);S′;σ′ and syntactic decomposition in the derivation
dec(P, a);S′;σ′ =⇒∗ ∅;S;σa.

I Theorem 18. A (RkA, C(Rk
A
,GA),GA)-optimal higher-order {A}-refined pattern generaliza-

tion for a total k-determined AUP X( #»x ) : t , s can be computed in O(n2) where n is the
size of the AUP.

Proof. This follows from the existence of a linear algorithm for the computation of lggs
using Gbase and the linear time algorithm of theorem 10. Note that k is constant and thus
does not show up in complexity statement. J

FSCD 2018



12:14 Higher-order Equational Anti-Unification

6.4 Step Optimal Generalization for Full Associativity
Completely dropping the determinedness restrictions on the AUPs containing associative
function symbols is the same as considering O(n)-determined AUPs. We have already
shown that this problem is naively solvable by an exponential procedure, even when we
consider O(1)-determined AUPs. In this section we again consider the problem of finding
a (RO(n)

A , C(RO(n)
A

,GA),GA)-optimal generalization where n in the Landau-notation refers to
the maximum number of arguments of any subterms in the given AUP. However, this time
the resulting algorithm is cubic in complexity being that r in r–determined is no longer a
constant. By RO(n)

A we mean the singleton rigidity function which instead of looking for an
r-determined subsequence just considers the largest feasible multiset intersection.

I Theorem 19. A (RO(n)

A , C(RO(n)
A

,GA),GA)-optimal higher-order {A}-refined pattern gener-
alization for an AUP X( #»x ) : t , s can be computed in O(n3) time where n is the size the
AUP.

Now that we have completed our analysis of associative function symbols, the simplest of
the cases we consider, we move on to the more interesting cases of unit and commutative
decomposition as well as the combinations of these algebraic properties.

7 Commutative Case

Notice that in the case of commutative decomposition if all four terms (or three terms) have
the same head symbol we end up with similar issues as in the associativity case. We can use
strict 2-determined to restrict the considered AUPs.

I Theorem 20. A higher-order {C}-refined pattern generalization, for a total strict 1-
determined AUP can be computed in linear time.

Proof. Similar to the proof of Theorem 10. J

Note that the case f(t1, t2) , f(s1, s2), where head(t1) = head(s1) and head(t2) =
head(s2), is considered by the procedure of Theorem 20, but not f(t1, t2) , f(s2, s1) This
is an issue with the definition of total strict 1-determined. We can fix this problem by
performing an addition check to see if a permutation of the terms on the left or right side
results in a better alignment. We now present a procedure for full commutativity, that is
without restrictions which has a quadratic complexity (see Theorem 18.

I Definition 21. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols and
k ≥ 1 be an integer. We define the rigidity function RC returning all alignments.

When the rigidity function RC is used all by our procedure there will be at most 4
alignments.

I Corollary 22. A (RC, C(RC,G{C}),G{C})-optimal higher-order {C}-refined pattern generaliz-
ation for an AUP can be computed in quadratic time.

8 Associative-Commutative Case

In this section we consider functions f such that Ax(f) = {A,C}. Unfortunately, when a
function is both associative and commutative, the number of possible decomposition paths is
even greater than the previously considered cases and thus we need to further restrict the term



D.M. Cerna and T. Kutsia 12:15

structure. To provide a better understanding of why this is the case, consider a k-determined
AUP where the multiset intersection is of size O(k) and only contains one function symbol.
This implies that there are O(k2) possible decompositions of the terms in the first multiset
intersection of the terms containing k alignments. This is not even considering that there
might be more than one function symbol in the AUP. The problem is that the more terms
with the same head symbol, the more combinations we must check. Unlike commutativity,
which considers a fixed number of terms, and associativity, which enforces an ordering on
terms, associative-commutativity allows an arbitrary number of arguments with no fixed
ordering on the terms. We can get around this problem by considering special cases of AUPs
where arguments of an associative-commutativity symbol have distinct heads.

Unfortunately, the concept of (strict) k-determined AUPs does not lead to a linear
algorithm in the case of AC-generalization. Actually, this concept is not even meaningful for
such an equational theory, since terms are not ordered in any particular way. Instead, we
need to consider so called (k, l)-distinct AUPs, which are defined as follows:

I Definition 23. Let P ≡ X( #»x ) : λx1, . . . , xl.f(t1, . . . , tn) , λy1, . . . , yk. f(s1, . . . , sm),
pahm(f(t1, . . . , tn), f(s1, . . . , sm)) = 〈T, S〉, and Ax(f) = {A,C}. We say that P is (k, l)-
distinct if each h ∈ T ∩ S occurs at most k times in w1 and at most k times in w2,
the number of symbols in T ∩ S ≤ l and T \ (T ∩ S) ≡ ∅ iff S \ (T ∩ S)∅. We say
P ≡ X( #»x ) : λx1, . . . , xw.t , λy1, . . . , yr.s is total (k, l)-distinct if |t| = |s| = 1 or for every
pair of subterms (t′, s′) of t and s such that head(t′) = head(s′), the AUP Y ( #»y ) : t′ , s′ is
total (k, l)-distinct.

This concept is much simpler than k-determined in that it basically splits the arguments
of the left and right side of the given AUP into at most l sections dependent on the head
symbols of the arguments. Also, for head function symbol, there should be at most k
occurrences of it and the result of decomposition is an empty term iff the terms of the left
and right side of the AUP are empty.

When an AUP is total (1, l)-distinct there is only one way to decompose the AUP, i.e.
either a given symbol shows up in both w1 and w2 once and can be aligned, or it cannot be
aligned and is generalized by a new variable. This leads to the following results:

I Theorem 24. A higher-order {A,C}-refined pattern generalization for a total (1, l)-distinct
AUP can be solved in linear time.

Proof. Similar to the proof of Theorem 10. J

If we attempt to relax these constraints the time complexity of the algorithm increases
substantially, even when we consider the case of (2, l)-distinct AUPs under our restricted
optimality condition.

I Definition 25. Let w1 = (a1, . . . , an) and w2 = (b1, . . . , bm) be sequences of symbols. We
define the singleton rigidity function R(k,l)

AC as follows

R(k,l)
AC (w1, w2) =

{ {
al [i, j]

∣∣ ai = bj , 1 ≤ i ≤ n1 ≤ j ≤ m
}

if (w1, w2) is (k, l)-distinct
∅ otherwise

(3)

I Theorem 26. A (R(k,l)
AC , C(R(k,l)

AC
,GAC),GAC)-optimal higher-order {A,C}-refined pattern

generalization for a total (k, l)-distinct AUP is computed in O(k2·l · n2) time where n is the
input size.
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Proof. There are O(k2) ways to pair the terms with the same head and there are l blocks
thus there are O(k2·l) computations using Gbase (complexity O(n)) to be performed on an
AUP with size n. J

Obviously, computing the full set of E-refined generalizations from the results of Theorem 26
using a naive method would take in the order of O(k2·l·n) time.

9 Conclusion

The higher-order equational anti-unification algorithm presented in this paper combines
higher-order syntactic anti-unification rules with the decomposition rules for associative,
commutative and associative-commutative function symbols. This gives a modular algorithm,
which can be used for problems with different symbols from different theories without any
adaptation.

Higher order A-, C-, and AC-anti-unification problems are finitary. In practice, often it is
desirable to compute only one answer, which is the best one with respect to some predefined
criterion. We defined such an optimality criterion, which basically means that an optimal
equational solution should be at least a good as the syntactic lgg. We then identified problem
forms for which optimal solutions can be computed fast (in linear or polynomial time) by a
greedy approach.
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Abstract
We show that LOGSPACE is characterised by finite orthogonal tail-recursive cons-free constructor
term rewriting systems, contributing to a line of research initiated by Neil Jones. We describe a
LOGSPACE algorithm which computes constructor normal forms. This algorithm is used in the
proof of our main result: that simple stream term rewriting systems characterise LOGSPACE-
computable stream functions as defined by Ramyaa and Leivant. This result concerns character-
ising logarithmic-space computation on infinite streams by means of infinitary rewriting.
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ory of computation → Equational logic and rewriting

Keywords and phrases LOGSPACE, implicit complexity, term rewriting, infinitary rewriting,
streams
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1 Introduction

The goal of the field of implicit computational complexity is to characterise computational
complexity classes without reference to external measuring conditions. One of the first
such implicit characterisations was that of LOGSPACE as the class of problems which
can be decided by deterministic two-way multihead finite automata [6]. Inspired by this
well-known characterisation, Neil Jones gave new characterisations of this class as “cons-
free” tail-recursive programs in several formalisms [9, 7, 8]. In cons-free programs data
constructors cannot occur in function bodies. Put differently, cons-free programs are read-
only: recursive data can only be read from input, but not created or altered (except
taking subterms). Cons-free programming was subseqently used to characterise a variety of
complexity classes [9, 7, 8, 2, 3, 10, 11, 12].

In this paper we extend the cons-free approach to computation on infinite streams.
In [14, 13] Ramyaa and Leivant define the class of LOGSPACE-computable stream functions
and show that it is characterised by ramified corecurrence in two tiers. Our main contribution
is a cons-free infinitary term-rewriting characterisation of this class. We show that a stream
function is computable in LOGSPACE, in the sense of Ramyaa and Leivant, if and only if it
is definable in a simple stream TRS. As an intermediate step, we also give infinitary rewriting
characterisations of stream functions computable by (jumping) finite stream transducers.

In order to obtain our characterisation of LOGSPACE-computability on streams, we give
an algorithm to compute the (finite) constructor normal form of a (finite) term of a certain
form in a finite orthogonal tail-recursive cons-free constructor TRS. Using this algorithm we
obtain a term rewriting characterisation of LOGSPACE (in the ordinary finite sense).
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In previous work [9, 8, 2] LOGSPACE was characterised by tail-recursive cons-free
programs. The idea to transpose characterisations obtained via cons-free programs into the
formalism of TRSs has already been exploited to characterise other complexity classes in [3,
11, 10], but there orthogonality was not assumed. Our method of introducing ⊥-reductions
may be seen as a degenerate case of the method in [3] (see also [10]), but the algorithm used
there to compute constructor normal forms in polynomial time is fundamentally different
from ours and does not easily adapt to logarithmic space computation. In the first part of
this paper, the main novelty is a trick to detect looping in logarithmic space, and using this
to obtain a LOGSPACE algorithm for computing constructor normal forms.

2 Term rewriting systems

We assume familiarity with term rewriting [1]. In this short section we fix the notation and
briefly recall some definitions.

I Definition 2.1. A term rewriting system (TRS) is a set of rules of the form l→ r where
l, r are terms and l is not a variable and Var(r) ⊆ Var(l), where Var(t) denotes the variables
occurring in t. Given a TRS R, the reduction relation →R is the compatible closure of the
contraction relation {(σl, σr) | l→ r ∈ R, σ a substitution}. We use →∗ for the transitive-
reflexive closure of →, and →= for the reflexive closure, and ⇒ for the parallel closure. For
precise definitions see [1]. In particular, ⇒ is reflexive.

A defined symbol in a TRS R is a function symbol which occurs at the root of a left-hand
side of a rule in R. A constructor symbol in a TRS R is a function symbol which is not a
defined symbol in R. A constructor term is a term which does not contain defined function
symbols (it may contain variables). A constructor normal form is a constructor term which
does not contain variables (so it contains only constructors). A constructor head normal
form (chnf) is a term of the from c(t1, . . . , tn) with c a constructor. A constructor TRS is
a TRS R such that for l→ r ∈ R we have l = f(l1, . . . , ln) where l1, . . . , ln are constructor
terms.

A redex is innermost if it does not contain other redexes. A reduction step is innermost
if it contracts an innermost redex.

A decision problem is a set of binary words A ⊆ {0, 1}∗. Assuming the signature contains
the constants 0, 1,nil and a binary constructor symbol cons, every w ∈ {0, 1}∗ may be
represented by a term w̄ in an obvious way. A TRS R accepts a decision problem A if there
is a function symbol f such that for every w ∈ {0, 1}∗ we have: f(w̄)→∗R 1 iff w ∈ A.

3 LOGSPACE for finite data

In this section we show that finite orthogonal tail-recursive cons-free constructor TRSs
characterise LOGSPACE, i.e., a decision problem is in LOGSPACE iff it is accepted by a
finite orthogonal tail-recursive cons-free constructor TRS. As part of the proof we give an
algorithm which computes the constructor normal form of a term of a certain form, if there
exists one, or rejects otherwise. This algorithm will also be used in Section 6.

I Definition 3.1. A constructor TRS R is cons-free if for each l→ r ∈ R every chnf subterm
of r either occurs in l or is a constructor normal form. A constructor TRS R is tail-recursive if
there is a preorder & on defined function symbols such that for every f(u1, . . . , un)→ r ∈ R
and every defined function symbol g the following hold:

if r = g(t1, . . . , tk) then f & g,
if g(t1, . . . , tk) is a proper subterm of r then f > g.
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A TRS is strictly tail-recursive if it is tail-recursive and each right-hand side of a rule contains
at most one defined function symbol.

For terms t1, . . . , tn by B(t1, . . . , tn) we denote the sets of all constructor normal forms
occurring either in one of ti or in a right-hand side of a rule of R. Note that B(t1, . . . , tn) is
finite if R is.

Our definition of tail-recursiveness is based on standard definitions in the literature [8, 2],
adapted to the term rewriting framework.

I Proposition 3.2. Any problem decidable in LOGSPACE is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. This is a straightforward adaptation of previous work [7, 2]. One may e.g. easily
encode any CM\+ program from [7] by a finite orthogonal strictly tail-recursive cons-free
constructor TRS. Because the obtained TRS is orthogonal and strictly tail-recursive, the
reduction strategy does not play a significant role. We skip the routine details. J

It is more difficult to show the other direction of the characterisation result, i.e., that any
decision problem accepted by a finite orthogonal tail-recursive cons-free constructor TRS is
in LOGSPACE. Indeed, if the TRS is tail-recursive but not strictly tail-recursive, then terms
which have a constructor normal form may also have arbitrarily large reducts. Consider
e.g. the following TRS R:

f(x)→R f(g(x)) h(x)→R a

Then h(f(a)) →R a but also h(f(a)) →∗R h(f(gn(a))) for any n ∈ N. This example also
shows that the innermost strategy may fail to give a normal form even if a term has one.

We will show that a constructor normal form may always be reached by an eager R⊥-
reduction, denoted →∗R⊥e, which contracts only innermost R-redexes and eagerly (as soon
as possible) replaces by ⊥ an innermost subterm with no constructor normal form in R.
For instance, in the example TRS R given above h(f(a)) →⊥ h(⊥) →R a is an eager
R⊥-reduction, but h(f(a))→R h(f2(a)) is not. The term f(a) does not have a constructor
normal form in R, so it cannot be R-contracted in an eager R⊥-reduction – it must be
contracted to ⊥.

Whether a subterm has a constructor normal form in R may be decided using a constant
number of logarithmic counters. An eager R⊥-reduction has the form

f1(w1
1, . . . , w

1
n1

)→∗R⊥e f1(t11, . . . , t1n1
)→ε

R f2(w2
1, . . . , w

2
n2

)→∗R⊥e f2(t21, . . . , t2n2
)→ε

R . . .

where tji is the constructor normal form w.r.t. eager R⊥-reduction of wji (⊥ is considered to
be a constructor) and fi & fj for i ≤ j. At some point either we reach a constructor normal
form or a term fi(ti1, . . . , tini

) repeats. Because of cons-freeness, there are only polynomially
many such terms. Hence, a logarithmic counter may be used to detect looping. Because of
tail-recursiveness, computing the constructor normal form (w.r.t. eager R⊥-reduction) tji
of wji may be done by a recursive invocation, and the recursion depth will be constant. The
rest of this section is devoted to making the above arguments precise.

I Definition 3.3. Let R be a constructor TRS and let ⊥ be a fresh constant, i.e., not
occurring in any of the rules of R. We define the ⊥-contraction relation →ε

⊥ by: t →ε
⊥ ⊥

if t does not R-reduce to a constructor normal form. The ⊥-reduction relation →⊥ is the
compatible closure of →ε

⊥. We set →R⊥ = →R ∪ →⊥. An R⊥-reduction is eager if only
innermost R⊥-redexes are contracted and priority is given to ⊥-reduction, i.e., an R-redex t
such that t→⊥ ⊥ is not R-contracted in the reduction. We use →R⊥e for an eager one-step
R⊥-reduction.

FSCD 2018
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Note that ⊥ is a constructor. So a term of the form c(t1, . . . , tn) with c a constructor never
eagerly R⊥-reduces to ⊥, because if it does not have a constructor normal form in R then
there is a R⊥-redex in one of the ti. Note that a term is in normal form w.r.t. R⊥-reduction
iff it is a constructor normal form.

We first show that in a left-linear constructor TRS ⊥-reduction may be postponed after
R-reduction. This will imply that eager R⊥-reduction to a constructor normal form not
containing ⊥ may be replaced with R-reduction.

I Lemma 3.4. In a left-linear constructor TRS, if u ⇒⊥ t →R t′ then there is u′ with
u→R u

′ ⇒⊥ t′.

Proof. Without loss of generality we may assume that t→R t
′ occurs at the root by a rule

l → r with substitution σ. By the choice of ⊥ the term l does not contain ⊥. We have
t = σ(l). So ⊥ in t may occur only below a variable position of l. Since ⊥ are the contracta
in u⇒⊥ t, the expansions u⇒⊥ t in t occur below variable positions of l. Hence, there is σ′
such that σ′(x)⇒⊥ σ(x) for all x ∈ Var(l) and u = σ′(l). Then take u′ = σ′(r). J

I Corollary 3.5. In a left-linear constructor TRS, if t →∗R⊥ t′ then there is u with t →∗R
u→∗⊥ t′.

I Lemma 3.6. In a left-linear constructor TRS, if t →∗R⊥ s with s a constructor normal
form not containing ⊥, then t→∗R s.

Proof. Induction on the number n of ⊥-contractions in t→∗R⊥ s. If n > 0 then consider the
last ⊥-contraction: t →∗R⊥ t′ →⊥ t′′ →∗R s. By Lemma 3.4 there is s′ with t′ →∗R s′ ⇒⊥ s.
Because s does not contain ⊥, we have s′ = s. So t→∗R⊥ s with n− 1 ⊥-contractions. Hence
t→∗R s by the inductive hypothesis. J

The following lemma shows that eager R⊥-reduction in σ(t), with t a linear constructor
term, occurs below variable positions.

I Lemma 3.7. In a constructor TRS R, if t is a linear constructor term and σ(t)→∗R⊥e t′
then there is σ′ such that t′ = σ′(t) and σ(x)→∗R⊥e σ′(x) for all x ∈ Var(t).

Proof. Induction on t. If t = x then take σ′(x) = t′. Otherwise t = c(t1, . . . , tn) and
t′ = c(t′1, . . . , t′n) with σ(ti) →∗R⊥e t′i and c a constructor. By the inductive hypothesis for
i = 1, . . . , n there is σ′i with σ′i(ti) = t′i and σ(x) →∗R⊥e σ′i(x) for x ∈ Var(ti). Because t is
linear, Var(ti)∩Var(tj) = ∅ for i 6= j. So the σ′is may be combined into a single substitution σ′
with the required properties. J

I Corollary 3.8. In a left-linear constructor TRS R, if f(t1, . . . , tn) →ε
R t and ti →∗R⊥e t′i

for i = 1, . . . , n, then there is t′ with f(t′1, . . . , t′n)→ε
R t
′ ∗
R⊥e← t. Moreover, the contraction

f(t′1, . . . , t′n)→ε
R t
′ is by the same rule as f(t1, . . . , tn)→ε

R t.

Proof. Assume f(t1, . . . , tn)→ε
R t by a rule f(l1, . . . , ln)→ r with substitution σ. Because

each li is a linear constructor term and Var(li) ∩ Var(lj) = ∅ for i 6= j, by Lemma 3.7
there is σ′ such that for i = 1, . . . , n we have σ′(li) = t′i and σ(x) →∗R⊥e σ′(x). Thus u =
f(σ′(l1), . . . , σ′(ln))→R σ

′(r). Also t′ = σ(r)→∗R⊥e σ′(r), because Var(r) ⊆ Var(l1, . . . , ln).
So we may take t′ = σ′(r). J

The next lemma shows a strengthening of the diamond property for eager R⊥-reduction
in orthogonal TRSs.
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I Lemma 3.9. In an orthogonal TRS R, if t→R⊥e t1 and t→R⊥e t2 then either t1 = t2 or
there is t′ with t1 →R⊥e t

′ and t2 →R⊥e t
′.

Proof. If the redexes are parallel then the second part of the disjunction holds. Because both
redexes are innermost, if they are not parallel we may assume without loss of generality that
both of them are at the root. If both of them are R-redexes, then t1 = t2 by orthogonality.
If both are ⊥-redexes then t1 = t2 = ⊥. It is not possible that one redex is a ⊥-redex and
the other an R-redex, because the reductions are eager. J

The following simple lemma is needed in the proof of Lemma 3.11.

I Lemma 3.10. In a cons-free constructor TRS, if every subterm of t in chnf is in constructor
normal form and t→∗R t′ and t′ is in chnf, then t′ is in constructor normal form.

Proof. Because the TRS is cons-free, any chnf subterm of any R-reduct of t must be in B(t).
More precisely, one shows that if t→R u then still every subterm of u in chnf is in constructor
normal form. J

In the rest of this section we assume that R is a finite orthogonal tail-recursive cons-free
constructor TRS.

Note that because R is finite and tail-recursive the partial order on the equivalence classes
determined by & may be extended to a well order >E . We write t1 >E t2 (t1 ≥E t2) if the
greatest equivalence class of a defined function symbol in t1 is greater (greater or equal) than
the greatest equivalence class of a defined function symbol in t2. We write f ≤E t if the
equivalence class of the defined function symbol f is less or equal to the greatest equivalence
class of a defined function symbol in t. Note that if t →∗R⊥ t′ then t ≥E t′, because R is
tail-recursive.

Our next goal is to show that every term has a constructor normal form (possibly
containing ⊥) reachable by eager R⊥-reduction. This will imply that eager R⊥-reduction
commutes with R-reduction, and that eager R⊥-reduction is terminating.

I Lemma 3.11. Assume that for all t′ with t′ ≤E t there is s in constructor normal form
such that t′ →∗R⊥e s. If t′ R← t→R⊥e u then there is u′ with t′ →∗R⊥e u′ =

R← u.

Proof. Note that because the redex contracted in t→R⊥e u is innermost, it cannot happen
that the redex contracted in t →R t′ occurs strictly inside this redex. So we may assume
without loss of generality that the redex contracted in t→R t

′ occurs at the root.
If u = ⊥ then t = f(s1, . . . , sn) with s1, . . . , sn in constructor normal form, because the

R⊥-reduction is innermost. Since t′ ≤E t, there is a constructor normal form s such that
t′ →∗R⊥e s. If s = ⊥ then we may take u′ = ⊥. Otherwise, s = c(s′1, . . . , s′m) with c 6= ⊥ a
constructor. By Corollary 3.5 there is w with t→R t

′ →∗R w →∗⊥ s. Then w is in chnf. But
then by Lemma 3.10 it is in constructor normal form. This contradicts t→⊥ ⊥.

If t →R⊥e u contracts an R-redex at the root, then u = t′ because R is orthogonal, so
take u′ = t′. The remaining case, when the eager R⊥-contraction occurs strictly below the
root, follows from Corollary 3.8. J

I Lemma 3.12. Assume that for all t with t <E g there is s in constructor normal form such
that t→∗R⊥e s. If g(t1, . . . , tn)→∗R s with g a defined function symbol and s in constructor
normal form and ti <E g and ti →∗R⊥e wi for i = 1, . . . , n, then g(w1, . . . , wn)→∗R s.

FSCD 2018



13:6 Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

Proof. Induction on the number of root steps in g(t1, . . . , tn)→∗R s. There is at least one
root step, so g(t1, . . . , tn) →∗R g(t′1, . . . , t′n) →ε

R t →∗R s and, because R is cons-free and
tail-recursive, either t = s or t = g′(u1, . . . , um) with g′ ≤E g and ui <E g. By Lemma 3.11
there are w′1, . . . , w′n such that wi →∗R w′i and t′i →∗R⊥e w′i for i = 1, . . . , n. By Corollary 3.8
there is t′ with g(w′1, . . . , w′n) →ε

R t′ and t →∗R⊥e t′. If t = s then t′ = s and we are
done. Otherwise, by Corollary 3.8, t′ = g′(u′1, . . . , u′m) and ui →∗R⊥e u′i. By the inductive
hypothesis t′ →∗R s. Hence g(w1, . . . , wn)→∗R g(w′1, . . . , w′n)→R t

′ →∗R s. J

I Lemma 3.13. Assume that for all t with t <E g there is s in constructor normal form such
that t→∗R⊥e s. If g(t1, . . . , tn)→∗R s with g a defined function symbol and s in constructor
normal form and ti <E g for i = 1, . . . , n, then g(t1, . . . , tn)→∗R⊥e s.

Proof. The reduction g(t1, . . . , tn)→∗R s has the form:

g(t1, . . . , tn)→∗R g(u1, . . . , un)→ε
R g1(t11, . . . , t1n1

)→∗R g1(u1
1, . . . , u

1
n1

)→ε
R . . .→ε

R s.

We proceed by induction on the number of root steps in this R-reduction. Since ti <E g

for i = 1, . . . , n, there are s1, . . . , sn in constructor normal form such that ti →∗R⊥e si. By
Lemma 3.11 we also have ui →∗R⊥e si. By Corollary 3.8 there is t′ with g(s1, . . . , sn)→ε

R t
′ and

either t′ = s, or t′ = g1(w1, . . . , wn1) and t1i →∗R⊥e wi. We have g(s1, . . . , sn)→R⊥e s because
the R-reduction to t′ is innermost and g(s1, . . . , sn)→∗R s by Lemma 3.12. Hence if t′ = s then
g(t1, . . . , tn) →∗R⊥e s. So assume t′ = g1(w1, . . . , wn1) with t1i →∗R⊥e wi. By the inductive
hypothesis g1(t11, . . . , t1n1

)→∗R⊥e s. By Lemma 3.9 we obtain g1(w1, . . . , wn1)→∗R⊥e s. Thus
g(t1, . . . , tn)→∗R⊥e g(s1, . . . , sn)→R⊥e g1(w1, . . . , wn1)→∗R⊥e s. J

I Lemma 3.14. For every term t there exists s in constructor normal form2 such that
t→∗R⊥e s.

Proof. We proceed by induction on pairs 〈e, n〉 ordered lexicographically, where e is the
greatest, w.r.t. >E , equivalence class of a defined function symbol in t, and n is the size
of t. This is obvious if t is a variable. So assume t = f(t1, . . . , tn). Since each tk is smaller
than t, by the inductive hypothesis for each k = 1, . . . , n there is a constructor normal
form sk with tk →∗R⊥e sk. If f is a constructor then we are done, so assume it is a defined
function symbol. If f(s1, . . . , sn) does not R-reduce to a constructor normal form, then
f(s1, . . . , sn)→R⊥e ⊥, so we may take s = ⊥. Otherwise f(s1, . . . , sn)→∗R s for some s in
constructor normal form. Of course, f ≤E t, so the inductive hypothesis implies that for
all t′ with t′ <E f there is s′ in constructor normal form such that t′ →∗R⊥e s′. Thus by
Lemma 3.13: t→∗R⊥e f(s1, . . . , sn)→∗R⊥e s. J

I Corollary 3.15. If t′ ∗R← t→∗R⊥e u then there is u′ with t′ →∗R⊥e u′ ∗R← u.

Proof. Follows from Lemma 3.11 and Lemma 3.14. J

I Remark. Corollary 3.15 fails if the R⊥-reduction is not required to be eager (though
innermost would suffice). Consider the TRS R:

f(x)→R f(x) g(c(x))→R a

We have g(c(f(x))) →R a, but also g(c(f(x))) →⊥ g(⊥) →⊥ ⊥, because c(f(x)) does not
R-reduce to a constructor normal form.

2 Recall that ⊥ is considered to be a constructor.
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The corollary also fails if R is not required to be cons-free. Consider the TRS R:

f(x)→R f(x) g(x)→R c(f(x))

Then g(x)→∗R⊥e ⊥. On the other hand g(x)→R c(f(x)) and c(f(x)) 6→∗R⊥e ⊥.
If R is not required to be tail-recursive then this also fails. Consider the TRS R:

h(x)→R h(f(x)) f(x)→R g(x, f(x)) g(x, y)→R x

Then h(a)→R⊥e ⊥, because h(t) does not have a constructor normal form for any t. Also
h(a)→R h(f(a)). The term h(f(a)) has no constructor normal form, but h(f(a)) 6→R⊥e ⊥
because the ⊥-redex is not innermost. And there is no constructor normal form s with
f(a) →∗R⊥e s (note that f(a) →R g(a, f(a)) →R a but the reduction is not innermost).
Hence, there is no eager R⊥-reduction from h(f(a)) to ⊥.

The proof of the next lemma is an adaptation of the standard argument that in an
orthogonal TRS if a term is weakly innermost normalising then it is innermost terminating.

I Lemma 3.16. Eager R⊥-reduction is terminating.

Proof. Follows from Lemma 3.14 and Lemma 3.9. Assume there is an infinite eager R⊥-
reduction t0 →R⊥e t1 →R⊥e t2 →R⊥e . . .. By Lemma 3.14 there is u in constructor normal
form with t0 →∗R⊥e u. Using Lemma 3.9 one shows by induction on the length of t0 →∗R⊥e u
that there is an infinite eager R⊥-reduction starting at u. This contradicts that u is a
constructor normal form. J

Termination of eager R⊥-reduction is crucial in justifying the correctness of the algorithm
described in the proof of the following theorem.

I Proposition 3.17. Let R be a finite orthogonal tail-recursive cons-free constructor TRS.
There is a LOGSPACE algorithm which given a term t = f(t1, . . . , tn), with t1, . . . , tn in
constructor normal form (possibly containing ⊥), computes the constructor normal form s ∈
B(t,⊥) such that t→∗R⊥e s.

Proof. Note that because R is cons-free, if t→∗R⊥ t′ then any subterm of t′ with a constructor
symbol at the root is in B(t,⊥). Because the size of B(t,⊥) is polynomial (there is only a
constant number of constructor normal forms occurring in right-hand sides of rules in R),
constructor normal forms occurring in R⊥-reducts of t may be represented using a logarithmic
number of bits.

Because R is a tail-recursive constructor TRS, f(t1, . . . , tn) either is R-irreducible, in
which case it may be contracted to ⊥, or it R-contracts (eagerly) to a constructor normal
form, or it R-contracts (not necessarily eagerly) to a term f ′(t′1, . . . , t′m) where f ′ is a defined
function symbol and f & f ′ and for each defined function symbol g in one of t′1, . . . , t′m we
have f > g. Apply the procedure recursively, in depth-first order, to subterms of t′1, . . . , t′m of
the form g(u1, . . . , uk) with g a defined function symbol and u1, . . . , uk in constructor normal
form. This results in s1, . . . , sm in constructor normal form such that t′k →∗R⊥e sk. Note
that the number of defined function symbols in t′1, . . . , t′m is constant and depends only on
the rule of R applied to t. Hence only logarithmic space is needed to store (representations
of) intermediate results. Note also that f > g for g a defined symbol in t′1, . . . , t′m, which
guarantees termination of the recursion.

So f(t1, . . . , tn) →ε
R f ′(t′1, . . . , t′m) →∗R⊥e f ′(s1, . . . , sm) with s1, . . . , sm again in con-

structor normal form. We keep repeating the steps described in the previous paragraph,
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starting with f ′(s1, . . . , sm) now, until we reach a constructor normal form or we detect
looping in which case ⊥ is returned. Looping detection may be realised using a single counter
with a logarithmic number of bits. Indeed, by repeating the steps described in the previous
paragraph we obtain a reduction of the form

t→ε
R f1(w1

1, . . . , w
1
n1

)→∗R⊥e f1(t11, . . . , t1n1
)→ε

R f2(w2
1, . . . , w

2
n2

)→∗R⊥e f2(t21, . . . , t2n2
)→ε

R ..

where the R⊥e-reductions occur strictly below the root. Let M be the maximum arity
of a defined function symbol in R, and K the number of defined function symbols in R,
and N the size of B(t) (note that N is bounded by the size of t plus a constant). There
are at most N different constructor normal forms occurring in the R⊥-reducts of t, so if
the above reduction contains more than KNM root steps, then one of the root R-redexes
fi(ti1, . . . , tini

) must repeat. So we keep a counter and return ⊥ after performing KNM

root steps if we do not stop with a constructor normal form earlier. To see that this is
correct, note that if a root redex repeats then an infinite reduction of the above form may be
constructed. Assume t→∗R s for a constructor normal form s. Then the initial R-contraction
t →ε

R f1(w1
1, . . . , w

1
n1

) is eager, so t →∗R⊥e f1(t11, . . . , t1n1
), and thus f1(t11, . . . , t1n1

) →∗R s by
Corollary 3.15. By induction on k we show that fk(tk1 , . . . , tknk

)→∗R s and each of the root
R-contractions fk(tk1 , . . . , tknk

)→ε
R fk+1(wk+1

1 , . . . , wk+1
nk+1

) is eager, i.e.

t→+
R⊥e f1(t11, . . . , t1n1

)→+
R⊥e f2(t21, . . . , t2n2

)→+
R⊥e f3(t31, . . . , t3n3

)→+
R⊥e . . .

Hence, there exists an infinite eager R⊥-reduction from t, which contradicts Lemma 3.16.
Thus, if a root redex repeats then t→⊥ ⊥. So returning ⊥ is correct in this case.

The above algorithm terminates and the recursion depth (the maximum nesting of
recursive calls) is constant, because in the recursive calls for subterms of t′1, . . . , t′m the
defined function symbol at the root is strictly smaller in the preorder &. Also note that in
each recursive call on a subterm g(u1, . . . , un) of one of t′1, . . . , t′m the constructor normal
forms u1, . . . , un are in B(t,⊥), because then g(u1, . . . , un) is a subterm of an R⊥-reduct
of t. So u1, . . . , un may still be represented in logarithmic space. Hence, at each recursive
invocation the algorithm uses logarithmic space to store the representations of the function
symbol arguments, a constant number of logarithmic-space variables to store the intermediate
results of recursive calls, and a logarithmic counter to detect looping. Since the recursion
depth is constant, the algorithm altogether uses logarithmic space. J

I Theorem 3.18. A decision problem is in LOGSPACE iff it is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. The direction from left to right follows from Proposition 3.2. For the other direction
it suffices to show an algorithm which given a finite orthogonal tail-recursive cons-free
constructor TRS R and a term t = f(t1, . . . , tn) with t1, . . . , tn in constructor normal form
not containing ⊥, computes in LOGSPACE the constructor normal for of t, if it has one,
or rejects otherwise. The algorithm is to run the procedure from Proposition 3.17 to find a
constructor normal form s with t→∗R⊥e s. If s does not contain ⊥ then t→∗R s by Lemma 3.6.
Otherwise, t does not have a constructor normal form in R and we reject. Indeed, if t→∗R s′
with s′ in constructor normal form then s′ does not contain ⊥ because t does not. But s = s′

by Corollary 3.15. J

4 Stream Term Rewriting Systems

In this section we define stream TRSs which allow possibly infinite stream terms. We define
infinitary reduction in a stream TRS which captures the notion of a “limit” of an infinite
reduction sequence.
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I Definition 4.1. A stream TRS is a two-sorted constructor TRS with sorts s (the sort of
streams) and d (the sort of finite data), finitely many defined function symbols, finitely many
data constructors ci : dn → d, and one binary stream constructor cons : d× s→ s. Terms of
sort s are stream terms. Terms of sort d are data terms. For stream TRSs we allow terms
to be infinite. We write t1 :: t2 instead of cons t1 t2. If l→ r ∈ R is a rule, then we require
that l and r have the same sort.

Stream rules are the rules l → r such that l is a stream term. Data rules are the rules
l→ r such that l is a data term. A stream (resp. data) function symbol is a defined function
symbol of type τ1 × . . .× τn → s (resp. τ1 × . . .× τn → d).

A simple stream rule has the form:

f(u1, . . . , un)→ t1 :: . . . :: tk :: g(w1, . . . , wm)

where k ≥ 0 and we require:
1. u1, . . . , un are constructor terms,
2. every stream subterm of one of t1, . . . , tk, w1, . . . , wm occurs (as a subterm) in u1, . . . , un,
3. if k = 0 then every data subterm c(v1, . . . , vj) of each of w1, . . . , wm, with c : dj → d a

data constructor, either occurs in u1, . . . , un or is a constructor normal form.

The intuitive interpretation of the restrictions of a simple stream rule is that it is cons-free
with respect to stream subterms, and if the rule does not produce a new stream element
then it is also cons-free with respect to data subterms.

Note that by requiring u1, . . . , un to be constructor terms and every stream subterm of
each of t1, . . . , tk, w1, . . . , wm to occur in u1, . . . , un, we ensure that stream function symbols
cannot occur in t1, . . . , tk, w1, . . . , wm, i.e., g is the only stream function symbol in the
right-hand side. Hence, the only function symbols present in t1, . . . , tk, w1, . . . , wm are of
data sort.

I Example 4.2. Here are some examples of simple stream rules, where x, x′ are stream
variables, and y is a data variable, and c is a data constructor, and h is a defined data
function symbol:

f(a :: x, y) → a :: f(x, c(y))
f(a :: x, b :: x′) → a :: b :: f(b :: x′, a :: x)

f(a :: x) → a :: g(x, c(a))
f(a :: x, y) → f(x, h(y))

Here are some non-examples:

f(a :: x, y) → f(x, c(y))
f(a :: x, b :: x′) → a :: b :: f(g(x′), a :: x)

f(a :: x) → a :: g(b :: x, c(a))
f(a :: x, h(y)) → f(x, h(y))

I Definition 4.3. Given a stream TRS R, infinitary R-reduction is defined coinductively.

t→∗R t′

t→∞R t′
t→∗R u :: w w →∞R w′

t→∞R u :: w′

Coinductive definitions of infinitary rewriting originate from [4, 5]. Intuitively, the
definition means that t →∞R t′ holds if this may be derived using the above rules in a
possibly infinite derivation. For example, if f(x)→ x :: f(S(x)) is a stream rule in R, then
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f(0) →∞R 0 :: S(0) :: S(S(0)) :: . . ., i.e., f(0) infinitarily reduces to an infinite stream of
consecutive natural numbers.

The above definition differs from the standard definition of infinitary reduction via
strongly convergent reduction sequences. The difference is mainly because we effectively
disallow an infinitary reduction to produce an infinite nesting of defined function symbols.
This eliminates the problems with confluence in infinitary rewriting. Infinitary R-reduction,
defined as above, is confluent if R is finite and orthogonal. First of all, confluence holds also
for finitary R-reduction.

I Lemma 4.4. If R is finite and orthogonal then the finitary reduction relation →R is
confluent.

Proof. Note that the terms may be infinite. But because both the left- and right-hand
sides of all rules are finite, we may use virtually the same proof as in the case of ordinary
orthogonal term rewriting systems, mutatis mutandis. J

Because of space limits we delegate the proof of confluence of infinitary reduction to
Appendix A. Here we only state the result.

I Theorem 4.5. If R is finite and orthogonal then →∞R is confluent, i.e., if t →∞R t1 and
t→∞R t2 then there exists t′ such that t1 →∞R t′ and t2 →∞R t′.

Let Σ be an alphabet. Assuming all elements of Σ are data constants in the rewriting
system, each Σ-stream (infinite word in Σω) may be treated as an infinite stream term.
Also, finite words over Σ may be represented as stream terms in the TRS, where after the
symbols representing the word there is a term with no constructor head normal form, e.g.,
a :: b :: c :: Ω represents the word abc, where Ω has no chnf. Note that a stream term in
chnf (Definition 2.1) has the form u :: w. We denote the set of terms representing finite and
infinite words over Σ by S+(Σ), and the set of terms representing infinite words by S(Σ).
More precisely, the set S+(Σ) is defined coinductively as follows.

t has no chnf
t ∈ S+(Σ)

c ∈ Σ t ∈ S+(Σ)
(c :: t) ∈ S+(Σ)

For each term t in S+(Σ) there is exactly one corresponding finite or infinite word |t|
in Σ≤ω = Σω ∪ Σ∗ which this term represents.

I Lemma 4.6. Assume t→∞R t′. Then t has a chnf iff t′ has a chnf.

Proof. Follows from definitions and Lemma 4.4. J

I Corollary 4.7. Let R be a finite orthogonal stream TRS. If t →∞R s and t →∞R s′ and
s, s′ ∈ S+(Σ) then |s| = |s′|.

I Definition 4.8. A stream function F : (Σω)n → Σ≤ω is defined by an n-ary stream
function symbol f if for any w1, . . . , wn ∈ Σω and s1, . . . , sn ∈ S(Σ) with |si| = wi we
have f(s1, . . . , sn) →∞R s where |s| = F (w1, . . . , wn). A stream function is definable in a
stream TRS if it is defined by one of its stream function symbols.

A stream TRS R is data tail-recursive if the data rules of R form a single-sorted (i.e. neither
left- nor right-hand sides of data rules of R contain stream subterms) finite tail-recursive
cons-free constructor TRS.
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Note that if R is data tail-recursive then data terms do not contain stream subterms,
because then neither data constructors nor data function symbols can have stream arguments.
In particular, if l→ t :: r is a rule in R, then t does not contain stream subterms.

I Definition 4.9. A pure stream TRS is a finite orthogonal stream TRS with simple stream
rules, no data rules and no data constructors of arity > 0.

A stream TRS has simple data if there exists a unary data constructor S : d→ d such
that for every stream rule l→ r ∈ R, if t is a data subterm of r such that Var(t) 6= ∅ then
t = S(t′) or t is a variable.

A simple stream TRS is a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data.

I Example 4.10. Here is an example of a simple stream TRS, where x, x′ are stream variables
and y, y′ are data variables.

f(x) → g(x, x, 0, 0)
g(y :: x, x′, 0, y′) → y :: g(x′, x′, S(y′), S(y′))

g(0 :: x, x′, S(y), y′) → g(x, x′, y, y′)
g(1 :: x, x′, S(y), y′) → g(x, x′, y′, y′)

In this stream TRS the stream function symbol f defines a function F : Σω → Σ≤ω such
that F (s) has in position n the first element of s following a block of n consecutive 0’s.

The following simple stream TRS defines the Thue-Morse sequence T :

T → f(0) f(x) → h(x, x) :: f(S(x))
h(0, 0) → 0 h̃(0, 0) → 1
h(0, x) → h(x, x) h̃(0, x) → h̃(x, x)

h(S(0), S(x)) → h̃(x, x) h̃(S(0), S(x)) → h(x, x)
h(S(S(x)), S(y)) → h(x, y) h̃(S(S(x)), S(y)) → h̃(x, y)

The n-th element Tn of T is defined by the recurrence:

T0 = 0 T2n = Tn T2n+1 = 1− Tn

Identifying natural numbers with their representations in the TRS, it may be shown by
induction on 〈2m − n, n〉 ordered lexicographically that the data term h(n,m) reduces
to T2m−n and h̃(n,m) to 1− T2m−n.

5 Finite Stream Transducers

In this section we characterise the classes of stream functions computable by (jumping) finite
stream transducers. In short, pure stream TRSs characterise the class of stream functions
computable by jumping finite transducers, and right-linear pure stream TRSs characterise
the class of stream functions computable by finite transducers. We first recall the definitions
of (jumping) finite transducers from [14, 13].

I Definition 5.1. An n-ary jumping finite transducer (JFT) over Σ-streams with m cursors is
a tuple 〈Q, q0, C, γ, δ〉 where Q is a finite set of states, q0 is the start state, C = {c1, . . . , cm}
is the set of cursors, γ : C → {1, . . . , n} is the initial cursor configuration, and

δ : Q× Σm → Q× (C → C ∪ {+})× (Σ ∪ {ε})
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is the transition function. Intuitively, δ(q, σ1, . . . , σm) consists of the next state, an indication
of cursor movement, and an optional output symbol. A cursor may either move forward or
jump to the position of another cursor. In other words, an n-ary JFT is a finite automaton
with n read-only input tapes and one write-only output tape, and m cursors which can move
forward on the input tapes and jump to positions of other cursors, but cannot be compared.

A finite transducer (FT) is a JFT such that no cursor ever jumps to the position of
another (except to itself, which is equivalent to not moving). A configuration of a JFT
consists of a state and a function π : C → {1, . . . , n} × N which assigns to each cursor c a
stream index i ∈ {1, . . . , n} and a position in the stream. The successor configuration K ′ of
a configuration K is determined in the obvious way by the transition function δ. The initial
configuration is 〈q0, π0〉 where π0(c) = 〈γ(c), 0〉 for c ∈ C. A run of a JFT 〈Q, q0, C, γ, δ〉 is
an infinite sequence of configurations K0,K1,K2, . . . such that K0 is the initial configuration
andKn+1 is the successor configuration ofKn for each n ∈ N. The function F : (Σω)n → Σ≤ω
computed by a given n-ary FT (JFT) is defined in an obvious way, with F (w1, . . . , wn) being
the output of the transducer on inputs w1, . . . , wn. The output may be finite, because the
transducer may loop.

I Theorem 5.2. An n-ary stream function is definable in a pure stream TRS with maximum
function symbol arity m iff it is computable by an n-ary JFT with m cursors.

Proof. Let 〈Q, q0, C, γ, δ〉 be an n-ary JFT with m cursors. Without loss of generality
C = {1, . . . ,m}. In the TRS we have a stream function symbol fq : sm → s for each state
q ∈ Q. There is also the “start” stream function symbol g : sn → s. We have the rules e.g.

fq(σ1 :: x1, . . . , σm :: xm)→ σ :: fq′(σρ(1) :: xρ(1), x2, σρ(3) :: xρ(3), . . .)

when δ(q, σ1, . . . , σm) = 〈q′, ρ, σ〉 and ρ(1), ρ(3), . . . ∈ C and ρ(2) = +. Intuitively, the
arguments of fq encode the m cursors. We also have the “start” rule:

g(x1, . . . , xn)→ fq0(xγ(1), . . . , xγ(n)).

Note that all of the above rules are simple stream rules and the TRS is orthogonal, so it
is a pure stream TRS. It is easy to see that for each s1, . . . , sn ∈ S(Σ) there is a bijective
correspondence between the infinite runs of the JFT on |s1|, . . . , |sn| and infinite reductions
starting at g(s1, . . . , sn). This implies that the function defined by g is the same as the
function computed by the JFT.

For the other direction, let R be a pure stream TRS with maximum function symbol
arity m, and let the n-ary symbol g define a function F : (Σω)n → Σ≤ω where Σ is the set of
data constants in R. We construct an n-ary JFT with m cursors.

Because there are no data rules or data constructors of arity > 0, each rule is a simple
stream rule of the form e.g.

f(a :: u :: b :: x, a :: y, c)→ d :: g(u :: b :: x, e)

where a, b, c, d, e ∈ Σ, and u is a data variable. We will encode stream function symbols by
(possibly many) states. Stream arguments will correspond to cursor positions.

Let N be the maximum size of the left-hand side l of a rule l → r ∈ R. For a function
symbol f with k stream and j data arguments, and words w1, . . . , wk ∈ ΣN , and constants
c1, . . . , cj ∈ Σ, we add a state qw1,...,wk,c1,...,cj

f . The words w1, . . . , wk buffer the last N
symbols read from each of the cursors. Let si be a stream term representing the word wi,
with a variable xi at the tail, e.g., if wi = abc then si = a :: b :: c :: xi. Without loss of
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generality assume the stream arguments of f occur before the data arguments. Because R is
orthogonal, there is at most one rule l→ r ∈ R such that l matches f(s1, . . . , sk, c1, . . . , cj)
with some substitution σ, i.e., σl = f(s1, . . . , sk, c1, . . . , cj). Note that because of the choice
of N , if there is no rule l→ r ∈ R with l matching f(s1, . . . , sk, c1, . . . , cj), then no left-hand
side of a rule unifies with f(s1, . . . , sk, c1, . . . , cj). Assume e.g.

σl = f(a :: b :: x, c :: d :: y, c1)

and

σr = d :: g(c :: d :: y, b :: x, d :: y, c).

Then in the state qab,cd,c1
f the JFT outputs d and simultaneously sets the first cursor to the

second one, the second to the first, and the third to the second. Then it reads one symbol
from the second cursor and one from the third, moving them forward. Let the read symbols
be a1, a2 respectively. The JFT then enters the state qcd,ba1,da2,c

g . This behaviour may always
be encoded using a finite number of states.

The JFT starts in a state q0 with the i-th cursor initialised to the beginning of the i-th
input tape, for i = 1, . . . , n, and other cursors initialised arbitrarily. Then the JFT reads N
symbols from each of the n input tapes, and reaches the state qw1,...,wn

g where wi ∈ ΣN is
the word consisting of the symbols read from the i-th input tape.

We also add a “trash” state qT and add appropriate transitions to qT from other states
to make δ a total function.

For any s1, . . . , sn ∈ S(Σ) there is a bijective correspondence between the runs of the
JFT on |s1|, . . . , |sn| and the infinite reductions starting at g(s1, . . . , sn), and the function
computed by the JFT is the same as the function defined by g. J

I Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with maximum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. An adaptation of the proof of Theorem 5.2. More details are in Appendix B. J

6 LOGSPACE for streams

In this section we show that stream functions definable in simple stream TRSs are exactly
the stream functions computable in LOGSPACE as defined by Ramyaa and Leivant [14, 13].
First, we recall the definition of jumping Turing transducers from [14].

I Definition 6.1. A jumping Turing transducer (JTT) is defined analogously to a JFT,
except that it has additional read-write work tapes with two-way cursors on them. The
function computed by a JTT is defined in an obvious way. A JTT operates in space f(n) if
the computation for the first n output symbols does not involve work-tapes of length > f(n).
A stream function is computable in LOGSPACE if there is a JTT computing this function
which operates in space O(logn).

Note that the space used by a JTT is defined in terms of the output. Time restrictions
defined in terms of the output do not make much sense for JTTs, because even for FTs no
restriction is placed on how long it takes to output the next symbol (e.g. consider an FT
over binary streams skipping all zeros and copying all ones).

We will show that JTTs operating in LOGSPACE compute exactly the stream functions
definable in simple stream TRSs. First, we generalise eager R⊥-reduction from Section 3 to
stream TRSs.
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I Definition 6.2. Let ⊥ be a fresh nullary data constructor. We define the relation →⊥
by: t→⊥ ⊥ if t is a data term and it does not R-reduce to a constructor normal form. We
set →R⊥ =→R ∪→⊥. A finitary R⊥-reduction is eager if only innermost R⊥-redexes are
contracted and priority is given to ⊥-reduction. We denote one-step eager R⊥-reduction
by →R⊥e. The relation →∞R⊥e of infinitary eager R⊥-reduction is defined coinductively.

t→∗R⊥e t′

t→∞R⊥e t′
t→∗R⊥e u :: w w →∞R⊥e w′

t→∞R⊥e u :: w′

Because of space limits, the proofs of lemmas concerning infinitary eager R⊥-reduction
are delegated to Appendix C.

In the rest of this section we assume R to be a simple stream TRS.

I Definition 6.3. A term is proper if all its data subterms are finite.

If t is proper and t→R t
′ then t′ is also proper, because R is finite.

I Lemma 6.4. If t is proper and t→∞R t1 and t→∞R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

I Lemma 6.5. If s ∈ S+(Σ) and s→∞R⊥e s′ (resp. s→∞R s′), then s ∼ s′ and s′ ∈ S+(Σ).

I Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. Let F : (Σω)n → Σ≤ω be a function defined by an n-ary stream function symbol f0 in
a simple stream TRS R, i.e., a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data. We describe how to construct a JTT operating in LOGSPACE
which computes F .

For s1, . . . , sn ∈ S(Σ) we have f0(s1, . . . , sn)→∞R s ∈ S+(Σ) where F (|s1|, . . . , |sn|) = |s|.
The constructed JTT will essentially compute an s′ ∈ S+(Σ) such that f0(s1, . . . , sn)→∞R⊥e s′,
for a certain fixed infinitary eager R⊥-reduction. By Lemma 6.4 and Lemma 6.5 we then
have |s| = |s′|.

Note that because the TRS is finite and has simple data, all constructor normal form
data terms occurring in any reduction f0(s1, . . . , sn) →∞R⊥e s have the form Sm(t) where
either t ∈ Σ or it is one of the finitely many constructor normal form data terms occurring in
the right-hand sides of the stream or data rules. Because S cannot occur in the right-hand side
of a simple stream rule if no stream element is produced, and data rules are cons-free, m is at
most proportional to the number of output stream elements already produced. Hence Sm(t)
may be represented in logspace, using a logarithmic counter for m and a constant number
of bits to represent t. Because the reduction is eager and the size of right-hand sides of
stream rules is bounded by a constant, using an analogon of Proposition 3.17 we obtain
a JTT which computes in logarithmic space the constructor normal form of a given data
term occurring in the reduction, if it has one. This JTT computes the constructor normal
forms “inside-out”. For a term f(t1, . . . , tk) first the constructor normal forms t′1, . . . , t′k
are computed. Each t′i has the form Smi(u′i) where u′i is either ⊥ or one of the finitely
many constructor normal forms occurring in the right-hand sides of the rules. Then using
(an analogon of) Proposition 3.17 we compute the constructor normal form of f(t′1, . . . , t′k).
For S(t) first the constructor normal form Sm(t′) of t is computed using Proposition 3.17, and
then Sm+1(t′) is returned as the constructor normal form of t. Note that the only property
the constructor normal forms needed in Proposition 3.17 is that they can be represented
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using a logarithmic number of bits, and given a representation of S(t) the representation of t
may be computed in logarithmic space.

We construct the JTT like in Theorem 5.2, except that now the data arguments are
stored in memory instead of the state. We compute constructor normal forms of data terms
using Proposition 3.17. This is done eagerly, before transitioning to the state associated
with the stream function symbol in the right-hand side, which ensures that the size of the
“prefix” containing all defined function symbols of each data term occurring in the reduction
is constant – it is bounded by the size of the right-hand side of a rule in R. More details are
in Appendix C. J

I Theorem 6.7. If a stream function is computable in LOGSPACE then it is definable in a
simple stream TRS.

Proof. Let F : (Σω)n → Σ≤ω be a function computed by a JTT operating in LOGSPACE.
As shown in [14, Proposition 2.4], the function F is also computed by a JFT with a local
counter, i.e., a JFT with an additional input tape which contains 1n when computing the
n-th output symbol. In other words, a 1 is appended to the local counter whenever a symbol
is output by the JFT. Initially, the local counter contains the empty word. The JFT has a
fixed number of cursors on the local counter, which are reset to the beginning of the local
counter tape whenever a symbol is output. As with the cursors on the input, the cursors
on the local counter may move to the right or jump to other cursors. Hence, they may be
encoded in an analogous way as the cursors on the input stream.

A simple stream TRS defining a function computed by a JFT with a local counter may
be constructed in a way analogous to the construction of a pure stream TRS in the proof
of Theorem 5.2. The difference is that now every function symbol fq corresponding to a
state q has an additional data argument representing the local counter, and data arguments
encoding the cursors on the local counter. The local counter contents 1n is represented by
the data term Sn(0), where S : d→ d and 0 : d. If a rule associated with fq produces a new
output symbol, then in the right-hand side of the rule the local counter is “increased” by
prepending S, and the data arguments encoding cursors on the local counter are set to the
local counter. This may be encoded in a simple stream rule. The resulting stream TRS has
simple data.

Note that the constructed simple stream TRS actually has no data rules. It is not a pure
stream TRS because it has a unary data constructor S. J

I Corollary 6.8. A stream function is computable in LOGSPACE iff it is definable in a
simple stream TRS.

7 Conclusions

We have shown an infinitary rewriting characterisation of LOGSPACE-computable stream
functions as defined by Ramyaa and Leivant. In the realm of finite data, we proved that
finite orthogonal tail-recursive cons-free constructor TRSs characterise LOGSPACE.

Our proof could probably be adapted to show that finite semi-linear [10] tail-recursive
cons-free constructor TRSs characterise NLOGSPACE. In the nondeterministic case the
trick with logarithmic counters is not necessary as the procedure may simply guess when to
contract a subterm to ⊥. Semi-linearity ensures that subterms containing redexes cannot get
duplicated, which is crucial to show that a constructor normal form may always be reached
via an eager R⊥-reduction.
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A Confluence of infinitary reduction

I Lemma A.1. If t→∞R t′ →∗R t′′ then t→∞R t′′.

Proof. By coinduction. If t→∗R t′ then this is obvious. Otherwise t′ = u :: w′ and t→∗R u :: w
and w →∞R w′ and t′′ = u′′ :: w′′ and u →∗R u′′ and w′ →∗R w′′. Then t →∗R u′′ :: w. By
coinduction also w →∞R w′′. Hence t→∞R u′′ :: w′′ = t′′. J

I Lemma A.2. If t→∞R t′ →∞R t′′ then t→∞R t′′.

Proof. By coinduction, using Lemma A.1. J

I Lemma A.3. Let R be finite and orthogonal. If t→∞R t′ and t→∗R s then there is s′ with
s→∞R s′ and t′ →∞R s′.

Proof. By coinduction, analysing t →∞R t′. If t →∗R t′ then this follows from Lemma 4.4.
Otherwise t′ = u :: w′, and t →∗R u :: w and w →∞R w′. By Lemma 4.4 there are u1, w1
such that s →∗R u1 :: w1 and u →∗R u1 and w →∗R w1. By coinduction we obtain w2 with
w1 →∞R w2 and w′ →∞R w2. Hence s →∞R u1 :: w2, because s →∗R u1 :: w1 and w1 →∞R w2;
and t′ →∞R u1 :: w2, because t′ = u :: w′ →∗R u1 :: w′ and w′ →∞R w2. J
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t
∗ //

∗��

u1 :: w1

∗��
u2 :: w2

∗ // u :: w

u1

∗��
u2

∗ // u

w1
∞//

∗��

w′2

∞��
w2

∗ //

∞��

w
∞//

∞��

w′′1

2∞��
w′2

∞// w′′2
2∞// w′

ui :: w′i
∗ // u :: w′i w′i

∞// w′′i

ui :: w′i
∞// u :: w′′i w′′i

2∞// w′

Figure 1 Proof of confluence of infinitary reduction.

Note that t′ →∗R s′ would not suffice in the conclusion of the above lemma, because the
infinitary reduction t→∞R t′ may create in t′ infinitely many descendants of a redex in t.

The relation →2∞
R is defined coinductively.

t→∞R t′

t→2∞
R t′

t→∞R u :: w w →2∞
R w′

t→2∞
R u :: w′

I Lemma A.4. If t→∞R t′ →2∞
R t′′ then t→2∞

R t′′.

Proof. Follows directly from Lemma A.2 J

I Lemma A.5. If t→2∞
R t′ then t→∞R t′.

Proof. By coinduction, using Lemma A.4. J

I Theorem 4.5. If R is finite and orthogonal then →∞R is confluent, i.e., if t →∞R t1 and
t→∞R t2 then there exists t′ such that t1 →∞R t′ and t2 →∞R t′.

Proof. By coinduction we construct t′ such that t1 →2∞
R t′ and t2 →2∞

R t′. This suffices by
Lemma A.5. If t →∗R t1 or t →∗R t2 then the claim follows from Lemma A.3. Otherwise,
ti = ui :: w′i and t→∗R ui :: wi and wi →∞R w′i for i = 1, 2. By Lemma 4.4 there are u,w such
that ui →∗R u and wi →∗R w. By Lemma A.3 there are w′′1 , w′′2 such that w′i →∞R w′′i and
w →∞R w′′i . Hence ti = ui :: w′i →∞R u :: w′′i . By coinduction we obtain w′ with w′′i →2∞

R w′.
Thus ti →2∞

R u :: w′, so we may take t′ = u :: w′. See Figure 1. J

B Characterisation of Finite Stream Transducers

I Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with maximum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. First note that for an FT the construction of a stream TRS in the proof of Theorem 5.2
gives a right-linear system. Conversely, if the TRS is right-linear, then we may modify the
construction of a JFT in the proof of Theorem 5.2 to obtain an FT, by keeping in the
state the information which cursor a given function argument corresponds to. So a state
corresponding to a function symbol f is now q

w1,...,wk,c1,...,cj ,i1,...,ik
f where i1, . . . , ik indicate

the cursors corresponding to the stream arguments of f . For instance, if

σl = f(a :: b :: x, c :: d :: y, c1)

FSCD 2018
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and

σr = d :: h(c :: d :: y, b :: x, c)

then the transition from the state qab,cd,c1,i1,i2
f is constructed as follows. First, output d

and read one symbol e from the i1-th cursor moving it forward. Then change the state
to qcd,be,c,i2,i1h . J

C Proofs for Section 6

In this section we assume that R is a simple stream TRS.

I Lemma C.1. If t is proper and t→∞R t1 and t→∗R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

Proof. By coinduction, analysing t→∞R t1. If t→∗R t1 then this follows from Corollary 3.15.
Otherwise t →∗R u :: w and w →∞R w′ and t1 = u :: w′. By Corollary 3.15 there are u2, w2
with t2 →∗R u2 :: w2 and u→∗R⊥e u2 and w →∗R⊥e w2. Note that w is proper. By coinduction
we obtain w′2 with w2 →∞R w′2 and w′ →∞R⊥e w′2. Take t′ = u2 :: w′2. We have t2 →∗R u2 :: w2
and w2 →∞R w′2, so t2 →∞R t′. Also t1 = u :: w′ →∗R⊥e u2 :: w′ and w′ →∞R⊥e w′2, so
t1 →∞R⊥e t′. J

I Lemma 6.4. If t is proper and t→∞R t1 and t→∞R⊥e t2 then there is t′ with t2 →∞R t′ and
t1 →∞R⊥e t2.

Proof. By coinduction, analysing t →∞R⊥e t2. If t →∗R⊥e t2 then this is a consequence of
Lemma C.1. Otherwise t→∗R⊥e u :: w and w →∞R⊥e w′ and t2 = u :: w′. By Lemma C.1 there
are u1, w1 such that t1 →∗R⊥e u1 :: w1 and u→∗R u1 and w →∞R w1. Note that w is proper.
By coinduction we obtain w2 such that w′ →∞R w2 and w1 →∞R⊥e w2. Take t′ = u1 :: w2. We
have t1 →∗R⊥e u1 :: w1 and w1 →∞R⊥e w2, so t1 →∞R⊥e t′. Also t2 = u :: w′ →∗R u1 :: w′ and
w′ →∞R w2, so t2 →∞R t′. J

I Lemma C.2. If t→∗R⊥ u :: w then t has a chnf (in R).

Proof. Induction on the number of ⊥-reduction steps in t →∗R⊥ u :: w. If there are none
then t →∗R u :: w. Otherwise by the inductive hypothesis t →∗R t′ →⊥ t′′ →∗R u′ :: w′.
Because R is finite, by the same argument as in the proof of Lemma 3.4 we conclude that
t→∗R t′ →∗R u′′ :: w′′ →∗⊥ u′ :: w′. J

I Lemma 6.5. If s ∈ S+(Σ) and s→∞R⊥e s′ (resp. s→∞R s′), then s ∼ s′ and s′ ∈ S+(Σ).

Proof. It suffices to notice that if t is a stream term without a chnf and t→∞R⊥e t′ (resp. t→∞R
t′) then t′ does not have a chnf either. This follows from Lemma C.2 (resp. Lemma 4.6). J

I Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. We describe in more detail the construction of a JTT already sketched in Section 6.
The constructed JTT computes the stream c1 :: c2 :: c3 :: . . . where e.g.

f0(s1, . . . , sn)→ε
R t1 :: f1(w1

1, . . . , w
1
k1

)→∗R⊥e c1 :: f1(u1
1, . . . , u

1
k1

)→ε
R

c1 :: t2 :: t3 :: f2(w2
1, . . . , w

2
k2

)→∗R⊥e c1 :: c2 :: c3 :: f2(u1
1, . . . , u

1
k2

)→ε
R . . .
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and none of the uji contain R⊥-redexes. So all of the root R-reduction steps are in fact eager
R⊥-reductions. Note that all terms appearing in this reduction are proper.

Let N be the maximum size of the left-hand side l of a rule l → r ∈ R. For a
stream function symbol f with k stream arguments, and words w1, . . . , wk ∈ ΣN we add a
state qw1,...,wk

f . Let si be a stream term representing the word wi, with a variable xi at the
tail, like in the proof of Theorem 5.2. Assume without loss of generality that the stream
arguments of f occur before the data arguments, and let y1, . . . , yj be data variables. Let
l1 → r1, . . . , ln → rn ∈ R be all rules such that f(s1, . . . , sk, y1, . . . , yj) unifies with li with
substitution σi. Let M be the maximum number of data arguments of any defined stream
function symbol in R. We keep the representations of data arguments in constructor normal
form on M separate work tapes: we call them argument work tapes.

Assume e.g. k = 2 and w1 = ab and w2 = cd and j = 2. In the state qab,cdf the JTT
first checks which of the left-hand sides l1, . . . , ln matches f(a :: b :: x1, c :: d :: x2, u1, u2)
where u is the first data argument – the data term whose representation is stored on the
first argument work tape. There is at most one matching li because R is orthogonal, and
this can be checked using only logarithmic space (it suffices to check whether the two data
arguments in li match u1, u2, respectively). If none of the li matches then the JTT loops.
Assume e.g. li matches with substitution σ and

σli = f(a :: b :: x1, c :: d :: x2, S(y), z)

and

σri = h1(a, b, y, z) :: g(c :: d :: x2, b :: x1, d :: x2, h2(y), y).

Then the JTT outputs the constructor normal form of h1(a, b, t1, t2), computed using
Proposition 3.17, where S(t1) is the constructor normal form of the first data argument,
stored on the first argument work tape, and t2 is the constructor normal form of the second
data argument, sored on the second argument work tape. If the constructor normal form
of h1(a, b, t1, t2) is not in Σ, then the JTT loops. Next, the JTT simultaneously sets the
first cursor to the second one, the second to the first, and the third to the second. Then it
computes the constructor normal form of h2(t), using Proposition 3.17, and writes it to the
first argument tape, and also copies t to the second argument tape. Next, the JTT reads
one symbol from the second cursor and one from the third, moving them forward. Let these
symbols be a1, a2 respectively. The JTT then enters the state qcd,ba1,da2

g . This behaviour
may always be encoded using a finite number of states.

The rest of the construction is like in the proof of Theorem 5.2.
It is clear that the constructed JTT computes a stream |s′| ∈ Σ≤ω for an s′ ∈ S+(Σ)

such that f0(s1, . . . , sn)→∞R⊥e s′. As mentioned before, Lemma 6.4 and Lemma 6.5 imply
that this is correct. Indeed, we have f0(s1, . . . , sn)→∞R s where F (|s1|, . . . , |sn|) = |s|. By
Lemma 6.4 there is w with s →∞R⊥e w and s′ →∞R w. By Lemma 6.5 we have w ∈ S+(Σ)
and s ∼ w and s′ ∼ w. Thus |s| = |w| = |s′|. So the JTT computes the stream |s|, as
required. J
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Abstract
Like termination, confluence is a central property of rewrite systems. Unlike for termination,
however, there exists no known complexity hierarchy for confluence. In this paper we investigate
whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing
diagrams technique is one of the strongest and most versatile methods for proving confluence of
abstract reduction systems, it is complete for countable systems, and it has many well-known
confluence criteria as corollaries.

So what makes decreasing diagrams so powerful? In contrast to other confluence techniques,
decreasing diagrams employ a labelling of the steps → with labels from a well-founded order in
order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask
how the size of the label set influences the strength of the technique. In particular, what class
of abstract reduction systems can be proven confluent using decreasing diagrams restricted to
1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving
confluence for every abstract rewrite system having the cofinality property, thus in particular for
every confluent, countable system. We also show that this result stands in sharp contrast to the
situation for commutation of rewrite relations, where the hierarchy does not collapse.

Finally, as a background theme, we discuss the logical issue of first-order definability of the
notion of confluence.
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14:2 Decreasing Diagrams: Two Labels Suffice

a

b c

d

Figure 1 Confluence.

a

b c

d

Figure 2 Commutation.

1 Introduction

A binary relation → is called confluent if two coinitial reductions (i.e., reductions having the
same starting term) can always be extended to cofinal reductions, that is:

∀abc.
(
b� a� c⇒ ∃d. b� d� c

)
. (1)

The confluence property is illustrated in Figure 1, in which solid and dotted lines stand for
universal and existential quantification, respectively. The relation → is called terminating if
there are no infinite sequences a0 → a1 → a2 → . . ..

Termination and confluence are central properties of rewrite systems. For both properties
there exist numerous proof techniques, and there are annual competitions for comparing the
performance of automated provers. It is therefore a natural question how to measure and
classify the complexity of termination and confluence problems. While there is a well-known
hierarchy for termination [20], no such classification is known for confluence.1

The termination hierarchy [20] is based on the characterisation of termination in terms
of well-founded monotone algebras. This entails an interpretation of the symbols of the
signature as functions over the algebra. Then the class of the functions (or other properties
of the algebra) used to establish termination can serve as a measure for the complexity of the
termination problem. For instance, if polynomial functions over the natural numbers suffice
to establish termination, then the rewrite system is said to be polynomially terminating.

In order to address the question of a hierarchy and complexity measure for the confluence
property, our point of departure is the decreasing diagrams technique [17]. Decreasing
diagrams are for confluence what well-founded interpretations are for termination. The
decreasing diagrams technique is complete for systems having the cofinality property [15,
p. 766]. Thus, in particular for every confluent, countable abstract reduction system, the
confluence property can be proven using the decreasing diagrams technique. The power of
decreasing diagrams is moreover witnessed by the fact that many well-known confluence
criteria are direct consequences of decreasing diagrams [17], including the lemma of Hindley–
Rosen [6, 13], Rosen’s request lemma [13], Newman’s lemma [12], and Huet’s strong confluence
lemma [7].

What makes the decreasing diagrams technique so powerful? The freedom to label the
steps distinguishes decreasing diagrams from all other confluence criteria, with the exception
of the weak diamond property [1, 4] by De Bruijn which has equal strength. This suggests
that the power of these techniques arises from the labelling. This naturally leads to the
following questions:
1. How does the size of the label set influence the strength of decreasing diagrams?

1 Ketema and Simonsen [8] consider peaks t1 � s � t2 and measure the length of joining reductions
t1 � ·� t2 as a function of the size of s and the length of the reductions in the peak. The nature of
this function can serve as a complexity measure for a confluence problem.
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2. What class of abstract reduction systems can be proven confluent using decreasing
diagrams with 1 label, 2 labels, 3 labels and so on?

3. Can the size of the label set serve as a complexity measure for a confluence problem?
Let DCR denote the class of abstract reduction systems (ARSs) whose confluence can be
proven using decreasing diagrams. For an ordinal α, we write DCRα for the class of ARSs
whose confluence can be proven using decreasing diagrams with label set α (see Definition 15).

For every ARS A, we have

DCR(A) =⇒ DCRα(A) for some ordinal α (2)

The reason is that any partial well-founded order can be transformed into a total well-founded
order (thus an ordinal). This transformation does not require the Axiom of Choice, see [4].

Clearly, we have DCRα ⊆ DCRβ whenever α < β. So

DCR0 ⊆ DCR1 ⊆ DCR2 ⊆ DCR3 ⊆ . . . ⊆ DCRω ⊆ . . . (3)

But which of these inclusions are strict? From the completeness proof in [18] it follows that
all abstract reduction systems having the cofinality property, including all countable systems,
belong to DCRω. In other words, for confluence of countable systems it suffices to label steps
with natural numbers.

Contribution and outline

Our main result is that all systems with the cofinality property are in the class DCR2, see
Section 4. In particular, for proving confluence of countable abstract reduction systems it
always suffices to label steps with 0 or 1 using the order 0 < 1. So for countable systems,
the hierarchy (3) collapses at level DCR2. This is somewhat surprising, as one might expect
that decreasing diagrams draws its strength from a rich labelling of the steps.

Interestingly, there is a stark contrast with commutation. For commutation the hierarchy
does not collapse, see Section 5. We prove that, for commutation of countable systems, all
inclusions are strict up to level DCω.

Our findings also provide new ways to approach the long-standing open problem of
completeness of decreasing diagrams for uncountable systems, see Section 6.

2 Preliminaries

We repeat some of the main definitions, for the sake of self-containedness, and to fix notations.
Let A be a set. For a relation→ ⊆ A×A we write→∗ or� for its reflexive transitive closure.
We write ≡ for the empty step, that is, ≡ = {(a, a) | a ∈ A}, and we define →≡ =→ ∪ ≡.

I Definition 1 (Abstract Reduction System). An abstract reduction system (ARS) A = (A,→)
consists of a non-empty set A together with a binary relation → ⊆ A× A. For B ⊆ A we
define A|B , the restriction of A to B, by A|B = (B, →∩ (B ×B)).

I Definition 2 (Indexed ARS). An indexed ARS A = (A, {→α}α∈I) consists of a non-empty
set A of objects, and a family {→α}α∈I of relations →α ⊆ A×A indexed by some set I.

I Definition 3 (Confluence). An ARS (A,→) is confluent (CR) if � ·� ⊆� ·�, that is,
every pair of finite, coinitial rewrite sequences can be joined to a common reduct.

I Definition 4 (Commutation). Let (A,→, ) be an indexed ARS. Then the relation →
commutes with  if ←∗ · ∗ ⊆ ∗ · ←∗; see Figure 2.

FSCD 2018
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I Definition 5 (Countable). An ARS (A,→) is countable (CNT) if there exists a surjective
function from the set of natural numbers N to A.

I Definition 6 (Cofinal Reduction). Let A = (A,→) be an ARS. A set B ⊆ A is cofinal in A
if for every a ∈ A we have a � b for some b ∈ B. A finite or infinite reduction sequence
b0 → b1 → b2 → · · · is cofinal in A if the set B = { bi | i ≥ 0 } is cofinal in A.

I Definition 7 (Cofinality Property). An ARS A = (A,→) has the cofinality property (CP) if
for every a ∈ A, there exists a reduction a ≡ b0 → b1 → b2 → · · · that is cofinal in A|{b | a�b}.

I Lemma 8. Let A = (A,→) be a confluent ARS and a ∈ A. If a rewrite sequence is cofinal
in A|{b | a�b}, then it is also cofinal in A|{b | a↔∗b}. J

I Theorem 9 (Klop [9]). Every confluent countable ARS has the cofinality property. J

3 First-order Definability of Confluence

As we are investigating a confluence hierarchy, the question of first-order definability of
confluence arises naturally. Namely, if confluence were definable by a set of first-order
formulas, then we could obtain a confluence hierarchy by imposing syntactic restrictions on
this set of formulas.

At first glance this question may appear trivial since confluence is typically defined via
the first-order formula (1). However, this formula involves the transitive closure � of the
one-step relation → which is itself not first-order definable. We show that confluence is not
first-order definable over the one-step relation →.
I Remark. In [16] it is shown that the first-order theory of linear one-step rewriting is
undecidable. In this paper it is mentioned as a conjecture that undecidable properties like
confluence and weak termination (see further [2]) cannot be expressed in the first-order logic
of one-step rewriting.

I Theorem 10. Confluence and local confluence cannot be defined in the first-order logic
with equality and the predicate → (one-step rewriting), neither by a single formula nor by a
set of formulas.

Proof. Assume, for a contradiction, that there is a set ∆ of first-order formulas over the
predicate → such that for every ARS A = (A,→) it holds that:

A is confluent ⇐⇒ A |= ∆

Here A |= ∆ means that A is a model of ∆, that is, A satisfies all formulas in ∆. In what
follows, we write [c] for the interpretation of a constant c. For convenience, we write → for
the predicate symbol in formulas as well as for the actual one-step rewrite relation or A.

Our goal is to describe the following non-confluent structure using formulas:

a

b0

c0

b1 b2 b3 · · ·

c1 c2 c3 · · ·

We start by describing each single step by a formula:

Λ = { a→ b0, a→ c0 } ∪ { bi → bi+1 | i ∈ N } ∪ { cj → cj+1 | j ∈ N }
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We need to ensure that the interpretation of distinct constants is distinct:

Λ6= = {x 6= y | x, y ∈ N } where N = { a } ∪ { bi | i ∈ N } ∪ { cj | j ∈ N }

Finally, the following formula requires all elements, except for [a], to be deterministic:

ξ = ∀xyz. (x 6= a ∧ x→ y ∧ x→ z)⇒ y = z

This simple trick excludes that elements {[bn] | n ∈ N} ∪ {[cn] | n ∈ N} admit steps other
than the ones specified in Λ.

Now consider the following set of formulas:

Γ = ∆ ∪ Λ ∪ Λ 6= ∪ { ξ }

By the above construction, any model of Λ ∪ Λ 6= ∪ { ξ } cannot be confluent. However, any
model of ∆ must be confluent. Thus Γ does not have a model.

On the other hand, any finite subset Γ′ of Γ has a model. This can be seen as follows.
There exists a k ∈ N such that none of the constants { bi | i ≥ k } ∪ { cj | j ≥ k } appears in
Γ′. Then the following structure is a model of Γ′:

a

b0

c0

b1 b2 · · · bk

c1 c2 · · · ck

d

This is a contradiction! Due to the compactness theorem, Γ has a model if and only if every
finite subset of Γ has a model. Thus confluence is not first-order definable.

Note that the same proof also shows undefinability of local confluence. J

I Theorem 11. For α ≥ 2, DCRα cannot be defined in the first-order logic with equality and
the predicate → (one-step rewriting), neither by a single formula nor by a set of formulas.

Proof. Follows by an extension of the proof for Theorem 10, noting that the model of Γ′
admits a decreasing labelling with 2 labels. J

Note that DCR1 is equivalent to the diamond property for the reflexive closure of the
rewrite relation, and thus is first-order definable.

4 Decreasing Diagrams for Confluence with Two Labels

In this section we show that two labels suffice for proving confluence using decreasing diagrams
for any abstract reduction system having the cofinality property. We start by introducing
the decreasing diagrams technique.

I Notation 12. For an indexed ARS A = (A, {→α}α∈I) and a relation < ⊆ I × I, we define

→ =
⋃
α∈I →α →<β =

⋃
α<β →α →≤β =

⋃
α≤β →α

Moreover, we use →<α∪<β as shorthand for (→<α ∪ →<β).

I Definition 13 (Decreasing Church–Rosser [17]). An ARS A = (A, ) is called decreasing
Church–Rosser (DCR) if there exists an ARS B = (A, {→α}α∈I) indexed by a well-founded
partial order (I,<) such that  = → and every peak c ←β a →α b can be joined by
reductions of the form shown in Figure 3.2
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a b

c d

α

β

< α

β or ≡

< α ∪ < β

< β α
or ≡

< α
∪ < β

Figure 3 Decreasing elementary diagram.

The following is the main theorem of decreasing diagrams.

I Theorem 14 (Decreasing Diagrams – De Bruijn [1] & Van Oostrom [17]). If an ARS is
decreasing Church–Rosser, then it is confluent. J

In other words DCR =⇒ CR.
As already suggested in the introduction, we introduce classes DCRα restricting the

well-founded order (I,<) in Definition 13 to the ordinal α.

I Definition 15. For ordinals α, let DCRα denote the class of ARSs A that are decreasing
Church–Rosser (Definition 13) with label set {β | β < α } ordered by the usual order < on
ordinals. We say that A has the property DCRα, denoted DCRα(A), if A ∈ DCRα.

The remainder of this section is devoted to the proof that every system with the cofinality
property is DCR2. Put differently, it suffices to label steps with I = { 0, 1 }. Let A = (A,→)
be an ARS having the cofinality property. Note that, for defining the labelling, we can
consider connected components with respect to ↔∗ separately. Thus assume that A consists
of a single connected component, that is, for every a, b ∈ A we have a↔∗ b. By the cofinality
property, which implies confluence, and Lemma 8 there exists a rewrite sequence

m0 → m1 → m2 → m3 → · · ·

that is cofinal in A; we call this rewrite sequence the main road. Without loss of generality
we may assume that the main road is acyclic, that is, mi 6≡ mj whenever i 6= j. (We can
eliminate loops without harming the cofinality property. Note that the main road is allowed
to be finite.)

The idea of labelling the steps in A is as follows. For every node a ∈ A, we label precisely
one of the outgoing edges with 0 and all others with 1. The edge labelled with 0 must be
part of a shortest path from a to the main road. For the case that a lies on the main road,
the step labelled 0 must be the step on the main road. This is illustrated in Figure 4.

Note that there is a choice about which edge to label with 0 whenever there are multiple
outgoing edges that all start a shortest path to the main road. To resolve this choice, the

2 Van Oostrom [19] generalises the shape of the decreasing elementary diagrams by allowing the joining
reductions to be conversions. This can be helpful to find suitable elementary diagrams. However, if
there are conversions then we can always obtain joining reductions by diagram tiling. So a system
is locally decreasing with respect to conversions if and only if it is locally decreasing with respect to
reductions (using the same labelling of the steps).
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m0
m1

m2

m3
m4

m5 · · ·
0

0

0
0

0
0

n0

n1
n2

n3

1

0

1
0

0

n4

n5

n6

10

1

0

0

0

1

n7

1
1

0

1

main road

minimizing

non-minimizing

Figure 4 Example labelling.

following definition assumes a well-order < on the universe A, whose existence is guaranteed
by the well-ordering theorem. Then, whenever there is a choice, we choose the edge for which
the target is minimal in this order.
I Remark. Recall that the Axiom of Choice is equivalent to the well-ordering theorem. In
many practical cases, however, the existence of such a well-order does not require the Axiom
of Choice. If the universe is countable, then such a well-order can be derived directly from
the surjective counting function f : N→ A.

In the following definition we follow the proof in [15, Proposition 14.2.30, p. 766], employing
the notion of a cofinal sequence and the rewrite distance from a point to this sequence.
While the proof in [15] labels steps by their distance to the target node, we need a more
sophisticated labelling.

I Definition 16. Let A = (A,→) be an ARS and M : m0 → m1 → m2 → · · · be a finite or
infinite rewrite sequence in A. For a, b ∈ A, we write
(i) a ∈M if a ≡ mi for some i ≥ 0, and
(ii) (a→ b) ∈M if a ≡ mi and b ≡ mi+1 for some i ≥ 0.
If M is cofinal in A, we define the distance d(a,M) as the least natural number n ∈ N such
that a→n m for some m ∈M . If M is clear from the context, we write d(a) for d(a,M).

I Definition 17 (Labelling with two labels). Let A = (A,→) be an ARS equipped with a
well-order < on A such that there exists a cofinal reduction M : m0 → m1 → m2 → · · · that
is acyclic (that is, for all i < j, mi 6≡ mj).

We say that a step a→ b is
(i) on the main road if (a→ b) ∈M ;
(ii) minimizing if d(a) = d(b) + 1 and b′ ≥ b for every a→ b′ with d(b′) = d(b).

We define an indexed ARS A{0,1} = (A, {→i}i∈I) where I = { 0, 1 } as follows:

a→0 b ⇐⇒ a→ b and this step is on the main road or minimizing
a→1 b ⇐⇒ a→ b and this step is not on the main road and not minimizing

for every a, b ∈ A.

I Lemma 18. Let A = (A,→) be an ARS with a cofinal rewrite sequence M : m0 → m1 →
· · · that is acyclic. Furthermore, let < be a well-order over A. Then for A{0,1} = (A,→0,→1)
we have:
(i) → = →0 ∪ →1 ;
(ii) for every a, b ∈M we have a�0 ·�0 b ;
(iii) for every a ∈ A, there is at most one b ∈ A such that a→0 b ;

FSCD 2018



14:8 Decreasing Diagrams: Two Labels Suffice

(iv) for every a /∈M , there exists b ∈ A with a→0 b and d(a) > d(b) ;
(v) for every a ∈ A, there exists m ∈M such that a�0 m ;
(vi) every peak c←β a→α b can be joined as in Figure 3, and, explicitly for labels {0, 1},

as in Figure 5.

Proof. Properties i and ii follow from the definitions.
For iii assume that b←0 a→0 c. We show that b ≡ c. The steps a→ b and a→ c are

either minimizing or on the main road. We distinguish cases a ∈M and a 6∈M :
(i) Assume that a ∈M . Then d(a) = 0, and thus neither a→ b nor a→ c is a minimizing

step. Hence (a→ b) ∈M and (a→ c) ∈M . Since M is acyclic, we get b ≡ c.
(ii) If a /∈M , both steps a→ b and a→ c must be minimizing. If d(b) 6= d(c), then we have

either d(a) 6= d(b) + 1 or d(a) 6= d(c) + 1, contradicting minimization. Thus d(b) = d(c).
Then by minimization we have b ≥ c and c ≥ b, from which we obtain b ≡ c.

For iv, consider an element a /∈M . Let B = {b′ | a→ b′ ∧ d(a) = d(b′) + 1}. By definition of
the distance d(·), B 6= ∅. Define b as the least element of B in the well-order < on A. It
follows that a→ b is a minimization step. Hence a→0 b and d(a) > d(b). Property v follows
directly from iv using induction on the distance.

For vi, consider a peak c←β a→α b. If b ≡ c, then the joining reductions are empty steps.
Thus assume that b 6≡ c. By iii we have either α = 1 or β = 1. By v there exist mb,mc ∈M
such that b�0 mb and c�0 mc. By ii we have mb �0 ·�0 mc. Hence b�0 ·�0 c. These
joining reductions are of the form required by Figure 3 since �0 =�<α∪<β . J

I Theorem 19. If an ARS A = (A,→) satisfies the cofinality property, then there exists an
indexed ARS (A, (→α)α∈{0,1}) such that → =→0 ∪ →1 and every peak c←β a→α b can be
joined according to the elementary decreasing diagram in Figure 3, and, explicitly for labels
{0, 1}, as in Figure 5.

Proof. It suffices to consider a connected component of A. Let B = (B,→) be a connected
component of A: we have a↔∗ b for all a, b ∈ B. By the cofinality property and Lemma 8,
there exists a cofinal reduction m0 → m1 → · · · in B. By the well-ordering theorem, there
exists a well-order < over B. Then B has the required properties by Lemma 18vi. J

I Corollary 20. DCR2 is a complete method for proving confluence of countable ARSs.

Proof. Immediate from Theorems 9 and 19. J

Theorem 19 also holds for De Bruijn’s weak diamond property. Note the following
caveat: when restricting the index set I to a single label, the decreasing diagram technique
is equivalent to ← · → ⊆ →≡ · ←≡, i.e. the diamond property for → ∪ ≡, while the weak
diamond property with one label is equivalent to strong confluence ← · → ⊆ →≡ ·�.

The property DCR2 is given implicitly by the decreasing diagrams as in Figure 3, but
it is also instructive to give explicitly the elementary reduction diagrams making up the
property DCR2. These are shown in Figure 5. Note that the 1-steps do not split in the
diagram construction, i.e. they cross over in at most one copy. This facilitates a simple proof
of confluence.

Actually, from our proof it follows that the joining reductions can be required to only
contain steps with label 0. Thus even the simple shape of diagrams shown in Figure 6 is
complete for proving confluence of systems having the cofinality property. Here the 1-steps
do not cross over at all! Note that while this set of elementary diagrams has a trivial proof
of confluence, the work to prove DCR2 =⇒ CR from the original elementary diagrams as in
Figure 5, consists in showing from our earlier construction that it actually suffices to join by
using only 0’s.



J. Endrullis, J.W. Klop and R. Overbeek 14:9

0

0 0≡

0
≡

0

1

1≡

0

0

1

1

0

1≡

0

0 1
≡

0

Figure 5 Decreasing diagrams with labels 0 and 1 where 0 < 1.

0

0 ≡

≡

0

1 0

0

1

1 0

0

Figure 6 A simple set of diagrams that is complete for confluence of countable systems.

I Remark. We note a certain similarity between the notion of a decreasing diagram based
on labels { 0, 1 } with 0 < 1 and the classical ‘requests’ lemma of J. Staples [10, 15, Exercise
2.08.5, p. 9]. In A = (A,→1,→2) define: →1 requests →2 if

2

1
1

2

2

If in addition →1 and →2 are confluent, then →1,2 =→1 ∪ →2 is confluent.
The requests lemma states that the ‘dominant’ reduction �1 needs the ‘support’ of the

secondary reduction �2 for making the divergence �1 ·�2 convergent. Similarly for the
property DCR2, the dominant reduction →1 needs support by �0 for making the divergence
←1 · →0 convergent. However, the requests lemma employs �, not →.

5 Decreasing Diagrams for Commutation

The decreasing diagram technique can also be used for proving commutation, see [17]. It
turns out that the situation for commutation stands in sharp contrast to that for confluence.
For commutation the hierarchy does not collapse. In particular, we show that, for every
n ≤ ω, decreasing diagrams for commutation with n labels is strictly stronger than decreasing
diagrams with less than n labels.

The elementary decreasing diagram for commutation is shown in Figure 7, which is very
similar to Figure 3, but now refers to two ‘basis’ relations →,  .

I Definition 21 (Decreasing Commutation). An ARS A = (A,→, ) is called decreasing
commuting (DC) if there is an ARS B = (A, {→α}α∈I , { α}α∈I) indexed by a well-founded
partial order (I,<) such that →A =→B and  A = B, and every peak c←β a α b in B
can be joined by reductions of the form shown in Figure 7.
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a b

c d

α

β

< α

β≡

< α ∪ < β

< β α
≡

< α
∪ < β

Figure 7 Decreasing elementary diagram for proving commutation.

If all conditions are fulfilled, we call B a decreasing labelling of A.

I Theorem 22 (Decreasing Diagrams for Commutation – Van Oostrom [17]). If an ARS
A = (A,→, ) is decreasing commuting, then → commutes with  . J

Analogous to the classes DCRα for confluence, we introduce classes DCα for commutation.

I Definition 23. For ordinals α, let DCα denote the class of ARSs A = (A,→, ) that
are decreasing commuting (Definition 21) with label set {β | β < α } ordered by the usual
order < on ordinals. We say that A has the property DCα, denoted DCα(A), if A ∈ DCα.

In Definition 23 it suffices to consider total orders since every partial well-founded order
can be transformed into a total well-founded order. This transformation [4] preserves the
decreasing elementary diagrams and does not need the Axiom of Choice.

In order to show that the hierarchy for commutation does not collapse, we inductively
construct, for every n ∈ N, an ARS An that is DC5n+1, but not DCn.

I Definition 24. For every n ∈ N we define a tuple Φn = (An, a1, a, c, b, b1) consisting of an
ARS An = (An,→n, n) and distinguished elements a1, a, c, b, b1 ∈ An by induction on n:
1. Let Φ0 = (A0, a1, c, c, c, b1) where A0 is the ARS displayed in Figure 8.
2. Let Φn = (An, a, a′, c, b′, b). We obtain An+1 as an extension of An as shown in Figure 9.

The inner dark part with the darker background is An. The extension consists of the
addition of fresh elements a1, . . . , a7 and b1, . . . , b7 and rewrite steps as shown in the
figure. We define Φn+1 = (An+1, a1, a, c, b, b1).

We start with a few important properties of the construction.

I Lemma 25. For every n ∈ N and Φn = (An, a1, a, c, b, b1) with An = (An,→, ) we have
the following properties:
(i) The relations → and  are deterministic.
(ii) For every element x ∈ An we have x→∗ c and x ∗ c.
(iii) For x ∈ An, we have a1  ∗ x←∗ b1 if and only if a ∗ x and a→∗ x.
(iv) For x ∈ An, we have a1 →∗ x  ∗ b1 if and only if b ∗ x and b→∗ x.

Proof. We use induction on n ∈ N. For the base case n = 0, we have Φ0 = (A0, a1, c, c, c, b1)
where A0 is given in Figure 8. The properties follow from an inspection of the figure.

For the induction step, let n ∈ N and assume that Φn = (An, a, a′, c, b′, b) satisfies the
properties. By construction, An+1 is an extension of An as shown in Figure 9, and we
have Φn+1 = (An+1, a1, a, c, b, b1). The fresh elements introduced by the extension are
X = { a1, . . . , a7, b1, . . . , b7 }. We check the validity of each property for An+1:
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a1

a2 a3

c

b2 b3

b1

Figure 8 Base case:
one label suffices.

a1

a2

a3

a4

a5

a6

a7

a

b

c b7

b5

b6

b4

b2

b3

b1

Figure 9 From n to n + 1 labels for commutation. Rough proof sketch:
Assume that at least one of the reductions a →∗ c, b  ∗ c, a  ∗ c or
b →∗ c contains two steps labelled with n. Then each of the peaks at
a1, a4 and a7, or each of the peaks at b1, b4 and b7 must contain a step
labelled with n + 1. As a consequence, one of the reductions a1 →∗ c,
b1  ∗ c, a1  ∗ c or b1 →∗ c contains two steps labelled with n + 1.

(i) There are no fresh steps with sources in An. Every element x ∈ X admits precisely
one outgoing step → and one outgoing step  . So both rewrite relations remain
deterministic, establishing property i.

(ii) For every element x ∈ X we have x→∗ a or x→∗ b, and x ∗ a or x ∗ b. Together
with the induction hypothesis ii for n, this yields property ii for n+ 1.

(iii) From Figure 9 it follows immediately that any reduction a1  ∗ x←∗ b1 must be of the
form a1  ∗ a ∗ x←∗ a←∗ b1. The reductions from both sides are deterministic and
the first joining element is a.

(iv) Analogous to property iii. J
From Lemma 25 ii it follows that → and  commute in An. However, commutation is
not sufficient to conclude that An is decreasing commuting. Decreasing diagrams are not
complete for proving commutation as shown in [4].

We prove that An is decreasing commuting by constructing a labelling with 5n labels.
This bound is by no means optimal, but easy to verify and sufficient for our purpose.

I Lemma 26. For every n ∈ N, An is DC5n+1.

Proof. We use induction on n ∈ N. For the base case n = 0, consider A0 shown in Figure 8.
For this system a single label suffices since the joining reductions in the elementary diagrams
have length at most 1.

For the induction step, assume that An has the property DC5n+1. So An is decreasing
commuting with labels { 0, . . . , ` } where ` = 5n. By construction, An+1 is an extension of
An as shown in Figure 9. We extend the labelling of An with labels { 0, . . . , ` } to a labelling
of An+1 with labels { 0, . . . , `+ 5 } as follows:

a1

a2

a3

a4

a5

a6

a7

a

b

c b7

b5

b6

b4

b2

b3

b1

`+
5 `+

4 `+
3 `+

2 `+
1

`+
5 `+

4 `+
3 `+

2 `+ 1

`+ 4 `+ 2

`+ 4 `+ 2

`+
5`+

4`+
3`+

2`+ 1

`+
5`+

4`+
3`+

2`+
1

`+ 4`+ 2

`+ 4`+ 2

Here An is the darker inner part. From the picture it is easy to verify that every peak ← · 
in the extension can be joined by reductions that only contain labels strictly smaller than
labels of the peak. As a consequence, An+1 is DC5(n+1)+1. J

FSCD 2018



14:12 Decreasing Diagrams: Two Labels Suffice

Next, we show that An does not admit a decreasing labelling with n labels.

I Lemma 27. For every n ∈ N, An is not DCn.

Proof. We prove the following stronger claim: for every n ∈ N and Φn = (An, a1, a, c, b, b1),
and every decreasing labelling of An with labels from N it holds that at least one of the four
paths a1 →∗ b, a1  ∗ a, b1 →∗ a or b1  ∗ b contains two labels ≥ n. Note that these paths
exist by Lemma 25. We prove this claim by induction on n ∈ N.

For the base case n = 0, we have Φ0 = (A0, a1, c, c, c, b1) where A0 is given in Figure 8.
It suffices to consider one of the four paths. For instance, the rewrite sequence a1 →∗ c has
length 2 and both steps must have a label ≥ 0.

For the induction step, assume that the claim holds for n and Φn = (An, a, a′, c, b′, b).
Accordingly, the induction hypothesis is that, for every decreasing labelling of An with labels
from N, one of the four paths a→∗ b′, a ∗ a′, b→∗ a′ or b ∗ b′ contains two labels ≥ n.
We prove the claim for n+ 1. Let Φn+1 = (An+1, a1, a, c, b, b1) where An+1 is an extension
of An as shown in Figure 9. Let B be a decreasing labelling of the steps in An+1 with labels
from N. We show that at least one of the paths a1 →∗ b, a1  ∗ a, b1 →∗ a or b1  ∗ b
contains two labels ≥ n+ 1.

By construction, the systems An+1 and An contain the same steps with sources in An.
Thus the restriction of the labelling B to An is a decreasing labelling for An. By the induction
hypothesis, at least one of the paths (i) a →∗ b′, (ii) a  ∗ a′, (iii) b →∗ a′ or (iv) b  ∗ b′
contains two labels ≥ n. Without loss of generality, by symmetry, assume that the path (i)
or (iv) contain two labels ≥ n.

Consider the peak a3 ← a1  a2. As visible in Figure 9, every elementary diagram for
this peak must have joining reductions of the form a3  ∗ b  ∗ x ←∗ a ←∗ a2 for some
x ∈ An. From Lemma 25 iv we conclude that the joining reductions must be of the form

a3  
∗ b ∗ b′  ∗ x←∗ b′ ←∗ a←∗ a2

The path (i) a →∗ b′ or (iv) b  ∗ b′ contains two labels ≥ n. Thus, for the elementary
diagram to be decreasing, one of the steps in the peak a3 ← a1  a2 must have label ≥ n+ 1.

The same argument can be applied to the peaks a6 ← a4  a5 and b← a7  a. As a
consequence, each of the peaks a3 ← a1  a2, a6 ← a4  a5 and b← a7  a contains one
step with a label ≥ n+ 1. Hence at least one of the paths
1. a1 → a3 → a4 → a6 → a7 → b, or
2. a1  a2  a4  a5  a7  a

contains two steps with labels ≥ n+ 1.
If path (ii) a ∗ a′ or (iii) b→∗ a′ contains two labels ≥ n, then an analogous argument

can be applied to the peaks b2 ← b1  b3, b5 ← b4  b6 and a← b7  b, yielding that at
least one of the paths b1 →∗ a or b1  ∗ b contains two steps with labels ≥ n+ 1.

This proves the claim and concludes the proof. J

We have seen that, for every n ∈ N, An that is DC5n+1, but not DCn (Lemmas 26 & 27).
From this we can conclude that an infinite number of the inclusions DC0 ⊆ DC1 ⊆ DC2 ⊆ · · ·
are strict. The following proposition allows us to infer that all of them are strict.

Roughly speaking, the following proposition states that if a level α+ 1 of the hierarchy
does not collapse, then also the level α does not collapse. We state the proposition for the
commutation hierarchy, but it also holds for the confluence hierarchy.

I Proposition 28. If DCα ( DCα+1 for an ordinal α, then DCβ ( DCα for every β < α.
This also holds when the classes are restricted to countable systems.
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Proof. Let A = (A,→, ) be in DCα+1 \DCα. Then there exists a decreasing labelling B
of A with labels {β | β ≤ α }. As A is not DCα some steps must have the maximum label α.
Note that
? If the joining reductions in a decreasing elementary diagram contain a step with label α,

then the corresponding peak must also contain a step with label α.
Let B′ be obtained from B by dropping all steps with label α, and let A′ be obtained from
B′ by dropping the labels. By (?), B′ is a decreasing labelling of A′, and hence A′ is DCα.

For a contradiction, assume that DCβ = DCα for some β < α. Then A′ is DCβ . Let B′′
be obtained from B′ by adding all steps that we had previously removed from B, but we now
relabel the steps from α to β. It is straightforward to check that B′′ is a decreasing labelling
of A. Hence, A is in DCβ+1 ⊆ DCα. This is a contradiction. J

I Example 29. Assume that α is a limit ordinal and DCα+3 ( DCα+4. By Proposition 28
we conclude DCα+2 ( DCα+3. By repeated application of Proposition 28 we conclude

DCβ ( DCα ( DCα+1 ( DCα+2 ( DCα+3 ( DCα+4

for every β < α. However, the proposition does not help to conclude that DCβ ( DCβ′ for
every β < β′ ≤ α.

I Theorem 30. We have
(i) DCn ( DCn+1 for every n ∈ N, and
(ii)

⋃
n∈N DCn ( DCω.

These inclusions are strict also when the classes are restricted to countable systems.

Proof. By Lemmas 26 and 27 we know that DCn ( DCn+1 for infinitely many n ∈ N. Then
repeated application of Proposition 28 yields DCn ( DCn+1 for every n ∈ N.

Let A be the infinite disjoint union A0 ]A1 ]A2 ] · · · . As a consequence of Lemmas 26
and 27 the ARS A is DCω but not DCn for any n ∈ N. J

6 Conclusion

We study how the strength of decreasing diagrams is influenced by the size of the label
set. We find that all abstract reduction systems with the cofinality property (in particular,
all confluent, countable systems) can be proven confluent using the decreasing diagrams
technique with the almost trivial label set I = { 0, 1 }. So for confluence of countable ARSs,
we have the following implications:

CP DCR2 DCR CR

This is in sharp contrast to the situation for commutation for which we prove

DC0 ( DC1 ( DC2 ( DC3 ( · · · ( DCω

even for countable systems. So for commutation, for every n ≤ ω, there exists a system that
requires n labels. The structure of this hierarchy above level DCω remains open.

I Open Problem 31. What inclusions DCα ⊆ DCβ are strict for ω ≤ α < β?

FSCD 2018
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Decreasing diagrams are complete for confluence of countable systems. However, it is a
long-standing open problem whether the method of decreasing diagrams is also complete
for proving confluence of uncountable systems [17]. Our observations provide new ways for
approaching this problem. In particular, it may be helpful to investigate the following:

I Open Problem 32. Is there a confluent, uncountable system that is CR but not DCR2?

I Open Problem 33. Is there a confluent, uncountable system that needs more than 2 labels
to establish confluence using decreasing diagrams? In other words, is there an uncountable
system that is DCR but not DCR2? Is there an uncountable system that is DCR3 but not
DCR2?

So we have the following situation for uncountable systems:

CP DCR2 DCR CR

fails3 new open open

new open

For a better understanding of this hierarchy, it would be interesting to investigate whether
Proposition 28 can be generalised as follows.

I Open Problem 34. Assume that DCα ( DCβ for ordinals α < β. Does this imply that
none of the lower levels of the hierarchy collapse? That is, does it imply that DCα′ ( DCβ′
for every α′ < β′ ≤ α?

Our findings indicate that the size of the label set in decreasing diagrams is not a suitable
measure for the complexity of a confluence problem. So the complexity arises rather from the
distribution of the labels, and the proof that every peak has suitable joining reductions. The
complexity of the label distribution can be measured in terms of the complexity of machine
required for computing the labels. For this purpose, one can consider Turing machines,
finite automata or finite state transducers. The complexity of Turing machines can be
measured in terms of time or space complexity, Kolmogorov Complexity [11] or degrees of
unsolvability [14]. For finite state transducers the complexity can be classified by degrees of
transducibility [5, 3].
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Abstract
Over the recent years, the theory of rewriting has been extended in order to provide systematic
techniques to show coherence results for strict higher categories. Here, we investigate a further
generalization to low-dimensional weak categories, and consider in details the first non-trivial
case: presentations of tricategories. By a general result, those are equivalent to the stricter
Gray categories, for which we introduce a notion of rewriting system, as well as associated tools:
critical pairs, termination orders, etc. We show that a finite rewriting system admits a finite
number of critical pairs and, as a variant of Newman’s lemma in our context, that a convergent
rewriting system is coherent, meaning that two parallel 3-cells are necessarily equal. This is
illustrated on rewriting systems corresponding to various well-known structures in the context of
Gray categories (monoids, adjunctions, Frobenius monoids). Finally, we discuss generalizations
in arbitrary dimension.
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The rewriting systems which are convergent have a fundamental property, which is a
consequence of Newman’s and other classical lemmas in rewriting theory: the space between
any two rewriting zigzags with the same source and the same target can be filled with tiles
witnessing the confluence of critical branchings. Otherwise said, every diagram commutes
modulo the commutation of diagrams induced by critical branchings, which thus axiomatize
the coherence of the structure.

Over the recent years, there have been many efforts to generalize the techniques of rewriting
from words and terms to morphisms in strict n-categories, starting from the pioneering work
of Burroni and Lafont [3, 15, 16]. Those widen the range of applicability of rewriting, and
also allow a precise formulation of the above remark initially formulated by Squier, and
generalized by Guiraud and Malbos by considering coherent presentations [17, 8, 9]. As a
typical example, starting from the 2-category of planar binary forests, which is generated
by a binary (µ) and a nullary corolla (η), one can consider rewriting rules expressing the
fact that µ is associative and η is both a left and right unit for µ. The resulting rewriting
system is convergent, and the technique described above allows to prove a coherence theorem
for pseudomonoids, of which MacLane’s coherence result is a particular case (a monoidal
category is a pseudomonoid in the cartesian 2-category Cat).

It is of course of interest to generalize the coherence theorems for classical algebraic
structures from strict to weak n-categories. For instance, coherence for pseudomonoids
in tricategories is shown in [14]. A rewriting approach in this domain is desirable, but
the way one could handle all the coherence morphisms present in weak categories was not
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15:2 Coherence of Gray Categories via Rewriting

clear. Recently, the use of semistrict weak n-categories was advocated by the creators of the
graphical proof-assistant Globular [1, 2] as a formalism adapted to computer manipulations:
without loss of generality most of the coherence morphisms can be considered to be identities,
excepting the interchangers and their coherences.

In this article, we develop the theory of rewriting for semistrict 3-categories, also called
Gray categories, which is the first dimension in which the strict and weak definitions are
not equivalent [6, 11]. We illustrate that this provides systematic principles for proving
coherence of algebraic structures in Gray categories, allowing us to recover results in this
direction recently proved [14, 4, 20] as well as new ones. Moreover, it turns out that this
weak framework is better behaved than the strict one in some respects: it was observed
that a finite rewriting system on strict 2-morphisms can give rise to an infinite number of
critical branchings [15, 8], which is the source of many difficulties [16], both of theoretical and
practical nature, whereas in the present setting we show that only a finite number of critical
pairs can be generated. Finally, we also hint at generalizations in arbitrary dimension.

1 Coherent presentations of Gray categories

1.1 Sesquicategories
We begin by recalling the notion of 2-category as a variant of sesquicategories, details can be
found in [18]. A sesquicategory, or 2-precategory, C consists of

a set C0 of 0-cells,
a set C1(x, y) of 1-cells u : x→ y for every 0-cells x and y,
a set C2(u, v) of 2-cells α : u⇒ v : x→ y every parallel 1-cells u, v : x→ y,
an identity 1-cell 1x : x→ x for every 0-cell x,
a composition function which to every 1-cells u : x→ y and v : y → z associates a 1-cell
u ∗ v : x→ y,
an identity 2-cell 1u : u⇒ u for every 1-cell u,
a vertical composition function which to every 2-cell α : v ⇒ v′ and β : v′ ⇒ v′′ associates
a 2-cell α ∗ β : v ⇒ v′′ (middle of (1)),
a left whiskering composition function which to every 1-cell u : x′ → x and 2-cell α : v ⇒ v′

associates a 2-cell u ∗ α : u ∗ v ⇒ u ∗ v′ : x→ y′ (left of (1)),
a right whiskering composition function which to every 2-cell α : v ⇒ v′ and 1-cell
w : y → y′ associates a 2-cell α ∗ w : v ∗ w ⇒ v′ ∗ w : x→ y′ (right of (1)).

x′ x yu
v

v′

⇓α x y
⇓α

⇓β

v

v′

v′′

x y y′
v

v′

⇓α w (1)

such that compositions are associative and admit identities as neutral elements: for suitably
typed 0-cells x, y, 1-cells u, v, w and 2-cells α, β, γ,

(u ∗ v) ∗ w = u ∗ (v ∗ w) 1x ∗ u = u u ∗ 1y = u

(α ∗ β) ∗ γ = α ∗ (β ∗ γ) 1u ∗ α = α α ∗ 1v = α

u ∗ (α ∗ β) = (u ∗ α) ∗ (u ∗ β) u ∗ 1v = 1u∗v (α ∗ β) ∗ w = (α ∗ w) ∗ (β ∗ w) 1v ∗ w = 1v∗w

(u ∗ v) ∗ α = u ∗ (v ∗ α) 1x ∗ α = α α ∗ (v ∗ w) = (α ∗ v) ∗ w α ∗ 1y = α

(u ∗ α) ∗ w = u ∗ (α ∗ w) (2)

In a composition, the dimension of the involved cells determines which composition is used,
which allows us to unambiguously denote them by the same symbol. In a more terse way,
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the category of sesquicategories can be defined as the category of categories enriched over
Cat equipped with the “funny tensor product” [5].

A 2-category C is a sesquicategory such that the interchange law holds: this means that
for every 2-cells α : u⇒ u′ : x→ y and β : v ⇒ v′ : y → z, we have

(α ∗ v) ∗ (u′ ∗ β) = (u ∗ β) ∗ (α ∗ v′) x y z
⇓α
u

u′ ⇓β
v

v′

= x y z
⇓α
u

u′

⇓β
v

v′
(3)

Since both of the above compositions are equal, we can define the 0-composition of α and β
to be either of them. By contrast, in a sesquicategory, the 0-composition of 2-cells does not
make sense: we can only compose 2-cells in codimension 1.

1.2 Signatures
In the following, we will be interested in rewriting morphisms in freely generated sesquicate-
gories. Recall that a graph consists of

a set P0 of vertices,
a set P1 of edges,
functions s0, t0 : P1 → P0 associating to each edge its source and target vertex.

We write P∗1 for the set of paths in the graph, s∗0, t∗0 : P∗1 → P0 the source and target functions
on paths, and uv for the concatenation of composable paths u and v.

A signature P consists of
a graph (P0, s0, t0,P1) whose vertices and edges are called 0- and 1-generators,
a set P2 of 2-generators together with functions s1, t1 : P2 → P∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1
and t∗0 ◦ s1 = t∗0 ◦ t1.

We write a : x → y to indicate that a is a 1-generator with s0(a) = x and t0(a) = y, and
similarly for 2-generators α : u⇒ v with s1(α) = u and t1(α) = v.

I Example 1 (Monoids). The signature for monoids is

P0 = {?} P1 = {1 : ?→ ?} P2 = {µ : 2⇒ 1, η : 0⇒ 1}

Note that the set P∗1 is isomorphic to N, thus the notation for its elements. The 2-generators
of this signature should respectively be understood as a formal multiplication (µ) and unit (η),
which we will use below to express the structure of a monoid.

A signature P freely generates a sesquicategory with P0 as 0-cells, P∗1 as 1-cells (composition
being concatenation and identities empty paths), and whose 2-cells are generated by P2. We
write P∗2 for its set of 2-cells, whose elements can be described explicitly as follows.

I Proposition 2. The 2-cells in P∗2 can be described as the sequences of the form

(u1 ∗ α1 ∗ w1) ∗ (u2 ∗ α2 ∗ w2) ∗ . . . ∗ (un ∗ αn ∗ wn)

with ui : x→ xi in P∗1, αi : vi ⇒ v′i : xi → yi in P2, wi : yi → y in P∗1 (the compositions above
are formal ones). The canonical inclusion P2 → P∗2 sends a 2-generator α : u⇒ v : x→ y

to (1x ∗ α ∗ 1y), vertical composition is given by concatenation, left whiskering the above
morphism by u amounts to replace each ui by uui, and similarly for right whiskering.

Proof. The above sequences are the normal forms for a suitable orientation of the relations (2)
as a convergent rewriting system on formal expressions. J
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As customary, such morphisms can be pictured using string diagrams. For instance, in the
signature of monoids (Ex. 1), if we draw µ by , we can picture the following morphisms:

(0 ∗ µ ∗ 2) ∗ (1 ∗ µ ∗ 0) ∗ µ = (2 ∗ µ ∗ 0) ∗ (0 ∗ µ ∗ 1) ∗ µ =

Note that in these pictures, there can be only one generator at a given height, and the
relative heights matter, so that the two 2-cells are not considered to be equal (contrarily to
2-categories).

1.3 Rewriting systems

x′ x y y′u

v′−

v′+

v−

φ⇓
A
V⇓ψ
v+

⇓ χ−

⇓ χ+

v

A rewriting system consists of a signature P
together with a set P3 of 3-generators, or
rewriting rules, equipped with source and
target functions s2, t2 : P3 → P∗2. A rewrit-
ing step

χ− ∗ (u ∗A ∗ v) ∗ χ+ : χ− ∗ (u ∗ φ ∗ v) ∗ χ+ V χ− ∗ (u ∗ ψ ∗ v) ∗ χ+

consists of a rewriting rule A : φ V ψ : v− ⇒ v+ : x → y together with 1-cells u : x′ → x,
v : y → y′ and 2-cells χ− : v′− ⇒ v−, χ+ : v+ ⇒ v′+ as on the right above. A rewriting path
is a finite sequence of composable rewriting steps Ri : φi V ψi, with φi+1 = ψi.

I Example 3. The rewriting system for monoids has, on the signature of Ex. 1, the rules

A : (µ ∗ 1) ∗ µV (1 ∗ µ) ∗ µ L : (η ∗ 1) ∗ µV µ R : (1 ∗ η) ∗ µV µ

V V V

There is, for instance, a rewriting step

(3 ∗ µ ∗ 1) ∗ (1 ∗A ∗ 1) ∗ ((µ ∗ 1) ∗ µ) : V

We write P∗3 for the set of rewriting paths, and s∗2, t∗2 : P∗3 → P∗2 for the associated
source and target functions. We can form a 3-precategory, noted P∗, with P∗i as i-cells for
i = 0, 1, 2, 3 (by convention P∗0 = P0) and expected compositions. The notion of 3-precategory
will be detailed in Sec. 4.1, but we can already say that it is the expected generalization
of 2-precategories (see Sec. 1.1) in dimension 3: a 3-precategory consists of a set Ci of
i-cells for i = 0, 1, 2, 3 together with their source and target in lower dimension (except for
0-cells), identities for 0, 1, 2-cells, and compositions between composable i- and j-cells, with
i, j = 1, 2, 3, so that compositions are associative and unital in a suitable way. Note that,
contrarily to 3-categories, there is only one kind of composition between i- and j-cells: those
can only be composed in codimension i ∧ j − 1 (we write i ∧ j for the minimum of i and j),
which again allows to unambiguously use the same symbol for all compositions. A morphism
of 3-precategories is called a 3-prefunctor. By generalizing the argument of Prop. 2, one can
show that P∗ enjoys the following universal property, see Sec. 4.2 for details:

I Proposition 4. The 3-precategory P∗ is the free 3-precategory whose underlying 2-precate-
gory is the one generated by the underlying signature of P and containing the rewriting rules
as 3-cells.
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Following the terminology of [9], we say that two rewriting paths P and Q are Peiffer-
equivalent when they differ only by successively permuting adjacent rewriting steps at disjoint
positions, what we write P == Q below. For instance, with the notations of Ex. 3, the two
following paths are Peiffer-equivalent:

V V == V V

More generally, we can define the Peiffer-equivalence in a 3-precategory as the smallest
congruence (w.r.t. compositions) such that, with cells as on the left, we have the relation on
the right:

x1 y1

x y

x2 y2

v1

φ1⇓
A1
V⇓ψ1

v′1
w1u1

⇓χ
u2 v2

φ2⇓
A2
V⇓ψ2

v′2

w2

((u1 ∗A1 ∗ w1) ∗ χ ∗ (u2 ∗ φ2 ∗ w2))
∗

((u1 ∗ ψ1 ∗ w1) ∗ χ ∗ (u2 ∗A2 ∗ w2))
==

((u1 ∗ φ1 ∗ w1) ∗ χ ∗ (u2 ∗A2 ∗ w2))
∗

((u1 ∗A1 ∗ w1) ∗ χ ∗ (u2 ∗ ψ2 ∗ w2))

(4)

1.4 (3,2)-precategories
A (3, 2)-precategory is a 3-precategory in which every 3-cell P : φV ψ is invertible: there
exists a 3-cell Q : ψ V φ such that P ∗Q = 1φ and Q ∗ P = 1ψ.

Given a rewriting system P, consider the rewriting system Q with Qi = Pi for i = 0, 1, 2
and Q3 = P3 t P−3 where P−3 = {A− : ψ V φ | A : φ V ψ ∈ P3} is the set of formally
reverted rules in P3. We write P>3 for the set of 3-cells in Q∗3 quotiented by the smallest
congruence such that A ∗A− = 1φ and A− ∗A = 1ψ for every generator A in P3, and call its
elements rewriting zigzags. We can form a 3-precategory, noted P>, with P∗i as i-cells for
i = 0, 1, 2, P>3 as 3-cells, and expected compositions: it is defined as P∗ excepting that 3-cells
are rewriting zigzags instead of rewriting paths.

I Proposition 5. The 3-precategory P> is the free (3, 2)-precategory on the 3-precategory P∗.

According to the above proposition, we generalize the above notation and write P− for the
inverse of an arbitrary 3-cell P . Note that any 3-cell decomposes as P−1 ∗Q1 ∗ . . . ∗ P−n ∗Qn
where Pi and Qi are rewriting paths (thus the terminology of rewriting zigzag). In the
following, we will be mostly interested in (3, 2)-precategories (as opposed to 3-precategories).

1.5 Presentations
In order to describe interesting 3-precategories using rewriting systems, we need to be able
to quotient the 3-cells in the freely generated 3-precategory. A presentation consists of a
rewriting system P equipped with a set P4 of relations together with functions s3, t3 : P4 → P>3
indicating the source and the target rewriting path of a relation, such that s∗2 ◦ s3 = s∗2 ◦ t3
and t∗2 ◦ s3 = t∗2 ◦ t3 (relations are between rewriting paths with same source and same target).
We often write Γ : P Q to indicate that Γ is a relation with s3(Γ) = P and t3(Γ) = Q.
We denote by ==P4 (or sometimes even ==), the smallest congruence on 3-cells in P>3 such that
P ==P4 Q for every relation Γ : P Q in P4.

The (3, 2)-precategory P presented by a presentation P is the 3-category obtained from P>
by quotienting 3-cells under ==P4 .
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I Remark. A typical relation that one would like to express in the rewriting system of
monoids (Ex. 3) is the fact that the two ways of multiplying the unit by itself are the same,
as pictured below. However, in order to do so, we need to be able to “exchange” the two
units (the first 3-cell on the right), which there is no way to achieve for now. This motivates
looking at rewriting systems with more structure in next section.

V == V V η ∗R == (Xη,η ∗ µ) ∗ (η ∗ L)

1.6 Presentations of Gray categories
We have seen above that a rewriting system freely generates a 3-precategory. In practice, we
will be interested in describing 3-precategories having some additional structure and axioms.

A Gray category C is a 3-precategory equipped, for every pair of 2-cells φ and ψ as on
the left, of an invertible 3-cell Xφ,ψ as on the right, called interchanger :

x y z⇓φ
u

u′

⇓ψ
v

v′

Xφ,ψ : (φ ∗ v) ∗ (u′ ∗ ψ)V (u ∗ ψ) ∗ (φ ∗ v′)

x y z
⇓φ
u

u′ ⇓ψ
v

v′

V x y z⇓φ
u ⇓ψ

v

v′
(5)

such that
1. Peiffer-equivalences are identities,
2. interchangers are compatible with compositions and identities in all sensible ways: for

example,

Xφ1∗φ2,ψ = ((φ1 ∗ v) ∗Xφ2,ψ) ∗ (Xφ1,ψ ∗ (φ2 ∗ v′)) and X1u,ψ = 1u∗ψ

3. interchangers are natural: in the situation (5), given a 3-cell P : φV φ′

((P ∗ v) ∗ (u′ ∗ ψ)) ∗Xφ′,ψ = Xφ,ψ ∗ ((u ∗ ψ) ∗ (P ∗ v′))

and symmetrically.
Alternatively, a Gray category can be defined to be category enriched over the category Cat2
of 2-categories equipped with a suitable tensor product, called the Gray tensor product [7].
A Gray (3, 2)-category is a Gray category in which every 3-cell is invertible. A Gray functor
f : C → D between Gray categories is a 3-prefunctor preserving interchangers (we only
consider the strict flavor of such functors here).

The notion of Gray category generalizes 3-categories by asking for explicit interchange
cells: a 3-category is precisely a Gray category where all interchange 3-cells are identities.
The relevance of Gray categories is that, although they are quite strict (compositions are
strictly associative), they capture the full generality of weak 3-categories, as shown by the
coherence theorem of Gordon, Power and Street [6, 11]:

I Theorem 6. Every tricategory is (suitably) equivalent to a Gray category.

In order to present Gray categories, we should ensure that our presentations generate
interchangers and satisfy the required axioms. A Gray presentation P is a presentation such
that
1. for every pair of 3-generators A1 and A2, as well as morphisms as on the left of (4), there

is a relation as on the right of (4) called a Peiffer generator,
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2. for every 2-generators α and β and 1-cell v as below:

x x′ y′ z⇓α
u

u′

v ⇓β
w

w′

left, there is a 3-generator Xα,v,β , called interchange generators, as below:

Xα,v,β : (α ∗ v ∗ w) ∗ (u′ ∗ v ∗ β)V (u ∗ v ∗ β) ∗ (α ∗ v ∗ w′)

x x′ y′ z
⇓α
u

u′
v

⇓β
w

w′

V x x′ y′ z⇓α
u

u′

v ⇓β
w

w′

and we write PX ⊆ P3 for the set of interchange generators,
3. for every 3-generator A, 1-cell v and 2-generator α as on the left or on the right below

x x′ y′ yφ⇓
A
V⇓ψ

u

u′

v ⇓α

w

w′

x x′ y′ y⇓α

u

u′

v
φ⇓

A
V⇓ψ

w

w′

(6)

there is respectively a relation, called interchange naturality generator,

((A ∗ v ∗ w) ∗ (u′ ∗ v ∗ α)) ∗Xψ,v∗α Xφ,v∗α ∗ ((u ∗ w ∗ α) ∗ (A ∗ v ∗ w′))
((α ∗ v ∗ w) ∗ (u′ ∗ v ∗A)) ∗Xα∗v,ψ Xα∗v,φ ∗ ((u ∗ v ∗A) ∗ (α ∗ v ∗ w′))

where the interchangers Xα∗v,ψ are suitable composite of interchange generators (see
proposition below).

The above families of 3- and 4-cells are called the structural generators of the presentation.
We will not insist much about it in the following, but the choice of structural cells is implicitly
supposed to be part of a Gray presentation.

I Proposition 7. Given a Gray presentation P, the presented (3, 2)-precategory P is canoni-
cally a Gray (3, 2)-category.

Proof sketch. The first family of relations of P generates, by congruence, all the Peiffer
equivalences, the second family of 3-cells generates, by composition, all the interchangers,
and the third family of relations generates, by congruence, all the naturality conditions. J

I Example 8. The Gray presentation of monoids consists of the rewriting system of Ex. 3,
as well as additional interchange generators

V V V V

together with the relations

(7)
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as well as Peiffer generators, e.g.

χ χ

χ χ

for an arbitrary 2-cell χ : n+ 1⇒ n+ 3, and interchange naturality generators, e.g.

(8)

In the following, when describing a Gray presentation, we will not mention the structural
cells which are always implicitly supposed to be present.

A model of a presentation P in a Gray category C is a Gray functor P → C from the
presented Gray (3, 2)-category to C.

I Example 9. A model of the presentation P of monoids (Ex. 8) in a Gray category C

consists in a 1-cell a : x→ x together with 2-cells µ : a ∗ a⇒ a and η : 1x ⇒ a and invertible
3-cells A, L, R (as in Ex. 3) satisfying suitable relations (as in Ex. 8). This is precisely what
is usually called a pseudomonoid in C.

I Remark. A notion of presented Gray category (as opposed to (3, 2)-category) can also be
defined: it is slightly more involved since we still need to formally invert (by a localization)
some morphisms, at least the interchangers. Similarly, we could consider their models which
are functors to Gray categories. However, in practice people consider algebraic structures
with invertible 3-cells (e.g. pseudomonoids), which explains why we are mostly interested in
Gray (3, 2)-categories here for simplicity.

Our goal is to show that some presentations are coherent, meaning that all the diagrams
made of structural morphisms commute in the models. Formally, a Gray category is coherent
when between any pair of parallel 2-cells there is at most one 3-cell and a Gray presentation
is coherent when the associated Gray (3, 2)-category is.

2 Rewriting

2.1 Confluence
Every rewriting system induces an abstract rewriting system (i.e., a graph) with 2-cells in P∗2
as vertices and rewriting steps as edges (the set of paths thus being P∗3), from which we
can use the classical notions and properties of rewriting theory, detailed below. We slightly
depart from the tradition by, for confluence properties, asking that diagrams should be closed
and commute modulo the relations in P4.

Given a rewriting path P : φ V ψ, we say that φ rewrites to ψ. A normal form is a
2-cell φ such that the only rewriting path with source φ is the empty one. A branching is



S. Forest and S. Mimram 15:9

a pair of coinitial rewriting paths P1 : φ V φ1 and P2 : φ V φ2; it is local when both P1
and P2 are rewriting steps, it is joinable when there exists a pair of cofinal rewriting paths
Q1 : φ1 V ψ and Q2 : φ2 V ψ, it is confluent when there exists a pair of cofinal rewriting
paths Q1 : φ1 V ψ and Q2 : φ2 V ψ such that P1 ∗Q1 ==P4 P2 ∗Q2, see left of (9). Similarly,
a rewriting zigzag P : φ1 V φ2 in P>3 is confluent when there exists a pair of cofinal rewriting
paths Q1 : φ1 V ψ and Q2 : φ2 V ψ such that P ∗Q2 == Q1, see right of (9)

φ

φ1 == φ2

ψ

P1P1 P2P2

Q1Q1 Q2Q2

φ1 == φ2

ψ
Q1Q1

PP

Q2Q2

(9)

A rewriting system is
terminating when every sequence of composable rewriting steps is finite,
(locally) confluent when every (local) branching is confluent,
Church-Rosser when every rewriting zigzag is confluent,
convergent if both terminating and locally confluent.

In a terminating rewriting system, every 2-cell φ rewrites to a normal form φ̂. The classical
proof by well-founded induction of Newman’s lemma [19], can be directly adapted (as in [8,
Thm. 3.1.6]) in order to show

I Theorem 10. A convergent rewriting system is confluent.

Finally, for abstract rewriting systems it is well known that confluence implies the Church-
Rosser property. In this setting, this translates as the following theorem, which adapts in
our setting, the proof of Squier’s theorem for coherent presentations of categories, see [17,
Thm. 5.2] and [8, Thm. 4.3.2]:

I Theorem 11. A convergent presentation P is Church-Rosser and coherent.

Proof. Suppose given a rewriting path P : φV ψ. Since P is terminating, there is a rewriting
path Pφ : φV φ̂ (resp. Pψ : ψ V ψ̂) from φ (resp. ψ) to a normal form φ̂ (resp. ψ̂). Moreover,
by confluence, we have φ̂ = ψ̂ and Pφ == P ∗ Pψ, see the left of (10). Therefore, we have
equivalences P == Pφ ∗ P−ψ and P− == Pψ ∗ P−φ , as in the middle and right of (10):

φ ψ

φ̂
PφPφ

PP

==
PψPψ

φ ψ

φ̂
PφPφ

PP

==
P−
ψ
P−
ψ

φ ψ

φ̂

==

P−P−

PψPψP−
φ
P−
φ

(10)

Finally, as explained above, a 3-cell of P is a zigzag of rewriting paths P−1 ∗Q1 ∗ . . . ∗P−n ∗Qn
which is equivalent (modulo relations and axioms for inverses) to Pφ ∗ P−ψ :

φ ψ1 . . . ψn ψ

φ̂ φ̂ . . . φ̂ φ̂

P−1P
−
1

PφPφ

== Pψ1Pψ1

Q1Q1

==

P−nP
−
n

== PψnPψn

QnQn

==P−
ψ1
P−
ψ1 = =

P−
ψ
P−
ψ

Note that the 3-cell Pφ ∗P−ψ only depends on the source φ and the target ψ. We immediately
deduce that two parallel 3-cells in P are equal. J
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2.2 Termination

Termination of a presentation is usually proved by checking that rules are decreasing according
to some suitable order. A termination order is a well-founded partial order < on parallel
2-cells of a presentation P such that

for every rewriting rule A : φV ψ we have φ > ψ,
given composable 2-cells φ, ψ1 and φ′ (resp. φ, ψ2 and φ′) such that ψ1 > ψ2, we have
φ ∗ ψ1 ∗ φ′ > φ ∗ ψ2 ∗ φ′

given 2-cells φ > ψ and composable 1-cells u and w, we have u ∗ φ ∗ w > u ∗ ψ ∗ w.

I Proposition 12. A rewriting system equipped with a termination order is terminating.

I Example 13. A termination order for the rewriting system of monoids (Ex. 3) can be
constructed as follows. Firstly, the three non-structural rewriting rules can be shown to be
terminating exactly as for 3-polygraph of monoids [15, Sect. A.2] (roughly L and R decrease
the number of generators and A puts µ generators on the right), by a termination order for
which the interchangers are left invariant. Secondly, the interchangers make 2-cells decrease
in the following sense. A 2-cell corresponds to a forest of leveled planar binary trees (where
nodes correspond to 2-generators), i.e., trees equipped with a total “vertical” order refining
the depth order. The interchanger rules decrease the sum, for each generators, of the number
of generators above (w.r.t. to the vertical order) and on the left (which is easily defined for
such forests).

2.3 Critical branchings

Given a local branching (P1, P2), the following situations can occur. The branching is
trivial when P1 = P2,
non-minimal when there is another branching (Q1, Q2) such that Pi = φ ∗ (u ∗Qi ∗ v) ∗ψ
for i = 0, 1 for some 1-cells u, v and 2-cells φ, ψ, not all identities,
independent, or Peiffer, when there are morphisms of the form (4) such that

P1 = ((u1 ∗A1 ∗w1)∗χ∗ (u2 ∗φ2 ∗w2)) P2 = ((u1 ∗φ1 ∗w1)∗χ∗ (u2 ∗A2 ∗w2))

natural when there are morphisms as on the left of (6) such that

P1 = ((A ∗ v ∗ w) ∗ (u′ ∗ v ∗ α))

P2 is the first rewriting step of Xφ,v∗α, and similarly for the situation on the right of (6),
critical when it is of none of the above forms.

Since, by definition of Gray presentations, non-critical branchings are necessarily confluent,
we have:

I Theorem 14. A presentation is locally confluent if and only if every critical branching is
confluent.

As usual, critical branchings can be computed by considering the ways two left members φ1
and φ2 of rules can overlap non-trivially (sharing at least one 2-generator). Graphically, the
following generic situations can happen, where the two regions respectively represent φ1 and
φ2, the square ψ in the middle being the intersection (overlap) of both, which is supposed
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not to be an identity 2-cell:

φ1
ψ

φ2

φ1=φ′1∗(u∗ψ) φ1=φ′1∗(ψ∗v) φ1=φ′1∗ψ φ1=φ′1∗(u∗ψ∗v) φ1=φ′1∗(u∗ψ∗v)∗φ′′1
φ2=(ψ∗v)∗φ′2 φ2=(u∗ψ)∗φ′2 φ2=(u∗ψ∗v)∗φ′2 φ2=ψ∗φ′2 φ2=ψ

(and also the situations obtained by swapping φ1 and φ2). From this, one deduces that any
pair of rules can give rise to a finite number of critical branchings which can effectively be
computed (the algorithmic aspects will be detailed in future works). Moreover, note that
a non-structural rewriting rule R : φ V ψ can only give rise to a finite number of critical
branchings with interchangers: if the two 2-generators involved in an interchanger Xα,v,β

are too far apart horizontally (i.e., v is a composite of too many 1-cells), the branching is
necessarily an exchange branching, e.g. left of (8). Similarly, that two interchangers never
make a critical branching (all such branchings are natural), e.g. right of (8). From the above
considerations, we deduce:

I Theorem 15. A presentation with a finite number of 2-generators and of non-structural
3-generators, with non-identity 2-cells as sources, has a finite number of critical branchings.

It should be noted that this theorem contrasts with the situation for presentations of
(3, 2)-categories (where interchangers are identities), where a finite presentation can give rise
to an infinite number of critical branchings [15, 8]. Our formalization of rewriting systems
avoids this problem, at the cost of having to explicitly handle interchangers.

I Example 16. The presentation for monoids (Ex. 8) has five critical branchings:

W V W V W V W V W V

2.4 A coherent completion procedure
The general methodology for constructing confluent presentations is the following one.
Suppose given a presentation P (usually containing no relation in P4 excepting structural
ones).
1. Find a termination order for the rules of P: if none can be found try to reorient some

rules. Conclude that P is terminating by Prop. 12.
2. Compute the critical branchings and check that they are joinable: if a critical branching

is not joinable, add a new rule to make it confluent (this is the Knuth-Bendix completion
procedure [13]).

3. For every critical branching, choose a way to join it and add a corresponding relation
in P4 (if not already present).

4. Conclude that P is locally confluent by Thm. 14, thus confluent by Thm. 10 and thus
coherent by Thm. 11.

5. Optionally, remove some redundant rules and relations in order to achieve a smaller
presentation.

This methodology is illustrated in next section. Note that steps 2 and 3 can be combined,
giving rise to a “homotopical completion procedure” and 5 can be partly automated: this is
detailed in the case of coherent presentations of monoids in [10] and left for future work for
Gray presentations.
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3 Applications

3.1 Pseudomonoids
Consider the presentation P for monoids given in Ex. 8 whose termination was shown in
Ex. 13. There are five critical branchings, given in Ex. 16, which are all joinable. If we add
five corresponding relations in P we obtain a convergent, and thus coherent, presentation.
Note however that the presentation P given in Ex. 8 has only two relations: in fact, three of
the five relations are derivable from the other and can thus be removed (the argument given
in [8] for pseudomonoids in 3-categories can directly be adapted to our setting). This allows
us to recover the coherence theorem of [14].

3.2 Adjunctions
The presentation for adjunctions is given by P0 = {x, y}, P1 = {a : x → y, b : y → x} and
P2 = {η : 1x ⇒ ab, ε : ba⇒ 1y} where η and ε are respectively pictured as and . The
two rules are shown on the left below and the relations corresponding to the two critical
branchings are on the right:

(11)

They are sometimes called the swallowtail relations. A model for this presentation in the 2-
category Cat (seen as a (3, 2)-precategory with only identity 3-cells) is precisely an adjunction.
Termination can be shown by observing that the two non-structural rules decrease the number
of generators and the structural rules decrease the number of generators which are “on the
left and above”, as in the previous case. We deduce that this presentation is coherent, thus
recovering a variant of the coherence theorem shown in [4] (see below).

3.3 Self-dualities
The theory for self-dualities is the following variant of the previous one. We have P0 = {?},
P1 = {a : ?→ ?}, P2 = {η : 1? ⇒ aa, ε : aa⇒ 1?} where η and ε are respectively pictured
as and . The two rules are those on the left of (11). Note that because of the difference
in “typing” of 0- and 1-cells, the rewriting system is not anymore terminating, since we have
the reduction

V V V V

Moreover, this endomorphism 3-cell is not an identity, preventing any hope for the presentation
to be coherent. Following [4], we can still aim at showing a partial coherence result by
restricting to 2-cells which are connected, i.e., whose graphical representation is connected
(we do not give the formal definition here). In this case, termination can actually be shown
by using the same arguments as in Sec. 3.2. However, the critical pairs are not joinable either
since, for instance, we have

W V
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(for which there is little hope that a Knuth-Bendix completion will provide a reasonably
small presentation). However, one can obtain a rewriting system which is terminating on
connected 2-cells and confluent by orienting the interchangers as follows

V V V V

The relations generated by critical branchings can be pictured as on the right of (11).

3.4 Frobenius monoids
The presentation for (non-unital) Frobenius monoids is given by P0 = {?}, P1 = {1 : ?→ ?}
and P2 = {µ : 2⇒ 1, δ : 1⇒ 2}. If we respectively picture µ and δ by and , we have the
four rewriting rules on the left below:

V V V V V V

(and interchangers are oriented as usual). By Knuth-Bendix completion, we add the two
rules on the right. The resulting rewriting system has 19 joinable critical pairs, to each of
which corresponds a relation. We conjecture that the rewriting system is terminating, which
would give rise to a coherence theorem for Frobenius monoids. A coherence theorem using a
different set of generators and relations is shown in [4].

4 Rewriting systems in higher dimension

4.1 Precategories
Given n ∈ N, an n-globular set C is a diagram of sets

C0 C1 C2 . . . Cn
s0

t0

s1

t1

s2

t2

sn−1

tn−1

such that si◦si+1 = si◦ti+1 and ti◦si+1 = ti◦ti+1 for 0 ≤ i < n−1. A morphism f : C → D

between n-globular sets is a family of morphisms fi : Ci → Di, with 0 ≤ i ≤ n, such that
si ◦ fi+1 = fi ◦ si. The resulting category is denoted by Globn. Given i, j, k ∈ N with k < i

and k < j, we write Gi ×k Gj for the pullback of the diagram Ci Ck Cj
tk◦...◦ti−1 sk◦...◦sj−1 .

An n-precategory C, see [12], is an n-globular set equipped with
identity functions 1i : Gi → Gi+1 for 0 ≤ i < n,
composition functions ∗i,j : Gi ×i∧j−1 Gj → Gi∨j for 0 < i, j ≤ n.

As previously, since the dimension of cells determines the functions to be used, we omit the
indices from s, t, 1 and ∗. For composition, it is sometimes useful to write u ∗k v to indicate
that k = i ∧ j − 1, where i is the dimension of u and j is the dimension of v. We require the
following axioms:

for (u, v) ∈ Ci ×i∧j−1 Cj with 0 < i, j ≤ n,

s(u ∗ v) =


u ∗ s(v) if i < j

s(u) if i = j

s(u) ∗ v if i > j

t(u ∗ v) =


u ∗ t(v) if i < j

t(v) if i = j

t(u) ∗ v if i > j

for every u ∈ Ci with 0 ≤ i < n, s(1u) = u = t(1u)

FSCD 2018
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for every (u, v) ∈ Ci ×i∧j−1 Cj with 0 < i, j ≤ n,

1u ∗ v =
{
v if i ≤ j
1u∗v if i > j

u ∗ 1v =
{
u if i ≥ j
1u∗v if i < j

such that, for composable cells u, v, w, with k < l,

(u ∗k v) ∗k w = u ∗k (v ∗k w) u ∗k (v ∗l w) = (u ∗k v) ∗l (u ∗k w)
(u ∗l v) ∗k w = (u ∗k v) ∗l (u ∗k w)

A morphism of n-precategories, called an n-prefunctor, is a morphism between the underlying
globular sets which preserves identities and compositions as expected. We write PCatn for
the category of n-precategories. This category is locally presentable and thus complete and
cocomplete. Given an n-precategory C, we write C0 for its set of 0-cells seen as an n-category

C0 ×D0 C ×D0

C0 ×D C �D

with empty sets of i-cells for 0 < i ≤ n. The “funny tensor product”
C �D of two n-precategories C and D is defined as the pushout on
the right where the arrows are the obvious inclusions. This makes
PCatn into a monoidal category and we have:

I Proposition 17. An n+1-precategory is the same as a category enriched in PCatn equipped
with the funny tensor product.

4.2 Prepolygraphs
PCat+

n Globn+1

PCatn Globn

We now briefly introduce the notion of prepolygraph which generalizes
in arbitrary dimension the notion of rewriting system, by a direct
adaptation the definition invented by Burroni for n-categories [3]. We
write PCat+

n for the pullback on the right where the arrow on the
top is the forgetful functor and the one on the left is the truncation functor (forgetting the set
of n+1-cells in an n+1-globular set). An object in this category consists of an n-precategory
equipped with a set of n+1-cells (for which there is no notion of composition). There is a
forgetful functor PCatn+1 → PCat+

n which amounts to forget about compositions involving
n+1-cells, which admits a right adjoint Ln : PCat+

n → PCatn+1, generating all the formal
compositions of n+1-cells.

Poln+1 PCat+
n

Poln PCatn

F+
n

Fn

We now define by induction on n ∈ N, the category Poln
of n-prepolygraphs together with a functor Fn : Poln → PCatn
associating to each n-prepolygraph the associated freely generated
n-precategory. For n = 0, we set Pol0 = Set and F0 is the identity
functor (PCat0 is isomorphic to Set). The category of n+1-prepolygraphs is defined by
the pullback on the right where the vertical arrow is the expected forgetful functor, and
we define the functor Fn+1 = Ln+1 ◦ F+

n . More explicitly, an n-prepolygraph consists in a
diagram of sets

P0 P1 P2 . . . Pn−1 Pn

P∗0 P∗1 . . . P∗n−2 P∗n−1

i0
s0

t0
i1

s1

t1
i2

sn−2

tn−2
in−1

sn−1

tn−1s∗0

t∗0

s∗1

t∗1

s∗n−1

t∗n−1

such that s∗i ◦si+1 = s∗i ◦ti+1 and t∗i ◦si+1 = t∗i ◦ti+1, together with a structure of n-precategory
on the globular set on the bottom row: Pi is the set of i-generators, si, ti : Pi+1 → P∗i
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respectively associate to each i+1-generator its source and target, and P∗i is the set of i-cells,
i.e., formal compositions of i-generators.

The cells in such prepolygraphs are particularly easy to manipulate because of the
following normal form, generalizing Prop. 2 and its proof. We plan to investigate algorithmic
aspects (for computing critical pairs, etc.) based on this representation in future works.

I Theorem 18. A non-identity k-cell P in an n-prepolygraph decomposes uniquely as
P = R1 ∗R2 ∗ . . . ∗Rp with each Ri being a k-rewriting step, i.e., a composite of the form
Ri = uik−1 ∗ (. . . ∗ (ui2 ∗ (ui1 ∗ Ai ∗ wi1) ∗ wi2) ∗ . . .) ∗ wik−1 where Ai is a k-generator and uij
and vij are j-cells.

Interestingly, this formalization based on prepolygraphs corresponds precisely to the one
proposed by Bar and Vicary [2]: their representation is more economical thanks to the use of
integers in order to encode cells, but somewhat obscures the universal properties it satisfies.

I Proposition 19. The n-signatures of [2] correspond to the n-prepolygraphs defined above.

Their work gives hints at a way to generalize Gray presentations in order to present semistrict
tetracategories, by providing the adapted collections of structural cells. We plan to investigate
this, as well as an adaptation of our techniques in order to provide automation to their tool
Globular [1] in future work.
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Abstract
We consider rewriting of a regular language with a left-linear term rewriting system. We show
a completeness theorem on equational tree automata completion stating that, if there exists a
regular over-approximation of the set of reachable terms, then equational completion can compute
it (or safely under-approximate it). A nice corollary of this theorem is that, if the set of reachable
terms is regular, then equational completion can also compute it. This was known to be true
for some term rewriting system classes preserving regularity, but was still an open question in
the general case. The proof is not constructive because it depends on the regularity of the set of
reachable terms, which is undecidable. To carry out those proofs we generalize and improve two
results of completion: the Termination and the Upper-Bound theorems. Those theoretical results
provide an algorithmic way to safely explore regular approximations with completion. This has
been implemented in Timbuk and used to verify safety properties, automatically and efficiently,
on first-order and higher-order functional programs.
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1 Introduction

Given a term rewriting system (TRS for short)R and a tree automatonA recognizing a regular
tree language L(A), the set of reachable terms is R∗(L(A)) = {t | s ∈ L(A) and s→R

∗ t}.
In this paper, we show that the equational tree automata completion algorithm [15] is complete
w.r.t. regular approximations. If R is left-linear and there exists a regular language L over-
approximating R∗(L(A)), i.e., R∗(L(A)) ⊆ L then completion can build a tree automaton
A∗ such that R∗(L(A)) ⊆ L(A∗) ⊆ L . We also show that completion is complete w.r.t.
TRSs preserving regularity, i.e., if L = R∗(L(A)) then completion can build a tree automaton
A∗ such that R∗(L(A)) = L(A∗) = L . On the one hand, automata built by completion-like
algorithms are known to recognize exactly the set of reachable terms, for some restricted
classes of TRSs [17, 24, 8, 10]. On the other hand, automata completion is able to build
over-approximations for any left-linear TRS [9, 23, 15], and even for non-left-linear TRSs [3].
Such approximations are used for program verification [5, 4, 10, 14] as well as to automate
termination proofs [16, 20]. To define approximations, completion uses an additional set of
equations E and builds a tree automaton A∗R,E such that L(A∗R,E) ⊇ R∗(L(A)). Starting
from R, A, and E Timbuk[12] is an automatic tool to build A∗R,E . Until now it was an
open question whether completion can build any regular over-approximation or compute
the set of reachable terms if this set is regular. The first contribution of this paper is to
answer these two questions in the positive, for general left-linear TRSs. The proofs are not
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constructive but, the second contribution is to provide an efficient method to explore regular
approximations for TRSs encoding functional programs.

For the approximated case, the proof of completeness is organized as follows. If there
exists a regular over-approximation L such that R∗(L(A)) ⊆ L , we know that there exists
a tree automaton B such that L(B) = L . From B, using the Myhill-Nerode theorem, we
can infer a set of equations E such that the set of E-equivalence classes T (F)/=E

is finite.
Then we prove the following theorems:
(a) If T (F)/=E

is finite, then it is possible to build from E a set of equations E′, equivalent
to E, such that completion of any automaton A by any TRS R with E′ always terminates.
This generalizes the termination theorem of [10];

(b) If T (F)/=E
is finite, then it is possible to build from E and A a tree automaton A

recognizing the same language as A such that the completed automaton A∗R,E has the
following precision property: L(A∗R,E) ⊆ R∗E(L(A)), where R∗E(L(A)) is the set of
reachable terms by rewriting modulo E. It generalizes the Upper Bound theorem of [15].

(c) Then, we show that R∗E(L(A)) ⊆ L(B), and we get the main completeness theorem:
L(A∗R,E) ⊆ R∗E(L(A)) ⊆ L(B).

Besides, we know from [15] that R∗(L(A)) ⊆ L(A∗R,E). Thus, when using the set of equations
defined from B to run completion, (c) implies that we can only get an over-approximation
of R∗(L(A)) equivalent or better than L = L(B). This result has a practical impact for
program verification. In particular, for TRSs encoding functional programs, the search space
of sets of equations E can be constrained for enumeration to be possible. This has been
implemented in the Timbuk [12] tool. Our experiments show that this makes completion
automatic enough to carry out safety proofs on first-order and higher-order functional
programs. We also get a corollary of (c) when L is not an approximation:
(d) If L = L(B) = R∗(L(A)), we can use R∗(L(A)) ⊆ L(A∗R,E) to close-up the ⊆-chain

and get that L(A∗R,E) = R∗(L(A)). Thus if R∗(L(A)) is regular, there exists a set of
equations E s.t. L(A∗R,E) = R∗(L(A))

Section 2 defines some basic notions in term rewriting and tree automata and Section 3 recalls
the tree automata completion algorithm and the related theorems. Section 4 recalls the
Myhill-Nerode theorem for trees and defines the functions to transform a set of equations into
a tree automaton and vice versa. Section 5 proves Result (a) and Section 6 shows Result (b).
Section 7 assembles (a) and (b) to prove results (c) and (d) using the proof sketched above.
Section 8 shows how to take advantage of those results to program verification and presents
some experiments. Finally, Section 9 concludes.

2 Preliminaries

In this section we introduce some definitions and concepts that will be used throughout the
rest of the paper (see also [2, 6]). Let F be a finite set of symbols, each associated with an
arity function. For brevity, we write f : n if f is a symbol of arity n and Fn = {f ∈ F | f : n}.
Let X be a countable set of variables, T (F ,X ) denotes the set of terms and T (F) denotes
the set of ground terms (terms without variables). The set of variables of a term t is denoted
by V ar(t). A substitution is a function σ from X into T (F ,X ), which can be uniquely
extended to an endomorphism of T (F ,X ). A position p in a term t is a finite word over
N, the set of natural numbers. The empty sequence λ denotes the top-most position. The
set Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X or t is
a constant and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈Pos(ti)} otherwise. If
p ∈Pos(t), then t(p) denotes the symbol at position p in t, t|p denotes the subterm of t at
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position p, and t[s]p denotes the term obtained by replacing the subterm t|p at position p by
the term s. A ground context C[ ] is a term in T (F ∪ {2}) containing exactly one occurrence
of the symbol 2. If t ∈ T (F) then C[t] denotes the term obtained by the replacement of 2
by t in C[ ]. A context is empty if it is equal to 2.

A term rewriting system (TRS) R is a set of rewrite rules l→ r, where l, r ∈ T (F ,X ),
l 6∈ X , and V ar(l) ⊇ V ar(r). A rewrite rule l → r is left-linear if each variable occurs
only once in l. A TRS R is left-linear if every rewrite rule l → r of R is left-linear. The
TRS R induces a rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X ) and
l → r ∈ R, s →R t denotes that there exists a position p ∈ Pos(s) and a substitution
σ such that s|p = lσ and t = s[rσ]p. The set of ground terms irreducible by a TRS R
is denoted by Irr(R). A set L ⊆ T (F) is R-closed if for all s ∈ L and s →R t then
t ∈ L . The reflexive transitive closure of →R is denoted by →∗R, and s →!

R t denotes
that s→∗R t and t is irreducible by R. The set of R-descendants of a set of ground terms
I is defined as R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗R t}, i.e., the smallest R-closed set
containing I. Let E be a set of equations l = r, where l, r ∈ T (F ,X ). The relation =E is
the smallest congruence such that for all equations l = r of E and for all substitutions σ
we have lσ =E rσ. The set of equivalence classes defined by =E on T (F) is denoted by
T (F)/=E

. Given a TRS R and a set of equations E, a term s ∈ T (F) is rewritten modulo
E into t ∈ T (F), denoted s →R/E t, if there exists an s′ ∈ T (F) and a t′ ∈ T (F) such
that s =E s′ →R t′ =E t. The reflexive transitive closure →∗R/E of →R/E is defined as usual
except that reflexivity is extended to terms equal modulo E, i.e., for all s, t ∈ T (F), if s =E t

then s→∗R/E t. The set of R-descendants modulo E of a set of ground terms I is defined as
R∗E(I) = {t ∈ T (F) | ∃s ∈ I s.t. s→∗R/E t}.

Let Q be a countably infinite set of symbols with arity 0, called states, such that Q∩F = ∅.
Terms in T (F ∪Q) are called configurations. A transition is a rewrite rule c→ q, where c is
a configuration and q is a state. A transition is normalized when c = f(q1, . . . , qn), f ∈ F
is of arity n, and q1, . . . , qn ∈ Q. An ε-transition is a transition of the form q → q′ where
q and q′ are states. A bottom-up non-deterministic finite tree automaton (tree automaton
for short) over the alphabet F is a tuple A = 〈F ,Q,Qf ,∆〉, where Qf ⊆ Q is the set of
final states, ∆ is a finite set of normalized transitions and ε-transitions. An automaton is
epsilon-free if it is free of ε-transitions. The transitive and reflexive rewriting relation on
T (F ∪Q) induced by the set of transitions ∆ (resp. all transitions except ε-transitions) is
denoted by →∗∆ (resp. →Cε ∗∆ ). When ∆ is attached to a tree automaton A we also denote
those two relations by →A

∗ and →Cε ∗A , respectively. A tree automaton A is complete if for all
s ∈ T (F) there exists a state q of A such that s→A

∗ q. The language recognized by A in
a state q is defined by L(A, q) = {t ∈ T (F) | t →∗A q}. We define L(A) =

⋃
q∈Qf

L(A, q).
A state q of an automaton A is reachable if L(A, q) 6= ∅. An automaton is reduced if all
its states are reachable. An automaton A is Aε-reduced if for all states q of A there exists a
ground term t ∈ T (F) such that t→Cε ∗A q. An automaton A is deterministic if for all ground
terms s ∈ T (F) and all states q, q′ of A, if s→A

∗ q and s→A
∗ q′ then q = q′. An automaton

A is R-closed if for all terms s, t and all states q ∈ Q, s→A
∗ q and s→R t implies t→A

∗ q.

3 Equational Tree Automata Completion

From a tree automaton A0 = 〈F ,Q,Qf ,∆0〉 and a left-linear TRS R, the completion algo-
rithm computes an automaton A∗ such that L(A∗) = R∗(L(A0)) or L(A∗) ⊇ R∗(L(A0)).
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3.1 Completion General Principles
From A0

R = A0, tree automata completion successively computes tree automata A1
R, A2

R, . . .
such that for all i ≥ 0 : L(Ai

R) ⊆ L(Ai+1
R ) and if s ∈ L(Ai

R), and s→R t then t ∈ L(Ai+1
R ).

For k ∈ N, if L(Ak
R) = L(Ak+1

R ) then Ak
R is a fixpoint and we denote it by A∗R. To construct

Ai+1
R from Ai

R, we perform a completion step (denoted by CR) which consists in finding
critical pairs between →R and →Ai

R
. For a substitution σ : X 7→ Q and a rule l→ r ∈ R, a

critical pair is an instance lσ of l such that there exists a state q ∈ Q satisfying lσ →∗Ai
R
q

and rσ 6→∗Ai
R
q. For rσ to be recognized by the same state and thus model the rewriting

of lσ into rσ, it is enough to add the necessary transitions to Ai
R in order to obtain Ai+1

R
such that rσ →∗Ai+1

R
q. The result of the completion step CR(Ai

R) is thus Ai+1
R . In [24, 15],

critical pairs are joined as in Figure 1.

lσ
R
//

Ai
R

��

rσ

Ai+1
R
��

q q′
Ai+1

R

oo

Figure 1 Completion step

sσ
E

A,Cε ∗
��

tσ

∗ A,Cε
��

qa qb

Figure 2 Simplification step

s(s(q0))
E

A,Cε ∗

��

s(q0)

∗ A,Cε
��

q2 q1

Figure 3 Simplification example

From an algorithmic point of view, there remain two problems to solve: find all the critical
pairs (l → r, σ, q) and find the transitions to add to Ai

R to have rσ →∗Ai+1
R

q. The first
problem, called matching, can be efficiently solved using a specific algorithm [8]. The second
problem is solved using a normalization algorithm [10]. To have rσ →∗Ai+1

R
q′ we need a

transition of the form rσ → q′ in Ai+1
R . However, this transition may not be normalized.

In this case, it is necessary to introduce new states and new transitions. For instance,
to normalize a transition f(g(a), h(q1)) → q′ w.r.t. a tree automaton Ai

R with transitions
a → q1, b → q1, g(q1) → q1, we first rewrite f(g(a), h(q1)) with transitions of Ai

R as far
as possible. We obtain f(q1, h(q1)). Then we introduce the new state q2 and the new
transition h(q1) → q2 to recognize the term h(q1). The new transitions to add to Ai

R are
thus: h(q1)→ q2, f(q1, q2)→ q′, and q′ → q.

3.2 Simplification of Tree Automata by Equations
Since completion creates new transitions and new states to join critical pairs, it may diverge.
Divergence is avoided by simplifying the tree automaton with a set of equations E. This
operation permits the over-approximation of languages that cannot be recognized exactly
using tree automata completion, e.g., non-regular languages. Simplification consists in finding
E-equivalent terms recognized in A by different states and then by merging those states.

I Definition 1 (Simplification relation). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and E
be a set of equations. For s = t ∈ E, σ : X 7→ Q, qa, qb ∈ Q such that sσ →Cε ∗A qa, tσ →Cε ∗A qb
(See Figure 2) and qa 6= qb then A is simplified into A′, denoted by A ;E A′, where A′ is
A where qb is replaced by qa in Q, Qf and ∆. �

I Example 2. Let E = {s(s(x)) = s(x)} and A be the tree automaton with Qf = {q2}
and set of transitions ∆ = {a→ q0, s(q0)→ q1, s(q1)→ q2}. Hence L(A) = {s(s(a))}. We
can perform a simplification step using the equation s(s(x)) = s(x) because we found a
substitution σ = {x 7→ q0} such that s(s(q0))→Cε ∗A q2, s(q0)→Cε ∗A q1 (see Figure 3). Hence,
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A ;E A′ where A′ is A where q2 is replaced by q1 i.e., A′ is the automaton with Q′f = {q1},
∆ = {a→ q0, s(q0)→ q1, s(q1)→ q1}. Note that L(A′) = {s∗(s(a))}.

The simplification relation ;E is terminating and confluent (modulo state renaming) [15].
In the following, by SE(A) we denote the unique automaton (modulo renaming) A′ such
that A ;∗E A′ and A′ is irreducible (it cannot be simplified further).

3.3 The full Completion Algorithm
I Definition 3 (Automaton completion). Let A be a tree automaton, R a left-linear TRS
and E a set of equations.

A0
R,E = A,

An+1
R,E = SE(CR(An

R,E)), for n ≥ 0 where CR(An
R,E) is the tree automaton such that all

critical pairs of An
R,E are joined.

If there exists k ∈ N such that Ak
R,E = Ak+1

R,E , then we write A∗R,E for Ak
R,E .

I Example 4. Let R = {f(x, y) → f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions ∆ = {f(qa, qb) → q0, a → qa, b → qb}, i.e.,
L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E which is a
fixpoint A∗R,E . Completion steps are summed up in the following table. To simplify the
presentation, we do not repeat the common transitions: Ai

R,E and CR(Ai) columns are
supposed to contain all transitions of A0, . . . ,Ai−1

R,E .

A0 CR(A0) A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb) → q0 f(q1, q2) → q3 f(q1, q2) → q3 f(q4, q5) → q6 f(q1, q2) → q6

a → qa s(qa) → q1 s(qa) → q1 s(q1) → q4 s(q1) → q1

b → qb s(qb) → q2 s(qb) → q2 s(q2) → q5 s(q2) → q2

q3 → q0 q3 → q0 q6 → q3

On A0, there is one critical pair f(qa, qb) →∗A0
q0 and f(qa, qb) →R f(s(qa), s(qb)). The

automaton CR(A0) contains all the transitions of A0 with the new transitions (and the
new states) necessary to join the critical pair, i.e., to have f(s(qa), s(qb))→∗CR(A0) q0. The
automaton A1

R,E is exactly CR(A0) because simplification by E does not apply. Then,
CR(A1

R,E) contains all the transitions of A1
R,E and A0 plus those obtained by the resolution

of the critical pair f(q1, q2) →∗A1
R,E

q3 and f(q1, q2) →R f(s(q1), s(q2)). On CR(A1
R,E)

simplification using the equation s(s(x)) = s(x) can be applied on the following instances:
s(s(qa)) = s(qa) and s(s(qb)) = qb. Since s(s(qa)) →∗CR(A1

R,E
) q4 and s(qa) →∗CR(A1

R,E
) q1,

simplification merges q4 with q1. Similarly, simplification on s(s(qb)) = qb merges q5 with
q2. Thus, A2

R,E = CR(A1
R,E) where q4 is replaced by q1 and q5 is replaced by q2. This

automaton is a fixed point because it has no other critical pairs (they are all joined).

3.4 Lower Bound, Upper Bound and Termination of Completion
I Theorem 5 (Lower Bound [15]). Let R be a left-linear TRS, A be a tree automaton and
E be a set of equations. If completion terminates on A∗R,E then L(A∗R,E) ⊇ R∗(L(A)).

To state the upper bound theorem, we need the notion of R/E-coherence we now define.
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I Definition 6 (Coherent automaton). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton, R a
TRS and E a set of equations. The automaton A is said to be R/E-coherent if ∀q ∈ Q :
∃s ∈ T (F) :

s→Cε ∗A q ∧ [∀t ∈ T (F) : (t→Cε ∗A q =⇒ s =E t) ∧ (t→A
∗ q =⇒ s→∗R/E t)].

Here is the intuition behind R/E-coherence. An R/E-coherent automaton is Aε-reduced, its
ε-transitions represent rewriting steps and normalized (Aε-transitions) transitions recognize
E-equivalence classes. More precisely, in an R/E-coherent tree automaton, if two terms s, t
are recognized in the same state q using only normalized transitions then they belong to the
same E-equivalence class. Otherwise, if at least one ε-transition is necessary to recognize,
say, t in q then at least one step of rewriting with R was necessary to obtain t from s.

I Example 7. Let R = {a → b}, E = {c = d} and A = 〈F ,Q,Qf ,∆〉 with ∆ = {a →
q0, b → q1, c → q2, d → q2, q1 → q0}. The automaton A is R/E-coherent because it is

Aε-reduced and the state q2 recognizes with →Cε∆ two terms c and d but they satisfy c =E d.
Finally, a→∗∆ q0 and b→∗∆ q0 but a→Cε∆ q0, b→Cε∆ q1 → q0 and a→R b.

I Theorem 8 (Upper Bound [15]). Let R be a left-linear TRS, E a set of equations and
A an R/E-coherent automaton. For any i ∈ N: L(Ai

R,E) ⊆ R∗E(L(A)) and Ai
R,E is

R/E-coherent.

Finally, we state the termination theorem which relies on E-compatibility. Roughly speaking,
E-compatibility is the symmetric of E-coherence. An automaton A is E-compatible if for all
states q1, q2 ∈ A and all terms s, t ∈ T (F) such that s →Cε ∗A q1, t →Cε ∗A q2 and s =E t then
we have q1 = q2.

I Theorem 9 (Termination of completion [10]). Let A be a Aε-reduced tree automaton, R a
left-linear TRS, and E a set of equations such that T (F)/=E

is finite. If for all i ∈ N, Ai
R,E

is E-compatible then there exists a natural number k ∈ N such that Ak
R,E is a fixpoint.

To prove our final result, we first have to generalize Theorems 8 and 9 to discard the technical
R/E-coherence and E-compatibility assumptions. This is the objective of the next sections.

4 From automata to equations and vice versa

Theorem 9 uses the assumption that the automata Ai
R,E are all E-compatible. This is not

true in general. Unlike R/E-coherence, E-compatibility is not preserved by tree automaton
completion: Ai+1

R,E may not be E-compatible even if Ai
R,E is. Proofs can be found in [11].

I Example 10. Let F = {f : 1, a : 0, b : 0, c : 0}, R = {f(x)→ f(f(x)), f(f(x))→ a}, A be
the automaton such that ∆ = {a→ q1, c→ q1, f(q1)→ qf} and E = {f(a) = f(b), f(b) =
b, f(c) = f(b)}. Note that T (F)/=E

has 3 equivalence classes: the class of {a}, the class of
{b, f(a), f(b), f(c), . . .} and the class of {c}. However, completion does not terminate on this
example. Automaton A is E-compatible (f(a) =E f(c) and both terms are recognized with
→CεA by the same state: qf ) but A1

R,E is not: it has one new state q2 and contains additional
transitions {f(qf )→ q2, q2 → qf}. We thus have f(f(a))→Cε ∗A1

R,E

q2 and f(a)→Cε ∗A1
R,E

qf and
f(f(a)) =E f(f(b)) =E f(b) =E f(a) but q2 6= qf . Since b is not recognized by An

R,E for any
n, the equation f(b) = b never applies and completion diverges.
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E-compatibility can be ensured for particular cases of R and E, e.g., for typed functional
programs [10]. Here, we show how to transform the set E into a set EB for which completed
automata are EB-compatible, and completion is thus terminating. We also build EB so
that its precision is similar to E, i.e., =E ≡ =EB . This transformation is based on the
Myhill-Nerode theorem for trees [18, 6]. We first produce a tree automaton B whose states
recognize the equivalence classes of E. Then, from B, we perform the inverse operation and
obtain a set EB whose set of equivalence classes is similar to the classes of E, but whose
equations avoid the problem shown in Example 10. In this paper, we mainly consider sets E
of ground equations because they are sufficient to prove our completeness results and for the
practical applications of Section 7. However, this can be extended to general equations if E
can be oriented into a weakly terminating TRS R s.t. Irr(R) is finite [11].

4.1 From equations to automata
If T (F)/=E

is finite, the Myhill-Nerode theorem for trees [18, 6] relates T (F)/=E
with tree

automata. This theorem is constructive and provides an algorithm to switch from one form
to the other, provided that =E is decidable. In the following we denote by MN the function
that builds a tree automaton from a set of equations E [18].

I Definition 11 (Function MN). Let E be a set of equations such that T (F)/=E
is finite

and =E is decidable. Let Q be a set of states and state : T (F)/=E
7→ Q be an injective

function. MN(E) = 〈F ,Q,Q,∆〉 where ∆ = {f(state(u1), . . . , state(un))→ state(u) | f ∈
F , u1, . . . , un, u ∈ T (F)/=E

and f(u1, . . . , un) =E u}

I Theorem 12 (Myhill-Nerode theorem for trees [18]). If T (F)/=E
is finite and =E decidable,

B = MN(E) is a reduced, deterministic, epsilon-free and complete tree automaton such that
for all s, t ∈ T (F), s =E t ⇐⇒ (∃q : {s, t} ⊆ L(B, q)).

When all equations of E are ground, E can be oriented into a complete TRS (confluent and
terminating) −→E , using for instance [22]. Then =E is decidable using −→E and finiteness of
T (F)/=E

is equivalent to finiteness of Irr(−→E ), which is decidable [6].

I Example 13. Consider the set E of Example 10. We can orient E into a complete TRS−→
E = {f(a) → f(b), f(b) → b, f(c) → f(b)}. The set Irr(−→E ) is {a, b, c}. The automaton
MN(E) has 3 states q0, q1, q2 such that state(a) = q0, state(b) = q1 and state(c) = q2. It
has six transitions a → q0 (because a →!−→

E
a), b → q1 (because b →!−→

E
b), c → q2 (because

c →!−→
E
c), f(q0) → q1 (because f(a) →!−→

E
b), f(q1) → q1 (because f(b) →!−→

E
b), f(q2) → q1

(because f(c)→!−→
E
b).

4.2 From automata to equations
In the other direction, starting from a tree automaton B it is possible to build a set of
equations EB such that languages recognized by states of B and equivalence classes of
T (F)/=EB

coincide [18]. We reformulate the original algorithm into a function called A2E
because we need some additional properties on the generated set of equations for completion
to terminate. For simplicity we assume that B is Reduced and epsilon-Free. Some properties
of EB will hold only if B is also Complete and Deterministic. In the following, we use the
RF and RDFC short-hands for automata having the related properties. Recall that for any
tree automaton, there exists an equivalent RF or RDFC automaton [6].

For an RF automaton B, the construction of EB = A2E(B) is straightforward and
follows [18]: for all states q we identify a ground term recognized by q, a representative,
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and for all transitions f(q1, . . . , qn)→ q we generate an equation f(t1, . . . , tn) = t where ti,
1 ≤ i ≤ n are representatives for qi and t is a representative for q. However, for this set of
equations to guarantee termination of completion it needs some redundancy: for each state
we generate a set of state representatives and the equations are defined for each representative
of the set. As shown in Example 10, the equation f(b) = b cannot be applied during
completion because b does not occur in the tree automaton. However, a logical consequence
of this equation is that f(f(a)) =E f(a) and terms f(f(a)) and f(a) that occur in the tree
automaton could be merged. In our setting the term f(a) will be a state representative
and the equation f(f(a)) = f(a) will appear in the set of generated equations. Roughly
speaking, every constant symbol a appearing in a transition a→ q is a state representative
for q. Every term of the form f(u1, . . . , un) is a state representative for q if (1) ui’s are not
state representatives of q, (2) f(q1, . . . , qn) → q is a transition of B and (3) ui’s are state
representatives for the qi’s. The property (1) ensures finiteness of the set of representatives.

I Definition 14 (State representatives). Let B = 〈F ,Q,Qf ,∆〉 be an RF tree automaton
and q ∈ Q. The set of state representatives of q of height lesser or equal to k ∈ N, denoted
by JqKkB, is inductively defined by:

JqK1
B = {a | a→ q ∈ ∆}

JqKkB = JqKk−1
B ∪ {f(u1, . . . , un) | f(q1, . . . , qn)→ q ∈ ∆ and 1 ≤ i ≤ n, ui ∈ JqiKk−1

B ,

and ∀p ∈Pos(ui) : ui|p 6∈ JqKk−1
B }

In the above definition, the fact that B is reduced and epsilon-free ensures that there exists
at least one (non-epsilon) transition for every state and that each state has at least one state
representative.

I Example 15. Let B be the RF automaton that we obtained in Example 13 and whose set
of transitions is a→ q0, b→ q1, c→ q2, f(q0)→ q1, f(q1)→ q1, f(q2)→ q1.

Jq0K1
B = {a}, Jq1K1

B = {b}, and Jq2K1
B = {c}.

Jq0K2
B = Jq0K1

B, Jq1K2
B = {b, f(a), f(c)}, and Jq2K2

B = Jq2K1
B. The term f(b) of height 2 and

recognized by q1 is not added to Jq1K2
B because its subterm b belongs to Jq1K1

B.
The fixpoint is reached because terms f(f(a)) and f(f(c)) recognized by q1 are not added
to Jq1K3

B because f(a) and f(c) belong to Jq1K2
B.

We denote by JqKB the set of all state representatives for the state q i.e., the fixpoint of the
above equations. We know that such a fixpoint exists and is always a finite set. Omitted
proofs can be found in [11].

I Lemma 16 (The set of state representatives is finite). For all RF tree automata B, for all
states q ∈ B there exists a natural number k ∈ N for which the set JqKkB is a fixpoint.

I Definition 17 (Function A2E: set of equations EB from a tree automaton B). Let B =
〈F ,Q,Qf ,∆〉 be an RF tree automaton. The set of equations EB inferred from B is
A2E(B) = {f(u1, . . . , un) = u | f(q1, . . . , qn)→ q ∈ B, u ∈ JqKB and ui ∈ JqiKB for 1 ≤ i ≤
n}.

I Example 18. Starting from the automaton B and the state representatives of Example 15,
the set A2E(B) contains the following equations: a = a (because of transition a → q0),
c = c (because of transition c→ q2), b = b, b = f(a), b = f(c) (because of transition b→ q1),
f(a) = f(a), f(a) = b, f(a) = f(c) (because of transition f(q0) → q1), f(f(a)) = f(a),
f(f(a)) = b, f(f(a)) = f(c), f(b) = f(a), f(b) = b, f(b) = f(c), f(f(c)) = f(a), f(f(c)) = b,
f(f(c)) = f(c) (because of transition f(q1) → q1), f(c) = f(a), f(c) = b, and f(c) = f(c)
(because of transition f(q2)→ q1).
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Since B is finite and the set of state representatives is finite then so is EB. Note that many
equations of EB are useless w.r.t. the underlying equational theory. This is the case, in
the above example, for equations of the form a = a as well as the equation f(a) = f(c)
which is redundant w.r.t. b = f(a) and b = f(c). However, as shown in Example 10 those
equations are necessary for equational simplification to produce EB-compatible automata and
completion to terminate. With the above EB, completion of Example 10 terminates. Below,
Theorem 23 shows that, if B is RDFC then completion with A2E(B) always terminates.
Unsurprisingly, if B is deterministic then equivalence classes of EB coincide with languages
recognized by states of B. This is the purpose of the next two lemmas.

I Lemma 19. Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B).
For all s ∈ T (F), there exists a unique state q ∈ Q such that s →∗B q and for all state
representatives u ∈ JqKB, s =EB u.

Now we can relate equivalence classes of EB and languages recognized by states of B.

I Lemma 20 (Equivalence classes of EB coincide with languages recognized by states of B). Let
B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B). For all s, t ∈ T (F),
s =EB t ⇐⇒ (∃q : {s, t} ⊆ L(B, q)).

I Corollary 21 (T (F)/=EB
is finite). Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton.

If EB is the set of equations inferred from B then T (F)/=EB
is finite.

5 Generalizing the termination theorem

Now, we prove that using EB built from an RDFC tree automaton B, completion terminates.

5.1 Proving termination of completion with EB

In the following, the automaton A∗ is the limit of the (possibly) infinite completion of an
initial Aε-reduced tree automaton A with R and EB. If the initial automaton is not Aε-reduced
then completion may diverge. For instance, completion of the automaton whose set of
transitions is {f(q0) → q1}, with R = {f(x) → f(f(x))} and E = {f(a) = a} diverges
(simplification never happens because q0 does not recognize any term). Now we show that
all state representatives are recognized by epsilon-free derivations in A∗.

I Lemma 22 (All states of A∗ recognize at least one state representative). Let R be a TRS,
A a Aε-reduced tree automaton, B an RDFC tree automaton and EB = A2E(B). Let A∗ be
the limit of the completion of A by R and EB. For all states q ∈ A∗, for all terms s ∈ T (F)
such that s →Cε ∗A∗ q, there exists a state q′B ∈ B, a term u ∈ Jq′BKB such that u =EB s and
u→Cε ∗A∗ q.

Now, we can state the termination theorem with EB.

I Theorem 23 (Completion with EB terminates). Let R be a TRS, A a Aε-reduced tree
automaton, B be an RDFC tree automaton and EB = A2E(B). Let n be the number of all
states representatives of B. The automaton A∗, limit of the completion of A with R and
EB, has n states or less.
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5.2 Building EB from any set of equations E

Now, we combine the transformations A2E and MN to produce a set of equations EB that
ensures termination of completion. Unsurprisingly, EB is equivalent to E.

I Lemma 24. Let E be a set of equations. If T (F)/=E
is finite and =E is decidable then

EB = A2E(MN(E)) and =E ≡ =EB .

I Theorem 25 (Generalized termination theorem for completion). Let E be a set of ground
equations such that T (F)/=E

is finite. For all Aε-reduced tree automata A and TRSs R,
completion of A with R and A2E(MN(E)) terminates.

Proof. As mentioned in Section 4.1, since E is ground =E is decidable. By Theorem 12,
we know that B = MN(E) exists and is RDFC. Let EB be the set of equations A2E(B).
Using Theorem 23, we know that completion of A with R and EB is terminating. J

The above theorem shows how to tune a set of equations E into EB to guarantee termination
of completion. Note that tuning E into EB does not jeopardize the precision of the completion
since Lemma 24 guarantees that =E ≡ =EB . Combining this lemma with Theorem 8 (the
Upper Bound Theorem) yields that completion of R with EB is upper-bounded by R∗E .

6 Improving the Precision of Equational completion

Looking at our overall goal, we are half way there. If L is regular and L ⊇ R∗(L(A)) (or
L = R∗(L(A))) then it can be recognized by an automaton B. Using the results of the
last section, we can build a set of equations EB guaranteeing termination of completion.
What remains to be proved is that completion with EB ends on a tree automaton under-
approximating L (or recognizing exactly L = R∗(L(A))). As it is, Theorem 8 (the Upper
Bound Theorem) fails to tackle this goal because it needs R/E-coherence of A. However, if
A is not R/E-coherent the full precision, granted by this theorem, may not be obtained.

I Example 26. Starting from Example 10, together with the set of equations EB of Exam-
ple 18, the initial tree automaton is not R/EB-coherent (nor R/E-coherent): a→Cε ∗A q1 and
c →Cε ∗A q1 though a6=EBc. As a consequence, if we complete A with R and EB, we obtain
an automaton that roughly approximates R∗(L(A)). This can be done using the Timbuk
tool [12]:

States q0 q1 Final States q0 Transitions c->q1 a->q1 c->q0 f(q0)->q0 f(q1)->q0 a->q0

This automaton recognizes the term c that is not reachable by rewriting the initial language
L(A) = {f(a), f(c)} with R (nor by rewriting with R/EB). We propose to transform A so
that it becomes R/E-coherent: we build the product between A and MN(E). We recall the
definition of a product automaton and we show that the product is R/E-coherent.

I Definition 27 (Product automaton [6]). Let A = (F , Q,QF ,∆A) and B = (F , P, PF ,∆B)
be automata. The product of A and B is A × B = (F , Q × P,QF × PF ,∆) where ∆ =
{f((q1, p1), . . . , (qk, pk))→ (q′, p′) | f(q1, . . . , qk)→ q′ ∈ ∆A and f(p1, . . . , pk)→ p′ ∈ ∆B}.

I Theorem 28 (Generalized Upper Bound). Let R be a left-linear TRS, A an epsilon-free
automaton, and E a set of ground equations such that T (F)/=E

is finite. If B = MN(E)
and A = A × B then for any i ∈ N: L(AiR,E) ⊆ R∗E(L(A)).
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R∗(L(A))

L(A∗R,E)
R∗E(L(A))

L(B)L(A)

T (F)

Figure 4 The Generalized Upper Bound theorem (precision of completion)

Proof. Since L(A) = L(A×B) = L(A)∩L(B) and L(B) = T (F), we get that L(A) = L(A).
Since both A and B are epsilon-free, so is B. Thus, to prove R/E-coherence of A, we only
have to prove that for all states q of A and for all two terms s, t ∈ T (F) such that (1) s→Cε ∗A q

and (2) t→Cε ∗A q then s =E t. Since A is a product automaton, q is a pair of the form (q1, q2)
where q1 ∈ A and q2 ∈ B. From (1) and (2) we can deduce that s →Cε ∗B q2 and t →Cε ∗B q2.
Then, using Lemma 12, we get s =E t. Thus A is R/E-coherent and from Theorem 8, we
get that L(AiR,E) ⊆ R∗E(L(A)) and L(A) = L(A) ends the proof. J

I Example 29. Starting from Example 26, we can build the product between A and the
automaton B found in Example 13. In A× B, a and c are recognized by two different states,
avoiding the R/E-coherence problem of Example 26. The Aε-reduced product A = A × B
(where product states are renamed) is the automaton with Qf = {q2} and ∆ = {c→ q0, a→
q1, f(q0) → q2, f(q1) → q2}. Running Timbuk on A, R, and EB, we obtain A∗R,E whose
precision is now bounded by R∗EB

(L(A)) and does not recognize c in a final state:

States q0 q1 q2 Final States q0 Transitions a->q1 f(q0)->q0 f(q1)->q0 f(q2)->q0
a->q0 c->q2

This provides hints to define equations for completion: we can start from an automaton B
defining a rough approximation of the target language and build E = A2E(B). Then, we
complete A = A × B with R and E and obtain a tree automaton A∗R,E whose precision is
better or equal to B. The set R∗E(L(A)) acts as a safeguard for completion (see Figure 4). In
particular, terms of R∗E(L(A)) may not belong to L(A∗R,E). This is the case in Example 29,
where the term b belongs to R∗EB

(L(A)) but not to L(A∗R,E). In practice, we still need to
know if E always exists (Section 7) and to generate a satisfactory E (Section 8).

7 Completeness Theorems

In this section, we prove two completeness theorems on completion. The first theorem states
that if the set of reachable terms can be over-approximated by a regular language L , then we
can find a language containing reachable terms and under-approximating L using equational
completion. The second theorem states that if the set of reachable terms is regular then
completion can build it. Since the upper-bound of completion depends on R∗E , we first need
a lemma showing that if E is built from L then R∗E is upper-bounded by L .

I Lemma 30. Let R be a TRS over F , S ⊆ T (F), and B an RDFC automaton such that
L(B) ⊇ R∗(S) and L(B) is R-closed. If EB = A2E(B) then R∗EB

(S) ⊆ L(B).

Example 31 shows that the R-closed assumption on L is necessary for the lemma to hold.
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I Example 31. Let F = {a : 0, b : 0, c : 0, d : 0}, S = {a}, R = {a → b, c → d}, and
L = {a, b, c} where L ⊇ R∗(S) but L is not R-closed. A possible RDFC automaton B,
s.t. L(B) = L , has a unique final state q and transitions {a → q, b → q, c → q}. Thus
EB = A2E(B) includes the equation b = c. Finally R∗EB

(S) = {a, b, c, d} 6⊆ L .

I Theorem 32 (Completeness). Let A be a reduced epsilon-free tree automaton and R a
left-linear TRS. Let T (F) ⊇ L ⊇ R∗(L(A)). If L is regular and R-closed then there exists
a set of ground equations E such that A = A ×MN(E), A∗R,E exists and R∗(L(A)) ⊆
L(A∗R,E) ⊆ L .

Proof. Since L is regular, we know that there exists an RDFC tree automaton, say B,
recognizing L . From B we can infer EB = A2E(B) and then use completion to compute
reachable terms. From Theorem 23, we know that completion of the automaton A with
R and the set of equations EB always terminates on a tree automaton A∗R,EB

. From
Theorem 8, we know that L(A∗R,EB

) ⊆ R∗EB
(L(A)) provided that A is R/EB-coherent. To

enforce R/EB-coherence of A, we apply the transformation presented in Section 6. Let A =
A ×MN(EB). Note that since EB is obtained by using the A2E transformation, T (F)/=E

is finite (Corollary 21) and since equations of EB are ground, =EB is decidable. The resulting
automaton A is R/EB-coherent. Besides, Theorem 23 also applies to A. Thus, completion
of A with R and EB always ends on an automaton A∗R,EB

. The automaton A∗R,EB
satisfies

R∗(L(A)) ⊆ L(A∗R,EB
) (by Theorem 5) and L(A∗R,EB

) ⊆ R∗EB
(L(A)) (by Theorem 28).

Since L(A) = L(A), we have R∗(L(A)) ⊆ L(A∗R,EB
) and L(A∗R,EB

) ⊆ R∗EB
(L(A)). With

Lemma 30, we get that R∗EB
(L(A)) ⊆ L(B) = L . J

In general we do not have L(A∗R,E) ⊇ L because L(A∗R,E) can be more precise than L (See
Example 29). However, this is true when L = R∗(L(A)), as we show in the next theorem.

I Theorem 33 (Completeness for regularity preserving TRSs). Let A be a reduced epsilon-free
tree automaton and R a left-linear TRS. If R∗(L(A)) is regular then it is possible to compute
a tree automaton recognizing R∗(L(A)) by equational tree automata completion.

Proof. Let L = R∗(L(A)). It is R-closed. By assumption, it is also regular. Thus, we can
apply Theorem 32 to get that there exists a set of equations E and a tree automaton A =
A ×MN(E) such that A∗R,E exists and R∗(L(A)) ⊆ L(A∗R,E) ⊆ L . Since L = R∗(L(A)),
we get L(A∗R,E) = R∗(L(A)). J

Thus, completion is complete w.r.t. all left-linear TRS classes preserving regularity.

8 Application of the Completeness Theorem

Let us show how to take advantage of Theorem 32 to automatically verify safety properties
on programs. Given an initial regular language S and a program represented by a TRS R,
we can prove that the program never reaches terms in a set Bad by checking that there exists
a regular over-approximation L ⊇ R∗(S) such that L ∩Bad = ∅. This technique has been
used to verify cryptographic protocols [1], Java programs [4] and Functional Programs [10, 14].
Theorem 32 ensures that, if there exists an R-closed regular approximation L such that
L ∩ Bad = ∅, then we can build it (or under-approximate it) using completion and an
appropriate set of ground equations E. To explore all the possible E, it is enough to explore
GF (k) with k ∈ N∗.

I Definition 34 (Generated Equations for F and k ∈ N∗). Let B(k) be the set of all possible
RDFC tree automata on F with exactly k states. The set of generated equations of size k is
GF (k) = {E | B ∈ B(k) and E = A2E(B)}.
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The semi-algorithm to prove that R∗(L(A)) ∩ Bad = ∅ works as follows: (a) We start
from k = 1, (b) we generate GF (k), (c) we try completion with A, R and all E ∈ GF (k)
(completion terminates with all those E, Theorem 23). If L(A∗R,E) ∩ Bad = ∅ for one
E, we are done. Otherwise if L(A∗R,E) ∩ Bad 6= ∅ for all E ∈ GF (k), we increase k and
go back to step (b). If there exists a regular over-approximation L ⊇ R∗(S) such that
L ∩Bad = ∅, then this algorithm eventually reaches a tree automaton B such that L(B) = L ,
E = A2E(B), and by Theorem 32, we know that L(A∗R,E) ⊆ L . Finally, since L ∩Bad = ∅,
we have L(A∗R,E) ∩Bad = ∅.

For general TRSs, we can enumerate all equation sets of GF (k) but the search space is
huge. When the TRS R encodes a functional program, we can restrict the search space to
equation sets of the form E = ER ∪ Er ∪ EC [10], where ER and Er are fixed and EC only
ranges over Irr(R). If program’s functions are complete and terminating, Irr(R) is the set
of constructor terms, i.e., terms containing no function call. The set F can be separated into
a set of defined symbols D = {f | ∃l → r ∈ R s.t. Root(l) = f} and constructor symbols
C = F \D.

I Definition 35 (Er). For an alphabet F , Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈
F , and arity of f is n}, where x1 . . . xn are pairwise distinct variables.

I Definition 36 (ER). Let R be a TRS, the set of R-equations is ER = {l = r | l→ r ∈ R}.

I Definition 37 (EC contracting equations for T (C)). A set of equations is contracting for
T (C), denoted by EC , if all equations of EC are of the form u = u|p with u ∈ T (C), p 6= λ,
−→
EC = {u→ u|p | u = u|p ∈ EC}, and Irr(−→EC) (terms of T (C) irreducible by −→EC) is finite.

Completion is terminating if E = ER ∪ Er ∪ EC and R encodes a functional program which
is terminating, complete, and is either first order [10] or higher-order [14]. Now, our objective
is to define a completeness theorem for TRSs encoding those programs. Since E contains
ER, all completed automata A∗R,E will be R-closed because s→∗A∗

R,E
q, s→R t, t→∗A∗

R,E
q′

implies that s =ER t and q = q′ (A∗R,E is simplified w.r.t. E ⊇ ER). Thus, the completeness
theorem says that if there exists an R-closed automaton B s.t. L(B) ⊇ R∗(L(A)) then there
exists EC such that E = ER ∪ Er ∪ EC and L(A∗R,E) ⊆ L(B). To prove such a theorem, we
need to explain how to construct a satisfying EC from B. We propose to project B on C
(denoted by B/C), produce equations from B/C with A2E, and finally filter out all equations
that are not of the form u = u|p (this is function ct).

I Definition 38 (Automaton projection on C). Let B = 〈F ,Q,Qf ,∆〉 be an epsilon free
tree automaton. The automaton B/C is the tree automaton 〈C,QC ,Qf ∩ QC ,∆C〉 where
∆C = {s → q | s → q ∈ ∆ ∧ Root(s) ∈ C} and QC is the set of states occurring in the
right-hand side of transitions of ∆C .

Note that L(B/C) = L(B) ∩ T (C) and if B is RDFC so is B/C. In particular, if B is
complete for F , B/C is complete for C.

I Definition 39. Given a set of equations E, ct(E) = {l = r ∈ E | r = l|p and p 6= λ}.

In the following, we show that E = ct(A2E(B)) is a contracting set of equations, provided
that B is RDFC. In particular, we show that Irr(−→E ) is finite.

I Lemma 40. If B is an RDFC automaton on C and E = ct(A2E(B)), then Irr(−→E ) is
finite and E is contracting for T (C).

FSCD 2018
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The above lemma states that ct(A2E(B)) is contracting for T (C). To have a finite set of
equivalence classes on T (F) (and a terminating completion) we use E = ER ∪Er ∪EC where
EC = ct(A2E(B/C)). Now we prove that, w.r.t. approximations, E is as precise as EB.

I Lemma 41. For a TRS R and an automaton B on F , if B is RDFC and R-closed and
EB = A2E(B), EC = ct(A2E(B/C)), and E = ER ∪ Er ∪ EC then =E ⊆ =EB .

I Theorem 42 (ER ∪ Er ∪ EC covers all R-closed approximation automata). Let R be
a left-linear TRS and A a reduced and epsilon-free tree automaton on F . Let B be an
R-closed RDFC tree automaton such that L(B) ⊇ R∗(L(A)). Let EC = ct(A2E(B/C)),
E = EC∪ER∪Er, and A = A×MN(E). If A∗R,E exists then R∗(L(A)) ⊆ L(A∗R,E) ⊆ L(B).

Proof. The fact that R∗(L(A)) ⊆ L(A∗R,E) is ensured by Theorem 5. Using the Generalized
Upper Bound theorem (Theorem 28), we deduce that (1) L(A∗R,E) ⊆ R∗E(L(A)). From
Lemma 41, we know that =E ⊆ =EB and thus that (2) R∗E(L(A)) ⊆ R∗EB

(L(A)). Besides,
since B is R-closed, L(B) is R-closed and we can use Lemma 30 to get that (3) R∗EB

(L(A)) ⊆
L(B). Finally, using transitivity of ⊆ on (1), (2) and (3) we get L(A∗R,E) ⊆ L(B). J

Note that, for functional programs classes of [10] and [14], since EC = ct(A2E(B/C)) is
contracting (Lemma 40), A∗R,E always exists. Thus, if there exists an R-closed tree automaton
B such that L(B) ⊇ R∗(L(A)) and L(B) ∩Bad = ∅, it is enough to enumerate all possible
E = ER ∪ Er ∪ EC to find it. Since ER and Er are fixed, it is enough to enumerate all
possible EC on C using Definition 37 and the algorithm of Definition 34 (generating on C).

I Example 43. Let C = {0 : 0, s : 1}. For k = 1, there is only one RDFC automaton with
1 state. Its transitions are {s(q0) → q0, 0 → q0}. Thus, GC(1) = {{s(0) = 0}}. For k = 2
there are 2 RDFC automata : one with transitions {0 → q0, s(q0) → q1, s(q1) → q1} and
the other with transitions {0 → q0, s(q0) → q1, s(q1) → q0}. Thus, GC(2) = {{s(s(0)) =
s(0)}, {s(s(0)) = 0, s(s(s(0))) = s(0)}}.

We implemented this in Timbuk and used it to verify more than 20 safety properties of several
first-order and higher-order functions on lists, ordered lists, trees and ordered trees. Higher-
order properties include state-of-the-art examples from [21, 19, 14]. In [14], contracting
equations of EC contain variables and are generated from test sets. Here, we generate ground
contracting equations EC as shown above and use E = ER ∪ Er ∪ EC for completion. We
transform the initial automaton A into A as in Theorem 28. The approximation is, thus,
upper-bounded by R∗E and we can benefit from the coverage guarantee of Theorem 42. On
examples taken from [21, 19], we managed to do the same proofs with comparable execution
times. On all the examples of [14], we do the same proofs (or find the counter-examples,
see [14]), but in a much faster way. Appendix A presents a summary of those experiments and
full details are here: http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/.
For each example, we provide the specifications, Timbuk output, and the full result with
completed automaton and generated equations in a Coq checkable file comp.res.

9 Conclusion and perspectives

Tree automata completion is known to cover many TRS classes preserving regularity [8, 10].
For some other classes, the question was still open. We established that, for all those classes
(including those not known yet), given A and R, there exists a set of equations E such that
A∗R,E recognizes R∗(L(A)). We proved a similar theorem for the approximated case. The
proofs are not constructive but give hints to enumerate sets of equations E. Finally, we
showed that if a regular approximation satisfying a given property exists, we can find it by

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
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enumerating the sets E and running completion. From an algorithmic point of view and in
the general case (where T (F)/=E is finite), since we enumerate tree automata B on T (F)
to generate sets of equations E, we could directly take advantage of B to perform automata
simplification and thus replace equations.

However, equations are strictly more powerful than tree automata to define approximations.
This can be observed on functional programs (Section 8) where T (C)/=EC is finite (and EC is
generated using a tree automaton) but T (F)/=E is not [14] and E cannot be defined with an
automaton. On functional programs, Theorem 42 shows that enumeration can be restricted to
sets of ground contracting equations on constructor symbols. This makes enumeration efficient
enough to automatically verify properties on first-order and higher programs. Experiments
shows that this approach tackles state-of-the-art automatic verification problems for first-order
and higher-order programs. The completeness Theorem for functional programs ranges over
R-closed RDFC approximation automata. However, there exist R-closed approximations
that are not recognized by R-closed RDFC tree automata.

I Example 44. Let F = {f : 1, a : 0, b : 0}, R = {a → b} and L = {f(b), a, b}. The
language L is R-closed and regular. There exists no R-closed RDFC tree automaton
recognizing L . In any R-closed RDFC tree automaton, a and b need to be recognized by
the same state, say q, and thus f(b) needs to be recognized using a transition f(q) → qf
where qf is final. Thus, this automaton recognizes f(a) which does not belong to L .

Such approximations are thus out of the scope of Theorem 42, and cannot be found by
enumerating EC , because E contains ER and the completed automata are R-closed. However,
the above approximation is in the scope of Theorem 32. We think that it is possible to
explore the set of all possible equation sets using E = Er ∪ EF where EF is contracting on
T (F) and to prune the search space using Counter Example Guided Abstraction Refinement
like [19]. This would permit to have an efficient equation generation for general TRSs and
widen its applicability to non-terminating functional programs, cryptographic protocols, etc.

A last perspective is to extend those results to non-left-linear TRSs. Dealing with regular
languages and non-left-linear rules is known to be more challenging than the left-linear
case [24, 3, 7]. Nevertheless, there could be a nice surprise here. For non-left-linear TRSs,
completion is known to be sound and precise as long as the completed tree automaton is
kept deterministic [8]. Completion itself does not preserve determinism but, in Section 8, all
the completed automata of the experiments are deterministic. This is a consequence of the
fact that E contains Er (makes the automaton Aε-deterministic) and ER (merges all states
related by an ε-transition). Thus, when using E = ER ∪ Er ∪ EC , completion may build
precise over-approximations for non-left-linear TRSs as it does for left-linear ones.
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A Experiments

Timbuk Spec. Description P/C Comp.
Time

Eq. Gen.
Time

delete not (member A (delete A
A_and_B_list))

P 0.01s 0.01s

delete2 (member B (delete A
A_and_B_list))

P 0.01s 0.01s

deleteBasic (delete A A_and_B_list) removes
all occurrences of A

P 0.01s 0.01s

reverseFirstOrder reverse [A,...A,B,...,B] does not pro-
duce lists with a A before a B

P 0.01s 0.03s

reverseFirstOrder2 invsorted (reverse [A,...A,B,...,B]) P 0.02s 0.13s
incTree not (member 0 (increment

nat_tree))
P 0.08s 1.05s

replaceTree not (member A (replace A C
A_and_B_tree))

P 0.44s 6.13s

orderedTree ordered ordered_A_and_B_tree P 0.16s 6.73s
insertTree ordered (insert A_and_B_list emp-

tyTree)
- - Timeout

orderedTreeTraversal sorted (infix-traversal or-
dered_A_and_B_tree)

P 0.13s 1.71s

orderTreeTraversalBug sorted (prefix-traversal or-
dered_A_and_B_tree)

C 0.2s -

mapPlus no 0 in (map (plus 1) nat_list) P 0.02s 0.08s
filterEven not (exists even (filter odd

nat_list))
P 0.12s 1.16s

filterEvenBug not (exists odd (filter odd nat_list)) C 0.09s -
insertionSort (sorted leq (sort leq

A_and_B_list))
P 0.04s 0.11s

insertionSortBug (sorted geq (sort leq
A_and_B_list))

C 0.59s -

filterNz (forAll nz (filter nz nat_list)) P 0.01s 0.11s
mapTree no 0 in (map (plus 1) nat_tree) P 0.03s 16.15s
mapTree2 not (member 0 (map (plus 1)

nat_tree)
- - Timeout

reverse (sorted geq (reverse or-
dered_A_B_list))

P 0.04s 0.47s

mapSquare (filter (eq 2) (map square nat_list))
is empty

P 0.31s 4.25s

foldRightMult (foldRight mult nonzero_nat_list 1)
is not 0

P 0.01s 0.01s

foldRightMult2 (foldRight mult nonzero_nat_list 3)
is not 2

P 0.05s 0.29s

foldLeftPlus even (foldLeft plus 0 even_nat_list) P 0.01s 0.21s

The above table gives a summary of the experiments carried out with Timbuk. The source
of the programs, trace of execution, Coq certificates, etc. can be found here: http://
people.irisa.fr/Thomas.Genet/timbuk/funExperiments/. The ’Timbuk Spec.’ column
gives the name of the Timbuk specification file that was used (it is also available in Timbuk’s
distribution). The first 11 examples are first order programs and the 13 remaining are
higher-order programs. The ’Description’ column gives a short description of the property
we want to prove. In the corresponding Timbuk specification this is the initial language
and encoded by either a tree automaton or a simplified regular expression [13]. The ’P/C’
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column says if Timbuk has done a (P)roof of the property or found a (C)ounter example.
’Comp. Time’ stands for completion time and ’Eq. Gen. Time’ for equation generation time.
On some examples, the equation generation algorithm times out and completion cannot be
performed.

B Additional proofs

This section contains some the proofs of [11].

I Lemma (16). For all RF tree automata B, for all states q ∈ B there exists a natural
number k ∈ N for which the set JqKkB is a fixpoint.

Proof. We make a proof by contradiction. Assume that one set of state representatives
JqKB is infinite. Let Q be the set of states of B and t ∈ JqKB be a term s.t. |t| > Card(Q).
Assume that we label each subterm of t by the state recognizing it in B. Since height of t is
greater than Card(Q), by the pigeonhole principle we know that there exists q′ ∈ B and a
path in the tree t such that q′ appears at least two times. Let p, r ∈Pos(t) be the positions
of the two subterms recognized by q′. By definition of state representatives, we know that
t|p ∈ Jq′KB and t|r ∈ Jq′KB. Since p and r are on the same path, we know that t|p is a strict
subterm of t|r (or the opposite). This contradicts Definition 14 that forbids a term and a
strict subterm to belong to the same set of representatives. J

I Lemma (19). Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B).
For all s ∈ T (F), there exists a unique state q ∈ Q such that s →∗B q and for all state
representatives u ∈ JqKB, s =EB u.

Proof. We make a proof by induction on the height of s. If s is a constant, since B is
complete and deterministic there exists a unique transition s→ q ∈ ∆. By construction of
EB, we know that there are equations with s on the left-hand side and all state representatives
of JqKB on the right-hand side. For all equations s = u with u ∈ JqKB we thus trivially have
s =EB u. This concludes the base case.

Now, we assume that the property is true for terms of height lesser or equal to n. Let
s = f(t1, . . . , tn) where t1, . . . , tn are terms of height lesser or equal to n. Since B is complete,
we know that there exists a state q such that f(t1, . . . , tn) →∗B q, i.e., there exists states
q1, . . . , qn such that f(q1, . . . , qn)→ q ∈ ∆ and ti →∗B qi for 1 ≤ i ≤ n. Using the induction
hypothesis we get that there exist states q′i in B and terms Jq′iKB such that ti →∗B qi and
ti =EB ui for ui ∈ Jq′iKB and for 1 ≤ i ≤ n. Since B is deterministic, from ti →∗B qi and
ti →∗B q′i we get that qi = q′i and thus ti =EB ui for ui ∈ JqiKB, with 1 ≤ i ≤ n. Besides,
since f(q1, . . . , qn)→ q ∈ ∆, we know that EB contains the equations f(u1, . . . , un) = u for
all ui ∈ JqiKB, for all 1 ≤ i ≤ n and for all u ∈ JqKB. Thus q is the unique state such that
f(t1, . . . , tn) →∗B q. Furthermore, f(t1, . . . , tn) =EB f(u1, . . . , un) =EB u for all ui ∈ JqiKB,
for all 1 ≤ i ≤ n and for all u ∈ JqKB. J

I Lemma (20). Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B).
For all s, t ∈ T (F), s =EB t ⇐⇒ (∃q : {s, t} ⊆ L(B, q)).

Proof. For s and t, using Lemma 19, we know that there exist unique states q, q′ ∈ Q
such that s →∗B q, t →∗B q′ and for all state representatives u ∈ JqKB and v ∈ Jq′KB, we
have s =EB u and t =EB v. We first prove the left to right implication. From s =EB t we
obtain that u =EB v, where u and v are state representatives. By construction of term
representatives, for all states q we know that JqKB only contains terms recognized by q in
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B. Since B is deterministic, if q 6= q′ then we can conclude that JqKB ∩ Jq′KB = ∅. Thus,
the only possibility to have u =EB v is to have an equation u = v in EB. This entails that
u and v belong to the same set of representatives: JqKB = Jq′KB, which entails that q = q′.
Then s→∗B q and t→∗B q entails that {s, t} ⊆ L(B, q). To prove the right to left implication,
it is enough to point out that because of the determinism of B having t→∗B q′ (the initial
assumption) and having t→∗B q (the fact that t ∈ L(B, q)) is possible only if q = q′. This
entails that u and v have a common set of representatives and thus for all representatives u
of this set s =EB u =EB t. J

I Lemma (21). Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton. If EB is the set of
equations inferred from B then T (F)/=EB

is finite.

Proof. Using Lemma 19, we know that for all terms t ∈ T (F) there exists a state q ∈ Q
and a state representative u ∈ JqKB such that t →∗B q and t =EB u. Since the number of
states of B is finite, and since the set of state representatives u is finite for all states of B
(Lemma 16), so is the number of equivalence classes of T (F)/=EB

. J

I Lemma (22). Let R be a TRS, A a Aε-reduced tree automaton, B an RDFC tree automaton
and EB = A2E(B). Let A∗ be the limit of the completion of A by R and EB. For all states
q ∈ A∗, for all terms s ∈ T (F) such that s →Cε ∗A∗ q, there exists a state q′B ∈ B, a term
u ∈ Jq′BKB such that u =EB s and u→Cε ∗A∗ q.

Proof. Note that if A is Aε-reduced, then so is A∗ (cf. Lemma 44 of [10]). This is easy to
figure out since all states added during completion recognize at least one term with→Cε ∗A , and
this is trivially preserved by simplification. By induction on the height of s we show that the
representative u exists and is recognized by q. If s is of height 1 (it is a constant) then, by
construction of state representatives, we know that s is a representative. Thus s = u→Cε ∗A∗ q.

For the inductive case, assume that the property is true for all terms of height lesser or
equal to n. Let s = f(s1, . . . , sn) be a term of height n+ 1. By assumption, we know that
f(s1, . . . , sn)→Cε ∗A∗ q. From f(s1, . . . , sn)→Cε ∗A∗ q, we obtain that there exists states q1, . . . , qn

of A∗ such that si →Cε ∗A∗ qi for i = 1, . . . , n and a transition f(q1, . . . , qn)→ q in A∗. Using
the induction hypothesis on qi, i = 1, . . . , n we get that there exist state representatives
ui such that si =EB ui and ui →Cε ∗A∗ qi for i = 1, . . . , n. Then, since f(q1, . . . , qn) → q

in A∗ we know that f(u1, . . . , un) →Cε ∗A∗ q. If f(u1, . . . , un) is a state representative we
are done since f(s1, . . . , sn) =EB f(u1, . . . , un) and f(u1, . . . , un) →Cε ∗A∗ q. Otherwise, by
definition of state representatives, for u = f(u1, . . . , un) not to belong to the representatives
there is a position p in u, different from the root position such that the subterm u|p is
itself a state representative and it belongs to the same class as u, i.e., u =EB u|p. Since
u1, . . . , un are state representatives and f(u1, . . . , un) is in the same equivalence class as u|p
which is a state representative, we know that the equation f(u1, . . . , un) = u|p necessarily
belongs to EB. Besides, for u →Cε ∗A∗ q to hold, we know that there exists a state q′ such
that u[u|p]p →Cε ∗A∗ u[q′]p →Cε ∗A∗ q. Thus, f(u1, . . . , un)→Cε ∗A∗ q and u|p →Cε ∗A∗ q′. Then, since EB
contains the equation f(u1, . . . , un) = u|p, and since A∗ is simplified w.r.t. EB, we necessarily
have q = q′ in A∗. Finally, we have f(s1, . . . , sn) =EB f(u1, . . . , un) =EB u|p and u|p →Cε ∗A∗ q

where u|p is a state representative. J

I Theorem (23). Let R be a TRS, A a Aε-reduced tree automaton, B be an RDFC tree
automaton and EB = A2E(B). Let n be the number of all states representatives of B. The
automaton A∗, limit of the completion of A with R and EB, has n states or less.
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Proof. Recall that the number n of state representatives is finite (cf. Lemma 16). Assume
that A∗ has m distinct states with m > n. From Lemma 22 we know that for all states
q ∈ A∗, there exists a state representative u such that u →Cε ∗A∗ q. Since there are only n
state representatives, by pigeon hole principle, we know that there is necessarily one state
representative u recognized by two distinct states q1 and q2 of A∗. Thus, u →Cε ∗A∗ q1 and
u→Cε ∗A∗ q2. Besides, by construction of EB, we know that the equation u = u is part of EB.
This contradicts the fact that A∗ is simplified w.r.t. EB. J

I Lemma (30). Let R be a TRS over F , S ⊆ T (F), and B an RDFC automaton such
that L(B) ⊇ R∗(S) and L(B) is R-closed. If EB = A2E(B) then R∗EB

(S) ⊆ L(B).

Proof. We prove that for all natural number k >= 0, if s ∈ S and s→k
R/EB

t then t ∈ L(B)
where →k

R/EB
denotes k steps of rewriting by R modulo EB. By induction on k. If k = 0

then s =EB t. Using Lemma 20 on s =EB t, we get that there exists a state q of B such
that s →∗B q and t →∗B q. Since s ∈ S and S ⊆ L(B) there exists a final state qf of B
such that s →∗B qf . Since B is deterministic we obtain that q = qf . Thus t is recognized
by B. For the inductive case, we assume that the property is true for a given k and we
show that it is true for k + 1. Let s →k+1

R/E t, i.e., we have terms s′, s′′, and t′ such that
s→k

R/E s′ =EB s
′′ →R t′ =EB t. Using the induction hypothesis, we get that s′ is recognized

by B. Since L(B) is R-closed, we know that t′ is also recognized by B. Thus, there exists
a final state qf such that t′ →∗B qf . Finally, as above, applying Lemma 20 on the fact that
t′ →∗B qf and t′ =EB t gives us that t→∗B qf . J
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Abstract
We introduce the fermionic ZW calculus, a string-diagrammatic language for fermionic quantum
computing (FQC). After defining a fermionic circuit model, we present the basic components
of the calculus, together with their interpretation, and show how the main physical gates of
interest in FQC can be represented in the language. We then list our axioms, and derive some
additional equations. We prove that the axioms provide a complete equational axiomatisation
of the monoidal category whose objects are quantum systems of finitely many local fermionic
modes, with operations that preserve or reverse the parity (number of particles mod 2) of states,
and the tensor product, corresponding to the composition of two systems, as monoidal product.
We achieve this through a procedure that rewrites any diagram in a normal form. We conclude
by showing, as an example, how the statistics of a fermionic Mach-Zehnder interferometer can
be calculated in the diagrammatic language.
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17:2 A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

Since its early versions, the ZX calculus has had the advantage of including familiar gates
from the circuit model of quantum computing [29, Chapter 4], such as the Hadamard gate
and the CNOT gate, either as basic components of the language, or as simple composite
diagrams. This facilitates the transition between formalisms and the application to known
algorithms and protocols, and is related to the presence of a simple, well-behaved “core”
of the ZX calculus, modelling the interaction of two strongly complementary observables
[5], in the guise of special commutative Frobenius algebras [9]. Access to complementary
observables is fundamental in quantum computing schemes such as the one-way quantum
computer, to which the ZX calculus was applied in [11].

The ZW calculus only includes one special commutative Frobenius algebra, corresponding
to the computational basis, as a basic component. On the other hand, as noted already in
[16], the ZW calculus has a fundamentally different “core”, which is obtained by removing a
single component that does not interact as naturally with the rest. This core has the property
of only representing maps that have a definite parity with respect to the computational basis:
the subspaces spanned by basis states with an even or odd number of 1s are either preserved,
or interchanged by a map. This happens to be compatible with an interpretation of the basis
states of a single qubit as the empty and occupied states of a local fermionic mode, the unit
of information of the fermionic quantum computing (FQC) model.

Fermionic quantum computing is computationally equivalent to qubit computing [3]. The
connection with the ZW calculus suggested that an independent fermionic version of the
calculus could be developed, combining the best of both worlds with respect to FQC rather
than qubit computing: the superior structural properties of the ZW calculus, including an
intuitive normalisation procedure for diagrams, together with the superior hands-on features
of the ZX calculus.

In this paper, we present such an axiomatisation, to which we refer as the fermionic ZW
calculus. We start by defining our model in Section 2: the monoidal category LFM of local
fermionic modes and maps that either preserve or reverse the parity of a state, with the
tensor product of Z2-graded Hilbert spaces as the monoidal product. We introduce a number
of physical gates from which one may build fermionic quantum circuits: the beam splitter,
the phase gates, the fermionic swap gate, and the empty and occupied state preparations.
Finally, we describe our diagrammatic language with its interpretation in LFM, and show
that all the physical gates have simple diagrammatic representations.

In Section 3, we list the axioms of the fermionic ZW calculus, and state several derived
equations, whose proofs are appended at the end of the paper. We introduce short-hand
notation for certain composite diagrams (sometimes called the “spider” notation in categorical
quantum mechanics [7, Section 8.2]), and prove inductive generalisations of the axioms. Then,
in Section 4, we prove our main theorem, that the fermionic ZW calculus is an axiomatisation
of LFM. We achieve this by defining a normal form for diagrams, from which one can easily
read the interpretation in LFM, and showing that any diagram can be rewritten in normal
form using the axioms.

Finally, in Section 5, as a first practical example, we calculate in the diagrammatic
language the statistics of a simple circuit, the fermionic Mach-Zehnder interferometer.

2 The model and the components

The basic systems in FQC are local fermionic modes (LFMs), physical sites that are either
empty or occupied by a single spinless fermionic particle [3]. We indicate the empty and
occupied states of a LFM as | 0 〉 and | 1 〉, respectively, in bra-ket notation.
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Much like the computational basis states of a qubit, we can see these as an orthonormal
basis for the two-dimensional complex Hilbert space B. We note that the “naive” translation
from LFMs to qubits does not preserve entanglement and locality properties [15, 10]; see
however [13].

States of a composite system of n LFMs correspond to states of the n-fold tensor product
B⊗n. However, not all physical states or operations on qubits are accessible as physical states
or operations on LFMs. The Hilbert space of a system of n LFMs splits as H0 ⊕H1, where
H0 is spanned by states where an even number of LFMs is occupied, and H1 by states where
an odd number of LFMs is occupied. Then, any physical operation f : H0 ⊕H1 → K0 ⊕K1
must either preserve, or invert the parity, that is, either map H0 to K0 and H1 to K1, or
map H0 to K1 and H1 to K0. This is called the parity superselection rule; see [2, 10] for a
discussion.

These operations assemble into a category, as follows.

I Definition 1. A Z2-graded Hilbert space is a complex Hilbert space H decomposed as a
direct sum H0⊕H1. A pure map f : H → K of Z2-graded Hilbert spaces is a bounded linear
map f : H → K such that f(H0) ⊆ K0 and f(H1) ⊆ K1 (even map), or f(H0) ⊆ K1 and
f(H1) ⊆ K0 (odd map).

Given two Z2-graded Hilbert spaces H, K, the tensor product H ⊗K can be decomposed
as (H ⊗K)0 := (H0⊗K0)⊕ (H1⊗K1), and (H ⊗K)1 := (H0⊗K1)⊕ (H1⊗K0). Then, the
tensor product (as maps of Hilbert spaces) of a pair of pure maps f : H → K, f ′ : H ′ → K ′

is a pure map f ⊗ f ′ : H ⊗H ′ → K⊗K ′ of Z2-graded Hilbert spaces. The Z2-graded Hilbert
space C⊕ 0 acts as a unit for the tensor product.

We write HilbZ2 for the symmetric monoidal category of Z2-graded Hilbert spaces and
pure maps, with the tensor product as monoidal product.

I Remark 2. The zero maps 0 : H → K are the only pure maps between two Z2-graded
Hilbert spaces H,K that are both even and odd.

I Definition 3. We write LFM for the full monoidal subcategory of HilbZ2 whose objects
are n-fold tensor products of B := C⊕ C, for all n ∈ N.

Here, B0 is the span of | 0 〉, and B1 is the span of | 1 〉. As customary, we write | b1 . . . bn 〉
for the basis state | b1 〉 ⊗ . . .⊗ | bn 〉 of B⊗n, where bi ∈ {0, 1}, for i = 1, . . . , n.

The category LFM admits, in fact, the structure of a dagger compact closed category in
the sense of [31]: each object B⊗n is self-dual, and the dagger of a pure map f : B⊗n → B⊗k

is its adjoint f† : B⊗k → B⊗n.
Operationally, we are interested in representing circuits built from the following logical

components, shown here in diagrammatic form (read from bottom to top), next to their
interpretation as maps in LFM.

1. The beam splitter with parameters r, t ∈ C, such that |r|2 + |t|2 = 1:

r, t

| 00 〉 7→ | 00 〉, | 10 〉 7→ r| 10 〉+ t| 01 〉,

| 01 〉 7→ −t| 10 〉+ r| 01 〉, | 11 〉 7→ | 11 〉.

2. The phase gate with parameter ϑ ∈ [0, 2π):

eiϑ | 0 〉 7→ | 0 〉, | 1 〉 7→ eiϑ| 1 〉.

3. The fermionic swap gate:
| 00 〉 7→ | 00 〉, | 10 〉 7→ | 01 〉,

| 01 〉 7→ | 10 〉, | 11 〉 7→ −| 11 〉.
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17:4 A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

4. Empty state and occupied state preparation:

1 7→ | 0 〉, 1 7→ | 1 〉.

All of these are isometries, which makes them, at least in principle, physically implement-
able gates; see for example [19] for the description of an electron beam splitter.

Apart from the fermionic swap gate, which exploits the antisymmetry of fermionic particles
under exchange, these operations are structurally the same as those used in implementations
of linear optical quantum computing (LOQC), such as the Knill-Laflamme-Milburn scheme
[25], which employ photons, that is, bosonic particles as resources. The two models seem
closely related; given the way that the fermionic swap ties the other components together in
our axiomatisation, and that the impossibility for two particles to occupy the same mode – a
constraint for the bosons in LOQC – is simply a consequence of Pauli exclusion for fermions,
it seems possible to us that the logical features of the optical model are a consequence of the
features of the fermionic model.

In addition to the logical components, we need the following structural components –
the dualities and the swap – which allow us to treat all our diagrams as components of a
circuit diagram, which can be connected together in an undirected fashion, permuting and
transposing their inputs and outputs:

1 7→ | 00 〉+ | 11 〉, | b1b2 〉 7→

{
1, b1 = b2,

0, b1 6= b2,
| b1b2 〉 7→ | b2b1 〉.

While the swap, dualities, fermionic swap, and phase gates will be basic components
of our diagrammatic calculus, we are going to further decompose beam splitters and state
preparations. The components so obtained may not correspond to physical operations by
themselves, but they have the property that the result of transposing or swapping any of
their inputs or outputs only depends on the final number of inputs and outputs. This allows
us to treat their diagrammatic representations as vertices of an undirected vertex-labelled
multigraph: only the overall arity matters. In addition to making calculations simpler, this
enables one to implement the calculus in graph rewriting software, such as Quantomatic [24].

The additional components, given here in “all-output form” together with their interpret-
ation in LFM, are the following.
1. The binary and ternary black vertex:

1 7→ | 10 〉+ | 01 〉, 1 7→ | 100 〉+| 010 〉+| 001 〉.

2. The binary white vertex with parameter z ∈ C:

z
1 7→ | 00 〉+ z| 11 〉.

I Remark 4. Up to a normalising factor, the interpretations of the binary and ternary vertex
are known as EPR state and W state, respectively, in qubit theory [12].
When we draw black and white vertices with a different partition of inputs and outputs, we
assume that a particular partial transposition has been fixed, for example to the left:

:=
,

:=
.

Now, a phase gate with parameter ϑ is simply a binary white vertex with parameter eiϑ.
The beam splitter with parameters r, t, and the state preparations can be decomposed as
follows:
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r, t

:= r r

t −t ,

:=
,

:=
.

We also introduce a simplified notation for a composite diagram that plays an important
role in our calculus, whose interpretation is the projector on the even subspace of two LFMs:

:=
1/2

1/2
| 00 〉 7→ | 00 〉, | 11 〉 7→ | 11 〉,

| 01 〉, | 10 〉 7→ 0.

As the notation suggests, this corresponds to the quaternary white vertex of the original ZW
calculus. Similarly to the black and white vertices already introduced, its interpretation is
symmetric under transposition and swapping of inputs and outputs, so we can freely draw
quaternary white vertices with a different partition of inputs and outputs.

I Remark 5. Our calculus does not include measurements, probabilistic mixing, or any kind of
classical control as internal operations. In future work, we hope to extend our axiomatisation
to a mixed quantum-classical calculus, in the style of [8] (see [7, Chapter 8] for a more recent
version), incorporating all these elements.

For now, we can calculate the probability of detecting particles at the output ends of a
circuit by closing the circuit with occupied and empty state diagrams; a closed circuit is
then interpreted as a map C→ C, that is, a scalar. This will be the probability amplitude of
detecting a particle where we have closed with an occupied state, and not detecting it where
we have closed with an empty state.

To reason rigorously about our diagrammatic calculus, we rely on the theory of PROs
(PROduct categories) [26], strict monoidal categories that have N as set of objects, and
monoidal product given, on objects, by the sum of natural numbers. Morphisms n→ m in a
PRO represent operations with n inputs and m outputs. Given a monoidal signature, that
is, a set of operations with arities T := {fi : ni → mi}i∈I , one can generate the free PRO
F [T ] on T , whose operations are free sequential and parallel compositions of the fi, modulo
the axioms of monoidal categories. By a classic result of Street and Joyal [20, Theorem 1.2],
this is equivalent to the PRO whose morphisms are obtained by horizontally juxtaposing
and vertically plugging string diagrams with the correct arity, one for each generator, then
quotienting by planar isotopy of diagrams. Thus, in the remainder, we will not distinguish
between the two, identifying diagrams and operations.

I Definition 6. Let T be the monoidal signature with operations swap : 2→ 2, dual : 0→ 2,
dual† : 2→ 0, fswap : 2→ 2, black2 : 0→ 2, black3 : 0→ 3, and whitez : 0→ 2, for all z ∈ C.
The language of the fermionic ZW calculus is the free PRO F [T ].

The correspondence with the diagrammatic components we listed earlier should be self-
explanatory, and their interpretation induces a monoidal functor f : F [T ]→ LFM.

Given a set E of equations between diagrams with the same arity in F [T ], we can quotient
F [T ] by the smallest equivalence relation including E and compatible with composition and
monoidal product, to obtain a PRO F [T/E], together with a quotient functor pE : F [T ]→
F [T/E].

I Definition 7. The interpretation f : F [T ] → LFM is universal if it is a full functor.
A set E of equations is sound for f : F [T ] → LFM if f factors as fE ◦ pE for a functor
fE : F [T/E]→ LFM. A sound set of equations is complete for LFM if fE is an equivalence
of monoidal categories.
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17:6 A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

In the next section, we introduce the axioms of the fermionic ZW calculus, in the form
of equations between diagrams of F [T ]; it can be checked that they are all sound for the
interpretation. We will later show that they are also complete. This means that whenever
two diagrams of the fermionic ZW calculus are “extensionally equal”, that is, they have
the same interpretation in LFM, one can be rewritten into the other by applying a finite
sequence of equations.

3 Axioms and derived equations

We divide the set E of axioms into four groups, based on the generators to which they mainly
pertain.

I Axioms 8. Structural axioms.

=
,

=
,

=
,

=
,

=
,

=
,

=
,

=
,

z

= z

,
=

.
Together, these axioms imply that the swap and dualities make F [T/E] a compact closed

category on a self-dual object. The Kelly-Laplaza coherence theorem [22, Theorem 8.2] then
allows us to extend our topological reasoning to the swapping and transposition of wires.

I Axioms 9. Axioms for the fermionic swap.
(a)=

,

(b)=
,

(c)=
,

(d)=
,

(e)=
,

(f)=
,

(g)=
,

(h)=
, z

(i)= z

.
These axioms say that the fermionic swap behaves like a symmetric braiding in F [T/E],

except for the fact that sliding the black vertices (that is, the only odd generators) through
a wire induces a fermionic “self-crossing” on it.

Moreover, the axioms on the interplay between the structural and fermionic swaps imply
that only the number of fermionic swaps between two wires matters, and not their direction;
which, as we will see, also implies that a sequence of two fermionic self-crossings on either
side of a wire can be straightened.

Altogether, the result of the other axioms is that any diagram containing an even number
of black vertices can slide past a wire through fermionic swaps with no other effect, while
any diagram containing an odd number of black vertices can do the same by introducing a
fermionic self-crossing on the wire. As with the structural axioms, we will make use of this
fact implicitly most of the time.

I Axioms 10. Axioms for black vertices.
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(a)=
,

(b)= (b′)= (c)=
,

(d)=
,

(e)=
,

(f)=
,

(g)=
,

(h)=
,

(i)=
,

(j)=
.

These axioms say that the black vertices are symmetric under permutation of wires (which
justifies, a posteriori, their arbitrary transposition), and that they can be assembled to form
a (co)commutative (co)monoid. This (co)monoid has the property of forming a bialgebra (in
fact, a Hopf algebra) with its own transpose.

In the interpretation, this is the Hopf algebra known as fermionic line in the theory
of quantum groups [27, Example 14.6], whose comultiplication is given by | 0 〉 7→ | 00 〉,
| 1 〉 7→ | 10 〉+ | 01 〉. As discussed in [17, Section 5.3], the fermionic line has “anyonic” and
“bosonic” analogues in every countable dimension, with the same self-duality property.

The final axiom says that 0 times 0 is 0; it will serve to ensure that there is a unique zero
map between any two systems, rather than an “even” and an “odd” zero map.

I Axioms 11. Axioms for white vertices.

z

(a)=
z

,

z z (b)=
z ,

(c)=
z ,

1
(d)=

,
0

(e)=
,

wz
(f)= z+w

,

w

z

(g)= zw

,

(h)=
,

(i)=
.

These axioms say that the binary white vertices are endomorphisms for the fermionic line
algebra, and that composition and convolution by the algebra correspond to product and
sum, respectively, of their complex parameters. Finally, the projector is symmetric under
cyclic permutation of its wires, and it determines a kind of mixed action/coaction of the
algebra on itself.

I Remark 12. Because LFM is a subcategory of the category Qubit of [18], all the axioms
of the fermionic ZW calculus are sound for the original ZW calculus. Moreover, adding either
the ternary or the unary white vertex from the original ZW calculus to our language would
make it universal for Qubit. We have not yet investigated, however, what axioms would
need to be added to E in the extended signature to make it complete.

We state some useful derived equations, leaving the proofs to the Appendix.

I Proposition 13. The following equations hold in F [T/E]:
(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

,

(f)
= −1

.
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17:8 A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

I Proposition 14. The following equations hold in F [T/E]:
(a)
= (a′)=

,

(b)
=

,

z (c)
= z (c′)=

z

(c′′)=
z

, 1/2

1/2
(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

.

Together with its invariance under cyclic permutation of wires, the first two equations
justify the arbitrary transposition of inputs and outputs of the quaternary white vertex.

Our axioms form a sound and complete set of equations for LFM, so in principle any
equation of diagrams whose interpretations are equal can be derived from them. In practice,
however, it is convenient to introduce further short-hand notation, including black vertices
with n wires and white vertices with 2n wires for all n ∈ N, and derive inductive equation
schemes to use directly in proofs.

1. Black vertices. The nullary and unary black vertices are defined as follows:

:=
,

:=
.

We already have binary and ternary black vertices. For n > 3, the n-ary black vertex is
defined inductively, together with its interpretation in LFM, by

n

:=
n−1

1 7→
n∑

k=1
| 0 . . . 0︸ ︷︷ ︸

k−1

1 0 . . . 0︸ ︷︷ ︸
n−k

〉.

Here, and in what follows, lighter wires and vertices indicate the repetition of a pattern
for a number of times, which may or may not be specified. This is similar to the the
way that “. . .” is often used, and can be formalised using !-boxes in pattern graphs, as
developed in [23].

2. White vertices. The nullary white vertex with parameter z ∈ C is defined by

z
:=

z
.

We already have binary white vertices with parameters. For n > 1, the 2n-ary white
vertex with parameter z ∈ C is defined inductively, together with its interpretation in
LFM, by

z

2n

:=
z

2n−2
1 7→ | 0 . . . 0︸ ︷︷ ︸

2n

〉+ z | 1 . . . 1︸ ︷︷ ︸
2n

〉 .

We state some basic properties of black and white vertices. Both are symmetric under
permutation of wires, which allows us to write vertices with different numbers of inputs and
outputs, transposing some of them with no ambiguity. Most importantly, they satisfy certain
“fusion” equations, as shown on the first two lines. All black vertices correspond to odd maps,
while white vertices correspond to even maps, as reflected in their sliding through fermionic
swaps, on the fourth line; finally, black vertices are unaffected by fermionic swaps of their
wires, whereas the sign of the white vertex parameter is flipped.

I Proposition 15. The following equations hold in F [T/E] for black and white vertices of
any arity:
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(a)
=

,

(b)
=

,

(c)
=

,

z

(a′)=
z

, z

w
(b′)=

zw
,

z

(c′)=
z

,

(d)
=

,

(e)
=

,

(d′)

z

= z

,
z

(e′)=
−z

.

Several other equations, both axioms and derived, admit inductive generalisations; we
list them in the following Proposition.

I Proposition 16. The following equations hold in F [T/E] for black and white vertices of
any compatibile arities:

(a)
=

, zz z

(b)
= z

,
z1 z2 zn

(c)
=

n∑
i=1

zi

,

z

n>1
(d)
=

,
z w

(e)
=

z w

.

I Remark 17. Some of these inductive schemes subsume several axioms at once: for example,
Proposition 16.(a) has Axioms 10.(g), 10.(h), and 10.(i) as special cases, and Proposition
16.(b) has Axioms 11.(b), 11.(c), and 11.(i) as special cases.

4 Normal form and completeness

We prove completeness in three stages:
1. First, we associate to any state v : C → B⊗n of LFM a diagram g(v) : 0 → n in F [T ]

such that f(g(v)) = v. Because both categories are compact closed, and the dualities
of LFM are in the image of f , this assignment can be extended to any map of LFM,
proving universality of our interpretation. We say that a diagram is in normal form if it
is of the form g(v) for some v.

2. Then, we show that any composite of diagrams in normal form can be rewritten in normal
form using the equations in E, proving that g determines a monoidal functor from LFM
to F [T/E].

3. Finally, we show that all the generators of F [T ] can be rewritten in normal form using
the equations in E, proving that g and fE : F [T/E]→ LFM are two sides of a monoidal
equivalence between F [T/E] and LFM.

I Theorem 18 (Universality). The functor f : F [T ]→ LFM is full.

Proof. Write an arbitrary state v : C → B⊗n in the form 1 7→
∑m

i=1 zi| bi1 . . . bin 〉, where
zi 6= 0 for all i, and no pair of n-tuples (bi1, . . . , bin) is equal; we can fix an ordering (for
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17:10 A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

example, lexicographic) on n-tuples of bits to make this unique. Then, define

z2z1 zm

m

n

g(v) := if v is odd, z2z1 zm

m

n

if v is even, (1)

where, for i = 1, . . . ,m and j = 1, . . . , n, the dotted wire connecting the i-th white vertex to
the j-th output is present if and only if bij = 1. The definition is only ambiguous if v = 0, in
which case we arbitrarily pick one of the two forms; they will be equal in F [T/E] by Axiom
10.(j).

Because for all summands of an odd (respectively, even) state v, we have bij = 1 for an
odd (respectively, even) number of bits, the white vertices in g(v) have an odd (respectively,
even) number of outputs. The two distinct forms of g(v) for odd and even states ensure that
only white vertices with an even arity appear.

It can then be checked that f(g(v)) = v, which, by our earlier remark, suffices to prove
the statement. J

I Definition 19. A string diagram of F [T ] is in normal form if it is g(v) for some state v of
LFM. It is in pre-normal form if it has one of the two forms in (1), where the following are
also allowed:

the white vertices can be in an arbitrary order;
two or more white vertices may be connected to the exact same outputs;
zi may be 0 for some i.

The completeness proof closely follows that of the qubit ZW calculus [17, Section 5.2].
The one proof that is significantly different is the following. We take the liberty of “zooming
in” on a certain portion of a diagram, which may require some reshuffling of vertices, using
swapping or transposition of wires, with the implicit understanding that this can always be
reversed later.

I Lemma 20 (Negation). The composition of one output of a diagram in pre-normal form
with a binary black vertex can be rewritten in pre-normal form, and that has the effect of
“complementing” the connections of the output to white vertices: that is, locally,

z2 z′2z1 zn z′1 z′m
=

z2 z′2z1 zn z′1 z′m

.

I Remark. In the picture, the dotted wires can stand for a multitude of wires. The version
where the original diagram is odd, rather than even, is obtained by composing again both
sides with a binary black vertex and using Axiom 10.(d).

Proof. Using the “fusion equations” Proposition 15.(b) and (b′), we rewrite the left-hand
side as

z2
z′2

z1 zn
z′1 z′m

=
16.(b)

z2
z′2

z1 zn
z′1 z′m

.
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By definition of the quaternary white vertex, this is equal to

z2
z′21/2

1/2

z1 zn
z′1 z′m

=
15.(d)

z2 z′2

1/2

1/2

z1 zn z′1 z′m

,

where we made implicit use of some symmetry properties of vertices. Now, fusing black
vertices, and using Proposition 15.(d) and (d′) to move the closed loop to the outside of the
main diagram, we see that this is equal to

z2 z′2

1/2

1/2
z1 zn z′1 z′m

,

and we can conclude by Proposition 13.(b) and 14.(d). J

In the following, and later statements, “plugging one output of a diagram into another”
means a post-composition with dual† : 2→ 0, possibly after some swapping of wires.

I Lemma 21 (Trace). The plugging of two outputs of a diagram in pre-normal form into
each other can be rewritten in pre-normal form.

Proof. Essentially the same as [17, Lemma 5.24]. J

The nullary black vertex is interpreted as the scalar 0; the following lemma shows that it
acts as an “absorbing element” for diagrams in pre-normal form.

I Lemma 22 (Absorption). For all diagrams in pre-normal form, the following equation
holds in F [T/E]:

z2z1 zm
or

z2z1 zm
=

.

(2)

Proof. If the diagram is even, expanding the nullary black vertex, we can treat it as an
additional output of the diagram, with no connections to the white vertices, composed with
a unary black vertex; then the proof is the same as [17, Lemma 5.25].

Suppose the diagram is odd. If it has at least one output wire, we can freely introduce
two binary black vertices on it; applying the negation lemma once, we obtain a negated even
diagram, to which the first part of the proof can be applied. Another application of the
negation lemma, followed by Axiom 10.(j), produces the desired equation. If the diagram
has no outputs, it necessarily consists of a single nullary black vertex, and the statement
follows immediately from Axiom 10.(j). J

I Lemma 23 (Functoriality of the normal form). Any composition of two diagrams in pre-
normal form can be rewritten in pre-normal form.
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Proof. We can factorise any composition of diagrams in pre-normal form as a tensor product
followed by a sequence of “self-pluggings”; thus, by the trace lemma, it suffices to prove that
a tensor product – diagrammatically, the juxtaposition of two diagrams in pre-normal form –
can be rewritten in pre-normal form.

Suppose first that the two diagrams are both even. We can create a pair of unary black
vertices connected by a wire by Axiom 10.(i), and treat them as additional outputs, one for
each diagram. In that case, the proof proceeds exactly as [17, Theorem 5.26].

Now, suppose one diagram is odd, or they both are odd. If the odd diagrams have at
least one output wire, we can introduce a pair of black vertices on it, and apply the negation
lemma to produce negated even diagrams. We can then apply the first part of the proof
to obtain a diagram in pre-normal form negated once or twice, then apply the negation
lemma again to conclude. If one of the odd diagrams has no outputs, it necessarily consists
of a single nullary black vertex, and we can conclude with an application of the absorption
lemma. J

I Lemma 24. Any diagram in pre-normal form can be rewritten in normal form.

Proof. If the diagram is odd, the proof of [17, Lemma 5.22] goes through. If the diagram
is even, and has at least one output wire, we can introduce a pair of binary black vertices,
apply the negation lemma once to produce a negated odd diagram, reduce that to normal
form, and apply the negation lemma again; it is easy to see that negation turns diagrams in
normal form into diagrams in normal form, modulo a reshuffling of white vertices.

If the diagram has no output wires, then it is of the form
z2z1 zm

=
16.(c)

∑m
i=1 zi

,
where the right-hand side is in normal form. This concludes the proof. J

I Theorem 25 (Completeness). The functor fE : F [T/E]→ LFM induced by the soundness
of E for the interpretation f : F [T ]→ LFM is a monoidal equivalence.

Proof. By the combination of the previous two lemmas, it suffices to show that all the
generators (with all wires transposed to output wires) can be rewritten in pre-normal form.
For the ternary and binary black vertices,

=10.(d),

11.(d)
11 1

,

=10.(d),

11.(d)
1 1

.
For the binary white vertex with parameter z ∈ C,

z =10.(d),

14.(e)
z 11.(d)= 1 z

.
By Axiom 11.(d), the rewriting of dualities in normal form follows as a special case of the
binary white vertex with parameter 1.

For the fermionic swap, we use the fact that we know how to rewrite the tensor product
of two dualities in normal form:

=
1 1 1 1

=
1 1 1 1

=
15.(e′),

16.(e) 1 1 −1 1

.
The case of the structural swap is similar, and easier. This concludes the proof. J
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I Remark 26. We can make this an equivalence of dagger compact closed categories, by
defining the dagger of a morphism in F [T/E], represented by a diagram in F [T ], to be the
vertical reflection of that diagram, with parameters z ∈ C of white vertices turned into their
complex conjugates z. For example,

w

z

7→
(−)†

w

z

.
I Remark 27. The only properties of complex numbers that are used in the proof are that
they form a commutative ring, and that they contain an element z such that z + z = 1
(namely, 1/2). Thus, we can replace C with any commutative ring R that has the latter
property (for example, Z2n+1, for each n ∈ N), and obtain a similar completeness result for
“LFMs with coefficients in R”.

Moreover, for any such ring, instead of introducing binary white vertices with arbitrary
parameters r ∈ R, we can introduce one binary white vertex for each element of a family
of generators of R, together with one axiom for each relation that they satisfy. Then, in
the normal form, instead of having a white vertex labelled r ∈ R at each end of the bottom
black vertex or vertices, we will need to have some expression of r by sums and products of
generators, encoded by composition and convolution by the fermionic line algebra.

The completeness proof still goes through: we work with diagrams in pre-normal form,
where terms in a sum of products of generators are decomposed into different legs of the
bottom vertex or vertices, until the very end; then Lemma 24 can be adapted to combine white
vertices with the same connections into a fixed expression of the sum of their parameters.

For example, in the complex case, it may be convenient to have separate phase gates,
that is, white vertices with parameter eiϑ, for ϑ ∈ [0, 2π), and “resistor” gates, with real
parameter r > 0.
I Remark 28. It is customary to describe the fermionic behaviour of a multi-particle system
in terms of a pair of operators a† (creation) and a (annihilation) that satisfy the anti-
commutation relation aa† = 1− a†a; see for example [32, Chapter 27]. In our language, these
operators can be defined as

,
a† :=

.
a :=

We can see the anti-commutation relation as subsumed by the axioms in the following way:
pulling back the linear structure of LFM to F [T/E] through the equivalence, we have

= −
,

(3)

from which we obtain

=10.(g) = (3)= −
,

which can be read as the equation aa† = 1− a†a.

5 An application: the Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a classic quantum optical setup (see for example [30,
Chapter 4]), which, despite its simplicity, can demonstrate interesting features of quantum
mechanics, as in the Elitzur-Vaidman bomb tester experiment [14]. The theoretical setup can
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be straightforwardly imported into FQC, with the same statistics as long as single-particle
experiments are concerned; an electronic analogue of the Mach-Zehnder interferometer has
also been realised in practice [19].

eiϑ

r′, t′

r, t

With the graphical notation introduced in Section 2, the ex-
perimental setup is represented by the diagram on the left,
where r, t, r′, t′ ∈ C and ϑ ∈ [0, 2π) are parameters subject to
|r|2 + |t|2 = |r′|2 + |t′|2 = 1. In practice, it would also include
“mirrors”, or beam splitters with |r| = 1, which we omit in the
picture, instead taking the liberty of bending wires at will.

As a first application of the fermionic ZW calculus, we show how this circuit diagram can
be simplified in just a few steps using our axioms, in such a way that its statistics become
immediately readable from the diagram.

In our language, the diagram becomes

r′ r′

t′ −t′

eiϑ

r r

t −t

=
10.(h)

11.(b),

r′
r′

t′
−t′

r

eiϑ

eiϑ

t r

−t 11.(g),

=
11.(c)

r′

t′

reiϑ

teiϑ
r

−t

,
which, sliding the leftmost empty state past the fermionic swap, and using Axiom 10.(f)
twice, becomes

r′ t′

reiϑ

teiϑ r

−t

11.(b)

=

reiϑ

r′
r′

teiϑ

t′

r

t′

−t 11.(g),

=
15.(b)

r′reiϑ

r′teiϑ

t′r

−t′t

.

Finally, using the fermionic swap symmetry of black vertices (Proposition 15.(e)), together
with Proposition 16.(c), this simplifies to

r′reiϑ − t′t

r′teiϑ + t′r

.

If we input one particle, after fusing the bottom black vertices, we obtain a diagram in
normal form, whose interpretation in LFM we can read off as 1 7→ (r′reiϑ − t′t) | 10 〉 +
(r′teiϑ + t′r) | 01 〉.

So, the probability of detecting the particle at the left-hand output is |r′reiϑ − t′t|2, and
the probability of detecting the particle at the right-hand output is |r′teiϑ + t′r|2. If the beam
splitters are symmetric, that is, r = r′ = 1√

2 , and t = t′ = i√
2 , the probability amplitudes
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become
1
2(eiϑ − 1) = ei(ϑ+π

2 ) sinϑ, i

2(eiϑ + 1) = ei(ϑ+π
2 ) cosϑ,

leading to probabilities sin2 ϑ of detecting the particle at the left-hand output, and cos2 ϑ of
detecting it at the right-hand output.

Arguably, given that this particular example involves at most binary gates, a matrix
calculation would not have been considerably harder. On the other hand, the result appears
here as the outcome of a short sequence of intuitive, algebraically motivated local steps, rather
than the unexplained product of a large matrix multiplication. We expect the advantage to
become clearer when implementations of rewrite strategies in graph rewriting software are
used to simplify larger circuits.

6 Conclusions and outlook

In this paper, we introduced a string-diagrammatic language for circuits of local fermionic
modes, together with equations that axiomatise their theory of extensional equality: that
is, two diagrams represent the same linear map of local fermionic modes if and only if they
are equal modulo the equations. We believe that these fermionic circuits are to the ZW
calculus what Clifford circuits [1] are to the ZX calculus: not the largest family of circuits
that can technically be represented, but the one whose basic gates have simple, natural
representations in terms of the language’s components.

There are still several open questions and directions on the “syntactic” side. We do not
know whether all our axioms are independent, nor we have looked at rewrite strategies, or
ways of orienting the equations, beyond the goal of proving completeness. There is, then, the
question of variants and extensions: we have mentioned a potential extension to mixed-state
processes, via a mixed quantum-classical calculus in the style of [7, Chapter 8]; moreover,
both universality and completeness are open problems for anyonic and bosonic generalisations
of the fermionic ZW calculus, in the style of [17, Section 5.3].

The greatest challenge, however, is finding “real-world” applications for the calculus.
With the Mach-Zehnder interferometer, we have only given a toy example, perhaps useful for
pedagogical purposes, but we have not even attempted to link our work to current research
on algorithms or complexity in FQC. The first version of a ZW calculus was introduced in
order to tackle open problems in the classification of multipartite entanglement [6]: as a first
step, the fermionic ZW calculus, with its strong topological flavour, involving braidings and
a single type of ternary vertices, may be a better testing ground for this approach.
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A Proofs of derived equations

Proposition 13. Equation (a) comes from the following manipulation:

= 9.(e)= = =
.

Equation (b) then follows from (a), combined with the equation

=
,

which is a consequence of the fermionic swap axioms by the Whitney trick [21, p. 484].
Equation (c) is proved by the following argument:

= = 9.(e)=
,

whereas (d) comes from

= 9.(g)= (b)=
,

finally using the symmetry of the black vertex under the structural swap.
Equation (e) is proved by the following argument:

=10.(f) =10.(g) =10.(h) =10.(i)

,
where we tacitly used Axiom 10.(d) to introduce or eliminate pairs of binary black vertices
in several occasions.

Finally, for equation (f), start by considering that

=10.(f) =11.(e)
0 =11.(f)

−1 1

;
by Axioms 10.(e) and 11.(d), this is equal to

−1 =(e)
−1 ==10.(f)

−1

.
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This completes the proof. J

Proof of Proposition 14. Substituting the definition of the projector, Axiom 11.(h) becomes
the following equation:

1/2

1/2

= 1/2 1/2

.

(4)

Equations (a) and (a′) are then immediate consequences of Proposition 13.(c) and its
transposes, applied to the right-hand side of (4).

Equation (b) is also immediate from the definition: because swaps slide through fermionic
swaps and vice versa, we can slide one “circle” past another to get

1/2

1/2
1/2

1/2

=

1/2

1/2
1/2

1/2

.
For equations (c), (c′), and (c′′), we use either of the forms in equation (4) and slide the
binary white vertex through a fermionic swap using Axiom 9.(i), to move it to a different
wire.

Equation (d) comes from

1/2 1/2 =10.(f)
1/2 1/2 =11.(f)

1 =11.(d)

,
finally applying Axiom 10.(i). Then, equation (e) follows from it by

1/2

1/2 =9.(c)
1/2

1/2 .
In order to prove equation (f), consider first that

1/2

1/2

=10.(i)

1/2

1/2

=(4)
1/2 1/2 = 1/2 1/2

,
(5)

and we can eliminate the circle by equation (d). Then,
1/2

1/2 = 1/2

1/2

(5)= 10.(h)=

.
Finally, for equation (g), observe that the projector contains an even number of black vertices,
hence it can slide past fermionic swaps with no other effect. Therefore,

= 10.(c)= =

.
This concludes the proof. J

Proof of Proposition 15. All the equations are proved by induction on the arity of the
vertices involved.
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For equation (a), let n be the number of outputs of the black vertex. For n = 0, 1 there
is nothing to prove, and for n = 2, 3 these are Axioms 10.(a), (b), and (b′). For n > 3, if the
two swapped wires are the rightmost ones, the equation follows immediately from the ternary
case; otherwise, use Axiom 10.(e) on the three rightmost wires, and apply the inductive
hypothesis.

For equation (a′), let 2n be the number of outputs of the white vertex. For n = 0 there
is nothing to prove, and n = 1 is Axiom 11.(a). For n > 1, observe that by Proposition
14.(c), (c′) and (c′′), we can always move the binary vertex with parameter z to a wire which
is not swapped. The case n = 2 then follows from the combination of Axiom 11.(h) with
Proposition 14.(a) and (a′). For n > 2, if the swapped wires are among the three rightmost
ones, the equation follows from the case n = 2; otherwise, use Proposition 14.(b) (with some
wires transposed) on the two rightmost quaternary white vertices, and apply the inductive
hypothesis.

Equations (a) and (a′) justify the unambiguous writing of n-ary vertices with inputs as
well as outputs in equations (b) and (b′), and the latter will follow from the all-output case.
In equation (b), let n,m > 0 be the arities of the leftmost and rightmost vertex, respectively.
If n = 1, the equation follows from Axiom 10.(f), and if n = 2 from Axiom 10.(d). Suppose
n > 2. Then, if m = 1, the equation follows from Axiom 10.(f), and if m = 2 from Axiom
10.(d). All other cases are just immediate from the definition. Equation (b′) also follows from
the definition, together with Proposition 14.(c), (c′) and (c′′) in order to move the vertex
with parameter w to the wire where the vertex with parameter z is, and Axiom 11.(g) to
multiply the two.

In equation (c), let n > 1 be the arity of the black vertex in the left-hand side. If n = 2, 3
the equation is true by definition. If n > 3, by equation (a), we can assume the two wires
plugged into each other are the two rightmost ones; the equation then follows from Axiom
10.(f). For equation (c′), let 2n > 1 be the arity of the white vertex in the left-hand side.
If n = 1, the equation is true by definition, and if n = 2 it follows from Proposition 14.(d),
together with Proposition 14.(c), (c′) and (c′′) to move the vertex with parameter z out of
the way. For n > 2, by equation (a′), we can assume the two wires plugged into each other
are the two rightmost ones, and the equation follows from the case n = 2.

Equation (d) is a consequence of Axioms 9.(g) and (h), together with Proposition 13.(b)
to eliminate pairs of self-crossings. Equation (d′) is a consequence of Axiom 9.(i) together
with the definition of the quaternary white vertex.

Equation (e) follows from equation (a) by Axiom 10.(c) and Proposition 13.(d). For
equation (e′), let 2n > 1 be the arity of the white vertex. The case n = 1 is a consequence of
Proposition 13.(f), and n = 2 follows from the following argument:

9.(f)= 13.(f)=
−1

9.(e)=
−1

,
applied to the definition of the quaternary white vertex, as in the right-hand side of (4). All
other cases follow from this one, by symmetry. J

Proof of Proposition 16. In equation (a), let n be the number of inputs, and m the number
of outputs of the diagrams. The case n = m = 0 is Axiom 10.(i), and when either n or
m = 1, the equation follows from Axiom 10.(d). The cases n = 0,m > 1 and m = 0, n > 1
are simple inductive generalisations of Axiom 10.(h). Finally, the case n = m = 2 is Axiom
10.(g), and from there we can proceed by double induction on n and m, using Proposition
15.(b).

In equation (b), let n be the number of inputs, and 2m − 1, for m > 0, the number of
outputs. Suppose first that m = 1. The case n = 0 is Axiom 11.(c), the case n = 1 follows
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from Axiom 10.(d), and the case n = 2 is Axiom 11.(b); then, for n > 2, it is a simple
induction starting for the latter. In the case n = 0 and m = 2,

z = z =11.(c) =11.(i)

;
by Proposition 15.(b′) and (c′), the latter is equal to

14.(f)= =10.(i)

.
The cases n = 0, m > 2 are simple inductive generalisations of this one. All cases with n = 1
follow from Axiom 10.(d), and the case n = m = 2 is Axiom 11.(i). For n,m > 2, proceed by
double induction, using Proposition 15.(b) and (b′).

For equation (c), by Proposition 15.(b) it suffices to prove

z1 z2 zn

=
n∑

i=1
zi

,
which for n = 0 is Axiom 11.(e), for n = 1 follows from Axiom 10.(d), for n = 2 is Axiom
10.(f), and for n > 2 is a simple inductive generalisation of the latter.

Similarly, for equation (d), it suffices, by Proposition 15.(b) and (b′), to prove

z

n>1

m

=
m

when m = 0, 1, 2. If m = 2, and n = 2, this is Proposition 14.(f), and for n > 2 we can
proceed by induction, as follows:

z

n =15.(b′),

15.(c′)
z

n−2 =i.h.
10.(f),

10.(i)
=

.
The case m = 0, for arbitrary n > 1, follows from this one, by

z

=15.(c′)

z
=

10.(i)
=

,
and similarly for the case m = 1, where necessarily n > 2, by

z

n =
z

n−1 =

.
Finally, equation (e) is an immediate generalisation of Proposition 14.(g), using Proposition
15.(b) and (b′). J
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B-terms are built from the B combinator alone defined by B ≡ λf.λg.λx.f (g x), which is well-
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1 Introduction

The ‘bluebird’ combinator B = λf.λg.λx.f (g x) is well-known [10] as a bracketing combinator
or composition operator, which has a principal type (α → β) → (γ → α) → γ → β. A
function B f g (also written as f ◦ g) takes a single argument x and returns the term f (g x).

In the general case that g takes n arguments, the composition of f and g, defined by
λx1. · · ·λxn.f (g x1 . . . xn), can be expressed as Bn f g where en is the n-fold composition
e ◦ · · · ◦ e︸ ︷︷ ︸

n

of the function e, or equivalently given by en x = e (. . . (e︸ ︷︷ ︸
n

x)) [1, Definition 2.1.9].

We call n-argument composition for the generalized composition represented by Bn.
Now we consider the 2-argument composition expressed as B2 = λf.λg.λx.λy. f (g x y).

From the definition, we have B2 = B ◦ B = B B B. Note that function application is
considered left-associative, that is, f a b = (f a) b. Thus B2 is expressed as a term in which
all applications nest to the left, never to the right. We call such terms flat [9]. We write X(k)
for the flat term defined by X X X . . . X︸ ︷︷ ︸

k

= (. . . ((X X) X) . . . ) X︸ ︷︷ ︸
k

. Using this notation,

we can write B2 = B(3).
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B(1) B(2) B(3) B(4) B(5) B(6)
(= B(10) = B(14) = . . . )

B(7)
(= B(11) = B(15) = . . . )

B(9)
(= B(13) = B(17) = . . . )

B(8)
(= B(12) = B(16) = . . . )

Figure 1 ρ-property of the B combinator.

Okasaki [9] investigated facts about flatness. For example, he shows that there is no
universal combinator X that can represent any combinator by X(k) with some k. We shall
delve into the case of X = B. Consider the n-argument composition operator Bn. We have
already seen that B2 can be written by the flat term B(3). For n = 3, we can also check B3 =
B B B B B B B B = B(8) by repeating β-reduction for B(8) f g x y z = f (g x y z). How
about the 4-argument composition B4? In fact, there is no integer k such that B4 = B(k)
with respect to βη-equality. Moreover, for any n > 3, there does not exist k such that
Bn = B(k). This surprising fact is proved by a quite simple method; listing all B(k)s for
k = 1, 2, . . . and checking that none of them is equivalent to Bn. An easy computation
gives B(6) = B(10) = λx.λy.λz.λw.λv. x (y z) (w v), and hence B(i) = B(i+4) for every
i ≥ 6. Then, by computing B(k)s only for k ∈ {1, 2, . . . , 6}, we can check that B(k) is not
βη-equivalent to Bn with n > 3 for k ∈ {1, 2, . . . }. Thus we conclude that there is no integer
k such that Bn = B(k).

This is the starting point of our research. We call ρ-property for this “periodicity” on
combinatory terms. More precisely, we say that a combinator X has ρ-property if there exist
two distinct integers i and j such that X(i) = X(j). In this case, we have X(i+k) = X(j+k)
for any k ≥ 0 (à la finite monogenic semigroup [7]). Fig. 1 shows a computation graph of
B(k). The ρ-property is named after the shape of the graph.

This paper discusses the ρ-property of combinatory terms, particularly terms built from B

alone. We call such terms B-terms and CL(B) denotes the set of all B-terms. For example,
the B-term B B enjoys the ρ-property with (B B)(52) = (B B)(32) and so does B (B B) with
(B (B B))(294) = (B (B B))(258) as reported in [8]. Several combinators other than B-terms
can be found to enjoy the ρ-property, for example, K = λx.λy.x and C = λx.λy.λz. x z y

because of K(3) = K(1) and C(4) = C(3). They are less interesting in the sense that the cycle
starts immediately and its size is very small, comparing with B-terms like B B and B (B B).
As we will see later, B (B (B (B (B (B B)))))(≡ B6 B) has the ρ-property with the cycle of
the size more than 3×1011 which starts after more than 2×1012 repetitive right applications.
This is why the ρ-property of B-terms is intensively discussed in the present paper.

The contributions of the paper are two-fold. One is to give a characterization of CL(B)
(Section 3) and another is to provide a sufficient condition for the ρ-property and anti-ρ-
property of B-terms (Section 4). In the former, we introduce a canonical representation
of B-terms and establish a sound and complete equational axiomatization for CL(B). In
the latter, the ρ-property of BnB with n ≤ 6 is shown with an efficient algorithm and the
anti-ρ-property for B-terms of particular forms is proved.

2 ρ-property of terms

The ρ-property of combinator X is that X(i) = X(j) holds for some i > j ≥ 1. We adopt
βη-equality of corresponding λ-terms for the equality of combinatory terms in this paper. We
could use other equality, for example, induced by the axioms of combinatory logic. The choice
of equality is not essential here, e.g., B(9) and B(13) are equal even up to the combinatory
axiom of B, as well as βη-equality. Furthermore, for simplicity, we only deal with the case
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ρ(B0B) = (6, 4) ρ(B4B) = (191206, 431453)
ρ(B1B) = (32, 20) ρ(B5B) = (766241307, 234444571)
ρ(B2B) = (258, 36) ρ(B6B) = (2641033883877, 339020201163)
ρ(B3B) = (4240, 5796)

Figure 2 ρ-property of B-terms in a particular form.

where X(n) is normalizable for all n. If X(n) is not normalizable, it is much more difficult to
check equivalence with the other terms. This restriction does not affect results of the paper
because all B-terms are normalizing.

Let us write ρ(X) = (i, j) if a combinator X has the ρ-property due to X(i) = X(i+j)
with minimum positive integers i and j. For example, we have ρ(B) = (6, 4), ρ(C) = (3, 1),
ρ(K) = (1, 2) and ρ(I) = (1, 1). Besides them, several combinators introduced in Smullyan’s
book [10] have the ρ-property:

ρ(D) = (32, 20) where D = λx.λy.λz.λw.x y (z w)
ρ(F ) = (3, 1) where F = λx.λy.λz.z y x

ρ(R) = (3, 1) where R = λx.λy.λz.y z x

ρ(T ) = (2, 1) where T = λx.λy.y x

ρ(V ) = (3, 1) where V = λx.λy.λz.z x y.

Except the B and D (= B B) combinators, the property is ‘trivial’ in the sense that the
loop starts early and the size of cycle is very small.

On the other hand, the combinators S = λx.λy.λz.x z (y z) and O = λx.λy.y (x y) in
the book do not have the ρ-property for reason (A), which is illustrated by

S(2n+1) = λx.λy. x y (x y (. . . (x y︸ ︷︷ ︸
n

(λz.x z (y z))) . . . )),

O(n+1) = λx. x (x (. . . (x︸ ︷︷ ︸
n

(λy.y (x y)).

The definition of the ρ-property is naturally extended from single combinators to terms
obtained by combining several combinators. We found by computation that several B-terms,
built from the B combinator alone, have a nontrivial ρ-property as shown in Fig. 2. The
detail will be shown in Section 4.

3 Checking equivalence of B-terms

The set of all B-terms, CL(B), is closed under application by definition, that is, the repetitive
right application of a B-term always generates a sequence of B-terms. Hence, the ρ-property
can be decided by checking ‘equivalence’ among generated B-terms, where the equivalence
should be checked through βη-equivalence of their corresponding λ-terms in accordance with
the definition of the ρ-property. It would be useful if we have a fast algorithm for deciding
equivalence over B-terms.

In this section, we give a characterization of the B-terms to efficiently decide their
equivalence. We introduce a method for deciding equivalence of B-terms without calculating
the corresponding λ-terms. To this end, we first investigate equivalence over B-terms with
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B x y z = x (y z) (B1)
B (B x y) = B (B x) (B y) (B2)
B B (B x) = B (B (B x)) B (B3)

Figure 3 Equational axiomatization for B-terms

examples and then present an equation system as a characterization of B-terms so as to
decide equivalence between two B-terms. Based on the equation system, we introduce a
canonical representation of B-terms. The representation makes it easy to observe the growth
caused by repetitive right application of B-terms, which will be later used for proving the
anti-ρ-property of B2. We believe that this representation will be helpful to prove the
ρ-property or the anti-ρ-property for the other B-terms.

3.1 Equivalence over B-terms
Two B-terms are said equivalent if their corresponding λ-terms are βη-equivalent. For
instance, B B (B B) and B (B B) B B are equivalent. This can be easily shown by
the definition B x y z = x (y z). For another (non-trivial) instance, B B (B B) and
B (B (B B)) B are equivalent. This is illustrated by the fact that they are equivalent to
λx.λy.λz.λw.λv.x (y z) (w v) where B is replaced with λx.λy.λz. x (y z) or the other way
around at the =β equation. Similarly, we cannot show equivalence between two B-terms,
B (B B) (B B) and B (B B B), without long calculation. This kind of equality makes it
hard to investigate the ρ-property of B-terms. To solve this annoying issue, we will later
introduce a canonical representation of B-terms.

3.2 Equational axiomatization for B-terms
Equality between two B-terms can be effectively decided by an equation system. Figure 3
shows a sound and complete equation system as described in the following theorem.

I Theorem 1. Two B-terms are βη-equivalent if and only if their equality is derived by
equations (B1), (B2), and (B3).

The proof of the “if” part, which corresponds to the soundness of the equation system
(B1), (B2), and (B3), is given here. We will later prove the “only if” part with the uniqueness
of the canonical representation of B-terms.

Proof. Equation (B1) is immediate from the definition of B. Equations (B2) and (B3) are
shown by

B (B e1 e2) = λx.λy. B (B e1 e2) x y B B (B e1) = λx. B B (B e1) x
= λx.λy. B e1 e2 (x y) = λx. B (B e1 x)
= λx.λy. e1 (e2 (x y)) = λx.λy.λz. B e1 x(y z)
= λx.λy. e1 (B e2 x y) = λx.λy.λz. e1 (x (y z))
= λx. B e1 (B e2 x) = λx.λy.λz. e1 (B x y z)
= B (B e1) (B e2) = λx.λy. B e1 (B x y)

= λx. B (B e1) (B x)
= B (B (B e1)) B

where the α-renaming is implicitly used. J
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Equation (B2) has been employed by Statman [12] to show that no Bω-term can be a
fixed-point combinator where ω = λx.x x. This equation exposes an interesting feature of
the B combinator. Write equation (B2) as

B (e1 ◦ e2) = (B e1) ◦ (B e2) (B2’)

by replacing every B combinator with ◦ infix operator if it has exactly two arguments.
The equation is a distributive law of B over ◦, which will be used to obtain the canonical
representation of B-terms. Equation (B3) is also used for the same purpose as the form of

B ◦ (B e1) = (B (B e1)) ◦B. (B3’)

We also have a natural equation B e1 (B e2 e3) = B (B e1 e2) e3 which represents
associativity of function composition, i.e., e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3. This is shown with
equations (B1) and (B2) by

B e1 (B e2 e3) = B (B e1) (B e2) e3 = B (B e1 e2) e3.

3.3 Canonical representation of B-terms
To decide equality between two B-terms, it does not suffice to compute their normal forms
under the definition of B, B x y z → x (y z). This is because two distinct normal forms
may be equal up to βη-equivalence, e.g., B B (B B) and B (B (B B)) B. We introduce a
canonical representation of B-terms, which makes it easy to check equivalence of B-terms.
We will eventually find that for any B-term e there exists a unique finite non-empty weakly-
decreasing sequence of non-negative integers n1 ≥ n2 ≥ · · · ≥ nk such that e is equivalent
to (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Ignoring the inequality condition gives polynomials
introduced by Statman [12]. We will use these decreasing polynomials for our canonical
representation as presented later. A similar result is found in [4].

First, we explain how this canonical form is obtained from a B-term. We only need to
consider B-terms in which every B has at most two arguments. One can easily reduce the
arguments of B to less than three by repeatedly rewriting occurrences of B e1 e2 e3 e4 . . . en
into e1 (e2 e3) e4 . . . en. The rewriting procedure always terminates because it reduces the
number of B. Thus, every B-term in CL(B) is equivalent to a B-term built by the syntax

e ::= B | B e | e ◦ e (1)

where e1 ◦ e2 denotes B e1 e2. We prefer to use the infix operator ◦ instead of B that
has two arguments because associativity of B, that is, B e1 (B e2 e3) = B (B e1 e2) e3
can be implicitly assumed. This simplifies the further discussion on B-terms. We will deal
with only B-terms in syntax (1) from now on. The ◦ operator has a lower precedence than
application in this paper, e.g., terms B B ◦B and B ◦B B represent (B B)◦B and B ◦ (B B),
respectively.

The syntactic restriction by (1) does not suffice to proffer a canonical representation of
B-terms. For example, both of the two B-terms B ◦B B and B (B B) ◦B are given in the
form of (1), but we can see they are equivalent using (B3’).

A polynomial form of B-terms is obtained by putting a restriction on the syntax so that
no B combinator occurs outside of the ◦ operator while syntax (1) allows the B combinators
and the ◦ operators to occur in an arbitrary position. The restricted syntax is given as

e ::= eB | e ◦ e eB ::= B | B eB

FSCD 2018
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where terms in eB have a form of B(. . . (B(B B)) . . . ), that is BnB with some n, called
monomial. The syntax can be simply rewritten into e ::= BnB | e ◦ e, which is called
polynomial.

I Definition 2. A B-term BnB is called monomial. A polynomial is a B-term given in the
form of

(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB)

where k > 0 and n1, . . . , nk ≥ 0 are integers. In particular, a polynomial is called decreasing
when n1 ≥ n2 ≥ · · · ≥ nk. The length of a polynomial P is a number of monomials in P , i.e.,
the length of the polynomial above is k. The numbers n1, n2, . . . , nk are called degrees.

In the rest of this subsection, we prove that for any B-term e there exists a unique
decreasing polynomial equivalent to e. First, we show that e has an equivalent polynomial.

I Lemma 3 ([12]). For any B-term e, there exists a polynomial equivalent to e.

Proof. We prove the statement by induction on the structure of e. In the case of e ≡ B, the
term itself is polynomial. In the case of e ≡ B e1, assume that e1 has equivalent polynomial
(Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB). Repeatedly applying equation (B2’) to B e1, we obtain
a polynomial equivalent to B e1 as (Bn1+1B) ◦ (Bn2+1B) ◦ · · · ◦ (Bnk+1B). In the case of
e ≡ e1 ◦ e2, assume that e1 and e2 have equivalent polynomials P1 and P2, respectively. A
polynomial equivalent to e is given by P1 ◦ P2. J

Next, we show that for any polynomial P there exists a decreasing polynomial equivalent
to P . A key equation of the proof is

(BmB) ◦ (BnB) = (Bn+1B) ◦ (BmB) when m < n, (2)

which is shown by

(BmB) ◦ (BnB) = Bm(B ◦ (Bn−mB))
= Bm(B ◦ (B (Bn−m−1B)))
= Bm((B(B(Bn−m−1B))) ◦B)
= (Bn+1B) ◦ (BmB)

using equations (B2’) and (B3’).

I Lemma 4. Any polynomial P has an equivalent decreasing polynomial P ′ such that
the length of P and P ′ are equal, and
the lowest degrees of P and P ′ are equal.

Proof. We prove the statement by induction on the length of P . When the length is 1, that
is, P is a monomial, P itself is decreasing and the statement holds. When the length k of
P is greater than 1, take P1 such that P ≡ P1 ◦ (BnB). From the induction hypothesis,
there exists a decreasing polynomial P ′1 ≡ (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (Bnk−1B) equivalent to
P1, and the lowest degree of P1 is nk−1. If nk−1 ≥ n, then P ′ ≡ P ′1 ◦ (Bn B) is decreasing
and equivalent to P . Since the lowest degrees of P and P ′ are n, the statement holds. If
nk−1 < n, P is equivalent to

(Bn1 B) ◦ · · · ◦ (Bnk−1B) ◦ (BnB) = (Bn1B) ◦ · · · ◦ (Bn+1B) ◦ (Bnk−1B)
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due to equation (2). Putting the last term as P2 ◦ (Bnk−1B), the length of P2 is k − 1 and
the lowest degree of P2 is greater than or equal to nk−1. From the induction hypothesis,
P2 has an equivalent decreasing polynomial P ′2 of length k − 1 and the lowest degree of P ′2
greater than or equal to nk−1. Thereby we obtain a decreasing polynomial P ′2 ◦ (Bnk−1B)
equivalent to P and the statement holds. J

I Example 5. Consider a B-term e = B (B B B) (B B) B. First, applying equation (B1),

e = B (B B B) (B B) (B B) = B B B (B B (B B)) = B (B (B B (B B)))

so that every B has at most two arguments. Then replace each B to the infix ◦ operator if it
has two arguments and obtain B (B (B ◦ (B B))) Applying equation (B2’), we have

B (B (B ◦ (B B))) = B ((B B) ◦ (B (B B)))
= (B (B B)) ◦ (B (B (B B)))
= (B2B) ◦ (B3B).

Applying equation (2), we obtain the decreasing polynomial (B4B) ◦ (B2B) equivalent to e.

Every B-term has at least one equivalent decreasing polynomial as shown so far. To
conclude this subsection, we show the uniqueness of decreasing polynomial equivalent to any
B-term, that is, every B-term e has no two distinct decreasing polynomials equivalent to e.

The proof is based on the idea that B-terms correspond to unlabeled binary trees. Let
M be a term which is constructed from variables x1, . . . , xk and their applications. Then
we can show that if the λ-term λx1. . . . λxk. M is in CL(B), then M is obtained by putting
parentheses to some positions in the sequence x1 . . . xk. More precisely, we have the following
lemma.

I Lemma 6. Every λ-term in CL(B) is βη-equivalent to a λ-term of the form λx1. . . . λxk. M

with some k > 2 where M satisfies the following two conditions: (1) M consists of only the
variables x1, . . . , xk and their applications, and (2) for every subterm of M which is in the
form of M1 M2, if M1 has a variable xi, then M2 does not have any variable xj with j ≤ i.

Proof. By the structural induction of B-terms. J

From this lemma, we see that we do not need to specify variables in M and we can simply
write like ? ? (? ?) = x1 x2 (x3 x4). Formally speaking, every λ-term in CL(B) uniquely
corresponds to a term built from ? alone by the map (λx1. . . . λxk. M) 7→M [?/x1, . . . , ?/xk].
We say an unlabeled binary tree (or simply, binary tree) for a term built from ? alone
since every term built from ? alone can be seen as an unlabeled binary tree. (A term ?

corresponds to a leaf and t1 t2 corresponds to the tree with left subtree t1 and right subtree
t2.) To specify the applications in binary trees, we write 〈t1, t2〉 for the application t1 t2. For
example, B-terms B = λx.λy.λz. x (y z) and B B = λx.λy.λz.λw. x y (z w) are represented
by 〈?, 〈?, ?〉〉 and 〈〈?, ?〉, 〈?, ?〉〉, respectively.

We will present an algorithm for constructing the corresponding decreasing polynomial
from a given binary tree. First let us define a function Li with integer i which maps binary
trees to lists of integers:

Li(?) = [ ] Li(〈t1, t2〉) = Li+||t1||(t2) ++ Li(t1) ++ [i]

where ++ concatenates two lists and ||t|| denotes a number of leaves. For example,
L0(〈〈?, ?〉, 〈?, ?〉〉) = [2, 0, 0] and L1(〈〈?, 〈?, ?〉〉, 〈?, 〈?, ?〉〉〉) = [4, 4, 2, 1, 1]. Informally, the
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18:8 On Repetitive Right Application of B-Terms

Li function returns a list of integers which is obtained by labeling both leaves and nodes
in the following steps. First each leaf of a given tree is labeled by i, i + 1, i + 2, . . . in
left-to-right order. Then each binary node of the tree is labeled by the same label as its
leftmost descendant leaf. The Li functions return a list of only node labels in decreasing
order. The length of the list equals the number of nodes, that is, smaller by one than the
number of variables in the λ-term.

We define a function L which takes a binary tree t and returns a list of non-negative
integers in L−1(t), that is, the list obtained by excluding trailing all −1’s in L−1(t). Note
that by excluding the label −1’s it may happen to be L(t) = L(t′) for two distinct binary
trees t and t′ even though the Li function is injective. However, those binary trees t and t′
must be ‘η-equivalent’ in terms of the corresponding λ-terms.

The following lemma claims that the L function computes a list of degrees of a decreasing
polynomial corresponding to a given λ-term.

I Lemma 7. A decreasing polynomial (Bn1B) ◦ (Bn2B) ◦ · · · ◦ (BnkB) is βη-equivalent to a
λ-term e ∈ CL(B) corresponding a binary tree t such that L(t) = [n1, n2, . . . , nk].

Proof. We prove the statement by induction on the length of the polynomial P .
When P ≡ BnB with n ≥ 0, it is found to be equivalent to the λ-term

λx1.λx2.λx3. . . . .λxn+1.λxn+2.λxn+3. x1 x2 x3 . . . xn+1 (xn+2 xn+3)

by induction on n. This λ-term corresponds to a binary tree t = 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉〉.

Then we have L(t) = [n] holds from L−1(t) = [n,−1,−1, . . . ,−1︸ ︷︷ ︸
n+1

].

When P ≡ P ′ ◦ (BnB) with P ′ ≡ (Bn1B) ◦ · · · ◦ (BnkB), k ≥ 1 and n1 ≥ · · · ≥ nk ≥
n ≥ 0, there exists a λ-term βη-equivalent to P ′ corresponding a binary tree t′ such that
L(t′) = [n1, . . . , nk] from the induction hypothesis. The binary tree t′ must have the form
of 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸

nk leaves

, t1〉, . . . , tm〉 with m ≥ 1 and some trees t1, . . . , tm, otherwise L(t′)

would contain an integer smaller than nk. From the definition of L and Li, we have

L(t′) = Lsm
(tm) ++ · · ·++ Ls1(t1) (3)

where sj = nk + 1 +
∑j−1
i=1 ||ti||. Additionally, the structure of t′ implies P ′ = λx1. . . . .λxl.

x1 x2 . . . xnk+1 e1 . . . em where ei corresponds to a binary tree ti for i = 1, . . . ,m. From
Bn B = λy1. . . . .λyn+3. y1 y2 . . . yn+1 (yn+2 yn+3), we compute a λ-term βη-equivalent to
P ≡ P ′ ◦ (BnB) by

P = λx. P ′(BnB x)
= λx. (λx1. . . . .λxl. x1 x2 . . . xnk+1 e1 . . . em)

(λy2. . . . .λyn+3. x y2 . . . yn+1 (yn+2 yn+3))
= λx.λx2. . . . .λxl. (λy2. . . . .λyn+3. x y2 . . . yn+1 (yn+2 yn+3)) x2 . . . xnk+1 e1 . . . em

= λx.λx2. . . . .λxl.

(λyn+1.λyn+2.λyn+3. x x2 . . . xn yn+1 (yn+2 yn+3)) xn+1 . . . xnk+1 e1 . . . em

where nk ≥ n is taken into account. We split into four cases: (i) nk = n and m = 1, (ii)
nk = n and m > 1, (iii) nk = n+ 1, and (iv) nk > n+ 1. In the case (i) where nk = n and
m = 1, we have

P = λx.λx2. . . . .λxl.λyn+3. x x2 . . . xn xn+1 (e1 yn+3).
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whose corresponding binary tree t is 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈t1, ?〉〉. From equation (3),

L(t) = Ln+1(t1) ++ [n+ 1] = L(t′) ++ [n+ 1] = [n1, . . . , nk, n+ 1], thus the statement holds.
In the case (ii) where nk = n and m > 1, we have

P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (e1 e2) e3 . . . em.

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈t1, t2〉, t3〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds again from equation (3). In the case (iii) where nk = n+ 1, we
have

P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (xn+2 e1) e2 . . . em, or

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, t1〉, t2〉, . . . , tm〉. Hence, L(t) =

L(t′) ++ [n+ 1] holds from equation (3). In the case (iv) where nk ≥ n+ 2, we have

P = λx.λx2. . . . .λxl. x x2 . . . xn xn+1 (xn+2 xn+3) . . . e1 . . . em,

whose corresponding binary tree t is 〈〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉︸ ︷︷ ︸
n leaves

, 〈?, ?〉, . . . , t1〉, . . . , tm〉. Hence,

L(t) = L(t′) ++ [n+ 1] holds from equation (3). J

I Example 8. A λ-term λx1.λx2.λx3.λx4.λx5.λx6.λx7.λx8. x1 (x2 x3) (x4 x5 x6 (x7 x8))
is βη-equivalent to (B5 B) ◦ (B2 B) ◦ (B2 B) ◦ (B2 B) ◦ (B0 B) because its corresponding
binary tree t = 〈〈?, 〈?, ?〉〉, 〈〈〈?, ?〉, ?〉, 〈?, ?〉〉〉 satisfies L(t) = [5, 2, 2, 2, 0].

The previous lemmas immediately conclude the uniqueness of decreasing polynomials for
B-terms shown in the following theorem.

I Theorem 9. Every B-term e has a unique decreasing polynomial.

Proof. For any given B-term e, we can find a decreasing polynomial for e from Lemma 3 and
Lemma 4. Since every decreasing polynomial corresponds to only one binary tree (and since
every B-term also corresponds to only one binary tree up to η-equivalence) from Lemma 7,
the present statement holds. J

This theorem implies that the decreasing polynomial of B-terms can be used as their
canonical representation, which is effectively derived as shown in Lemma 3 and Lemma 4.

As a corollary of the theorem, we can show the “only if” statement of Theorem 1, which
corresponds to the completeness of the equation system.

Proof. Let e1 and e2 be equivalent B-terms, that is, their λ-terms are βη-equivalent. From
Theorem 9, their decreasing polynomials are the same. Since the decreasing polynomial is
derived from e1 and e2 by equations (B1), (B2), and (B3) according to the proofs of Lemma 3
and Lemma 4, equivalence between e1 and e2 is also derived from these equations. J

4 Results on the ρ-property of B-terms

We investigate the ρ-property of concrete B-terms, some of which have the property and
others do not. For B-terms having the ρ-property, we introduce an efficient implementation
to compute the entry point and the size of the cycle. For B-terms not having the ρ-property,
we give a proof why they do not have.
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4.1 B-terms having the ρ-property
As shown in Section 2, we can check that B-terms equivalent to BnB with n ≤ 6 have
the ρ-property by computing (BnB)(i) for each i. However, it is not easy to check it by
computer without an efficient implementation because we should compute all (B6B)(i)
with i ≤ 2980054085040 (= 2641033883877 + 339020201163) to know that ρ(B6B) =
(2641033883877, 339020201163). A naive implementation which computes terms of (B6B)(i)
for all i and stores all of them has no hope to detect the ρ-property.

We introduce an efficient procedure to find the ρ-property of B-terms which can success-
fully compute ρ(B6B). The procedure is based on two orthogonal ideas, Floyd’s cycle-finding
algorithm [6] and an efficient right application algorithm over decreasing polynomials pre-
sented in Section 3.3.

The first idea, Floyd’s cycle-finding algorithm (also called the tortoise and the hare
algorithm), enables us to detect the cycle with a constant memory usage, that is, the history
of all terms X(i) does not need to be stored to check the ρ-property of the X combinator. The
key of this algorithm is the fact that there are two distinct integers i and j with X(i) = X(j)
if and only if there is an integer m with X(m) = X(2m), where the latter requires to compare
X(i) and X(2i) from smaller i and store only these two terms for the next comparison between
X(i+1) = X(i)X and X(2i+2) = X(2i)XX when X(i) 6= X(2i). The following procedure
computes the entry point and the size of the cycle if X has the ρ-property.
1. Find the smallest m such that X(m) = X(2m).
2. Find the smallest k such that X(k) = X(m+k).
3. Find the smallest 0 < c ≤ k such that X(m) = X(m+c). If not found, put c = m.
After this procedure, we find ρ(X) = (k, c). The third step can be run in parallel during
the second one. See [6, exercise 3.1.6] for the detail. One could use slightly more (possibly)
efficient algorithms by Brent [3] and Gosper [2, item 132] for cycle detection.

Efficient cycle-finding algorithms do not suffice to compute ρ(B6B). Only with the idea
above running on a laptop (1.7 GHz Intel Core i7 / 8GB of memory), it takes about 2 hours
even for ρ(B5B) and fails to compute ρ(B6B) with an out-of-memory error.

The second idea enables us to efficiently compute X(i+1) from X(i) for B-terms X. The
key of this algorithm is to use the canonical representation of X(i), that is a decreasing
polynomial, and directly compute the canonical representation of X(i+1) from that of X(i).
Additionally, the canonical representation enables us to quickly decide equivalence which is
required many times to find the cycle. It takes time just proportional to their lengths. If
λ-terms are used for finding the cycle, both application and deciding equivalence require much
more complicated computation. Our implementation based on these two ideas computes
ρ(B5B) and ρ(B6B) in 10 minutes and 59 days (!), respectively.

For two given decreasing polynomials P1 and P2, we show how a decreasing polynomial
P equivalent to (P1 P2) can be obtained. The method is based on the following lemma about
application of one B-term to another B-term.

I Lemma 10. For B-terms e1 and e2, there exists k ≥ 0 such that e1◦(B e2) = B (e1 e2)◦Bk.

Proof. Let P1 be a decreasing polynomial equivalent to e1. We prove the statement by case
analysis on the maximum degree in P1. When the maximum degree is 0, we can take k′ ≥ 1
such that P1 ≡ B ◦ · · · ◦B︸ ︷︷ ︸

k′

= Bk
′ . Then,

e1 ◦ (B e2) = B ◦ · · · ◦B︸ ︷︷ ︸
k′

◦(B e2) = (Bk
′+1e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= B (e1 e2) ◦Bk
′
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where equation (B3’) is used k′ times in the second equation. Therefore the statement holds
by taking k = k′. When the maximum degree is greater than 0, we can take a decreasing
polynomial P ′ for a B-term and k′ ≥ 0 such that P1 = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= (B P ′) ◦Bk′

due to equation (B2’). Then,

e1 ◦ (B e2) = (B P ′) ◦B ◦ · · · ◦B︸ ︷︷ ︸
k′

◦(B e2)

= (B P ′) ◦ (Bk
′+1e2) ◦B ◦ · · · ◦B︸ ︷︷ ︸

k′

= B (P ′ ◦ (Bk
′
e2)) ◦Bk

′

= B (B P ′ (Bk
′
e2)) ◦Bk

′

= B (P1 e2) ◦Bk
′

= B (e1 e2) ◦Bk
′
.

Therefore, the statement holds by taking k = k′. J

This lemma indicates that, from two decreasing polynomials P1 and P2, a decreasing
polynomial P equivalent to (P1 P2) can be obtained in the following steps where L1 and L2
are lists of non-negative numbers as shown in Section 3.3 corresponding to P1 and P2.
1. Build P ′2 by incrementing each degree of P2 by 1, i.e., when P2 ≡ (Bn1B) ◦ · · · ◦ (BnlB),

P ′2 ≡ (Bn1+1B) ◦ · · · ◦ (Bnl+1B). In terms of the list representation, a list L′2 is built
from L2 by incrementing each value by 1.

2. Find a decreasing polynomial P12 corresponding to P1 ◦ P ′2 by equation (2). In terms of
the list representation, a list L12 is constructed by appending L1 and L′2 and repeatedly
applying (2).

3. Obtain P by decrementing each degree of P12 after eliminating the trailing 0-degree units,
i.e., when P12 ≡ (Bn1B) ◦ · · · ◦ (BnlB) ◦ (B0B) ◦ · · · ◦ (B0B) with n1 ≥ · · · ≥ nl > 0,
P ≡ (Bn1−1B) ◦ · · · ◦ (Bnl−1B). In terms of the list representation, a list L is obtained
from L12 by decrementing each value by 1 after removing trailing 0’s.

In the first step, a decreasing polynomial P ′2 equivalent to B P2 is obtained. The second
step yields a decreasing polynomial P12 for P1 ◦ P ′2 = P1 ◦ (B P2). Since P1 and P2 are
decreasing, it is easy to find P12 by repetitive application of equation (2) for each unit of
P ′2, à la insertion operation in insertion sort. In the final step, a polynomial P that satisfies
(B P ) ◦Bk = P12 with some k is obtained. From Lemma 10 and the uniqueness of decreasing
polynomials, P is equivalent to (P1 P2).

I Example 11. Let P1 and P2 be decreasing polynomials represented by lists L1 = [4, 1, 0]
and L2 = [2, 0]. Then a decreasing polynomial P equivalent to (P1 P2) is obtained as a list
L in three steps:
1. A list L′2 = [3, 1] is obtained from L2 by incrementing each value by 1.
2. A decreasing list L12 is obtained from L1 and L′2 by

L12 = [4, 1, 0, 3, 1] = [4, 1, 4, 0, 1] = [4, 5, 1, 0, 1] = [6, 4, 1, 0, 1] = [6, 4, 1, 2, 0] = [6, 4, 3, 1, 0]

where equation (2) is applied in each underlined pair.
3. A list L = [5, 3, 2, 0] is obtained from L12 as the result of the application by decrementing

each value by 1 after removing trailing 0’s.
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The implementation based on the right application over decreasing polynomials is avail-
able at https://github.com/ksk/Rho. Note that the program does not terminate for the
combinator which does not have the ρ-property. It will not help to decide if a combinator
has the ρ-property. One might observe how the terms grow by repetitive right applications
through running the program, though.

4.2 B-terms not having the ρ-property
We prove that the B-terms (BkB)(k+2)n (k ≥ 0, n > 0) do not have the ρ-property. For
example, B-term B2 = B B B, which is the case of k = 0 and n = 1, does not have the
ρ-property. To this end, we show that the number of variables in the βη-normal form of
((BkB)(k+2)n)(i) is monotonically non-decreasing and that it implies the anti-ρ-property.
Additionally, after proving that, we consider a sufficient condition not to have the ρ-property
through the monotonicity.

First, we introduce some notations. Suppose that the βη-normal form of a B-term X

is given by λx1. . . . λxn. x1 e1 · · · ek for some terms e1, . . . , ek. Then we define l(X) = n

(the number of variables), a(X) = k (the number of arguments of x1), and Ni(X) = ei
for i = 1, . . . , k. For convinience, we define functions l, a, and Ni also for terms of form
Y = x e1 . . . ek in the same mannar. That is, l(Y ) is the number of variables in Y ,
a(Y ) = k, and Ni(Y ) = ei. Let X ′ be another B-term and suppose its βη-normal form
is given by λx′1. . . . λx

′
n′ . e

′ where e′ does not have λ-abstractions. We can see X X ′ =
(λx1. . . . λxn. x1 e1 · · · ek) X ′ = λx2. . . . λxn. X

′ e1 · · · ek and from Lemma 6, its βη-normal
form is{

λx2. . . . λxn.λx
′
k+1. . . . λx

′
n′ . e

′[e1/x
′
1, . . . , ek/x

′
k] (k ≤ n′)

λx2. . . . λxn. e
′[e1/x

′
1, . . . , en′/x

′
n′ ] en′+1 · · · ek (otherwise).

Here e′[e1/x
′
1, . . . , ek/x

′
k] is the term which is obtained by substituting e1, . . . , ek to the

variables x′1, . . . , x′k in e′ .
By simple computation with this fact, we get the following lemma:

I Lemma 12. Let X and X ′ be B-terms. Then

l(X X ′) = l(X)− 1 + max{l(X ′)− a(X), 0}
a(X X ′) = a(X ′) + a(N1(X)) + max{a(X)− l(X ′), 0}

N1(X X ′) =
{
N1(X ′)[N2(X)/x′2, . . . , Nm(X)/x′m] (if N1(X) is a variable)
N1(N1(X)) (otherwise)

where m = min{l(N1(X ′)), a(X)}.

The βη-normal form of (BkB)(k+2)n is given by

λx1. . . . λxk+(k+2)n+2. x1 x2 · · · xk+1 (xk+2 xk+3 · · · xk+(k+2)n+2).

This is deduced from Lemma 7 since the binary tree corresponding to the above λ-term
is t = 〈〈. . . 〈〈?, ?〉, ?〉, . . . , ?︸ ︷︷ ︸

k+1

〉, 〈. . . 〈〈?, ?〉, ?〉, . . . , ?︸ ︷︷ ︸
(k+2)n

〉〉 and L(t) = [k, . . . , k︸ ︷︷ ︸
(k+2)n

]. Especially, we get

l((BkB)(k+2)n) = k + (k + 2)n+ 2. In this section, we write 〈?, ?, ?, . . . , ?〉 for
〈. . . 〈〈?, ?〉, ?〉, . . . , ?〉 and identify B-terms with their corresponding binary trees.

To describe properties of (BkB)(k+2)n, we introduce a set Tk,n which is closed under right
application of (BkB)(k+2)n, that is, Tk,n satisfies that “if X ∈ Tk,n then X (BkB)(k+2)n ∈
Tk,n holds”. First we inductively define a set of terms T ′k,n as follows:

https://github.com/ksk/Rho
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1. ? ∈ T ′k,n
2. 〈?, s1, . . . , s(k+2)n〉 ∈ T ′k,n if si = ? for each multiple i of k + 2 and si ∈ T ′k,n for the

others.
Then we define Tk,n by Tk,n =

{
〈t0, t1, . . . , tk+1〉

∣∣∣ t0, t1, . . . , tk+1 ∈ T ′k,n
}
. It is obvious

that (BkB)(k+2)n ∈ Tk,n. Now we shall prove that Tk,n is closed under right application of
(BkB)(k+2)n.

I Lemma 13. If X ∈ Tk,n then X (BkB)(k+2)n ∈ Tk,n.

Proof. From the definition of Tk,n, if X ∈ Tk,n then X can be written in the form
〈t0, t1, . . . , tk+1〉 for some t0, . . . , tk+1 ∈ T ′k,n. In the case where t0 = ?, we have
X (BkB)(k+2)n = 〈t1, . . . , tk+1, 〈?, . . . , ?︸ ︷︷ ︸

(k+2)n

〉〉 ∈ Tk,n. In the case where t0 has the form of 2

in the definition of T ′k,n, then we have X = 〈?, s1, . . . , s(k+2)n, t1, . . . , tk+1〉 with si = ?

for each multiple i of k + 2 and si ∈ T ′k,n for the others, hence

X (BkB)(k+2)n = 〈s1, . . . , sk+1, 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉〉.

We can easily see s1, . . . , sk+1, and 〈sk+2, . . . , s(k+2)n, t1, . . . , tk+1, ?〉 are in T ′k,n. J

From the definition of Tk,n, we can compute that a(X) equals k+ 1 or (k+ 2)n+ k+ 1 if
X ∈ Tk,n. Particularly, we get the following:

I Lemma 14. For any X ∈ Tk,n, a(X) ≤ (k + 2)n+ k + 1 = l((BkB)(k+2)n)− 1.

This lemma is crucial to show that the number of variables in ((BkB)(k+2)n)(i) is mono-
tonically non-decreasing. Put Z = (BkB)(k+2)n for short. Since Z ∈ Tk,n, we have
{Z(i) | i ≥ 1} ⊂ Tk,n by Lemma 13. Using Lemma 14, we can simplify Lemma 12 in the case
where X = Z(i) and X ′ = Z as follows:

l(Z(i+1)) = l(Z(i)) + (k + 2)n+ k + 1− a(Z(i)) (4)
a(Z(i+1)) = a(N1(Z(i))) + k + 1 (5)

N1(Z(i+1)) =
{
N2(Z(i)) (if N1(Z(i)) is a variable)
N1(N1(Z(i))) (otherwise).

(6)

By (4) and Lemma 14, we get l(Z(i+1)) ≥ l(Z(i)).
To prove that Z does not have the ρ-property, it suffices to show the following:

I Lemma 15. For any i ≥ 1, there exists j > i that satisfies l(Z(j)) > l(Z(i)).

Proof. Suppose that there exists i ≥ 1 that satisfies l(Z(i)) = l(Z(j)) for any j > i. We
get a(Z(j)) = (k + 2)n + k + 1 by (4) and then a(N1(Z(j))) = (k + 2)n by (5). Therefore
N1(Z(j)) is not a variable for any j > i and from (6), we obtain N1(Z(j)) = N1(N1(Z(j−1))) =
· · · = N1(· · ·N1(︸ ︷︷ ︸

j−i+1

Z(i)) · · · ) for any j > i. However, this implies that Z(i) has infinitely many

variables and it yields contradiction. J

Now, we get the desired result:

I Theorem 16. For any k ≥ 0 and n > 0, (BkB)(k+2)n does not have the ρ-property.

The key fact which enables us to show the anti-ρ-property of (BkB)(k+2)n is the existence
of the set Tk,n ⊃

{
((BkB)(k+2)n)(i)

∣∣ i ≥ 1
}
which satisfies Lemma 14. In a similar way, we

can show the anti-ρ-property of a B-term which has such a “good” set. That is,

FSCD 2018
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I Theorem 17. Let X be a B-term and T be a set of B-terms. If
{
X(i)

∣∣ i ≥ 1
}
⊂ T and

l(X) ≥ a(X ′) + 1 for any X ′ ∈ T , then X does not have the ρ-property.

Here is an example of the B-terms which satisfy the condition in Theorem 17 with some
set T . Consider X = (B2B)2 ◦ (BB)2 ◦B2 = 〈?, 〈?, 〈?, 〈?, ?, ?〉, ?〉, ?〉〉. We inductively
define T ′ as follows:
1. ? ∈ T ′
2. For any t ∈ T ′, 〈?, t, ?〉 ∈ T ′
3. For any t1, t2 ∈ T ′, 〈?, t1, ?, 〈?, t2, ?〉, ?〉 ∈ T ′
Then T = {〈t1, 〈?, t2, ?〉〉 | t1, t2 ∈ T ′} satisfies the condition in Theorem 17. It can be
checked simply by case analysis. Thus

I Theorem 18. (B2B)2 ◦ (BB)2 ◦B2 does not have the ρ-property.

Theorem 17 gives a possible technique to prove the monotonicity with respect to l(X(i)), or,
the anti-ρ-property of X, for some B-term X. Moreover, we can consider another problem on
B-terms: “Give a necessary and sufficient condition to have the monotonicity for B-terms.”

5 Concluding remark

We have investigated the ρ-properties of B-terms in particular forms so far. While the
B-terms equivalent to BnB with n ≤ 6 have the ρ-property, the B-terms (BkB)(k+2)n with
k ≥ 0 and n > 0 and (B2B)2 ◦ (BB)2 ◦B2 do not. In this section, remaining problems related
to these results are introduced and possible approaches to illustrate them are discussed.

5.1 Remaining problems
The ρ-property is defined for any combinatory terms (and closed λ-terms). We investigated
it only for B-terms as a simple but interesting instance in the present paper. From his
observation on repetitive right applications for several B-terms, Nakano [8] has conjectured
as follows.

I Conjecture 19. A B-term e has the ρ-property if and only if e is a monomial, i.e., e is
equivalent to BnB with n ≥ 0.

The “if” part for n ≤ 6 has been shown by computation and the “only if” part for (BkB)(k+2)n

(k ≥ 0, n > 0) and (B2B)2 ◦ (BB)2 ◦ B2 has been shown by Theorem 16. This conjecture
implies that the ρ-property of B-terms is decidable. We conjecture that the ρ-property of
even BCK- and BCI-terms is decidable. The decidability for the ρ-property of S-terms
and L-terms can also be considered. Waldmann’s work on a rational representation of
normalizable S-terms may be helpful to solve it. We expect that none of S-terms have the
ρ-property as S itself does not, though. Regarding L-terms, Statman’s work [11] may be
helpful where equivalence of L-terms is shown decidable up to a congruence relation induced
by L e1 e2 → e1 (e2 e2). It would be interesting to investigate the ρ-property of L-terms in
this setting.

5.2 Possible approaches
The present paper introduces a canonical representation to make equivalence check of B-terms
easier. The idea of the representation is based on that we can lift all ◦’s (2-argument B) to the
outside of B (1-argument B) by equation (B2’). One may consider it the other way around.
Using the equation, we can lift all B’s (1-argument B) to the outside of ◦ (2-argument B).
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Then one of the arguments of ◦ becomes B. By equation (B3’), we can move all B’s right.
Thereby we find another canonical representation for B-terms given by

e ::=B | B e | e ◦B

whose uniqueness could be easily proved in a way similar to Theorem 9.
Waldmann [13] suggests that the ρ-property of BnB may be checked even without

converting B-terms into canonical forms. He simply defines B-terms by

e ::=Bk | e e

and regards Bk as a constant which has a rewrite rule Bk e1 e2 . . . ek+2 → e1 (e2 . . . ek+2).
He implemented a check program in Haskell to confirm the ρ-property. Even in the re-
striction on rewriting rules, he found that (B0B)(9) = (B0B)(13), (B1B)(36) = (B1B)(56),
(B2B)(274) = (B2B)(310) and (B3B)(4267) = (B3B)(10063), in which it requires a few more
right applications to find the ρ-property than the case of canonical representation. If the
ρ-property of BnB for any n ≥ 0 is shown under the restricted equivalence given by rewriting
rules, then we can conclude the “if” part of Conjecture 19.

Another possible approach is to observe the change of (principal) types by right repetitive
application. Although there are many distinct λ-terms of the same type, we can consider
a desirable subset of typed λ-terms. As shown by Hirokawa [5], each BCK-term can be
characterized by its type, that is, any two λ-terms in CL(BCK) of the same principal type
are identical up to β-equivalence. This approach may require observing unification between
types in a clever way.
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Abstract
We present Tores, a core language for encoding metatheoretic proofs. The novel features we
introduce are well-founded Mendler-style (co)recursion over indexed data types and a form of
recursion over objects in the index language to build new types. The latter, which we call index-
stratified types, are analogue to the concept of large elimination in dependently typed languages.
These features combined allow us to encode sophisticated case studies such as normalization
for lambda calculi and normalization by evaluation. We prove the soundness of Tores as a
programming and proof language via the key theorems of subject reduction and termination.
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1 Introduction

Recursion is a fundamental tool for writing useful programs in functional languages. When
viewed from a logical perspective via the Curry-Howard correspondence, well-founded recur-
sion corresponds to inductive reasoning. Dually, well-founded corecursion corresponds to
coinductive reasoning. However, concentrating only on well-founded (co)recursive definitions
is not sufficient to support the encoding of meta-theoretic proofs. There are two missing
ingredients: 1) To express fine-grained properties we often rely on first-order logic which is
analogous to indexed types in programming languages. 2) Many common notions cannot
be directly characterized by well-founded (co)recursive definitions. An example is Girard’s
notion of reducibility for functions: a term M is reducible at type A→ B if, for all terms N
that are reducible at type A, we have that M N is reducible at type B. This definition is
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well-founded because it is by structural recursion on the type indices (A and B), so we want
to admit such definitions.

Our contribution in this paper is a core language called Tores that features indexed types
and (co)inductive reasoning via well-founded (co)recursion. The primary forms of types are
indexed (co)recursive types, over which we support reasoning via Mendler-style (co)recursion.
Additionally, Tores features index-stratified types, which allow further definitions of types
via well-founded recursion over indices. The main difference between the two forms is that
(co)recursive types are more flexible, allowing (co)induction, while stratified types only
support unfolding based on their indices. The combination of the two features is especially
powerful for formalizing metatheory involving logical relations. This is partly because type
definitions in Tores do not require positivity, a condition used in other systems to ensure
termination and in turn logical consistency. Despite this, we are able to prove termination of
Tores programs using a semantic interpretation of types.

How to justify definitions that are recursively defined on a given index in addition to
well-founded (co)recursive definitions has been explored in proof theory (for example [22, 3]).
While this line of work is more general, it is also more complex and further from standard
programming practice. In dependent type theories, large eliminations achieve the same. Our
approach, grounded in the Curry-Howard isomorphism, provides a complementary perspective
on this problem where we balance expressiveness and ease of programming with a compact
metatheory. We believe this may be an advantage when considering more sophisticated index
languages and reasoning techniques.

The combination of indexed (co)recursive types and stratified types is already used
in the programming and proof environment Beluga, where the index language is an
extension of the logical framework LF together with first-class contexts and substitutions
[15, 16, 4]. This allows elegant implementations of proofs using logical relations [5, 6] and
normalization by evaluation [4]. Tores can be seen as small kernel into which we elaborate
total Beluga programs, thereby providing post-hoc justification of viewing Beluga programs
as (co)inductive proofs.

2 Index Language for Tores

The design of Tores is parametric over an index language. Following Thibodeau et al.
[21] we stay as abstract as possible and state the general conditions the index language
must satisfy. Whenever we require inspection of the particular index language, namely the
structure of stratified types and induction terms, we will draw attention to it.

To illustrate the required structure for a concrete index language, we use natural numbers.
In practice, however, we can consider other index languages such as those of strings, types
[7, 24], or (contextual) LF [16, 4]. It is important to note that, for most of our design, we
accommodate a general index language up to the complexity of Contextual LF. Thus we
treat index types and Tores kinds as dependently typed.

2.1 General Structure
We refer to a term in the index language as an index term M , which may have an index type
U . In the case of natural numbers, there is a single index type nat, and index terms are built
from 0, suc, and variables u which must be declared in an index context ∆.

Index types U := nat Index contexts ∆ := · | ∆, u:U
Index terms M := 0 | sucM | u Index substitutions Θ := · | Θ,M/u
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` ∆ ictx Index context ∆ is well-formed ∆ ` U itype Index type U is well-kinded

` · ictx
` ∆ ictx ∆ ` U itype

` ∆, u:U ictx ∆ ` nat itype

∆ `M : U Index term M has index type U in index context ∆

u:U ∈ ∆
∆ ` u : U ∆ ` 0 : nat

∆ `M : nat
∆ ` sucM : nat

∆ `M = N Index term M is equal to N

∆ `M = M

∆′ ` Θ : ∆ Index substitution Θ maps index variables from ∆ to ∆′

∆′ ` · : ·
∆′ ` Θ : ∆ ∆′ `M : U [Θ]

∆′ ` Θ,M/u : ∆, u:U

Figure 1 Index language structure.

Tores relies on typing for index terms which we give for natural numbers in Fig. 1. The
equality judgment for natural numbers is given simply by reflexivity (syntactic equality). We
also give typing for index substitutions, which supply an index term for each index variable
in the domain ∆ and describe well-formed contexts. These definitions are generic.

We require that both typing and equality of index terms be decidable in order for type
checking of Tores programs to be decidable.

I Requirement 1. Index type checking is decidable.

I Requirement 2. Index equality is decidable.

We can lift the kinding, typing, equality and matching rules to spines of index terms and
types generically. We write · and (·) for the empty spines of terms and types respectively.
If M0 is an index term and −→M is a spine, then M0,

−→
M is a spine. Similarly if u0:U0 is an

index type assignment and (−−→u:U) is a type spine, then (u0:U0,
−−→
u:U) is a type spine. Spines

are convenient for setting up the types and terms of Tores. Unlike index substitutions Θ
which are built from right to left, spines are built from left to right.

Throughout our development we use both a single index substitution operation M [N/u]
and a simultaneous substitution operation M [Θ]. For composition of simultaneous substitu-
tions we write Θ1[Θ2].

I Requirement 3 (Index substitution principles).

3.1. If ∆1, u:U ′,∆2 `M : U and ∆1 ` N : U ′ then ∆1,∆2[N/u] `M [N/u] : U [N/u].
3.2. If ∆′ ` Θ : ∆ and ∆ `M : U then ∆′ `M [Θ] : U [Θ].
3.3. If ∆′ ` Θ : ∆ and ∆ `M = N then ∆′ `M [Θ] = N [Θ].
3.4. If ∆ `M : U and ∆1 ` Θ1 : ∆ and ∆2 ` Θ2 : ∆1 then M [Θ1][Θ2] = M [Θ1[Θ2]].

2.2 Unification and Matching
Type checking of Tores relies on a unification procedure to generate a most general unifier
(MGU). A unifier for index termsM andN in a context ∆ is a substitution Θ which transforms
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M and N into syntactically equal terms in another context ∆′. That is, ∆′ ` Θ : ∆ and
∆′ `M [Θ] = N [Θ]. Θ is “most general” if it does not make more commitments to variables
than absolutely necessary. A unifying substitution Θ only makes sense together with its
range ∆′, so we usually write them as a pair (∆′ | Θ). In general, there may be more than
one MGU for a particular unification problem, or none at all. However, we require here
that each problem has at most one MGU up to α-equivalence. We write the generation of
an MGU using the judgment ∆ ` M + N ↘ P , where P is either the MGU (∆′ | Θ) if it
exists or # representing that unification failed. To illustrate, we show the unification rules
for natural numbers. We write idi for the identity substitution that maps index variables
from ∆i to themselves.

∆ `M + N ↘ P Index terms M and N have MGU P

∆ ` 0 + 0↘ (∆ | id)
∆ `M + N ↘ P

∆ ` sucM + sucN ↘ P ∆ ` u + u↘ (∆ | id)

u /∈ FV(M) ∆ = ∆1, u:U,∆2 ∆′ = ∆1,∆2[M/u]
∆ ` u +M ↘ (∆′ | id1,M/u, id2) (same for M + u)

∆ ` 0 + sucM ↘ # ∆ ` sucM + 0↘ #
u ∈ FV(M) M 6= u

∆ ` u +M ↘ # (same for M + u)

I Requirement 4 (Decidable unification). Given index terms M and N in a context ∆, the
judgment ∆ ` M + N ↘ P is decidable. Either P is (∆′ | Θ), the unique MGU up to
α-equivalence, or P is # and there is no unifier.

Finally, our operational semantics relies on index matching. This is an asymmetric form
of unification: given terms M in ∆ and N in ∆′, matching identifies a substitution Θ such
that ∆′ ` M [Θ] = N . We describe it using the judgment ∆ ` M .= N ↘ (∆′ | Θ). The
notion of matching also lifts to the level of index substitutions. We omit the full specifications
here and instead state the required properties.

I Requirement 5 (Soundness of index matching).

5.1. If ∆ `M : U and ∆ `M .= N ↘ (∆′ | Θ) then ∆′ ` Θ : ∆ and ∆′ `M [Θ] = N .
5.2. If ∆1 ` Θ1 : ∆ and ∆1 ` Θ1

.= Θ2 ↘ (∆2 | Θ) then ∆2 ` Θ : ∆1 and ∆2 ` Θ1[Θ] = Θ2.

I Requirement 6 (Completeness of index matching). Suppose ` θ : ∆ and ` M [θ] = N [θ]
and ∆ `M + N ↘ (∆′ | Θ). Then ∆′ ` Θ .= θ ↘ (· | θ′).

3 Specification of Tores

We now describe Tores, a programming language designed to express (co)inductive proofs
and programs using Mendler-style (co)recursion. It also features index-stratified types, which
allow definitions of types via well-founded recursion over indices.

3.1 Types and Kinds
Besides unit, products and sums, Tores includes a nonstandard function type (−−→u:U); T1 → T2,
which combines a dependent function type and a simple function type. It binds a number of
index variables −−→u:U which may appear in both T1 and T2. If the spine of type declarations
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is empty then (·); T1 → T2 degenerates to the simple function space. We can also quantify
existentially over an index using the type Σu:U. T , and have a type for index equality
M = N . These two types are useful for expressing equality constraints on indices. We model
(co)recursive and stratified types as type constructors of kind Π−−→u:U. ∗. These introduce type
variables X, which we track in the type variable context Ξ. There is no positivity condition
on recursive types, as the typing rules for Mendler-recursion enforce termination without it.

A stratified type is defined by primitive recursion on an index term. For the index
type nat, the two branches correspond to the two constructors 0 and suc. Intuitively, TRec 0
will behave like T0 and TRec (sucM) will behave like Ts[M/u, TRec M/X]. For richer index
languages such as Contextual LF we can generate an appropriate recursion scheme following
Pientka and Abel [17].

Kinds K ::= ∗ | Πu:U.K
Types T ::= 1 | T1 × T2 | T1 + T2 | (

−−→
u:U); T1 → T2 | Σu:U. T |M = N

| T M | Λu. T | X | µX:K.T | νX:K.T | TRec

Stratified Types TRec ::= RecK(0 7→ T0 | sucu, X 7→ Ts)
Index Contexts ∆ ::= · | ∆, u:U
Type Var. Contexts Ξ ::= · | Ξ, X:K
Typing Contexts Γ ::= · | Γ, x:T

I Example 1. We illustrate indexed recursive types and stratified types using vectors, i.e.
lists indexed by their length, with elements of type A. Vectors are of kind Πn: nat .∗. We
omit the kind annotation for better readability in the subsequent type definitions. One way
to define vectors is with an indexed recursive type, an explicit equality and an existential
type: Vecµ ≡ µV.Λn. n = 0 + Σm: nat . n = sucm× (A× V m).

Alternatively, they can be defined as a stratified type: VecS ≡ Rec (0 7→ 1 | sucm, V 7→
A× V ). In this case equality reasoning is implicit. While we have a choice how to define
vectors, some types are only possible to encode using one form or the other.

I Example 2. A type that must be stratified is the encoding of reducibility for simply typed
lambda terms. This example is explored in detail by Cave and Pientka [5]; our work gives it
theoretical justification.

Here the index objects are the simple types, unit and arr A B of index type tp, as well
as lambda terms (), lam x.M and app M N of index type tm. We can define reducibility
as a stratified type of kind Πa:tp.Πm:tm.∗. This relies on an indexed recursive type Halt
(omitted here) that describes when a term m steps to a value.

Red ≡ Rec ( unit 7→ Λm.Halt m
| arr a b,Ra, Rb 7→ Λm.Halt m× (n:tm); Ra n→ Rb (app m n) )

I Example 3. To illustrate a corecursive type, we define an indexed stream of bits following
Thibodeau et al. [21]. The index here guarantees that we are reading exactly m bits. Once
m = 0, we read a new message consisting of the length of the message n together with a
stream indexed by n. In contrast to the recursive type definition for vectors, here the equality
constraints guard the observations we can make about a stream.

Stream ≡ νStr.Λm. (·); m = 0 → Σn: nat . Str n
× (n: nat); m = sucn → Str n
× (n: nat); m = sucn → Bit
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3.2 Terms
Tores contains many common constructs found in functional programming languages, such
as unit, pairs and case expressions. We focus on the less standard constructs: indexed
functions, equality witnesses, well-founded recursion and index induction.

Terms t, s ::= x | 〈〉 | λ~u, x. t | t ~M s | 〈t1, t2〉 | split s as 〈x1, x2〉 in t
| ini t | (case t of in1 x1 7→ t1 | in2 x2 7→ t2)
| pack (M, t) | unpack t as (u, x) in s
| refl | eq s with (∆.Θ 7→ t) | eq_abort s
| inµ t | rec f. t | corec f. t | outν t | inl t | outl t | ind t0 (u, f. ts) | t:T

Since we combine the dependent and simple function types in (−−→u:U); T1 → T2, we similarly
combine abstraction over index variables ~u and a term variable x in our function term λ~u, x. t.
The corresponding application form is t ~M s. The term t of function type (−−→u:U); T1 → T2
receives first a spine ~M of index objects followed by a term s. Each equality type M = N

has at most one inhabitant refl witnessing the equality. There are two elimination forms for
equality: the term eq s with (∆.Θ 7→ t) uses an equality proof s for M = N together with a
unifier Θ to refine the body t in a new index context ∆. It may also be the case that the
equality witness s is false, in which case we have reached a contradiction and abort using the
term eq_abort s . Both forms are necessary to make use of equality constraints that arise
from indexed type definitions and to show that some cases are impossible.

Recursive types are introduced by the “fold” syntax inµ , and stratified types are intro-
duced by inl terms. Here l ranges over constructors in the index language such as 0 and
suc. The important difference is how we eliminate recursive and stratified types. We can
analyze data defined by a recursive type using Mendler-style recursion rec f. t. This gives a
powerful means of recursion while still ensuring termination. Stratified types can only be
unfolded using outl according to the index. To take full advantage of stratified types, we also
allow programmers to use well-founded recursion over index objects, writing ind t0 (u, f. ts).
Intuitively, if the index object is 0, then we pick the first branch and execute t0; if the index
object is sucM then we pick the second branch instantiating u withM and allowing recursive
calls f inside ts. While this induction principle is specific to natural numbers, it can also be
derived for other index domains, in particular contextual LF (see Pientka and Abel [17]).

I Example 4. Recall that vectors can be defined using the indexed recursive type Vecµ or
the stratified type VecS . Which definition we choose impacts how we write programs that
analyze vectors. We show the difference using a recursive function that copies a vector.

copy : (n: nat); Vecµ n→ Vecµ n ≡ rec f. λ n, v. case v of
| in1 z 7→ inµ (in1 z)
| in2 s 7→ unpack s as (m, p) in

split p as 〈e, p′〉 in
split p′ as 〈h, t〉 in
inµ (in2 (pack (m, 〈e, 〈h, f m t〉〉)))

To analyze the recursively defined vector, we use recursion and case analysis of the input
vector to reconstruct the output vector. If we receive a non-empty list, we take it apart and
expose the equality proofs, before reassembling the list. The recursion is valid according to
the Mendler typing rule since the recursive call to f is made on the tail of the input vector.

To contrast we show the program using induction on natural numbers and unfolding the
stratified type definition of VecS . Note that the first argument is the natural number index
n paired with a unit term argument, since index abstraction is always combined with term
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abstraction. The program analyzes n and in the suc case unfolds the input vector before
reconstructing it using the result of the recursive call. In this version of copy the equality
constraints are handled silently by the type checker.

copy : (n: nat); 1→ (·); VecS n→ VecS n ≡
ind ( 0 7→ λ v. in0 〈〉
| sucm, fm 7→ λ v. split (outsuc v) as 〈h, t〉 in insuc 〈h, fm t〉)

I Example 5. Note that Tores does not have an explicit notion of falsehood. This is
because it is definable using existing constructs: we can define the empty type as a recursive
type ⊥ ≡ µX: ∗ . X, and a contradiction term abort ≡ rec f. f : ⊥ → C, for any type C.
Our termination result with the logical relation in Section 4.3 shows that the ⊥ type contains
no values and hence no closed terms, which implies logical consistency of Tores (not all
propositions can be proven).

3.3 Typing Rules

We define a bidirectional type system in Fig. 2. We focus here on equality, recursive and
stratified types.

The introduction for an index equality type is simply refl, which is checked via equality
in the index domain. Both equality elimination forms rely on unification in the index domain
(see Section 2.2). Specifically, the eq_abort s term checks against any type because the
unification must fail, establishing a contradiction. For the term eq s with (∆′.Θ 7→ t) ,
unification must result in the MGU which by Req. 4 is α-equivalent to the supplied unifier
(∆′ | Θ). We then check the body t using the new index context ∆′ and Θ applied to the
contexts Ξ and Γ and the goal type T .

This treatment of equality elimination is similar to the use of refinement substitutions
for dependent pattern matching [18, 4], and is inspired by equality elimination in proof
theory [23, 12, 19]. In the latter line of work, type checking involves trying all unifiers from
a complete set of unifiers (which may be infinite!), instead of a single most general unifier.
We believe our requirement for a unique MGU is a practical choice for type checking.

Indexed recursive and stratified types are both introduced by injections (inµ and inl ),
though their elimination forms are different. Stratified types are eliminated (unfolded) in
reverse to the corresponding fold rules. For recursive types on the other hand, the naive unfold
rules lead to nontermination, so we use a Mendler-style recursion form rec f. t, generalizing
the original formulation [13] to an indexed type system. The idea is to constrain the type
of the function variable f so that it can only be applied to structurally smaller data. This
is achieved by declaring f of type (−−→u:U); X ~u → T in the premise of the rule. Here X
represents types exactly one constructor smaller than the recursive type, so the use of f is
guaranteed to be well-founded.

I Theorem 6. Type checking of terms is decidable.

Proof. Since the typing rules are syntax directed, it is straight-forward to extract a type
checking algorithm. Note that the algorithm relies on decidability of judgments in the index
language, namely index type checking (Req. 1), equality (Req. 2) and unification (Req. 4). J
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∆; Ξ; Γ ` t⇐ T Term t checks against input type T

∆; Ξ; Γ ` t1 ⇐ T1 ∆; Ξ; Γ ` t2 ⇐ T2

∆; Ξ; Γ ` 〈t1, t2〉 ⇐ T1 × T2

∆; Ξ; Γ ` p⇒ T1 × T2 ∆; Ξ; Γ, x1:T1, x2:T2 ` t⇐ T

∆; Ξ; Γ ` split p as 〈x1, x2〉 in t⇐ T

∆; Ξ; Γ ` t⇐ Ti

∆; Ξ; Γ ` ini t⇐ T1 + T2

∆; Ξ; Γ ` t⇒ T1 + T2 ∆; Ξ; Γ, x1:T1 ` t1 ⇐ S ∆; Ξ; Γ, x2:T2 ` t2 ⇐ S

∆; Ξ; Γ ` (case t of in1 x1 7→ t1 | in2 x2 7→ t2)⇐ S

∆ `M : U ∆; Ξ; Γ ` t⇐ T [M/u]
∆; Ξ; Γ ` pack (M, t)⇐ Σu:U. T

∆; Ξ; Γ ` t⇒ Σu:U. T ∆, u:U ; Ξ; Γ, x:T ` s⇐ S

∆; Ξ; Γ ` unpack t as (u, x) in s⇐ S

∆ `M = N
∆; Ξ; Γ ` refl⇐M = N

∆; Ξ; Γ ` s⇒M = N ∆ `M + N ↘ #
∆; Ξ; Γ ` eq_abort s ⇐ T

∆; Ξ; Γ ` s⇒M = N ∆ `M + N ↘ (∆′ | Θ) ∆′; Ξ[Θ]; Γ[Θ] ` t⇐ T [Θ]
∆; Ξ; Γ ` eq s with (∆′.Θ 7→ t) ⇐ T

∆; Ξ; Γ ` t⇐ T [
−−→
M/u;µX:K.Λ ~u. T/X]

∆; Ξ; Γ ` inµ t⇐ (µX:K.Λ ~u. T ) ~M

∆; Ξ, X:K; Γ, f :((−−→u:U); X~u→ T ) ` t⇐ (−−→u:U); S[
−−→
u/v]→ T

∆; Ξ; Γ ` rec f. t⇐ (−−→u:U); (µX:K.Λ−→v . S) ~u→ T

∆; Ξ, X:K; Γ, f :((−−→u:U); S → X~u) ` t⇐ (−−→u:U); S → T [
−−→
u/v]

∆; Ξ; Γ ` corec f. t⇐ (−−→u:U); S → (νX:K.Λ−→v . T ) ~u

∆,−−→u:U ; Ξ; Γ, x:S ` t⇐ T

∆; Ξ; Γ ` λ~u, x. t⇐ (−−→u:U); S → T

∆; Ξ; Γ ` t0 ⇐ T [0/u] ∆, u: nat; Ξ; Γ, f :T ` ts ⇐ T [sucu/u]
∆; Ξ; Γ ` ind t0 (u, f. ts)⇐ (u: nat); 1→ T ∆; Ξ; Γ ` 〈〉 ⇐ 1

∆; Ξ; Γ ` t⇐ T0 ~M

∆; Ξ; Γ ` in0 t⇐ TRec 0 ~M

∆; Ξ; Γ ` t⇐ Ts[N/u; (TRec N)/X] ~M

∆; Ξ; Γ ` insuc t⇐ TRec (sucN) ~M
∆; Ξ; Γ ` t⇒ T

∆; Ξ; Γ ` t⇐ T

∆; Ξ; Γ ` t⇒ T Term t synthesizes output type T

x:T ∈ Γ
∆; Ξ; Γ ` x⇒ T

∆; Ξ; Γ ` t⇒ (−−→u:U); S → T ∆ ` ~M : (−−→u:U) ∆; Ξ; Γ ` s⇐ S[
−−→
M/u]

∆; Ξ; Γ ` t ~M s⇒ T [
−−→
M/u]

∆; Ξ; Γ ` t⇒ TRec 0 ~M

∆; Ξ; Γ ` out0 t⇒ T0 ~M

∆; Ξ; Γ ` t⇒ TRec (sucN) ~M

∆; Ξ; Γ ` outsuc t⇒ Ts[N/u; (TRec N)/X] ~M
∆; Ξ; Γ ` t⇐ T

∆; Ξ; Γ ` t:T ⇒ T

∆; Ξ; Γ ` t⇒ (νX:K.Λ ~u. T ) ~M

∆; Ξ; Γ ` outν t⇒ T [
−−→
M/u; νX:K.Λ ~u. T/X]

Figure 2 Typing rules for Tores.

3.4 Operational Semantics
We define a big-step operational semantics using environments, which provide closed values
for the free variables that may occur in a term.

Term environments σ := · | σ, v/x
Function values g := λ~u, x. t | rec f. t | corec f. t | ind t0 (u, f. ts)
Closures c := (g)[θ;σ] | (corec f. t)[θ;σ] · ~N v

Values v := c | 〈〉 | 〈v1, v2〉 | ini v | pack (M, v) | refl | inµ v | inl v

Values consist of unit, pairs, injections, reflexivity, and closures. Typing for values and
environments, which is used to state the subject reduction theorem, are given in the appendix.

The main evaluation judgment, t[θ;σ] ⇓ v, describes the evaluation of a term t under
environments θ;σ to a value v. Here, t stands for a term in an index context ∆ and term



R. Jacob-Rao, B. Pientka, and D. Thibodeau 19:9

t[θ;σ] ⇓ v Term t under environments θ and σ evaluates to v

σ(x) = v

x[θ;σ] ⇓ v 〈〉[θ;σ] ⇓ 〈〉
t1[θ;σ] ⇓ v1 t2[θ;σ] ⇓ v2

〈t1, t2〉[θ;σ] ⇓ 〈v1, v2〉
t[θ;σ] ⇓ 〈v1, v2〉 s[θ;σ, v1/x1, v2/x2] ⇓ v

(split t as 〈x1, x2〉 in s)[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(ini t)[θ;σ] ⇓ ini v

t[θ;σ] ⇓ ini v′ ti[θ;σ, v′/xi] ⇓ v
(case t of in1 x1 7→ t1 | in2 x2 7→ t2)[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(t:T )[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(pack (M, t))[θ;σ] ⇓ pack (M [θ], v)

t[θ;σ] ⇓ pack (N, v′) s[θ,N/u;σ, v′/x] ⇓ v
(unpack t as (u, x) in s)[θ;σ] ⇓ v

refl[θ;σ] ⇓ refl
s[θ;σ] ⇓ refl ∆ ` Θ .= θ ↘ (· | θ′) t[θ′;σ] ⇓ v

(eq s with (∆.Θ 7→ t) )[θ;σ] ⇓ v
t[θ;σ] ⇓ v

(inl t)[θ;σ] ⇓ inl v

(λ~u, x. t)[θ;σ] ⇓ (λ~u, x. t)[θ;σ] (rec f. t)[θ;σ] ⇓ (rec f. t)[θ;σ]
t[θ;σ] ⇓ inl v

(outl t)[θ;σ] ⇓ v

(corec f. t)[θ;σ] ⇓ (corec f. t)[θ;σ]
t[θ;σ] ⇓ c c ·outν ⇓ w

(outν t)[θ;σ] ⇓ w

(ind t0 (u, f. ts))[θ;σ] ⇓ (ind t0 (u, f. ts))[θ;σ]
t[θ;σ] ⇓ c s[θ;σ] ⇓ v c ·

−−−→
M [θ] v ⇓ w

(t ~M s)[θ;σ] ⇓ w

c · ~N v ⇓ w Closure c applied to values ~N and v evaluates to w

t[θ,
−−→
N/u;σ, v/x] ⇓ w

(λ~u, x. t)[θ;σ] · ~N v ⇓ w
t[θ;σ, (rec f. t)[θ;σ]/f ] ⇓ c c · ~N v ⇓ w

(rec f. t)[θ;σ] · ~N (inµ v) ⇓ w

(corec f. t)[θ;σ] · ~N v ⇓ (corec f. t)[θ;σ] · ~N v

t0[θ;σ] ⇓ w
(ind t0 (u, f. ts))[θ;σ] · 0 〈〉 ⇓ w

(ind t0 (u, f. ts))[θ;σ] ·N 〈〉 ⇓ v ts[θ,N/u;σ, v/f ] ⇓ w
(ind t0 (u, f. ts))[θ;σ] · (sucN) 〈〉 ⇓ w

c ·outν ⇓ w Closure c applied to observation outν evaluates to w

t[θ;σ, (corec f. t)[θ;σ]/f ] ⇓ c c · ~N v ⇓ w
((corec f. t)[θ;σ] · ~N v) ·outν ⇓ w

Figure 3 Big-step evaluation rules.

variable context Γ. The index environment θ provides closed index objects for all the index
variables in ∆, while σ provides closed values for all the variables declared in Γ, i.e. ` θ : ∆
and σ : Γ[θ]. For convenience, we factor out the application of a closure c to values ~N and v
resulting in a value w, using a second judgment written c · ~N v ⇓ w. This allows us to treat
application of functions (lambdas, recursion and induction) uniformly. Similarly, we factor
out the application of outν to a closure c in an additional judgment written c ·outν

⇓ w. This
simplifies the type interpretation used to prove termination.

We only explain the evaluation rule for equality elimination eq s with (∆.Θ 7→ t) . We
first evaluate the equality witness s under environments θ;σ to the value refl. This ensures
that θ respects the index equality M = N witnessed by s. From type checking we know
that ∆ ` M [Θ] = N [Θ]: the key is how we extend Θ at run-time to produce a new index
environment θ′ that is consistent with θ. This relies on sound and complete index substitution
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matching (see Section 2.2) to generate θ′ such that · ` θ′ : ∆ and · ` Θ[θ′] = θ. We can then
evaluate the body t under the new index environment θ′ and the same term environment σ
to produce a value v.

Notably absent is an evaluation rule for eq_abort t . This term is used in a branch of a
case split that we know statically to be impossible. Such branches are never reached at run
time, so there is no need for an evaluation rule. For example, consider a type-safe “head”
function, which receives a nonempty vector as input. As we write each branch of a case split
explicitly, the empty list case must use eq_abort t , but is never executed. We now state
subject reduction for Tores.

I Theorem 7 (Subject Reduction).

1. If t[θ;σ] ⇓ v where ∆; ·; Γ ` t ⇐ T or ∆; ·; Γ ` t ⇒ T , and ` θ : ∆ and σ : Γ[θ], then
v : T [θ].

2. If g[θ;σ] · ~N v ⇓ w where ∆; ·; Γ ` g ⇐ (−−→u:U); S → T and ` θ : ∆ and σ : Γ[θ] and
` ~N : (−−→u:U)[θ] and v : S[θ,

−−→
N/u], then w : T [θ,

−−→
N/u].

3. If c ·outν
⇓ w where c : (νX:K.Λ ~u. T ) ~M then w : T [

−−→
M/u; (νX:K.Λ ~u. T )/X].

4 Termination Proof

We now describe our main technical result: termination of evaluation. Our proof uses the
logical predicate technique of Tait [20] and Girard [10]. We interpret each language construct
(index types, kinds, types, etc.) into a semantic model of sets and functions.

4.1 Interpretation of Index Language
We start with the interpretations for index types and spines. In general, our index language
may be dependently typed, as it is if we choose Contextual LF. Hence our interpretation for
index types U must take into account an environment θ containing instantiations for index
variables u. Such an index environment θ is simply a grounding substitution ` θ : ∆.

I Definition 8 (Interpretation of index types JUK and index spines J
−−→
u:UK).

JUK(θ) = {M | · `M : U [θ]}

J(·)K(θ) = {·}
J(u0:U0,

−−→
u:U)K(θ) = {M0, ~M |M0 ∈ JU0K(θ), ~M ∈ J(−−→u:U)K(θ,M0/u0)}

The interpretation of an index type U under environment θ is the set of closed terms
of type U [θ]. The interpretation lifts to index spines (−−→u:U). With these definitions, the
following lemma follows from the substitution principles of index terms (Req. 3).

I Lemma 9 (Interpretation of index substitution).

9.1. If ∆ `M : U and ` θ : ∆ then M [θ] ∈ JUK(θ).
9.2. If ∆ ` ~M : (−−→u:U) and ` θ : ∆ then

−−−→
M [θ] ∈ J(−−→u:U)K(θ).

4.2 Lattice Interpretation of Kinds
We now describe the lattice structure that underlies the interpretation of kinds in our language.
The idea is that types are interpreted as sets of term-level values and type constructors as
functions taking indices to sets of values. We call the set of all term-level values Ω and write
its power set as P(Ω). The interpretation is defined inductively on the structure of kinds.
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I Definition 10 (Interpretation of kinds JKK).

J∗K(θ) = P(Ω)
JΠu:U.KK(θ) = {C | ∀M ∈ JUK(θ). C(M) ∈ JKK(θ,M/u)}

A key observation in our metatheory is that each JKK(θ) forms a complete lattice. In the
base case, J∗K(θ) = P(Ω) is a complete lattice under the subset ordering, with meet and join
given by intersection and union respectively. For a kind K = Πu:U.K ′, we induce a lattice
structure on JKK(θ) by lifting the lattice operations pointwise. Precisely, we define

A ≤JKK(θ) B iff ∀M ∈ JUK(θ). A(M) ≤JK′K(θ,M/u) B(M).

The meet and join operations can similarly be lifted pointwise.
This structure is important because it allows us to define pre-fixed points for operators

on the lattice, which is central to our interpretation of recursive types. Here we rely on the
existence of arbitrary meets, as we take the meet over an impredicatively defined subset of L.

I Definition 11 (Mendler-style pre-fixed and post-fixed points). Suppose L is a complete
lattice and F : L → L. Define µL : (L → L)→ L by

µLF =
∧
{C ∈ L | ∀X ∈ L. X ≤L C =⇒ F(X ) ≤L C}.

and νL : (L → L)→ L by

νLF =
∨
{C ∈ L | ∀X ∈ L. C ≤L X =⇒ C ≤L F(X )}.

We will mostly omit the subscript denoting the underlying lattice L of the order ≤ and
pre-fixed and post-fixed points, µ and ν.

Note that a usual treatment of recursive types would define the least pre-fixed point
of a monotone operator as

∧
{C ∈ L | F(C) ≤ C} and the greatest post-fixed point of a

monotone operator as
∨
{C ∈ L | C ≤ F(C)}, using the Knaster-Tarski theorem. However, our

unconventional definition (following Jacob-Rao et al. [11]) more closely models Mendler-style
(co)recursion and does not require F to be monotone (thereby avoiding a positivity restriction
on recursive types).

4.3 Interpretation of Types
In order to interpret the types of our language, it is helpful to define semantic versions of
some syntactic constructs. We first define a semantic form of our indexed function type
(−−→u:U); T1 → T2, which helps us formulate the interaction of function types with fixed points
and recursion.

I Definition 12 (Semantic function space). For a spine interpretation ~U and functions
A,B : ~U → P(Ω), define ~U , A→ B = {c | ∀ ~M ∈ ~U . ∀v ∈ A( ~M). c · ~M v ⇓ w ∈ B( ~M)}.

It will also be convenient to lift term-level in tags to the level of sets and functions
in the lattice JKK(θ). We define the lifted tags in∗ : JKK(θ) → JKK(θ) inductively on K.
If V ∈ J∗K(θ) = P(Ω) then in∗ V = in V = {in v | v ∈ V}. If C ∈ JΠu:U.K ′K(θ) then
(in∗ C)(M) = in∗ (C(M)) for all M ∈ JUK(θ). Essentially, the in∗ function attaches a tag to
every element in the set produced after the index arguments are received.

Dually we define out∗ν : JKK(θ) → JKK(θ). If V ∈ J∗K(θ) = P(Ω) then out∗ν V =
outν V = {c | c ·outν ⇓ w ∈ V}. If C ∈ JΠu:U.K ′K(θ) then (out∗ν C)(M) = out∗ν (C(M)) for all
M ∈ JUK(θ).
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Finally, we define the interpretation of type variable contexts Ξ. These describe semantic
environments η mapping each type variable to an object in its respective kind interpretation.
Such environments are necessary to interpret type expressions with free type variables.

I Definition 13 (Interpretation of type variable contexts JΞK).

J·K(θ) = {·}
JΞ, X:KK(θ) = {η,X/X | η ∈ JΞK(θ),X ∈ JKK(θ)}

We are now able to define the interpretation of types T under environments θ and η.
This is done inductively on the structure of T .

I Definition 14 (Interpretation of types and constructors).

J1K(θ; η) = {〈〉}
JT1 × T2K(θ; η) = {〈v1, v2〉 | v1 ∈ JT1K(θ; η), v2 ∈ JT2K(θ; η)}
JT1 + T2K(θ; η) = in1 JT1K(θ; η)

⋃
in2 JT2K(θ; η)

J(−−→u:U); T1 → T2K(θ; η) = J(−−→u:U)K(θ), T1 → T2

where Ti( ~M) = JTiK(θ,
−−→
M/u; η) for i ∈ {1, 2}

JΣu:U. T K(θ; η) = {pack (M, v) |M ∈ JUK(θ), v ∈ JT K(θ,M/u; η)}
JT MK(θ; η) = JT K(θ; η)(M [θ])
JM = NK(θ; η) = {refl | `M [θ] = N [θ]}
JXK(θ; η) = η(X)
JΛu. T K(θ; η) = (M 7→ JT K(θ,M/u; η))
JµX:K.T K(θ; η) = µJKK(θ)(X 7→ in∗µ (JT K(θ; η,X/X)))
JνX:K.T K(θ; η) = νJKK(θ)(X 7→ out∗ν (JT K(θ; η,X/X)))
JRecK (0 7→ Tz | sucu, X 7→ Ts)K(θ; η) = RecJKK(θ) (in∗0 JTzK(θ; η))

(N 7→ X 7→ in∗suc JTsK(θ,N/u; η,X/X))
where

RecL : L → (N→ L → L)→ N → L
RecL C F 0 = C
RecL C F (sucN) = F N (RecL C F N)

The interpretation of the indexed function type J(−−→u:U); T1 → T2K(θ; η) contains closures
which, when applied to values in the appropriate input sets, evaluate to values in the
appropriate output set. The interpretation of the equality type JM = NK(θ; η) is the set
{refl} if `M [θ] = N [θ] and the empty set otherwise. The interpretation of a recursive type
is the pre-fixed point of the function obtained from the underlying type expression. Finally,
interpretation of a stratified type built from Rec relies on an analogous semantic operator
Rec. It is defined by primitive recursion on the index argument, returning the first argument
in the base case and calling itself recursively in the step case. Note that the definition of
Rec is specific to the index type it recurses over. We only use the index language of natural
numbers here, so the appropriate set of index values is JnatK = N.

Last, we give the interpretation for typing contexts Γ, describing well-formed term-level
environments σ.

I Definition 15 (Interpretation of typing contexts).

J·K(θ; η) = {·}
JΓ, x:T K(θ; η) = {σ, v/x | σ ∈ JΓK(θ; η), v ∈ JT K(θ; η)}
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4.4 Proof
We now sketch our proof using some key lemmas. The following two lemmas concern the
fixed point operators µ and ν, and are key for reasoning about (co)recursive types and
Mendler-style (co)recursion. These lemmas generalize those of Jacob-Rao et al. [11] from
the simply typed setting.

I Lemma 16 (Soundness of pre-fixed point). Suppose L is a complete lattice, F : L → L and
µ is as in Def. 11. Then F(µF) ≤ µF .

I Lemma 17 (Function space from pre-fixed and post-fixed points). Let L = ~U → P(Ω) and
B ∈ L and F : L → L.

1. If ∀X ∈ L. c ∈ ~U , X → B =⇒ c ∈ ~U , FX → B, then c ∈ ~U , µF → B.
2. If ∀X ∈ L. c ∈ ~U , B→ X =⇒ c ∈ ~U , B→ FX , then c ∈ ~U , B→ νF .

Another key result we rely on is that type-level substitutions associate with our semantic
interpretations. Note that single index (and spine) substitutions on types are handled as
special cases of the result for simultaneous index substitutions. We omit the definitions of
type substitutions for brevity.

I Lemma 18 (Type-level substitution associates with interpretation).
Suppose ∆; Ξ ` T ⇐ K or ∆; Ξ ` T ⇒ K, and ` θ : ∆′ and η ∈ JΞ′K(θ).

1. If ∆′ ` Θ : ∆ and Ξ′ = Ξ[Θ] then JΞ′K(θ) = JΞK(Θ[θ]) and JT [Θ]K(θ; η) = JT K(Θ[θ]; η).
2. If ∆ = ∆′ and Ξ = Ξ′, X:K and ∆′; Ξ′ ` S ⇐ K or ∆′; Ξ′ ` S ⇒ K, then

JT [S/X]K(θ; η) = JT K(θ; η, JSK(θ; η)/X).

Proof. By induction on the structure of T . J

The next two lemmas concern recursive types and terms respectively.

I Lemma 19 (Recursive type contains unfolding).
Let R = µX:K.Λ ~u. S where K = Π−−→u:U. ∗ and ∆; Ξ ` R ⇒ K, and ∆ ` ~M : (−−→u:U) and
` θ : ∆ and η ∈ JΞK(θ). Then inµ JS[

−−→
M/u;R/X]K(θ; η) ⊆ JR ~MK(θ; η).

I Lemma 20 (Backward closure).
Let t be a term, θ and σ environments, and A,B ∈ ~U → P(Ω).

1. If t[θ;σ, (rec f. t)[θ;σ]/f ] ⇓ c′ ∈ ~U , A→ B, then (rec f. t)[θ;σ] ∈ ~U , in∗µA→ B.
2. If t[θ;σ, (corec f. t)[θ;σ]/f ] ⇓ c′ ∈ ~U , A→ B, then (corec f. t)[θ;σ] ∈ ~U , A→ out∗ν B.

Our final lemma concerns the semantic equivalence of an applied stratified type with
its unfolding. Note that here we only state and prove the lemma for an index language of
natural numbers. For a different index language, one would need to reverify this lemma for
the corresponding stratified type. This should be straight-forward once the semantic Rec
operator is chosen to reflect the inductive structure of the index language.

I Lemma 21 (Stratified types equivalent to unfolding).
Let TRec ≡ RecK (0 7→ Tz | sucn, X 7→ Ts) where K = Πn: nat .Π−−→u:U. ∗ and ∆; Ξ ` TRec ⇒
K, and ∆ ` ~M : (−−→u:U) and ∆ ` N : nat and ` θ : ∆ and η ∈ JΞK(θ). Then

1. JTRec 0 ~MK(θ; η) = in0 (JTz ~MK(θ; η)) and
2. JTRec (sucN) ~MK(θ; η) = insuc (JTs[N/n; (TRec N)/X] ~MK(θ; η)).

Finally we state the main termination theorem.

I Theorem 22 (Termination of evaluation). If ∆; Ξ; Γ ` t ⇐ T or ∆; Ξ; Γ ` t ⇒ T , and
` θ : ∆ and η ∈ JΞK(θ) and σ ∈ JΓK(θ; η), then t[θ;σ] ⇓ v for some v ∈ JT K(θ; η).

FSCD 2018
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5 Related Work

Our work draws inspiration from two different areas: dependent type theory and proof theory.
Dependent type theories often support large eliminations that are definitions of dependent

types by primitive recursion. They reduce the same way as term-level recursion. In general,
our work shows how to gain the power of large eliminations in an indexed type system by
simulating reduction on the level of types by unfolding stratified types in their typing rules.

In the world of proof theory, our core language corresponds to a first-order logic with
equality, inductive and stratified (recursive) definitions. Momigliano and Tiu [14, 23] give
comprehensive treatments of logics with induction and co-induction as well as first-class
equality. They present their logics in a sequent calculus style and prove cut elimination
which implies consistency of the logics. Their cut elimination proof extends Girard’s proof
technique of reducibility candidates, similar to ours. Note that they require strict positivity
of inductive definitions, i.e. the head of a definition (analogous to the recursive type variable)
is not allowed to occur to the left of an implication.

Tiu [22] also develops a first-order logic with stratified definitions similar to our stratified
types. His notion of stratification comes from defining the “level” of a formula, which
measures its size. A recursive definition is then called stratified if the level does not increase
from the head of the definition to the body. This is a more general formulation than our
notion of stratification for types: we require the type to be stratified exactly according to
the structure of an index term, instead of a more general decreasing measure. However, we
could potentially replicate such a measure by suitably extending our index language.

Another approach to supporting recursive definitions in proof theory is via a rewriting
relation, as in the Deduction Modulo system [8]. The idea of this system is to generalize
a given first-order logic to account for a congruence relation defined by a set of rewrite
rules. This rewriting could include recursive definitions in the same sense as Tiu. Dowek and
Werner [9] show that such logics under congruences can be proven normalizing given general
conditions on the congruence. Baelde and Nadathur [3] extend this work in the following way.
First, they present a first-order logic with inductive and co-inductive definitions, together with
a general form of equality. They show strong normalization for this logic using a reducibility
candidate argument. Crucially, their proof is in terms of a pre-model which anticipates
the addition of recursive definitions via a rewrite relation. Then they give conditions on
the rewrite rules, essentially requiring that each definition follows a well-founded order
on its arguments. Under these conditions, they are able to construct a pre-model for the
relation, proving normalization as a result. Although their notion of stratification of recursive
definitions is slightly more general than ours, our treatment is perhaps more direct as the
rewriting of types takes place within our typing rules, and our semantic model accounts for
stratified types directly.

From a programmer’s view, the proof theoretic foundations give rise to programs writ-
ten using iterators; our use of Mendler-style (co)recursion is arguably closer to standard
programming practice. Mendler-style recursion schemes for term-indexed languages have
been investigated by Ahn [2]. Ahn describes an extension of System Fω with erasable term
indices, called Fi. He combines this with fixed points of type operators, as in the Fixω
language by Abel and Matthes [1], to produce the core language Fixi. In Fixi, one can embed
Mendler-style recursion over term-indexed data types by Church-style encodings.

Fundamentally, our use of indices is more liberal than in Ahn’s core languages. In
Fi, term indices are drawn from the same term language as programs. They are treated
polymorphically, in analogue with polymorphic type indices, i.e. they must have closed types
and cannot be analyzed at runtime. Our approach is to separate the language of index terms
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from the language of programs. In Tores, the indices that appear in types can be handled
and analyzed at runtime, may be dependently typed and have types with free variables. This
flexibility is crucial for writing inductive proofs over LF specifications as we do in Beluga.

6 Conclusion and Future Work

We presented a core language Tores extending an indexed type system with (co)recursive
types and stratified types. We argued that Tores provides a sound and powerful foundation
for programming (co)inductive proofs, in particular those involving logical relations. This
power comes from the (co)induction principles on recursive types given by Mendler-style
(co)recursion as well as the flexibility of recursive definitions given by stratified types. Type
checking in Tores is decidable and types are preserved during evaluation. The soundness
of our language is guaranteed by our logical predicate semantics and termination proof.
We believe that Tores balances well the proof-theoretic power with a simple metatheory
(especially when compared with full dependent types).

An important question to investigate in the future is how to compile a practical language
that supports (co)pattern matching into the core language we propose in Tores. Similarly
it would also be interesting to explore how our treatment of indexed recursive and stratified
types could help (or hinder) proof search. Such issues are important to solve in order to
create a productive user experience for dependently typed programming and proving.
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A Appendix

A.1 Kinding
We employ a bidirectional kinding system to show when kinds can be inferred and when
kinding annotations are necessary. The judgments use two contexts: an index context ∆ and
a type variable context Ξ. Note that in general the kinds assigned to type variables in Ξ
may depend on index variables in ∆.

A.2 Value Typing
Values are the results of evaluation. Note that values are closed, and hence their typing
judgment does not require a context. However, closures do contain terms (typed with the
main typing judgment) and environments (typed against the contexts ∆ and Γ).
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∆; Ξ ` T ⇐ K Check type T against kind K

∆; Ξ ` 1⇐ ∗
∆; Ξ ` T1 ⇐ ∗ ∆; Ξ ` T2 ⇐ ∗

∆; Ξ ` T1 × T2 ⇐ ∗
∆; Ξ ` T1 ⇐ ∗ ∆; Ξ ` T2 ⇐ ∗

∆; Ξ ` T1 + T2 ⇐ ∗

∆ ` (−−→u:U) itype ∆,−−→u:U ; Ξ ` S ⇐ ∗ ∆,−−→u:U ; Ξ ` T ⇐ ∗

∆; Ξ ` (−−→u:U); S → T ⇐ ∗
∆ ` U itype ∆, u:U ; Ξ ` T ⇐ ∗

∆; Ξ ` Σu:U. T ⇐ ∗

∆ `M : U ∆ ` N : U
∆; Ξ `M = N ⇐ ∗

∆, u:U ; Ξ ` T ⇐ K

∆; Ξ ` Λu. T ⇐ Πu:U.K
∆; Ξ ` T ⇒ ∗
∆; Ξ ` T ⇐ ∗

∆; Ξ ` T ⇒ K Infer a kind K for type T

X:K ∈ Ξ
∆; Ξ ` X ⇒ K

∆; Ξ ` T ⇒ Πu:U.K ∆ `M : U
∆; Ξ ` T M ⇒ K[M/u]

∆; Ξ, X:K ` T ⇐ K

∆; Ξ ` µX:K.T ⇒ K

∆; Ξ, X:K ` T ⇐ K

∆; Ξ ` νX:K.T ⇒ K

K = Πu: nat .K′ ∆; Ξ ` T0 ⇐ K′[0/u] ∆, u: nat; Ξ, X:K′ ` Ts ⇐ K′[sucu/u]
∆; Ξ ` RecK(0 7→ T0 | sucu, X 7→ Ts)⇒ K

Figure 4 Kinding rules for Tores.

v : T Value v has type T

· ` θ : ∆ σ : Γ[θ] ∆; ·; Γ ` g ⇐ T

(g)[θ;σ] : T [θ] 〈〉 : 1
· `M = N

refl : M = N

v1 : T1 v2 : T2
〈v1, v2〉 : T1 × T2

v : Ti
ini v : T1 + T2

· `M : U v : T [M/u]
pack (M, v) : Σu:U. T

v : T [
−−→
M/u;µX:K.Λ ~u. T/X]

inµ v : (µX:K.Λ ~u. T ) ~M

v : T0 ~M

in0 v : TRec 0 ~M

v : Ts[N/u;TRec N/X] ~M
insuc v : TRec (sucN) ~M

· ` θ : ∆ σ : Γ[θ] · ` ~N : ~U v : S[θ,
−−→
N/u]

∆; ·, X:K; Γ, f :((−−→u:U); S → X~u) ` t⇐ (−−→u:U); S → T [
−−→
u/u′]

(corec f. t)[θ;σ] · ~N v : (νX:K.Λ
−→
u′ . T )[θ] ~N

σ : Γ Environment σ has domain Γ

· : ·
σ : Γ v : T

(σ, v/x) : Γ, x:T

Figure 5 Value and environment typing.
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Abstract
Higher inductive-inductive types (HIITs) generalise inductive types of dependent type theories
in two directions. On the one hand they allow the simultaneous definition of multiple sorts that
can be indexed over each other. On the other hand they support equality constructors, thus
generalising higher inductive types of homotopy type theory. Examples that make use of both
features are the Cauchy reals and the well-typed syntax of type theory where conversion rules
are given as equality constructors. In this paper we propose a general definition of HIITs using
a domain-specific type theory. A context in this small type theory encodes a HIIT by listing the
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For example, the inductive type of natural numbers Nat is given by the constructors
zero : Nat and suc : Nat → Nat. The eliminator corresponds to the usual notion of
mathematical induction:

ElimNat : (P : Nat→ Type)(pz : P zero)
(
ps : (n : Nat)→ P n→ P (sucn)

)
(n : Nat)→ P n

P is a family of types over natural numbers, which is called the motive of the eliminator.
It can be viewed as a proof-relevant predicate on Nat. The arguments pz and ps are called
the methods of the eliminator. The target of the eliminator is n and given methods for
each constructor, the eliminator provides a witness of P n. Thus, if P holds for zero and
suc preserves P , then P holds for all natural numbers. The behaviour of the eliminator is
described by a computation-rule (β-rule) for each constructor:

ElimNatP pz ps zero ≡ pz
ElimNatP pz ps (sucn) ≡ ps n (ElimNatP pz ps n)

These express that the eliminator applied to a constructor expression reduces to an application
of the corresponding induction method. From an operational point of view, ElimNat replaces
all the zero and suc constructors with the given induction methods.

Dependent families of types can be defined in a similar way, for example vectors of
A-elements VecA : Nat → Type which are indexed by their length. Another generalisation
of inductive types are mutual inductive types. However, these can be reduced to indexed
families where indices classify constructors for each mutual type. Inductive-inductive types
[23] are mutual definitions where this reduction does not work: here a type is defined together
with a family indexed over it. An example is the following fragment of the well-typed syntax
of type theory where the second sort Ty is indexed over the first sort Con, but constructors
of Con also refer to Ty:

Con : Type sort of contexts
Ty : Con→ Type sort of types given a context
• : Con constructor for the empty context
– B – : (Γ : Con)→ Ty Γ→ Con constructor for context extension
U : (Γ : Con)→ Ty Γ constructor for a base type
Π : (Γ : Con)(A : Ty Γ)→ Ty (ΓBA)→ Ty Γ constructor for dependent functions

There are two eliminators for this type: one for Con and one for Ty. Both take the same
arguments: two motives (P : Con → Type and Q : (Γ : Con) → P Γ → Ty Γ → Type) and
four methods (one for each constructor, we don’t list these).

ElimCon : (P : . . . )(Q : . . . )→ . . .→ (Γ : Con) → P Γ
ElimTy : (P : . . . )(Q : . . . )→ . . .→ (A : Ty Γ)→ QΓ (ElimCon Γ)A

Note that the type of ElimTy refers to ElimCon, which is why this elimination principle is
called recursive-recursive (analogously to the phrase “inductive-inductive”).

Higher inductive types (HITs, [25, Chapter 6]) generalise inductive types in a different
way: they allow constructors expressing equalities of elements of the type being defined. This
enables, among others, the definition of types quotiented by a relation. For example, the
type of integers Int can be given by a constructor pair : Nat → Nat → Int and an equality
constructor eq : (a b c d : Nat) → a + d =Nat b + c → pair a b =Int pair c d targetting an
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equality of Int. The eliminator for Int expects a motive P : Int→ Type, a method for the pair
constructor p : (a b : Nat)→ P (pair a b) and a method for the equality constructor path. This
method is a proof that given e : a+ d =Nat b+ c, p a b is equal to p c d (the types of which are
equal by e). Thus the method for the equality constructor ensures that all functions defined
from the quotiented type respect the relation. Since the integers are supposed to be a set
(which means that any two equalities between the same two integers are equal), we would need
an additional higher equality constructor trunc : (x y : Int)→ (p q : x =Int y)→ p =x=Inty q.
HITs allow equality constructors at any level. With the view of types as spaces in mind, point
constructors add points to the space, equality constructors add paths and higher constructors
add homotopies between paths.

Not all constructor expressions make sense. For example [25, Example 6.13.1], given an
f : (X : Type) → X → X, suppose that an inductive type Ival is generated by the point
constructors a : Ival, b : Ival and a path constructor σ : f Ival a =Ival f Ival b. The eliminator
for this type should take a motive P : Ival→ Type, two methods pa : P a and pb : P b, and a
path connecting elements of P (f Ival a) and P (f Ival b). However it is not clear what these
elements should be: we only have elements pa : P a and pb : P b, and there is no way in
general to transform these to have types P (f Ival a) and P (f Ival b).

Another invalid example is an inductive type Neg with a constructor con : (Neg→ ⊥)→
Neg where ⊥ is the empty type. An eliminator for this type should (at least) yield a projection
function proj : Neg→ (Neg→ ⊥). Given this, we can define u :≡ con (λx.projxx) : Neg and
then derive ⊥ by projuu. The existence of Neg would make the type theory inconsistent.
A common restriction to avoid such situations is strict positivity. It means that the type
being defined cannot occur on the left hand side of a function arrow in a parameter of a
constructor. This excludes the above constructor con.

In this paper we propose a general syntax for higher inductive-inductive types (HIITs)
which includes the above positive examples and excludes the negative ones. Our syntax for
HIITs allows any number of inductive-inductive sorts, possibly infinitary higher constructors
of any dimension and restricts constructors to strictly positive ones. It also allows free usage
of J and refl in HIIT specifications. We also show how to derive the types of the eliminators
and computation rules from the type formation rules and constructors.

The core idea is to represent HIIT specifications as contexts in a domain-specific type
theory which we call the theory of codes. A context in this theory can be seen as a code for
a HIIT, similarly to how a container [1] can be seen as a code for a simple inductive type.
Type formers in the theory of codes are restricted in order to enforce strict positivity. For
example, natural numbers are defined as the three-element context

Nat : U, zero : Nat, suc : Nat→ Nat

where Nat, zero and suc are simply variable names, and underlining denotes El (decoding)
for the Tarski-style universe U.

We use a variant of Bernardy et al.’s logical predicate translation [8] to derive the types of
motives and methods, and a logical relation translation to derive the types of the eliminators
and computation rules. The target of these translations is a type theory with a predicative
hierarchy of Russell-style universes closed under Π, Σ, the equality (identity) type – = –
and the unit type >. The source type theory is the target type theory extended with rules
for the theory of codes.

To our knowledge, this is the first proposal for a definition of HIITs. Proving the existence
of the HIITs thus specified is left as future work.

FSCD 2018
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1.1 Overview of the paper
We start by describing the target type theory in Section 2. In Section 3, we define the source
type theory. The source type theory is the target theory extended with the theory of codes, i.e.
the rules to describe HIITs. We also provide several examples of HIIT definitions. In Section
4 we define three syntactic translations from the source to the target theory, each depending
on the previous one: first, we compute the types of type formation rules and constructors
(Section 4.1); then, assuming the constructors exist, we compute the types of motives and
methods (Section 4.2); finally we compute the types of the eliminators together with their
computation rules (Section 4.3). To illustrate these operations, we show how they compute on
a few example codes: natural numbers, the circle, indexed W-types and the two-dimensional
sphere (Appendix A). In Section 5 we add the pieces together by specifying what it means
for the target type theory to support HIITs. Section 6 describes the formalisation and a
Haskell implementation. We conclude in Section 7.

1.2 Related work
Inductive types can be specified using external syntactic schemes or internal codes. In the
former case the type theory is extended with derivation rules specifying inductive types.
In the latter case there is an internal type of codes such that each code represents a valid
inductive type, and actual types are produced from codes by decoding functions. Our
development uses the former approach.

External schemes for inductive families are given in [13, 24], for inductive-recursive types
in [14]. A symmetric scheme for both inductive and coinductive types is given in [5]. Basold et
al. [6] define an external syntactic scheme for higher inductive types with only 0-constructors
and compute the types of elimination principles. In [27] a semantics is given for the same
class of HITs but with no recursive equality constructors. Dybjer and Moeneclaey define a
syntactic scheme for finitary HITs and show their existence in a groupoid model [15].

Internal codes for simple inductive types such as natural numbers, lists or binary trees
can be given by containers which are decoded to W-types [1]. Morris and Altenkirch [22]
extend the notion of container to that of indexed container which specifies indexed inductive
types. Codes for inductive-recursive types are given in [16]. Inductive-inductive types were
introduced by Forsberg together with an internal coding scheme [23]. Sojakova [26] defines a
subset of HITs called W-suspensions by an internal coding scheme similar to W-types. She
proves that the induction principle is equivalent to homotopy initiality.

Quotient types [17] are precursors of higher inductive types (HITs). The notion of HIT
first appeared in [25], however only through examples and without a general definition.
Lumsdaine and Shulman give a general specification of models of type theory supporting
higher inductive types [21]. They introduce the notion of cell monad with parameters and
characterise the class of models which have intial algebras for a cell monad with parameters.
Kraus [19] and Van Doorn [12] construct propositional truncation as a sequential colimit.
The schemes mentioned so far do not support higher inductive-inductive types.

The closest to our work is the article of Altenkirch et al. [2] which gives a categorical
specification of quotient inductive-inductive types (QIITs), i.e. set-truncated higher inductive-
inductive types. Sorts are specified as a list of functors into Set where the domain of
the functor is a category constructed from results of the previous functors, thus encoding
dependencies of later sorts on previous ones. The constructors are specified mutually with
their category of algebras and underlying carrier functor. The specification supports set-level
equality constructors. From a specification of a QIIT they derive the type of the eliminator
and show that this corresponds to initiality.
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The logical predicate syntactic translation was introduced by Bernardy et al. [8]. The
idea that a context can be seen as a definition of an inductive type and the logical predicate
translation can be used to derive the types of motives and methods was described in [3,
Section 5.3]. Logical relations are used to derive the computation rules in [18, Section
4.3], however only for closed QIITs. Syntactic translations in the context of the calculus of
inductive constructions are discussed in [10]. Logical relations and parametricity can also
be used to justify the existence of inductive types in a type theory with an impredicative
universe [4]. In contrast, we only use logical relations to describe HIITs.

2 Target type theory

In this section we describe the target type theory. It is the target of our translations, and
it also serves as a source of constants which are external to the HIIT being defined. It has
Russell-style universes, Π, Σ, equality (identity) and unit type. Our notation is close to
Agda’s: we use named variables, terms are identified up to α-conversion, substitution and
weakening are implicit. To distinguish notation from the theory of codes described in the
next section, we write term formers and metavariables in brick red colour. We have the
following judgement kinds.

` Γ Γ is a valid target context
Γ ` t :A the target term t has target type A in target context Γ

We only describe the target type theory in informal English instead of writing down all the
rules, since they are standard. See [25, Appendix A.2] for a formal treatment.

Context extension is written Γ, x :A. We have a cumulative hierarchy of universes Typei.
Dependent function space is denoted (x :A)→B. We write A→B if B does not depend

on x, and → associates to the right, (x : A)(y : B)→ C abbreviates (x : A)→ (y : B)→ C

and (x y :A)→B abbreviates (x :A)(y :A)→B. We write λx.t for abstraction and t u for
left-associative application.

(x :A)×B stands for Σ types, A×B for the non-dependent version and × associates to
the left. The constructor for Σ types is denoted (t, u) with eliminators proj1 and proj2. Both
Π and Σ have definitional β and η rules.

The equality (identity) type for a type A and elements t :A, u :A is denoted t=A u and
comes with the constructor reflt and eliminator J with definitional β-rule. The notation is
JA tP pr u eq for t :A, P : (x :A)→ t=A x→Typei, pr :P t refl and eq : t=A u. Sometimes we
omit parameters in subscripts.

We will use the following functions defined using J in the standard way. We write
trP e t : P v for transport of t : P u along e : u= v. We write ap f e : f u= f v for f : A→B

and e : u= v, apd f e : trP e (f u) = f v for f : (x :A)→B and e : u= v.
The unit type is denoted > with constructor tt.

3 Source type theory

The source type theory is the target type theory extended with the following judgement
kinds.

Γ ` ∆ ∆ is a context in the target context Γ
Γ; ∆ ` A A is a type in context ∆ and target context Γ
Γ; ∆ ` t : A t is a term of type A in context ∆ and target context Γ

FSCD 2018



20:6 A Syntax for Higher Inductive-Inductive Types

(1) Contexts and variables

`Γ
Γ ` ·

Γ; ∆ ` A
Γ ` ∆, x : A

Γ; ∆ ` A
Γ; ∆, x : A ` x : A

Γ; ∆ ` x : A Γ; ∆ ` B
Γ; ∆, y : B ` x : A

(2) Universe

Γ; ` ∆
Γ; ∆ ` U

Γ; ∆ ` a : U
Γ; ∆ ` a

(3) Inductive parameters

Γ; ∆ ` a : U Γ; ∆, x : a ` B
Γ; ∆ ` (x : a)→ B

Γ; ∆ ` t : (x : a)→ B Γ; ∆ ` u : a
Γ; ∆ ` t u : B[x 7→ u]

(4) Equality

Γ; ∆ ` a : U Γ; ∆ ` t : a Γ; ∆ ` u : a
Γ; ∆ ` t =a u : U

Γ; ∆ ` t : a
Γ; ∆ ` refl : t =a t

Γ; ∆ ` t : a
Γ; ∆, x : a, z : t =a x ` p : U
Γ; ∆ ` pr : p[x 7→ t, z 7→ refl]
Γ; ∆ ` u : a
Γ; ∆ ` eq : t =a u

Γ; ∆ ` Ja t (x.z.p) pr u eq : p[x 7→ u, z 7→ eq]

Γ; ∆ ` t : a Γ; ∆, x : a, z : t =a x ` p : U Γ; ∆ ` pr : p[x 7→ t, z 7→ refl]
Γ; ∆ ` Jβa t (x.z.p) pr : (Ja t (x.z.p) pr t refl) =p[x 7→t,z 7→refl] pr

(5) Non-inductive parameters

Γ `A : Type0 Γ; ` ∆ (Γ, x :A); ∆ ` B
Γ; ∆ ` (x :A)→ B

Γ; ∆ ` t : (x :A)→ B Γ ` u :A
Γ; ∆ ` t u : B[x 7→ u]

(6) Infinitary parameters

Γ `A : Type0 Γ; ` ∆ (Γ, x :A); ∆ ` b : U
Γ; ∆ ` (x :A)→ b : U

Γ; ∆ ` t : (x :A)→ b Γ ` u :A
Γ; ∆ ` t u : b[x 7→ u]

Figure 1 The theory of HIIT codes (part of the source type theory). Substitution and weakening
are implicit, we assume fresh names everywhere and consider α-convertible terms equal. The Γ;
assumptions are not used or changed in parts (1)–(4).



A. Kaposi and A. Kovács 20:7

We name the subset of rules of the source theory which derives these judgements the theory
of codes. The derivation rules are listed in figure 1. A context ∆ for which Γ ` ∆ can be
derived represents a specification of a HIIT.

Although every judgement is valid up to a context in the target type theory, note that
none of the rules in (1)–(4) depend on or change these assumptions, so they can be safely
ignored until part (5). We explain the rules in order.

(1) The rules for context formation and variables are standard. We assume fresh names
everywhere to avoid name capture. Note that weakening is implicit.

(2) There is a universe U, with decoding written as an underline (usually El in the
literature). Type formation rules will target U. With this part of the syntax we can already
define contexts specifying the empty type, unit type and booleans:

·, Empty : U ·, Unit : U, tt : Unit ·, Bool : U, true : Bool, false : Bool

(3) We have a function space with small domain and large codomain. This can be used to
add inductive arguments to type formation rules and constructors. As U is not closed under
this function space, these function types cannot (recursively) appear in inductive arguments,
which ensures strict positivity. When the codomain does not depend on the domain, a→ B

can be written instead of (x : a)→ B.
Now we can specify the natural numbers as a context:

·, Nat : U, zero : Nat, suc : Nat→ Nat

We can also encode inductive-inductive definitions such as the fragment of the well-typed
syntax of a type theory mentioned in the introduction:

·, Con : U, Ty : Con→ U, • : Con, – B – : (∆ : Con)→ Ty∆→ Con,

U : (∆ : Con)→ Ty ∆, Π : (∆ : Con)(A : Ty∆)(B : Ty (∆BA))→ Ty∆

(4) U is closed under the equality type, with eliminator J and a weak (non-definitional)
β-rule. Weakness is required because the syntactic translation –E defined in Section 4.3
does not preserve this β-rule strictly. Adding equality to the theory of codes allows higher
constructors and inductive equality parameters as well. We can now define the circle HIT as
the following context:

·, S1 : U, base : S1, loop : base =S1 base

The J rule allows constructors to mention operations on paths as well. For instance, the
definition of the torus depends on path composition, which can be defined using J: given
p : t =a u and q : u =a v, p � q abbreviates Ja u x.z.(t=x) p v q : t =a v. The torus is given as
follows.

·, T 2 : U, b : T 2, p : b =T 2 b, q : b =T 2 b, t : p � q =(b=T 2b) q � p

With the equality type at hand, we can define a full well-typed syntax of type theory as given
e.g. in [3] as an inductive type (see the examples in the formalisation described in Section 6).

So far we were only able to define closed HIITs, which excludes lists of a given type or the
integers as given in the introduction. This is where we need the target theory to be included
in the source theory. A context ∆ for which Γ ` ∆ holds can be seen as a specification of an
inductive type which depends on Γ. In the case of lists, Γ will be A : Type0. In the case of
integers, we need Nat : Type0 and –+– : Nat→Nat→Nat from Γ.
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(5) We have a function space where the domain is a type in the target theory. We
distinguish it from (3) by using red brick : instead of : in the domain specification. We
specify lists and the integers as follows.

A : Type0 ` ·, List : U, nil : List, cons : (x :A)→ List→ List

Γ ` ·, Int : U, pair : (x y :Nat)→ Int,

eq : (a b c d :Nat)(p : a+d=Nat b+c)→ pair a b =Int pair c d,
trunc : (xy : Int)(p q : a =Int b)→ p =x=Inty q

In the case of integers, Γ is Nat : Type0, –+– :Nat→Nat→Nat, or alternatively, we could
require natural numbers in the target theory. As another example, propositional truncation
for a type A is specified as follows.

A : Type0 ` ·, tr : U, emb : (x :A)→ tr, eq : (x y : tr)→ x =tr y

The smallness of A is required in (5). It is possible to generalize the syntax of HIITs to
arbitrary universe levels, but it is not essential to the current development. Note that the
(5) function space preserves strict positivity, since in the target theory there is no way to
recursively refer to the inductive type being defined. The situation is analogous to the case
of W -types [1], where shapes and positions can contain arbitrary types but they cannot
recursively refer to the W -type being defined.

(6) U is also closed under a function space where the domain is a target theory type
and the codomain is a small source theory type. We overload the application notation for
non-inductive parameters, as it is usually clear from context which application is meant. The
rules allow types with infinitary constructors, for example trees containing A-elements at the
leaves and branching by B (which could be an infinite type):

A : Type0, B : Type0 ` ·, T : U, leaf : (x :A)→ T , node : ((x :B)→ T )→ T

Here, leaf has a function type (5) and node has a function type (3) with a function type
(6) in the domain. More generally, we can define W -types [1] as follows. S describes the
“shapes” of the constructors and P the “positions” where recursive arguments can appear.

S : Type0, P : S→ Type0 ` ·, W : U, sup : (s : S)→ ((p : P s)→W )→W

For a more complex infinitary example, see the definition of Cauchy reals in [25, Definition
11.3.2]. It can be also found as an example file in our Haskell implementation.

The invalid examples Ival and Neg cannot be encoded by the theory of codes. For Ival,
we can go as far as

·, Ival : U, a : Ival, b : Ival, σ : ? =Ival?.

The first argument of the function f : (X : Type)→X →X is a target theory type, but we
only have Ival : U in the theory of codes. Neg cannot be typed because the first parameter
of the constructor con is a function from a small type to a target theory type, and no such
functions can be formed.

4 A syntactic translation from the source to the target theory

An inductive type is specified by a context in the theory of codes defined in the previous
section. In this section we define the –C, –M and –E operations, which work as follows on
the code for natural numbers.
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(·, Nat : U, zero : Nat, suc : Nat→ Nat)C

≡ >× (n : Type0)× (z : n)× (n→ n)
(·, Nat : U, zero : Nat, suc : Nat→ Nat)M (tt, n, z, s)

≡ >× (nM : n→ Typei)× (zM : nM z)×
(
(x : n)→ nM x→ nM (s x)

)
(·, Nat : U, zero : Nat, suc : Nat→ Nat)E (tt, n, z, s) (tt, nM , zM , sM )

≡ >×
(
nE : (x : n)→ nM x

)
× (zE : nE z = zM )×

(
(x : n)→ nE (s x) = nM x (nE x)

)
The brick red coloured result of –C gives the types of the type formation rule and constructors
as an iterated Σ-type. Assuming the existence of constructors, –M returns the types of
motives and methods. Assuming the existence of constructors and the corresponding motives
and methods, –E returns the types of the eliminator and computation rules as target theory
equalities =. The notation above denotes left-nested iterated Σ-types. A more precise
presentation would replace each variable with a projection from the preceding Σ-type. We
use this notation in order to reduce visual clutter.

Each context entry in the theory of codes specifies a type formation rule or a constructor.
In general, the last component of a type in a context entry is of three possible forms: it is
either U, a for some neutral a, or t =a u. The following table summarizes the results of the
various translations in the mentioned three cases:

return type –C –M –E

U type formation rule motive eliminator
a point constructor method computation rule
t =a u path constructor method expressing higher computation rule

preservation of equality

Note that there is no syntactic distinction between the three kinds of constructors above.
Any number of them can be introduced in any order, and each constructor can refer to any
previous one. A distinguishing feature of our approach is the utilisation of universes instead
of structural rules to introduce new sorts and to ensure strict positivity.

The –C, –M and –E operations are defined by induction on the derivations of the source
syntax. The operations are identity on derivations of target contexts and target terms (of
the forms `Γ and Γ ` t :A) and derive target terms from theory of codes contexts, types and
terms (of the forms Γ ` ∆, Γ; ∆ ` A and Γ; ∆ ` t : A, respectively). We only present the
non-identity parts with pattern matching notation, describing how a context, type or a term
in the theory of codes is converted to a term in the target theory.

All three operations respect definitional equality. This amounts to preserving equalities
of the substitution calculus, as there are no β-rules introduced in the theory of codes.

4.1 Type formation rules and constructors
Given a context in the theory of codes, –C returns the types of type formation rules and
constructors as an iterated Σ-type in the target theory. It is specified as follows.

Γ ` ∆
Γ `∆C : Type1

Γ; ∆ ` A
Γ `AC : ∆C→ Type1

Γ; ∆ ` t : A
Γ ` tC : (γ : ∆C)→AC γ

Given a context depending on the target context Γ, –C returns a type in Γ. Given a type in
context ∆ it returns a family over ∆C. A term is interpreted by a dependent function in the
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target theory. The implementation of –C is essentially the standard model, where everything
is interpreted by its brick red counterpart, except for contexts which are interpreted as
iterated Σ-types.

·C :≡ >
(∆, x : A)C :≡ (γ : ∆C)×AC γ

xC γ :≡ xth component in γ
UC γ :≡ Type0

(a)C γ :≡ aC γ

((x : a)→ B)C γ :≡ (x : aC γ)→BC (γ, x)
(t u)C γ :≡ (tC γ) (uC γ)
((x :A)→ B)C γ :≡ (x :A)→BC γ

(t u)C γ :≡ (tC γ)u
(t =a u)C γ :≡ tC γ = uC γ

reflC γ :≡ refl
(Ja t (x.z.p) pr u eq)C γ :≡ J(aC γ) (tC γ) (λx z.pC (γ, x, z)) (prC γ) (uC γ) (eqC γ)
(Jβa t (x.z.p) pr)C γ :≡ refl
((x :A)→ b)C γ :≡ (x :A)→ bC γ

(t u)C γ :≡ (tC γ)u

For example, –C acts as follows on the topological circle:

(·, S1 : U, b : S1, loop : b = b)C ≡ >× (S1 : Type0)× (b : S1)× (loop : b = b)

The resulting left-nested Σ type could be written explicitly as below. We shall keep to the
more readable notation from now on.(

x′′ :
(
x′ : (x :>)× Type0

)
× proj2 x′

)
× (proj2 x′′ = proj2 x′′)

4.2 Motives and methods
Given a code for an inductive type and the constructors specified by the code, the operation
–M returns the induction motives and methods.

–M is a variant of the unary logical predicate translation of Bernardy et al. [9]. We fix a
level i for the universe we would like to eliminate into. For each context ∆, ∆M is a predicate
over the standard interpretation ∆C. For a type ∆ ` A, AM is a predicate over AC, which
also depends on γ : ∆C and a witness of ∆M γ. All of these may refer to a target theory
context Γ.

Γ ` ∆
Γ `∆M : ∆C→ Typei+1

Γ; ∆ ` A
Γ `AM : (γ : ∆C)→∆M γ→AC γ→ Typei+1

For a term t, tM witnesses that the predicate corresponding to its type holds for tC. This is
often called a fundamental theorem in the literature on logical predicates.

Γ; ∆ ` t : A
Γ ` tM : (γ : ∆C)(γM : ∆M γ)→AM γ γM (tC γ)
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We introduce the following shorthand: t γ γM is abbreviated as t γ2 for some t expression.
The implementation of –M is given below.

·M γ :≡ >
(∆, x : A)M (γ, t) :≡ (γM : ∆M γ)×AM γ2 t

xM γ2 :≡ xth component in γM

UM γ2A :≡ A→ Typei
(a)M γ2 t :≡ aM γ2 t

((x : a)→ B)M γ2 f :≡ (x : aC γ)(xM : aM γ2 x)→BM (γ, x) (γM , xM ) (f x)
(t u)M γ2 :≡ (tM γ2) (uC γ) (uM γ2)
((x :A)→ B)M γ2 f :≡ (x :A)→BM γ2 (f x)
(t u)M γ2 :≡ tM γ2 u

(t =a u)M γ2 e :≡ tr(aM γ2) e (tM γ2) = uMγ2

(reflt)M γ2 :≡ refl(tM γ2)

(Ja t (x.z.p) pr u eq)M γ2 :≡ J
(
J (prM γ2) (eqC γ)

)
(eqM γ2)

(Jβa t (x.z.p) pr)M γ2 :≡ refl
((x :A)→ b)M γ2 f :≡ (x :A)→ bM γ2 (f x)
(t u)M γ2 :≡ tM γ2 u

The predicate for a context is given by iterating –M for its constituent types. For a variable,
the corresponding witness is looked up from γM .

The predicate for the universe, given an element of A : UC γ (with UC γ ≡ Type0) returns
the predicate space over A. The predicate for a type a is given by the predicate for a.

The predicate for a function type with small domain expresses preservation of predicates
(at the domain and codomain types). Witnesses of application are given by recursive
application of –M. The definitions for the other (non-inductive) function spaces are similar,
except there is no predicate for the domain types, and thus no witnesses are required.

The predicate for the equality type t =a u, for each e : (t =a u)C γ, i.e. e : tC γ = uC γ,
says that tM and uM are equal. As these have different types, we have to transport over the
original equality e. The witness for refl is reflexivity in the target theory. The interpretation
of J is given by a double J application, which definition is sourced from [20]. Here, we use a
shortened J notation; we refer to the formalisation (Section 6) for the details.

Again, let us consider the circle example:

(·, S1 : U, b : S1, loop : b = b)M (tt, S1, b, loop)
≡ >× (S1M : S1→ Typei)× (bM : S1M b)× (loopM : tr S1M loop bM = bM )

The inputs of –M here are the code for the circle (the context in black) and a tuple of the
type formation rule S1, the constructor b and the equality constructor loop. It returns a
family over the type S1, an element of this family bM at index b, and and an equality between
bM and bM which lies over loop.

4.3 Eliminators and computation rules
The operation –E yields eliminators and computation rules. It is a generalised binary logical
relation translation where the type of the second parameter of the relation may depend on
the first parameter.
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Contexts are interpreted as dependent binary relations between constructors and methods.
The universe level i was previously chosen for the –M operation.

Γ ` ∆
Γ; ∆E : (γ : ∆C)→∆M γ→ Typei

Types are interpreted as dependent binary relations which additionally depend on (γ, γM , γE)
interpretations of the context.

Γ; ∆ ` A
Γ `AE : (γ : ∆C)(γM : ∆M γ)(γE : ∆E γ γM )(x :AC γ)→AM γ γM x→ Typei

For a term t, tE witnesses that the relation corresponding to its type holds for tC and tM.

Γ; ∆ ` t : A
Γ ` tE : (γ : ∆C)(γM : ∆M γ)(γE : ∆E γ γM )→AE γ γM γE (tC γ) (tM γ γM )

In addition to γ2, we use t γ3 to abbreviate t γ γM γE . The implementation is the following.

·E γ γM :≡ >
(∆, x : A)E (γ, t) (γM , tM ) :≡ (γE : ∆Eγ2)×AE γ3 t tM

xE γ3 :≡ xth component in γE

UE γ3AAM :≡ (x :A)→AM x

(a)E γ3 t tM :≡ aE γ3 t= tM

((x : a)→ B)E γ3 f fM :≡ (x : aC γ)→BE (γ, x) (γM , aE γ3 x) (γE , refl)
(f x)

(
fM x (aE γ3 x)

)
(t u)E γ3 :≡ J (tE γ3 (uC γ)) (uE γ3)
((x :A)→ B)E γ3 f fM :≡ (x :A)→BE γ3 (f x) (fM x)
(t u)E γ3 :≡ tE γ3 u

(t =a u)E γ3 e :≡ tr (tE γ3)
(
tr (uE γ3) (apd (aE γ3) e)

)
(reflt)E γ3 :≡ J refl (tE γ3)
(Ja t (x.z.p) pr u eq)E γ3 :≡

J
(

J
(

J
(
J (λ pM pE prM prE .prE) (tE γ3)

(uncurry pM γ2) (uncurry pE γ3) (prM γ2) (prE γ3)
)
eqC γ

)
uE γ3

)
(eqE γ3)

(Jβa t (x.z.p) pr)E γ3 :≡
J

(
J (λ pM pE . refl) (tE γ3) (uncurry pM γ2) (uncurry pE γ3)

)
(prE γ3)

((x :A)→ b)E γ3 f t :≡ bE γ3 (f t)
(t u)E γ3 :≡ ap (λf.f u) (tE γ3)

The UE and (a)E definitions are the key points of the –E operation. The definitions for
the other –E cases are largely determined by these.

The UE rule yields the type of the eliminator for a type formation rule. In the natural
numbers example above, the non-indexed Nat : U sort is interpreted as nE :(x:n)→nM x. For
indexed sorts, the indices are first processed by the –E cases for inductive and non-inductive
parameters, until the ultimate U return type is reached. Hence, the eliminator for a sort is
always a function.



A. Kaposi and A. Kovács 20:13

Analogously, the –E result type for a point or path constructor is always a β-rule, i.e. a
function type ending in an equality. To see why, consider the (a)E definition. It expresses
that applications of aE eliminators must be equal to the corresponding tM induction methods.
Hence, for path and point constructor types, –E works by first processing all inductive and
non-inductive indices, then finally returning an equality type.

Let us also consider the ((x : a) → B)E case for inductive parameters. Here, we make
crucial use of the fact that the domain type a is small. This provides us aE γ3 x, which
we use to witness the aM γ2 x hypothesis for BE. Without the size restriction on inductive
parameters (which enforces strict positivity), the –E operation would not be possible at all,
because aE for a large a type would be merely an opaque relation instead of an eliminator
function.

Here, we only provide abbreviated definitions for the t u, t =a u, refl, J and Jβ cases. In the
J case, we write uncurry pM for λ γ γM xxM z zM . pM (γ, x, z) (γM , xM , zM ) and analogously
elsewhere. The full definitions can be found in the Agda formalisation. The definitions are
highly constrained by the required types, and not particularly difficult to implement with
the help of a proof assistant; they all involve doing successive path induction on all equalities
available from induction hypotheses, with appropriately generalized induction motives.

The full (Ja t (x.z.p) pr u eq)E definition is quite large, and, for instance, yields a very large
β-rule for the higher inductive torus definition (the reader can confirm this using the Haskell
implementation). Nevertheless, an implementation focused on practicality may provide
smaller specialized –E definitions for commonly used equality operations such as composition
or inverses.

The circle example is a bit more interesting here:

(·, S1 : U, b : S1, loop : b = b)E (tt, S1, b, loop) (tt, S1M , bM , loopM )
≡ >× (S1E : (x : S1)→S1M x)× (bE : S1E b = bM )

× (loopE : tr (λx.tr S1M loop x= bM ) b
E (tr (λx.tr S1M loop (S1E b) = x) b

E (apdS1E loop))

= loopM )

In homotopy type theory, the β-rule for loop is usually just apdS1E loop = loopM , but
here all β-rules are propositional, so we need to transport with bE to make the equation
well-typed. When computing the type of loopE , we start with (b = b)E γ3 loop loopM . Next,
this evaluates to (b = b)E γ3 loop= loopM , and then we unfold the left hand side to get the
doubly-transported expression in the result.

In Appendix A, we show how the elimination principle is computed for the two-dimensional
sphere.

For another example for the translations, we consider indexed W-types which can describe
a large class of inductive definitions [22]. Suppose we are in the target context I : Type0, S :
Type0, P : S→Type0, out : S→ I, in : (s : S)→P s→ I. Then, the code for the corresponding
indexed W-type is the following:

W :≡ (·, w : (i : I)→ U, sup : (s : S)→ ((p : P s)→ w (in s p))→ w (out s))

We pick a universe level j for elimination. The interpretations of W are the following,
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omitting leading > components:

WC ≡ (w : I → Type0)× ((s : S)→ ((p : P s)→ w (in s p))→ w (out s))
WM (w, sup) ≡ (wM : (i : I)→ w i→ Typej)

×
(
(s : S)(f : (p : P s)→ w (in s p))
→ ((p : P s)→ wM (in s p) (f p))→ wM (out s) (sup s f)

)
W E (w, sup) (wM , supM ) ≡

(wE : (i : I)(x : w i)→ wM i x)
×

(
(s : S)(f : (p : P s)→ w (in s p))
→ wE (out s) (sup s f) = supM s f (λp.wE (in s p) (f p))

)
5 Existence of HIITs

The target type theory supports HIITs if whenever we can derive Γ ` ∆ in the source theory,
the following rules are admissible.

Γ ` con∆ : ∆C
Γ `m : ∆M con∆

Γ ` elim∆m : ∆E con∆m

We can add HIITs to the target theory by extending it with the theory of codes (making
the target and the source theory the same) and adding the above rules with the additional
assumption of Γ ` ∆. However, this only adds HIITs with weak computation rules. To make
the computation rules definitional, we would probably need a two-level target type theory
with an equality having an equality reflection rule as in Voevodsky’s homotopy type system
[28] or Andromeda [7].

6 Formalisation and implementation

There are three additional development artifacts to the current work: a Haskell implementa-
tion, a shallow Agda formalisation and a deep Agda formalisation. All three are available
from the homepage of the first author.

The Haskell implementation takes as input a file which contains a representation of a
Γ ` ∆ specification of a HIIT. Then, it checks the input with respect to the rules in figure
1, and outputs an Agda-checkable file which contains the results of the –C, –M and –E

translations. It comes with examples, including the ones in this paper, indexed W-types
[22], the dense completion [23, Appendix A.1.3] and several HITs from [25] including the
definition of Cauchy reals. It can be checked that our implementation computes the expected
elimination principles in these cases.

The shallow Agda formalisation embeds both the source and target theories shallowly
into Agda: it represents types as Agda types, functions as Agda functions, and so on. We
also leave the –C operation implicit. We state each case of the –M and –E translations as
Agda functions from all induction hypotheses to the result type of the translation, which lets
us “typecheck” the translation. We have found that this style of formalisation is conveniently
light, but remains detailed enough to be useful. We also generated some of the code of the
Haskell implementation from this formalisation.

The deep Agda formalisation still uses a shallow embedding of the target type theory,
but it uses a deep embedding of the source theory, in the style of [3]. In the formalisation
we merge the three translations into a single model construction. This allows us to prove
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strict preservation of definitional equalities in the substitution calculus of the source theory,
in contrast to the shallow formalisation, where we cannot reason about definitional equalities
of Agda terms. Due to technical challenges, this formalisation uses transport instead of J in
the source theory, but this still covers a rather large class of HIIT definitions.

7 Conclusions and further work

Higher inductive-inductive types are useful in defining the well-typed syntax of type theory
in an abstract way [3]. From a universal algebra point of view, they provide initial algebras
for multi-sorted algebraic theories where the sorts can depend on each other. From the
perspective of homotopy type theory, they provide synthetic versions of homotopy-theoretic
constructions such as higher dimensional spheres or cell complexes. So far, no general scheme
of HIITs have been proposed. To quote Lumsdaine and Shulman [21]:

“The constructors of an ordinary inductive type are unrelated to each other. But
in a higher inductive type each constructor must be able to refer to the previous ones;
specifically, the source and target of a path-constructor generally involve the previous
point-constructors. No syntactic scheme has yet been proposed for this that covers all
cases of interest while remaining meaningful and consistent.”

In this paper we proposed such a syntactic scheme which also includes inductive-inductive
types. We tackled the problem of complex dependencies on previous type formation rules
and constructors by a well-known method of describing intricate dependencies: the syntax of
type theory itself. We had to limit the type formers to only allow strictly positive definitions,
but these restrictions are the only things that a type theorist has to learn to understand our
codes. Our encoding is also direct in the sense that the types of constructors and eliminators
are exactly as required and not merely up to isomorphisms.

In this paper we only specified HIITs and characterised their induction principles. Proving
their existence is left as further work. This would likely involve reducing HIITs to basic
building blocks such as W-types and quotient types.

The theory of codes was defined as part of the syntax of another type theory, the target
theory. An alternative way would be to define the theory of codes internally to a type
theoretic metatheory in the style of [3]. However, as described in [3, Section 6], there would
be a coherence problem: for the internal syntax to be useful, we need to truncate it to be
a set (as the trunc constructor did for Int in the introduction). As the eliminator needs to
respect the equality given by trunc, we would only be able to eliminate from the internal
type theory into a set. This would preclude the definition of even the –C operation, which
corresponds to the standard model. A possible solution to this problem would be to add
all the higher coherence laws to the syntax (e.g. the pentagon law for the composition of
substitutions) and then prove that the syntax is a set. For this however, we would probably
need a two-level metatheory as in [11].

When working in a metatheory with uniqueness of identity proofs (which implies that
all HIITs are in essence QIITs), the theory of codes admits a category model where the
interpretation of a context is the category of algebras corresponding to the context. In the
future, we would like to prove that these categories have initial algebras given by terms in
the theory of codes.
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A Elimination principle computed for the two-dimensional sphere

The two-dimensional sphere is given by the following context in the theory of codes.

Γ :≡
(
·, S2 : U, b : S2, surf : reflb =(b=S2b) reflb

)
The sphere-algebras are computed as follows.

ΓC ≡ >× (S2 : Type0)× (b : S2)× (surf : reflb =(b=S2b) reflb)
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Given a sphere-algebra and fixing a universe level i, the motives and methods are computed
as follows.

ΓM (tt, S2, b, surf)
≡ >× (S2M : S2→ Typei)

× (bM : S2M b)
× (surfM : tr(trS2M – bM =bM ) surf reflbM = reflbM )

Given a sphere-algebra and the motives and methods for this algebra, the types of the
elimination principles are computed as follows.

ΓE (tt, S2, b, surf) (tt, S2M , bM , surfM )
≡ >× (S2E : (x : S2)→S2M x)

× (bE : S2E b = bM )

×
(
surfE : tr

(
J refl bE

) (
tr

(
J refl bE

) (
apd (λx.tr bE (tr bE (apdS2E x))) surf

))
= surfM

)
Note that if bE is a definitional equality (that is, we have S2E b ≡ bM ), the occurrences of
bE in the type of surfE can be replaced by refl. In this case the type of surfE becomes the
expected apd (apdS2E) surf = surfM .
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1 Introduction

Linear logic, as introduced by Girard [11], is a resource sensitive logic which due to its
flexibility admits multiple different fragments and a wide range of applications. A categorical
model of the multiplicative fragment of intuitionistic linear logic (IMILL) [2, 12] is a symmetric
monoidal closed category, while a categorical model of IMILL with negation is a ∗-autonomous
category [23]. Categories of modules of (cocommutative) Hopf algebras (over a commutative
ring) are important and of interest, especially in representation theory, due in part as they
are (symmetric) monoidal closed categories [7, 15]. Blute [5] and Scott [4] studied the idea of
interpreting categories of modules of Hopf algebras as models of IMILL with negation and its
non-commutative variant. If one were instead to look in a more general setting, categories of
modules of cocommutative Hopf monoids in arbitrary symmetric monoidal closed categories
are again symmetric monoidal closed categories and therefore models of IMILL. But for what
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kind of monoids in categorical models of the multiplicative and exponential fragments of
intuitionistic linear logic (IMELL), is their categories of modules again a categorical model of
IMELL?

The exponential fragment of IMELL adds in the exponential modality which is a unary
connective ! — read as either “of course” or “bang” — admitting four structural rules [2, 19]:
promotion, dereliction, contraction, and weakening. In terms of the categorical semantics:
the exponential modality ! is interpreted as a monoidal coalgebra modality [3] (see Definition
14 below) – also known as a linear exponential comonad [22] – which in particular is a
symmetric monoidal comonad (capturing the promotion and dereliction rules) such that for
each object A, the exponential !A comes equipped with a natural cocommutative comonoid
structure (capturing the contraction and weakening rules). Categorical models of IMELL are
known as linear categories [2, 17, 19], which are symmetric monoidal closed categories with
monoidal coalgebra modalities.

We can now restate the question we aim to answer in this paper:
Question 1: “For what kind of monoid A in a linear category, is the category of modules
of A also a linear category?”

We have already discussed part of the answer regarding the symmetric monoidal closed
structure of a linear category: the monoid A needs to be a cocommutative Hopf monoid. What
remains to be answered is how to ‘extend’, or better yet ‘lift’, the monoidal coalgebra modality
to the category of modules of A. Observing that if A is a monoid, then the endofunctor
A⊗− is a monad (see Section 9) and so the category of modules of A corresponds precisely
to the category of Eilenberg-Moore algebras of the monad A⊗−. Therefore, we can further
generalize the question we want answered:

Question 2: “For what kind of monad on a linear category, is the Eilenberg-Moore
category of algebras of that monad also a linear category?”

This now becomes a question of how to lift a comonad to the Eilenberg-Moore category of a
monad. And the answer to this question brings us into the realm of distributive laws [1, 26].

Main Definitions and Results

The two main definitions of this paper are exponential lifting monads (Definition 17) and
IMELL lifting monads (Definition 20). Briefly, an exponential lifting monad is a symmetric
bimonad with a mixed distributive law over a monoidal coalgebra modality, while an IMELL
lifting monad is an exponential lifting monad on a linear category which is also a Hopf monad.
Proposition 16 provides a partial answer to the Question 2, while Theorem 21 provides the
full answer. We summarize these two main results as follows:

The Eilenberg-Moore category of an exponential lifting monad admits a monoidal coal-
gebra modality (Proposition 16).
The Eilenberg-Moore category of an IMELL lifting monad is a linear category (Theorem
21).

Section 9 and Theorem 24 are dedicated to answering Question 1. Summarizing, where recall
that for a monoid A, the category of modules over A can be seen as the Eilenberg-Moore
category of the monad A⊗−, we have the following two results:

Monoids in the Eilenberg-Moore category of monoidal coalgebra modalities induce expo-
nential lifting monads (Theorem 23).
Monoids with antipodes in the Eilenberg-Moore category of monoidal coalgebra modalities
of a linear category induce IMELL lifting monads (Theorem 24).

In the process of constructing and defining mixed distributive laws involving monoidal
coalgebra modalities, we also discuss mixed distributive laws over the strictly weaker notion
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of coalgebra modalities and define coalgebra modality lifting monads (see Definition 12 below)
in order to also discuss lifting differential category structure (see Section 11).

Conventions: In these notes, we will use diagrammatic order for composition: this means
that the composite map f ; g is the map which first does f then g. Also, to simplify working in
a symmetric monoidal category, we will instead work in a strict symmetric monoidal category,
that is, we will suppress the unit and associativity isomorphisms. For a symmetric monoidal
category we use ⊗ for the tensor product, K for the monoidal unit, and σ : A⊗B → B ⊗A
for the symmetry isomorphism.

2 Mixed Distributive Laws Between Monads and Comonads

Distributive laws between monads, which are natural transformations satisfying certain
coherences with the monad structures, were introduced by Beck [1] in order to both compose
monads and lift one monad to the other’s Eilenberg-Moore category. By lifting we mean
that the forgetful functor from the Eilenberg-Moore category to base category preserves the
monad strictly. In fact, there is a bijective correspondence between distributive laws between
monads and lifting of monads. From a higher category theory perspective, a distributive
law is a monad on the 2-category of monads of a 2-category [24]. There are also several
other notions of distributive laws involving monads and bijective correspondence with certain
liftings [26]. Of particular interest for this paper are mixed distributive laws of monads over
comonads [1] (see Definition 3 below). For a more detailed introduction on distributive laws
and liftings see [26].

If only to introduce notation, we first quickly review the notions of monads and their
algebras, and the dual notions of comonads and their coalgebras [14, Chapter VI].

I Definition 1. A monad on a category X is a triple (T, µ, η) consisting of a functor
T : X→ X and two natural transformations µ : TTA→ TA and η : A→ TA such that:

µ;µ = T(µ);µ η;µ = 1 = T(η);µ (1)

A T-algebra for a monad (T, µ, η) is a pair (A, ν) consisting of an object A and a map
ν : TA→ A such that:

µ; ν = T(µ); ν η; ν = 1 (2)

A T-algebra morphism f : (A, ν)→ (B,ω) is a map f : A→ B such that ν; f = T(f);ω.
The category of T-algebras and T-algebra morphisms is called the Eilenberg-Moore

category of the monad (T, µ, η) and is denoted XT. There is a forgetful functor UT :
XT → X, which is defined on objects as UT(A, ν) = A and on maps as UT(f) = f .

I Definition 2. Dually, a comonad on a category X is a triple (!, δ, ε) consisting of a functor
! : X→ X and two natural transformations δ : !A → !!A and ε : !A → A such that the
dual equations of a monad (1) hold. A !-coalgebra for a comonad (!, δ, ε) is a pair (A,ω),
consisting of an object A and a map ω : A→ !A such that the dual equalities of (2) hold,
while !-coalgebra morphisms are the dual analogue of T-algebra morphisms.

The category of !-coalgebras and !-coalgebra morphisms is called the Eilenberg-Moore
category of the comonad (!, δ, ε) and is denoted X!. There is also a forgetful functor
U! : X! → X.
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I Definition 3. Let (T, µ, η) be a monad and (!, δ, ε) a comonad on the same category. A
mixed distributive law of (T, µ, η) over (!, δ, ε) [26] is a natural transformation λ : T!A→
!TA such that the following diagrams commute:

TT!A
T(λ) //

µ

��

T!TA λ // !TTA
!(µ)
��

!A η //

!(η) &&

T!A

λ

��
T!A

λ
// !TA !TA

(3)

T!A
T(δ) //

λ

��

T!!A λ // !T!A
!(λ)
��

T!A

T(ε) ((

λ // !TA
ε

��
!TA

δ
// !!TA TA

(4)

As with distributive laws between monads, mixed distributive laws allow one to lift
comonads to Eilenberg-Moore categories of monads and also to lift monads to Eilenberg-
Moore categories of comonads, such that the respective forgetful functors preserve the monads
or comonads strictly. In fact, mixed distributive laws are in bijective correspondence with
these liftings:

I Theorem 4. [25, Theorem IV.1] Let (T, µ, η) be a monad and (!, δ, ε) be a comonad on
the same category X. Then the following are in bijective correspondence:
1. Mixed distributive laws of (T, µ, η) over (!, δ, ε);
2. Liftings of the comonad (!, δ, ε) to XT, that is, a comonad (̃!, δ̃, ε̃) on XT such that the

forgetful functor UT preserves the comonad strictly, that is, the following equalities hold:

!; UT = UT; !̃ UT(δ̃) = δ UT(ε̃) = ε

3. Liftings of the monad (T, µ, η) to XT, that is, a monad (T̃, µ̃, η̃) on X! such that the
forgetful functor U! preserves the comonad strictly, that is, the following equalities hold:

T; U! = U!; T U!(µ̃) = µ U!(η̃) = η

We quickly recall part of how to construct liftings from mixed distributive laws (for more
details see [26]). Let λ be a mixed distributive law of (T, µ, η) over (!, δ, ε). For a T-algebra
(A, ν), the pair (!A, ν]) is a T-algebra where the map ν] : T!A→ !A is defined as follows:

ν] := T!A λ // !TA
!(ν) // !A (5)

Dually, if (A,ω) is a !-coalgebra, then the pair (TA,ω[) is a !-coalgebra where the map
ω[ : TA→ !TA is defined as follows:

ω[ := TA
T(ω) // T!A λ // !TA (6)

To see how to construct mixed distributive laws from liftings, see Appendix A.

3 Coalgebra Modalities

Coalgebra modalities were defined by Blute, Cockett, and Seely when they introduced
differential categories [6] and are a strictly weaker notion of monoidal coalgebra modalities.



J-S. P. Lemay 21:5

While monoidal coalgebra modalities are much more popular as they give categorical models of
IMELL, coalgebra modalities have sufficient structure to axiomatize differentiation. Therefore,
we believe it of interest to discuss liftings and mixed distributive laws over coalgebra modalities
in order to also discuss lifting differential category structure (see Section 11). Interesting
examples of coalgebra modalities which are not monoidal can be found in [9].

I Definition 5. In a symmetric monoidal category, a cocommutative comonoid is a triple
(C,∆, e) consisting of an object C, a map ∆ : C → C ⊗C called the comultiplication, and
a map e : C → K called the counit such that the following diagrams commute:

C
∆ //

∆
��

C ⊗ C

∆⊗1
��

C

∆
��

C
∆ //

∆ ""

C ⊗ C

σ

��
C ⊗ C

1⊗∆
// C ⊗ C ⊗ C C C ⊗ C

e⊗1
oo

1⊗e
// C C ⊗ C

(7)

Coalgebra modalities are comonads with the added property that for each object A, the
object !A is naturally a cocommutative comonoid.

I Definition 6. A coalgebra modality [6] on a symmetric monoidal category is a quintuple
(!, δ, ε,∆, e) consisting of a comonad (!, δ, ε), a natural transformation ∆ : !A→ !A⊗ !A, and
a natural transformation e : !A → K such that for each object A, the triple (!A,∆, e) is
a cocommutative comonoid and δ is a comonoid morphism, that is, δ; ∆ = ∆; (δ ⊗ δ) and
δ; e = e.

Requiring that ∆ and e be natural transformations is equivalent to asking that for each
map f : A→ B, the map !(f) : !A→ !B is a comonoid morphism. Every !-coalgebra (A,ω) of
a coalgebra modality (!, δ, ε,∆, e) comes equipped with a cocommutative comonoid structure
[19, 22] with comultiplication ∆ω : A→ A⊗A and counit eω : A→ K defined as follows:

∆ω := A
ω // !A ∆ // !A⊗ !A ε⊗ε // A⊗A eω := A

ω // !A e // K (8)

Notice that since δ is a comonoid morphism, when applying this construction to a cofree
!-coalgebra (!A, δ) we re-obtain ∆ and e, that is, ∆δ = ∆ and eδ = e. Furthermore, by
naturality of ∆ and e, every !-coalgebra morphisms becomes a comonoid morphism on the
induced comonoid structures.

4 Symmetric Bimonads and Lifting Symmetric Monoidal Structure

In order to lift coalgebra modalities to an Eilenberg-Moore category of algebras over a monad,
we must at least have that said Eilenberg-Moore category be a symmetric monoidal category
such that the forgetful functor be a strict monoidal functor. To achieve this, the monad
must also be a symmetric comonoidal monad, which we will here call a symmetric bimonad
following Bruguieres, Lack, and Virelizier’s terminology [7] (orginially introduced under the
name Hopf monad by Moerdijk [21]). In short, a symmetric bimonad monad (see Defintion 8
below) is a monad whose underlying endofunctor is symmetric comonoidal such that certain
extra compatibilities with the monad structure hold. For a higher category theory approach
to the subject, we invite the curious reader to see [27].

I Definition 7. A symmetric comonoidal endofunctor – also known as a symmetric
opmonoidal endofunctor [16] – on a symmetric monoidal category X is a triple (T, n2, n1)
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consisting of an endofunctor T : X→ X, a natural transformation n2 : T(A⊗B)→ TA⊗TB,
and a map n1 : TK → K such that the following diagrams commute:

T(A ⊗ B ⊗ C)
n2 //

n2

��

T(A ⊗ B) ⊗ TC

n2⊗1

��

TA

n2

��

n2 // TA ⊗ TK

1⊗n1

��

T(A ⊗ B)
T(σ)//

n2

��

T(B ⊗ A)

n2

��
TA ⊗ T(B ⊗ C)

1⊗n2
// TA ⊗ TB ⊗ TC TK ⊗ TA

n1⊗1
// !A TA ⊗ TB

σ
// TB ⊗ TA

(9)

Of particular importance to us is that symmetric comonoidal endofunctors preserves
cocommutative comonoids. Indeed, if (C,∆, e) is a cocommutative comonoid, then the triple
(TC,T(∆); n2,T(e); n1) is a cocommutative comonoid.

I Definition 8. A symmetric bimonad [7] on a symmetric monoidal category is a symmet-
ric comonoidal monad, that is, a quintuple (T, µ, η, n2, n1) consisting of a monad (T, µ, η) and
a symmetric comonoidal endofunctor (T, n2, n1) such that the following diagrams commute:

TT(A ⊗ B)

T(n2)

��

µ // T(A ⊗ B)

n2

��

A ⊗ B

η⊗η
##

η // T(A ⊗ B)

n2

��

TTK
µ //

T(n1)

��

TK

n1

��

K
η // TK

n1

��
T(TA ⊗ TB)

n2

��

TA ⊗ TB TK n1
// K K

TTA ⊗ TTB
µ⊗µ
// TA ⊗ TB

(10)

One reason for the name bimonad is that bimonoids (the generalization of bialgebras
for arbitrary symmetric monoidal categories) give rise to bimonads [7] as we will explain in
Section 9.

As previously advertised, the Eilenberg-Moore category of a symmetric bimonad is a
symmetric monoidal category. Define a symmetric monoidal structure on XT as follows: the
monoidal unit is the pair (K, n1), while for a pair of T-algebras (A, ν) and (B, ν′), their
tensor product is defined as the pair (A⊗B, ν ⊗T ν′) where ν ⊗T ν′ is defined as follows:

ν ⊗T ν′ := T(A⊗B) n2 // TA⊗ TB ν⊗ν′
// A⊗B (11)

Therefore, the two left most diagrams of (10) are the statement that n2 is a T-algebra
morphism, while the right most diagrams state that (K, n1) is a T-algebra. In fact, for a
monad on a symmetric monoidal category, symmetric bimonad structures on the monad
are in bijective correspondence with symmetric monoidal structures on the Eilenberg-Moore
category which are strictly preserved by the forgetful functor [26].

5 Lifting Coalgebra Modalities

We now define the notion of mixed distributive laws between symmetric comonoidal endofunc-
tors and coalgebra modalities, in order to lift coalgebra modalities to the Eilenberg-Moore
category of symmetric bimonads.

I Definition 9. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coal-
gebra modality on the same symmetric monoidal category. A mixed distributive law of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) is a mixed distributive law λ of (T, µ, η) over (!, δ, ε) such
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that λ is a comonoid morphism, that is, the following diagrams commute:

T!A

T(∆)
��

λ // !TA

∆

��

T!A

T(e)
��

λ // !TA

e
��

T(!A⊗ !A)

n2

��

TK n1
// K

T!A⊗ T!A
λ⊗λ

// !TA⊗ !TA

(12)

We first observe that these mixed distributive laws preserve the induced comonoid
structure on !-coalgebras in the following sense:

I Lemma 10. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coalgebra
modality on the same symmetric monoidal category, and let λ be a mixed distributive law
of (T, µ, η, n2, n1) over (!, δ, ε,∆, e). If (A,ω) is a !-coalgebra, then the following diagrams
commute:

TA

∆ω[

((

T(∆ω) // T(A⊗A)

n2

��

TA
T(eω) //

eω[

''

TK
n1

��
TA⊗ TA K

where ω[ is defined as in (6), and both ∆ω[ and eω[ are defined as in (8).

Proof. See Appendix B. J

Now we give the equivalence between liftings and mixed distributive laws of symmetric
bimonads over coalgebra modalities.

I Proposition 11. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e) be a coalgebra
modality on the same symmetric monoidal category X. Then the following are in bijective
correspondence:
1. Mixed distributive laws (T, µ, η, n2, n1) over (!, δ, ε,∆, e);
2. Liftings of (!, δ, ε,∆, e) to XT, that is, a coalgebra modality (̃!, δ̃, ε̃, ∆̃, ẽ) on XT which is

a lifting of the underlying comonad (!, δ, ε) to XT (in the sense of Theorem 4) such that
UT(∆̃) = ∆ and UT(ẽ) = e.

Proof. See Appendix B. J

We give a name to symmetric bimonads with these mixed distributive laws.

I Definition 12. Let (!, δ, ε,∆, e) be a coalgebra modality. A coalgebra modality lifting
monad is a sextuple (T, µ, η, n2, n1, λ) consisting of a symmetric bimonad (T, µ, η, n2, n1)
and a mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e).

Proposition 11 implies that the Eilenberg-Moore category a coalgebra modality lifting
monad admits a coalgebra modality which is strictly preserved by the forgetful functor.
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6 Monoidal Coalgebra Modalities

Monoidal coalgebra modalities can be described as coalgebra modalities whose underlying
comonad is a symmetric monoidal comonad such that ∆ and e are compatible with the
symmetric monoidal comonad structure. Symmetric monoidal comonads are simply the
dual notion of symmetric bimonads (Definition 8) and could therefore be called symmetric
bicomonads. However the name symmetric monoidal comonad is used within the linear logic
community and therefore we have elected to keep it here. Though it should be noted that
the term bicomonad was used by Bruguieres, Lack, and Virelizier [7].

I Definition 13. A symmetric monoidal comonad is a quintuple (!, δ, ε,m2,m1) con-
sisting of a comonad (!, δ, ε), a natural transformation m2 : !A ⊗ !B → !(A ⊗ B), and a
map m1 : K → !K such that (!,m2,m1) is a symmetric monoidal functor, that is, the dual
diagrams of (9) commute, and such that δ and ε are monoidal transformations, that is, the
dual diagrams of (10) commute.

As this is the dual notion of symmetric bimonads, the Eilenberg-Moore category of a
symmetric monoidal comonad is a symmetric monoidal category.

I Definition 14. A monoidal coalgebra modality [3] (also called a linear exponential
modality [22]) on a symmetric monoidal category is a septuple (!, δ, ε,∆, e,m2,m1) such that
(!, δ, ε,m2,m1) is a symmetric monoidal comonad and (!, δ, ε,∆, e) is a coalgebra modality, and
such that ∆ and e are monoidal transformations, that is, the following diagrams commute:

!A ⊗ !B

∆⊗∆

��

m2 // !(A ⊗ B)

∆

��

!A ⊗ !B

e⊗e
""

m2 // !(A ⊗ B)

e

��

K
m1 //

m1⊗m1
��

!K

∆

��

K
m1 // !K

e

��
!A ⊗ !A ⊗ !B ⊗ !B

1⊗σ⊗1

��

K K !K

!A ⊗ !B ⊗ !A ⊗ !B
m2⊗m2
// !(A ⊗ B) ⊗ !(A ⊗ B)

(13)

and also that ∆ and e are !-coalgebra morphisms, that is, the following diagrams commute:

!A

∆
��

δ // !!A
!(∆)
��

!A

e

��

δ // !!A
!(e)
��

!A⊗ !A
δ⊗δ
// !!A⊗ !!A m2

// !(!A⊗ !A) K m1
// !(K)

(14)

Notice that the monoidal coalgebra modality requirement that ∆ and e both be monoidal
transformations is equivalent to asking that m2 and m1 are both comonoid morphisms.
Furthermore, if (A,ω) is a !-coalgebra then ∆ω and eω (as defined in (8)) are both !-coalgebra
morphisms. This implies that the tensor product of the Eilenberg-Moore category of a
monoidal coalgebra modality is in fact a product [22].

The most well known and common examples of monoidal coalgebra modalities are known
as free exponential modalities [20]. Free exponential modalities can be described as
monoidal coalgebra modalities with the added property that !A is the cofree cocommtuative
comonoid over A. In this case, !-coalgebras correspond precisely to the cocommutative
comonoids of the symmetric monoidal category. Therefore, the Eilenberg-Moore category of
a free exponential modality is equivalent to the category of cocommutative comonoids of the
base symmetric monoidal category.
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7 Lifting Monoidal Coalgebra Modalities

I Definition 15. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e,m2,m1) be
a monoidal coalgebra modality on the same symmetric monoidal category. A mixed
distributive law (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1) is a mixed distributive law λ of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) such that the following diagrams commute:

T(!A⊗ !B)

T(m2)
��

n2 // T!A⊗ T!B λ⊗λ // !TA⊗ !TB

m2

��

TK

T(m1)
��

n1 // K

m1

��
T!(A⊗B)

λ
// !T(A⊗B)

!(n2)
// !(TA⊗ TB) T!K

λ
// !TK

!(n1)
// !K

(15)

I Proposition 16. Let (T, µ, η, n2, n1) be a symmetric bimonad and (!, δ, ε,∆, e,m2,m1) be a
monoidal coalgebra modality on the same symmetric monoidal category X. Then the following
are in bijective correspondence:
1. Mixed distributive laws of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1) ;
2. Liftings of the monoidal coalgebra modality (!, δ, ε,∆, e,m2,m1) to XT, that is, a monoidal

coalgebra modality (̃!, δ̃, ε̃, ∆̃, ẽ, m̃2, m̃1) on XT which is a lifting of the underlying coalgebra
modality (!, δ, ε,∆, e) to XT (in the sense of Proposition 11) such that UT(m̃2) = m2 and
UT(m̃1) = m1.

Proof. See Appendix C. J

As before, we give a name to symmetric bimonads with these mixed distributive laws.

I Definition 17. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality. An expo-
nential lifting monad is a sextuple (T, µ, η, n2, n1, λ) consisting of a symmetric bimonad
(T, µ, η, n2, n1) and a mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1).

Proposition 16 implies that the Eilenberg-Moore category of an exponential lifting monad
admits a monoidal coalgebra modality which is strictly preserved by the forgetful functor.

8 Lifting Linear Category Structure

Categorical models of IMELL are known as linear categories:

I Definition 18. A linear category [2] is a symmetric monoidal closed category with a
monoidal coalgebra modality.

As linear categories are categorical models of IMELL [2, 17, 19], there is no shortage of
examples of linear categories throughout the literature. Hyland and Schalk provide a very
nice list of various kinds examples in [13, Section 2.4]. Linear categories whose monoidal
coalgebra modality is in fact a free exponential modality are known as Lafont categories
[19] – we discuss a particular example of a Lafont category at the end of Section 9.

The last piece of the puzzle is being able to lift the monoidal closed structure of a linear
category to the Eilenberg-Moore category of our symmetric bimonad in such a way that
the forgetful functor preserves the monoidal closed structure strictly. For this we turn to
Bruguieres, Lack, and Virelizier’s notion of a Hopf monad. Hopf monads were originally
introduced by Bruguieres and Virelizier for monoidal categories with duals [8], but the
definition of Hopf monads was later extended to arbitrary monoidal categories by the two
previous authors and Lack [7]. We choose the later of the two as the definition is somewhat
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simpler. The left and right fusion operators of a symmetric bimonad (T, µ, η, n2, n1) are the
natural transformations hl and hr defined respectively as follows:

hl := T(TA⊗B) n2 // TTA⊗ TB µ⊗1 // TA⊗ TB

hr := T(A⊗ TB) n2 // TA⊗ TTB 1⊗µ // TA⊗ TB

Notice that the fusion operators are T-algebra morphisms.

I Definition 19. A symmetric Hopf monad [7] on a symmetric monoidal category is a
symmetric bimonad whose fusion operators are natural isomorphisms.

Extending on [7, Theorem 3.6], the Eilenberg-Moore category of a Hopf monad of a
symmetric monoidal closed category, is again a symmetric monoidal closed category such
that the forgetful functor preserve the symmetric monoidal closed structure strictly.

I Definition 20. A IMELL lifting monad on a linear category with monoidal coalgebra mod-
ality (!, δ, ε,∆, e,m2,m1) is an exponential lifting monad (T, µ, η, n2, n1, λ) whose underlying
symmetric bimonad is also a symmetric Hopf monad.

I Remark. It is worth mentioning that in the definitions of a monoidal coalgebra modality
monad and of an IMELL lifting monad, we do not require that the underlying endofunctors
of these monads be linearly distributive functors between linear categories in the sense of
Hyland and Schalk [13, Definition 4] or that of Melliés [18, Definition 9].

IMELL lifting monads provide us with following main result of this paper:

I Theorem 21. The Eilenberg-Moore category of an IMELL lifting monad is a linear category
such that the forgetful functor preserves the linear category structure strictly.

9 What Monoids Give IMELL Lifting Monads?

As explained in the introduction, a particular example of Eilenberg-Moore categories we are
interested are those arising as categories of modules over monoids. Indeed, endofunctors of
the form A⊗− for some object A, admit a monad structure precisely when the object A is
a monoid. Recall that a monoid of a monoidal category is a triple (A,∇, u) consisting of an
object A, a map ∇ : A⊗A→ A called the multiplication, and a map u : K → A called the
unit such that the dual of the left and center diagrams of (7) commute (in particular we do
not require the multiplication to be commutative). For a monoid (A,∇, u), the algebras of
the monad (A⊗−,∇⊗ 1, u⊗ 1) are more commonly known as (left) A-modules, and in this
case, we denote the Eilenberg-Moore category instead by MOD(A).

I Definition 22. In a symmetric monoidal category, a bimonoid is a quintuple (A,∇, u,∆, e)
such that (A,∇, u) is a monoid, (A,∆, e) is a comonoid, and the following diagrams commute:

A⊗A

e⊗e ��

∇ // A

e
��

K

u⊗u ��

u // A

∆
��

K
u // A

e
��

A⊗A

∇

��

∆⊗∆ // A⊗A⊗A⊗A

1⊗σ⊗1
��

K A⊗A K A⊗A⊗A⊗A

∇⊗∇
��

A
∆

// A⊗A

(16)
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A Hopf monoid in a symmetric monoidal category is a sextuple (H,∇, u,∆, e, S) consisting
of a bimonoid (H,∇, u,∆, e) and a map S : H → H called the antipode such that the
following diagram commutes:

H ⊗H 1⊗S // H ⊗H
∇

""H

∆
;;

∆ ##

e // K
u //

H ⊗H
S⊗1

// H ⊗H
∇

<< (17)

As previously hinted at, endofunctors of the form A ⊗ − admit a symmetric bimonad
(resp. symmetric Hopf monad) structure precisely when the object A admits a bimonoid
(resp. Hopf monoid) structure whose comultiplication is cocommutative. For details on these
constructions see [7, Example 2.10].

Our goal is now to find bimonoids and Hopf monoids which induce exponential lifting
monads and IMELL lifting monads. For this we turn to monoids in the Eilenberg-Moore
categories of monoidal coalgebra modalities. A monoid in the Eilenberg-Moore category of a
monoidal coalgebra modality (!, δ, ε,∆, e,m2,m1) can be seen as a quadruple (A,ω,∇ω, uω)
consisting of a !-coalgebra (A,ω) and a monoid (A,∇ω, uω) such that ∇ω and uω are !-
coalgebra morphisms, that is, the following diagrams commute:

A⊗A

ω⊗ω
��

∇ω
// A

ω

��

K

m1

��

uω
// A

ω

��
!A⊗ !A m2

// !(A⊗A)
!(∇ω)

// !A !K
!(uω)

// !(A)

(18)

However we just mentioned that A⊗− admit a symmetric bimonad structure if and only if
A admits a bimonoid structure with cocommutative comultiplication. Therefore we could
instead ask for bimonoids. But it turns out that we only need to ask for monoids instead! To
see this, consider monoids in a cartesian monoidal category – which is a category with finite
products regarded as a symmetric monoidal category. Every object in a cartesian monoidal
category is a cocommutative comonoid and every map is a comonoid morphism. Therefore,
since the bimonoid identities are equivalent to requiring that the multiplication and unit
be comonoid morphisms, every monoid in a cartesian monoidal category is automatically
a cocommutative bimonoid. Since the Eilenberg-Moore category of a monoidal coalgebra
modality is a cartesian monoidal category [19, 22], every monoid will be a bimonoid with
cocommutative comultiplication.

Following this observation, we obtain the main result of this section:

I Theorem 23. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality on a symmetric
monoidal category X. Then the following are in bijective correspondence:

1. Monoids in X!;

2. Objects A such that the endofunctor A⊗− admits an exponential monad lifting structure
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whose mixed distributive law λ satisfies the following:

A⊗ !X ⊗ !Y λ⊗1 //

1⊗m2

��

!(A⊗X)⊗ !Y

m2

��
A⊗ !(X ⊗ Y )

λ
// !(A⊗X ⊗ Y )

(19)

Therefore, each monoid in the Eilenberg-Moore category of a monoidal coalgebra modality
induces an exponential lifting monad.

Proof. We only show how to construct one from the other as the proof is somewhat lengthy.
Let (A,ω,∇ω, uω) be a monoid in X!. Define the natural transformation (natural by con-
struction) ω\ : A⊗ !X → !(A⊗X) as follows:

ω\ := A⊗ !X ω⊗1 // !A⊗ !X m2 // !(A⊗X) (20)

Then ω\ is a mixed distributive law of the symmetric bimonad structure of A⊗− over the
monoidal coalgebra modality. Conversly, let λ be a mixed distributive law of the exponential
lifting monad structure of A⊗−. By applying (6) to the !-coalgebra (K,m1), we obtain the
!-coalgebra (A,m[

1) where recall:

m[
1 := A

1⊗m1 // A⊗ !K λ // !A (21)

Furthermore, the comonoid structure on A induced by the symmetric bimonad structure
on A⊗− is precisely the same as the comonoid structure on A induced by the coalgebra
modality from (8). It then follows that the multiplication and unit of A induced by the
symmetric bimonad structure on A⊗− are !-coalgebra morphisms and therefore A admits a
monoid structure in X!. J

I Remark. It is worth pointing out that commutivity of diagram (19) is only necessary for
the bijective correspondence.

As a source of such monoids, since monoidal endofunctors preserve monoids (dual to
what was discussed in Section 4), every monoid (A,∇, u) of the base symmetric monoidal
category X induces a monoid (!A, δ,∇δ, uδ) in X! where ∇δ := m2; !(∇) and uδ := m1; !(u).
In particular, since the monoidal unit K admits a canonical monoid structure, the quadruple
(!K, δ,m2,m1) is a monoid in X!. Another source of such monoids is discussed in the next
section.

Recall that in the special case of a free exponential modality, its Eilenberg-Moore category
is equivalent to the category of cocommutative comonoids of the base symmetric monoidal
category. Therefore, to give a monoid in this Eilenberg-Moore category is precisely to give a
bimonoid with cocommutative comultiplication of the base symmetric monoidal category. In
fact the category of monoids in the Eilenberg-Moore category of a free exponential modality
is equivalent to the category of bimonoids with cocommutative comultiplication of the base
category.

For a bimonoid, there is a unique antipode (if it exists) [15] which makes it into a Hopf
monoid. Therefore we can easily extended Theorem 23 for IMELL lifting monads.

I Theorem 24. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality of a linear category
X. Then the following are in bijective correspondence:
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1. Monoids (A,ω,∇ω, uω) of X! such that there exists an antipode S for the bimonoid
(A,∇ω, uω,∆ω, eω);

2. Objects A such that the endofunctor A ⊗ − admits an IMELL lifting monad structure
whose mixed distributive law satisfies (19).

Therefore, if A is an object of a linear category which admits a monoid structure with antipode
in the Eilenberg-Moore category of the monoidal coalgebra modality, then MOD(A) is a linear
category.

A source of such monoids with antipodes can be found in the next section (Theorem 28).
For Lafont categories – which recall are linear categories whose monoidal coalgebra

modality is a free exponential modalitiy – to give a monoid as in Theorem 24 is precisely
to give a Hopf monoid with cocommutative comultiplication. As an example, consider the
category of vector spaces over a field K, which is a Lafont category where the construction
of !V , which in this case is known as the cofree cocommutative K-coalgebra over V , can be
found here [13, Section 2.4]. Particular examples of Hopf K-algebras [15] with cocommutative
comultiplication include the polynomial rings K[x1, . . . , xn], the tensor algebra T(V ) over a
K-vector spaces V , the group K-algebra K[G] over an arbitrary group G, and also the field
K itself.

10 IMELL Lifting Monads from Additive Structure

We’ve already seen that monoids in the base category provide a source of monoids in the
Eilenberg-Moore category of a monoidal coalgebra modality. In this section we turn to
monoidal coalgebra modalities over additive symmetric monoidal categories to provide us
with another source of monoids in the Eilenberg-Moore category of said monoidal coalgebra
modalities. Here we mean “additive” in the Blute, Cockett, and Seely sense of the term
[6], that is, to mean enriched over commutative monoids. In particular, we do not assume
negatives (at least not yet...see Theorem 27) nor do we assume biproducts — which differs
from other definitions of an additive category found in the literature [14].

I Definition 25. An additive category is a commutative monoid enriched category, that is,
a category in which each hom-set is a commutative monoid with an addition operation + and
a zero 0, and such that composition preserves the additive structure, that is k; (f + g);h =
k; f ;h + k; g;h and 0; f = 0 = f ; 0. An additive symmetric monoidal category is a
commutative monoid enriched symmetric monoidal category, that is, symmetric monoidal
category which is also an additive category in which the tensor product is compatible with
the additive structure in the sense that (f + g)⊗ h = f ⊗ h+ g ⊗ h and 0⊗ f = 0.

It is worth mentioning that every additive category can be completed to a category with
biproducts (which is itself an additive category), and similarly every additive symmetric
monoidal category can be completed to a additive symmetric monoidal category with
biproducts. For this reason, it is possible to argue [10] that one should always assume a
setting with biproducts. The problem is that arbitrary coalgebra modalities do not necessarily
extend to the biproduct completion. However, monoidal coalgebra modalities induce monoidal
coalgebra modalities on the biproduct completion (see [9] for more details).

If (!, δ, ε,∆, e,m2,m1) is a monoidal coalgebra modality on an additive symmetric monoidal
category, then !A comes equipped with a monoid structure [9, Theorem 19] where the
multiplication ∇ and unit u are both !-coalgebra morphisms [9, Lemma 20], [10, Theorem
3.1]. Therefore we obtain the following:

FSCD 2018
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I Lemma 26. Every cofree coalgebra of a monoidal coalgebra modality on an additive
symmetric monoidal category induces an exponential lifting monad. In particular, for each
object A, MOD(!A) is an additive symmetric monoidal category with a monoidal coalgebra
modality.

As promised, we will now add negatives to the story of additive symmetric monoidal
categories. In particular we will now show that cofree coalgebras of monoidal coalgebra
modalities on additive symmetric monoidal categories are Hopf monoids precisely when the
additive symmetric monoidal category also admits additive inverses, i.e. negatives. This
statement should not be too surprising for two reasons. The first reason is that for a Hopf
algebra, the antipode is the bialgebra convolution [15] inverse to the identity. The second
reason is that monoidal coalgebra modalities on additive symmetric monoidal categories are
strongly connected to the additive structure [9]. A category enriched over abelian groups
can be seen as an additive category such that each map f admits an additive inverse, that is,
a map −f such that f + (−f) = 0. Actually, for an additive category to be enriched over
abelian groups, one only requires that the identity maps 1 have additive inverses −1.

I Proposition 27. Let (!, δ, ε,∆, e,m2,m1) be a monoidal coalgebra modality on an additive
symmetric monoidal category. Then there exists a natural transformation S : !A→ !A such
that for each object A, the septuple (!A,∇, u,∆, e, S) is a cocommutative Hopf monoid (where
∇ and u are defined as in [9]) if and only if the additive symmetric monoidal category is
enriched over abelian groups.

Proof. We only give how to construct antipodes from negatives and conversly negatives
from antipodes. Suppose our additive symmetric monoidal category is enriched over abelian
groups. Define the antipode S : !A → !A as S := !(−1). Conversly, suppose there exists a
natural transformation S : !A→ !A such that for each object A, the septuple (!A,∇, u,∆, e, S)
is a cocommutative Hopf monoid. As previously mentioned, it suffices to give an additive
inverse for the identity morphisms. Then for each object A, define the map −1A : A→ A as
follows:

−1A := A
m1⊗1 // !K ⊗A S⊗1 // !K ⊗A ε⊗1 // A (22)

J

Therefore we obtain the following:

I Theorem 28. Every cofree coalgebra of a monoidal coalgebra modality of a linear category
which is also an additive symmetric monoidal category enriched over abelian groups, induces
an IMELL lifting monad. In particular, for each object A, MOD(!A) is a linear category which
is also an additive symmetric monoidal category enriched over abelian groups.

11 Lifting Differential Category Structure

In this final section, we briefly recall the notion of differential categories and discuss lifting
differential category structure. For more details on differential categories see [3, 6, 9].

I Definition 29. A differential category [6] is an additive symmetric monoidal category
with a coalgebra (!, δ, ε,∆, e) equipped with a deriving transformation, that is, a natural
transformation d : !A⊗A→ !A satisfying the identities found in [6, Definition 2.5].
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Similar to our discussion on lifting coalgebra modalities, in order to be able to lift differ-
ential category structure we will need that the Eilenberg-Moore category of our symmetric
bimonad be an additive symmetric monoidal category. In order to achieve this, we will need
the underlying endofunctor of our symmetric bimonad to be additive.

I Definition 30. An additive functor between additive categories is a functor which
preserves the additive structure strictly, that is, a functor T such that T(f + g) = T(f) + T(g)
and T(0) = 0.

One can easily check that for a monad on an additive category whose underlying endo-
functor is additive, that its Eilenberg-Moore category is also an additive category such that
the forgetful functor preserves the additive structure strictly. Similarly, for a symmetric
bimonad on an additive symmetric monoidal category whose underlying endofunctor is
additive, its Eilenberg-Moore category is also an additive category such that the forgetful
functor preserves the additive symmetric monoidal structure strictly. Luckily for us for any
additive symmetric monoidal category, our favourite endofunctor A⊗− is additive for any
object A.

I Definition 31. Let X be a differential category with coalgebra modality (!, δ, ε,∆, e)
equipped with deriving transformation d, and let (T, µ, η, n2, n1) be a symmetric bimonad on
X whose underlying endofunctor is additive. A mixed distributive law of (T, µ, η, n2, n1)
over (!, δ, ε,∆, e) with deriving transformation d is a mixed distributive law λ of
(T, µ, η, n2, n1) over (!, δ, ε,∆, e) such that the following diagram commutes:

T(!A⊗A)

T(d)
��

n2 // T!A⊗ TA λ⊗1 // !TA⊗ TA

d
��

T!A
λ

// !TA

(23)

I Proposition 32. Let X be a differential category with coalgebra modality (!, δ, ε,∆, e)
equipped with deriving transformation d, and let (T, µ, η, n2, n1) be a symmetric bimonad on X
whose underlying endofunctor is additive. Then the following are in bijective correspondence:
1. Mixed distributive laws (T, µ, η, n2, n1) over (!, δ, ε,∆, e) with deriving transformation d ;
2. Liftings of d to XT, that is, a deriving transformation d̃ for the lifted coalgebra modality

(̃!, δ̃, ε̃, ∆̃, ẽ) on XT from Proposition 11 such that UT(d̃) = d.

Proof. See Appendix D. J

In a differential category whose coalgebra modality is also a monoidal coalgebra modality,
the deriving transformation and the monoidal coalgebra modality are compatible in the sense
of [9, Theorem 25]. And therefore it follows that:

I Theorem 33. In a differential category with a monoidal coalgebra modality, the category
of modules over a monoid in the Eilenberg-Moore category of the monoidal coalgebra modality
is a differential category.
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A From Liftings to Mixed Distributive Laws

As we will need to know how to construct mixed distributive laws from liftings and vice-versa
for the proofs of Propositions 11, 16, and 23, we quickly recall part of these constructions here
(for more details see [26]). Constructing liftings from mixed distrubitve laws was discussed
at the end of Section 2.

Let (̃!, δ̃, ε̃) be a lifting of (!, δ, ε) to the Eilenberg-Moore category XT of a monad (T, µ, η).
This implies that for each free T-algebra (TA,µ) we have that !̃(TA,µ) = (!TA,µ]) for some
map µ] : T!TA→ !TA. Define the natural transformation λ : T!A→ !TA as follows:

λ := T!A
T!(η) // T!TA µ]

// !TA (24)

Then λ is a mixed distributive law of (T, µ, η) over (!, δ, ε).

B Proofs of Lemma 10 and Proposition 11

Proof of Lemma 10. The lemma follows from commutativity of the following diagrams:

TA
T(ω) // T!A

(12)

λ // !TA ∆ // !TA⊗ !TA ε⊗ε // TA⊗ TA

(4)

T!A⊗ T!A

λ⊗λ

OO

T(ε)⊗T(ε)

((
TA

T(ω)
// T!A

T(∆)
// T(!A⊗ !A)

n2

66

T(ε⊗ε)
// T(A⊗A)

Nat. of n2

n2
// TA⊗ TA

TA
T(ω) // T!A

(12)

λ // !TA e // K

TA
T(ω)

// T!A
T(e)

// TK n1
// K

J

Proof of Proposition 11. The bijective correspondence will follow from Theorem 4. It
remains to show that the induced lifting of the comonad from the mixed distributive law is
also a lifting of the colagebra modality, and similarly for the mixed distributive law from the
lifting of the coalgebra modality.
(1)⇒ (2): Let λ be a mixed distributive of (T, µ, η, n2, n1) over (!, δ, ε,∆, e). Consider the
induced lifting of (!, δ, ε) from Theorem 4. To prove that we have a lifting of the coalgebra
modality, it suffices to show that ∆ and e are T-algebra morphisms. Then if (A, ν) is
a T-algebra, commutativitiy of the following diagrams show that ∆ and e are T-algebra
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morphisms:

T(!A)

(12)T(∆)

��

λ // !T(A)

Nat. of ∆∆
��

!(ν) // !A

∆

��
T(!A ⊗ !A) n2

// T(!A) ⊗ T(!A)
λ⊗λ

// !T(A) ⊗ !T(A)
!(ν)⊗!(ν)

// !A ⊗ !A

T(!A)

(12)T(e)
��

λ // !T(A)
Nat. of e

e
��

!(ν) // !A

eooT(K) n1
// K

(2)⇒ (1): Let (̃!, δ̃, ε̃, ∆̃, ẽ) be a lifting of (!, δ, ε,∆, e) to XT. This implies that ∆ and e are
T-algebra morphisms, which in particular for free T-algebras (TA, δ), the following diagrams
commute:

T!TA
T(∆)

��

µ]

// !TA

∆
��

T!TA

T(e)
��

µ]

// !TA

e
��

T(!A⊗ !A) n2
// T!TA⊗ T!TA

µ]⊗µ]

// !TA⊗ !TA TK n1
// K

(25)

where recall µ] is the T-algebra structure of !̃(TA,µ) = (!TA,µ]). Consider now the induced
mixed distributive law λ of (T, µ, η) over (!, δ, ε) as defined in (24). Then that λ is also a
mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) follows from commutativity of the
following diagrams:

T!A

Nat. of ∆T(∆)
��

T!(η) // T!TA

(25)

T(∆)
��

µ]

// !TA

∆

��

T!A
T!(η) //

T(e) --

T!A

(25)
Nat. of e T(e)

��

µ]

// !TA

e
��

T(!A⊗ !A)

Nat. of n2n2

��

T(!(η)⊗!(η))
// T(!TA⊗ !TA)

n2

��

TK n1
// K

T!A⊗ T!A
T!(η)⊗T!(η)

// T!TA⊗ T!TA
µ]⊗µ]

// !TA⊗ !TA

J

C Proof of Proposition 16

Proof of Proposition 16. We take the same approach as in the proof of Proposition 11.
Again, the bijective correspondence will follow from Theorem 4.
(1) ⇒ (2): Let λ be a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1).
Consider the induced lifting of (!, δ, ε,∆, e) from Proposition 11. To prove that we have a
lifting of the monoidal coalgebra modality, it suffices to show that m2 and m1 are T-algebra
morphisms. The right diagram of (15) is precisely the statement that m1 is a T-algebra
morphism. Then if (A, ν) and (B, ν′) are T-algebras, commutativitiy of the following diagrams
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show that m2 is a T-algebra morphism:

T(!A⊗ !B)

(15)T(m2)
��

n2 // T!A⊗ T!B λ⊗λ // !TA⊗ !TB

Nat. of m2m2

��

!(ν)⊗!(ν′) // !A⊗ !B

m2

��
T!(A⊗B)

λ
// !T(A⊗B)

!(n2)
// !(TA⊗ TB)

!(ν⊗ν′)
// !(A⊗B)

(2) ⇒ (1): Let (̃!, δ̃, ε̃, ∆̃, ẽ, m̃2, m̃1) be a lifting of (!, δ, ε,∆, e,m2,m1) to XT. In particular,
this implies that m2 and m1 are T-algebra morphisms. In particular for free T-algebras
(TA,µ) and the T-algebra (K, n1), we have that the following diagrams commute:

T(!TA⊗ !TB)

T(m2)
��

n2 // T!TA⊗ !T !B µ]⊗µ]

// !TA⊗ !TB

m2

��

TK

T(m1)
��

n1 // K

m1

��
T!(TA⊗ TB)

(µ⊗Tµ)]

// !(TA⊗ TB) T!K
n]

1

// !K

(26)

where recall for a T-algebra (A, ν), the map ν] is the induced T-algebra on !̃(A, ν) = (!A, ν]),
and µ⊗T µ is defined as in (11). Notice that since both n2 and n1 are T-algebra morphisms,
the lifting implies that !(n2) and !(n1) are also, that is, the following diagrams commute:

T!T(A⊗B)

T!(n2)
��

µ]

// !T(A⊗B)

!(n2)
��

T!TK

T!(n1)
��

µ]

// !TK

!(n1)
��

T!(TA⊗ TB)
(µ⊗Tµ)]

// !(TA⊗ TB) T!K
n]

1

// !K

(27)

Consider the induced mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) from Pro-
position 11. Then that λ is a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e,m2,m1)
follows from commutativity of the following diagrams:

T(!A ⊗ !B)
n2 //

T(!(η)⊗!(η)) ))

T(m2)

��

T!A ⊗ T!B

Nat. of n2

T!(η)⊗T!(η) // T!TA ⊗ !T !B

(26)

µ]⊗µ]

// !TA ⊗ !TB

m2

��

T(!TA ⊗ !TB)

T(m2)

��

n2

44

T!(TA ⊗ TB)

Nat. of m2

(µ⊗Tµ)]

**
T!(A ⊗ B)

T!(η⊗η)

99

T!(η)
// T!T(A ⊗ B)

(10)
(27)

T!(n2)

OO

µ]

// !T(A ⊗ B)
!(n2)

// !(TA ⊗ TB)
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TK

T(m1)

��

n1 // K

m1

��

T!K

(26)

n]
1

''
T!K

T!(η)
// T!TK

(10)
(27)T!(n1)

OO

µ]

// !TK
!(n1)

// !K

J

D Proof of Proposition 32

Proof Proposition 32. The bijective correspondence will follow immediately from Proposi-
tion 11. Therefore, it remains to show that we can obtain one from the other.
(1)⇒ (2): Let λ be a mixed distributive law of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) with deriving
transformation d. Consider the induced lifting of (!, ε, ε,∆, e) from Proposition 11. To prove
that we have a lifting of the deriving transformation, it suffices to show that d is a T-algebra
morphism. Then if (A, ν) is a T-algebra, commutativitiy of the following diagram shows that
d is a T-algebra morphism:

T(!A⊗A)

(23)T(d)
��

n2 // T!A⊗ TA λ⊗1 // !TA⊗ TA

d
��

!(ν)⊗ν //

Nat. of. d

!A⊗A

d
��

T!A
λ

// !TA
!(ν)

// !A

(2)⇒ (1): Let d̃ be a lifting of d to XT. This implies that d is a T-algebra morphism, which
in particular for free T-algebras (TA,µ), the following diagram commutes:

T(!TA⊗ TA)

T(d)
��

n2 // T!TA⊗ TTA µ]⊗µ // !TA⊗ TA

d
��

T!TA
µ]

// !TA

(28)

Consider now the induced mixed distributive law λ of (T, µ, η, n2, n1) over (!, δ, ε,∆, e) from
Proposition 11. Then that λ satisfies the extra necessary condition follows from commutativity
of the following diagram:

T(!A ⊗ A)

d

��

T(!(η)⊗η) **

n2 // T!A ⊗ TA

Nat. of. n2

T!(η)⊗1 // T!TA ⊗ TA

(1)
1⊗T(η)

��

µ]⊗1 // !TA ⊗ TA

d

��

T(!TA ⊗ TA)

(28)T(d)

��

n2
// T!TA ⊗ TTA

µ]⊗µ

55

T(!A)

Nat. of. d

T!(η)
// T!TA

µ]

// !TA

J
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from the assumption that the interval is tiny—a property that the interval in cubical sets does
indeed have. This leads to an elementary axiomatization of that and related models of homotopy
type theory within what we call crisp type theory.
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22:2 Internal Universes in Models of Homotopy Type Theory

1 Introduction

Voevodsky’s univalence axiom in Homotopy Type Theory (HoTT) [39] is motivated by the
fact that constructions on structured types should be invariant under isomorphism. From a
programming point of view, such constructions can be seen as type-generic programs. For
example, if G and H are isomorphic groups, then for any construction C on groups, an
instance C(G) can be transported to C(H) by lifting this isomorphism using a type-generic
program corresponding to C. As things stand, there is no single definition of the semantics
of such generic programs; instead there are several variations on the theme of giving a
computational interpretation to the new primitives of HoTT (univalence and higher inductive
types) via different constructive models [9, 13, 6, 5], the pros and cons of which are still
being explored.

As we show in this paper, that exploration benefits from being carried out in a type-
theoretic language. This is different from developing the consequences of HoTT itself using a
type-theoretic language, such as intensional Martin-Löf type theory with axioms for univalence
and higher inductive types, as used in [39]. There all types have higher-dimensional structure,
or “are fibrant” as one says, via the structure of the iterated identity types associated with
them. Contrastingly, when using type theory to describe models of HoTT, being fibrant
is an explicit structure external to a type; and that structure can itself be classified by a
type, so that users of the type theory can prove that a type is fibrant by inhabiting a certain
other type. As an example, consider the cubical sets model of type theory introduced by
Cohen, Coquand, Huber and Mörtberg (CCHM) [13]. This model uses a presheaf topos
on a particular category of cubes that we denote by �, generated by an interval object I,
maps out of which represent paths. The corresponding presheaf topos �̂ has an associated
category with families (CwF) [15] structure that gives a model of Extensional Martin-Löf
Type Theory [27] in a standard way [19]. While not all types in this presheaf topos have
a fibration structure in the CCHM sense, working within constructive set theory, CCHM
show how to make a new CwF of fibrant types out of this presheaf CwF, one which is a
model of Intensional Martin-Löf Type Theory with univalent universes and (some) higher
inductive types [39]. Their model construction is rather subtle and complicated. Coquand
noticed that the CCHM version of Kan fibration could be more simply described in terms of
partial elements in the internal language of the topos. Some of us took up and expanded
upon that suggestion in [30] and [10, Section 4]. Using Extensional Martin-Löf Type Theory
with an impredicative universe of propositions (one candidate for the internal language of
toposes), those works identify some relatively simple axioms for an interval and a collection
of Kan-filling shapes (cofibrant propositions) that are sufficient to define a CwF of CCHM
fibrations and prove most of its properties as a model of univalent foundations, for example,
that Π, Σ, path and other types are fibrant. These internal language constructions can be
used as an intermediate point in constructing a concrete model in cubical sets: the type
theory of HoTT [39] can be translated into the internal language of the topos, which has
a semantics in the topos itself in a standard way. The advantages of this indirection are
two-fold. First, the definition and properties of the notion of fibration (both the CCHM
notion [13] and other related ones [5, 34]) are simpler when expressed in the internal language;
and secondly, so long as the axioms are not too constraining, it opens up the possibility of
finding new models of HoTT. Indeed, since our axioms do not rely on the infinitary aspects
of Grothendieck toposes (such as having infinite colimits), it is possible to consider models of
them in elementary toposes, such as Hyland’s effective topos [16, 38].
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From another point of view, the internal language of the presheaf topos can itself be
viewed as a two-level type theory [4, 40] with fibrant and non-fibrant types, where being
fibrant is classified by a type, and the constructions are a library of fibrancy instances for
all of the usual types of type theory. Directed type theory [34] has a very similar story:
it adds a directed interval type and a logic of partial elements to homotopy type theory,
and using them defines some new notions of higher-dimensional structure, including co- and
contravariant fibrations.

However, the existing work describing models using an internal language [30, 10, 5] does
not encompass universes of fibrant types. The lack of universes is a glaring omission for
making models of HoTT, due to both their importance and the difficulty of defining them
correctly. Moreover, it is an impediment to using internal language presentations of cubical
type theory as a two-level type theory. For example, most constructions on higher inductive
types, like calculating their homotopy groups, require a fibrant universe of fibrant types;
and adding universes to directed type theory would have analogous applications. Finally,
packaging the fibrant types together into a universe restores much of the convenience of
working in a language where all types are fibrant: instead of passing around separate fibrancy
proofs, one knows that a type is fibrant by virtue of the universe to which it belongs.

In this paper, we address this issue by studying universes of fibrant types expressed in
internal languages for models of cubical type theories. CCHM [13] define a universe concretely
using a version of the Hofmann-Streicher universe construction in presheaf toposes [20]. This
gives a classifier for their notion of fibration—the universe is equipped with a CCHM fibration
that gives rise to every fibration (with small fibres) by re-indexing along a function into
the universe. In this way one gets a model of a Tarski-style universe closed under whatever
type-forming operations are supported by CCHM fibrations. Thus, there is an appropriate
semantic target for a universe of fibrant types, but neither [30], nor [10] gave a version of such
a universe expressed in the internal language. This is for a good reason: [32, Remark 7.5]
points out that there can be no internal universe of types equipped with a CCHM fibration
that weakly classifies fibrations. We recall in detail why this is the case in Section 3, but the
essence is that naïve axioms for a weak classifier for fibrations imply that a family of types,
each member of which is fibrant, has to form a fibrant family; but this is not true for many
notions of fibration, such as the CCHM one.

To fix this issue, in Section 4 we enrich the internal language to a modal type theory
with two context zones [33, 14, 36], inspired in particular by the fact that cubical sets are a
model of Shulman’s spatial type theory. In a judgement ∆ | Γ ` a : A of this modal type
theory, the context Γ represents the usual local elements of types in the topos, while the
new context ∆ represents global ones. The dual context structure is that of an S4 necessity
modality in modal logic, because a global element determines a local one, but global elements
cannot refer to local elements. We use Shulman’s term “crisp” for variables from ∆, and
call the type theory crisp type theory, because we do not in fact use any of the modal type
operators of his spatial type theory, but just Π-types whose domains are crisp. Using these
crisp Π-types, we give axioms that specify a universe that classifies global fibrations—the
modal structure forbids the internal substitutions that led to inconsistency.

One approach to validating these universe axioms would be to check them directly in a
cubical set model; but we can in fact do more work using crisp type theory as the internal
language and reduce the universe axioms to a structure that is simpler to check in models.
Specifically, in Theorem 5.2, we construct such a universe from the assumption that the
interval I is tiny, which by definition means that its exponential functor I � _ has a right
adjoint (a global one, not an internal one—this is another example where crisp type theory is
needed to express this distinction). The ubiquity of right adjoints to exponential functors was

FSCD 2018
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first pointed out by Lawvere [23] in the context of synthetic differential geometry. Awodey
pointed out their occurrence in interval-based models of type theory in his work on various
cube categories [7]. As far as we know, it was Sattler who first suggested their relevance to
constructing universes in such models (see [35, Remark 8.3]). It is indeed the case that the
interval object in the topos of cubical sets is tiny. Some ingenuity is needed to use the right
adjoint to I � _ to construct a universe with a fibration that gives rise to every other one up
to equality, rather than just up to isomorphism; we employ a technique of Voevodsky [41] to
do so.

Finally, we describe briefly some applications in Section 6. First, our universe construction
based on a tiny interval is the missing piece that allows a completely internal development of
a model of univalent foundations based upon the CCHM notion of fibration, albeit internal
to crisp type theory rather than ordinary type theory. Secondly, we describe a preliminary
result showing that our axioms for universes are suitable for building type theories with
hierarchies of universes, each with a different notion of fibration.

The constructions and proofs in this paper have been formalized in Agda-flat [2], an
appealingly simple extension of Agda [3] that implements crisp type theory; see https:
//doi.org/10.17863/CAM.22369. Agda-flat was provided to us by Vezzosi as a by-product
of his work on modal type theory and parametricity [29].

2 Internal description of fibrations

We begin by recalling from [32, 10] the internal description of fibrations in presheaf models,
using CCHM fibrations [13, Definition 13] as an example. Rather than using Extensional
Martin-Löf Type Theory with an impredicative universe of propositions as in [32, 10], here
we use an intensional and predicative version, therefore keeping within a type theory with
decidable judgements.4 Our type theory of choice is the one implemented by Agda [3], whose
assistance we have found invaluable for developing and checking the definitions. Adopting
Agda-style syntax, dependent function types are written (x : A) � B x, or {x : A} � B x if the
argument to the function is implicit; non-dependent function types are written (_ : A) � B,
or just A � B. There is a non-cumulative hierarchy of Russell-style [25] universe types
Set = Set0 : Set1 : Set2 : Set3 . . . Among Agda’s inductive types we need identity types
_ ≡ _ : {A : Setn} � A � A � Setn, which form the inductively defined family of types with
a single constructor refl : {A : Setn}{x : A} � x ≡ x; and we need the empty inductive type
⊥ : Set, which has no constructors. Among Agda’s record types (inductive types with a
single constructor for which η-expansion holds definitionally) we need the unit type > : Set
with constructor tt : >; and dependent products (Σ-types), that we write as Σx : A ,B x and
which are dependent record types with constructor (_ , _) : (x : A)(_ : B x) � Σx : A , B x
and fields (projections) fst : (Σx : A , B x) � A and snd : (z : Σx : A , B x) � B(fst z).

This type theory can be interpreted in (the category with families of) any presheaf topos,
such as the one defined below, so long as we assume that the ambient set theory has a
countable hierarchy of Grothendieck universes; in particular, one could use a constructive
ambient set theory such as IZF [1] with universes. We will use the fact that the interpretation
of the type theory in presheaf toposes satisfies function extensionality and uniqueness of
identity proofs:

funext : {A : Setn}{B : A � Setm}{f g : (x : A) � B x}((x : A) � f x ≡ g x) � f ≡ g (1)
uip : {A : Setn}{x y : A}{p q : x ≡ y} � p ≡ q (2)

4 Albeit at the expense of some calculations with universe levels; Coq’s universe polymorphism would
probably deal with this aspect automatically.

https://doi.org/10.17863/CAM.22369
https://doi.org/10.17863/CAM.22369
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I Definition 2.1 (Presheaf topos of de Morgan cubical sets). Let � denote the small category
with finite products which is the Lawvere theory of De Morgan algebra (see [8, Chap. XI] and
[37, Section 2]). Concretely, �op consists of the free De Morgan algebras on n generators,
for each n ∈ N, and the homomorphisms between them. Thus � contains an object I that
generates the others by taking finite products, namely the free De Morgan algebra on one
generator. This object is the generic De Morgan algebra and in particular it has two distinct
global elements, corresponding to the constants for the greatest and least elements. The
topos of cubical sets [13], which we denote by �̂, is the category of Set-valued functors on
�op and natural transformations between them. The Yoneda embedding, written y : � ↪→ �̂,
sends I ∈ � with its two distinct global elements to a representable presheaf I = yI with two
distinct global elements. This interval I is used to model path types: a path in A from a0 to
a1 is any morphism I→ A that when composed with the distinct global elements gives a0
and a1.

The toposes used in other cubical models [9, 6, 5] vary the choice of algebra from the
De Morgan case used above; see [11]. To describe all these cubical models using type theory
as an internal language, we postulate the existence of an interval type I with two distinct
elements, which we write as O and I:

I : Set O : I I : I O 6≡I : (O ≡ I) � ⊥ (3)

Apart from an interval, the other data needed to define a cubical sets model of homotopy
type theory is a notion of cofibration, which specifies the shapes of filling problems that can
be solved in a dependent type. For this, CCHM [13] use a particular subobject of Ω ∈ �̂ (the
subobject classifier in the topos �̂), called the face lattice; but other choices are possible [32].
Here, we avoid the use of the impredicative universe of propositions Ω and just assume the
existence of a collection of “cofibrant” types in the first universe Set, including at least the
empty type ⊥ (in Section 6, we will introduce more cofibrations, needed to model various
type constructs):

cof : Set � Set cof⊥ : cof ⊥ (4)

We call ϕ : Set cofibrant if cof ϕ holds, that is, if we can supply a term of that type. To
define the fibrations as a type in the internal language we use two pieces of notation. First,
the path functor associated with the interval I is

℘ : Setn � Setn ℘‘ : {A : Setn}{B : Setm}(f : A � B) � ℘A � ℘B (5)
℘A = I � A ℘‘f p i = f(p i)

Secondly, we define the following extension relation

_ 1 _ : {ϕ : Set}{A : Setn}(t : ϕ � A)(x : A) � Setn t 1 x = (u : ϕ) � t u ≡ x (6)

Thus t 1 x is the type of proofs that the partial element t : ϕ � A extends to the (total)
element x : A. We will use this when t denotes a partial element of A of cofibrant extent,
that is when we have a proof of cof ϕ.

I Definition 2.2 (fibrations). The type isFibA of fibration structures for a family of types
A : Γ � Setn over some type Γ : Setm consists of functions taking any path p : ℘Γ in the
base type to a composition structure in C(A ◦ p):

isFib : (Γ : Setm)(A : Γ � Setn) � Set1tmtn isFib ΓA = (p : ℘Γ) � C(A ◦ p) (7)

FSCD 2018



22:6 Internal Universes in Models of Homotopy Type Theory

Here C is some given function ℘Setn � Set1tn (polymorphic in the universe level n) which
parameterizes the notion of fibration. Then for each type Γ, the type Fibn Γ of fibrations
over it with fibers in Setn consists of families equipped with a fibration structure

Fibn : (Γ : Setm) � Setmt(n+1) Fibn Γ = ΣA : (Γ � Setn) , isFib ΓA (8)

and there are re-indexing functions, given by composition of dependent functions (_ ◦ _)

_[_] : {Γ : Setk}{Γ′ : Setm}(Φ : Fibn Γ)(γ : Γ′ � Γ) � Fibn Γ′ (9)
(A , α)[γ] = (A ◦ f , α ◦ ℘‘ f)

A CCHM fibration is the above notion of fibration for the composition structure CCHM :
℘Setn � Set1tn from [13]:

CCHMP = (ϕ : Set)(_ : cof ϕ)(p : (i : I) � ϕ � P i) � (Σ a0 : P O , p O 1 a0) �
(Σ a1 : P I , p I 1 a1)

(10)

Thus the type CCHMP of CCHM composition structures for a path of types P : ℘Setn consists
of functions taking any dependently-typed path of partial elements p : (i : I) � ϕ � P i

of cofibrant extent to a function mapping extensions of the path at one end p O 1 a0, to
extensions of it at the other end p I 1 a1. When the cofibration is ⊥, this isFib ΓA expands
to the statement that for all paths p : I→ Γ, A(p O)→ A(p I), so that this internal language
type says that A is equipped with a transport function along paths in Γ. The use of cofibrant
partial elements generalizes transport with a notion of path composition, which is used to
show that path types are fibrant.

Other notions of fibration follow the above definitions but vary the definition of C :
℘Setn � Set1tn; for example, generalized diagonal Kan composition [5]. Co/contravariant
fibrations in directed type theory [34] also have the form of isFib for some C, but with ℘ being
directed paths. Definition 2.2 illustrates the advantages of internal-language presentations;
in particular, uniformity [13] is automatic.

If Γ denotes an object of the cubical sets topos �̂, then Fib0 Γ denotes an object whose
global sections correspond to the elements of the set FTy(Γ) of families over Γ equipped
with a composition structure as defined in [13, Definition 13]. Our goal now is to first recall
that there can be no universe that weakly classifies these CCHM fibrations in an internal
sense, and then move to a modal type theory where such a universe can be expressed.

3 The "no-go" theorem for internal universes

In this section we recall from [32, Remark 7.5] why there can be no universe that weakly
classifies CCHM fibrations in an internal sense. Such a weak classifier would be given by the
following data

U : Set2 code : {Γ : Set}(Φ : Fib0 Γ) � Γ � U
El : Fib0 U Elcode : {Γ : Set}(Φ : Fib0 Γ) � El[code Φ] ≡ Φ

(11)

where for simplicity we restrict attention to fibrations whose fibers are in the lowest universe,
Set = Set0. Here U is the universe5 and El is a CCHM fibration over it which is a weak

5 Our predicative treatment of cofibrant types makes it necessary to place U in Set2 rather than Set1.
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classifier in the sense that any fibration Φ : Fib0 Γ can be obtained from it (up to equality)
by re-indexing along some function code Φ : Γ � U. (The word “weak” refers to the fact that
we do not require there to be a unique function γ : Γ � U with El[γ] ≡ Φ.)

We will show that the data in (11) implies that the interval must be trivial (O ≡ I),
contradicting the assumption in (3). This is because (11) allows one to deduce that if a
family of types A : Γ � Set has the property that each Ax has a fibration structure when
regarded as a family over the unit type >, then there is a fibration structure for the whole
family A; and yet there are families where this cannot be the case. For example, consider the
family P : I � Set with P i = (O ≡ i). For each i : I, the type P i has a fibration structure
π i : isFib> (λ _ � P i), because of uniqueness of identity proofs (2). But the family as a
whole satisfies isFib IP � ⊥, because if we had a fibration structure α : isFib IP , then we
could apply it to

id : ℘ I ϕ : Set u : cof ϕ p : (i : I) � ϕ � P i z : Σ a0 : P O , p O 1 a0

id i = i ϕ = ⊥ u = cof⊥ p i = λ _ � ⊥elim z = (refl , λ _ � uip)

(where ⊥elim : {A : Set} � ⊥ � A is the elimination function for the empty type) to get
α idϕup z : (Σ a1 : P I , p I 1 a1) and hence O 6≡I (fst (α idϕup z)) : ⊥. From this we deduce
the following “no-go” 6 theorem for internal universes of CCHM fibrations.

I Theorem 3.1. [32, Remark 7.5] The existence of types and functions as in (11) for CCHM
fibrations is contradictory. More precisely, if IntUniv : Set3 is the dependent record type with
fields U, El, code and Elcode as in (11), then there is a term of type IntUniv � ⊥.

Proof.7 Suppose we have an element of IntUniv and hence functions as in (11). Then taking
P to be λi � (O ≡ i) and using the family π i of fibration structures on each type P i
mentioned above, we get:

Φ : Fib0 I Φ = El[(λ i � code ((λ _ � P i) , π i) tt)] (12)

Using Elcode and function extensionality (1), it follows that there is a proof u : fst Φ ≡ P ,
namely u = funext (λ i � cong (λx � fstx tt) (Elcode ((λ _ � P i) , π i))), where cong is the
usual congruence property of equality. From that and snd Φ we get an element of isFib IP .
But we saw above how to transform such an element into a proof of ⊥. So altogether we
have a proof of IntUniv � ⊥. J

I Remark 3.2. This counterexample generalizes to other notions of fibration: it is not usually
the case that any type family A : Γ → Set for which Ax is fibrant over > for all x : Γ, is
fibrant over Γ. The above proof should be compared with the proof that there is no “fibrant
replacement” type-former in Homotopy Type System (HTS); see https://ncatlab.org/
homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement. Theorem 5.1
below provides a further example of a global construct that does not internalize.

4 Crisp type theory

The proof of Theorem 3.1 depends upon the fact that in the internal language the code
function can be applied to elements with free variables. In this case it is the variable i : I in
code ((λ _ � P i) , π i) tt; by abstracting over it we get a function I � U and re-indexing El

6 We are stealing Shulman’s terminology [36, section 4.1].
7 See the file theorem-3-1.agda at https://doi.org/10.17863/CAM.22369 for an Agda version of this

proof.
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along this function gives the offending fibration (12). Nevertheless, the cubical sets presheaf
topos does contain a (univalent) universe which is a CCHM fibration classifier, but only
in an external sense. Thus there is an object U in �̂ and a global section El : 1 → Fib0 U
with the property that for any object Γ and morphism Φ : 1→ Fib0 Γ, there is a morphism
code Φ : Γ→ U so that Φ is equal to the composition Fib0 (code Φ) ◦ El : 1→ Fib0 Γ; see [13,
Definition 18] for a concrete description of U. The internalization of this property replaces the
use of global elements 1→ Γ of an object by local elements, that is, morphisms X → Γ where
X ranges over a suitable collection of generating objects (for example, the representable
objects in a presheaf topos); and we have seen that such an internalized version cannot exist.

Nevertheless, we would like to explain the construction of universes like U ∈ �̂ using some
kind of type-theoretic language that builds on Section 2. So we seek a way of manipulating
global elements of an object Γ, within the internal language. One cannot do so simply by
quantifying over elements of the type > � Γ, because of the isomorphism Γ ∼= (> � Γ).
Instead, we pass to a modal type theory that can speak about global elements, which we call
crisp type theory. Its judgements, such as ∆ | Γ ` a : A, have two context zones—where ∆
represents global elements and Γ the usual, local ones. The context structure is that used
for an S4 necessitation modality [33, 14, 36], because a global element from ∆ can be used
locally, but global elements cannot depend on local variables from Γ. Following [36], we say
that the left-hand context ∆ contains crisp hypotheses about the types of variables, written
x :: A.

The interpretation of crisp type theory in cubical sets makes use of the comonad [ : �̂→ �̂
that sends a presheaf A to the constant presheaf on the set of global sections of A; thus
[A(X) ∼= A(1) for all X ∈ � (where 1 ∈ � is terminal). Then a judgement ∆ | Γ ` a : A
describes the situation where ∆ is a presheaf, Γ is a family of presheaves over [∆, A is a
family over Σ([∆) Γ and a is an element of that family. The rules of crisp type theory are
designed to be sound for this interpretation. Compared with ordinary type theory, the key
constraint is that types in the crisp context and terms substituted for crisp variables depend
only on crisp variables. The crisp variable and (admissible) substitution rules are:

∆, x :: A,∆′ | Γ ` x : A
∆ | � ` a : A ∆, x :: A,∆′ | Γ ` b : B

∆,∆′[a/x] | Γ[a/x] ` b[a/x] : B[a/x]
(13)

The semantics of the variable rule, which says that global elements can be used locally, uses
the counit εA : [A → A of the comonad [ mentioned above. In the substitution rule, �
stands for the empty list, so a and A may only depend upon the crisp variables from ∆. The
other rules of crisp type theory (those for Π types, Σ types, etc.) carry the crisp context
along. For our application we do not need a type-former for [, but instead make use of crisp
Π types (see, e.g. [14, 28]), that is, Π types whose domain is crisp

∆ | � ` A : Setm

∆, x :: A | Γ ` B : Setn

∆ | Γ ` (x :: A) � B : Setmtn

∆, x :: A | Γ ` b : B
∆ | Γ ` λx :: A.b : (x :: A) � B

∆ | Γ ` f : (x :: A) � B

∆ | � ` a : A
∆ | Γ ` f a : B[a/x]

(14)

with βη judgemental equalities. In these rules, because the argument variable x is crisp, its
type A, and the term a to which the function f is applied, must also be crisp. We also use crisp
induction for identity types [36]—identity elimination with a family y :: A, p :: x ≡ y ` C(y, p)
whose parameters are crisp variables, which is given by a term of type

{A :: Setn}{x :: A}(C : (y :: A)(p :: x ≡ y) � Setn)(z : C x refl)(y :: A)(p :: x ≡ y) � C y p (15)

together with a β judgemental equality.



D.R. Licata, I. Orton, A.M. Pitts, and B. Spitters 22:9

I Remark 4.1 (Presheaf models of crisp type theory). Crisp type theory is motivated by the
specific presheaf topos �̂ from Definition 2.1. However, it seems that very little is required of
a category C for the presheaf topos Ĉ to soundly interpret it using the comonad [ = p∗ ◦ p∗,
where p∗ takes the global sections of a presheaf and its left adjoint p∗ sends sets to constant
presheaves. This [ preserves finite limits (because it is the composition of functors with left
adjoints—p∗ is isomorphic to the functor given by precomposition with C→ 1 and hence
has a left adjoint given by left Kan extension along C→ 1). Although the details remain
to be worked out, it appears that to model crisp type theory with crisp Π types and crisp
identification induction (and moreover a [ modality with crisp [ induction, which we do not
use here), the only additional condition needed is that this comonad is idempotent (meaning
that the comultiplication δ : [→ [ ◦ [ is an isomorphism). This idempotence holds iff Ĉ is a
connected topos, which is the case iff C is a connected category—for example, when C has a
terminal object. If it does have a terminal object, then Ĉ is a local topos [21, Sect. C3.6]
and [ has a right adjoint; in which case, conjecturally [36, Remark 7.5], one gets a model of
the whole of Shulman’s spatial type theory, of which crisp type theory is a part. In fact �
does not just have a terminal object, it has all finite products (as does any Lawvere theory)
and from this it follows that �̂ is not just local, but also cohesive [24].

I Remark 4.2 (Agda-flat). Vezzosi has created a fork of Agda, called Agda-flat [2], which
allows us to explore crisp type theory. It adds the ability to use crisp variables8 x :: A in
places where ordinary variables x : A may occur in Agda, and checks the modal restrictions
in the above rules. For example, Agda-flat quite correctly rejects the following attempted
application of a crisp-Π function to an ordinary argument

wrong : (A :: Setn)(B : Setm)(f : (_ :: A) � B)(x : A) � B wrongAB f x = f(x)

while the variant with x :: A succeeds. This is a simple example of keeping to the modal
discipline that crisp type theory imposes; for more complicated cases, such as occur in the proof
of Theorem 5.2 below, we have found Agda-flat indispensable for avoiding errors. However,
Agda-flat implements a superset of crisp type theory and more work is needed to understand
their precise relationship. For example, Agda’s ability to define inductive types leads to new
types in Agda-flat, such as the [ modality itself; and its pattern-matching facilities allow one to
prove properties of [ that go beyond crisp type theory. Agda allows one to switch off pattern-
matching in a module; to be safe we do that as far as possible in our development. Installation
instructions for Agda-flat can be found at https://doi.org/10.17863/CAM.22369.

5 Universes from tiny intervals

In crisp type theory, to avoid the inconsistency in the “no-go” Theorem 3.1, we can weaken
the definition of a universe in (11) by taking code and Elcode to be crisp functions of
fibrations Φ (and implicitly, of the base type Γ of the fibration). For if code has type
{Γ :: Set}(Φ :: Fib0 Γ)(x : Γ) � U, then the proof of a contradiction is blocked when in (12)
we try to apply code to Φ = ((λ _ � P i) , π i), which depends upon the local variable i : I.
Indeed we show in this section that given an extra assumption about the interval type I that
holds for cubical sets, it is possible to define a universe with such crisp coding functions
which moreover are unique, so that one gets a classifying fibration, rather than just a weakly
classifying one.

8 The Agda-flat concrete syntax for “x :: A” is “x :{[} A”.
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Recall from Definition 2.1 that in the cubical sets model, the type I denotes the repres-
entable presheaf yI ∈ �̂ on the object I ∈ �. Since � has finite products, there is a functor
_ × I : � → �. Pre-composition with this functor induces an endofunctor on presheaves
(_× I)∗ : �̂→ �̂ which has left and right adjoints, given by left and right Kan extension [26,
Chap. X] along _× I. Hence by the Yoneda Lemma, for any F ∈ �̂ and X ∈ �

(I � F )X ∼= �̂(yX, I � F ) ∼= �̂(yX × yI, F ) ∼= �̂(y(X × I), F ) = ((_× I)∗F )X

naturally in both X and F . It follows that the exponential functor ℘ = I � _ : �̂ → �̂
is naturally isomorphic to (_ × I)∗ and hence not only has a left adjoint (corresponding
to product with I) but also a right adjoint. The significance of objects in a category with
finite products that are not only exponentiable (product with them has a right adjoint),
but also whose exponential functor has a right adjoint was first pointed out by Lawvere in
the context of synthetic differential geometry [23]. He called such objects “atomic”, but we
will follow later usage [42] and call them tiny.9 Thus the interval in cubical sets is tiny and
we have a right adjoint to the path functor ℘ that we denote by √ : �̂ → �̂. So for each
B ∈ �̂, the functor �̂(℘ _, B) : �̂→ Set is representable by √B, that is, there are bijections
�̂(℘A,B) ∼= �̂(A,√B), natural in A.

Given Γ and A : Γ � Set in �̂, from Definition 2.2 we have that fibration structures
1→ isFib ΓA correspond to sections of fst : (Σ p : ℘Γ ,C(A◦p))→ ℘Γ and hence, transposing
across the adjunction ℘ a √, to morphisms making the outer square commute in the
right-hand diagram below:

℘Γ //

id
''

Σ p : ℘Γ , C(A ◦ p)

fst
��

℘Γ

Γ
++

//

id
  

RΓA
π2 //

π1

��

√(Σ p : ℘Γ , C(A ◦ p))
√

fst
��

Γ
ηΓ

// √(℘Γ)

We therefore have that fibration structures for A correspond to sections of the pullback
π1 : RΓA→ Γ of √fst along the unit ηΓ : Γ→ √(℘Γ) of the adjunction at Γ (which is the
adjoint transpose of id : ℘Γ → ℘Γ). This characterization of fibration structure does not
depend on the particular definition of C, so should apply to many notions of fibration. We will
show how it leads to the construction of a universe U = RSetid and family π1 : RSetid→ Set
which is a classifier for fibrations. However, there are two problems that have to be solved in
order to carry out the construction within type theory:

First, for Elcode in (11) to be an equality (rather than just an isomorphism), one needs
the choice of RΓA to be strictly functorial with respect to re-indexing along Γ (and hence
to be a dependent right adjoint in the sense of [12]).
Secondly, one cannot use ordinary type theory as the internal language to formulate the
construction, because the right adjoint to ℘ does not internalize, as the following theorem
shows.

I Theorem 5.1. There is no internal right adjoint to the path functor ℘ : �̂→ �̂ for cubical
sets. In other words, there is no family of natural isomorphisms (℘ _ � B) ∼= (_ �

√
B) :

�̂→ �̂ (for B ∈ �̂).

9 Warning: the adjective “tiny” is sometimes used to describe an object X of a V-enriched cocomplete
category C for which the hom V-functor C(X, _) : C → V preserves colimits; see [35] for example. We
prefer Kelly’s term small-projective object for this property. In the special case that V = C and C
is cartesian closed and has sufficient properties for there to be an adjoint functor theorem, then a
small-projective object is in particular a tiny one in the sense we use here.
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√ : (A :: Setn) � Setn
R : {A :: Setn}{B :: Setm}(f :: ℘A � B) � A �

√
B

L : {A :: Setn}{B :: Setm}(g :: A �
√
B) � ℘A � B

LR : {A :: Setn}{B :: Setm}{f :: ℘A � B} � L(R f) ≡ f
RL : {A :: Setn}{B :: Setm}{g :: A �

√
B} � R(L g) ≡ g

R℘ : {A :: Setn}{B :: Setm}{C :: Setk}(g :: A � B)(f :: ℘B � C) � R(f ◦ ℘‘g) ≡ Rf ◦ g

Figure 1 Axioms for tinyness of the interval in crisp type theory.

Proof. It is an elementary fact about adjoint functors that such a family of natural isomorph-
isms is also natural in B. Note that ℘> ∼= >. So if we had such a family, then we would
also have isomorphisms B ∼= (> � B) ∼= (℘> � B) ∼= (> �

√
B) ∼=

√
B which are natural in

B. Therefore √ would be isomorphic to the identity functor and hence so would be its left
adjoint ℘. Hence I � _ and > � _ would be isomorphic functors �̂→ �̂, which implies (by
the internal Yoneda Lemma) that I is isomorphic to the terminal object >, contradicting the
fact that I has two distinct global elements. J

We will solve the first of the two problems mentioned above in the same way that
Voevodsky [41] solves a similar strictness problem (see also [12, Section 6]): apply √ once and
for all to the displayed universe and then re-index, rather than vice versa (as done above).
The second problem is solved by using the crisp type theory of the previous section to make
the right adjoint √ suitably global. The axioms we use are given in Fig. 1. The function R
gives the operation for transposing (global) morphisms across the adjunction ℘ a √, with
inverse L (the bijection being given by RL and LR); and R℘ is the naturality of this operation.
The other properties of an adjunction follow from these, in particular its functorial action√‘ : {A :: Setn}{B :: Setm}(f :: A � B) � √A �

√
B. Note that Fig. 1 assumes that the

right adjoint to I � (_) preserves universe levels. The soundness of this for �̂ relies on the
fact that this adjoint is given by right Kan extension [26, Chap. X] along _× I : �→ � and
hence sends a presheaf valued in the nth Grothendieck universe to another such.

I Theorem 5.2 (Universe construction10). For fibrations as in Definition 2.2 with any
definition of composition structure C (e.g. the CCHM one in (10)), assuming axioms (1)–(4)
and a tiny (Fig. 1) interval, there is a universe U equipped with a fibration El which is
classifying in the sense that we have

U : Set2
El : Fib0 U
code : {Γ :: Set}(Φ :: Fib0 Γ) � Γ � U
Elcode : {Γ :: Set}(Φ :: Fib0 Γ) � El[code Φ] ≡ Φ
codeEl : {Γ :: Set}(γ :: Γ � U) � code(El[γ]) ≡ γ

(16)

10We just construct a universe for fibrations with fibers in Set0; similar universes Un : Set2tn can be
constructed for fibrations with fibers in Setn, for each n; see theorem-5-2.agda at https://doi.org/
10.17863/CAM.22369.
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Proof. Consider the display function associated with the first universe:

Elt1 : Set2 pr1 : Elt1 � Set1 (17)
Elt1 = ΣA : Set1 , A pr1(A, x) = A

We have C : ℘Set0 � Set1 and hence using the transpose operation from Fig. 1, R C : Set0 �√Set1. We define U : Set2 by taking a pullback:

U π2 //

π1

��

√Elt1
√

‘pr1
��

Set
R C
// √ Set1

U = ΣA : Set , (ΣB : √Elt1 , (
√‘pr1B ≡ R CA))

π1(A , (_ , _)) = A

π2(_ , (B , _)) = B

(18)

Transposing this square across the adjunction ℘ a √ gives pr1 ◦ Lπ2 = C ◦ ℘‘π1 : ℘U � Set1.
Considering the first and second components of Lπ2, we have Lπ2 ≡ 〈C ◦ ℘‘π1 , υ〉 for some
υ : (p : ℘U) � C(℘‘π1 p); hence υ is an element of isFibU π1 and so we can define

El : Fib0 U El = (π1, υ) (19)

So it just remains to construct the functions in (16). Given Γ :: Set and Φ = (A,α) :: Fib0 Γ,
we have α :: isFib ΓA = (p : ℘Γ) � C(A ◦ p). So the outer square in the left-hand diagram
below commutes:

℘Γ

℘‘A

##

〈C◦℘‘A,α〉

!!
℘‘(code Φ)

""
℘U Lπ2 //

℘‘π1

��

Elt1

pr1
��

℘Set
C
// Set1

Γ

A

!!

R 〈C◦℘‘A,α〉

  
code Φ

  
U π2 //

π1

��

√Elt1
√

‘pr1
��

Set
R C
// √Set1

(20)

Transposing across the adjunction ℘ a √, this means that the outer square in the right-hand
diagram also commutes and therefore induces a function code Φ : Γ � U to the pullback.
So there are proofs of π1 ◦ code Φ ≡ A and π2 ◦ code Φ ≡ R 〈C ◦ ℘‘A , α〉. Transposing the
latter back across the adjunction gives a proof of Lπ2 ◦ ℘‘(code Φ) ≡ 〈C ◦ ℘‘A , α〉; and
since Lπ2 ≡ 〈C ◦ ℘‘π1 , υ〉, this in turn gives a proof of υ ◦ ℘‘(code Φ) ≡ α. Combining
this with the proof of π1 ◦ code Φ ≡ A, we get the desired element Elcode Φ of El[code Φ] =
(π1 ◦ code Φ , υ ◦ code Φ) ≡ (A , α) = Φ. Finally, taking Γ = U and Φ = El in (20), the
uniqueness property of the pullback implies that code El ≡ id; and similarly, for any γ :: ∆ � Γ
we have that (code Φ) ◦ γ ≡ code(Φ[γ]). Together these properties give us the desired element
codeEl of code(El[γ]) ≡ (code El) ◦ γ ≡ id ◦ γ = γ. J

I Remark 5.3. The above theorem can be generalized by replacing the particular universe
id : Set � Set by an arbitrary one E0 : U0 � Set. So long as the composition structure C
lands in U0, one can use the above method to construct a universe of fibrant types from
among the U0 types.11 The application of this generalization we have in mind is to directed
type theory; for example one can first construct the universe of fibrant types in the CCHM
sense and then make a universe of covariant discrete fibrations in the Riehl-Shulman [34]
sense from the fibrant types (repeating the construction with a different interval object).

11 See theorem-5-2-relative.agda at https://doi.org/10.17863/CAM.22369.
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_ u _ : I � I � I Ou : (i : I) � O u i ≡ O uO : (i : I) � i u O ≡ O
Iu : (i : I) � I u i ≡ i uI : (i : I) � i u I ≡ i

rev : I � I revrev : (i : I) � rev (rev i) ≡ i revO : rev O ≡ I
isPropcof : (ϕ : Set)(u v : cof ϕ) � u ≡ v
cofisProp : (ϕ : Set)(_ : cof ϕ)(x y : ϕ) � x ≡ y
cofExt : (ϕ ψ : Set)(_ : cof ϕ)(_ : cof ψ)(_ : ϕ � ψ)(_ : ψ � ϕ) � ϕ ≡ ψ
cofO : (i : I) � cof (O ≡ i)
cofI : (i : I) � cof (I ≡ i)
cofOr : (ϕ ψ : Set)(_ : cof ϕ)(_ : cof ψ) � cof (ϕ ∨ ψ)
cofAnd : (ϕ ψ : Set)(_ : cof ϕ)(_ : ϕ � cof ψ) � cof (ϕ× ψ)
cof∀I : (ϕ : I � Set)(_ : (i : I) � cof (ϕ i)) � cof ((i : I) � ϕ i)
strax : (ϕ:Set)(_:cof ϕ)(A : Setn)(t : ϕ � (ΣB : Setn , A ∼= B)) �

ΣT : (ΣB : Setn , A ∼= B) , t 1 T

Figure 2 Further axioms needed for the CCHM model.

I Remark 5.4. The results in this section only make use of the fact that the functor √ : �̂→ �̂
is right adjoint to the exponential I � (_) and we saw at the beginning of this section why
such a right adjoint exists. It is possible to give an explicit description of presheaves of the
form √Γ, but so far we have not found such a description to be useful.

6 Applications

Models. Theorem 5.2 is the missing piece that allows a completely internal development of
a model of univalent foundations based upon the CCHM notion of fibration, albeit internal to
crisp type theory rather than ordinary type theory. One can define a CwF in crisp type theory
whose objects are crisp types Γ :: Set2, whose morphisms are crisp functions γ :: Γ′ � Γ,
whose families are crisp CCHM fibrations Φ = (A,α) :: Fib0 Γ and whose elements are crisp
dependent functions f :: (x : Γ) � Ax. To see that this gives a model of univalent foundations
one needs to prove:
(a) The CwF is a model of intensional type theory with Π-types and inductive types (Σ-types,
identity types, booleans, W -types, . . . ).
(b) The type U :: Set2 constructed in Theorem 5.2 is fibrant (as a family over the unit type).
(c) The classifying fibration Φ :: Fib0 U satisfies the univalence axiom in this CwF.

Although we have yet to complete the formal development in Agda-flat, these should
be provable from axioms (1)–(4) and Fig. 1, together with some further assumptions about
the interval object and cofibrant types listed in Fig. 2. Part (a) was carried out in prior
work, albeit in the setting with an impredicative universe of propositions [32]. In the
predicative version considered here, we replace the impredicative universe of propositions
with axioms asserting that being cofibrant is a mere proposition (isPropcof), that cofibrant
types are mere propositions (cofisProp) and satisfy propositional extensionality (cofExt).
These axioms are satisfied by �̂ provided we interpret cof : Set � Set as cof A = ∃ϕ :
Ω , ϕ ∈ Cof ∧A ≡ {_ : > | ϕ}, using the subobject Cof � Ω corresponding to the face lattice
in [13] (see [32, Definition 8.6]). Axioms cofO, cofI, cofOr, cofAnd, cof∀I and strax correspond
to the axioms ax5–ax9 from [32]; in strax, ∼= is the usual internal statement of isomorphism.
cofAnd is the dominance axiom that guarantees that cofibrations compose. Note that axiom
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cofOr uses an operation sending mere propositions ϕ and ψ to the mere proposition ϕ ∨ ψ
that is the propositional truncation of their disjoint union; the existence of this operation
either has to be postulated, or one can add axioms for quotient types [18, Section 3.2.6.1] to
crisp type theory, (of which propositional truncation is an instance), in which case function
extensionality (1) is no longer needed as an axiom, since it is provable using quotient types [39,
Section 6.3]. Since in this paper we have taken a CCHM fibration to just give a composition
operation for cofibrant partial paths from O to I and not vice versa, in Fig. 2 we have
postulated a path-reversal operation rev; this and the other axioms for I in that figure suffice
to give a “connection algebra” structure on I [32, axioms ax3 and ax4].

Part (b) can be proved using a version of the glueing operation from [13], which is
definable within crisp type theory as in [32, Section 6] and [10, Section 4.3.2]. The strictness
axiom strax in Fig. 2 is needed to define this; and the assumption that cofibrant types are
closed under I-indexed ∀ (cof∀I) is used to define the appropriate fibration structure for
glueing.

Part (c) can be proved as in [31, Section 6] using a characterization of univalence somewhat
simpler than the original definition of Voevodsky [39, Section 2.10]. The axiom strax gets
used to turn isomorphisms into paths; and the axiom cof∀I is used to “realign” fibration
structures that agree on their underlying types (see [31, Lemma 6.2]).
I Remark 6.1 (The interval is connected). Fig. 2 does not include an axiom asserting that
the interval is connected, because that is implied by its tinyness (Fig. 1). Connectedness
was postulated as ax1 in [32] and used to prove that CCHM fibrations are closed under
inductive type formers (and in particular that the natural number object is fibrant). The
proof [32, Thm 8.2] that the interval in cubical sets is connected essentially uses the fact
that �̂ is a cohesive topos (Remark 4.1). However it also follows directly from the tinyness
property: connectedness holds iff (I � B) ∼= B, where B = > + > is the type of Booleans.
Since we postulate that I � _ has a right adjoint, it preserves this coproduct and hence
(I � B) ∼= (I � >) + (I � >) ∼= >+> = B.
I Remark 6.2 (Alternative models). We have focussed on axioms satisfied by �̂ and the
CCHM notion of fibration in that presheaf topos. However, the universe construction in
Theorem 5.2 also applies to the cartesian cubical set models [5], and we expect it is possible
to give proofs in crisp type theory of its fibrancy and univalence as well.

In this paper we only consider “cartesian” path-based models of type theory, in which a
path is an arbitrary function out of an interval object, or in other words, the path functor is
given by an exponential. The models in [22] and [9] are not cartesian in that sense—the path
functors they use are right adjoint to certain functorial cylinders [17] not given by cartesian
product.12 However, those path functors do have right adjoints (given by right Kan extension
to suitable “shift” functors on the domain category of the presheaf toposes involved) and
universes in these models can be constructed using the method of Theorem 5.2. (Our Agda
proof of that theorem does not depend upon the path functor being an actual exponential.)
A proof in crisp type theory that those universes are fibrant and univalent may require a
modification of our axiomatic treatment of cofibrancy; we leave this for future work.

Universe hierarchies. Given that there are many notions of fibration that one may be
interested in, it is natural to ask how relationships between them induce relationships
between universes of fibrant types. As motivating examples of this, we might want a cubical

12Furthermore, obvious candidates for an interval object are not necessarily tiny in those models—for
example, for the 1-simplex ∆[1] the exponential ∆[1] � (_) in the topos ∆̂ of simplicial sets does not
have a right adjoint; thanks to a referee for pointing this out.
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type theory with a universe of fibrations with regularity, an extra strictness corresponding to
the computation rule for identity types in intensional type theory; or a three-level directed
type theory with non-fibrant, fibrant, and co/contravariant universes. Towards building such
hierarchies, in the companion code13 we have shown in crisp type theory that universes are
functorial in the notion of fibration they encapsulate: when one notion of fibrancy implies
another, the first universe includes the second.

I Proposition 6.3. Let C1,C2 : ℘ Setn � Set1tn be two notions of composition, isFib1 and
isFib2 the corresponding fibration structures, and U1 and U2 the corresponding classifying
universes. A morphism of fibration structures is a function fΓ,A : isFib1 ΓA � isFib2 ΓA for
all Γ and A, such that f is stable under reindexing (given h : ∆ � Γ, and φ : isFib1 ΓA,
fΓ,A(φ)◦(℘‘h) ≡ f∆,A◦f (φ[h])). Then a morphism of fibrations f induces a function U1 � U2,
and this preserves identity and composition. J

7 Conclusion

Since the appearance of the CCHM [13] constructive model of univalence, there has been
a lot of work aimed at analysing what makes this model tick, with a view to simplifying
and generalizing it. Some of that work, for example by Gambino and Sattler [17, 35], uses
category theory directly, and in particular techniques associated with the notion of Quillen
model structure. Here we have continued to pursue the approach that uses a form of type
theory as an internal language in which to describe the constructions associated with this
model of univalent foundations [32, 10]. For those familiar with the language of type theory,
we believe this provides an appealingly simple and accessible description of the notion of
fibration and its properties in the CCHM model and in related models. We recalled why there
can be no internal description of the univalent universe itself if one uses ordinary type theory
as the internal language. Instead we extended ordinary type theory with a suitable modality
and then gave a universe construction that hinges upon the tinyness property enjoyed by the
interval in cubical sets. We call this language crisp type theory and our work inside it has
been carried out and checked using an experimental version of Agda provided by Vezzosi [2].
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Abstract
Clocked Type Theory (CloTT) is a type theory for guarded recursion useful for programming
with coinductive types, allowing productivity to be encoded in types, and for reasoning about
advanced programming language features using an abstract form of step-indexing. CloTT has
previously been shown to enjoy a number of syntactic properties including strong normalisation,
canonicity and decidability of type checking. In this paper we present a denotational semantics
for CloTT useful, e.g., for studying future extensions of CloTT with constructions such as path
types.

The main challenge for constructing this model is to model the notion of ticks used in CloTT
for coinductive reasoning about coinductive types. We build on a category previously used to
model guarded recursion, but in this category there is no object of ticks, so tick-assumptions in
a context can not be modelled using standard tools. Instead we show how ticks can be modelled
using adjoint functors, and how to model the tick constant using a semantic substitution.
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1 Introduction

In recent years a number of extensions of Martin-Löf type theory [14] have been proposed
to enhance the expressiveness or usability of the type theory. The most famous of these
is Homotopy Type Theory [18], but other directions include the related Cubical Type
Theory [11], FreshMLTT [17], a type theory with name abstraction based on nominal
sets, and Type Theory in Color [4] for internalising relational parametricity in type theory.
Many of these extensions use denotational semantics to argue for consistency and to inspire
constructions in the language.

This paper is part of a project to extend type theory with guarded recursion [16], a
variant of recursion that uses a modal type operator . (pronounced ‘later’) to preserve
consistency of the logical reading of type theory. The type .A should be read as classifying
data of type A available one time step from now, and comes with a map next : A → .A
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and a fixed point operator mapping a function f : .A → A to a fixed point for f ◦ next.
This, in combination with guarded recursive types, i.e., types where the recursive variable
is guarded by a ., e.g., Str ≡ N × .Str gives a powerful type theory in which operational
models of combinations of advanced programming language features such as higher-order
store [7] and nondeterminism [8] can be modelled using an abstract form of step-indexing [1].
Combining this with a notion of clocks, indexing the . operator with clock names, and
universal quantification over clocks, one can encode coinduction using guarded recursion,
allowing productivity [12] of coinductive definitions to be encoded in types [2].

The most recent type theory with guarded recursion is Clocked Type Theory (CloTT) [3],
which introduces the notion of ticks on a clock. Ticks are evidence that time has passed
and can be used to unpack elements of type .A to elements of A. In fact, in CloTT, .A is a
special form of function type from ticks to A. The combination of ticks and clocks in CloTT
can be used for coinductive reasoning about coinductive types, by encoding the delayed
substitutions of [9].

Bahr et al [3] have shown that CloTT can be given a reduction semantics satisfying strong
normalisation, confluence and canonicity. This establishes that productivity can indeed be
encoded in types: For a closed term t of stream type, the n’th element can be computed in
finite time. These syntactic results also imply soundness of the type theory. However, these
results have only been established for a core type theory without, e.g., identity types, and
the arguments can be difficult to extend to larger calculi. In particular, we are interested
in extending CloTT with path types as in Guarded Cubical Type Theory [5]. Therefore a
denotational model of CloTT can be useful, and this paper presents such a model.

The work presented here builds on a number of existing models for guarded recursion.
The most basic such, modelling the single clock case, is the topos of trees model [7], in which
a closed type is modelled as a family of sets Xn indexed by natural numbers n, together
with restriction maps of the form Xn+1 → Xn for every n. In other words, a type is a
presheaf over the ordered natural numbers. In this model . is modelled as (.X)0 = 1 and
(.X)n+1 = Xn and guarded recursion reduces to natural number recursion. The guarded
recursive type Str mentioned above can be modelled in the topos of trees as Str(n) = 1×Nn.

Bizjak and Møgelberg [10] recently extended this model to the case of many clocks, using
a category SetT of covariant presheaves over a category T of time objects, i.e., pairs of a finite
set X and a map X → N. In this model, universal quantification over clocks is modelled
by constructing an object in the topos of trees and taking the limit of that. For example,
taking the limits over the object Str gives the usual coinductive type of streams over natural
numbers.

The main challenge when adapting the model of [10] to CloTT is to model ticks, which
were not present in the language modelled in [10]. In particular, how does one model tick
assumptions of the form α : κ in a context, when there appears to be no object of ticks in
the model to be used as the denotation of the clock κ. In this paper we observe that these
assumptions can be modelled using a left adjoint Jκ to the functor Iκ used in [10] to model
.κ the delay modality associated to the clock κ. Precisely we model context extension as
JΓ, α : κK =Jκ JΓK. To clarify what is needed to model ticks, we focus on a fragment of CloTT
called the tick calculus capturing just the interaction of ticks with dependent types. We show
that the tick calculus can be modelled soundly in a category with family [13] (a standard
notion of model for dependent type theory), with an adjunction L a R of endofunctors on
the underlying category, for which the right adjoint lifts to types and terms, and there is a
natural transformation from L to the identity. This appears to be a general pattern seen
also in the model of fresh name abstraction of FreshMLTT [17] and dependent path types
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in cubical type theory [11]. Similarly challenging is how to model the special tick constant
�. Since there is no object of ticks, there is no element corresponding to � either. Still, we
shall see that there exists a semantic substitution of � for a tick variable that can be used to
model application of terms to �.

The paper is organised as follows: The tick calculus and its model theory are introduced
in Section 2. Section 3 introduces CloTT, omitting guarded recursive types and universes,
which we leave for future work. Section 4 presents the basics of the model, in particular the
presheaf category SetT and the adjunction JκaIκ. The presence of ticks in contexts leads
to a non-standard notion of substitutions, and we study the syntax and semantics of these in
Section 5. Sections 6 and 7 extend the model with universal quantification over clocks and �,
respectively. Finally, Section 8 verifies the important clock irrelevance axiom, and Section 9
concludes and discusses future work.

2 A tick calculus

Before introducing CloTT we focus on a fragment to explain the notion of ticks and how to
model these. To motivate ticks, consider the notion of applicative functor from functional
programming [15]: a type former . with maps A→ .A and .(A→ B)→ .A→ .B satisfying
a number of equations that we shall not recall. These maps can be used for programming
with the constructor ., but for reasoning in a dependent type theory, one needs an extension
of these to dependent function types. For example, in guarded recursion one can prove a
theorem X by constructing a map .X → X and taking its fixed point in X. If the theorem is
that a property holds for all elements in a type of guarded streams satisfying Str ≡ N× .Str,
then X will be of the form

∏
(xs : Str) .P . To apply the (essentially coinductive) assumption

of type .
∏

(xs : Str) .P to the tail of a stream, which has type .Str we need an extension of
the applicative functor action.

What should the type of such an extension be? Given a : .A and f : .(
∏

(x : A) .B)
the application of f to a should be something of the form .B[??/x]. If we think of . as a
delay, intuitively a is a value of type A delayed by one time, and the ?? should be the value
delivered by a one time step from now. Ticks are evidence that time has passed, and they
allow us to talk about values delivered in the future.

The tick calculus is the extension of dependent type theory with the following four rules

Γ `
Γ, α:tick `

Γ, α:tick ` A
Γ ` .(α:tick)A

Γ, α:tick ` t : A
Γ ` λ(α:tick)t : .(α:tick)A

Γ ` t : .(α:tick)A
Γ, β:tick,Γ′ ` t [β] : A[β/α]

An assumption of the form α:tick in a context is an assumption that one time step has
passed, and α is the evidence of this. Variables on the right-hand side of such an assumption
should be thought of as arriving one time step later than those on the left. Ticks can be
abstracted in terms and types, so that the type constructor . now comes with evidence that
time has passed that can be used in its scope. The type .(α:tick)A can be thought of as a
form of dependent function type over ticks, which we abbreviate to .A if α does not occur
free in A. The elimination rule states that if a term t can be typed as .(α:tick)A before the
arrival of tick β, t can be opened using β to give something of type A[β/α]. Note that the
causality restriction in the typing rule prevents a term like λx.λ(α:tick).x [α] [α] : . .A→ .A

being well typed; a tick can only be used to unpack the same term once. The context Γ′
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in the elimination rule ensures that typing rules are closed under weakening, also for ticks.
Note that the clock object tick is not a type.

The equality theory is likewise extended with the usual β and η rules:

λ(α:tick)t [β] = t[β/α] λ(α:tick)(t [α]) = t

As stated, the tick calculus should be understood as an extension of standard dependent
type theory. In particular one can add dependent sums and function types with standard
rules. Variables can be introduced from anywhere in the context, also past ticks.

We can now type the dependent applicative structure as

λ(x:A)λ(α:tick)x :A→ .A

λfλyλ(α:tick)f [α](y [α]) : . (
∏

(x : A) .B)→
∏

(y : .A) . . (α:tick).B[y [α]/x]

For a small example on how ticks in combination with the fixed point operator dfix :
(.X → X) → .X can be used to reason about guarded recursive data, let Str ≡ N × .Str
be the type of guarded recursive streams mentioned above, and suppose x:N ` P (x) is a
family to be thought of as a predicate on N (where x :: xs is the pairing of x and xs). A
lifting of P to streams would be another guarded recursive type y:Str ` P̂ (y) satisfying
P̂ (x :: xs) ≡ P (x)× .(α:tick)P̂ (xs [α]). If p : Π(x:N)P (x) is a proof of P we would expect
that also Π(y:Str)P̂ (y) can be proved, and indeed this can be done as follows. Consider first

f : .(Π(y:Str)P̂ (y))→ Π(y:Str)P̂ (y)

f q (x :: xs)def= p(x) :: λ(α:tick)q [α](xs [α])

Then f(dfix(f)) has the desired type.
More generally, ticks can be used to encode [3] the delayed substitutions of [9], which have

been used to reason coinductively about coinductive data. For more examples of reasoning
using these see [9]. For reasons of space, we will not model general guarded recursive types
in this paper, but see Section 4 for how to model the types used above.

2.1 Modelling ticks using adjunctions
We now describe a notion of model for the tick calculus. It is based on the notion of category
with families (CwF) [13], which is a standard notion of model of dependent type theory.
Recall that a CwF is a pair (C, T ) such that C is a category with a distinguished terminal
object and T : Cop → Fam(Set) is a functor together with a comprehension map to be recalled
below. The functor T associates to every object Γ in C a map T (Γ) : Tm(Γ)→ Ty(Γ) and to
every morphism γ : ∆→ Γ maps Ty(γ) : Ty(Γ)→ Ty(∆) and Tm(γ) : Tm(Γ)→ Tm(∆) such
that T (∆) ◦Tm(γ) = Ty(γ) ◦ T (Γ). Following standard conventions, we write Γ ` A to mean
A ∈ Ty(Γ) and Γ ` t : A to mean t ∈ T (Γ)−1(A), and we write ∆ ` A[γ] for Ty(γ)(A) when
Γ ` A, and likewise ∆ ` t[γ] : A[γ] for Tm(γ)(t) when Γ ` t : A. We refer to the objects of C
as contexts, morphisms as substitutions, elements of Ty(Γ) as types and elements of Tm(Γ)
as terms.

Comprehension associates to each Γ ` A a context Γ.A, a substitution pA : Γ.A→ Γ and
a term Γ.A ` qA : A[pA], such that for every γ : ∆ → Γ, and ∆ ` t : A[γ] there exists a
unique substitution 〈γ, t〉 : ∆→ Γ.A such that pA ◦ 〈γ, t〉 = γ and qA[〈γ, t〉] = t.

To model the tick calculus we need an operation L modelling the extension of a context
with a tick, plus an operation R modelling .. In the simply typed setting, R would be a
right adjoint to context extension, but for dependent types this is not quite so, since these
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operations work on different objects (contexts and types respectively). In the model we
consider in this paper, the right adjoint does exist as an operation on contexts, but also
extends to types and terms in the sense of the following definition.

I Definition 1. Let (C, T ) be a CwF and let R : C → C be a functor. An extension of R to
types and terms is a pair of operations on types and term presented here in the form of rules

Γ ` A
RΓ ` RA

Γ ` t : A
RΓ ` Rt : RA

commuting with substitutions in the sense that (RA)[Rγ] = R(A[γ]) and (Rt)[Rγ] = R(t[γ])
hold for all substitutions γ, and commuting with comprehension in the sense that there exists
an operation associating to each Γ ` A a morphism ζΓ,A : RΓ.RA→ R(Γ.A) in C inverse to
〈RpA,RqA〉. A CwF with adjunction is a pair of adjoint endofunctors L a R : C → C with an
extension of R to types and terms.

Given a CwF with adjunction, one can define an operation mapping types LΓ ` A to
types Γ ` RΓA defined as RΓA = (RA)[η] where η is the unit of the adjunction.

I Lemma 2. There is a bijective correspondence between terms LΓ ` a : A and terms
Γ ` b : RΓA for which we write (−) for both directions where Γ ` a : RΓA is given by
a = (Ra)[η] and LΓ ` b : A is given by b = qA[ε ◦ L(ζLΓ,A ◦ 〈η, b〉)]. Moreover, if γ : ∆→ Γ,
LΓ ` a : A and Γ ` b : RΓA then

(RΓA)[γ] = R∆(A[Lγ]) a[Lγ] = a[γ] b[γ] = b[Lγ]

2.2 Interpretation
The notion of CwF with adjunction is almost sufficient for modelling the tick calculus, but
to interpret tick weakening, we will assume given a natural transformation pL : L → idC.
Defining

JΓ, α : tick `K = LJΓK

pL allows us to define a context projection pΓ′ : JΓ,Γ′ `K→ JΓ `K by induction on Γ′ using
pL in the case of tick variables. We can then define the rest of the interpretation as

JΓ, x : A,Γ′ ` x : AK = qA[pΓ′ ] JΓ ` .(α:tick)AK = RJΓKJAK

JΓ ` λ(α:tick)tK = JtK JΓ, α′:tick,Γ′ ` t [α′]K = JtK[pJΓ′K]

I Proposition 3. The above interpretation of the tick calculus into a CwF with adjunction
and tick weakening pL is sound.

3 Clocked Type Theory

Clocked Type Theory (CloTT) is an extension of the tick calculus with guarded recursion
and multiple clocks. Rather than having a global notion of time as in the tick calculus, ticks
are associated with clocks and clocks can be assumed and universally quantified. Judgements
have a separate context of clock variables ∆, for example, the typing judgement has the
form Γ `∆ t : A, where ∆ is a set of clock variables κ1, . . . , κn. The clock context can be
thought of as a context of assumptions of the form κ1 : Clock, . . . , κn : Clock that appear to
the left of the assumptions of Γ, except that Clock is not a type. There are no operations for
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Type formation rules

Γ, α : κ `∆ A type κ ∈ ∆
Γ `∆ . (α : κ).A type

Γ `∆,κ A type Γ `∆

Γ `∆ ∀κ.A type

Typing rules

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A[κ′/κ]
Γ, α : κ `∆ t : A κ ∈ ∆
Γ `∆ λ(α : κ).t : . (α : κ).A

Γ `∆ t : . (α : κ).A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]
Γ `∆,κ t : . (α : κ).A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A[κ′/κ] [�/α]

Γ `∆ t : .κA→ A

Γ `∆ dfixκ t : .κA

Judgemental equality

(Λκ.t)[κ′] ≡ t[κ/κ′] (Λκ.t[κ]) ≡ t (λ(α′ : κ).t) [α] ≡ t [α/α′]
λ(α : κ).(t [α]) ≡ t (dfixκ t) [�] ≡ t (dfixκ t)

Figure 1 Selected typing and judgemental equality rules of Clocked Type Theory.

forming clocks, only clock variables. It is often convenient to have a single clock constant κ0
and this can be added by working in a context of a single clock variable.

The rules for typing judgements and judgemental equality are given in Figure 1. These
should be seen as an extension of a dependent type theory with dependent function and
sum types, as well as extensional identity types. The rules for these are completely standard
(ignoring the clock context), and thus are omitted from the figure. We write ≡ for judgemental
equality and t =A u for identity types. The model will also model the identity reflection rule

Γ `∆ p : t =A u

Γ `∆ t ≡ u : A

of extensional type theory.
The guarded fixed point operator dfix is useful in combination with guarded recursive

types. Suppose for example that we have a type of natural numbers N and a type of
guarded recursive streams Strκ satisfying Strκ ≡ N × .κStrκ. One can then use dfix for
recursive programming with guarded streams, e.g., when defining a constant stream of zeros
as dfixκ(λx. (0, x)). The type of dfix ensures that only productive recursive definitions are
typeable, e.g., dfixκ(λx.x) is not.

The tick constant � gives a way to execute a delayed computation t of type .κA to
compute a value of type A. In particular, if t is a fixed point, application to the tick constant
unfolds the fixed point once. This explains the need to name ticks in CloTT: substitution of
� for a tick variable α in a term allows for all fixed points applied to α in the term to be
unfolded. In particular, the names of ticks are crucial for the strong normalisation result for
CloTT in [3].
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To ensure productivity, application of � must be restricted. In particular a term such as
dfixκ(λx : Strκ.x [�]) should not be well typed. The typing rule for application to the tick
constant ensures this by assuming that the clock κ associated to the delay is not free in the
context of the term t. For example, the rule

Γ `∆,κ t : . (α : κ).A Γ `∆

Γ `∆,κ t [�] : A [�/α]

is admissible, which can be proved using weakening lemma for the clock variable context.
This rule, however, is not closed under variable substitution, which is the motivation for
the more general rule of Figure 1. The typing rule is a bit unusual, in that it involves
substitution in the term in the conclusion. We shall see in Section 7.1 that this causes extra
proof obligations for welldefinedness of the denotational semantics.

Universal quantification over clocks allow for coinductive types to be encoded using
guarded recursive types [2]. For example Str def= ∀κ.Strκ is a coinductive type of streams. The
head and tail maps hd : Str→ N and tl : Str→ Str can be defined as

hd(xs) def= π1(xs[κ0]) tl(xs) def= Λκ.((π2(xs[κ])) [�])

using the clock constant κ0.
Finally we recall the clock irrelevance axiom

Γ `∆ t : ∀κ.A Γ `∆ A type
Γ `∆ cirrκt : ∀κ′.∀κ′′.t[κ′] =A t[κ′′] (1)

crucial for correctness of the encoding of coinductive types [2]. Note that the hypothesis
implies that κ is not free in A. This rule can be used to prove that ∀κ.A is isomorphic to A
if κ is not free in A. Likewise the tick irrelevance axiom

Γ `∆ t : .κA
tirrκt : . (α : κ).. (α′ : κ).t [α] =A t [α′] (2)

states that the identity of ticks is irrelevant for the equality theory, despite being crucial for
the reduction semantics. Tick irrelevance implies fixed point unfolding

Γ `∆,κ f : .κA→ A Γ `∆ κ′ ∈ ∆
Γ `∆ pfixκ

′
f [κ′/κ] : . (α : κ).(dfixκ

′
f [κ′/κ]) [α] =A (f(dfixκ

′
f))[κ′/κ]

The type theory CloTT as defined in [3] also has guarded recursive types and a universe.
We leave these for future work, see Section 9.

4 Presheaf semantics

The setting for the denotational semantics of CloTT is a category of covariant presheaves
over a category T of time objects. This category has previously been used to give a model of
GDTT [10].

We will assume given a countably infinite set CV of (semantic) clock variables, for which
we use λ, λ′, . . . to range over. A time object is a pair (Θ;ϑ) where Θ is a finite subset of CV
and ϑ : Θ→ N is a map giving the number of ticks left on each clock in Θ. We will write the
finite sets Θ as lists writing e.g., Θ, λ for Θ∪{λ} and ϑ[λ 7→ n] for the extension of ϑ to Θ, λ,
or indeed for the update of ϑ, if ϑ is already defined on λ. A morphism (Θ;ϑ)→ (Θ′;ϑ′) is a
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function τ : Θ→ Θ′ such that ϑ′τ ≤ ϑ in the pointwise order. The inequality allows for time
to pass in a morphism, but morphisms can also synchronise clocks in Θ by mapping them
to the same clock in Θ′, or introduce new clocks if τ is not surjective. Define GR to be the
category SetT of covariant presheaves on T. The topos of trees can be seen as a restriction of
this where time objects always have a single clock.

The category GR contains a special object of clocks, given by the first projection
Clk(Θ;ϑ) = Θ. If ∆ is a set, one can form the object Clk∆ as Clk∆(Θ;ϑ) = Θ∆. Let
T∆ be the category of elements of Clk∆, i.e., the objects are triples (Θ;ϑ; f) where (Θ;ϑ) ∈ T
and f : ∆→ Θ and a morphism τ : (Θ;ϑ; f)→ (Θ′;ϑ′; f ′) is a morphism τ : (Θ;ϑ)→ (Θ′;ϑ′)
such that τ ◦ f = f ′. A clock context ∆ will be interpreted as Clk∆ and contexts, types
and terms in clock context ∆ will be modelled in the category GR[∆] def= SetT∆ of covariant
presheaves over T∆. If F is a covariant presheaf over GR[∆] and τ : (Θ;ϑ; f)→ (Θ′;ϑ′; f ′)
and x ∈ F (Θ;ϑ; f) we will write τ · x for F (τ)(x) ∈ F (Θ′;ϑ′; f ′).

To describe the model of CloTT, we start by fixing a clock context ∆ and modelling the
fragment of CloTT excluding universal quantification over clocks and the tick constant �.
The resulting fragment is a version of the tick calculus with one notion of tick for each clock
κ in ∆. To model this, we need the structure of a CwF with adjunction on GR[∆] for each κ
in ∆. Recall that, like any presheaf category, GR[∆] can be equipped with the structure of a
CwF where contexts are objects, types in context Γ are presheaves over the elements of Γ
and terms are sections. Precisely, a type over Γ is a mapping associating a set A(γ) to each
γ ∈ Γ(Θ;ϑ; f) and to each τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′) a mapping τ · (−) : A(γ) → A(τ · γ)
such that id ·x = x and (ρτ) ·x = ρ · (τ ·x) for all x, τ and ρ. A term is a mapping associating
to each γ an element t(γ) ∈ A(γ) such that t(τ · γ) = τ · t(γ). We often make the underlying
T∆ object explicit writing t(Θ;ϑ;f)(γ).

As an example of a model of a type, recall the type of guarded streams satisfying
Strκ ≡ N×.Strκ from Section 3. This is a closed type in a clock context ∆ (assuming κ ∈ ∆),
and so will be interpreted as a presheaf in GR[∆] defined as JStrκK(Θ;ϑ; f) = Nϑ(f(κ))+1×{∗}.
We will assume that the products in this associate to the right, so that this is the type of tuples
of the form (nϑ(f(κ)), (. . . , (n0, ∗)) . . . ). This is needed to model the equality Strκ ≡ N×.Strκ,
rather than just an isomorphism of types. Given a predicate x:N ` P , we can lift it to a
predicate y : Strκ ` P̂ satisfying P̂ (x : xs) ≡ P (x) × . (α : κ).P̂ (xs [α]) as in Section 2, by
defining

JP̂ K(Θ;ϑ;f)(nϑ(f(κ)), (. . . , (n0, ∗)) . . . ) = {(xϑ(f(κ)), (. . . , (x0, ∗)) . . . ) | ∀i.xi ∈ JP K(Θ;ϑ;f)(ni)}

It is a simple calculation (using the definitions below) that these interpretations model the
type equalities mentioned above.

4.1 Adjunction structure on GR[∆]
For the adjunction, recall that in the topos of trees the functor I is defined as (I F )(n+1) =
Fn and (I F )(0) = {∗}. This has a left adjoint J defined as (J F )n = F (n+ 1). The right
adjoint generalises in a straight forward way to the multiclock setting of CloTT: If F is in
GR[∆], define

(Iκ F )(Θ;ϑ; f) =
{
F (Θ;ϑ[f(κ)−]; f) ϑ(f(κ)) > 0
{∗} otherwise

where ϑ[f(κ)−](f(κ)) = ϑ(f(κ))− 1 and ϑ[f(κ)−](λ) = ϑ(λ) for λ 6= f(κ). This is the same
definition as used in the GDTT model of [10].

I Lemma 4. The functor Iκ extends to types and terms.
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Proof. We just give the definitions. For γ ∈ (Iκ JΓK)(Θ;ϑ; f) define

(Iκ JAK)(Θ;ϑ;f)(γ) =
{
{∗} ϑ(f(κ)) = 0
JAK(Θ;ϑ[f(κ)−];f)(γ) otherwise

The case for terms is similar.

The isomorphism ζΓ,A is given by ζΓ,A(Θ;ϑ;f) =
{
〈∗, ∗〉 7→ ∗ ϑ(f(κ)) = 0
id otherwise

J

At first sight it would seem that one can define a left adjoint to the above functor given
by (Jκ F )(Θ;ϑ; f) = F (Θ;ϑ[f(κ)+]; f), where ϑ[f(κ)+] is defined similarly to ϑ[f(κ)−].
Unfortunately, Jκ F so described is not a presheaf because it has no well-defined ac-
tion on maps since a map τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′) does not necessarily induce a
map (Θ;ϑ[f(κ)+]; f) → (Θ′;ϑ′[f ′(κ)+]; f ′): If τ(f(κ)) = τ(λ) there is no guarantee that
ϑ′[f ′(κ)+](τ(λ)) ≤ ϑ[f(κ)+](λ).

To get the correct description of the left adjoint consider the set f−1(f(κ)) ⊆ ∆ of
syntactic clocks synchronised with κ by f . Given a morphism τ : (Θ;ϑ; f) → (Θ′;ϑ′; f ′),
more clocks can be synchronised with κ by f ′ than f , but never fewer. If we think of time as
flowing in the direction of morphisms, the left adjoint must take into account all the possible
ways that κ could have been synchronised with fewer syntactic clocks “in the past”. Such a
past is given by a subset X ⊂ f−1(f(κ)) such that κ ∈ X.

I Lemma 5. The functor Iκ has a left adjoint Jκ given by

Jκ F (Θ;ϑ; f) =
∐

κ∈X⊂f−1(f(κ))

F (Θ;ϑ; f)[X,κ+]

where (Θ;ϑ; f)[X,κ+] = (Θ,#Θ;ϑ[#Θ 7→ ϑ(f(κ)) + 1]; f [X 7→ #Θ]) for #Θ a chosen clock
name fresh for Θ.

Finally, the projection pJκ :Jκ→ id maps an element (X, γ) in Jκ F (Θ;ϑ; f) to χ · γ
where

χ : (Θ;ϑ; f)[X,κ+]→ (Θ;ϑ; f)

is defined as χ(#Θ) = f(κ) and χ(λ) = λ for λ ∈ Θ. Collectively, Lemmas 4 and 5 together
with the projection pJκ state that for each κ, GR[∆] carries the structure of a model of the
tick calculus. This is enough to model the tick abstractions and applications of CloTT.

The adjoint correspondent pJκ : id→Iκ to pJκ maps an element γ ∈ F (Θ;ϑ; f) to its
restriction in F (Θ;ϑ[f(κ)−]; f). This is the map referred to as next in [10]. Moreover, a
simple calculation shows that the interpretation of .κA, i.e., . (α : κ).A for α not free in A,
is the same as in [10], namely

JΓ `∆ .κA typeK(Θ;ϑ;f)(γ) = JAK(Θ;ϑ[f(κ)−];f)(γ|(Θ;ϑ[f(κ)−];f))

We can thus define the interpretation of dfix as in [10] by induction on ϑ(f(κ)):

Jdfix tK(Θ;ϑ;f)(γ) =
{
∗ ϑ(f(κ)) = 0
Jt (dfix t)K(Θ;ϑ[f(κ)−];f)(γ|(Θ;ϑ[f(κ)−];f)) Otherwise

Finally we note soundness of the tick irrelevance axiom (2).

I Proposition 6. If Γ `∆ t : .κA then

JΓ, α : κ, α′ : κ `∆ t [α] : AK = JΓ, α : κ, α′ : κ `∆ t [α′] : AK
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5 Substitutions

Having described the interpretation of the fragment of CloTT that lives within a fixed clock
context ∆ it remains to describe the interpretation of the universal quantification over clocks
and of the tick constant �. Quantification over clocks can be seen as a dependent product
over a type of clocks, and should therefore be modelled as a right adjoint to weakening
in the clock context. Weakening is an example of a substitution and, as we shall see, the
tick constant � will also be modelled using a form of substitution. We therefore first study
substitutions, which are non-standard in CloTT because of the two contexts, and because of
the unusual typing rules for ticks.

5.1 Syntactic substitutions

A syntactic substitution from Γ `∆ to Γ′ `∆′ is a pair (ν, σ) of a substitution ν of clocks for
clocks and a substitution σ of terms for variables and ticks for ticks variables. Substitutions
are formed according to the following rules.

If ν : ∆′ → ∆ is a map of sets, then (ν, ·) : Γ `∆→ · `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ and Γ `∆ t : A (ν, σ) then (ν, σ[x 7→ t]) : Γ `∆→ Γ′, x : A `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ and Γ, α : ν(κ),Γ′′ `∆ and Γ′, β : κ `∆′ are welformed then
(ν, σ[β 7→ α]) : Γ, α : ν(κ),Γ′′ `∆→ Γ′, β : κ `∆′

If (ν, σ) : Γ `∆→ Γ′ `∆′ , κ /∈ ∆′ and κ′ ∈ ∆, then

(ν[κ 7→ ν(κ′)], σ[α 7→ �]) : Γ `∆→ Γ′, α : κ `∆′,κ

Here A (ν, σ) is the result of substituting A along (ν, σ) which is defined in the standard way.

5.2 Semantic substitutions

The clock substitution ν gives rise to a functor T∆ → T∆′ mapping an object (Θ;ϑ; f) to
(Θ;ϑ; fν), and this induces a functor ν∗ : GR[∆′]→ GR[∆] by (ν∗F )(Θ;ϑ; f) = F (Θ;ϑ; fν).
This functor extends to a morphism of CwFs [13], in particular it maps a type A in context
Γ in the CwF structure of GR[∆′] to a type ν∗A in context ν∗Γ the CwF structure of GR[∆],
and likewise for terms. For example, (ν∗A)(γ) for γ ∈ ν∗Γ(Θ;ϑ; f) = Γ(Θ;ϑ; fν) is defined
as Aγ. Moreover, this map commutes on the nose with comprehension and substitution. For
example, if A is a type in context Γ in GR[∆′] and γ : Γ′ → Γ, then (ν∗A)[ν∗γ] = ν∗(A[γ]).
Moreover, it commutes with I in the following sense.

I Lemma 7. If ν : ∆′ → ∆ and κ ∈ ∆′ then ν∗◦ Iκ=Iν(κ) ◦ν∗.

The interpretation of a substitution (ν, σ) is a morphism

J(ν, σ)K : JΓ `∆K→ ν∗JΓ `′∆′K

in GR[∆], which we will define below. But first we state the substitution lemma, which
must be proved by induction on terms and types simultaneously with the definition of the
interpretation, as is standard for models of dependent type theory.

I Lemma 8. Let (ν, σ) : Γ `∆→ Γ′ `∆′ be a substitution and let Γ′ `∆′ J be a judgement of
a wellformed type or a typing judgement. Then JJ (ν, σ)K = (ν∗JJK)[J(ν, σ)K].
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The main difficulty for defining the interpretation of substitutions is that the operator
Jκ does not commute with clock substitutions in the sense that ν∗(Jκ Γ) is not necessarily
equal to Jν(κ) (ν∗Γ). However, we can define a map in the relevant direction:

eκ,νΓ = ε
ν(κ)
ν∗(JκΓ)◦ J

ν(κ) ν∗(ηκΓ) :Jν(κ) (ν∗Γ)→ ν∗(Jκ Γ)

where ηκΓ : Γ→IκJκ Γ is the unit of the adjunction and

ε
ν(κ)
ν∗(JκΓ) :Jν(κ)Iν(κ) ν∗(Jκ Γ)→ ν∗(Jκ Γ)

is the counit. The composition type checks since ν∗ Iκ=Iν(κ) ν∗.
The map eκ,ν has a simple description in the model: eκ,νΓ maps an element (X, γ) in

Jν(κ) (ν∗Γ)(Θ;ϑ; f)

=
∐

ν(k)∈X
f(X)=f(ν(κ))

(ν∗Γ)(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f [X 7→ #Θ])

=
∐

ν(k)∈X
f(X)=f(ν(κ))

Γ(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f ◦ ν[ν−1X 7→ #Θ])

to (ν−1X, γ) in the set ν∗(Jκ Γ)(Θ;ϑ; f) which equals

Jκ Γ(Θ;ϑ; f ◦ ν) =
∐
κ∈Y

f(ν(Y ))=f(ν(κ))

Γ(Θ,#Θ;ϑ[#Θ 7→ ϑ((f ◦ ν)(κ)) + 1]; f ◦ ν[Y 7→ #Θ])

The interpretation of substitutions is defined as

J·K = x 7→ ?

J(ν, σ[x 7→ t])K = 〈J(ν, σ)K, JtK〉

J(ν, σ[β 7→ α])K = eκJΓ′K◦ J
ν(κ) J(ν, σ)K ◦ pΓ′′

J(ν[κ 7→ ν(κ′)], σ[α 7→ �])K = ν∗J([κ 7→ κ′], [α 7→ �])K ◦ J(ν, σ)K

where we have assumed the types as in the rules for forming substitutions and pΓ′′ is the
context projection defined as in Section 2.2. The last case uses J([κ 7→ κ′], [α 7→ �])K which
will be defined in Section 7 below.

The rest of this section is a sketch proof of the substitution lemma for the fragment of
CloTT modelled so far, i.e., excluding quantification over clocks and �. As we extend the
interpretation we will also extend the proof of the substitution lemma.

The proof is by induction over judgements and is simultaneous with the definition of the
interpretation of substitutions. The cases of standard dependent type theory (dependent
functions and sums, identity types) can be essentially reduced to the standard proof of the
substitution lemma for dependent type theory in presheaf models as follows (although the
non-standard notion of substitution requires some new lemmas). Since GR[∆] is the object of
presheaves over T∆, the category of elements of J∆K = Clk∆, given a context Γ `∆ one can
form the comprehension J∆K.JΓK as an object of GR. Types and terms in context J∆K.JΓK in
the CwF structure associated to GR are then in bijective correspondence with those over JΓK
in the CwF structure of GR[∆]. A substitution (ν, σ) : Γ `∆→ Γ′ `∆′ induces a morphism
J∆K.JΓK→ J∆′K.JΓ′K in GR and the substitution defined above corresponds to substitution
along this map. Thus the interpretation of the standard type theoretic constructions are
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the same as the standard ones in the presheaf model GR, and the corresponding cases of the
substitution lemma can be proved similarly to the standard proof of the substitution lemma
for presheaf models of type theory.

The cases corresponding to the constructions from the tick calculus follow from the
following two equations.

Iν(κ) eκ,ν ◦ ην(κ)
ν∗ = ν∗(ηκ) : ν∗ →Iν(κ) ν∗ Jκ= ν∗ IκJκ (3)

ν∗(εκ) ◦ eκ,νIκ = ε
ν(κ)
ν∗ :Jν(κ) ν∗ Iκ=Jν(κ)Iν(κ) ν∗ → ν∗ (4)

For example, the case of . (α : κ).A can be proved as follows (writing JσK for J(ν, σ)K)

ν∗JΓ′ `∆′ . (α : κ).AK[JσK] = ν∗
(

(Iκ JΓ′, α : κ `∆′ AK) [ηκJΓ′K]
)

[JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[ν∗ηκJΓ′K][JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[Iν(κ) eκ ◦ ην(κ)

ν∗JΓ′K ◦ JσK]

=
(
Iν(κ) ν∗JΓ′, α : κ `∆′ AK

)
[Iν(κ) (eκ◦ Jν(κ) JσK) ◦ ην(κ)

ν∗JΓ′K]

=
(
Iν(κ) (ν∗JΓ′, α : κ `∆′ AK) [eκ◦ Jν(κ) JσK]

)
[ην(κ)
ν∗JΓ′K]

=
(
Iν(κ) JΓ, β : ν(κ) `∆ A (ν, σ[α 7→ β])K

)
[ην(κ)
ν∗JΓ′K]

= JΓ `∆ . (β : ν(κ)).(A (ν, σ[α 7→ β]))K
= JΓ `∆ (. (α : κ).A) (ν, σ)K

6 Interpretation of clock quantification

Universal quantification over clocks should be modelled as a right adjoint to the semantic
correspondent to clock weakening. Syntactically, clock weakening from context Γ `∆ to
Γ `∆,κ corresponds to the substitution (i, idΓ), where i is the inclusion of ∆ into ∆, κ. Recall
from Section 5 that types and terms in context JΓ `∆K in the CwF structure of GR[∆]
correspond to types and terms in context J∆K.JΓ `∆K in GR, and recall that J∆K = Clk∆.
By the substitution lemma, clock weakening from context Γ `∆ to Γ `∆,κ corresponds to
substitution along the composition

J∆, κK.JΓ `∆,κK
J∆,κK.J(i,idΓ)K−−−−−−−−−→ J∆, κK.i∗JΓ `∆K→ J∆K.JΓ `∆K

All such substitutions have right adjoints, but to get a simple description of this (and to
satisfy the substitution lemma), we will give a concrete description which can be briefly
described as follows: To model ∀κ.A, open a fresh semantic clock #, map κ to # and take
the limit of JAK as # ranges over all natural numbers. To type this description we need the
following lemma.

I Lemma 9. Let (Θ;ϑ; f) be an object of GR[∆], let # be fresh for Θ and let ι : Θ→ Θ,# be
the inclusion. The component of J(i, idΓ)K at (Θ,#;ϑ[# 7→ n]; f [κ 7→ #]) is an isomorphism

JΓ `∆,κK(Θ,#;ϑ[#7→n];f [κ7→#]) → i∗JΓ `∆K(Θ,#;ϑ[#7→n];f [κ7→#]) = JΓ `∆K(Θ,#;ϑ[#7→n];ιf)

If κ′ ∈ ∆, the inverse to J(i, idΓ)K(Θ,#;ϑ[# 7→n];f [κ 7→#]) is given by the component of

i∗(J(id∆[κ 7→ κ′], idΓ)K) : i∗JΓ `∆K→ i∗(id∆[κ 7→ κ′])∗JΓ `∆,κK = JΓ `∆,κK

at (Θ,#;ϑ[# 7→ n]; f [κ 7→ #])).
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We can now define the interpretation of universal quantification over clocks:

JΓ `∆ ∀κ.A typeK(Θ;ϑ;f)(γ)def=

{(ωn) ∈
∏
n∈N

JΓ `∆,κ A typeK(Θ,#;ϑ[#7→n];f [κ7→#])(J(i, idΓ)K−1(ι · γ)) | ∀n.ωn = (ωn+1)|n}

Here, by assumption γ ∈ JΓ `∆K(Θ;ϑ;f)(γ) and so

ι · γ ∈ JΓ `∆K(Θ,#;ϑ[#7→n];ιf) = i∗JΓ `∆K(Θ,#;ϑ[#7→n];f [κ7→#])

which means that J(i, idΓ)K−1(ι · γ) ∈ JΓ `∆,κK(Θ,#;ϑ[# 7→n];f [κ7→#]) and thus the type of each
ωn is a welldefined set. In the condition for the families, (ωn+1)|n is the restriction of ωn+1
along the map (Θ,#;ϑ[# 7→ n+ 1]; f [κ 7→ #])→ (Θ,#;ϑ[# 7→ n]; f [κ 7→ #]) given by the
identity on Θ,#. For the interpretation of terms define

JΓ `∆ Λκ.t : ∀κ.AK(Θ;ϑ;f) = (JΓ `∆,κ t : AK(Θ,#;ϑ[#7→n];ιf)(J(i, idΓ)K−1(ι · γ)))n
JΓ `∆ t[κ′] : A[κ′/κ]K(Θ;ϑ;f) = [# 7→ f(κ′)] · (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))ϑ(f(κ′))

To see that the latter type checks, note first that

JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))ϑ(f(κ′)) ∈ JΓ `∆,κ A typeK(Θ,#;ϑ[# 7→ϑ(f(κ′))];f [κ 7→#])(J(i, idΓ)K−1(ι · γ))

and since [# 7→ f(κ′)] : (Θ,#;ϑ[# 7→ ϑ(f(κ′))]; f [κ 7→ #])→ (Θ;ϑ; f [κ 7→ f(κ′)]), the right
hand side of the definition is in

JΓ `∆,κ A typeK(Θ;ϑ;f [κ7→f(κ′)])([# 7→ f(κ′)] · J(i, idΓ)K−1(ι · γ))

=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)([# 7→ f(κ′)] · J(i, idΓ)K−1(ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)([# 7→ f(κ′)] · J(id∆[κ 7→ κ′], idΓ)K(ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)(J(id∆[κ 7→ κ′], idΓ)K([# 7→ f(κ′)] · ι · γ))
=(id∆[κ 7→ κ′])∗(JΓ `∆,κ A typeK)(Θ;ϑ;f)(J(id∆[κ 7→ κ′], idΓ)K(γ))
=JΓ `∆ A[κ′/κ] typeK(Θ;ϑ;f)(γ)

where the last equality is by the substitution lemma.

I Lemma 10. The β and η rules for universal quantification over clocks are sound for the
interpretation.

7 Interpretation of �

To interpret the rule for the tick constant �, we define a substitution

J([κ 7→ κ′], [α 7→ �])K : JΓ `∆K→ [κ 7→ κ′]∗JΓ, α : κ `∆,κK

for every context Γ `∆ with κ /∈ ∆. The interpretation of application to � can then be
defined as

JΓ `∆ t[κ′/κ] [�] : A[κ′/κ][�/α]K = ([κ 7→ κ′]∗JΓ, α : κ `∆,κ t : AK)[J([κ 7→ κ′], [α 7→ �])K]

which has type

([κ 7→ κ′]∗JΓ, α : κ `∆,κ A typeK)[J([κ 7→ κ′], [α 7→ �])K]
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which equals the required JΓ, α : κ `∆,κ A[κ′/κ][�/α] typeK by the substitution lemma.
Suppose γ ∈ JΓ `∆K(Θ;ϑ;f). We define

J([κ 7→ κ′], [α 7→ �])K(γ) def=
(
{κ}, J(i, idΓ)K−1(ι · γ))

)
where ι : (Θ;ϑ; f) → (Θ,#;ϑ[# 7→ n+ 1]; f) is the inclusion for n = ϑ(f(κ′)). We must
show that this defines an element of [κ 7→ κ′]∗JΓ, α : κ `∆,κK(Θ;ϑ;f). To see this, note first
that

ι · γ ∈ JΓ `∆K(Θ,#;ϑ[# 7→n+1];f) = i∗JΓ `∆K(Θ,#;ϑ[# 7→n+1];f [κ 7→#])

so by Lemma 9,

J(i, idΓ)K−1(ι · γ) ∈ JΓ `∆,κK(Θ,#;ϑ[#7→n+1];f [κ7→#])

and(
{κ}, J(i, idΓ)K−1(ι · γ))

)
∈

∐
κ∈X⊂f−1(f(κ))

JΓ `∆,κK(Θ,#;ϑ[#7→n+1];f [κ7→f(κ′)][X 7→#])

= JΓ, α : κ `∆,κK(Θ;ϑ;f [κ 7→f(κ′)])

= [κ 7→ κ′]∗JΓ, α : κ `∆,κK(Θ;ϑ;f)

We note that this satisfies the equality for � in Figure 1.

I Lemma 11. The interpretations of (dfixκ
′
t) [�] and t (dfixκ

′
t) are equal.

7.1 Welldefinedness

As mentioned in Section 3 the unusual typing rule for t [�] introduces a problem of welldefined-
ness of the interpretation: If t is a term, a proof of the typing judgement Γ `∆ t [�] : A[�/α]
consists of a term s such that s[κ′/κ] = t, a type B such that B[κ′/κ] = A and a proof of
a typing judgement Γ `∆,κ s : B. In general there may be different possible choices of s
and B, but the next lemma states that the interpretation of the term t [�] is independent of
this choice. This means that the interpretation of a welltyped term is a welldefined object,
independent of the choice of typing derivation.

I Proposition 12. If Γ `∆,κ s : B and Γ `∆,κ u : C are such that Γ `∆ s[κ′/κ] : B[κ′/κ] is
equal to Γ `∆ u[κ′/κ] : C[κ′/κ] then

[κ 7→ κ′]∗Js [α]K[J([κ 7→ κ′], [α 7→ �])K] = [κ 7→ κ′]∗Ju [α]K[J([κ 7→ κ′], [α 7→ �])K]

Proof. The assumption implies that also

Γ, α : κ′ `∆ (s [α])[κ′/κ] : B[κ′/κ] and Γ, α : κ′ `∆ (u [α])[κ′/κ] : B[κ′/κ]

are equal, and so by the substitution lemma

([κ 7→ κ′]Js [α]K)[J(i, idΓ[α 7→ α])K] = ([κ 7→ κ′]Ju [α]K)[J(i, idΓ[α 7→ α])K]
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Now, if γ ∈ JΓ `∆K(Θ;ϑ;f) then

[κ 7→ κ′]∗Js [α]K[J([κ 7→ κ′], [α 7→ �])K](γ)

= [κ 7→ κ′]∗Js [α]K
(
{κ}, J(i, idΓ)K−1(ι · γ)

)
= [κ 7→ κ′]∗Js [α]K ({κ}, J([κ 7→ κ′], idΓ)K(ι · γ))
= [κ 7→ κ′]∗Js [α]KJ([κ 7→ κ′], idΓ[α 7→ α])K ({κ}, (ι · γ))
= [κ 7→ κ′]∗Ju [α]KJ([κ 7→ κ′], idΓ[α 7→ α])K ({κ}, (ι · γ))
= [κ 7→ κ′]∗Ju [α]K[J([κ 7→ κ′], [α 7→ �])K](γ) J

8 Clock irrelevance

We now show how to model the clock irrelevance axiom (1). For this it suffices to show that
if Γ `∆ t : ∀κ.A, Γ `∆ A type and κ′, κ′′ ∈ ∆ then

JΓ `∆ t[κ′] : AK = JΓ `∆ t[κ′′] : AK

Recall that for γ ∈ JΓ `∆K(Θ;ϑ;f)

JΓ `∆ t[κ′] : AK(Θ;ϑ;f)(γ) = [# 7→ f(κ′)] · (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n

where n = ϑ(f(κ′)). Here the element (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n lives in

JΓ `∆,κ A typeK(Θ,#;ϑ[# 7→n];f [κ7→#])(J(i, idΓ)K−1(ι · γ))

= i∗(JΓ `∆ A typeK)(Θ,#;ϑ[#7→n];f [κ7→#])(J(i, idΓ)K(J(i, idΓ)K−1(ι · γ)))
= JΓ `∆ A typeK(Θ,#;ϑ[# 7→n];f)(ι · γ)

Clock irrelevance will follow from the following lemma.

I Lemma 13. Suppose Γ `∆ A type and γ ∈ JΓ `∆K(Θ;ϑ;f). The map

ι · (−) : JΓ `∆ A typeK(Θ;ϑ;f) → JΓ `∆ A typeK(Θ,#;ϑ[#7→n];f)(ι · γ)

is an isomorphism.

In particular, there is an element x such that ι · x = (JΓ `∆ t : ∀κ.AK(Θ;ϑ;f)(γ))n and so

JΓ `∆ t[κ′] : AK(Θ;ϑ;f)(γ) = [# 7→ f(κ′)] · ι · x = x

Likewise JΓ `∆ t[κ′′] : AK(Θ;ϑ;f)(γ) = x proving clock irrelevance.
Lemma 13 can be proved by induction on A using the techniques of [10]. In particular, [10]

proves that the statement of the lemma is equivalent to the statement that the context
projection map JΓ, x : A `∆K→ JΓ `∆K (considered as a morphism in GR) is orthogonal to
all objects of the form y(λ, n) where y is the yoneda embedding. Here, orthogonality means
that for all squares as below, there exists a unique filling diagonal:

y(λ, n)×X JΓ, x : A `∆K

X JΓ `∆K

π

where π is the second projection. In particular, this implies that the condition is closed under
Π- and Σ-types, and substitutions, see [10] for details. This proof can be easily extended to
the cases of . (α : κ).A and ∀κ.A.
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9 Conclusion and future work

We have constructed a model of CloTT modelling ticks on clocks using an adjunction where
the right adjoint extends to types and terms. The description of the left adjoint Jκ is fairly
heavy to work with, but by abstracting away the required properties needed to model the
tick calculus, the model can be described in reasonable space.

Future work includes extending the model to universes, which we expect to be easy
using the universes constructed in [10]. As noted there the axiom of clock irrelevance forces
universes to be indexed by syntactic clock contexts. Fortunately, we can model a notion of
universe polymorphism in the clock context: inclusions of clock contexts induce inclusion of
universes, and these commute with type constructions on the nose. These results, however,
must be adapted to CloTT, in particular the code for the . type constructor should be
extended to the tick abstracting generalisation used in CloTT. We expect this to be a simple
adaptation. Using universes, guarded recursive types can be encoded [6], indeed these can
also be added as primitive, given that many of them exist in the model [10].

Our motivation for constructing this model is to study extensions of CloTT. In particular,
we would like to extend CloTT with path types as in [5]. This requires an adaptation of the
model to the cubical setting, using T indexed families of cubical sets [11] rather than just
sets.

Acknowledgements. We thank Patrick Bahr for useful discussions.
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Erratum

The description of the left adjoint given in Lemma 5 in this paper is incorrect. The left adjoint
does exist, but should be constructed differently. This error has consequences in the rest of the
paper since some proofs rely on the concrete description. However, the overall approach for
the model construction is still feasible. We refer to the paper [1] for a newer and considerably
simplified approach to modelling Clocked Type Theory, based on the ideas presented in the
present paper.
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1 Introduction

Gradually typed languages allow for static and dynamic programming styles within the same
language. They are designed with twin goals of allowing easy interoperability between static
and dynamic portions of a codebase and facilitating a smooth transition from dynamic to
static typing. This allows for the introduction of new typing features to legacy languages
and codebases without the enormous manual effort currently necessary to migrate code from
a dynamically typed language to a fully statically typed language. Gradual typing allows
exploratory programming and prototyping to be done in a forgiving, dynamically typed style,
while later that code can be typed to ease readability and refactoring. Due to this appeal,
there has been a great deal of research on extending gradual typing [29, 25] to numerous
language features such as parametric polymorphism [1, 12], effect tracking [2], typestate [33],
session types [11], and refinement types [14]. Almost all work on gradual typing is based
solely on operational semantics, and recent work such as [24] has codified some of the central
design principles of gradual typing in an operational setting. In this paper, we are interested
in complementing this operational work with a type-theoretic and category-theoretic analysis
of these design principles. We believe this will improve our understanding of gradually typed
languages, particularly with respect to principles for reasoning about program equivalence,
and assist in designing and evaluating new gradually typed languages.

One of the central design principles for gradual typing is gradual type soundness. At its
most general, this should mean that the types of the gradually typed language provide the
same type-based reasoning that one could reasonably expect from a similar statically typed
language, i.e. one with effects. While this has previously been defined using operational
semantics and a notion of blame [31], the idea of soundness we consider here is that the
types should provide the same extensionality (η) principles as in a statically typed language.
This way, programmers can reason about the “typed” parts of gradual programs in the
same way as in a fully static language. This definition fits nicely with a category-theoretic
perspective, because the β and η principles correspond to definitions of connectives by a
universal property. The second design principle is the gradual guarantee [24], which we will
refer to as graduality (by analogy with parametricity). Informally, graduality of a language
means that syntactic changes from dynamic to static typing (or vice-versa) should result in
simple, predictable changes to the semantics of a term. More specifically, if a portion of a
program is made “more static”/“less dynamic” then the new program should either have the
same behavior or result in a runtime type error. Other observable behavior such as values
produced, I/O actions performed or termination should not be changed.

In this paper, we codify these two principles of soundness and graduality directly into a
logical syntax we dub (call-by-name) Gradual Type Theory (Section 2). For graduality, we
develop a logic of type and term dynamism that can be used to reason about the relationship
between “more dynamic” and “less dynamic” versions of a program, and to give novel
specifications/universal properties for the dynamic type, type errors, and runtime type casts
of a gradually typed language. These universal properties extend the judgmental approach to
type theory (see [16, 21]) to the key features of gradual typing. For soundness, we assert β
and η principles as axioms of term dynamism, so it can also be used to reason about programs’
behavior. Furthermore, using the η principles for types, we show that most of the operational
rules of runtime casts of existing (call-by-name) gradually typed languages are uniquely
determined by these constraints of soundness and graduality (Section 3). For example,
uniqueness implies that any enforcement scheme in a specific gradually typed language that
is not equivalent to the standard “wrapping” ones must violate either soundness or graduality.
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We have chosen call-by-name because it is a simple setting with the necessary η principles
(for negative types) to illustrate our technique; we leave a call-by-value extension to future
work.

We give a sound and complete category theoretic semantics for gradual type theory in
terms of certain preorder categories (double categories where one direction is thin) (Section 4).
We show that the contract interpretation of gradual typing [30] can be understood as a tool
for constructing models (Section 5): starting from some existing language/category C, we first
implement casts as suitable pairs of functions/morphisms from C, and then equip every type
with canonical casts to the dynamic type. We apply this to construct some concrete models
in domains (Section 6). Conceptually, gradual type theory is analogous to Moggi’s monadic
metalanguage [18]: it clarifies general principles present in many different programming
languages; it is the internal language of a quite general class of category-theoretic structures;
and, for a specific language, a number of useful results can be proved all at once by showing
that a logical relation over it is a model of the type theory.

A logic of dynamism and casts. Before proceeding to the technical details, we explain at
a high level how our type theory accounts for two key features of gradual typing: graduality
and casts. The “gradual guarantee” as defined in [24] applies to a surface language where
runtime type casts are implicitly inserted based on type annotations, but we will focus
here on an analysis of fully elaborated languages, where explicit casts have already been
inserted (so our work does not yet address gradual type checking). The gradual guarantee
as defined in [24] makes use of a syntactically less dynamic ordering on types: the dynamic
type (universal domain) ? is the most dynamic, and A is less dynamic than B if B has the
same structure as A but some sub-terms are replaced with ? (for example, A→ (B × C) is
less dynamic than ?→ (B×?), ?→? and ?). Intuitively, a less dynamic type constrains the
behavior of the program more, but consequently gives stronger reasoning principles. This
notion is extended to closed well-typed terms t : A and t′ : A′ with A less dynamic than
A′: t is syntactically less dynamic than t′ if t is obtained from t′ by replacing the input and
output type of each type cast with a less (or equally) dynamic type (in [24] this was called
“precision”). For example, if add1 : ?→ N and true : ?, then add1 ((?⇐ N)(N⇐ ?)true) (cast
true from dynamic to N and back, to assert it is a number) is syntactically less dynamic
than add1 ((? ⇐ ?)(? ⇐ ?)true) (where both casts are the identity). Then the gradual
guarantee [24] says that if t is syntactically less dynamic than t′, then t is semantically less
dynamic than t′: either t evaluates to a type error (in which case t′ may do anything) or
t, t′ have the same first-order behavior (both diverge or both terminate with t producing a
less dynamic value). In the above example, the less dynamic term always errors (because
true fails the runtime N check), while the more dynamic term only errors if add1 uses its
argument as a number. In contrast, a program that returns a different value than add1 (true)
does will not be semantically less dynamic than it.

The approach we take in this paper is to give a syntactic logic for the semantic notion of
one term being less dynamic than another, with 0 (type error) the least element, and all
term constructors monotone. We call this the term dynamism relation t v t′, and it includes
not only syntactic changes in type casts, as above, but also equational laws like identity and
composition for casts, and βη rules – so t v t′ intuitively means that t type-errors more than
(or as much as) t′, but is otherwise equal according to these equational laws. A programming
language that is a model of our type theory will therefore be equipped with a semantic tJvKt′

relation validating these rules, so tJvKt′ if t type-errors more than t′ up to these equational
and monotonicity laws. In particular, making type cast annotations less dynamic will result
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in related programs, and if JvK is adequate (doesn’t equate operationally distinguishable
terms), then this implies the gradual guarantee [24]. Therefore, we say a model “satisfies
graduality” in the same sense that a language satisfies parametricity.

Next, we discuss the relationship between term dynamism and casts/contracts, one of
the most novel parts of our theory. Explicit casts in a gradually typed language are typically
presented by the syntactic form (B ⇐ A)t, and their semantics is either defined by various
operational reductions that inspect the structure of A and B, or by “contract” translations,
which compile a language with casts to another language, where the casts are implemented
as ordinary functions. In both cases, the behavior of casts is defined by inspection on types
and part of the language definition, with little justification beyond intuition and precedent.

In gradual type theory, on the other hand, the behavior of casts is not defined by inspection
of types. Rather, we use the new type and term dynamism judgments, which are defined
prior to casts, to give a few simple and uniform rules specifying casts in all types via a
universal property (optimal implementation of a specification). Our methodology requires
isolating two special subclasses of casts, upcasts and downcasts. An upcast goes from a
“more static” to a “more dynamic” type – for instance (? ⇐ (A → B)) is an upcast from
a function type up to the dynamic type – whereas a downcast is the opposite, casting to
the more static type. We represent the relationship “A is less dynamic than B” by a type
dynamism judgment A v B (which corresponds to the “naïve subtyping” of [31]). In gradual
type theory, the upcast 〈B � A〉 from A to B and the downcast 〈A � B〉 from B to A
can be formed whenever A v B. This leaves out certain casts like (?× N)⇐ (N× ?) where
neither type is more dynamic than the other. However, as first recognized in [10], these
casts are macro-expressible [6] as a composite of an upcast to the dynamic type and then a
downcast from it (define (B ⇐ A)t as the composite 〈B � ?〉〈?� A〉t).

A key insight is that we can give upcasts and downcasts dual specifications using term
dynamism, which say how the casts relate programs to type dynamism. If A v B, then for
any term t : A, the upcast 〈B� A〉t : B is the least dynamic term of type B that is more
dynamic than t. In order-theoretic terms, 〈B� A〉t : B is the v-meet of all terms u : B with
t v u. Downcasts have a dual interpretation as a v-join. Intuitively, this property means
upcast 〈B� A〉t behaves as much as possible like t itself, while supporting the additional
interface provided by expanding the type from A to B.

This simple definition has powerful consequences that we explore in Section 3, because
it characterizes the upcasts and downcasts up to program equivalence. We show that
standard implementations of casts are the unique implementations that satisfy β, η and
basic congruence rules. In fact, almost all of the standard operational rules of a simple
call-by-name gradually typed language are term-dynamism equivalences in gradual type
theory. The exception is rules that rely on disjointness of different type connectives (such as
〈?→ ?� ?〉〈?� ?× ?〉t 7→ 0), which are independent, and can be added as axioms.

2 Gradual Type Theory

In this section, we present the rules of gradual type theory (GTT). Gradual type theory
presents the types, connectives and casts of gradual typing in a modular, type-theoretic way:
the dynamic type and casts are defined by rules using the judgmental structure of the type
theory, which extends the usual judgmental structure of call-by-name typed lambda calculus
with a syntax for type and term dynamism. Since the judgmental structure is as important
as these types, we present a bare preorder type theory (PTT) with no types first. Then we
can modularly define what it means for this theory to have a dynamic type, casts, functions
and products, and gradual type theory is preorder type theory with all of these.
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A type A′ type
A v A′

Γ ctx Γ′ ctx
Φ : Γ v Γ′

Γ ctx A type
Γ ` t : A

Φ : Γ v Γ′ Γ ` t : A
A v A′ Γ′ ` t′ : A′

Φ ` t v t′ : A v A′

Figure 1 Judgment Presuppositions of Preorder Type Theory.

X base type
X type · ctx

Γ ctx A type x 6∈ dom(Γ)
Γ, x : A ctx Γ, x : A,Γ′ ` x : A

Figure 2 Preorder Type Theory: Type and Term Structure.

Preorder Type Theory. Preorder type theory (PTT) has 6 judgments: types, contexts,
type dynamism, dynamism contexts, terms and term dynamism. Their presuppositions (one
is only allowed to make a judgment when these conditions hold) are presented in Figure 1,
where A type and Γ ctx have no conditions. The types, contexts and terms (Figure 2) are
structured as a standard call-by-name type theory. Terms are treated as intrinsically typed
with respect to a context and an output type, contexts are ordered lists (this is important
for our definition of dynamism context below). For bare preorder type theory, the only types
are base types, and the only terms are variables and applications of uninterpreted function
symbols (whose rule we omit). In the extended version [20], we give a precise definition of a
signature specifying valid base types, function symbols, and type and term dynamism axioms.
A substitution γ : Γ′ ` Γ is defined as usual as giving, for every typed variable in the output
context x : A ∈ Γ, a term of that type relative to the input context Γ′ ` γ(x) : A. Our term
language supports a notion of substitution where if γ : Γ′ ` Γ and Γ ` t : A then Γ′ ` t[γ] : A.

Next, we discuss the new judgments of type dynamism, dynamism contexts, and term
dynamism. A type dynamism judgment (Figure 3) A v B relates two well-formed types, and
is read as “A is less dynamic than B”. In preorder type theory, the only rules are reflexivity
and transitivity, making type dynamism a preorder, and axioms from a signature (omitted).

The remaining rules in Figure 3 define type dynamism contexts Φ, which are used in the
definition of term dynamism. While terms are indexed by a type and a typing context, term
dynamism judgments Φ ` t v t′ : A v A′ are indexed by two terms Γ ` t : A and Γ′ ` t′ : A′,
such that A v A′ (A is less dynamic than A′) and Γ is less dynamic than Γ′. Thus, we
require a judgment Φ : Γ v Γ′, which lifts type dynamism to contexts pointwise (for any
x : A ∈ Γ, the corresponding x′ : A′ ∈ Γ′ satisfies A v A′). This uses the structure of Γ and
Γ′ as ordered lists: a dynamism context Φ : Γ v Γ′ implies that Γ and Γ′ have the same
length and associates variables based on their order in the context, so that Φ is uniquely
determined by Γ and Γ′; this is sufficient because of an admissible exchange rule for terms.
We notate dynamism contexts to evoke a logical relations interpretation of term dynamism:
under the conditions that x1 v x′1 : A1 v A′1, . . . then we have that t v t′ : B v B′.

The term dynamism judgment admits constructions (Figure 4) corresponding to both
the structural rules of terms and the preorder structure of type dynamism, beginning from
arbitrary term dynamism axioms (see the extended version [20] for a formal definition). First,
there is a rule (TmPrec-Var) that relates variables. Next there is a compositionality rule
(TmPrec-Comp) that allows us to prove dynamism judgments by breaking terms down
into components. We elide the definition of substitution dynamism Φ ` γ v γ′ : Ψ, which is
pointwise term dynamism. Last, we add an appropriate form of reflexivity (TmPrec-Refl)
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A v A
A v B B v C

A v C · : · v ·
Φ : Γ v Γ′ A v A′

(Φ, x v x′ : A v A′) : Γ, x : A v Γ′, x′ : A′

Figure 3 Type and Context Dynamism.

x v x′ : A v A′ ∈ Φ
Φ ` x v x′ : A v A′ TmPrec-Var

Φ ` t v t′ : A v A′ Ψ ` γ v γ′ : Φ
Ψ ` t[γ] v t′[γ′] : A v A′ TmPrec-Comp

Γ ` t : A Φ : Γ v Γ
Φ ` t v t : A v A

TmPrec-Refl

Φ : Γ v Γ′ ` t v t′ : A v A′

Φ′ : Γ′ v Γ′′ ` t′ v t′′ : A′ v A′′

Ψ : Γ v Γ′′ ` t v t′′ : A v A′′ TmPrec-Trans

Figure 4 Primitive Rules of Term Dynamism.

and transitivity (TmPrec-Trans) as rules, whose well-formedness depends on the reflexivity
and transitivity of type dynamism. While the reflexivity rule is intuitive, the transitivity
rule is more complex. Consider an example where A v A′ v A′′ and B v B′ v B′′:

x v x′ : A v A′ ` t v t′ : B v B′ x′ v x′′ : A′ v A′′ ` t′ v t′′ : B′ v B′′

x v x′′ : A v A′′ ` t v t′′ : B v B′′

In a logical relations interpretation of term dynamism, we would have relations vA,A′ ,
vA′,A′′ , vA,A′′ and similarly for the B’s, and the term dynamism judgment of the conclusion
would be interpreted as “for any u vA,A′′ u′′, t[u/x] vB,B′′ t′′[u′′/x′′]′′. However, we could
only instantiate the premises of the judgment if we could produce some middle u′ with
u vA,A′ u′ vA′,A′′ u′′. In such models, a middle u′ always exists, because an implicit
condition of the transitivity rule is that vA,A′′ is the relation composite of vA,A′ and vA′,A′′

(the composite exists by type dynamism transitivity, and type dynamism witnesses are unique
in PTT (thin in the semantics)). PTT itself does not give a term for this u′, but the upcasts
and downcasts in gradual type theory do (take it to be 〈A′� A〉u or 〈A′ � A′′〉u′′).

Sometimes it is convenient to use the same variable name at the same type in both t and
t′, so we sometimes write x : A in a dynamism context for x v x : A v A, and write Γ for
xi v xi : Ai v Ai for all xi : Ai in Γ. Similarly, we write A as the conclusion of a dynamism
judgment for A v A, so Γ ` t v t′ : A means Γ v Γ ` t v t′ : A v A.

Gradual Type Theory. Preorder Type Theory gives us a simple foundation with which
to build Gradual Type Theory in a modular way: we can characterize different aspects of
gradual typing, such as a dynamic type, casts, and type errors separately.

We start by defining upcasts and downcasts, using type and term dynamism in Figure 5.
Given that A v A′, the upcast is a function from A to A′ such that for any t : A, 〈A′� A〉t
is the least dynamic term of type A′ that is more dynamic than t. The UR rule can be
thought of as the “introduction rule”, saying 〈A′� A〉x is more dynamic than x, and then
UL is the “elimination rule”, saying that if some x′ : A′ is more dynamic than x : A, then it
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Γ ` t : A A v A′

Γ ` 〈A′ � A〉t : A′ Upcast
Γ ` t : A′ A v A′

Γ ` 〈A� A′〉t : A
Downcast

A v A′

x v x : A v A ` x v 〈A′ � A〉x : A v A′ UR
A v A′

x′ v x′ : A′ v A′ ` 〈A� A′〉x′ v x′ : A v A′ DL

A v A′

x v x′ : A v A′ ` 〈A′ � A〉x v x′ : A′ v A′ UL
A v A′

x v x′ : A v A′ ` x v 〈A� A′〉x′ : A v A
DR

A v A′

x : A v x : A ` 〈A� A′〉〈A′ � A〉x v x : A
RetractAx

A v ? Γ ` 0A : A
Φ : Γ v Γ

Φ ` 0A v t : A

Figure 5 Upcasts, Downcasts, Dynamic Type and Type Error.

is more dynamic than 〈A′ � A〉x – since 〈A′ � A〉x is the least dynamic term with this
property. The rules for projections are dual, ensuring that for x′ : A′, 〈A � A′〉x′ is the
most dynamic term of type A that is less dynamic than x′. In fact, combined with the
TmPrec-Trans rule, we can show that it has a slightly more general property: 〈A′� A〉x
is not just less dynamic than any term of type A′ more dynamic than x, but is less dynamic
than any term of type A′ or higher, i.e. of type A′′ w A′.

As we will discuss in Section 3, these rules allow us to prove that the pair of the upcast
and downcast form a Galois connection (adjunction), meaning 〈A′� A〉〈A� A′〉t v t and
t v 〈A� A′〉〈A′� A〉t. However in programming practice, the casts satisfy the stronger
condition of being a Galois insertion, in which the left adjoint, the downcast, is a retract
of the upcast, meaning t wv 〈A � A′〉〈A′� A〉t. We can restrict to Galois insertions by
adding the retract axiom RetractAx. Most theorems of gradual type theory do not require
it, though this axiom is satisfied in all models of preorder type theory in Section 6.

The remaining rules in Figure 5 define the dynamic type and type errors, which are also
given a universal property in terms of type and term dynamism. The dynamic type is defined
as the most dynamic type. The type error, written as 0, is defined by the fact that it is a
constant at every type A that is a least element of A. By transitivity, this further implies
that 0A v t : A v A′ for any A′ w A.

Next we illustrate how simple negative types can be defined in preorder type theory.
Figure 6 presents the rules for function types, while the product and unit types are analogous
(see the extended version [20]). The type and term constructors are the same as those in
the simply typed λ-calculus. Each type constructor extends type dynamism in the standard
way [10, 31, 24]: every connective is monotone in every argument, including the function
type. Due to the covariance of the function type, type dynamism is sometimes referred to as
“naïve subtyping”; see 5 for a semantic intuition. For term dynamism, we add two classes
of rules. First, there are congruence rules that “extrude” the term constructor rules for
the type, which are like a “congruence of contextual approximation” condition. Next, the
computational rules reflect the ordinary β, η equivalences as equi-dynamism: we write wv
to mean a rule exists in each direction (which requires that the types and contexts are also
equi-dynamic).

We call the accumulation of all of these connectives gradual type theory. In the extended
version [20], we define a GTT signature, which gives axioms for base types, function symbols,
type dynamism, and term dynamism, which all may make use of the dynamic type, casts,
type error, function types and product types, in addition to the rules of PTT.
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A v A′ B v B′

A→ B v A′ → B′
Γ, x : A ` t : B

Γ ` λx : A.t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

Φ, x v x′ : A v A′ ` t v t′ : B v B′

Φ ` λx : A.t v λx′ : A′.t′ : A→ B v A′ → B′

Φ ` t v t′ : A→ B v A′ → B′

Φ ` u v u′ : A v A′

Φ ` t u v t′ u′ : B v B′

Γ ` (λx : A.t)u wv t[u/x] : B Γ ` t wv (λx : A.t x) : A→ B v A→ B

Figure 6 Function Type.

3 Theorems and Constructions in Gradual Type Theory

In this section, we discuss some consequences of the simple axioms of gradual type theory.
We show that almost every reduction in an operational presentation of call-by-name gradual
typing, and many principles used in optimization of implementations, are justified by the
universal property for casts in all types, the β, η rules, and the congruence rules for connectives
and terms. Thus, the combination of graduality and η principles is a strong specification for
gradual typing and considerably narrows the design space. We summarize these derivations
in the following theorem:

I Theorem 1. In Gradual Type Theory, all of the following are derivable whenever the
upcasts, downcasts are well-formed.
1. Universal Property: Casts are unique up to wv.
2. Identity: 〈A� A〉t wv t and 〈A� A〉t wv t.
3. Composition: 〈A′′ � A〉t wv 〈A′′ � A′〉〈A′� A〉t and dually, 〈A � A′′〉t wv
〈A� A′〉〈A′ � A′′〉t.

4. Function Cast Reduction: 〈A′ → B′ � A→ B〉t wv λx : A′.〈B′ � B〉(t(〈A� A′〉x))
and 〈A→ B � A′ → B′〉t wv λx : A′.〈B � B′〉(t(〈A′� A〉x)).

5. Product Cast Reduction: 〈A′0 ×A′1 � A0 ×A1〉t wv (〈A′0 � A0〉π0t, 〈A′1 � A1〉π1t)
and 〈A0 ×A1 � A′0 ×A′1〉t wv (〈A0 � A′0〉π0t, 〈A1 � A′1〉π1t).

6. Adjunction: t v 〈A� A′〉〈A′� A〉t and 〈A′� A〉〈A� A′〉t v t, for which the retract
axiom is the converse.

7. Cast Congruence: x v y : A v B ` 〈A′ � A〉x v 〈B′ � B〉y : A′ v B′ and
x′ v y′ : A′ v B′ ` 〈A� A′〉x′ v 〈B � B′〉y′ : A v B.

8. Errors: 〈A′� A〉0A wv 0A′ , and by the retract axiom 〈A� A′〉0A wv .0A′ .
9. Equi-dynamism implies isomorphism: If A wv B, then A is isomorphic to B.

We present one example proof (most of the rest can be found in the extended version),
and give some intuition for the others based on the defining properties of upcasts and
downcasts as meets and joins. Part 1 says that this specification defines them uniquely,
which we can prove by duplicating the rules for upcasts/downcasts and showing the two are
wv. First, identity (2) and composition (3) are intuitive consequences that are sometimes
operational reductions. Part 2 says the cast from a type to itself is the identity function
and is easily justified by the specification: given t : A, t itself is the least dynamic element
of A that is at least as dynamic as t. Part 3 says that if A v A′ v A′′ then casts between
A,A′′ factor through A′. This is important operationally, justifying the common rule
〈A→ B � ?〉t 7→ 〈A→ B � ?→ ?〉〈?→ ?� ?〉t which says that casting to a function type
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f v λx.fx

f, x v x′ ` f v f : A→ B v A→ B

f, x v x′ ` x v x′ : A v A′

f, x v x′ ` x v 〈A� A′〉x′ : A v A
f, x v x′ ` fx v f(〈A� A′〉x′) : B v B

f, x v x′ ` fx v 〈B′ � B〉(f(〈A� A′〉x′)) : B v B′

λx.fx v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′))
f ` f v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′)) : A→ B v A′ → B′

f : A→ B ` 〈A′ → B′ � A→ B〉f v λx′ : A′.〈B′ � B〉(f(〈A� A′〉x′)) : A′ → B′

Figure 7 Function Upcast Implementation (one case).

first does the first order check to make sure t is a function, and then performs the checking
of the function’s behavior. More generally, it implies that casts from A to B commute over
the dynamic type, e.g. 〈?� B〉〈B� A〉x wv 〈?� A〉x – intuitively, if casts only perform
checks, and do not change values, then a value’s representation in the dynamic type should
not depend on how it got there.

Next, consider the function contract reduction (4) (5 is similar). These equivalences are
the standard “wrapping” implementations from [8, 7]: a function upcast uses the downcast on
inputs and upcast on outputs and vice-versa for the downcast. This shows that the standard
implementation is in fact the unique implementation to satisfy soundness and graduality.
We present one of the cases for upcasts in Figure 7; the other 3 proofs are similar. First,
we use the UL rule to reduce to showing the wrapping implementation is more dynamic
than f itself. Then we use transitivity to η-expand f and then apply the λ congruence rule.
Then we know the upcast 〈B′� B〉· makes the term more dynamic and then apply function
application congruence and use DR to show that the downcast of x′ is still more dynamic
than x. The other cases and the product cases follow by similar proofs.

Next, as mentioned previously, the adjunction property (6) shows that the upcast and
downcast are a Galois connection with the upcast as the upper/left adjoint. This tells us
that given A v A′, the “round-trip” from A′ down to A and back results in a less dynamic
term and the other round-trip results in a more dynamic term. In programming practice,
we expect the round trip from A to A′ and back to be in fact an identity, as in the above
retract axiom RetractAx. This theorem is the basis for our model (Section 6) where we
define type dynamism as a pair of functions with these properties.

Next, it is important for proving the gradual guarantee [24] that all term constructors
are congruences with respect to type and term dynamism. While for types like functions and
products these are primitive rules, for casts congruence is derivable (7).

Error strictness (8) states that upcasts and downcasts are strict with respect to the type
error 0. The upcast preserves 0 because it is a left/upper adjoint and therefore preserves
colimits/joins like 0. The proof that the downcast preserves 0 is less modular, and uses the
upcast, the retract axiom, and strictness of the upcast.

Finally, because types A and B in gradual type theory can be related both by type
dynamism A v B and by functions A→ B, there are two reasonable notions of equivalence
of types3. First, equi-dynamism A wv B means A v B and B v A. Second, isomorphism
means there exist functions f : A → B and g : B → A such that f ◦ g wv (λx : B.x) and
g ◦ f wv (λx : A.x). Part 9 gives an isomorphism for any equi-dynamic types.

3 Corresponding to the two notions of isomorphism in double categories
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The converse, isomorphic types are equi-dynamic, does not hold by design, because it does
not match gradual typing practice. Gradually typed languages typically have disjointness of
connectives as operational reductions; for example, disjointness of products and functions
can be expressed by an axiom 〈(C ×D)� ?〉〈?� (A→ B)〉x v 0 which says that casting
a function to a product errors. This axiom is incompatible with all isomorphic types
being equi-dynamic, because a function type can be isomorphic to a product type (e.g.
X → Y ∼= (X → Y ) × 1), and for equi-dynamic types A and B, a cast 〈B � ?〉〈?� A〉x
should succeed, not fail (if it fails, then every term of A, B equal 0; see the extended
version). That is, disjointness axioms make equi-dynamism an intensional property of the
representation of a type, and therefore stronger than isomorphism. Nonetheless, the basic
rules of gradual type theory do not imply disjointness; in Section 6, we discuss a countermodel.

4 Categorical Semantics

Next, we define what a category-theoretic model of preorder and gradual type theory is,
and prove that PTT/GTT are internal languages of these classes of models by proving
soundness and completeness (i.e. initiality) theorems. This alternative axiomatic description
of PTT/GTT is a useful bridge between the syntax and the concrete models presented
in Section 6. The models are in preorder categories, which are categories internal to the
category of preorders.4 A preorder category is a category where the set of all objects and set
of all arrows are each equipped with a preorder (a reflexive, transitive, but not necessarily
anti-symmetric, relation). Furthermore the source, target, identity and composition functions
are all monotone with respect to these orderings. A preorder category is equivalently a
double category where one direction of morphism is thin. Intuitively, the preorder of objects
represents types and type dynamism, while the preorder of morphisms represents terms and
term dynamism, and we reuse the notation v for the orderings on objects and morphisms.

While the axioms of a preorder category are similar to the judgmental structure of
preorder type theory, in a preorder category, morphisms have one source object and one
target object, whereas in preorder type theory, terms have an entire context of inputs and
one output. This is a standard mismatch between categories and type theories, and is often
resolved by assuming that models have product types and using categorical products to
interpret the context [13]. However, we will take a multicategorical view, in which our notion
of model will axiomatize algebraically a notion of morphism with many inputs. Though
for ordinary simple type theory the difference between the two is a matter of taste, for
preorder type theory the difference is important when modeling term and specifically context
dynamism. If a context is just a product of objects, then one context Γ should be less
dynamic than another just when their product is, but in the syntax of our type theory, we
only say a context is less dynamic than another when they are less dynamic point-wise. Since
we allow for type dynamism axioms, this would mean that the syntax of context dynamism
would be incomplete if it were interpreted this way. Instead, we give a multicategorical
definition in which the notion of context dynamism in the model is also pointwise. Specifically,
we define a model of preorder type theory to be a cartesian preorder multicategory, which
is like a preorder multicategory that does not necessarily have true product objects, but
whose morphisms’ source can be a “virtual” product of objects, i.e. a context. For a general
definition of multicategory that includes the notion we present, see [4]. In the extended
version [20], we prove soundness and completeness of PTT for CPMs.

4 To avoid confusion, these are not categories that happen to be preorders (thin categories) and these
are not categories enriched in the category of preorders, where the hom-sets between two objects are
preordered, but the objects are not.
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I Definition 2 (CPM). A cartesian preorder multicategory (CPM) C consists of a preordered
set of “objects” C0, a preordered set of “multiarrows” C1, monotone functions “source”
s : C1 → Ctx(C)0, “target” t : C1 → C0, “projection” x : Ctx(C)0 × C0 × Ctx(C)0 → C1
and composition ◦ : C1 ×Ctx(C)0 Ctx(C)1 → C1. Here Ctx(C)0 is the set of lists of objects
preordered pointwise, and a substitution γ ∈ Ctx(C)1(Γ;B1, . . . , Bn) consists of a multiarrow
γ(i) ∈ C1(Γ;Bi) for each i ∈ 1, . . . , n, also preordered pointwise, and with composition
defined in the same way as syntactic substitutions. Additionally these satisfy associativity
and unitality laws (see the extended version [20]).

Gradual Typing Structures. Next, we describe the additional structure on a CPM to model
full gradual type theory: casts are modeled by an equipment [23], a dynamic type by a
greatest object, and the type error by a least element of every hom-set.

I Definition 3 (Gradual Structure on a CPM).
1. A CPM C is an equipment if for every A v B, there exist morphisms uA,B ∈ C(A,B) and

dA,B ∈ C(B,A) such that uA,B v idB and idA v uA,B and dA,B v idB and idA v dA,B.
An equipment is coreflective if also dA,B ◦ uA,B v idA.

2. A greatest object in a CPM C is a greatest element of the preorder of objects C0.
3. A CPM C has local bottoms if every hom set C(A1, . . . , An;B) has a least element ⊥

and for every substitution γ we have ⊥ ◦ γ wv ⊥.

Next, we define a cartesian closed CPM, which will model negative function and product
types. We present the definition for function types in detail; a definition of a cartesian CPM
(CPM with products) is in [20]. A cartesian closed CPM is a CPM with a choice of both
cartesian and closed structure. Since all of the concrete models we consider are strict, we
take a strict interpretation of naturality and βη, but this could likely be weakened.

I Definition 4 (Closed CPM). A Closed CPM is a CPM C with a monotone function on
objects →: C2

0 → C0 making for every pair of objects X,Y ∈ C an “exponential” object
X → Y with a monotone function λ : C(Γ, X;Y )→ C(Γ;X → Y ) that is natural in an
appropriate sense, with a morphism app ∈ C(X → Y,X;Y ) such that the function given by
f 7→ app ◦ (f, x(X)) is an inverse to λ (all up to equality).

In the extended version [20], we prove the following, where a GTT category is a CPM
that is cartesian closed, a coreflective equipment and has a greatest object and local bottoms.

I Definition 5 (Interpretation of Gradual Type Theory/Soundness). For any GTT signature
Σ and GTT category C and interpretation L·M : Σ → C of the base types and function
symbols in Σ such that all type and term dynamism axioms in Σ are true in C, there is a
compositional extension of L·M to an interpretation of all types and terms of GTT generated
by Σ, such that all derivable type and term dynamism theorems are true in C.

I Theorem 6 (Completeness of GTT Category Semantics). For any GTT signature Σ, for
any GTTΣ types A,B if for every interpretation L·M : Σ→ C, JAK v JBK holds, then A v B
is derivable. For any GTTΣ contexts Φ : Γ v Γ′, types A v A′, and terms Γ ` t : A and
Γ′ ` t′ : A′, if for every interpretation JtK v Jt′K, then Φ ` t v t′ : A v A′ derivable.

As usual, the proof of completeness is by building a GTT category from the syntax such
that the true dynamism theorems are precisely the derivable ones.
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5 Semantic Contract Interpretation

As a next step towards constructing specific GTT categories, we define a general contract
construction that provides a semantic account of the “contract interpretation” of gradual
typing, which models a gradual type by a pair of casts. The input to our contract construction
is a locally thin 2-category C, whose objects and arrows should be thought of as the types and
terms of a programming language, and each hom-set C(A,B) is ordered by an “approximation
ordering”, which is used to define term dynamism in our eventual model. We require each
hom-set to have a least element (the type error), and the category to be cartesian closed
(function and product types/contexts) in the strict sense of a 2-category whose underlying
category is cartesian closed and where λ, application, pairing and projection are all functorial
in 2-cells. The contract construction then “implements” gradual typing using the morphisms
of the non-gradual “programming language” C.

Coreflections. To build a GTT model from C, we need to choose an interpretation of type
dynamism (the ordering on objects of the CPM) that induces appropriate casts, which we
know by Theorem 1.6 must be Galois connections that satisfy the retract axiom. Such Galois
connections are called Galois insertions (in order theory), coreflections (in category theory)
and embedding-projection pairs (in domain theory). While we presented the retract axiom
earlier as an wv, in all of our models the semantics of the composition 〈A� B〉 ◦ 〈B� A〉
is strictly equal to the identity so we will make a model using “strict” coreflections because
it is slightly simpler. Since type dynamism judgments must induce a coreflection, we will
construct a model where the semantics of a type dynamism judgment A v B is literally a
coreflection. However, there can be many different coreflections between two objects of our
2-category C, so this first step of our construction does not produce a preorder category, where
type dynamism is an ordering, but rather a double category. Double categories generalize
preorder categories in the same way that categories generalize preorders: the ordering on
objects is generalized to proof-relevant data specifying a second class of vertical morphisms,
and the ordering on terms becomes a notion of 2-dimensional “square” between morphisms.
In the model we build from C, the vertical morphisms will model type dynamism and be
coreflections, while the (horizontal) morphisms of a preorder category will be arbitrary
morphisms of C and model terms. We still require only double categories that are locally
thin, in that there is at most one 2-cell filling in any square. Thus, the first step of our
contract construction can be summarized as creating a double category that is an equipment
with the retract property, i.e. a double category modeling upcasts and downcasts, a slight
variation on a theorem in [23]:

I Definition 7 (Equipment of Coreflections [23]). Given a 2-category C we construct a (double
category) equipment CoReflect(C) as follows. Its object category has C0 as objects and
coreflections in C as morphisms. Horizontal morphisms are given by morphisms in C and
a 2-cell from f : A → B to f ′ : A′ → B′ along (uA, dA) : A / A′ and (uB , dB) : B / B′ is a
2-cell in C from uB ◦ f to f ′ ◦ uA or equivalently from f ◦ dA to dB ◦ f ′. From a vertical
arrow (u, d), the upcast is u and the downcast is d.

As is well-known in domain theory, any mixed-variance functor preserves coreflections
[32, 27], so the product and exponential functors of C extend to be functorial also in
vertical arrows. This produces the classic “wrapping” construction familiar from higher-order
contracts [8]:(u, d)→ (u′, d′) = (d→ u′, u→ d′)
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Vertical Slice Category. The double category CoReflect(C) is not yet a model of gradual
type theory for two reasons. First, gradual type theory requires a dynamic type: every type
should have a canonical coreflection into a specific type. Second, type dynamism in GTT
is proof-irrelevant, because the rules do not track different witnesses of A v B, but there
may be different coreflections from A to B. It turns out that we can solve both problems at
once by taking what we call the “vertical slice” category over an object D ∈ CoReflect(C)
that is rich enough to serve as a model of the dynamic type. In CoReflect(C)/D, the objects
are not just an object A of C, but an object with a vertical morphism into D, in this case a
coreflection written (uA, dA) : A / D.5 Thus, gradual types are modeled as coreflections into
the dynamic type, analogous to Scott’s “retracts of a universal domain” [22]. Then a vertical
arrow from (uA, dA) : A / D to (uB , dB) : B / D is a coreflection (uA,B , dA,B) : A / B that
factorizes uA = uB ◦ uA,B and dA = dA,B ◦ dB : this means the enforcement of A’s type can
be thought of as also enforcing B’s type. Since upcasts are monomorphisms and downcasts
are epimorphisms, this factorization is unique if it exists, so there is at most one vertical
arrow between any two objects of CoReflect(C)/D. If we took the retract axiom as wv
rather than strict equality, then the factorization would only be essentially unique, i.e. any
two factorizations would be equivalent; since our models are all strict, we defer exploring a
weak variant to future work. Further, the identity coreflection (id, id) : D /D is a vertically
greatest element since any morphism is factorized by the identity.

I Definition 8 (Vertical Slice Category). Given any double category E and an object D ∈ E,
we can construct a double category E/D by defining (E/D)0 to be the slice category E0/D,
a horizontal morphism from (c : A / D) to (d : B / D) to be a horizontal morphism from A

to B in E, and the 2-cells are similarly inherited from E.

Next consider a cartesian closed structure on CoReflect(C)/D. The action of → (respect-
ively ×, 1) on objects is given by composition of the action in CoReflect(C) (u, d)→ (u′, d′)
with an arbitrary choice of “encoding” of the “most dynamic function type” (u→, d→) : (D →
D) / D. In most of the models we consider later, D is a sum and this coreflection simply
projects out of the corresponding case, failing otherwise. This reflects the separation of the
function contract into “higher-order” checking (u, d)→ (u′, d′) and “first-order tag” checking
(u→, d→) that has been observed in implementations [10].

Finally, we construct a multicategory Multi(C) from the double category CoReflect(C)/D.
A multiarrow A1, . . . , An;B is given by a horizontal arrow A1× ...×An;B in CoReflect(C)/D.
The ordering A v A′ is given by the vertical arrows A / A′ of CoReflect(C)/D (i.e. core-
flections), which is lifted pointwise to contexts by the definition of a CPM. The ordering
f : (A1, . . . , An;B) v g : (A′1, . . . , A′n;B′) is given by squares in CoReflect(C)/D (using the
action/monotonicity of × on the pointwise orderings Ai v A′i of the context). Combining
these constructions, we produce:

I Theorem 9 (Contract Model of Gradual Typing). If C is a locally thin cartesian closed 2-
category with local ⊥s, then for any object D ∈ C with chosen coreflections c→ : (D → D)/D,
c× : (D×D)/D, and c1 : 1/D, then (Multi(CoReflect(C)/idd), c→, c×, c1) is a GTT category.

6 Concrete Models

Next, we produce some concrete models by instantiating Theorem 9.

5 We do not write A v D because coreflections are not a preorder.
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There are two models based on domains that are operationally inadequate in that they
identify the dynamic type error and diverging programs: term dynamism is given by the
“definedness ordering” of domain theory. Both are based on the 2-category of domains
(ω-cppos), continuous functions, and the domain ordering on functions, with different choices
of universal domain. The first is merely a new presentation of Dana Scott’s classical models
of untyped λ-calculus, showing that Scott’s model is already a model of gradual typing [22].
That is, we find the solution to the recursive domain equation D ∼= N⊥⊕ (D×D)⊕ (D → D)
where ⊕ is the coalesced sum of domains. The classical technique for solving this equation
naturally produce the required coreflections (D ×D) / D and (D → D) / D. The second
is a variation where product and function types have overlapping representation, showing
that the product and function types cannot be proven disjoint in gradual type theory. To do
this, we construct a universal domain as a product of basic connectives rather than a sum:
D′ ∼= N⊥× (D′×D′)× (D′ → D′). This is a kind of “coinductive”/”object-oriented” dynamic
type: an element of the dynamic type responds to messages (given by the projections), and
if it “doesn’t implement” a message it returns ⊥. Then 〈(?× ?) � ?〉〈?� (?→ ?)〉x 6≡ 0

the domain has elements that are non-trivial in both the D ×D and D → D positions.
Next, to produce a domain theoretic model that is adequate, we want a notion of domain

that has, in addition to the definedness ordering needed for solving recursive domain equations,
a separate notion of type error and error-approximation ordering. This can be accomplished
using “pointed domain preorders”, which are both domains and preorders with a least element
in a compatible way. First, the diverging element must be maximal in the error ordering,
so that they are sufficiently independent. Next, the error ordering must be an admissible
relation so that the set of monotone functions is closed under limits.

I Definition 10 ((Pointed) Domain Preorder). A domain preorder is a set X with two
orderings ≤ and v such that (X,≤) is an ω-cppo with ≤-least element ⊥ and v is a preorder
closed under limits of ≤-ω-chains such that ⊥ is v-maximal. A continuous function of
domain preorders is a function of the underlying sets that is continuous with respect to ≤
and monotone with respect to v. A domain preorder is pointed if it has a v-least element 0.

The model is given by the 2-category of pointed domain preorders, with the v ordering, but
to solve domain equations we use the category of all domain preorders. The 2-category with
the domain ordering satisfies the criteria of [27] and so we can construct a suitable domain
preorder by solving a similar equation to Scott’s model: D ∼= N⊥,0⊕(D0×D0)⊕(D0 → D0),
where D0 freely adjoins a v-least element. Then the dynamic type is given by D0, and we
can construct coreflections (with respect to v) (D0 ×D0) / D0 and (D0 → D) / D: the
downcast produces 0 unless it is the D ×D (respectively D → D) case and the 1 / D is the
unique coreflection between those objects. We need the fact that ⊥ is maximal to prove
these functions are monotone, see the extended version for more details [20].

7 Related and Future Work

Our logic and semantics of type and term dynamism builds on the formulation introduced
with the gradual guarantee in [24], but the rules of our system differ in two key ways. First,
our system includes the β, η equivalences as equi-dynamism axioms, making term dynamism
a more semantic notion. Second, we only allow casts that are either upcasts or downcasts (as
defined by type dynamism), whereas their system allows for a more liberal “compatibility”
condition. Accordingly our rules of dynamism for casts are slightly different, but where it
makes sense, the rules of the two systems are interderivable.
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Our semantic model of contracts as coreflections has precedent in much previous work,
though we are the first to make precise the relationship to gradual typing’s notions of type
and term dynamism.

Henglein’s work [10] on dynamic typing defines casts that are retracts to the dynamic
type, introduced the upcast-followed-by-downcast factorization that we use here, and defines
a syntactic rewriting relation similar to our term dynamism rules. Further they define a
“subtyping” relation that is the same as type dynamism and characterize it by a semantic
property analogous to the semantics of type dynamism in our contract model. The upcast-
downcast factorization of an arbitrary cast is superficially similar to the work on triple casts
in [26], which collapse a sequence of casts starting at A and ending at B into a downcast to
A uB followed by an upcast to B. But note that this factorization is opposite (downcast
and then upcast), and the upcast-downcast factorization requires only a dynamic type, while
the converse requires an appropriate middle type, similarly to image factorization. Moreover,
[9] shows that the correctness of factorization through A uB is not always possible.

Findler and Blume’s work on contracts as pairs of projections [7] is also similar. There a
contract is defined in an untyped language to be given by a pair of functions that divide
enforcement of a type between the a “positive” component that checks the term and a
“negative” component that checks the continuation, naturally supporting a definition of blame
when a contract is violated. We give no formal treatment of blame in this paper, but our
separation into upcasts and downcasts naturally supports a definition of blame analogous to
theirs. In their paper, each component c is idempotent and satisfies c v id. Their work is
fundamentally untyped so a direct comparison is difficult.

Recent work on interoperability in a (non-gradual) dependently typed language [5] defines
several variations of Galois connections to serve as models of casts with different properties.
This work validates their comments that ordinary monotone Galois connections serve as a
model of the upcasts and downcasts associated to type precision.

There are two recent proposals for a more general theory of gradual typing: Abstracting
Gradual Typing (AGT) [9] and the Gradualizer [3]. Broadly, their systems and ours are
similar in that type dynamism and graduality are central and a gradually typed language is
constructed from a statically typed language. Gradual type theory is quite different in that it
is based on an axiomatic semantics, whereas both of theirs are based on operational semantics.
As such our notion of gradual type soundness is stronger than theirs: we assert program
equivalences whereas their soundness theorem is related to the syntactic type soundness
theorem of the static language. Their systems also develop a surface syntax for gradually
typed languages (including implicit casts and gradual type checking), whereas our logic here
only applies to the runtime semantics of the language. Finally, AGT is based on abstract
interpretation and uses a Galois insertion between gradual types and sets of static types, but
we do not see a precise relationship to our use of coreflections.

Relative to this related work, we believe the axiomatic specification of casts via a universal
property relative to dynamism is a new idea in gradual typing, as is our categorical semantics
and the presentation of the contract interpretation as a model construction.

In this paper we have shown that the combination of soundness and graduality produces
strong specifications for call-by-name gradual typing implementations. However so far we
have only validated this by denotational semantics, and we plan to develop operational models
of this kind of gradual type theory where term dynamism is modeled by a type of contextual
approximation. We also will investigate extensions to richer languages. First, we would like
to develop a similar theory for call-by-value gradual typing, as every gradually typed language
in use today is call-by-value. We plan to build on existing work on categorical semantics and
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universal properties of types in call-by-value [15, 28]. The combination of gradual typing and
parametric polymorphism has proven quite complex [17, 19, 1, 12]. If we could show that
the combination of graduality with parametricity has a unique implementation, as we have
shown here for simple typing, it would provide a strong semantic justification for a design.
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Abstract
This paper establishes a bridge between linear logic and mainstream graph theory, building
previous work by Retoré (2003). We show that the problem of correctness for MLL+Mix proof
nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching
theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a
quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity
of the correctness problem. We also use graph algorithms to compute the dependency relation
of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion
of blossom which is central to combinatorial maximum matching algorithms.
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1 Introduction

One of the major novelties introduced at the birth of linear logic [13] was a representation of
proofs as graphs, instead of trees as in natural deduction or sequent calculus. A distinctive
property of these proof nets is that checking that a proof is correct cannot be done merely
by a local verification of inference steps: among the graphs which locally look like proof nets,
called proof structures, some are invalid proofs. Hence the problem of correctness: given a
proof structure, is it a real proof net?

A lot of work has been devoted to this decision problem, and in the case of the multi-
plicative fragment of linear logic (MLL), whose proof nets are the most satisfactory, it can be
considered solved from an algorithmic point of view. Indeed, Guerrini [14] and Murawski and
Ong [22] have found linear-time tests for MLL correctness; the problem has also been shown
to be NL-complete by Jacobé de Naurois and Mogbil [17]. Both the linear-time algorithms

1 Partially supported by the ANR project Elica (ANR-14-CE25-0005).

© Lê Thành Dũng Nguyễn;
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we mentioned also solve the corresponding search problem: computing a sequentialization of
a MLL proof net, i.e. a translation into sequent calculus.

However, for MLL extended with the Mix rule [10] (MLL+Mix), the precise complexity
of deciding correctness has remained unknown (though a polynomial-time algorithm was
given by Danos [7]). Thus, one of our goals in this paper is to study the following problems:

I Problem (MixCorr). Given a proof structure π, is it an MLL+Mix proof net?

I Problem (MixSeq). Reconstruct a sequent calculus proof for an MLL+Mix proof net.

It turns out that a linear-time algorithm for MixCorr follows immediately from already
known results. The key is to use a construction by Retoré [26, 27] to reduce it to the problem
of uniqueness of a given perfect matching, which can be solved in linear time [11]:

I Problem (UniquenessPM). Given a graph G, together with a perfect matching M of G,
is M the only perfect matching of G? Equivalently, is there no alternating cycle for M?

This brings us to the central idea of this paper: from the point of view of algorithmics,
MLL+Mix proof nets and unique perfect matchings are essentially the same thing. This allows
us to apply matching theory to the study of proof nets, leading to several new results. Indeed,
one would expect graph algorithms to be of use in solving problems on proof structures,
since they are graphs! But for this purpose, a bridge between the theory of proof nets and
mainstream graph theory is needed, whereas previous work on the former mostly made use
of “homemade” objects such as paired graphs (an exception being Murawski and Ong’s use of
dominator trees). By building on Retoré’s discovery of a connection with perfect matchings,
this paper proposes such a bridge.

Plan of the paper and contributions. First, we establish our equivalence by giving a
translation from proof structures to graphs equipped with perfect matchings and vice versa
(§3). In the first direction, instead of reusing Retoré’s construction, we propose an alternative
having better properties with respect to sequentialization.

As already mentioned, we give the first linear-time algorithm for MixCorr (§4.1). As
for its sub-polynomial complexity (§4.2), we show that MixCorr is in randomized NC and
in quasi-NC (informally, NC is the class of problems with efficient parallel algorithms). On
the other hand, we have a sort of hardness result: if MixCorr were in NC – in particular,
if it were in NL, as for MLL without Mix – this would imply a solution to a long-standing
conjecture concerning the related unique perfect matching problem:

I Problem (UniquePM [19, 11, 15]). Given a graph G, determine whether it admits exactly
one perfect matching and, if so, find this matching.

We then turn to the sequentialization problem, for which we provide a graph-theoretic
reformulation, and an algorithm for this reformulation. This gives us a quasi-linear time2
solution to MixSeq (§5); to our knowledge, this beats previous algorithms for MixSeq.

As a demonstration of our matching-theoretic toolbox, we also show how to compute
some information on the set of all sequentializations, namely Bellin’s kingdom ordering [4] of
the links of a MLL+Mix proof net (rediscovered by Bagnol et al. [1] under the name of order

2 More precisely, O(n(logn)2(log logn)2) time. Both this and our quasi-NC algorithms rely on very recent
advances, respectively on dynamic bridge-finding data structures [16] and on the perfect matching
existence problem [28]. Any further progress on these problems would lead to an improvement of our
complexity bounds.
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(a) Two perfect matchings of the same graph. (b) A graph with a unique perfect matching.

Figure 1 Examples of perfect matchings. The edges in the matchings are thick and blue.

of introduction). We give a polynomial time and a quasi-NC algorithm (§6.1), both relying
on an effective characterization of this ordering. By rephrasing this characterization (§6.2),
we get a purely graph-theoretic new theorem of independent interest about objects which
play a major role in matching algorithms, namely blossoms [9].

2 Preliminaries

Graph-theoretic terminology. By default, “graph” refers to an undirected graph. Our paths
and cycles are not allowed to contain repeated vertices3; we will sometimes identify them
with their sets of edges (which characterize them) and apply set operations on them. A
bridge of a graph is an edge whose removal increases the number of connected components.

For directed graphs, the notion of connectedness we consider is weak connectedness, i.e.
connectedness of the graph obtained by forgetting the edge directions. A predecessor (resp.
successor) of a vertex is the source (resp. target) of some incoming (resp. outgoing) edge.

Complexity classes. We refer to [17, §1.4] for the logarithmic space classes L and NL and
to [6] for the class AC0 of constant-depth circuits. The class NCk (resp. quasi-NCk [3])
consists of the problems which can be solved by a uniform family of circuits of depth
O(logk n) and polynomial (resp. quasi-polynomial, i.e. 2O(logc n)) size; NC =

⋃
k NCk and

quasi-NC =
⋃
k quasi-NC

k. It is well-known that AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.

2.1 Perfect matchings, alternating cycles and sequentialization
I Definition 2.1. Let G = (V,E) be a graph. A matching (resp. perfect matching) M in G
is a subset of E such that every vertex in V is incident to at most one (resp. exactly one)
edge in M . An alternating path (resp. cycle) for M is a path (resp. cycle) where, for every
pair of consecutive edges, one of them is in the matching and the other one is not.

Testing the existence of a perfect matching in a graph – or, more generally, finding a
maximum cardinality matching – is one of the central computational problems in graph
theory. Combinatorial maximum matching algorithms, starting4 with Edmonds’s blossom
algorithm [9]5, use alternating paths to iteratively increase the size of the matching; similarly,
alternating cycles are important for the problems UniquenessPM and UniquePM because
they witness the non-uniqueness of perfect matchings.

3 This choice of terminology is common, see e.g. [2, §1.4].
4 Note that the problem was solved long before in the special case of bipartite graphs. In fact, a solution

for this case was found in Jacobi’s posthumous papers.
5 This paper is one of the first to propose defining efficient algorithms as polynomial-time algorithms; it
also contributed to the birth of the field of polyhedral combinatorics.
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I Lemma 2.2 (Berge). Let G be a graph and M be a perfect matching of G. Then if M ′ 6= M

is a perfect matching, the symmetric difference M4M ′ is a vertex-disjoint union of cycles,
which are alternating for both M and M ′. Conversely, if C is an alternating cycle for M ,
then M4C is another perfect matching.

As an example, consider Figure 1a. The matching on the left admits an alternating cycle,
the outer square; by taking the symmetric difference between this matching and the set of
edges of the cycle, one gets the matching on the right. Conversely, the symmetric difference
between both matchings (which, in this case, is their union) is the square. Note also that in
Figure 1b, there is no alternating cycle because vertex repetitions are disallowed.

Another approach to finding perfect matchings, using linear algebra, was initiated by
Lovász [20] and leads to a randomized NC algorithm by Mulmuley et al. [21]. Recently,
Svensson and Tarnawski have shown that this algorithm can be derandomized to run in
deterministic quasi-NC [28].

There is also a considerable body of purely mathematical work on matchings, starting
from the 19th century. Let us mention for our purposes a result dating from 1959.

I Theorem 2.3 (Kotzig [18]). Let G be a graph. Suppose that G admits a unique perfect
matching M . Then M contains a bridge of G.

As remarked by Retoré [27], Kotzig’s theorem leads to an inductive characterization of
the set of graphs equipped with a unique perfect matching.

I Theorem 2.4 (Sequentialization for unique perfect matchings [27]). The class UPM of
graphs equipped with an unique perfect matching is inductively generated as follows:

The empty graph (with the empty matching) is in UPM.
The disjoint union of two non-empty members of UPM is in UPM.
Let (G = (V,E),M ⊆ E) ∈ UPM and (G′ = (V ′, E′),M ′ ⊆ E′) ∈ UPM, with V

and V ′ disjoint. Let U ⊆ V , U ′ ⊆ V ′ such that U 6= ∅ (resp. U ′ 6= ∅) unless G
(resp. G′) is the empty graph, and let x, x′ be two fresh vertices not in V nor V ′. Then
(G′′ = (V ′′, E′′),M ′′ ⊆ E′′) ∈ UPM, where

V ′′ = V ∪ V ′ ∪ {x, x′}
E′′ = E ∪ E′ ∪ {(x, x′)} ∪ (U × {x}) ∪ (U ′ × {x′})
M ′′ = M ∪M ′ ∪ {(x, x′)}

I Remark. By relaxing the non-emptiness condition on U and U ′, the disjoint union operation
becomes unnecessary; this is actually the original statement [27, Theorem 1].

The inspiration for the above theorem comes from linear logic: it is a graph-theoretic
version of the sequentialization theorems for proof nets, with Kotzig’s theorem being analogous
to the “splitting lemmas” which appear in various proofs of sequentialization.

2.2 Proof structures, proof nets and the correctness criterion
A proof structure is some kind of graph-like object made of “nodes” (or “formulae”) and
“links”, with the precise definition varying in the literature. Since our aim is to apply results
from graph theory, it will be helpful to commit to a representation of proof structures as
graphs. (We write deg− for the indegree and deg+ for the outdegree of a vertex.)

I Definition 2.5. A proof structure is a non-empty directed acyclic multigraph (V,A) with
a labeling of the vertices l : V → {ax,⊗,O} such that, for v ∈ V :

if l(v) = ax, then deg−(v) = 0 and deg+(v) ≤ 2,
if l(v) ∈ {⊗,O}, then deg−(v) = 2 and deg+(v) ≤ 1.
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ax ax

⊗ O

O

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
O

` A⊗B,A⊥OB⊥
O

` (A⊗B)O(A⊥OB⊥)

Figure 2 A proof net (left) and its sequentialization (right), written as a sequent calculus proof.
Edges are usually labeled by the MLL formulae appearing in the sequentialization; since we focus on
the combinatorics of proof structures and not on their logical meaning, we omit them here.

` A,A⊥
(ax-rule) ` Γ, A ` B,∆

` Γ, A⊗B,∆ (⊗-rule) ` Γ, A,B
` Γ, AOB

(O-rule) ` Γ ` ∆
` Γ,∆ (Mix rule)

Figure 3 Rules for the MLL+Mix sequent calculus; note the correspondence with Definition 2.6.

Vertices of a proof structure will also be called links. A terminal link is a link with outdegree 0.
A sub-proof structure is a vertex-induced subgraph which is a proof structure.

I Definition 2.6. The set of MLL proof nets is the subset of proof structures inductively
generated by the following rules:

ax-rule: a proof structure with a single ax-link is a proof net.
⊗-rule: if N and N ′ are proof nets, u is a link of N and v is a link of N ′, then taking
the disjoint union of N and N ′, adding a new ⊗-link w, an edge from u to w and an edge
from v to w gives a proof net, as long as the resulting graph is a proof structure (i.e. the
degree constraints are satisfied).
O-rule: if N is a proof net and u, v are links of N , then adding a new O-link w, an edge
from u to w and an edge from v to w gives a proof net, with the same proviso as above.

The set of MLL+Mix proof nets is inductively generated by the above rules together with
the Mix rule: if N and N ′ are proof nets, their disjoint union is a proof net.

A proof structure is said to be correct if it is a MLL+Mix proof net.

I Remark. As with any inductively defined set, membership proofs for the set of MLL (resp.
MLL+Mix) proof nets may be presented as inductive derivation trees, which are isomorphic
to the usual sequent calculus proofs of MLL (resp. MLL+Mix): see Figure 2 for an example,
and Figure 3 for the inference rules of the sequent calculus.
I Remark. The proof structures and proof nets defined here are cut-free. This restriction is
without loss of generality, since cut link has exactly the same behavior as a terminal ⊗-link
with respect to correctness and sequentialization.

To tackle the problem of correctness, it is useful to have non-inductive characterizations
of proof nets, called correctness criteria, at our disposal. Many of them are formulated using
the notion of paired graphs. We will state a criterion first discovered by Danos and Regnier
for MLL [8] and extended to MLL+Mix by Fleury and Retoré [10].

I Definition 2.7. A paired graph consists of an undirected graph G = (V,E) and a set P of
unordered pairs of edges such that:

if {e, f} ∈ P, then e and f have a vertex in common;
the pairs are disjoint: if p, p′ ∈ P and p 6= p′, then p ∩ p′ = ∅.
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When {e, f} ∈ P, the edges e and f are said to be paired.
A switching of this paired graph is a spanning subgraph of G which intersects each pair

of P exactly once. A feasible cycle is a cycle which intersects each pair of P at most once.

I Remark. Equivalently, feasible cycles are cycles which exist in some switching.

I Definition 2.8. Let π be a proof structure. Its correctness graph C(π) is the paired graph
obtained by forgetting the directions of the edges and the labels of the vertices in π, and
pairing together two edges when their targets6 are the same O-link.

A feasible cycle in π is a sequence of edges of π whose image in C(π) is a feasible cycle.

I Theorem 2.9 (Danos–Regnier correctness criterion). π is a MLL (resp. MLL+Mix) proof
net if and only if all the switchings of C(π) are trees (resp. forests).

I Remark. Equivalently, π is a MLL+Mix proof net iff it contains no feasible cycle.
The above is usually called a sequentialization theorem: it means that a proof structure

which satisfies the correctness criterion admits a sequent calculus derivation.
The analogy with Theorem 2.4 is that proof nets are to proof structures what unique

perfect matchings are to perfect matchings. The next section is dedicated to formalizing this
analogy into an equivalence.

3 An equivalence through mutual reductions

We will now see how to turn a proof structure into a graph equipped with a perfect matching,
in such a way that feasible cycles become alternating cycles, and vice versa.

Such a translation from proof structures to perfect matchings was first proposed by
Retoré [27], under the name of R&B-graphs. However, we would like to deduce Theorem 2.9
as an immediate corollary of sequentialization for unique perfect matchings (Theorem 2.4),
which is not possible with R&B-graphs – instead, one must resort to a proof of induction using
Kotzig’s theorem (Theorem 2.3), see [26, §2.4]. Thus, we propose here our own graphification
construction. We also define the proofification construction, going from perfect matchings to
proof structures.
I Remark. The nature of the object corresponding to a matching edge in a proof structure will
vary depending on the translation considered: for graphifications, they correspond to links,
whereas in the case of proofifications, they are translated into ⊗-links (and for R&B-graphs,
they correspond to edges or terminal links).

Thus, by taking the proofification of a graphification of a proof structure, one gets a
different proof structure, with the ax-links and O-links of the former being sent to ⊗-links
of the latter (see Figure 4 for an example). It is unclear whether this transformation has
any meaning in terms of linear logic; in particular it does not preserve correctness for MLL
without Mix.

3.1 From proof structures to perfect matchings
I Definition 3.1. Let π be a proof structure and L be its set of links. The graphification of
π is the graph G = (V,E) equipped with a perfect matching M ⊆ E with

the matching edges corresponding to the links: V =
⋃
l∈L{al, bl}, M = {(al, bl) | l ∈ L},

and the remaining edges in E \M reflect the incoming edges of the ⊗-links and O-links,
as specified by Figure 5a.

6 That is, the targets of the directed edges in π they come from.
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ax ax

⊗

(a) Before graphification.
The left ⊗-link and the right
⊗-link of (b) correspond to
the ax-links here.

ax ax

⊗ O

ax ax

O ⊗

⊗

(b) After proofification.

Figure 4 Composing graphification and proofification: as we will see, the graphification of the
proof net of (a) is the graph of Figure 1b, and, in turn, the proofification of Figure 1b is (b).

⊗ O

(a) Translation rules for sets of incoming edges.

ax ax

⊗ O

O

(b) Graphification of the proof struc-
ture of Figure 2

Figure 5 The graphification construction.

Figure 5b shows an example of this construction. As another example, Figure 1b is the
graphification of Figure 4a.

I Proposition 3.2 (Graphification-based correctness criterion). A proof structure satisfies the
Danos–Regnier criterion for MLL+Mix if and only if the perfect matching of its graphification
is unique.

In the case of R&B-graphs, there is an actual bijection between the feasible cycles of a
proof structure and the alternating cycles of its R&B-graph. That said, the main technical
advantages of graphifications over R&B-graphs are summarized by the following properties.

I Lemma 3.3. Let π be a proof structure with graphification (G,M) and l be a link of π
such that (al, bl) ∈M is a bridge of G. Then l is a terminal link in π, and if l is a ⊗-link,
then removing l from π disconnects its predecessors.

I Theorem 3.4. Let π be a proof structure and (G,M) be its graphification. There is a
bijection between the sequent calculus proofs corresponding to π (if any) and the sequential-
izations (i.e. the derivation trees for the inductive definition of Theorem 2.4) of (G,M) (if
any), through which occurrences of Mix rules correspond to disjoint unions and conversely.

In particular, π is a MLL+Mix proof net if and only (G,M) admits a sequentialization,
that is, according to Theorem 2.4, if and only if M is the only perfect matching of G.
Proposition 3.2 tells us that this is equivalent to π satisfying the Danos–Regnier acyclicity
criterion. Therefore, this criterion characterizes MLL+Mix proof nets: as we wanted, we just
proved the sequentialization theorem for MLL+Mix (Theorem 2.9).
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ax
e

ax

f

ax

g

O
x

O
y

⊗
a

⊗
b

w z

w x

y z

e

f

g

a b

Figure 6 The proofification of the graph of Figure 1a.

3.2 From perfect matchings to proof structures
The translation we present below involves “k-ary O-links”. When k > 1, these are just binary
trees of k − 1 O-links (correctness is independent of the choice of binary tree: semantically,
this is associativity of O) with k leaves (incoming edges) and a single root (outgoing edge);
the k = 1 case corresponds to a single edge and no link.

I Definition 3.5. Let G = (V,E) be a graph and M be a perfect matching of G. We define
the proofification of (G,M) as the proof structure π built as follows:

For each non-matching edge e = (u, v) ∈ E \M , we create an ax-link axe whose two
outgoing edges we will call Au,v and Av,u.
For each vertex u ∈ V , if deg(u) > 1, we add a k-ary O-link with k = deg(u)− 1, whose
incoming edges are the Au,v for all neighbors v of u such that (u, v) /∈M , and we call its
outgoing edge Bu. If deg(u) = 1, we add an ax-link calling one of its outgoing edges Bu.
For each matching edge (u, v) ∈M , we add an ⊗-link whose incoming edges are Bu and
Bv. These ⊗-links are the terminal links of π.

See Figure 6 for an annotated example of proofification. The reader may also check that
the proof net in Figure 4b is the proofification of the graph in Figure 1b.

I Proposition 3.6. Let G be a graph and M be a perfect matching of G. The alternating
cycles for M in G are in bijection with the feasible cycles in the proofification of (G,M).

I Proposition 3.7. Let G be a graph with a unique perfect matching M and let π be
the proofification of (G,M). A matching edge e ∈ M is a bridge of G if and only if its
corresponding ⊗-link is introduced by the last rule of some sequentialization of π.

However, unlike the case of graphifications, this does not give us a bijection between the
sequentializations of a unique perfect matching and those of its proofification.

4 On the complexity of MLL+Mix correctness

Through the translations of the previous section, MLL+Mix proof nets become unique
perfect matchings and conversely: these translations provide reductions between the problems
MixCorr and UniquenessPM, allowing us to draw complexity-theoretic conclusions on
proof nets from known results in graph theory. We first look at the time complexity of
MixCorr, then turn to its complexity under constant-depth (AC0) reductions.

4.1 A linear-time algorithm
Since graphifications (§3.1) can be computed in linear time, and UniquenessPM can also
be decided in linear time [11, §3], we immediately get:
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I Theorem 4.1. MixCorr can be decided in linear time.

I Remark. By using the “Euler–Poincaré lemma” [1] to count the uses of the Mix rule in a
proof net, this also allows us to decide the correctness of a proof structure for MLL without
Mix in linear time. Our decision procedure has the advantage of being simpler to describe
than the previously known linear-time algorithms for MLL correctness [14, 22].

That said, this apparent simplicity is due to our use of the algorithm of Gabow et al. [11]
as a black box. Looking inside the black box reveals, for instance, that it uses the incremental
tree set union data structure of Gabow and Tarjan [12], which is also a crucial ingredient of
the above-mentioned previous algorithms.
I Remark. This algorithm for UniquenessPM relies on the technique of blossom shrink-
ing pioneered by Edmonds [9], a kind of graph contraction which may remind us of the
contractibility correctness criterion [7] for MLL without Mix. Indeed, there exists a formal
connection: a rewrite step of big-step contractibility [1] corresponds, when translated to
graphifications, to contracting a blossom. However, not all blossoms are redexes for big-step
contractibility.

4.2 Characterizing the sub-polynomial complexity
For MLL proof nets without Mix, correctness is known to be NL-complete under AC0

reductions thanks to the Mogbil–Naurois criterion [17]. What about MLL+Mix? Since the
reductions of §3 can be computed in constant depth, we have:

I Theorem 4.2. MixCorr and UniquenessPM are equivalent under AC0 reductions.

Thus, it will suffice to study the complexity of UniquenessPM. Let us start with a
positive result, using the parallel algorithms for finding a perfect matching mentioned in §2.1.

I Proposition 4.3. UniquenessPM is in randomized NC and in deterministic quasi-NC.

Proof. Let G = (V,E) be a graph and M be a perfect matching of G. M is not unique if
and only if, for some e ∈M , the graph Ge = (V,E \ {e}) has a perfect matching. To test the
uniqueness of M , run the |M | parallel instances, one for each Ge, of a randomized NC [21] or
deterministic quasi-NC [28] algorithm for deciding the existence of a perfect matching, and
compute the disjunction of their answers in AC0. J

Being in quasi-NC is a much weaker7 result than being in NL. But as we shall now see,
even showing that UniquenessPM is in NC (recall that NL ⊂ NC) would be a major result.
It would answer in the affirmative the following conjecture dating back from the 1980’s:

I Conjecture 4.4 (Lovász8). UniquePM is in NC.

Indeed, the following shows that UniquenessPM ∈ NC⇒ UniquePM ∈ NC (and the
converse follows from the definitions).

I Proposition 4.5. There is a NC2 reduction from UniquePM to UniquenessPM.

7 In fact, one can show that NL ( NSPACE(O(log3/2 n)) ⊆ quasi-NC3, and the latter is where Svensson
and Tarnawski’s analysis puts finding a perfect matching.

8 The conjecture is attributed to Lovász by a paper by Kozen et al. [19] which claims to solve it. But
Hoang et al. [15] note that “this was later retracted in a personal communication by the authors”. Still,
the proposed solution works for bipartite graphs.
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Proof. This is a consequence of a NC2 algorithm by Rabin and Vazirani [25, §4] which, given
a graph G, computes a set of edges M such that if G admits a unique perfect matching, then
M is this matching. Starting from any graph G, run this algorithm and test whether its
output is a perfect matching. If not, then G does not admit a unique perfect matching; if it
is, then G is a positive instance of UniquePM if and only if (G,M) is a positive instance of
UniquenessPM. J

To sum up these results about UniquenessPM, which apply to MixCorr:

I Theorem 4.6. MixCorr is in randomized NC and in deterministic quasi-NC; it is in
deterministic NC if and only if Conjecture 4.4 is true.

5 Sequentializing MLL+Mix proof nets

In §4.1, we managed to solve MLL+Mix correctness in linear time, matching the known
time complexity for MLL correctness. But the algorithms for MLL correctness still have
an advantage: they can compute a sequentialization in linear time, whereas we only have a
decision procedure for MixCorr which returns a yes/no answer9. We do not know how to
compute MLL+Mix sequentializations in linear time. Nevertheless, by applying our bridge
between proof nets and graph theory, we get the first quasi-linear time algorithm for MixSeq.
The beginning of the next section will discuss why the problem seems harder with Mix.

Our algorithm proceeds in a “top-down” way: it starts by determining the root of the
derivation tree and the link it introduces. To obtain the children of the root, it suffices to
recurse on the connected components created by removing this link.

Furthermore, through the correspondence of Theorem 3.4, finding a link which is intro-
duced by the last rule of some sequentialization amounts to finding a bridge in the matching
of the graphification of the proof net (cf. §3.1). This is in fact a bit more convenient with
graphifications than with general unique perfect matchings, thanks to the following property:

I Lemma 5.1. All bridges in the graphification of some proof structure are matching edges.

The algorithm will alternate between finding and deleting bridges; a deletion may cut
cycles and thus create new bridges, which we want to detect without traversing the entire
graph each time. To do so, we use a dynamic bridge-finding data structure designed for this
kind of use case by Holm et al. [16]. It keeps an internal state corresponding to a graph,
whose set of n vertices is immutable but whose set of edges may vary, and supports the
following operations in O((logn)2(log logn)2) amortized time:

updating the graph by inserting or deleting an edge;
computing the number of vertices of the connected component of a given vertex;
finding a bridge in the connected component of a given vertex;
determining whether two vertices are in the same connected component.

I Theorem 5.2. MixSeq can be solved in O(n(logn)2(log logn)2) time.

Proof. Let π be a MLL+Mix proof net with n links, and (G = (V,E),M) be its graphification.
Both V and E are have cardinality O(n) (in fact, |V | = 2n and |M | = n).

The algorithm starts by initializing the bridge-finding data structure D with the graph G,
computing the weakly connected components of π in linear time, and selecting a link in each

9 It can find a feasible cycle, witnessing incorrectness, but cannot produce a certificate of correctness.
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component. On each selected link l, we call the following recursive procedure; its role is to
sequentialize the sub-proof net of π containing l whose graphification is a current connected
component of G (G and D being mutable global variables):

Let u be one endpoint of the matching edge corresponding to l. Using the bridge-finding
structure, find a bridge e = (v, w) in the component of u; necessarily, e ∈ M . Remove
the edge e from G (and reflect this change on D with a deletion operation).
If both v and w are isolated vertices, e corresponds to an ax-link and the entire sub-proof
net consisted of this link. In this case, return a sequentialization with a single ax-rule.
If one of v and w is isolated, and the other is not – by symmetry, let us assume the latter
is v – then e corresponds to a O-link l′. Let p and p′ be its predecessors.

Remove all edges incident to v.
If the matching edges corresponding to p and p′ are in the same connected component
of G, recurse on p, add a final O-link and return the resulting sequentialization.
If p and p′ are in different connected components of G, recurse on p and p′, use the
results as the two premises of a Mix rule, add a final O-link and return the resulting
sequentialization.

If neither v nor w is isolated, e corresponds to a ⊗-link. This is handled similarly to the
O+Mix case above.

Let us evaluate the time complexity. At each recursive call, one bridge is eliminated from
G, so the number of recursive calls is n. The cost of each recursive call is O(1) except for
the updates and queries of the bridge-finding data structure. In total, there are |E| = O(n)
deletions, |M | = n bridge queries, and at most n connectedness tests, and each of those takes
O((logn)2(log logn)2) amortized time. Hence the O(n(logn)2(log logn)2) bound. J

I Remark. If we want to compute a sequentialization for a unique perfect matching, in
general, a complication is the existence of bridges which are not in the matching.

Interestingly, one can determine whether a bridge e is in M without looking at M : it is
the case if and only if both of the connected components created by removing e have an odd
number of vertices. This leads to an algorithm for UniquePM; it is virtually the same as
the one proposed by Gabow et al. [11, §2]10, from which we took our inspiration.
I Remark. One needs to use a sparse representation for derivation trees: the size of a fully
written-out sequent calculus proof is, in general, not linear in the size of its proof net.

6 On the kingdom ordering of links

One may wonder if we could not have just tweaked an algorithm for MLL sequentialization
into an algorithm for MixSeq. In order to argue to the contrary, let us briefly mention
a difference between Bellin and van de Wiele’s study of the sub-proof nets of MLL proof
nets [5] and its extension to the MLL+Mix case by Bellin [4]. Any MLL sub-proof net of a
MLL proof net may appear in the sequentialization of the latter; however, for MLL+Mix,
Figure 7 serves as a counterexample: the sub-proof structure containing all links but the
⊗-link is correct for MLL+Mix, but it cannot be an intermediate step in a sequentialization
of the entire proof net. A normality condition is needed to distinguish those sub-proof nets

10Not to be confused with their algorithm for UniquenessPM [11, §3] that we used in §4.1. They only
claim a bound of O(m log4 n) because the best dynamic 2-edge-connectivity data structure known at
the time has operations in O(log4 n) amortized time.
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O ⊗ O
ax

ax
ax

Figure 7 A MLL+Mix proof net which highlights a difficulty in solving MixSeq.

which may appear in a sequentialization, and this is why sequentialization algorithms which
are morally based on a greedy parsing strategy, such as Guerrini’s linear-time algorithm [14],
do not adapt well to the presence of the Mix rule.

Any link l in a MLL+Mix proof net π admits a minimum normal sub-proof net of
π containing l, its kingdom [4]. Bellin’s kingdom ordering is the partial order on links
corresponding to the inclusion between kingdoms. We give an algorithm to compute this
order for any MLL+Mix proof net: this is yet another application of matching theory. It
uses a characterization of the kingdom ordering in terms of a relation called dependency by
Bagnol et al. [1] (who, in turn, take this name from the closely related dependency graph of
Mogbil and Naurois [17]). We will also see how this dependency relation can be reformulated,
through our correspondence between proof structures and perfect matchings, in terms of the
blossoms mentioned in §2.1 and §4.1.

One may in fact define the kingdom ordering, written�π, without reference to the notion
of normal sub-proof net (we will not introduce the latter formally here):

I Definition 6.1. Let π be a MLL+Mix proof net. For any two links p, q of π, p �π q if
and only if, in any sequentialization of π, the rule introducing q has, among its premises, a
proof net containing p.

From this point of view, the kingdom ordering gives us information about the set of all
sequentializations. Let us give some examples. The proof net of Figure 4b admits a unique
sequentialization, so this directly gives us the kingdom ordering: for instance the middle
⊗-link is the greatest element. On the other hand, in the proof net of Figure 7, both O-links
may be introduced by a last rule, so there is no greatest element. In fact, the kingdom
ordering coincides with the predecessor relation. So it does not distinguish between the 3
terminal links even though, unlike the 2 others, the ⊗-link cannot be introduced last.

Before proceeding further, here is another property of MLL proof nets which is contradicted
by Figure 7 for MLL+Mix proof nets, providing more evidence that MixSeq is trickier than
MLL sequentialization.

I Proposition 6.2. Let π be a MLL proof net and l be a maximal link for �π. Then there
exists a sequentialization of π whose last rule introduces l.

6.1 Computing the kingdom ordering
I Definition 6.3. Let π be a proof structure. We write D(π) for the dependency relation
defined as follows: for any two links p 6= q of π, p is a dependency of q when q is a O-link
and there exists a feasible path between the predecessors of q going through p.

For instance, in the proof net of Figure 4b, the left O-link depends on the left ⊗-link, but
not on the other ⊗-links or O-links; the middle ⊗-link has no dependency. In the case of
Figure 7, the dependency relation is empty.
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I Theorem 6.4 (Bellin [4, Lemma 2]11). Let π be a MLL+Mix proof net. The transitive
closure of D(π) ∪ S(π) is �π, where (p, q) ∈ S(π) means that p is a predecessor of q.

The dependency relation can be computed by reduction to a matching problem in the
case of MLL+Mix proof nets: even though it is well-defined in arbitrary proof structures,
we need MLL+Mix correctness to compute it, because our matching algorithm relies on the
absence of alternating cycles.

I Lemma 6.5. Let G be a graph with a unique perfect matching M , and e, f, g ∈ M be
pairwise distinct edges. The existence of an alternating path starting with e, ending with f
and crossing g can be reduced to the existence of a perfect matching.

Proof. Let (u, v) = e, (u′, v′) = f and (a, b) = g. Let G′ be the graph obtained by adding
new vertices s and s′, new edges (s, u), (s, v), (s′, u′) and (s′, v′), and by removing g. This
graph admits a matching M ′ = M \ {g} leaving the 4 vertices s, s′, a and b unmatched.

Suppose G′ admits a perfect matching M ′′. Then the symmetric difference M ′4M ′′
consists of two vertex-disjoint alternating paths for M ′, whose endpoints are {s, s′, a, b} by
the same reasoning as Lemma 2.2. (In general, the symmetric difference may also contain
alternating cycles, but if it were the case here, M would not be unique.)

We claim that these paths either go from s to a and b to s′, or from s to b and a to s′.
Otherwise, there would be an alternating path from a to b for M ′, and together with the
matching edge g we removed earlier, this would give us an alternating cycle for M in G.

In both cases, let us join the two paths together by adding g, and remove the edges
incident to s and s′. We get a path starting with e, ending with f , crossing g and alternating
for M in G. Conversely, from such a path, one can get a perfect matching in G′. J

I Theorem 6.6. Let π be a MLL+Mix proof net with a link p and a O-link q. Deciding
whether (p, q) ∈ D(π) can be done in linear time, in randomized NC and in quasi-NC.

Proof. A degenerate case is when p is a predecessor of q: in this case, p depending on q is
equivalent to π becoming incorrect if q is turned into a ⊗-link, and thus the complexity is
the same as that of (the complement of) the correctness problem.

When p is not a predecessor of q, the definition of dependency translates into the problem
defined in the above lemma by taking the graphification of π. Since the existence of a perfect
matching can be decided in randomized NC or quasi-NC (cf. §2.1), so can our problem. To
get a linear time complexity, we exploit the fact that we know a matching of G′ leaving O(1)
vertices unmatched: a perfect matching can then be found with O(1) iterations of an algorithm
using augmenting paths, each iteration taking linear time, see e.g. [31, Chapter 9]. J

A transitive closure can be computed in polynomial time, and reachability in a directed
graph can be decided in NL ⊂ quasi-NC, so we get in the end:

I Corollary 6.7. There are a polynomial-time algorithm and a quasi-NC algorithm to compute
the kingdom ordering �π of any MLL+Mix proof net π.

11This theorem was rediscovered in the special case of MLL proof nets by Bagnol et al. [1, Theorem 11],
who refer to the kingdom ordering as the “order of introduction”. We borrow the notations D(π) and
S(π) from them.
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6.2 Dependencies and blossoms in unique perfect matchings

We will now see how, through the correspondence of §3, Bellin’s theorem can be rephrased
as a statement on unique perfect matchings.

I Definition 6.8. Let G be a graph and M be a perfect matching of G. A blossom for M is
a cycle whose vertices are all matched within the cycle, except for one, its root. The matching
edge incident to the root, is called the stem of the blossom.

That is, a blossom consists of an alternating path between two vertices, starting and
ending with a matching edge, together with a non-matching edge from the root to each of
these two vertices; for instance, in Figure 1b, the two triangles are blossoms with a common
stem. The stem of a blossom is not part of the cycle. Blossom are central to combinatorial
matching algorithms, e.g. [9, 11], as we have previously mentioned.

I Definition 6.9. When e ∈M is in some blossom with stem f ∈M , we write e→ f .

This is the graph-theoretical counterpart of the dependency relation, as is shown by the
following two propositions.

I Proposition 6.10. Let π be a MLL+Mix proof net and (G,M) be its graphification. Let
p, q be links in π with corresponding matching edges ep, eq ∈M . Then ep → eq if and only if
p is a dependency of q or a predecessor of q, i.e. (p, q) ∈ D(π) ∪ S(π).

I Proposition 6.11. Let G be a graph,M be a perfect matching of G and π be the proofification
of (G,M). Let e, f ∈M with corresponding ⊗-links le, lf ∈M . Then e→ f if and only if le
is a dependency of some O-link q from which lf is reachable (by a directed path).

I Remark. In Proposition 6.10, the “if” direction holds even for incorrect proof structures;
in Proposition 6.11, note that no uniqueness property is required of the perfect matching.

Thus, we see that Bellin’s theorem is equivalent to the following theorem where →+ is
the transitive closure of →. As far as we know, this is a new result in graph theory.

I Theorem 6.12. Let G be a graph with a unique perfect matching M , and e, f ∈M . The
edge e occurs before f in all sequentializations for M if and only if e→+ f .

We can also formulate the theorem without mentioning sequentializations. Fix an edge
e ∈ M , and iteratively remove the endpoints of any bridge in M , except e, until we end
up with a vertex-induced subgraph of G where no bridge remains except e. This is the
graph-theoretic analogue of the kingdom of e. Bellin’s theorem says that for any edge f in
the kingdom of e, f →+ e, that is:

I Theorem 6.13. Let G be a graph with a unique perfect matching M . Suppose that M
contains only one bridge e. Then for all f ∈M \ {e}, f →+ e.

This is the case in Figure 1b: the middle edge e is the only bridge, and it is the stem of
the two triangular blossoms which contain the other matching edges.

The graph-theoretic versions are somewhat simpler to state than the original theorem:
one takes the transitive closure of a single relation, instead of a union of two unrelated
relations. We give a direct proof of the last formulation in Appendix D, based on the blossom
shrinking operation mentioned in §4.1.
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7 Conclusion

We have presented a correspondence between proof nets and perfect matchings, and demon-
strated its usefulness through several applications of graph theory to linear logic: our results
give the best known complexity for MLL+Mix correctness and sequentialization, by taking
advantage of sophisticated graph algorithms. We also expect linear logic to eventually lead to
new results in graph theory through this correspondence – in fact, the rephrasing of Bellin’s
theorem in the last section is one such example – and in general, we hope to see fruitful
interactions arise between those two domains.

Perspectives. Now that we have shed a new light on MLL+Mix proof nets, it would
be interesting to revisit the well-studied theory of MLL proof nets. Therefore, we would
like to find the right graph-theoretical counterpart to the connectedness condition in the
Danos–Regnier criterion for MLL, but unique perfect matchings do not seem to be the right
setting to do so. Indeed, there are many objects in graph theory which admit “structure from
acyclicity” theorems equivalent to Kotzig’s theorem on unique perfect matchings (cf. [30])
– that is, to MLL+Mix sequentialization – and some of these may be better suited to go
beyond MLL+Mix proof nets and extend the correspondence, either to MLL or to larger
fragments of linear logic.

In particular, we have already taken inspiration from edge-colored graphs (see e.g. [2, §16]),
which are rather close to the usual paired graphs, to prove the coNP-hardness of Pagani’s
visible acyclicity condition [24] on MELL proof structures (cf. the workshop abstract [23]).
Let us also mention that we have found an interpretation of Retoré’s construction [27] in
terms of graphs with forbidden transitions [29], which can be seen as the generalization of
paired graphs by dropping the disjointness condition.

A closely related question is that of finding a natural graph-theoretic decision problem
equivalent to correctness for MLL without Mix through low-complexity reductions – hopefully
computable both in linear time and in AC0, like the equivalence between MixSeq and
UniquenessPM exhibited in this paper. Though both Murawski & Ong [22] and Mogbil
& Naurois [17] reduce MLL correctness to problems on directed graphs, the complexity
of these reductions is higher than we would like: the first is not computed in logarithmic
space, the second uses a subroutine for undirected connectivity, a L-complete problem whose
membership in L is highly non-trivial. An answer to this question may help clarify why all
known linear-time correctness criteria for MLL rely on the same sophisiticated data structure,
as mentioned in §4.1.
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A Proofs of §3

Proof of Proposition 3.2. By negating the two sides of the equivalence, the goal becomes
proving that a proof structure π contains a feasible cycle if and only if its graphification
(G,M) contains an alternating cycle.

Consider any alternating cycle for M in G of length 2n, and take the Z/(n)-indexed
sequence of vertices corresponding to the matching edges in the cycle. By construction of
the graphification, if two edges in M are incident to a common non-matching edge, then
the corresponding links in π are adjacent: thus, in our sequence, each vertex is adjacent to
the previous and the next one, and thus we have a cycle. If it were not feasible, it would
contain three consecutive links p, q, r with q a O-link and p, r its predecessors12; but then
the alternating cycle would have to cross two incident non-matching edges (from p to q and
from q to r), which is impossible. Thus, π contains a feasible cycle.

To show the converse we will exhibit a right inverse to the map from alternating cycles
to feasible cycles defined above. Consider a feasible cycle: it can be partitioned into directed
paths from ax-links to ⊗-links. Let l be an intermediate link in such a path, and e, p, s

be matching edges corresponding respectively to l, its predecessor, and its successor in the
directed path. s has a unique endpoint u which is incident to both endpoints of e; e has a
unique endpoint v which is not incident to both endpoints of p. To join e with s, we use the
edge (u, v). By taking all these non-matching edges for all maximal directed paths in the
cycle, as well as a choice of two edges incident to each matching edge corresponding to an
ax-link, and the matching edges (al, bl) corresponding to all the links l in the cycle, we get
an alternating cycle. J

Proof of Lemma 3.3. Suppose for contradiction that l is not a terminal link, and let l′ be a
successor of l. Then for some endpoint v of (al′ , bl′), (al, v) and (bl, v) are both edges in G,
and they make up a path between al and bl not going through (al, bl). Thus, (al, bl) cannot
be a bridge.

The fact that (al, bl) is a bridge means that by removing this edge, al and bl are in
different connected components; if l is a ⊗-link, each of these connected components contain
the matching edge corresponding to one premise of l. J

12To expand on this point: this is because we have prohibited vertex repetitions in our definition of cycles.
This is legitimate since a graph is a forest if and only if it does not contain a non-vertex-repeating cycle.
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Proof of Theorem 3.4. We convert a sequentialization S of (G,M) into a sequentialization
Σ of π inductively as follows. Since G 6= ∅, the last rule of S is either a disjoint union or the
introduction of a bridge e = (al, bl) ∈ M by joining together (Ga,Ma) and (Gb,Mb) with
respective sequentializations Sa and Sb. In the latter case, l is a terminal link of π.

If Ga = Gb = ∅, then l is an ax-link, and Σ consists of a single ax-rule.
If Ga 6= ∅ and Gb = ∅, then l is a O-link, and the removal of l from π yields a proof
structure π′ whose graphification is (Ga,Ma). Σ then consists of a O-rule introducing l
applied to the sequentialization of π′ corresponding to Sa.
If Ga 6= ∅ and Gb 6= ∅, then l is a ⊗-link. Since e is a bridge, the removal of l from π

yields two proof structures πa and πb whose respective graphifications are (Ga,Ma) and
(Gb,Mb). Σ then consists of an ⊗-rule applied to the translations of Sa and Sb.

If the last rule of S is a disjoint union rule, it is translated into a Mix rule in Σ.
The bijectivity can be proven by defining the inverse transformation and by checking

that it is indeed its inverse. J

Proof of Proposition 3.6. Let π be the proofification of (G,M). Any feasible cycle in π

changes direction only at ax-links and ⊗-links, and therefore can be partitioned into an
alternation of ⊗-links, corresponding to matching edges, and of paths starting with some Bu,
ending with some Bv and crossing some axe, corresponding to non-matching edges e = (u, v).
Therefore, it corresponds to an alternating cycle for M , and the mapping defined this way is
bijective. J

Proof of Proposition 3.7. This follows from the fact that a ⊗-link may be introduced by
the last rule of a sequentialization if and only if it is splitting, i.e. its removal disconnects its
two precedessors. J

B Omitted proof in §5

Proof of Lemma 5.1. Let e be a non-matching edge. Then there are matching edges (u, v)
and (s, t) such that the link corresponding to (u, v) is the predecessor of the one for (s, t),
and e = (u, s). The non-matching edge (v, s) is then also present in the graph, and so e
cannot be a bridge. J

C Omitted proofs in §6

Proof of Proposition 6.2. If l is a terminal O-link, no other assumption is needed for the
existence of such a sequentialization. Else, l is a terminal ⊗-link and it suffices to show that
l is splitting, i.e. that the removal of l splits π into two connected components.

Suppose that it is not the case, and consider some sequentialization of π: it must contain
a O-rule, applied to a sub-proof net π′ for which l is splitting, which turns it into a sub-proof
net for which l is not splitting anymore. Let p be the O-link introduced by that rule; its
predecessors lie in different connected components of π′ \ {l}. Since π′ is a MLL proof net,
the predecessors of p are connected by a feasible path in π′, which must cross l. This shows
that l is a dependency of p in the sense of Definition 6.3, contradicting the maximality of l.
(This only uses the fact that D(π) ⊆�π, which is the “easy” part of Bellin’s theorem.) J

Proof of Proposition 6.10. If (p, q) ∈ S(π), then by construction there exists a blossom of
length 3 containing p with stem q. If (p, q) ∈ D(π), then for the same reason as Proposition 3.2,
we can get, from the feasible path between the predecessors of q visiting p, an alternating path
for M starting and ending with the edges corresponding to those predecessors and crossing
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the edge corresponding to p. By adding two non-matching edges to the same endpoint of the
matching edge for q, we get a blossom with stem q.

Conversely, let q be a link, e the corresponding matching edge, and B be a blossom with
stem q. Let us first note that if B contains an non-matching edge joining e with the matching
edge corresponding to a successor of q, then by replacing this non-matching edge with its twin
incident to the other endpoint of q, we get an alternating cycle; this is impossible because we
have assumed π to be a MLL+Mix proof net. Therefore, the first and last matching edges in
B are both premises of q. If they are the same – that is, if B has length 3 and contains a
single matching edge – then this edge corresponds to a predecessor p of q. Otherwise, B gives
an alternating path between two distinct premises of q; necessarily q is a O-link (otherwise,
there would be an alternating cycle), and all links corresponding to matching edges in B are
dependencies of q. J

Proof of Proposition 6.11. Let B be a blossom with stem f , whose two non-matching edges
incident to f are a and b. B translates into a feasible path between axa and axb in π. Now,
axa and axb are also leaves of a binary tree of O-links whose root has the single successor lf ;
by taking q to be the lowest common ancestor of axa and axb in this tree, lf is reachable from
q, and every link in the path between axa and axb depends on q. Conversely, any feasible
path between the two premises of a O-link corresponds to a blossom for M in G. J

D Proof of the graph-theoretic Bellin theorem (Theorem 6.13)

Let G be a graph with a unique perfect matching M , containing a single bridge e. Removing
the edge e, but not its endpoints, results in two connected components which both have a
unique near-perfect matching (leaving one vertex unmatched) containing no bridge. If both
these components have a single vertex, then the theorem is vacuously true; else, we have
reduced it to the following proposition, where a← b means that b→ a, ←∗ is the reflexive
transitive closure of ←, and u� f means that f is contained in a blossom with root u.

I Proposition. Let G be a graph with a near-perfect matching M and let u be the unmatched
vertex. Suppose G has no bridge in M and no alternating cycle for M . Then for all f ∈M ,
there exists g ∈M such that u� g ←∗ f .

The proof of this proposition relies on the blossom shrinking operation: starting from
the graph G with a matching M , this consists in taking the quotient graph G′ where all the
vertices of the blossom have been identified; M induces a matching M ′ in G′.

I Lemma. Under the hypotheses of the proposition, if M 6= ∅, then:
1. There exists a blossom in G for M with root u.
2. Let G′ be the graph obtained by shrinking this blossom, with induced matching M ′ ⊂M .

There is no bridge in M ′ and no alternating cycle for M ′.
3. Let u′ be the exposed vertex in G′, corresponding to the shrunk blossom. For all f ∈M ′

with u′ � f in G′, there exists g ∈M such that u� g ←∗ f in G.

Proof of (1). The absence of alternating cycle amounts to saying thatM is the unique perfect
matching of G[V \ {u}] where V is the vertex set of G. (Note that M 6= ∅ ⇔ V \ {u} 6= ∅.)
By Kotzig’s theorem, M contains a bridge e of G[V \ {u}]; let V1 and V2 be the connected
components created by the removal of e (but keeping its endpoints) from G[V \ {u}]. We
create a new graph H by starting from G[V \ {u}], adding two new vertices u1 and u2, and
adding the edges (ui, v) for all v ∈ Vi with v adjacent to u in G (i = 1, 2), and the edge
(u1, u2).
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The perfect matching M ∪{(u1, u2)} of H contains no bridge of H: since e is not a bridge
of G, there is at least one edge between u1 and V1 and one edge between u2 and V2, so
(u1, u2) is not a bridge in H; and any edge of M would be a bridge of G if it were a bridge of
H. Let us apply Kotzig’s theorem again: this perfect matching admits an alternating cycle,
which cannot be contained in H[V \ {u}] = G[V \ {u}]. Therefore, it contains an alternating
path from u1 to u2, from which we retrieve a blossom with root u in G. J

Proof of (2). If there existed a bridge e ∈M ′ of G′, then G′ \ {e} would be disconnected
while G \ {e} would be connected; this is impossible. An alternating cycle for M ′ would not
visit u′ because it is unmatched, and therefore would be an alternating cycle for M in G. J

Proof of (3). Let B be the blossom with root u in G that has been shrunk, and B′ be the
blossom with root u′ in G′ containing f . There are two non-matching edges e′1 and e′2 in B′
incident to u′; let e1 = (u1, v1) be a preimage of e′1 and e2 = (u2, v2) be a preimage of e′2 in
G, with u1, u2 ∈ B.

The blossom B can be decomposed into P1 ∪ Q ∪ P2, where P1 is an alternating path
from u to u1 (possibly empty, if u = u1), Q is an alternating path from u1 to u2 (possibly
empty, if u1 = u2), and P2 is an alternating path from u2 to u. As for B′, it lifts to an
alternating path R between u1 and u2 starting and ending with a non-matching edge, so
that |R| is odd and f ∈ R. We proceed by case analysis on the parity of |P1| and |P2|.

If they are both even, then P1 ∪R ∪ P2 is a blossom: u� f ←∗ f .
If |P1| is even and |P2| is odd, then Q ∪R is a blossom with root u1. Either u1 = u and
then u� f , or there is an edge g ∈ B ∩M incident to u1 and then u� g ← f .
The case |P1| even and |P2| odd is symmetric to the previous one.
If they were both odd, Q ∪R would be an alternating cycle. J

Proof of the proposition. By induction on the size of G.
Let us take a blossom using lemma (1). If it contains f , then u� f and we are done. Else,

we shrink the blossom and get G′, M ′ and u′; by lemma (2), they satisfy the assumptions of
the proposition. By the induction hypothesis, there exists g such that u′ � g ←∗ f in G′.
Thanks to lemma (3), u′ � g entails u� h←∗ g in G for some h ∈M . Also, g ←∗ f in G′
entails g ←∗ f in G because the (possibly empty) sequence of blossoms which binds f to g
in G′ cannot contain the vertex u′, and therefore lifts to exactly the same edges in G. Thus,
u� h←∗ g ←∗ f and therefore u� h←∗ f in G. J
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1 Introduction

Conditional term rewriting [32, Chapter 7] is known to be more complicated than unconditional
term rewriting in the sense of analyzing properties, e.g., operational termination [21] (quasi-
decreasingness [32]), confluence [37], and reachability [6]. A popular approach to the analysis
of conditional term rewriting systems (CTRSs, for short) is to transform a CTRS into an
unconditional term rewriting system (a TRS, for short) that is in general an overapproximation
of the CTRS w.r.t. reduction (cf. [32]). This approach enables us to use existing techniques
for the analysis of TRSs. For example, a CTRS is operationally terminating if the unraveled
TRS [22, 32] is terminating [5]. To prove termination of the unraveled TRS, we can use many
techniques for proving termination of TRSs (cf. [32]). On the other hand, it is not so easy to
analyze reachability which is relevant to, e.g., infeasibility of conditions – non-existence of
substitutions satisfying conditions – of conditional rewrite rules, conditional critical pairs,
etc.

© Naoki Nishida and Yuya Maeda;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nishida@i.nagoya-u.ac.jp
https://orcid.org/0000-0001-8697-4970
mailto:yuya@trs.css.i.nagoya-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Narrowing Trees for Syntactically Deterministic CTRSs

Let us consider to prove confluence of the following normal 1-CTRS [31] defining even
and odd predicates over the non-negative integers represented by 0 and s:

R1 =
{

e(0)→ true, e(s(x))→ true⇐ o(x)� true, e(s(x))→ false⇐ e(x)� true,
o(0)→ false, o(s(x))→ true⇐ e(x)� true, o(s(x))→ false⇐ o(x)� true

}
Unfortunately, neither a transformational approach in [10, 9] nor a direct approach to
reachability analysis to prove infeasibility of conditional critical pairs succeeds in proving
confluence of R1. For example, R1 has the following four critical pairs:

〈true, false〉 ⇐ o(x)� true & e(x)� true 〈false, true〉 ⇐ o(x)� true & e(x)� true
〈true, false〉 ⇐ e(x)� true & o(x)� true 〈false, true〉 ⇐ e(x)� true & o(x)� true

An operationally terminating CTRS is confluent if all critical pairs of the CTRS are infeasible
(cf. [1, 4]). To prove infeasibility of the critical pairs above, it suffices to show non-existence of
terms t such that o(t)→∗R1

true and e(t)→∗R1
true. Thanks to the meaning of even and odd

predicates, it would be easy for human to notice that such a term t does not exist. However,
it is not so easy to mechanize a way to show non-existence of t. In fact, confluence provers
for CTRSs, ConCon [35], CO3 [25], and CoScart [8], based on e.g., transformations of CTRSs
into TRSs and/or reachability analysis for infeasibility of conditional critical pairs failed to
prove confluence of R1 (see Confluence Competition 2016 1 and 2017,2 489.trs or 522.trs).
Note that a semantic approach in [19, 18] can prove confluence of R1 using AGES [11], a tool
for generating logical models of order-sorted first-order theories (cf. [20]).

The (non-)existence of a term t with o(t)→∗R1
true and e(t)→∗R1

true can be reduced to
the (non-)existence of substitutions θ such that o(x) ∗θ,R1

true and e(x) ∗θ,R1
true, where

 denotes the narrowing step [14]. In addition, the non-existence of such substitutions
can be reduced to the emptiness of the set of such substitutions, i.e., the emptiness of {θ |
o(x) ∗θ,R1

true, e(x) ∗θ,R1
true}. From this viewpoint, the enumeration of substitutions

obtained by narrowing from a pair of terms would be useful in analyzing rewriting sequences
that starts with instances of the pair.

A narrowing tree [29] for a sufficiently complete constructor TRS R with the root
pair s � t where t is a constructor term is a finite representation that defines the set of
substitutions θ such that the pair s � t narrows to a special constant > by innermost
narrowing i

 R with a substitution θ (i.e., (s� t) i
 ∗θ,R > and thus θs c→∗R θt). Note that �

is considered a binary symbol, (x� x)→ > is assumed to be implicitly included in R, and
c→R denotes the constructor-based rewriting step which applies rewrite rules to basic terms.
Note that a basic terms is of the form f (u1, . . . , un) with a defined symbol f and constructor
terms u1, . . . , un. A narrowing tree can be the enumeration of substitutions obtained by
innermost narrowing of R to >. The idea of narrowing trees has been extended to finite
representations of SLD trees for logic programs [30].

In this paper, we extend narrowing trees to syntactically deterministic conditional term
rewriting systems (a SDCTRS, for short) that are constructor systems. The class of SDCTRSs
is reasonable to model functional programs. We do not directly extend narrowing trees to
conditional systems, but we convert an SDCTRS to an equivalent unconditional constructor
system that may have extra variables. Narrowing trees for the converted constructor system
can be used for the original SDCTRS, i.e., they represent all substitutions derived by
innermost narrowing of the original SDCTRS.

1 http://cops.uibk.ac.at/results/?y=2016&c=CTRS
2 http://cops.uibk.ac.at/results/?y=2017-full-run&c=CTRS

http://cops.uibk.ac.at/results/?y=2016&c=CTRS
http://cops.uibk.ac.at/results/?y=2017-full-run&c=CTRS


N. Nishida and Y. Maeda 26:3

f(x, y)� v
{x7→a}
yy

{x 7→b}
��

{x 7→c(x′,y′), y 7→z′}
++

a� v

{v 7→a}
��

b� v

{v 7→b}
��

c(f(x′, y′), f(z′, x′))� v

> > f(x′, y′)� v′ & f(z′, x′)� v′′ & c(v′, v′′)� v

ow �� '/
f(x′, y′)� v′

{x′ 7→x, y′ 7→y, v′ 7→v}

>>

f(z′, x′)� v′′

{x′ 7→y, z′ 7→x, v′′ 7→v}

ii

c(v′, v′′)� v

{v 7→c(v′,v′′)} ��
>

Figure 1 A narrowing tree for f(x, y)� v w.r.t. R2.

Consider the sufficiently complete constructor TRS R2 = { f(a, z) → a, f(b, z) →
b, f(c(x, y), z)→ c(f(x, y), f(z, x)) }. A narrowing tree for the pair f(x, y)� v is illustrated
in Figure 1. Labeled solid arrows “ θ−→” represent innermost-narrowing steps with relevant
substitutions θ,3 double-line arcs “=” decompose nests of defined symbols (flattening), double
arrows “=⇒” divide equations to single ones (splitting), labeled dotted arrows “ δ // ” visualize
the existence of a variant node connected via a renaming 4 δ (recursion). The narrowing
tree in Figure 1 can be written by the following grammar representation [29] that can be
considered a regular tree grammar [3]:

Γf(x,y)�v→{v 7→ a} • {x 7→ a} | {v 7→ b} • {x 7→ b}

|


Γf(x,y)�v • {x′ 7→ x, , y′ 7→ y, v′ 7→ v}

&
Γf(x,y)�v • {x′ 7→ y, z′ 7→ x, v′′ 7→ v}

&
{v 7→ c(v′, v′′)}

 • {x 7→ c(x′, y′), y 7→ z′} (1)

The binary symbols • and & are interpreted by standard composition and parallel composi-
tion [13, 33], respectively. Parallel composition ⇑ of two idempotent substitutions returns
a most general unifier of the substitutions if the substitutions are unifiable. For example,
{y′ 7→ a, y 7→ a} ⇑ {y′ 7→ y} returns {y′ 7→ a, y 7→ a} and {y′ 7→ a, y 7→ b} ⇑ {y′ 7→ y} fails.
Due to parallel composition (i.e., occurrence of &), it is not so easy to not only analyze but
also simplify grammar representations of narrowing trees. In the remaining of this paper, we
do not deal with narrowing trees but their grammar representations.

Throughout this paper, we aim at proving infeasibility of the condition o(x)� true &
e(x)� true for R1

5 w.r.t. constructor-based rewriting. To this end, we first show that every

3 One may think that y of f(x, y) � v in Figure 1 does not have to be instantiated by z′ because y is
received by a variable that can be seen as patternless. However, the tree is used two or more times via
dotted arrows, and the reuse always starts with f(x, y)� v that is connected by means of a renaming
attached with dotted arrows. To avoid any conflict of using y, we always introduce only fresh variables
at narrowing steps, i.e., f(x, y) i

 R2 c(f(x′, y), f(z′, x′)) is not allowed (see Definition 3 in Section 3).
4 To be precise, δ (e.g., {x′ 7→ y, z′ 7→ x, v′′ 7→ v} in Figure 1) is not a renaming, while we can write

an exact renaming. However, we write such a substitution, so-called a prenaming [17], obtained by
restricting a renaming to variables that we are interested in because the renaming is used to rename a
particular term.

5 We use R1, which is an SDCTRS but also a normal 1-CTRS, as a leading example of this paper because
R1 is reasonable to illustrate how we can use the grammar representation of a narrowing tree to prove
confluence of a CTRS.
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constructor SDCTRS can be converted to an equivalent unconditional constructor system
which may have extra variables (Section 3). Secondly, we revisit compositionality of innermost
narrowing, relaxing some assumptions in [29] (Section 4). Thirdly, we introduce grammar
representations of sets of idempotent substitutions as regular tree grammars (Section 5) and
a construction of narrowing trees for given unconditional constructor systems (Section 6).
Fourthly, we show some methods to simplify grammar representations of narrowing trees
(Section 7). Finally, we show that grammar representations of narrowing trees are useful to
prove infeasibility of conditional critical pairs of R1 and quasi-reducibility [16] of R1 with
usual sorts for natural numbers and boolean values (Section 8). Quasi-reducibility is that
every ground basic term is defined (i.e., reducible). For (operationally) terminating (C)TRSs,
quasi-reducibility is equivalent to sufficient completeness (cf. [15, 2]). The results in this
paper would straightforwardly be extended to many sorted systems. Differences to related
work are described in Section 9, and proofs of theorems are shown in Appendix B.

The contribution of this paper is to show a method that can prove (1) confluence of R1,
for which all existing confluence provers other than AGES fail to prove confluence, and (2)
quasi-reducibility of R1.

2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [1, 32] and regular
tree grammars [3].

Throughout the paper, we use V as a countably infinite set of variables. Let F be a
signature, a finite set of function symbols f each of which has its own fixed arity. We often
write f /n ∈ F instead of “an n-ary symbol f ∈ F”, and so on. The set of terms over F and
V (⊆ V) is denoted by T (F , V ), and T (F , ∅), the set of ground terms, is abbreviated to
T (F). The set of variables appearing in any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn).
For a term t and a position p of t, the subterm of t at p is denoted by t|p. Given terms s, t
and a position p of s, we denote by s[t]p the term obtained from s by replacing the subterm
s|p at p by t.

A substitution σ is a mapping from variables to terms such that the number of variables
x with σ(x) 6= x is finite, and is naturally extended over terms. The domain and range of σ
are denoted by Dom(σ) and Ran(σ), respectively. The set of variables in Ran(σ) is denoted
by VRan(σ). We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn}
and σ(xi) = ti for all 1 ≤ i ≤ n. The identity substitution is denoted by id. The set
of substitutions that range over a signature F and a set V of variables is denoted by
Subst(F , V ): Subst(F , V ) = {σ | σ is a substitution, Ran(σ) ⊆ T (F , V )}. The application
of a substitution σ to a term t is abbreviated to σt, and σt is called an instance of t. Given a
set V of variables, σ|V denotes the restricted substitution of σ w.r.t. V : σ|V = {x 7→ σx | x ∈
Dom(σ)∩V }. A substitution σ is called a renaming if σ is a bijection on V . The composition
θ · σ (simply θσ) of substitutions σ and θ is defined as (θ · σ)(x) = θ(σ(x)). A substitution
σ is called idempotent if σσ = σ (i.e., Dom(σ) ∩ VRan(σ) = ∅). A substitution σ is called
more general than a substitution θ, written by σ ≤ θ, if there exists a substitution δ such that
δσ = θ. A finite set E of term equations s ≈ t is called unifiable if there exists a unifier of E
such that σs = σt for all term equations s ≈ t in E. A most general unifier (mgu, for short)
of E is denoted by mgu(E) if E is unifiable. Terms s and t are called unifiable if {s ≈ t} is
unifiable. The application of a substitution θ to E is defined as θ(E) = {θs ≈ θt | s ≈ t ∈ E}.

An oriented conditional rewrite rule over a signature F is a triple (`, r, c), denoted by
`→ r ⇐ c, such that the left-hand side ` is a non-variable term in T (F ,V), the right-hand
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side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1, . . . , sk � tk
of term pairs (k ≥ 0) where s1, t1, . . . , sk, tk ∈ T (F ,V). In particular, a conditional rewrite
rule is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and
we may abbreviate it to ` → r. Variables in Var(r, c) \ Var(`) are called extra variables
of the rule. An oriented conditional term rewriting system (a CTRS, for short) over F is
a set of oriented conditional rewrite rules over F . A CTRS is called an (unconditional)
term rewriting system (TRS) if every rule ` → r ⇐ c in the CTRS is unconditional
and satisfies Var(`) ⊇ Var(r). The reduction relation →R of a CTRS R is defined as
→R =

⋃
n≥0 →(n),R, where→(0),R = ∅, and→(i+1),R = {(s[σ`]p, s[σr]p) | s ∈ T (F ,V), `→

r ⇐ s1 � t1, . . . , sk � tk ∈ R, σs1 →∗(i),R σt1, . . . , σsk →∗(i),R σtk} for i ≥ 0. To specify
the position where the rule is applied, we may write →p,R instead of →R. The underlying
unconditional system {`→ r | `→ r ⇐ c ∈ R} of R is denoted by Ru. A term t is called a
normal form (of R) if t is irreducible w.r.t. R. A substitution σ is called normalized (w.r.t.
R) if σx is a normal form of R for each variable x ∈ Dom(σ). A CTRS R is called Type 1
(1-CTRS, for short) if every rule ` → r ⇐ c ∈ R satisfies that Var(r, c) ⊆ Var(`); Type 3
(3-CTRS, for short) if every rule `→ r ⇐ c ∈ R satisfies that Var(r) ⊆ Var(`, c); normal if
for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R, all t1, . . . , tk are ground normal forms of
Ru; deterministic (a DCTRS, for short) if, for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R,
Var(si) ⊆ Var(`, t1, . . . , ti−1) for all 1 ≤ i ≤ k.

The sets of defined symbols and constructors of a CTRS R over a signature F are denoted
by DR and CR, respectively: DR = {f | f (u1, . . . , un) → r ⇐ c ∈ R} and CR = F \ DR.
Terms in T (CR,V) are called constructor terms of R. A substitution in Subst(CR,V) is
called a constructor substitution of R. A term of the form f (t1, . . . , tn) with f /n ∈ DR and
t1, . . . , tn ∈ T (CR,V) is called basic. A CTRS R is called a constructor system if for every
rule `→ r ⇐ c in R, ` is basic. A CTRS R is called a pure-constructor system (a pc-CTRS,
for short) if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk ∈ R, all of `, s1, . . . , sk are basic
and all of r, t1, . . . , tk are constructor terms [24]. A 3-DCTRS R is called syntactically
deterministic (an SDCTRS, for short) if for every rule `→ r ⇐ s1 � t1, . . . , sk � tk ∈ R,
every ti is a constructor term or a ground normal form of Ru.

A CTRS R is called operationally terminating if there are no infinite well-formed trees in
a certain logical inference system [21] – operational termination means that the evaluation of
conditions must either successfully terminate or fail in finite time. Two terms s and t are
said to be joinable, written as s ↓R t, if there exists a term u such that s →∗R u ←∗R t. A
CTRS R is called confluent if t1 ↓R t2 for any terms t1, t2 with t1 ←∗R · →∗R t2.

A regular tree grammar is a quadruple G = (S,N ,F ,P) such that F is a signature, N is
a finite set of non-terminals (constants not in F), S ∈ N , and P is a finite set of production
rules of the form A→ β with A ∈ N and β ∈ T (F ∪N ). Note that A→ β1 | . . . | βn stands
for A→ β1, . . . , A→ βn. Given a non-terminal S′ ∈ N , the set {t ∈ T (F) | S′ →∗P t} is the
language generated by G from S′, denoted by L(G, S′). The initial non-terminal S does not
play an important role in this paper. A regular tree language is a language generated by a
regular tree grammar from one of its non-terminals. The class of regular tree languages is
equivalent to the class of recognizable tree languages which are recognized by tree automata.
This means that the intersection (non-)emptiness problem for regular tree languages is
decidable.

I Example 1. The regular tree grammar G1 = (X, {X,X ′}, {0/0, s/1}, {X → 0 | s(X ′),
X ′ → s(X) }) generates the sets of even and odd numbers over 0 and s from X and X ′,
respectively: L(G1, X) = {s2n(0) | n ≥ 0} (= L(G1)) and L(G1, X

′) = {s2n+1(0) | n ≥ 0}.
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3 From Constructor SDCTRSs to Unconditional Constructor Systems

In this section, we show that every constructor SDCTRS can be converted to an equivalent
unconditional constructor system w.r.t. constructor-based rewriting and innermost narrowing
for goal clauses. Since SDCTRSs possibly have extra variables, we relax the requirement
“Var(`) ⊇ Var(r)” for TRSs, i.e., we allow unconditional rules to have extra variables.

We denote a pair of terms s, t by s � t (not an equation s ≈ t) because we analyze
conditions of rewrite rules and distinguish the left- and right-hand sides of the pair s� t.
We deal with pairs of terms as terms by considering � a binary function symbol. For this
reason, we apply many notions for terms to pairs of terms without notice. For readability,
when we deal with s� t as a term, we often put it in parentheses: (s� t). As in [23], we
assume that any CTRS in this paper implicitly includes the rule (x� x)→ > where > is a
special constant. The rule (x� x)→ > is used to test equivalence between two terms t1, t2
via t1 � t2. A pair s � t of terms s, t is called a goal of a constructor SDCTRS R if the
left-hand side s is either a constructor term or a basic term and the right-hand side t is a
constructor term.

To deal with a conjunction of pairs e1, . . . , ek of terms (ei is either si � ti or >) as a
term, we write e1 & · · · & ek by using an associative binary symbol &. We call such a term
an equational term. Unlike [29], to avoid & to be a defined symbol, we do not use any rule
for &, e.g., (> & x) → x. Instead of derivations ending with >, we consider derivations
that end with terms in T ({>,&}). We assume that none of &, �, or > is included in the
range of any substitution below. In the following, we denote conditional parts of rules by
equational terms, e.g., `→ r ⇐ s1 � t1 & · · · & sk � tk. Note that the empty sequence of a
conditional part is denoted by >. An equational term is called a goal clause of a constructor
SDCTRS R if it is a conjunction of goals for R. Note that for a goal clause T , any instance
θT with θ a constructor substitution is a goal clause.

I Example 2. The equational term e(x)� true & o(x)� true is a goal clause of R1.

3.1 Constructor-based Rewriting and Innermost Narrowing
Following [28], we define constructor-based conditional rewriting on goal clauses as follows:
for a goal clause S = U & s� t & S′ with U ∈ T ({>,&}), we write S c→R T if there exist a
non-variable position p of (s� t), a rule `→ r ⇐ C in R, and a constructor substitution
σ such that (s� t)|p is basic, (s� t)|p = σ`, and T = U & σC & (s� t)[σr]p & S′. The
constructor-based rewriting under the leftmost strategy is denoted by lc→R. It is clear that
for a goal clause S and a normal form T of R, S c→∗R T if and only if S lc→∗R T .

The narrowing relation [34, 14] mainly extends rewriting by replacing matching with
unification. This paper follows the formalization in [28], while we use the rule (x� x)→ >
instead of the corresponding inference rule.

I Definition 3 (innermost narrowing). Let R be a CTRS. A goal clause S = U & s� t & S′

with U ∈ T ({>,&}) is said to conditionally narrow into an equational term T at an innermost
position, written as S i

 R T , if there exist a non-variable position p of (s � t), a variant
`→ r ⇐ C of a rule inR, and a constructor substitution σ such that Var(`, r, C)∩Var(S) = ∅,
(s � t)|p is basic, (s � t)|p and ` are unifiable, σ = mgu({(s � t)|p ≈ `}), and T = U &
σC & σ((s� t)[r]p) & σS′. Note that all extra variables of `→ r ⇐ C remain in T as fresh
variables which do not appear in S. We assume that Var(S) ∩ VRan(σ|Var((s�t)|p)) = ∅
(i.e., σ|Var((s�t)|p) is idempotent) and Var((s� t)|p) ⊆ Dom(σ). We write S li

 R T if p is
the leftmost among innermost narrowable positions in (s� t). We write S i

 σ|Var(S),R T to
make the substitution explicit.
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An example of innermost narrowing and constructor-based rewriting can be seen in Ap-
pendix A. Let x

 R be either i
 R or li

 R. An innermost narrowing derivation T0
x
 ∗σ,R Tn

(and T0
x
 n
σ,R Tn) denotes a sequence of narrowing steps T0

x
 σ1,R · · ·

x
 σn,R Tn with

σ = (σn · · ·σ1)|Var(T0) an idempotent substitution. When we consider two (or more) narrow-
ing derivations S1

x
 ∗σ1,R T1 and S2

x
 ∗σ2,R T2, we assume that VRan(σ1) ∩ VRan(σ2) = ∅.

As in [29], for the sake of simplicity, we first consider the leftmost innermost narrowing.
After showing basic properties of compositionality, we drop this restriction (see Theorem 14).

Constructor-based rewriting and innermost narrowing of constructor SDCTRSs have the
following relationships (cf. [28]).

I Theorem 4. Let R be a constructor SDCTRS, T a goal clause, and U ∈ T ({>,&}).
1. If T li

 ∗σ,R U , then σT lc→∗R U (i.e., σs lc→∗R σt for all goals s� t in T ).

2. For a constructor substitution θ, if θT lc→∗R U , then there exists an idempotent constructor
substitution σ such that T li

 ∗σ,R U and σ ≤ θ.

3.2 Converting to Unconditional Constructor Systems
We say that a constructor SDCTRS R over a signature F is equivalent to a constructor
SDCTRS R′ over F w.r.t. c→ and i

 if DR = DR′ and both of the following hold:
for any goal clause T , T lc→∗R U for some term U ∈ T ({>,&}) if and only if T lc→∗R′ U ′

for some term U ′ ∈ T ({>,&}), and
for any goal clause T , T li

 ∗θ,R U for some term U ∈ T ({>,&}) if and only if T li
 ∗θ,R′ U ′

for some term U ′ ∈ T ({>,&}).
Note that CR = CR′ . In this section, we first convert a constructor SDCTRS to a pc-CTRS
that is equivalent to the SDCTRS w.r.t. c→ and i

 , and then convert the pc-CTRS to a
constructor TRS that is equivalent to the pc-CTRS w.r.t. c→ and i

 .
To convert a constructor SDCTRS R, we adopt a stepwise transformation for each rule

`→ r ⇐ C ∈ R as follows (cf. [26, Definition 23]).

I Definition 5. We transform each rule `→ r ⇐ C of a constructor SDCTRS R as follows:
1. We replace r and C by a fresh variable y and C, r � y, respectively, if r /∈ T (CR,V).
2. For each condition s� t in the resulting conditional part, if t contains a defined symbol,

then we replace s� t by (s� x) & (t� x), where x is a fresh variable.6

3. We remove all nests of defined symbols in the resulting conditional part by replacing
a condition s[f (u1, . . . , un)]p � t with (f (u1, . . . , un) � x) & (s[x]p � t), where f is a
defined symbol, p > ε, and x is a fresh variable that does not appear in the intermediate
rule. This operation is so-called a flattening [29] shown in Section 4.

4. If the resulting rule has a condition s� t with s, t constructor terms, then (1) we drop the
rule from R whenever s and t are not unifiable, and (2) otherwise, we drop the condition
s� t by applying an mgu of s, t to the rule [27, p. 292] (see also [26, Theorem 26]).

We denote the resulting CTRS by Pc(R).

6 If C contains a condition s � t such that t contains a defined symbol, then rule ` → r ⇐ C is never
used in constructor-based rewriting of goal clauses to terms in T ({>,&}) because t is not a constructor
term and any instance of s� t is never reduced to any term in T ({>,&}). However, we do not drop
the rule from R because defined symbols are preserved during the conversion and the rule can be used
for the standard rewriting →R.
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I Theorem 6. Let R be a constructor SDCTRS over a signature F . Then, Pc(R) is a
pc-CTRS over F and is equivalent to R w.r.t. c→ and i

 .

Let R be a pc-CTRS over F . We denote the TRS {(` � y) → C & (r � y) | ` →
r ⇐ C ∈ R, y ∈ V \ Var(`, r, C)} by Trs(R). Since the conditional part is a goal clause,
the generated right-hand side C & (r � y) is a goal clause. Thus, for a goal clause T , if
T

c→R T ′ or T i
 R T ′, then T ′ is a goal clause. It is clear that Trs(R) is a constructor TRS,

DTrs(R) = {�}, and CTrs(R) = F ∪ {>,&}.

I Theorem 7. Let R be a pc-CTRS over a signature F . Then, Trs(R) is a constructor
TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

I Example 8. For R1 in Section 1, we obtain the following TRS by applying Trs(·) to R1:

Trs(R1) =


(e(0)� y) → (true� y), (e(s(x))� y) → (o(x)� true) & (true� y),

(e(s(x))� y) → (e(x)� true) & (false� y),
(o(0)� y) → (false� y), (o(s(x))� y) → (e(x)� true) & (true� y),

(o(s(x))� y) → (o(x)� true) & (false� y)


For example, the following narrowing derivation holds for both R1 and Trs(R1): (e(x)�
true) li

 {x 7→s(x1)} (o(x1)� true) & (true� true) li
 {x1 7→0} (false� true) & (true� true).

As a consequence of Theorems 6 and 7, we obtain the following corollary.

I Corollary 9. Let R be a constructor SDCTRS over a signature F . Then, Trs(Pc(R)) is a
constructor TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

4 Compositionality of Innermost Narrowing

Compositionality of innermost narrowing under parallel composition of idempotent substitu-
tions is a key to ensure equivalence between substitutions obtained at innermost-narrowing
steps and those defined by grammar representations of narrowing trees. In this section, we
recall parallel composition, and revisit compositionality of innermost narrowing for TRSs.
Since the counterpart of i

 R is constructor-based rewriting c→R, sufficient completeness is
required in [29] to have c→R = i→R on ground terms. However, sufficient completeness is not
necessary for compositionality and we do not force this property to TRSs.

We first recall parallel composition ⇑ of idempotent substitutions [13, 33], which is
one of the most important key operations to enable us to construct finite narrowing trees.
Given a substitution θ = {x1 7→ t1, . . . , xn 7→ tn}, we denote the set of term equations
{x1 ≈ t1, . . . , xn ≈ tn} by θ̂.

I Definition 10 (parallel composition ⇑ [33]). Let θ1 and θ2 be idempotent substitutions.
Then, we define ⇑ as follows: θ1 ⇑ θ2 = mgu(θ̂1 ∪ θ̂2) if θ̂1 & θ̂2 is unifiable, and otherwise,
θ1 ⇑ θ2 = fail. Note that we define θ1 ⇑ θ2 = fail if θ1 or θ2 is not idempotent. Parallel
composition is extended to sets Θ1,Θ2 of idempotent substitutions in the natural way:
Θ1 ⇑ Θ2 = {θ1 ⇑ θ2 | θ1 ∈ Θ1, θ2 ∈ Θ2, θ1 ⇑ θ2 6= fail}.

We often have two or more substitutions that can be results of θ1 ⇑ θ2 ( 6= fail), while they are
unique up to variable renaming. To simplify the semantics of grammar representations for
substitutions, we adopt an idempotent substitution σ with Dom(θ1) ∪ Dom(θ2) ⊆ Dom(σ)
as a result of θ1 ⇑ θ2 (6= fail). Idempotent substitutions we can adopt as results of θ1 ⇑ θ2
under the convention are unique up to variable renaming, but not exactly unique in general.
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I Example 11. The parallel composition {x 7→ s(z), y 7→ z} ⇑ {x 7→ w} may return
{x 7→ s(z), y 7→ z, w 7→ s(z)}, but we do not allow {x 7→ s(y), z 7→ y, w 7→ s(y)} as a result.
On the other hand, {x 7→ s(z), y 7→ z} ⇑ {x 7→ y} fails.

Let x
 R be either i

 R or li
 R. For a constructor SDCTRS R and a goal clause T ,

we define the success set of T (w.r.t. x
 R), which is the set of successful substitutions

derived by x
 R, as follows: Suc( x

 R, T ) = {θ | ∃U ∈ T ({>,&}). T x
 ∗θ,R U}. Note that

Dom(θ) ⊆ Var(T ) for any substitution θ ∈ Suc( x
 R, T ). We extend the restriction of

substitutions to sets of substitutions: Θ|V = {θ|V | θ ∈ Θ}.

I Theorem 12 (compositionality [29]). For a constructor TRS R and goal clauses T1, T2,
Suc( li
 R, T1 & T2) =

(
Suc( li
 R, T1) ⇑ Suc( li

 R, T2)
)
|Var(T1,T2) up to variable renaming.

Note that & is just a binary symbol to construct conjunctions of goals, and ⇑ is a binary
operator for parallel composition. In Theorem 12, we restrict Suc( li

 R, T1) ⇑ Suc( li
 R, T2) to

Var(T1, T2) because parallel composition may make the domain of a resulting substitution in
Suc( li
 R, T1) ⇑ Suc( li

 R, T2) include a variable that does not appear in T1 & T2. Theorem 12
enables us to, given T1 & T2, compute Suc( li

 R, T1) and Suc( li
 R, T2) separately, so-called

splitting, instead of computing Suc( li
 R, T1 & T2), and then apply parallel composition to

them under the variable restriction to Var(T1, T2).
Let T be an equational term, p a position of T such that the root symbol of T |p is none

of �, >, and &. A flattening of T w.r.t. p is given by T [x]p & (T |p � x) where x is a fresh
variable [29]. Note that T |p may be a variable, but, to avoid any redundant replacement, we
allow T |p to be a variable only if the replacement is in the process of linearizing a basic term
in T . Thanks to Theorem 12, we can use flattening in computing the success set of T .

I Theorem 13 (flattening [29]). Let R be a constructor TRS, T a goal clause, and T ′ a
flattening of T w.r.t. a position p of T . Then, Suc( li

 R, T ) = (Suc( li
 R, T ′))|Var(T ) up to

variable renaming.

As in Theorem 12, we restrict Suc( li
 R, T ′) to Var(T ) in Theorem 13 because a variable in

T ′ but not in T may appear in the domain of a substitution in Suc( li
 R, T ′), but not in T .

Thanks to Theorems 12 and 13, we can show that innermost-narrowing steps to a ground
normal form in T ({>,&}) can be replaced by leftmost ones.

I Theorem 14 ([29]). Let R be a constructor TRS and T a goal clause. Then, Suc( i
 R, T )=

Suc( li
 R, T ) up to variable renaming.

Thanks to Theorem 14, both Theorems 12 and 13 hold for i
 R. To make the proof of

Theorem 13 simpler, we adopt T [x]p & T |p � x as a result of flattening. However, thanks to
Theorem 14, we may adopt T |p � x & T [x]p as a result of flattening.

As mentioned above, in [29], R is restricted to a sufficiently complete constructor TRS
without extra variables. However, sufficient completeness is not used for proving The-
orems 12, 13, and 14, and the existence of extra variables does not affect the proofs of
Theorems 12, 13, and 14. For this reason, Theorems 12, 13, and 14 hold for constructor
TRSs with extra variables.

5 Grammar Representation for Sets of Idempotent Substitutions

In this section, we formalize grammar representations that define sets of idempotent substi-
tutions. Since substitutions derived by narrowing steps are assumed to be idempotent, we
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only deal with idempotent substitutions which introduce only fresh variables not appearing
in any previous term. The formalization here is based on success set equations in [29].

In the following, a renaming δ is used to rename a particular term t and we assume that
δ|Var(t) is injective on Var(t). For this reason, as described in Footnote 4, we write δ|Var(t)
instead of δ, and call δ|Var(t) a renaming for t (simply, a renaming).

We first introduce terms to represent idempotent substitutions computed using · and ⇑.
We prepare the signature Σ consisting of the following symbols:

idempotent substitutions which are considered constants, (basic elements)
a constant ∅, (the empty set/non-existence)
an associative binary symbol •, (standard composition)
an associative binary symbol &, and (parallel composition)
a binary symbol rec. (recursion with renaming)

We use infix notation for • and &, and may omit parentheses with the precedence such that
• has a higher priority than &.

We deal with terms over Σ and some constants which are used as non-terminals of
grammar representations, where we allow such constants to only appear in the first argument
of rec. Note that a term without any constant may appear in the first argument of rec.
Given a finite set N of constants, we denote the set of such terms by T (Σ ∪N ). We assume
that each constant in N has a term t (possibly a goal clause) as subscript such as Γt. For
an expression rec(Γt, δ), the role of Γt is recursion to generate terms in T (Σ). To reuse
substitutions generated by recursion, we connect them with other substitutions via some
renaming δ. For this reason, we restrict the second argument of rec to renamings and we
require each term rec(Γt, δ) to satisfy VRan(δ) = Var(t).

I Example 15. The following are instances of terms in T (Σ): {y 7→ 0} • {x 7→ s(y)},
({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))}, (∅ & {y 7→ z}) • {x 7→ s(y)}, and rec({x 7→
0, y 7→ s(y′)}, {x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)}.

As described in Section 3, in computing σ1 ⇑ σ2 from two narrowing derivations S1
i
 ∗σ1,R

T1 and S2
i
 ∗σ2,R T2, we assume that VRan(σ1)∩VRan(σ2) = ∅. To satisfy this assumption

explicitly in the semantics for T (Σ), we introduce an operation freshδ(·) of substitutions
to make a substitution introduce only variables that do not appear in Dom(δ) ∪ VRan(δ):
for substitutions σ, δ, we define freshδ(σ) by (ξ · σ)|Dom(σ) where ξ is a renaming such
that Dom(ξ) ⊇ VRan(σ) and VRan(ξ|VRan(σ)) ∩ (Dom(δ) ∪ VRan(δ) ∪Dom(σ)) = ∅. The
subscript δ of freshδ(·) is used to specify freshness of variables. We say that a variable x is
fresh w.r.t. a set X of variables if x /∈ X.

The semantics of terms in T (Σ) to define substitutions is inductively defined as follows:
[[ θ ]] = θ if θ is a substitution,
[[ e1 • e2 ]] = [[ e1 ]] · [[ e2 ]] if [[ e2 ]] 6= fail and [[ e1 ]] 6= fail,
[[ e1 & e2 ]] = (θ1 ⇑ θ2)|Dom(θ1)∪Dom(θ2) if [[ e1 ]] 6= fail and [[ e2 ]] 6= fail, where θ1 = [[ e1 ]]
and θ2 = freshθ1([[ e2 ]]),
[[ rec(e, δ) ]] = (freshδ([[ e ]]) · δ)|Dom(δ) if [[ e ]] 6= fail and VRan(δ) = Dom([[ e ]]),
otherwise, [[ e ]] = fail (e.g., [[∅ ]] = fail).

Notice that a constant Γt is not included in T (Σ), and thus, [[ Γt ]] is not defined above. Since
⇑ may fail, we allow to have fail, e.g., [[ {y 7→ s(z)} • {x 7→ y} & {x 7→ 0} ]] = fail. The
number of variables appearing in a regular tree grammar defined below is finite. However,
we would like to use regular tree grammars to define infinitely many substitutions such
that the maximum number of variables we need cannot be fixed. To solve this problem, in
the definition of [[ rec(e, δ) ]], we introduced the operation freshδ(·) that make all variables
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introduced by [[ e ]] fresh w.r.t. Dom(δ) ∪ VRan(δ). In [29], this operation is implicitly
considered, but in this paper, we explicitly introduced rec to the syntax in order to interpret
terms in T (Σ) precisely. To assume VRan([[ e1 ]]) ∩ VRan([[ e2 ]]) = ∅ for [[ e1 & e2 ]], we also
introduced freshθ1(·) in the case of [[ e1 & e2 ]].

I Example 16. The expressions in Example 15 are interpreted as follows: [[ {y 7→ 0} •
{x 7→ s(y)} ]] = {x 7→ s(0), y 7→ 0}, [[ ({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))} ]] = {x 7→
s(s(z)), x′ 7→ s(s(z))}, [[ (∅ & {y 7→ z}) • {x 7→ s(y)} ]] = fail, and [[ rec({x 7→ 0, y 7→
s(y′)}, {x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)} ]] = {x′ 7→ 0, y′ 7→ s(y′′), y 7→ s(0)}.

To define sets of idempotent substitutions, we adopt regular tree grammars. In the
following, we drop the third component from grammars constructed below because the third
one is fixed to Σ and a finite number of substitutions that are clear from production rules. A
substitution-set grammar (SSG) for a term t0 is a regular tree grammar G = (Γt0 ,N ,P) such
that N is a finite set of non-terminals Γt, Γt0 ∈ N , and P is a finite set of production rules
of the form Γt → β with β ∈ T (Σ∪N ). Note that L(G,Γt) = {e ∈ T (Σ) | Γt →∗G e} for each
Γt ∈ N . The set of substitutions defined by G from Γt ∈ N is defined as [[L(G,Γt)]] = {[[ e ]] |
e ∈ L(G,Γt), [[ e ]] 6= fail}.

I Example 17. The SSG G3 = (Γx, {Γx,Γy}, {Γx → {x 7→ 0} | rec(Γy, {x′ 7→ y}) •
{x 7→ s(x′)}, Γy → rec(Γx, {x′ 7→ x}) • {y 7→ s(x′)} }) generates a set of expressions
to define substitutions replacing x by even numbers over 0/0 and s/1. We have that
L(G3) = L(G3,Γx) = {{x 7→ 0}, rec((rec({x 7→ 0}, {x′ 7→ x}) • {y 7→ s(x′)}), {x′ 7→ y}) •
{x 7→ s(x′)}, . . .}, and [[L(G3,Γx)]] = {{x 7→ s2n(0)} | n ≥ 0}.

6 Construction of Grammar Representations of Narrowing Trees

In this section, given a pc-CTRS and a goal clause, we show a construction of an SSG for the
success set of the goal clause w.r.t. innermost narrowing of the CTRS. Since every constructor
SDCTRS can be converted to an equivalent pc-CTRS w.r.t. c→ and i

 , we only consider
pc-CTRSs. We employ the idea of narrowing trees, but we directly construct SSGs. In the
following, we let R be a pc-CTRS over a signature F unless noted otherwise.

For a goal clause T = (s1 � t1) & · · · & (sn � tn), we denote the set of ground constructor
terms appearing as right-hand sides of goals in T by Crhs(T ): Crhs(T ) = {t1, . . . , tn}∩T (CR).
We abuse Crhs for R and a goal clause T : Crhs(R, T ) = Crhs(T ) ∪

⋃
`→r⇐C∈R Crhs(C).

For example, Crhs(R1, e(x)� true & o(x)� true) = {true}. It is clear that Crhs(R, T ) is
finite.

Let T be a goal clause that does not contain >. We prepare the set of constants
NR,T = {ΓT } ∪ {Γf (x1,...,xn)�u | f /n ∈ DR, x1, . . . , xn ∈ V, f (x1, . . . , xn) is linear, u ∈
Crhs(R, T ) ∪ (V \ {x1, . . . , xn})}. Note that NR,T is finite up to variable renaming w.r.t.
subscripts, and thus, we consider NR,T a set of representatives: Var(T ′) ∩ Var(T ′′) = ∅ and
T ′ is not a variant of T ′′ for any different non-terminals ΓT ′ ,ΓT ′′ ∈ NR,T . We construct
an SSG from R and T as follows: SSG(R, T ) = (ΓT ,NR,T , {ΓT ′ → Φ0(T ′) | ΓT ′ ∈ NR,T }),
where Φb(·) with b ∈ {0, 1} is inductively defined as follows:
Splitting Φb(T1 & · · ·& Tn) = Φ1(T1) & · · ·&Φ1(Tn),
Narrowing Φ0(f (x1, . . . , xn)� u) = Φ1(T1) •σ1 | · · · | Φ1(Tm) •σm if f (x1, . . . , xn) is basic

and linear, and x1, . . . , xn ∈ V , where {(T ′, σ) | (f (x1, . . . , xn)� u) i
 σ,R T ′, VRan(σi)∩

(
⋃

ΓT ′∈NR,T
Var(T ′)) = ∅} = {(T1, σ1), . . . , (Tm, σm)},

Narrowing Φb(t� u) = mgu({t ≈ u}) if t, u ∈ T (CR,V) and t, u are unifiable,
Failure Φb(t� u) = ∅ if t, u ∈ T (CR,V) and t, u are not unifiable,
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Recursion Φ1(f (x1, . . . , xn) � u) = rec(Γf (x′
1,...,x

′
n)�u′ , {x1 7→ x′1, . . . , xn 7→ x′n} ∪ δ) if

f (x1, . . . , xn) is basic and linear, Γf (x′
1,...,x

′
n)�u′ ∈ NR,T , x1, . . . , xn ∈ V \ {x′1, . . . , x′n},

u′ ∈ T (CR) ∪ (V \ ({x1, . . . , xn} ∪ Var(u))), and either u = u′ ∈ T (CR) or u, u′ ∈ V,
where if u ∈ T (CR), then δ = id, and otherwise, δ = {u 7→ u′}), and

Flattening Φb(f (u1, . . . , un) � u) = Φ1(f (y1, . . . , yn) � y) & (u1 � y1) & · · · & (un �
yn) & (u � y) if f (u1, . . . , un) � u is not a variant of f (x′1, . . . , x′n) � u′ with
Var(u1, . . . , un, u) ∩ ({x′1, . . . , x′n} ∪ Var(u′)) = ∅ for any Γf (x′

1,...,x
′
n)�u′ ∈ NR,T , where

y1, . . . , yn, are fresh distinct variables w.r.t. Var(u1, . . . , un, u)∪
⋃

ΓT ′∈NR,T
Var(T ′). Note

that we do not have to added the goal u� y to the result if u ∈ Crhs(R, T ).
Note that we may omit ΓT ′ and its production rules if ΓT ′ is not relevant to ΓT . The
subscript b of Φb(·) is used to specify whether the call of Φb(·) is initial or not. Without
the subscript, for Γf (x1,...,xn)�u, we only construct Γf (x1,...,xn)�u → rec(id,Γf (x1,...,xn)�u)
which is meaningless. The definition of Φb(·) follows the definition of a single step of
narrowing, splitting under parallel composition, and flattening in the natural way. For
example, the semantics of rec takes renamings for Var(`, r, C)∩Var(S) = ∅ in the definition
of innermost-narrowing into account and enables us to reuse substitutions generated by the
first argument of rec.

I Example 18. For R1 and the goal clause e(x)� true & o(x)� true, we prepare constants
Γe(x)�true&o(x)�true, Γe(x′)�true, and Γo(x′′)�true because we have that Crhs(R1, e(x)� true &
o(x)� true) = {true}. For the goal e(x′)� true, we have the following conversion:

Φ0(e(x′)� true) = id • {x′ 7→ 0} |
(
rec(Γo(x′′)�true, {x1 7→ x′′}) & id

)
• {x′ 7→ s(x1)}

|
(
rec(Γe(x′)�true, {x2 7→ x′}) & ∅

)
• {x′ 7→ s(x2)}

From the conversion above, the SSG G2 with the following production rules is constructed:

Γe(x)�true&o(x)�true→ rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′})
Γe(x′)�true→ id • {x′ 7→ 0} |

(
rec(Γo(x′′)�true, {x1 7→ x′′}) & id

)
• {x′ 7→ s(x1)}

|
(
rec(Γe(x′)�true, {x2 7→ x′}) & ∅

)
• {x′ 7→ s(x2)}

Γo(x′′)�true→∅ • {x′′ 7→ 0} |
(
rec(Γe(x′)�true, {x3 7→ x′}) & id

)
• {x′′ 7→ s(x3)}

|
(
rec(Γo(x′′)�true, {x4 7→ x′′}) & ∅

)
• {x′′ 7→ s(x4)}

I Theorem 19. Let T be a goal clause without >. Then, [[L(SSG(R, T ),ΓT )]] = Suc( i
 R, T )

up to variable renaming.

Note that Theorem 19 corresponds to [29, Theorem 20]. For a constructor SDCTRS R and
a goal clause T , Theorem 6 enables us to use SSG(Pc(R), T ) for R.

7 Simplification of Grammar Representations

In this section, we show some methods to simplify production rules of SSGs. Given an SSG
G = (ΓT ,N ,P), we extend the semantics of terms in T (Σ) to sets of terms in T (Σ ∪N ) as
follows: {[ e ]}G = [[L((ΓT ,N ∪ {Γe},P ∪ {Γe → e}),Γe)]] for e ∈ T (Σ ∪ N ), where Γe /∈ N .
We say that terms e1, e2 ∈ T (Σ∪N ) are semantically equivalent w.r.t. G if {[ e1 ]}G = {[ e2 ]}G
up to variable renaming.

We first compute subexpressions consisting of substitutions, •, &, and ∅. The following
equivalences trivially hold:

I Theorem 20. Let G = (ΓT ,N ,P), θ1, θ2 idempotent substitutions, and e ∈ T (Σ ∪ N ).
Then, all of the following hold: {[ θ1 • θ2 ]}G = {[ θ1 · θ2 ]}G, {[ e • ∅ ]}G = {[∅ • e ]}G = {[∅ &
e ]}G = {[ e & ∅ ]}G = {[∅ ]}G (= ∅), and {[ id & e ]}G = {[ e & id ]}G = {[ e ]}G.
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Following Theorem 20, we simplify subexpressions to the smallest one among semantically
equivalent terms w.r.t. G (e.g., replace e • ∅ by ∅) as much as possible.

I Example 21. The production rules of G2 in Example 18 are simplified as follows:

Γe(x)�true&o(x)�true → rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′})
Γe(x′)�true → {x′ 7→ 0} | rec(Γo(x′′)�true, {x1 7→ x′′}) • {x′ 7→ s(x1)}
Γo(x′′)�true → rec(Γe(x′)�true, {x3 7→ x′}) • {x′′ 7→ s(x3)}

The occurrence of & in SSGs makes it difficult to simplify and analyze grammar repres-
entations of narrowing trees. Since the second and third production rules in Example 21
no longer contain &, we focus on rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→
x′′}) which is the right-hand side of the first rule. Let us consider the sets L1, L2 of
terms substituted for x by means of substitutions in {[ rec(Γe(x′)�true, {x 7→ x′}) ]}G2 and
{[ rec(Γo(x′′)�true, {x 7→ x′′}) ]}G2 , respectively: L1 = {σx | σ ∈ {[ rec(Γe(x′)�true, {x 7→
x′}) ]}G2}, and L2 = {σx | σ ∈ {[ rec(Γo(x′′)�true, {x 7→ x′′}) ]}G2}. If L1 ∩ L2 = ∅,
then {[ rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′}) ]}G2 = ∅ and we obtain
Γe(x)�true&o(x)�true → ∅ which is our goal of simplification in this section. To generate L1
and L2, we transform the second and third production rules in Example 21 into a regular
tree grammar generating the sets L1 and L2. In the rest of this section, we assume that the
signature F contains a constant.

Let G be an SSG (ΓT0 ,N ,P) and T a goal clause such that ΓT ∈ N . We denote by
P|ΓT

the set of production rules that are reachable from ΓT . We assume that any rule
in P|ΓT

is of the form ΓT ′ → θ1 | · · · | θm | rec(ΓT1 , δ1) • σ1 | · · · | rec(ΓTn
, δn) • σn,

where θ1, . . . , θm, σ1, . . . , σn are idempotent substitutions. Note that ΓT ′ → rec(ΓT ′′ , δ) is
considered ΓT ′ → rec(ΓT ′′ , δ) • id. Note also that the following construction is applicable
under this assumption. The regular tree grammar obtained from G and a variable x in T ,

written as RTG(G, T, x), is (ΓxT ,N ′,P ′ ∪ P ′′ ∪ {A→ g(
n︷ ︸︸ ︷

A, . . . , A) | g/n ∈ CR}) such that
N ′ = {Γx′

T ′ | ΓT ′ ∈ N , x′ ∈ Var(T ′) } ∪ {A}, and
P ′ = {Γx′

T ′ → ξVar(θix′)(θix′) | x′ ∈ Var(T ′), ΓT ′ → θi ∈ P }, and
P ′′ = {Γx′

T ′ →
(
{y 7→ Γδjy

Tj
| y ∈ Dom(δj)} ∪ ξVar(σjx′)\Dom(δj)

)
(σjx′) | x′ ∈ Var(T ′),

ΓT ′ → rec(ΓTj
, δj) • σj ∈ P },

where ξX = {y 7→ A | y ∈ X}, which corresponds to ξ in the definition of freshδ(·). Note
that the non-terminal A generates T (CR) and corresponds to a fresh variable.

I Theorem 22. Let G be an SSG (ΓT0 ,N ,P), ΓT1 ,ΓT2 ∈ N , x ∈ V, x1 ∈ Var(T1), x2 ∈
Var(T2), RTG(G, T1, x1),RTG(G, T2, x2) be constructed, and δ1, δ2 be renamings such that
VRan(δi) = Var(Ti) and δix = xi for i = 1, 2. If L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) =
∅, then {[ rec(ΓT1 , δ1) & rec(ΓT2 , δ2) ]}G = {[∅ ]}G.

I Example 23. From the production rules in Example 21, we obtain the following regular
tree grammars:
G′2 = RTG(G2, e(x′)� true, x′) = (Γx′

e(x′)�true, {Γx
′

e(x′)�true,Γx
′′

o(x′′)�true},P
′), and

G′′2 = RTG(G2, o(x′′)� true, x′′) = (Γx′′

o(x′′)�true, {Γx
′

e(x′)�true,Γx
′′

o(x′′)�true},P
′),

where
P ′ = { Γx′

e(x′)�true → 0 | s(Γx′′

o(x′′)�true), Γx′′

o(x′′)�true → s(Γx′

e(x′)�true) }.
We can decide the intersection emptiness problem of L(G′2) and L(G′′2 ), and the answer
is true: L(G′2) ∩ L(G′′2 ) = ∅. Thanks to Theorem 22, we can replace the expression
rec(Γe(x′)�true, {x 7→ x′}) & rec(Γo(x′′)�true, {x 7→ x′′}) by ∅, and thus we can trans-
form the first production rule in Example 21 into Γe(x)�true&o(x)�true → ∅.
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In summary, the simplification proposed in this section is to replace subexpressions by
semantically equivalent smaller ones as much as possible by following Theorems 20 and 22.
This simplification always halts because the number of Σ-symbols in equations is strictly
decreasing at every simplification step. In addition, it is clear that results of the simplification
are unique.

If a constructor SDCTRS R has a nest of defined symbols or a goal clause T contains, e.g.,
(f (~x)� x′) & (g(~y)� y′), to simplify SSG(Trs(Pc(R)), T ) as much as possible, we apply
the simplification based on Theorem 22 at least once, i.e., we try to solve the intersection
emptiness problem of regular tree grammars at least once, which is EXPTIME-complete.
The number of occurrence of • and & is at most O(n), where n is the size of R and T .
Therefore, the cost of the overall simplification is EXPTIME-complete.

8 Applications

In this section, we show that grammar representations of narrowing trees are useful to prove
(1) infeasibility of conditional critical pairs of R1 and (2) quasi-reducibility of R1 with usual
sorts for the non-negative integers and the boolean values.

Two conditional rewrite rules `1 → r1 ⇐ C1 and `2 → r2 ⇐ C2 that are renamed to have
no shared variable are said to be overlapping if there exists a non-variable position p of `1
such that `1|p and `2 are unifiable, and p 6= ε if one of the rules is a renamed variant of
the other. In this case, given σ = mgu({`1|p ≈ `2}), the triple (σ(`1[r2]p), σr1, σC1 & σC2),
denoted by 〈σ(`1[r2]p), σr1〉 ⇐ σC1 & σC2, is called a conditional critical pair of R. A
conditional critical pair 〈s, t〉 ⇐ s1 � t1 & · · · & sk � tk is called infeasible if there exists
no substitution θ such that θsi →∗R θti for all 1 ≤ i ≤ k, and called joinable if θs ↓R θt for
any substitution θ such that θsi →∗R θti for all 1 ≤ i ≤ k. Note that infeasible conditional
critical pairs are joinable and unconditional critical pairs are feasible. Therefore, from [4,
Theorem 3.8] and [21, Theorem 3], an operationally terminating CTRS R is confluent if all
critical pairs of R are infeasible.

I Example 24. Consider R1 in Section 1. It follows from Example 23 that Suc( i
 R1 , o(x)�

true & e(x) � true) = ∅. This means that there exists no constructor term t such that
o(t) c→∗R1

true and e(t) c→∗R1
true. Assume that there exists a term t such that o(t)→∗R1

true
and e(t) →∗R1

true. Since c→R1 = c→Trs(R1) and Trs(R1) is non-erasing, t should be a
ground constructor term. Since Trs(R1) is a constructor system, we have that o(t) c→∗R1

true
and e(t) c→∗R1

true, and hence o(x) i
 ∗θ1,R1

true and e(x) i
 ∗θ2,R1

true for some constructor
substitutions θ1, θ2. It follows from Theorem 12 that θ1 ⇑ θ2 ∈ Suc( i

 R1 , o(x) � true &
e(x) � true). This contradicts the fact that Suc( i

 R1 , o(x) � true & e(x) � true) = ∅.
Therefore, all critical pairs of R1 are infeasible, and hence R1 is confluent.

A CTRS R is called quasi-reducible [16] if any ground basic term is not a normal form. R
is called sufficiently complete if for every ground term t, there exists a ground constructor term
u such that t→∗R u [12]. Note that if an operationally terminating CTRS is quasi-reducible,
then the CTRS is sufficiently complete.
I Example 25. CTRSR1 in Section 1 is not quasi-reducible since e(true) is not defined. Thus,
let us consider the sorts with 0 : nat, s : nat → nat, true, false : bool, and e, o : nat → bool.
For quasi-reducibility of R1 with the sorts, it suffices to show that e(sn(0)) and o(sn(0)) with
n ≥ 0 are reducible. It follows from the unconditional rules e(0) → true and o(0) → false
that e(0) and o(0) are reducible. From the production rules in Example 23, we can show
that L(G′2) ∪ L(G′′2 ) = T ({0, s}), and hence e(sn(0)) and o(sn(0)) with n > 0 are reducible.
Therefore, R1 with the sorts is quasi-reducible, and hence sufficiently complete.
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9 Related Work

One of the closest related work to be compared with our results must be reachability analysis
for CTRSs. A well-investigated approach is tree automata techniques (cf. [7, 6]): given a
(C)TRS and two terms s, t, we construct a tree automaton that over-approximately recognizes
all descendants of any ground instance of s, and solves the intersection emptiness problem
between the automaton and another one for ground instances of t. To prove infeasibility
of o(x)� true & e(x)� true w.r.t. c→R1 via reachability, we convert it to the reachability
problem from ground instances of c(o(x), e(x)) to c(true, true). Tree automata techniques need
overapproximation for non-linear terms, and thus, the reachability problem is solved as the
reachability from c(o(x′), e(x′′)) to c(true, true). Due to this linearization, the non-existence
of a ground instance of x cannot be proved. The method in [36] for proving infeasibility
of conditional critical pairs analyzes reachability using the underlying TRSs – { e(0) →
true, e(s(x))→ true, e(s(x))→ false, o(0)→ false, o(s(x))→ true, o(s(x))→ false } for R1
– , and thus, the non-existence of a ground t with o(t)→∗R1

true and e(t)→∗R1
true cannot

be proved. On the other hand, the approach in this paper is to construct a regular tree
grammar that can be seen as a tree automaton, and that recognizes ground terms given at
an argument of a defined symbol we are interested in.

Another important related work is a semantic approach to infeasibility analysis for
conditional rewrite rules and conditional critical pairs of CTRSs [19, 18], which uses AGES [11]
based on the methods in [20]. The semantic approach reduces infeasibility of conditions
s1 � t1, . . . , sk � tk to the existence of a logical model for the theory R∪{¬(∃−→X. s1 →∗ t1∧
· · · ∧ sk →∗ tk)}, where X = Var(s1, t1, . . . , sk, tk) and R is a first-order theory obtained
by R. The power of proving infeasibility relies on that of generating a model for the
theory. For example, infeasibility of x < y � true, y < x � true w.r.t. R4 = { 0 < s(y) →
true, x < 0→ false, s(x) < s(y)→ x < y } can be reduced to the existence of a model for
R4 ∪ {¬(∀x, y. x < y →∗ true ∧ y < x→∗ true)}, but AGES did not find any model for the
theory via its web interface with default parameters. The power of our method for proving
infeasibility relies on the success of simplifying SSGs to ΓT → ∅. For this reason, it is not so
easy to compare these two approaches from theoretical point of view to prove infeasibility of
conditions. On the other hand, our result can be used to prove quasi-reducibility of R1 with
usual sorts for the non-negative integers and the boolean values.

10 Conclusion

In this paper, we extended grammar representations of narrowing trees to constructor
SDCTRSs, and showed that grammar representations are useful to prove confluence and
quasi-reducibility of a normal CTRS. We will implement the construction and simplification
of grammar representations for narrowing trees, and will introduce them into CO3 [25] to use
them to prove confluence of constructor SDCTRSs. In addition, we will make an empirical
comparison of the tree automata approach, the semantic approach, and ours to infeasibility
analysis of constructor SDCTRSs after implementing our method. Narrowing trees define
constructor substitutions obtained by innermost narrowing. For this reason, the usefulness is
limited to constructor-based rewriting only. A further direction of this research will be to
extend narrowing trees to other kinds of narrowing, e.g., basic narrowing [14].
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A Example of Innermost Narrowing and Constructor-based Rewriting

I Example 26. Consider R1 in Section 1 again. We have infinitely many leftmost innermost
narrowing derivations starting from e(x)� true:

(e(x)� true) li
 {x7→0},R1 (true� true) li

 id,R1 >,

(e(x) � true) li
 {x7→s(x1)},R1 (o(x1) � true) & (true � true) li

 {x1 7→0},R1 (false �
true) & (true� true),
(e(x) � true) li

 {x 7→s(x1)},R1 (o(x1) � true) & (true � true) li
 {x1 7→s(x2)},R1 (e(x2) �

true) & (true � true) & (true � true) li
 {x2 7→0},R1 (true � true) & (true � true) &

(true � true) li
 id,R1 > & (true � true) & (true � true) li

 id,R1 > & > & (true �
true) li

 id,R1 > & > & >,
. . .

The following leftmost constructor-based rewriting derivations correspond to the above
narrowing derivations, respectively:

(e(0)� true) lc→R1 (true� true) lc→R1 >,
(e(s(0))� true) lc→R1 (o(0)� true) & (true� true) lc→R1 (false� true) & (true� true),
(e(s(s((0)))� true) lc→R1 (o(s(0))� true) & (true� true) lc→R1 (e(0)� true) & (true�
true) & (true � true) lc→R1 (true � true) & (true � true) & (true � true) lc→R1 > &
(true� true) & (true� true) lc→R1 > & > & (true� true) lc→R1 > & > & >,
. . .

B Proofs of Theorems

In this appendix, we show proofs of Theorems 4, 6, 7, 19, and 22.

I Theorem 4. Let R be a constructor SDCTRS, T a goal clause, and U ∈ T ({>,&}).
1. If T li

 ∗σ,R U , then σT lc→∗R U (i.e., σs lc→∗R σt for all goals s� t in T ).

2. For a constructor substitution θ, if θT lc→∗R U , then there exists an idempotent constructor
substitution σ such that T li

 ∗σ,R U and σ ≤ θ.
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Proof. The first claim can be straightforwardly proved by induction on the length of
T

li
 ∗σ,R U . In [28], the second claim is proved for a constructor SDCTRS R such that for

each rule ` → r ⇐ s1 � t1 & · · · & sk � tk, all t1, . . . , tk are constructor terms. Any rule
` → r ⇐ s1 � t1 & · · · & sk � tk is not used in c→R if there exists some i such that ti
contains a defined symbol. In addition, in the proof, R does not have to be deterministic or
a 3-CTRS. For this reason, the proof in [28, Lemma 17] can be a proof of this theorem. J

We show some lemmas to prove Theorem 6.

I Lemma 27. Let R be a constructor SDCTRS over a signature F such that R = R0]{`→
r ⇐ C} where r is not a constructor term of R. Let R′ = R0 ∪ {` → x ⇐ C & r � x},
where x is a fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to
R w.r.t. c→ and i

 .

Proof. By definition, it is clear that DR = DR′ . The remaining properties for equivalence
w.r.t. c→ and i

 can straightforwardly proved by induction on the numbers of rewriting and
narrowing steps, respectively. J

I Lemma 28. Let R be a constructor SDCTRS over a signature F such that R = R0∪{`→
r ⇐ C1 & si � ti & C2} where r is a constructor term, p 6= ε, and ti is a ground normal form
of Ru but not a constructor term. Let R′ = R0 ∪ {`→ r ⇐ C1 & si � x & ti � x & C2},
where x is a fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to
R w.r.t. c→ and i

 .

Proof. By definition, it is clear that DR = DR′ . Since ti contains a defined symbol, ti is a
ground normal form of Ru and there is no rule `′ → r′ ⇐ C ′ in R such that `′ matches a
subterm of ti. To use `→ r ⇐ C1 & si � ti & C2 in a constructor-based rewriting to a term
in T ({>,&}), an instance of si � ti should be reduced to a term in T ({>,&}). However,
such a reduction is impossible for constructor-based rewriting because ti � ti cannot be
rewritten or narrowed to >. For this reason, ` → r ⇐ C1 & si � ti & C2 is never used in
constructor-based rewriting or innermost narrowing to a term in T ({>,&}). For the same
reason, ` → r ⇐ C1 & si � x & ti � x & C2 ∈ R′ is never used in constructor-based
rewriting of R′ to terms in T ({>,&}), either. Therefore, it is clear that for a goal clause T
and a term U ∈ T ({>,&}), (a) T lc→∗R U if and only if T lc→∗R′ U , and (b) T li

 ∗θ,R U if and
only if T li

 ∗θ,R′ U . J

I Lemma 29. Let R be a constructor SDCTRS over a signature F such that R = R0∪{`→
r ⇐ C1 & si[s′]p � ti & C2} where r is a constructor term, p 6= ε, and s′ is rooted by a
defined symbol. Let R′ = R0 ∪ {` → r ⇐ C1 & s′ � x & si[x]p � ti & C2}, where x is a
fresh variable. Then, R′ is a constructor SDCTRS over F and is equivalent to R w.r.t. c→
and i
 .

Proof. By definition, it is clear that DR = DR′ . The remaining properties for equivalence
w.r.t. c→ and i

 can straightforwardly proved by induction on the numbers of rewriting and
narrowing steps, respectively. J

I Theorem 6. Let R be a constructor SDCTRS over a signature F . Then, Pc(R) is a
pc-CTRS over F and is equivalent to R w.r.t. c→ and i

 .

Proof. By definition, it is clear that Pc(R) is a pc-CTRS over the signature F and DR =
DPc(R). The remaining properties can be proved by Lemmas 27, 28, and 29, and [26,
Theorem 26]. J
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I Theorem 7. Let R be a pc-CTRS over a signature F . Then, Trs(R) is a constructor
TRS over F ∪ {�,>,&} and is equivalent to R w.r.t. c→ and i

 .

Proof. By definition, it is clear that (1) Trs(R) is a constructor TRS over F ∪ {�,>,&}, (2)
DR = DTrs(R), (3) (s� t) c→R T if and only if (s� t) c→Trs(R) T and (4) (s� t) i

 θ,R T

if and only if (s � t) i
 θ,Trs(R) T . Using (3), we can prove that for a goal clause T and

a term U ∈ T ({>,&}), T lc→∗R U if and only if T lc→∗R′ U , by induction on the number of
rewriting steps. Using (4), we can prove that for a goal clause T and a term U ∈ T ({>,&}),
T

li
 ∗θ,R U if and only if T li

 ∗θ,R′ U , by induction on the number of narrowing steps. J

I Theorem 19. Let T be a goal clause without >. Then, [[L(SSG(R, T ),ΓT )]] = Suc( i
 R, T )

up to variable renaming.

Proof. Thanks to Theorems 12, 13, and 14, a constructor substitution θ for T i
 ∗θ,R U ∈

T ({>,&}) can be obtained by (1) splitting, (2) flattening, and (3) narrowing applied to goals
of the form f (x1, . . . , xn)� u such that u ∈ (V \ {x1, . . . , xn}) ∪ T (CR) and x1, . . . , xn are
distinct variables. The application of these operations is exactly the same as the application
of production rules in SSG(R, T ). Therefore, this theorem holds. J

The following lemma is used to prove Theorem 22.

I Lemma 30. Let G be an SSG (ΓT0 ,N ,P), ΓT ∈ N , x ∈ Var(T ), and RTG(G, T, x)
be constructed. Then, {ξθx | θ ∈ [[L(G,ΓT )]], ξ ∈ Subst(CR), Dom(η) = Var(θx)} ⊆
L(RTG(G, T, x)).

Proof. Suppose that e is generated by n steps of applying production rules obtained from
P|ΓT

. Then, it is easy to prove this lemma by induction on n. J

The converse inclusion in Lemma 30 does not hold in general even if [[L(G,ΓT )]] is a set of
ground substitutions.

I Example 31. Consider an SSG G4 = (Γx�a, {Γx�a,Γz�b}, { Γx�a → rec(Γz�b, {y 7→
z}) • {x 7→ c(y, y)}, Γz�b → {z 7→ a} | {z 7→ b} }). For goal x � a and variable x,
we have the regular tree grammar RTG(G4, x � a, x) = (Γxx�a, {Γxx�a,Γzz�b}, { Γxx�a →
c(Γzz�b,Γzz�b), Γzz�b → a | b }). The term c(a, b) is included in L(RTG(G4, x� a, x),Γxx�a),
but there is no substitution θ such that θx = c(a, b) and σ ≤ θ for some σ in [[L(G4,Γx�a)]] =
{ {x 7→ c(a, a)}, {x 7→ c(b, b)} }.

I Theorem 22. Let G be an SSG (ΓT0 ,N ,P), ΓT1 ,ΓT2 ∈ N , x ∈ V, x1 ∈ Var(T1), x2 ∈
Var(T2), RTG(G, T1, x1),RTG(G, T2, x2) be constructed, and δ1, δ2 be renamings such that
VRan(δi) = Var(Ti) and δix = xi for i = 1, 2. If L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) =
∅, then {[ rec(ΓT1 , δ1) & rec(ΓT2 , δ2) ]}G = {[∅ ]}G.

Proof. We proceed by contradiction. Assume that L(RTG(G, T1, x1)) ∩ L(RTG(G, T2, x2))
= ∅ and {[ rec(ΓT1 , δ1) & rec(ΓT2 , δ2) ]}G 6= {[∅ ]}G . Then, there exists a constructor substi-
tution θ ∈ {[ rec(ΓT1 , δ1) & rec(ΓT2 , δ2) ]}G , and hence there exist constructor substitutions
θ1, θ2 such that θ1 ∈ {[ ΓT1 ]}G , θ2 ∈ {[ ΓT2 ]}G , and θ = (θ1 · δ1) ⇑ (θ2 · δ2). Thus, it follows
from Lemma 30 that ξθx ∈ L(RTG(G, T1, x1))∩L(RTG(G, T2, x2)) for some ξ ∈ Subst(CR).
This contradicts the assumption. J
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We consider higher-order recursion schemes as generators of infinite trees. A sort (simple type)
is called homogeneous when all arguments of higher order are taken before any arguments of
lower order. We prove that every scheme can be converted into an equivalent one (i.e, generating
the same tree) that is homogeneous, that is, uses only homogeneous sorts. Then, we prove the
same for safe schemes: every safe scheme can be converted into an equivalent safe homogeneous
scheme. Furthermore, we compare two definition of safe schemes: the original definition of Damm,
and the modern one. Finally, we prove a lemma which illustrates usefulness of the homogeneity
assumption. The results are known, but we prove them in a novel way: by directly manipulating
considered schemes.
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1 Introduction

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control
flow of programs in languages with higher-order functions. This formalism is equivalent via
direct translations to simply-typed λY -calculus [18] and to higher-order OI grammars [9, 15].
Collapsible pushdown systems [10] and ordered tree-pushdown systems [7] are other equivalent
formalisms. Schemes cover some other models such as indexed grammars [1] and ordered
multi-pushdown automata [4]. We consider schemes as generators of infinite trees, so we say
that two schemes are equivalent if they generate the same tree. Likewise, we say that two
classes of schemes are equi-expressive, if for every scheme in one of the classes there exists
an equivalent scheme in the other class.

A sort (simple type) is called homogeneous when all arguments of higher order are
taken before any arguments of lower order; a scheme is homogeneous when it uses only
homogeneous sorts. Homogeneous schemes should not be confused with safe schemes. The
safety assumption was first introduced implicitly by Damm [9]. His restriction was that when
an argument of some order is applied to a function, then all arguments of greater or the
same order have to be applied as well. A modern definition of safety (introduced by Knapik,
Niwiński, Urzyczyn [14]) is slightly different: it says that a subterm of some order cannot
use parameters of a strictly smaller order. We remark that some authors, while defining
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27:2 Homogeneity Without Loss of Generality

safe schemes, require that they are also homogeneous [9, 13, 14], while other authors do not
impose this requirement [3, 6]. In this paper we treat homogeneity separately from safety.

The goal of this paper is to compare the aforementioned notions, and to give simple
translations between equi-expressive classes of schemes. The main equi-expressivity result
says that every scheme can be converted into a homogeneous scheme that is equivalent, and
remains of the same order. This was shown by Broadbent in his PhD thesis [5, Section 3.4],
and was never published. Furthermore, it is easy to see that the Damm’s definition of safety
is more restrictive than the modern one. On the other hand, it was observed by Carayol and
Serre [6] that every scheme that is safe according to the modern definition can be turned into
an equivalent scheme that is safe according to Damm’s definition. Likewise, it was shown by
Blum [2] (his paper dates back to 2009, when it was shared on his personal website, but was
published on arXiv only in 2017), and independently by Carayol and Serre [6], that every
safe scheme (without the homogeneity assumption) can be converted into an equivalent safe
scheme that is homogeneous, and remains of the same order.

All the proofs for safe schemes follow the same idea: they inspect the equivalence between
safe schemes and higher-order pushdown automata. It is observed that while translating from
safe schemes to higher-order pushdown automata, schemes can comply with a less restrictive
definition; simultaneously, when translating from automata to schemes, it is easy to fulfill
additional requirements on the scheme.

The proof of Broadbent, dealing with schemes that need not to be safe, is even more
complicated. Arbitrary schemes are equivalent to collapsible pushdown automata, a gen-
eralization of higher-order pushdown automata. We can see, though, that the only known
translation from collapsible pushdown automata to recursion schemes [10] results in schemes
that are not homogeneous. The actual proof consists of three steps. First, it is observed
that already while translating a scheme to a collapsible pushdown automaton, the resulting
automaton is of a special shape. Then, such an automaton is further modified (without
changing the generated tree), so that it gains some additional properties. Finally, it is
observed that for the particular automata obtained this way, the translation from automata
to schemes can be altered so that the resulting schemes are homogeneous.

We reprove the above results: we give a simple transformation changing any scheme to
an equivalent homogeneous scheme, and another simple transformation changing any safe
scheme to a scheme that is safe according to the more restrictive definition of Damm, and
moreover homogeneous.

Both our proofs (the one for general schemes, and the one for safe schemes) do not use any
detour through automata; we directly show how to syntactically modify a scheme so that it
becomes homogeneous. Roughly, in the case of general schemes we artificially increase orders
of some arguments, while in the case of safe schemes we split complex rules into multiple
simpler rules, and we reorder arguments. Our direct approach has the advantage that it
is more transparent and it sheds some light on the nature of the homogeneity assumption
(conversely to the previous proofs: while translating a scheme to an automaton and then
back to a scheme, we obtain a scheme of a completely different shape than the original one).

In order to give a full picture we have to recall here the result that there is a scheme
that is not equivalent to any safe scheme [16]. We thus have two groups of equi-expressive
classes: “unsafe” schemes, either homogeneous or not, and safe schemes, either according to
the Damm’s definition or to the modern definition, and either homogeneous or not.

In addition to the above results, in the final section we prove a simple lemma, which
illustrates usefulness of the homogeneity assumption.
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2 Preliminaries

Infinitary λ-calculus. The set of sorts (aka. simple types) is defined by induction: o is a
sort, and if α and β are sorts, then α→ β is a sort. We omit brackets on the right of an
arrow, so, for example, o→ (o→ o) is abbreviated to o→ o→ o. Notice that every sort can
be written in the form α1→ · · · → αs→ o.

The order of a sort γ, denoted ord(γ), is defined by induction on the structure of γ:
ord(o) = 0, and ord(α→ β) = max(ord(α) + 1, ord(β)). We observe that ord(α1→ · · · →
αs→ o) = 1 + max(ord(α1), . . . , ord(αs)) whenever s ≥ 1.

A sort α1→ · · · → αs→ o is homogeneous if ord(α1) ≥ · · · ≥ ord(αs) and all α1, . . . , αs
are homogeneous. An equivalent definition says that the sort o is homogeneous, and a sort
α→ β is homogeneous if ord(α) = ord(α→ β)− 1 and α, β are homogeneous.

While defining λ-terms, we assume existence of the following sets:
Σ – a set of symbols (alphabet), and
V – a set of variables with assigned sorts; we write xα, yα, zα, . . . for variables of sort α.

We consider infinitary, sorted λ-calculus. Infinitary λ-terms (or just λ-terms) are defined
by coinduction (for an introduction to coinductive definitions and proofs see, e.g., Czajka [8]),
according to the following rules:

node constructor – if Ko
1 , . . . ,K

o
r are λ-terms, then (a〈Ko

1 , . . . ,K
o
r 〉)o is a λ-term, for

every a ∈ Σ,
variable – every variable xα ∈ V is a λ-term,
application – if Kα→β and Lα are λ-terms, then (Kα→β Lα)β is a λ-term, and
λ-binder – if Kβ is a λ-term and xα ∈ V is a variable, then (λxα.Kβ)α→β is a λ-term.

We naturally identify λ-terms differing only in names of bound variables. We often omit
sort annotations of λ-terms, but we keep in mind that every λ-term (and every variable) has
a particular sort. The set of free variables of a λ-term M , denoted FV (M), is defined as
usual. A λ-term M is closed if FV (M) = ∅. We assume that in V there are always some
fresh variables of every sort, not appearing in λ-terms under consideration.

The order of a λ-term M , written ord(M), is just the order of its sort. The complexity of
a λ-term M is the smallest number m ∈ N ∪ {∞} such that all subterms of M are of order
at most m.

Reductions. By M [N/x] (where we require that N is of the same sort as x) we denote the
λ-term obtained by substituting N for x. This is by definition a capture-avoiding substitution,
which means that free variables of N are not captured by λ-binders in M ; this is achieved by
appropriately renaming bound variables in M .

A compatible closure  of a relation � is defined by induction according to the following
rules:

if M � N , then M  N ,
if Kj  K ′j for some j ∈ {1, . . . , r} and Ki = K ′i for all i ∈ {1, . . . , r} \ {j}, then
a〈K1, . . . ,Kr〉 a〈K ′1, . . . ,K ′r〉,
if K  K ′, then K L K ′ L,
if L L′, then K L K L′, and
if K  K ′, then λx.K  λx.K ′.

The relation →β of β-reduction is defined as the compatible closure of the relation
{((λx.K)L,K[L/x])}. The relation →η of η-conversion is defined as the compatible closure
of the relation {(λx.K x,K) | x 6∈ FV (K)}. We let (→βη) = (→β) ∪ (→η). As a restriction
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27:4 Homogeneity Without Loss of Generality

of β-reduction, we define the relation h−→β of head β-reduction: it contains all pairs of the
form

((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) .

For relations  and �, by ( ) ◦ (�) we denote their composition, by  k (where k ∈ N)
the composition of  with itself k times, and by  ∗ the reflexive transitive closure of
 . Moreover,  ∞ is the infinitary closure of  , defined by coinduction, according to the
following rules:

if M  ∗ a〈K1, . . . ,Kr〉 and Ki  ∞ K ′i for all i ∈ {1, . . . , r}, then M  ∞ a〈K ′1, . . . ,K ′r〉,
if M  ∗ x then M  ∞ x,
if M  ∗ K L, and K  ∞ K ′, and L ∞ L′, then M  ∞ K ′ L′, and
if M  ∗ λx.K and K  ∞ K ′, then M  ∞ λx.K ′.

Trees; Böhm Trees. A tree is defined as a λ-term that is built using only node constructors,
that is, not using variables, applications, nor λ-binders.

We consider Böhm trees only for closed λ-terms of sort o. For such a λ-term M , its Böhm
tree BT (M) is defined by coinduction, as follows:

if M h−→∗β a〈K1, . . . ,Kr〉 for some a ∈ Σ and some λ-terms K1, . . . ,Kr, then BT(M) =
a〈BT (K1), . . . ,BT (Kr)〉;
otherwise BT (M) = ⊥〈〉 (where ⊥ ∈ Σ is a distinguished symbol).

With such a definition it is easy to see that for every M there is exactly one Böhm tree. It
is a consequence of Kennaway, Klop, Sleep, de Vries [11] and Kennaway, van Oostrom, de
Vries [12] that the Böhm tree does not change during βη-reductions.

I Fact 1. If M and N are closed λ-terms of sort o and M →∞βη N , then BT (M) = BT (N).

Higher-Order Recursion Schemes. A higher-order recursion scheme (or just a scheme) is
a triple G = (N ,R, Xo

0 ), where N ⊆ V is a finite set of nonterminals, Xo
0 ∈ N is a starting

nonterminal, being of sort o, and R is a function that maps every nonterminal X ∈ N to a
finite λ-term of the form λx1. · · · .λxs.M , where

the sorts of X and λx1. · · · .λxs.M are the same,
FV (M) ⊆ N ∪ {x1, . . . , xs},
M is of sort o, and
M is a finite applicative term, that is, it does not contain any λ-binders.

We assume that elements of N are not used as bound variables, and that R(X) is not a
nonterminal.1 When R(X) = λx1. · · · .λxs.M , we say that X x1 . . . xs →M is a rule of G,
and M is its right side. The order of the scheme is defined as the maximum of orders of
nonterminals in N .

The infinitary λ-term generated by a scheme G = (N ,R, X0) from a λ-term M , denoted
ΛG(M), is defined as the limit of the following process starting fromM : take any nonterminal
X appearing in the current term, and replace it by R(X). We define Λ(G) = ΛG(X0); observe
that this is a closed λ-term of sort o and of complexity not greater than the order of the
scheme. The tree generated by G is defined as BT (Λ(G)).

1 Without the last condition, it would be necessary to give a more complicated definition of Λ(G). On the
other hand, it is easy to ensure this condition, without changing the tree generated by the scheme.
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We say that a scheme G = (N ,R, X0) is homogeneous if sorts of all nonterminals in N
are homogeneous. Notice that then also the sort of every subterm of R(X) is homogeneous,
for every nonterminal X ∈ N .

I Example 1. Consider a scheme G1 with nonterminals Y o0 , Y
o→((o→o)→o)→o
1 , Y o→o2 , and

Y
o→(o→o)→o
3 , where Y0 is starting; and rules

Y0 → Y1 (b〈c〈〉〉) (Y3 (c〈〉)) , Y2 x
o → x ,

Y1 x
o z(o→o)→o → a〈z Y2, Y1 (b〈x〉) (Y3 x)〉 , Y3 x

o yo→o → y x .

Then

Λ(G1) = M1 (b〈c〈〉〉) ((λxo.λyo→o.y x) (c〈〉)) ,

where M1 is the unique λ-term such that

M1 = λxo.λz(o→o)→o.a〈z (λxo.x),M1 (b〈x〉) ((λxo.λyo→o.y x)x)〉 .

We can see that BT(Λ(G1)) = a〈T0, a〈T1, a〈T2, . . .〉〉〉, where T0 = c〈〉, and Ti+1 = b〈Ti〉 for
i ∈ N.

Notice that the sorts of Y1 and of Y3 are not homogeneous: the first parameter is of order
0, and the second of order 2 or 1.

3 Ensuring Homogeneity

We now prove our main theorem:

I Theorem 2. For every scheme G = (N ,R, X0) one can construct in logarithmic space a
homogeneous scheme H that is of the same order as G and such that BT (Λ(H)) = BT (Λ(G)).

Let us first present the general idea of the proof. Consider thus a nonterminal X with
R(X) = λx.λy.K, where ord(x) < ord(y) (like Y1 or Y3 in Example 1). The sort of X is not
homogeneous, as it does not satisfy ord(x) ≥ ord(y). How can we make it homogeneous?

One idea, which does not work, is to swap the order of x and y. The sort of λy.λx.K is
indeed homogeneous. Such a swap is problematic, though: possibly there are places where
only one argument is given to X, corresponding to the parameter x (e.g., in Example 1 we
always give only one argument to Y3). When the parameters are swapped, we cannot pass a
value of x to X, without passing a value of y.

There is another simple idea, which actually works. Namely, we should raise the order of
x to ord(y). How can we do that? Simply instead of passing to X an argument M of a low
order ord(x), we pass a function λz.M (of order ord(y), higher than ord(x)), which ignores
its argument z and returns M . On the other side, we change every use of x in K to xN ,
where N is an arbitrary λ-term of the same sort as z.

Notice that after such a modification of the sort of x, the order of λx.λy.K remains as
before the modification. This is very important: thanks to this property (orders of subterms
do not change), we can perform the modification independently in every place. Moreover, as
a side effect, also the order of the whole scheme remains unchanged.

There is one more difficulty to overcome, while proving the theorem. Namely, in λ-calculus
it would be possible to simply write λz.M instead of M , whenever we wanted to convert M
into a function returning M . This is not so trivial for schemes, as we cannot use λ-binders –
we should use nonterminals instead. Say that we want to change the order of M from 0 (sort
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27:6 Homogeneity Without Loss of Generality

o) to 1 (sort o→ o). To this end, we introduce a nonterminal S with R(S) = λxo.λzo.x, and
we write SM instead of λz.M (that is, instead of M in the original scheme).

Notice, though, that the sort of the new nonterminal S has to be homogeneous as
well. This means that using such a nonterminal S we can raise the order only by one,
as we cannot have R(S) = λxo.λz.x with ord(z) > 0. If we want to raise the order of
M from 0 to 2 (or more), beside of S we need another nonterminal S′ which raises the
order from 1 to 2 (again only by one), etc. As we start now from sort o→ o, we should
take R(S′) = λxo→o1 .λzo→o1 .λzo.x1 z. We then write S′ (SM) instead of M , which, after
expanding S and S′, equals

(λxo→o1 .λzo→o1 .λzo.x1 z) ((λxo.λzo.x)M) .

This β-reduces (in three steps) to λzo→o1 .λzo.M , thus it is a function of order 2 ignoring its
arguments and returning M .

We now come to details. First, we define sorts γk; these will be sorts of the spare
parameters (i.e., of z in the above explanation). The definition is by induction:

γ0 = o, γk = γk−1→ o for k ≥ 1.

For example, γ1 = o→ o and γ2 = (o→ o)→ o. We see that ord(γk) = k for all k ∈ N.
Next, we have an operation Rk, which says how to raise the order of a sort α to k. For

every sort α and every k ≥ ord(α) we define:

Rk(α) = γk−1→ γk−2→ · · · → γord(α)→ α .

In particular Rord(α)(α) = α. We see that ord(Rk(α)) = k. Basing on Rk, we define, by
induction, a transformation H changing an arbitrary sort into a homogeneous one:

H(o) = o, H(α→ β) = Rord(α→β)−1(H(α))→H(β).

Notice that ord(H(α)) = ord(α) for every sort α, and that H(α) is indeed homogeneous.
Next, we come to transforming λ-terms. For every sort α appearing in the original scheme

G (as a sort of a subterm of R(X) for some nonterminal X ∈ N ), and for every k such that
ord(α) < k ≤ ord(G), we add a nonterminal Sα,k. Its sort is Rk−1(H(α))→Rk(H(α)). Recall
that Rk(H(α)) = γk−1→Rk−1(H(α)); let us also write Rk−1(H(α)) = β1→ · · · → βs→ o.
Then the rule for Sα,k is

R′(Sα,k) = λx.λz.λy1. · · · .λys.x y1 . . . ys .

Here the sort of x is Rk−1(H(α)), the sort of z is γk−1, and the sorts of y1, . . . , ys are
β1, . . . , βs, respectively.

Let again α be a sort appearing in G, and let k be such that ord(α) ≤ k ≤ ord(G).
The sort of a λ-term may be changed from H(α) to Rk(H(α)) by applying the following
transformation, also called Rk:

Rk(M) = Sα,k (Sα,k−1 . . . (Sα,ord(α)+1M) . . . ) .

Here, by appending a nonterminal Sα,i we change the sort from Ri−1(H(α)) to Ri(H(α));
recall that Rord(α)(H(α)) = H(α).

We also need an opposite operation, which converts a function back to its value, by
applying some arguments of sorts γk. First we define some nonterminals of such sorts: we fix
a symbol e ∈ Σ, and for every k < ord(G) we add a nonterminal Uk of sort γk, and we take:

R′(U0) = e〈〉, R′(Uk) = λzγk−1 .e〈〉 for k ≥ 1.
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Clearly Uk has sort γk, for every k ∈ N.
When N is of sort Rk(H(α)), and ord(α) = n (the relation between k and n is k ≥ n),

we define

Ln(N) = N Uk−1 Uk−2 . . . Un .

This λ-term is indeed of sort H(α).
Using the above operations, we define a transformation changing the original scheme

into a homogeneous one. Let us first describe this transformation informally. It works as
follows. We first change the sort of every λ-term (i.e., every nonterminal, every variable, and
every subterm of the right side of every rule) from α to H(α). This causes a problem on
applications, since to a function of sort H(α→ β) = Rord(α→β)−1(H(α))→H(β) we apply
an argument of sort H(α). We thus repair the argument by applying Rord(α→β)−1(·) to it.
This also causes a problem on λ-binders and on variables: the new sort of a λ-binder λxα.Kβ

should be H(α→ β) = Rord(α→β)−1(H(α))→H(β), so the sort of the variable should be
Rord(α→β)−1(H(α)); however, while using this variable, we expect that it will have sort H(α).
We thus apply Lord(α)(·) to every place where the variable is used. There is no problem with
nonterminals: every nonterminal simply changes its sort from α to H(α).

We now define the transformation formally. A raise environment is a function Ω mapping
some variable names to sorts, where we require that Ω(xα) equals Rk(H(α)) for some
k ≥ ord(α). Intuitively, Ω(xα) is a new sort that the variable gets after the transformation.
For a raise environment Ω (such that FV (M) ⊆ dom(Ω)) we define HΩ(M) by coinduction
on the structure of a λ-term M :

HΩ(a〈K1, . . . ,Kr〉) = a〈HΩ(K1), . . . ,HΩ(Kr)〉 .

HΩ(xα) = Lord(α)(xΩ(xα)) if xα ∈ V \ N ,

HΩ(Xα) = XH(α) if Xα ∈ N ,
HΩ(K L) = HΩ(K) Rord(K)−1(HΩ(L)) ,

HΩ(λxα.K) = λxα
′
.HΩ[xα 7→α′](K) , where α′ = Rord(λxα.K)−1(H(α)) .

Here by Ω[xα 7→ α′] we mean the function that maps xα to α′, and every other variable
y ∈ dom(Ω) to Ω(y). Notice that for M of sort α, the resulting λ-term HΩ(M) is of sort
H(α); in particular, in the case of an application with K of sort β → γ, the sort of the
function HΩ(K) being H(β→ γ) = Rord(β→γ)−1(H(β))→H(γ) matches well with the sort
of the argument, being Rord(β→γ)−1(H(β)).

The newly created scheme H = (N ′,R′, X0) is as follows. For every nonterminal Xα ∈ N ,
to N ′ we take a nonterminal XH(α), and we define R′(XH(α)) = H∅(R(Xα)) (where ∅ is
the raise environment with empty domain). Additionally in N ′ we have nonterminals Sα,k
and Uk, with appropriate rules, as defined above.

I Example 1 (continued). While applying our transformation to the scheme G1 from Ex-
ample 1, we obtain a homogeneous scheme with the following rules (where we write Si instead
of So,i):

Y0 → Y1 (S2 (S1 (b〈c〈〉〉))) (Y3 (S1 (c〈〉))) ,

Y1 x
(o→o)→o→o z(o→o)→o → a〈z Y2, Y1 (S2 (S1 (b〈xU1 U0〉))) (Y3 (S1 (xU1 U0)))〉 ,

Y2 x
o → x , S1 x

o zo → x , U0 → e〈〉 ,
Y3 x

o→o yo→o → y (xU0) , S2 x
o→o zo→o yo1 → x y1 , U1 z

o → e〈〉 .
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27:8 Homogeneity Without Loss of Generality

It is easy to see that H can be computed in logarithmic space (in particular its size is
polynomial in the size of G). We also notice that the order of the scheme remains unchanged;
this is the case because ord(H(α)) = ord(α) for every sort α.

It remains to prove that BT(Λ(H)) = BT(Λ(G)) for every closed λ-term Mo. To this
end, we need to define a variant of our transformation that works with λ-terms, not with
schemes. We thus define RΛ

k (M) is the same way as Rk(M), but in the definition we replace
Sα,i with R′(Sα,i) (recall that R′ describes rules of the new scheme). Similarly LΛ

n(N) is
defined as Ln(N), but in the definition we replace Ui with R′(Ui). Finally, HΛ

Ω(M) is defined
as HΩ(M), but it uses functions RΛ

i and LΛ
i instead of Ri and Li. In other words, this

variant of the transformation inserts definitions of the nonterminals Sα,i and Ui instead of
the nonterminals themselves.

We immediately see that Λ(H) = HΛ
∅ (Λ(G)). In the remaining part of the section

we will prove that BT(HΛ
∅ (M)) = BT(M) for every closed λ-term Mo; this implies that

BT(Λ(H)) = BT(Λ(G)) when instantiated with M = Λ(G). The proof is split to several
lemmata.

I Lemma 3. Let P be a λ-term of sort Rk−1(H(α)), where k > ord(α). In such a situation
R′(Sα,k)P R′(Uk−1)→∗βη P .

Proof. Let Rk−1(H(α)) = β1→· · ·→βs→o. Recalling the definition of R′(Sα,k) we observe
that

R′(Sα,k)P R′(Uk−1) = (λx.λz.λy1. · · · .λys.x y1 . . . ys)P R′(Uk−1)
→2
β λy1. · · · .λys.P y1 . . . ys →s

η P . J

I Lemma 4. Let M be a λ-term of sort H(α), and let k ≥ ord(α) = n. In such a situation
LΛ
n(RΛ

k (M)))→∗βη M .

Proof. The thesis follows directly from Lemma 3 once we recall that

LΛ
n(RΛ

k (M)) = R′(Sα,k) (R′(Sα,k−1) . . . (R′(Sα,n+1)M) . . . )
R′(Uk−1)R′(Uk−2) . . . R′(Un) . J

I Lemma 5. Let M and Nα be λ-terms, xα a variable, and Ω a raise environment such
that FV (M) \ {xα} ∪ FV (N) ⊆ dom(Ω). Let also α′ = Rk(H(α)) for some k ≥ ord(α). In
such a situation HΛ

Ω[xα 7→α′](M)[RΛ
k (HΛ

Ω(N))/xα′ ]→∞βη HΛ
Ω(M [N/xα]).

Proof. The proof is by coinduction on the structure of M . Only the case of M = xα is in-
teresting. In this case HΛ

Ω[xα 7→α′](M) = LΛ
ord(α)(xα

′), so HΛ
Ω[xα 7→α′](M)[RΛ

k (HΛ
Ω(N))/xα′ ] =

LΛ
ord(α)(RΛ

k (HΛ
Ω(N))), and by Lemma 4 we have that LΛ

ord(α)(RΛ
k (HΛ

Ω(N))) →∗βη HΛ
Ω(N),

which is what we need since M [N/xα] = N .
We remark that in the case of M = λyβ .K, we use the assumption of coinduction for the

extended raise environment Ω[yβ 7→ β′], and we observe that HΛ
Ω(N) = HΛ

Ω[yβ 7→β′](N) when
(without loss of generality) we assume that yβ is not free in N . J

I Lemma 6. If M h−→β N , and Ω is a raise environment such that FV (M) ⊆ dom(Ω), then
(HΛ

Ω(M),HΛ
Ω(N)) ∈ ( h−→β) ◦ (→∞βη).

Proof. The proof is by induction on the depth of the head redex in M . The induction
step is trivial. Consider thus the base case, when M = (λxα.K)L, and N = K[L/xα]. Let
k = ord(λx.K)− 1, and α′ = Rk(H(α)); clearly k ≥ ord(α). By definition we have that

HΛ
Ω(M) = (λxα

′
.HΛ

Ω[xα 7→α′](K)) RΛ
k (HΛ

Ω(L)) .



P. Parys 27:9

Taking P = HΛ
Ω[xα 7→α′](K)[RΛ

k (HΛ
Ω(L))/xα′ ] we see that HΛ

Ω(M) h−→β P , and from Lemma 5
we obtain that P →∞βη HΛ

Ω(N). J

Using Lemma 6 it is easy to prove by coinduction that for every closed λ-term M of sort o
it holds that BT (HΛ

∅ (M)) = BT (M). Let us write this in details. The proof is by coinduction
on the structure of these Böhm trees. According to the definition of a Böhm tree, we have
two cases. The first of them is that M h−→∗β N for some N that starts with a node constructor.
In this case, by Lemma 6 (applied to every reduction in the sequence of reductions witnessing
M

h−→∗β N) we have that (HΛ
∅ (M),HΛ

∅ (N)) ∈ (( h−→β) ◦ (→∞βη))∗. Clearly ( h−→β) ⊆ (→∞βη), thus
using Fact 1 (multiple times) we obtain that BT(HΛ

∅ (M)) = BT(HΛ
∅ (N)). Let us write

N = a〈K1, . . . ,Kr〉; then HΛ
∅ (N) = a〈HΛ

∅ (K1), . . . ,HΛ
∅ (Kr)〉. Since BT (HΛ

∅ (Ki)) = BT (Ki)
by the assumption of coinduction, we can conclude that

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = a〈BT (HΛ
∅ (K1)), . . . ,BT (HΛ

∅ (Kr))〉
= a〈BT (K1), . . . ,BT (Kr)〉 = BT (M) .

The opposite case is that no sequence of head β-reductions from M leads to a λ-term
starting with a node constructor. It is then possible that M h−→∗β N for some N such that no
head β-reduction can be performed from N (but N does not start with a node constructor).
Since M , and thus also N , are closed and of sort o, this implies that N is of the form
. . . K3K2K1 (infinite application). From the definition of HΛ

∅ it follows that HΛ
∅ (N) is

also such an infinite application, and thus no head β-reduction can be performed from N .
Moreover, as in the previous case, we can see that BT(HΛ

∅ (M)) = BT(HΛ
∅ (N)). We thus

have

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = ⊥〈〉 = BT (M) .

Another possibility is that an infinite sequence of head β-reductions can be performed
from M . In other words, for every n ∈ N there is a λ-term N such that M h−→n

β N .
Fix some such n and N . Lemma 6 implies that (HΛ

∅ (M),HΛ
∅ (N)) ∈ (( h−→β) ◦ (→∞βη))n.

Using Fact 7 (below) we can move all head β-reductions to the front, and obtain that
(HΛ
∅ (M),HΛ

∅ (N)) ∈ ( h−→β)n ◦ (→∞βη)n (we suppress the proof of Fact 7, as the fact is standard,
and the proof is not difficult). This can be done for every n, which means that arbitrarily
long sequences of head β-reductions start in HΛ

∅ (M). Recalling that for every P there is
at most one Q such that P h−→β Q, and that no head β-reduction can be performed from a
λ-term starting with a node constructor, we conclude that BT (HΛ

∅ (M)) = ⊥〈〉 = BT (M).

I Fact 7. For all λ-terms M,N of sort o, if (M,N) ∈ (→∞βη) ◦ ( h−→β), then (M,N) ∈
( h−→β) ◦ (→∞βη).

4 Safe Schemes

In this section we consider safe schemes. Let us recall that we have two definitions of safety.
Following Carayol and Serre [6] we use the name “safe schemes” for schemes that are safe
according to the modern definition, and “Damm-safe schemes” for schemes that are safe
according to the definition of Damm. We now give these definitions.

We define by coinduction when an applicative term is safe, with respect to a set of
nonterminals N :

FSCD 2018
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M = a〈K1, . . . ,Kr〉 is safe if K1, . . . ,Kr are safe,
M = x ∈ V (in particular M = X ∈ N ) is always safe, and
M = K L1 . . . Ls (with s ≥ 1) is safe if K,L1, . . . , Ls are safe, and additionally ord(x) ≥
ord(M) for all x ∈ FV (M) \ N .

Damm-safe applicative terms are also defined by coinduction:
M = a〈K1, . . . ,Kr〉 is Damm-safe if K1, . . . ,Kr are Damm-safe,
M = x ∈ V (in particular M = X ∈ N ) is always Damm-safe, and
M = K L1 . . . Ls (with s ≥ 1) is Damm-safe if K,L1, . . . , Ls are Damm-safe, and
additionally ord(Li) ≥ ord(M) for all i ∈ {1, . . . , s}.

A scheme G = (N ,R, X0) is safe (Damm-safe) if the right side of every of its rules (i.e., the
term M when R(X) = λx1. · · · .λxs.M) is safe (Damm-safe, respectively).

Notice that not every subterm of a (Damm-)safe term need to be (Damm-)safe. But,
for example, subterms appearing as arguments are (Damm-)safe, etc. We remark that the
definition of safe applicative terms can be extended to λ-terms which are not applicative [3],
but we refrain from doing this.

I Example 2. Consider a scheme G2 with the following rules:

S →W (X (b〈〉)) , W g(o→o)→o → Y (X (Y g)) , Y g(o→o)→o → g A ,

X xo fo→o → f x , Axo → a〈x〉 .

This scheme is safe, but not Damm-safe; in particular the subterm X (Y g) is not Damm-safe
since ord(Y g) = 0 < 2 = ord(X (Y g)). Moreover, the sort of X is not homogeneous. Notice
that BT (Λ(G2)) = a〈a〈b〈〉〉〉.

It is easy to prove by coinduction that every Damm-safe applicative term is also safe; in
consequence every Damm-safe scheme is also safe. We now give two transformations: first
we show how to convert a safe scheme into an equivalent scheme that is Damm-safe; then we
show how to convert a Damm-safe scheme into an equivalent scheme that is Damm-safe and
homogeneous.

I Theorem 8. For every safe scheme G = (N ,R, X0) one can construct in logarithmic
space a Damm-safe scheme H = (N ′,R′, Y0) that is of the same order as G and such that
BT (Λ(H)) = BT (Λ(G)).

Let us fix some (arbitrary) order ≺ on variables. When FV (M) \ {N} = {x1, . . . , xk},
where x1 ≺ · · · ≺ xk, then we write OV (M) for the sequence (x1, . . . , xk).

The transformation of Theorem 8 amounts to splitting every rule of G into multiple
simpler rules. More precisely, for every safe subterm M of the right side of every rule of
G, and for every nonterminal M = X ∈ N , we create a new nonterminal denoted bMc. If
OV (M) = (xα1

1 , . . . , xαkk ), and if the sort ofM is β, then the sort of bMc is α1→· · ·→αk→β.
To the new set of nonterminals N ′, we take all such nonterminals bMc. As the starting
nonterminal we take Y0 = bX0c.

We now define R′(bMc) for every nonterminal bMc ∈ N ′. Consider first the case
when M = X is a nonterminal from N . Suppose that R(X) = λx1. · · · .λxs.K, and
OV (K) = (y1, . . . , yk). In such a situation we put R′(bMc) = λx1. · · · .λxs.bKc y1 . . . yr (on
the list y1, . . . , yr we have those of x1, . . . , xs which are free in K, reordered according to ≺).

Suppose now that M is not a nonterminal from N . Let OV (M) = (x1, . . . , xk). Let also
y1, . . . , ys be variables of sorts α1, . . . , αs, where α1→ · · · → αs→ o is the sort of M . We
have three possibilities, depending on the shape of M .
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If M = a〈K1, . . . ,Kr〉, and OV (Ki) = (zi,1, . . . , zi,mi) for all i ∈ {1, . . . , r}, then

R′(bMc) = λx1. · · · .λxk.a〈bK1c z1,1 . . . z1,m1 , . . . , bKrc zr,1 . . . zr,mr 〉 .

If M = x, then R′(bMc) = λx.λy1. · · · .λys.x y1 . . . ys.
If M = K0K1 . . . Kr, where r ≥ 1, and K0 is not an application, and OV (Ki) =
(zi,1 . . . zi,mi) for all i ∈ {0, . . . , r}, then

R′(bMc) = λx1. · · · .λxk.λy1. · · · .λys.bK0c z0,1 . . . z0,m0

(bK1c z1,1 . . . z1,m1) . . . (bKrc zr,1 . . . zr,mr ) y1 . . . ys .

Notice that in the first and the third case, the subterms Ki are safe, so bKic is indeed
a nonterminal in N ′. It is also easy to prove that the right side of every rule is Damm-
safe. Indeed, for subterms of sort o (i.e., of order 0) there is nothing to check. The only
subterms which are of higher order (and which are not a part of a larger application) are
bKic zi,1 . . . zi,mi in the last case of the definition. By safety of Ki we have that ord(zi,j) ≥
ord(Ki), since zi,j is free in Ki, and exactly this is needed to claim that bKic zi,1 . . . zi,mi is
Damm-safe.

Let Exp(K) be the λ-term obtained by repeatedly replacing in K all nonterminals bLc
such that L 6∈ N by R′(L) (this is similar to ΛH(K), but we do not expand nonterminals of
the form bXc, where X ∈ N ). It is easy to prove by induction on the structure of a finite
applicative term M , that if OV (M) = (x1, . . . , xk), then Exp(R′(bMc))x1 . . . xk →∗βη M (if
we identify nonterminals X ∈ N with bXc). In consequence Λ(H)→∞βη Λ(G), which implies
that BT (Λ(H)) = BT (Λ(G)), by Fact 1.

I Example 2 (continued). While applying our transformation to the safe scheme G2 from
Example 2, we obtain a Damm-safe scheme H2 with the following rules (where variables
x, f, g are of sorts o, o→ o, and (o→ o)→ o, respectively; we assume that f ≺ g ≺ x):

bSc → bW (X (b〈〉)c , bXcx f → bf xc f x , bgc g f → g f ,

bW c g → bY (X (Y g))c g , bAcx→ ba〈x〉cx , bxcx→ x ,

bY c g → bg Ac g , bfc f x→ f x , bb〈〉c → b〈〉 ,
bW (X (b〈〉)c → bW c bX (b〈〉)c , bY gc g → bY c (bgc g) ,
bX (b〈〉)c f → bXc bb〈〉c f , bg Ac g → bgc g bAc ,
bY (X (Y g))c g → bY c (bX (Y g)c g) , bf xc f x→ bfc f (bxcx) ,
bX (Y g)c g f → bXc (bY gc g) f , ba〈x〉cx→ a〈bxcx〉 .

We now come to the second transformation.

I Theorem 9. For every Damm-safe scheme G = (N ,R, X0) one can construct in logarithmic
space a homogeneous Damm-safe scheme H = (N ′,R′, X0) that is of the same order as G
and such that BT (Λ(H)) = BT (Λ(G)).

We remark that the transformation from the previous section (which converts a scheme
to a homogeneous scheme), when applied to a Damm-safe scheme results in a scheme that is
homogeneous, but no longer (Damm-)safe. Indeed, we have there (on argument positions)
subterms of the form Sα,k+1M , where k = ord(M). Recalling that the order of Sα,k+1M is
k + 1, we notice that such a subterm is not Damm-safe (and if, e.g., M is a variable, it is
also not safe).

FSCD 2018
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We thus use a different approach: we reorder parameters / arguments. This approach
works only because the scheme is Damm-safe. Indeed, Damm-safety ensures that when an
argument of some order k is applied, then simultaneously all arguments of orders higher than
k are applied, and thus we can move our argument of order k behind these arguments.

Before giving a formal definition of our transformation, let us extend the notion of Damm-
safety from applicative terms to λ-terms. To this end, to the definition of a Damm-safe
terms, we add an item saying that a λ-term M = λx1. · · · .λxs.K (with s ≥ 1) is Damm-safe
if K is Damm-safe, and additionally ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}.

For sorts α1, . . . , αs, let sort(α1, . . . , αs) be the permutation (i1, . . . , is) of (1, . . . , s)
for which either ord(αij ) = ord(αij+1) and ij < ij+1, or ord(αij ) > ord(αij+1), for every
j ∈ {1, . . . , s}. Having the sorting function, we define our transformation on sorts, by
induction: when α = α1→ · · · → αs→ o, and sort(α1, . . . , αs) = (i1, . . . , is), we put S(α) =
S(αi1)→ · · · → S(αis)→ o (in particular S(o) = o). Similarly, for Damm-safe λ-terms we
define by coinduction:

if M = a〈K1, . . . ,Kr〉, then S(M) = a〈S(K1), . . . ,S(Kr)〉,
if M = xα ∈ V , then S(M) = xS(α) (where x is either a “real” variable, or a nonterminal),
if M = K Lα1

1 . . . Lαss (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and K is Damm-
safe, then S(M) = S(K) S(Li1) . . . S(Lis), and
finally, if M = λxα1

1 . · · · .λxαss .K (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and
ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}, then S(M) = λx

S(αi1 )
i1

. · · · .λxS(αis )
is

.S(K).
Notice that for a λ-term M of sort α, the sort of S(M) is S(α).

It may appear that the definition is ambiguous (but it is not). The problem is that
while transforming an application M = K L1 . . . Lk+m, where both K and N = K L1 . . . Lk
are Damm-safe, we may proceed in two ways: we may sort all the arguments L1 . . . Lk+m,
but we may also separately sort the arguments L1 . . . Lk and separately the arguments
Lk+1 . . . Lk+m. We notice, though, that the effect will be the same. Indeed, we have that
ord(Li) ≥ ord(N) for i ≤ k, because N is Damm-safe, and ord(Li) < ord(N) for i > k

because these Li are given as arguments to N . This means that even while sorting all the
arguments L1 . . . Lk+m together, the arguments Li for i ≤ k will appear before the arguments
for i > k. The same can be said about a sequence of λ-binders M = λx1. · · · .λxk+m.K in
which ord(xi) ≥ ord(λxk+1. · · · .λxk+m.K) for all i ∈ {1, . . . , k}.

Having a transformation of λ-terms, it is immediate to define a transformation on schemes:
we take N ′ = {XS(α) | Xα ∈ N , and R′(XS(α)) = S(R(Xα)) for all Xα ∈ N .

On the one hand, it should be clear that H is homogeneous, Damm-safe, and of the same
order as G. On the other hand, it is easy to prove the following lemma.

I Lemma 10. If M = (λx1. · · · .λxs.K)L1 . . . Ls is a Damm-safe λ-term, and M h−→s
β N ,

then N is Damm-safe, and S(M) h−→s
β S(N).

Using the above lemma it is easy to prove by coinduction that BT (S(M)) = BT (M) for
every Damm-safe λ-term M . Because Λ(H) = S(Λ(G)), and because Λ(G) is Damm-safe, it
follows that BT (Λ(H)) = BT (Λ(G)). Notice that in Lemma 10 it is essential that we perform
all the s head β-reductions at once, not only a single one (since in S(M) the s arguments
are applied in different order than in M).

I Example 2 (continued). Let us apply the transformation to the Damm-safe scheme H2
from our example. Since bXc is the only nonterminal having a non-homogeneous sort, only
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the rules involving bXc are changed, as follows:

bXc f x→ bf xc f x , bX (Y g)c g f → bXc f (bY gc g) ,
bX (b〈〉)c f → bXc f bb〈〉c .

Notice that it does not make sense to apply the transformation to the scheme G2, which is
not Damm-safe. Indeed, it would be impossible to swap the order of the parameters of X,
since in the subterm X (Y g) we are applying only one argument to X.

5 Consequences of Homogeneity

Let us say that a λ-term is homogeneous if sorts of all its subterms are homogeneous. By
definition this means that arguments of higher order are always applied before arguments of
lower order. Due to this fact, in a homogeneous λ-term (unlike in an arbitrary λ-term) we
can perform β-reductions starting from redexes concerning variables of the highest order.
In this section we formalize and prove this property of homogeneous λ-terms (Lemmata 11
and 12). We remark that this property turned out to be useful e.g. in Parys [17].

We define the order of a β-reduction as the order of the involved variable. More precisely,
for a number k ∈ N, the relation →β(k) of β-reduction of order k is defined as the compatible
closure of the relation {((λx.K)L,K[L/x]) | ord(x) = k}.

We first give our result for finite λ-terms.

I Lemma 11. Let M be a finite closed homogeneous λ-term of sort o and complexity at
most n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every
k ∈ {0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∗β(k) Nk, and N0 = BT (M).

For infinite λ-terms we need to be slightly more careful: it is not enough to replace
the reflexive transitive closure →∗β(k) by the infinitary closure →∞β(k). The problem lies in
subterms which do not have so-called head normal form: infinite applications . . . K3K2K1,
and subterms from which we can perform infinitely many head β-reductions. These are
subterms responsible for creating nodes labeled by ⊥ in the Böhm tree. We cannot deal with
these subterms by only applying β-reductions. We need to introduce relations that explicitly
replace such “invalid” subterms by ⊥〈〉.

The relation h−→β(k) of head β-reduction of order k (where k ∈ N) is defined as

{((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) | ord(x) = k} .

Consider now the relation containing all pairs of the form (K,λx1. · · · .λxs.⊥〈〉), where K
and λx1. · · · .λxs.⊥〈〉 are of the same sort, and either for every n ∈ N there is L such that
K

h−→n
β(k) L, or K is an infinite application. The compatible closure of this relation is denoted

→⊥(k). By →β⊥(k) we denote the union of →β(k) and →⊥(k). Using this relation we can
now reformulate Lemma 11 for infinite λ-terms.

I Lemma 12. Let M be a closed homogeneous λ-term of sort o and complexity at most
n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every k ∈
{0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∞β⊥(k) Nk, and N0 = BT (M).

Notice that Lemma 11 is an immediate consequence of Lemma 12, because when a λ-term
K is finite, then there is no L such that K →⊥(k) L, and K →∞β(k) M implies K →∗β(k) M

(every sequence of β-reductions from a finite λ-term is finite). Lemma 12, in turn, is a
consequence of the following lemma.
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I Lemma 13. Let M be a λ-term of complexity at most k, order at most k−1, and such that
all free variables of M have order at most k − 1. Then there exists a λ-term P of complexity
at most k − 1 such that M →∞β⊥(k) P .

Proof. The proof is by coinduction. Suppose first that for every n ∈ N there is N such
that M h−→n

β(k) N . In this situation M →⊥(k) λx1. · · · .λxs.⊥〈〉 (for an appropriate sequence
of variables x1, . . . , xs, corresponding to the sort of M). Denoting the latter λ-term P we
obtain the thesis, since the complexity of P equals ord(P ) = ord(M) ≤ k − 1.

The opposite case is that M h−→∗β(k) N for some N , but there is no N ′ such that N h−→β(k)
N ′. When N is a variable, the thesis is trivial for P = N , and when N = a〈K1, . . . ,Kr〉,
the thesis follows directly from the assumption of coinduction. When N = λx.K, the thesis
also follows from the assumption of coinduction; we only need to observe that ord(N) =
ord(M) ≤ k − 1 implies that ord(x) ≤ k − 2 ≤ k − 1. Suppose thus that N is an application.
When N is an infinite application, we again have M →⊥(k) λx1. · · · .λxs.⊥〈〉, and we are
done. When N = xL1 . . . Ls, by assumption the order of x is at most k−1, so we can simply
use the assumption of coinduction for all Li. Otherwise N is of the form (λx.K)L1 . . . Ls.
Since no head β-reduction of order k starts in N , necessarily ord(x) 6= k. Knowing that the
complexity of N is at most k, and that the sort of λx.K is homogeneous, this implies that
ord(λx.K) = ord(x)− 1 ≤ k − 1. We can thus again use the assumption of coinduction for
all the subterms K,L1, . . . , Ls. J

I Remark. We notice that Lemmata 11 and 12 would be false if we have allowed λ-terms
involving non-homogeneous sorts. For example, from a λ-term of the form (λx.λy.K)LM
with ord(x) = 0 and ord(y) = 1 we have to perform a β-reduction of order 0 concerning
x before a β-reduction of order 1 concerning y. It is, though, possible to reformulate our
lemmata without the homogeneity assumption. One only has to define the order of a β-
reduction (λx.K)L→β K[L/x] in a less natural way, as ord(λx.K)−1, not as ord(x) (notice
that these two numbers coincide for homogeneous sorts).
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Abstract
Automated deduction in higher-order program calculi, where properties of transformation rules
are demanded, or confluence or other equational properties are requested, can often be done by
syntactically computing overlaps (critical pairs) of reduction rules and transformation rules. Since
higher-order calculi have alpha-equivalence as fundamental equivalence, the reasoning procedure
must deal with it. We define ASD1-unification problems, which are higher-order equational
unification problems employing variables for atoms, expressions and contexts, with additional
distinct-variable constraints, and which have to be solved w.r.t. alpha-equivalence. Our proposal
is to extend nominal unification to solve these unification problems. We succeeded in constructing
the nominal unification algorithm NomUnifyASD. We show that NomUnifyASD is sound and
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additional distinct-variable constraints and which have to be solved w.r.t. alpha-equivalence.
Our proposal is to extend nominal unification to solve these unification problems. The appeal
of classical nominal unification is that it solves higher-order equations modulo α-equivalence
in quadratic time and outputs at most a single most general unifier [37, 6, 17].

Our intended application is the diagram-method, which is a syntactic proof method
(e.g. [38, 12, 34]) to show properties like correctness of program transformations. As an
example consider the reduction rule (cp) in the call-by-need lambda-calculus with let (see
e.g. [2, 23, 34]) (let x = λy.S in C[x])→ (let x = λy.S in C[λy.S]) with the restriction that
x is not bound by context C. The diagram-based proof method for correctness of program
transformations computes possible overlaps of the left-hand side (and in certain cases also of
the right-hand side) of a program transformation with the left-hand sides of the reduction rules.
An example equation is let A1 = λA2.S1 in D1[λA2.S1] .= let A3 = λA4.S2 in D2[A3]
where A,S,D are variables standing for concrete variables (called atoms), expressions, and
contexts, respectively. The equation comes together with constraints on possible occurrences
of atoms, which can be formulated using the distinct-variable condition (DVC) [5, 2] which in
turn requires to add a further renaming to the rule to fulfill it (see Example 2.5 for details).

A generalized situation for overlap computation is represented by the equation R[`] = C[`′],
where R is a reduction context (in which reduction takes place), ` is a left hand side of a
reduction rule, C is an arbitrary context, and `′ is the left hand side of a transformation rule.
Provided R,C are variables for reduction contexts and general contexts, respectively, solving
the unification equation R[`] .= C[`′] can be attacked by using nominal unification in the
extended language. However, for the general unification problem without any restrictions we
did not find an algorithm to solve it, since it seems to be too hard (we discuss the problems
in Sect. 4). As a consequence, we consider a subproblem and thus our presented algorithm
solves nominal unifcation problems that are restricted to be linear w.r.t. context variables,
so-called permutation variables do not occur in the input, and we require DVC-constraints
for all equations in the input. From the perspective of applications to reasoning in calculi,
these restrictions are (almost) optimal, since linearity of contexts in general holds, the DVC
is also an often used assumption, and permutation variables are not required.

Results. A sound and complete algorithm NomUnifyASD for nominal unification of
ASD1-unification problems is constructed. The algorithm NomUnifyASD computes in NP
time a solution including a constraint (Theorem 5.8) and the collecting version produces at
most exponentially many outputs. The algorithm NomFreshASD that checks satisfiability
of the constraints of a solution runs in NEXPTIME (Proposition 5.7), hence solvability of
ASD1-unification problems can be decided in NEXPTIME (Theorem 5.9). Since the number
of context-variables is the only parameter in the exponent of the complexity, we obtain that
if the number of context-variables is fixed, then the algorithm NomUnifyASD runs as a
decision algorithm in NP time.

For computing diagrams (in the diagram method), it is important to obtain a complete
set of unifiers. We expect that exponentiality of the number of unifiers is not a problem,
since the input is usually very small. For example, the rules of the let-calculus [2] need
only one context variable. We show that DVCs are a proper generalisation of freshness
constraints if combined with solving equations (Proposition 3.6). A technical innovation is
that decomposition for lambda-bindings can be extended to an arbitrary number of nested
lambda-bindings thanks to the DVC (see Remark 3.2, Proposition 3.3, and Example 3.4).

A corollary is that classical nominal unification (with expression-variables only) is general-
ized by replacing freshness constraints by DVC-constraints such that unitarity and polynomial
complexity still hold (Theorem 6.1).
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Previous and Related Work. Nominal techniques [27, 26] support machine-oriented reason-
ing on the syntactic level supporting alpha-equivalence. Nominal unification of (syntactically
presented) lambda-expressions was successfully attacked and a quadratic algorithm was
developed [37, 6, 17] where technical innovations are the use of permutations on the abstract
level and of freshness constraints. The approach is used in higher-order logic programming
[8], and in automated theorem provers like nominal Isabelle [35, 36].

There are investigations that extend the expressive power of nominal unification problems:
The restriction that bound variables are seen as atoms can be relaxed: Equivariant unification
[7, 10] permits atom-variables and permutation-variables which however, appear to add too
much expressive power as mentioned in [7, 10]. A restricted language (allowing atom-
variables, but without permutations at all) and its nominal unification is analyzed in [16].
An investigation of nominal unification with atom-variables and a lazy-guessing algorithm
is described in [33, 15]. Nominal unification for a lambda-calculus with function constants
and a recursive-let is developed in [30] and shown to run in NP time. Reasoning on nominal
terms in higher-order rewrite systems and narrowing as a general, but not provably efficient
method for unification is described in [4]. Nominal techniques to compute overlaps w.r.t.
all term positions are in [3], but there are no context-variables and reduction strategies
cannot be encoded. If there are no binders, then the problem statement can be generalized to
first-order terms with arbitrary occurrences of context-variables and the unification problem
is in PSPACE [14].

Classical nominal unification is strongly related to higher-order pattern unification
[9, 18, 22, 28, 24] which is a decidable fragment of (undecidable) higher-order unification [13]
and has most general unifiers (i.e. is unitary). A slight extension to pattern unification that is
unitary and decidable is described in [19]. Another line of research for reasoning with binders
is the foundation of higher-order abstract syntax [25], and extensions of higher-order pattern
unification as in [1], which, however, cannot adequately deal with ASD1-unification problems,
the problem class of NomUnifyASD. The use of deBruijn indices [11] has some advantages
in representing lambda expressions and avoids alpha-renamings, but is not appropriate for
our problem, since we have to deal with free variables and with context variables that may
capture variables.

A proposal to the automated computation of overlaps and diagrams is in [31] where the
unifcation problems are solved w.r.t. syntactic equality. This approach permits an even
higher expressiveness of the language, but the support for alpha-equivalence reasoning is
missing, and hence several variants of extra constraints are necessary and further reasoning
needs a technically detailed analysis of renamings [29].

Outline. Sect. 2 contains the definitions and extensions of nominal syntax. In Sect. 3 the
preparations for the nominal unification algorithm are done, and in Sect. 4 the algorithm
NomUnifyASD is introduced, which consists of a set of (non-deterministic) rules, and
also the constraint checking algorithm NomFreshASD. In Sect. 5 the properties of the
algorithms are analyzed. In Sect. 6 the special case NLaS is reconsidered, and we illustrate
how the unification algorithm operates on examples. We conclude in Sect. 7. Due to space
constraints, some of the proofs are omitted, but given in [32].

2 Nominal Languages and Nominal Unification

Let F be a set of function symbols where each f ∈ F has a fixed arity ar(f) ≥ 0, and F
contains at least two function symbols, one of arity 0 (a constant) and one of arity ≥ 2. Let
At be the set of atoms ranged over by a, b; A be the set of atom-variables ranged over by
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A,B; S be the set of expression-variables ranged over by S, T standing for expressions; D be
the set of context-variables ranged over by D standing for single hole-contexts; and P be the
set of permutation-variables ranged over by P standing for finite permutations on At, i.e.
bijections π on At such that their support supp(π) = {a ∈ At | π(a) 6= a} is a finite set.

The ground expressions are lambda-expressions extended by function symbols, where the
lambda-variables are called atoms. Contexts in the ground language are expressions over a
language extended with a symbol [·] the hole (occurring only once), where expressions can
be plugged in. The language will be enriched by symbols for atoms, expressions, contexts,
and permutations, where the latter are mappings that may change the names of atoms and
are represented by lists of swappings (a b).

I Definition 2.1. The syntax of NLaASDP is defined by the grammar

X ∈ AE ::= a | A | π·A
e ∈ E ::= X | S | π·S | (f e1 . . . ear(f)) | λX .e | C[e]
C ∈ C ::= [·] | D | π·D | (f e1 . . . [·] . . . en) | λX .[·] | C1[C2]
π ::= ∅ | (A1 A2) · π | (A a) · π | (a A) · π | (a1 a2) · π | P · π | P−1 · π

with the categories AE of atom expressions, E of expressions, C of contexts, and π of
permutations. Here A, S, D, and P is an atom-variable, expression-variable, context-variable,
or permutation-variable, respectively.

Nested permutations are forbidden, e.g. swappings (π1·A1 π2·A2) are excluded for simpli-
city of algorithms, and since their expressive power is already available using equations and
constraints. We use positions (tree addresses) in expressions, where we ignore permutation
expressions in the addressing scheme. Sublanguages of NLaASDP are denoted by NLM , where
M is a substring of aASDP , and the grammar is restricted accordingly. The mainly used
languages are NLa as the ground language for the solutions, NLaASD as the expression
language for the input, and NLaASDP as the working language inside of the unification
algorithm.

A substitution σ : NLaASDP → NLaASDP maps atom-variables to atom expressions,
expression-variables to expressions, context-variables to contexts, permutation-variables
to permutations. We identify a substitution with its extension to expressions. A ground
substitution ρ is a substitution ρ : NLaASDP → NLa. We use permutation application · as
operator and syntactic symbol, we use −1 as a syntactic symbol in P−1 and operator for
inversion, and we abbreviate ∅·V by V for a variable V . We use the following operations
and simplifications

(π1·π2)(e)→ (π1·(π2·e)) (π1·π2)−1→π−1
2 ·π

−1
1 π·[·]→ [·]

π·(f e1 . . . en)→ (f π·e1 . . . π·en) π·(λX.e)→λπ·X.π·e π·C[e]→ (π·C)[π·e]
(X1 X2)−1→ (X1 X2) (C1C2)[e]→C1[C2[e]]

which permit standardizations: in NLa all permutation operations can be removed; in NLaS ,
permutations can be represented as lists of swappings of length at most |n− 1| where n is the
number of used atoms; and in NLaASD, the permutation operations only lead to suspensions
of the form π·A and π·S, π·D. In all languages, permutations can be represented as a
composition of lists of swappings, permutation-variables P and inverses P−1, and context
expressions can be simplified to the form (π·D)[e].

Let tops(e) be the top symbol of e after simplification of permutation applications, i.e.
tops(a) = atom, tops(λX.e) = λ, tops(f e1 . . . en) = f , tops(π·A) = A, tops(π·S) = S, and
tops((π·D)[e]) = D. For an expression e or context C in NLa, we denote with FA(e) or
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FA(C), resp., the set of free atoms, and with At(e) or At(C), resp., the set of all atoms. The
set of atoms that become bound in the hole of a context C, called the captured atoms of C,
is denoted as CA(C).

In NLa, α-equivalence ∼α is the closure by reflexivity and congruence and the rule
a 6∈ FA(e′) ∧ e ∼α (a b)·e′ =⇒ λa.e ∼α λb.e′. We also use α-equivalence for contexts: NLa-
contexts C1 and C2 are α-equivalent, written C1 ∼α C2, iff for all atoms a, C1[a] ∼α C2[a]
holds. E.g., λa.[·] 6∼α λb.[·], λa.λb.λa.[·] ∼α λb.λb.λa.[·], but λa.λb.[·] 6∼α λa.λa.[·]. For
C1 ∼α C2, it suffices if C1[a] ∼α C2[a] for all a ∈ CA(C1) ∪ CA(C2) ∪ {a′}, where a′ is a
fresh atom. Note that C1 ∼α C2 and e1 ∼α e2 imply C1[e1] ∼α C2[e2], but the reverse is
wrong: (f a λa.a) ∼α (f a λb.b), but (f a λa.[·]) 6∼α (f a λb.[·]) and a 6∼α b.

We explain instantiation modulo α for correctly defining solvability under dvc-restrictions.

I Definition 2.2 (Instantiation modulo α). For testing solvability of equations, we assume
that ground substitutions map into NLa/∼α. An equivalent method is that whenever a
ground substitution ρ is applied to a variable S or D, we use an α-renamed copy of Sρ or
Dρ, respectively, where the renaming is done by fresh atoms that do not occur elsewhere
(called instantiation modulo α), and where comparison is done modulo ∼α.

The following definition explains free/bound variables and the satisfiability of dvc-
constraints of expressions in NLa/∼α without using fresh atoms.

I Definition 2.3. Let e be a normalized NLaASDP -expression and ρ be a ground substitution
mapping into NLa/∼α, such that eρ is an NLa/∼α-expression. Then we define the bound
atoms BA(e, ρ), and satisfiability of the dvc of (e, ρ) as follows, where the bound atoms
introduced by ρ are ignored.
1. If X is an atom a or a suspension π·A where A is an atom-variable then BA(X, ρ) = ∅,

and the dvc is satisfied.
2. BA(π·S, ρ) = ∅, and the dvc is satisfied.
3. BA(f e1 . . . en, ρ) =

⋃n
i=1 BA(ei, ρ). The dvc is satisfied, if for all i 6= j, BA(ei, ρ) ∩

(FA(ejρ) ∪ BA(ej , ρ)) = ∅ and for all i, the dvc holds for (ei, ρ).
4. BA(λX.e, ρ) = BA(e, ρ) ∪ {Xρ}. The dvc is satisfied, if it is satisfied for (e, ρ), and if

Xρ 6∈ BA(e, ρ).
5. BA((π·D)[e], ρ) = BA(e, ρ) ∪ ((π)ρ)·CA(Dρ). The dvc is satisfied, if it is satisfied for D,

i.e. CA(Dρ) ∩ FA(Dρ) = ∅ as well as (BA(e, ρ) ∩ ((π)ρ)·(FA(Dρ) ∪ CA(Dρ)) = ∅, and
the dvc is satisfied for (e, ρ).

Note that BA(e, ρ) 6= BA(eρ), since for e = λA.S, ρ = {A 7→ a, S 7→ λb.(a b)}, we have
BA(eρ) = {a, b}, but BA(e, ρ) = {a} (where we do not distinguish between an atom and the
α-equivalence class of an atom).

Nominal unification is connected with formulating and solving constraints. We use
well-known freshness constraints and novel dvc-constraints.

I Definition 2.4 (Freshness and dvc-Constraints). Freshness constraints in NLaASDP are of
the form a# e and A# e, and dvc-constraintsin NLaASDP are of the form dvc(e), where e
is an NLaASDP -expression.

A ground substitution ρ satisfies A# e iff ρ(A) 6∈ FA(eρ); and ρ satisfies a# e iff
a 6∈ FA(eρ). The distinct variable condition (dvc) holds for an NLa-expression e, if all bound
atoms in e are distinct, and all free atoms in e are distinct from all bound atoms in e. For a
ground substitution ρ, dvc(e) is satisfied, iff (e, ρ) satisfies the dvc (Definition 2.3). This is
equivalent to eρ (using instantiation modulo α) satisfying the dvc.
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If a ground substitution ρ satisfies all constraints of a set of freshness and/or dvc-
constraints, then we say that ρ is a solution of the constraint set. A set of constraints is
satisfiable iff there is a solution.

For example, f a λb.(g a λc.c) satisfies the dvc and f b λb.b violates it. With ρ = {S 7→λc.c}
we have (f (λa.S) (λb.S))ρ = f (λa.λc1.c1) (λb.λc2.c2) and ρ satisfies dvc(f (λa.S) (λb.S)).
As another example, ρ′ = {S 7→ λc.b} violates dvc(f (λa.S) (λb.S)).

I Example 2.5. Consider a lambda-calculus with let as in [2]. A reduction rule of the corres-
ponding calculus is let x=λy.s in C[x]→ let x= λy.s in C[λy.s] where C is a context. We
represent the expressions as (let (λAx.D[Ax]) (λAy.S)) and (let (λAx.D[λAy.S]) (λAy.S)).
However, D must not capture the atom represented by Ax, nor free atoms from S, and
Ax must not occur free in S. Both conditions can be captured by the constraint that
let (λAx.D[Ax]) (λAy.S) and let (λAx.D[λAy.S]) (λAy.S) have to satisfy the dvc. How-
ever, the latter violates the dvc in every case due to the two occurrences of the binder
Ay. Hence, we add a renaming to the rule and represent it as let (λAx.D[Ax]) (λAy.S)→
let (λAx.D[λAz.(Ay Az)·S]) (λAy.S) and Az #S. Now the dvc-constraints for both expres-
sions make sense and produce the correct conditions.

I Definition 2.6. Let L be a sublanguage of NLaASDP . A nominal unification problem in L
is a pair (Γ,∇) where Γ is a finite set of equations e .= e′ with e, e′ ∈ L and ∇ is a finite set
of freshness and dvc-constraints, where all expressions are in L. A ground substitution ρ is
a solution of (Γ,∇) iff ρ satisfies ∇ and eρ ∼α e′ρ for all e .= e′ ∈ Γ. A unifier for (Γ,∇) is a
pair (σ,∇′) in L, where σ is a substitution and ∇′ is a set of constraints, such that ∇′ is
satisfiable and for every substitution γ such that σ ◦ γ is ground for Γ,∇,∇′, the following
implication holds: (σ ◦ γ) satisfies ∇′ =⇒ (σ ◦ γ) is a solution for (Γ,∇).

A set M of unifiers is complete, iff for every solution ρ of (Γ,∇), there is a unifier
(σ,∇′) ∈ M such that there is a ground substitution γ with Aσγ=ρ(A), Sσγ ∼α ρ(S),
Dσγ ∼α ρ(D), and Pσγ=ρ(P ) for all variables A, S, D and P occurring in (Γ,∇) (we
say (σ,∇′) covers ρ). A unifier (σ,∇′) is a most general unifier of (Γ,∇), iff {(σ,∇′)} is a
complete set of unifiers for (Γ,∇).

I Theorem 2.7 ([37, 6, 18, 17]). The nominal unification problem in NLaS, with ∇ consisting
of freshness constraints only, is solvable in quadratic time and is unitary: For a solvable
nominal unification problem (Γ,∇), there exists a most general unifier of the form (σ,∇′)
which can be computed in polynomial time.

3 Preparations for NLaASD-Unification

As a preparation for the unification rules treating equations of the form D1[e1] .= D2[e2],
we analyze properties of contexts and expressions in this section. Clearly, for every NLa-
expression e there is some e′ with e ∼α e′ s.t. e′ satisfies the dvc. If e satisfies the dvc,
then π·e also satisfies the dvc for any permutation π.

I Lemma 3.1. Let e1, e2 be two expressions in NLa that satisfy the dvc (separately). Then
e1 ∼α e2 is equivalent to the condition that there exists a permutation π with e1 = π·e2,
where supp(π) ⊆ (At(e1) ∪ At(e2)) \ (FA(e1) ∪ FA(e2)).

Proof. If e1, e2 satisfy the dvc and e1 = π·e2 where π does not change free atoms of
e1, e2, then clearly e1 ∼α e2. We prove the other direction of the claim by induction on
the size. For constants and atoms, this is trivial, since π does not change free atoms. If
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e1=λa.e′1 and e2=λa.e′2, then e′1 ∼α e′2, hence e′1 = π·e′2, for a (minimal) permutation π.
Hence e1 = π·e2. Let e1 = λa.e′1 and e2 = λb.e′2, with a 6= b. Then a#e2, a#e′2, and
e′1 ∼α (a b)·e′2. The expressions e′1 and (a b)·e′2 satisfy the dvc, by induction hypothesis,
e′1 = π′·(a b)·e′2, for a permutation π′ where π′(a) = a. Let π be the permutation π′·(a b).
Then π′·(a b)·b = a. Hence π·e2 = e1. If e1 = f e1,1 . . . e1,n, and e2 = f e2,1 . . . e

′
2,n, then by

induction there are permutations πi such that πi·e2,i = e1,i for all i. Since the permutations
can be chosen minimal and are only determined by the binders, and since the dvc is assumed,
the permutations are disjoint. Thus we can compose (i.e. union) the permutations, and
obtain π = π1 . . . πn as the required permutation. J

I Remark 3.2. The inductive definition of ∼α for abstractions is

a#λb.s2, s1 ∼α (a b)·s2

λa.s1 ∼α λb.s2

where a may be equal to b or different. Generalizing this for arbitrary contexts results in the
situation C1 = λa1. . .λan.[·], C2 = λb1. . .λbn.[·], and the rule

CA(C1) #C2[s2],∃π : (C1 ∼α π·C2, s1 ∼α π·s2)
C1[s1] ∼α C2[s2]

where π·bi = ai for all i, CA(C1) = {a1, . . . , an}, and CA(C2) = {b1, . . . , bn}. We assume
that ai 6= aj, bi 6= bj for i 6= j, but ai = bj for some i, j may hold. We show below, that the
latter rule is already the general one, provided the dvc holds for C1[s1] and C2[s2].

We now analyze the decomposition of context applications C[e] under the assumption
that the dvc holds. For an NLa-context C, we denote with CAO(C) the ordered tuple of
the atoms in CA(C), where the atom ordering is according to the nesting of active bindings:
The outermost bound atom comes first. For example, if C = λa.λa.(f (λb.λc.b) (λb.λb.[·])),
then CAO(C) = (a, b).

I Proposition 3.3. Let C1, C2 be NLa-contexts and e1, e2 be NLa-expressions, such that C1
and C2 have identical hole positions, and C1[e1] as well as C2[e2] satisfy the dvc. Then
C1[e1] ∼α C2[e2] is equivalent to

∀a ∈ CA(C1): a#C2[e2] and there is a permutation π with C1 ∼α π·C2 and e1 ∼α
π·e2, where π does not change free atoms in C2[e2], π maps CAO(C2) to CAO(C1),
and supp(π) ⊆ CA(C2) ∪ CA(C1).

Proof. We show “ =⇒ ” by induction on the length of the hole path of C1. If the length is
0, then the claim is trivial. For the induction step, let the length be strictly greater than 0.

If C1 = f e1 . . . C
′
1︸︷︷︸
k

. . . en then C2 = f e′1 . . . C
′
2︸︷︷︸
k

. . . e′n. The capture condition holds, since

CA(C ′i) = CA(Ci). The assumption and the congruence property of ∼α imply ei ∼α e′i for
all i 6= k. By the induction hypothesis there is a permutation πk satisfying the theorem,
which is the required permutation.
If C1 = λa.C ′1 and C2 = λa.C ′2, then the capture condition holds, C ′1[e1] and C ′2[e2] are
α-equivalent, and we can apply the induction hypothesis.
If C1 = λa.C ′1 and C2 = λb.C ′2, then a#C ′2[e2], and C ′1[e1] ∼α (a b)·C ′2[e2]. The
dvc also holds for (a b)·C ′2, hence we can apply the induction hypothesis, and obtain
C ′1 ∼α π′·(a b)·C ′2, and e1 ∼α π′·(a b)·e2, and ∀c ∈ CA(C ′1): c#(a b)·C ′2[e2]. The
equation c = a is not possible, since C1[·] satisfies the dvc; c = b may be possible, but
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since a#C ′2[e2], and due to the application of (a b) there are no free occurrences of b in
(a b)·C ′2[e2]. This implies ∀c ∈ CA(C1): c#C2[e2]. The application π′·(a b)·b results in
a, since π′ does not change a. Hence the required permutation is π = π′·(a b).

The direction “⇐=” is easy: if there are two expressions e1 ∼α e2, C1[e1], C2[e2] satisfy the
dvc, and there is a permutation π that does not change free atoms in e2, and C1 ∼α π·C2,
then C1[e1] ∼α C2[e2]. J

I Example 3.4. The dvc is required in Proposition 3.3: Let C1 = f a λa.[·] and C2 =
f a λb.[·], which implies C1[a] = (f a λa.a) ∼α (f a λb.b) = C2[b]. The dvc is violated
for the left expression. We see that there does not exist a (common) permutation π with
C1 ∼α π·C2 and e1 ∼α π·e2.

Note that exploiting the general decomposition property of context-variables above in a
unification algorithm, even under strong restrictions, requires permutation-variables, and
also constraints of the form CA(D) # e. There are investigations on nominal unification
permitting variable permutations [7, 10], but an extension to context-variables is open. We
will use further components in the constraint set, which will refine the information.

I Definition 3.5. Let ρ be a ground substitution. The unification algorithm uses the
following further constraint components:

A 6= e, where e is an atom expression. (short form of A#e)
CA(D)#e, which is satisfied by ρ, if for all atoms a ∈ CA(Dρ): a#eρ.
supp(π)#e, which is satisfied by ρ, if for all atoms a ∈ (supp(π)ρ): a#eρ.
supp(π) ⊆ CA(C1) ∪ CA(C2) which is satisfied by ρ, if for all atoms a ∈ (supp(π)ρ):
a ∈ CA(C1ρ) ∪ CA(C2ρ).
C 6= ∅, which is satisfied by ρ, if Cρ is not the trivial context.

I Proposition 3.6. In NL-languages containing expression-variables, freshness constraints
can in linear time be encoded as dvc-constraints by translating a#e into dvc((f (λa.a) S)),
plus the equation S .= e; and A#e into dvc((f (λA.A) S)) plus the equation S .= e where f
is a binary function symbol, and in both cases, S is a new expression-variable.

4 The Unification Algorithm NomUnifyASD for NLaASD

The nominal unification problem in the language NLaASDP without any restriction seems to
be too hard (at least we did not find an algorithm to solve it). We discuss the reasons that
make the problem so hard, and which restrictions we introduce to handle it. One hint is
that already context unification for first-order terms is a quite hard problem. Its solvability
was open for decades and recently shown to be in PSPACE [14]. That is why we restrict the
input and allow only single occurrences of the same context-variable. A further complication
is permutation-variables, since nominal unification with permutation-variables but without
contexts, known as equivariant unification [7, 10], is known to be solvable in EXPTIME.
However, if context-variables and permutations are combined, then it is unclear how to do
constraint solving, since the (to be guessed) support of the permutations depends on the set
of captured atoms occurring in the instance of context-variables, and it is unknown how to
bound this number of atoms. For this reason, we forbid permutation variables in the input
problem (however allow them during execution of the unification algorithm) and consider
the specific class of so-called ASD1-unification problems:

I Definition 4.1 (ASD1-Unification Problem). An ASD1-unification problem is a nominal
unification problem (Γ,∇) in NLaASD (see Definition 2.6), where each context variable D
occurs at most once in Γ and all top-expressions ei of equations (e1

.= e2) ∈ Γ have a
dvc-constraint dvc(ei) ∈ ∇ (for i = 1, 2).
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We describe a unification algorithm to solve ASD1-unification problems. During the exe-
cution of the algorithm the invariant, that context variables occur only once in the equations,
must be kept and thus instantiations within the equations (which could duplicate occurrences
of context variables) are not permitted. For example, transitions using replacement starting
with S .= D[. . .], S .= e1, S

.= e2, . . . would introduce two occurrences of D, since the result
is D[. . .] .= e1, D[. . .] .= e2, . . .. As a consequence we propose a Martelli-Montanari-style
algorithm [21] that avoids instantiations within the unsolved equations.

The state during unification is a tuple (Γ,∇, θ,∆) using expressions from NLaASDP ,
where Γ is a set of sets of expressions, so-called multi-equations, ∇ is a set of freshness and
dvc-constraints and further constraints of Definition 3.5, θ is a substitution in triangle-form3,
represented as a set of components, and ∆ is a set of context-variables that are assumed to
be nonempty. We omit the component ∆, if it is not changed by the unification rules.

Multi-equations M = {e1, . . . , en} will sometimes be written as e1
.= e2

.= . . .
.= en, and

we write π·M to apply permutation π to all expressions in the multi-set, i.e. π·M is the
multi-equation {π·e1, . . . , π·en}. We will assume that the expressions in Γ are flattened,
using iteratively the rule (flatten) in Fig. 1, i.e., in (f e1 . . . en), λπ·X ′.e, and in D[e], the
expressions ei, e are of the form π·X, where X is an atom- or expression-variable.

For permutations, we assume that there is a compression scheme implementing sharing
using an SLP [20] where a permutation is a composition (i.e. like a string) of the basic
components (a b), (A a), (a A), (A B), P, P−1, and the expansion of a representation may be
exponentially long, and where the required operations on the permutations like composition
and inverting can be done in polynomial time. However, to keep the presentation simple, we
do not mention this compression and operations in the unification rules.

I Definition 4.2. The input of the non-deterministic algorithm NomUnifyASD is an ASD1-
unification problem (Γ,∇), where Γ is a set of equations and ∇ a set of dvc- and freshness
constraints, both over NLaASD. The internal data structure is a tuple (Γ,∇, θ,∆), over
NLaASDP . The algorithm finishes either with Fail, or, if Γ is empty and no failure rule
applies, with a tuple (∇′, θ,∆′). The rules of the algorithm NomUnifyASD are shown in
Figs. 2, 3, 4, 5, 6, which are partitioned into the following rule sets: The rule (flatten) in Fig.
1 is applied until no longer applicable. The variable-replacement and usual decomposition
rules are in Fig. 2, the rules for decomposing multi-equations with expressions of the form
D[. . .], and with function symbols or λ as top symbol are in Fig. 3, the decomposition rules
for multi-equations of expressions D[. . .] are in Fig. 4, where the starred rules (DDPRm*)
and (DDFrk*) are not used directly; the rules for guessing context-variables as empty or
nonempty are in Fig. 5, and the failure rules are in Fig. 6. Rules (fD), (λD) make one
(parallel) decomposition step, where rule (fD) first guesses a common first level of the hole
positions of all Di. Rule (DDPrf) guesses that one context is a prefix of the others; rule
(DDPRm) guesses a (maximal) common prefix of the contexts Di (such that it is a proper
prefix of all Di) and rule (DDFrk*) guesses that Di fork and the first level of the hole
positions of Di.

The priorities of rule application are the sequence as above, i.e. the rules in Fig. 2, 3, 4,
5, 6. Within the rule sets, for rules in Figs. 2, 3, the priority is the sequence as given in the
figures. For the rules in Figs. 4 and 5, within the rule sets the priority is the same. The
failure rules can be applied at any time.

3 A substitution in triangle-form is a shared representation of a substitution, e.g., the substitution in
triangle-form {x 7→ (f y z), y 7→ a, z 7→ λb.b} is the substitution {x 7→ f a (λb.b), y 7→ a, z 7→ λb.b}, i.e.
the substitution itself is idempotent.
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(flatten)
Γ ·∪{C[e] .= M}

Γ ·∪{C[S] .= M} ·∪{S .= e}
where C 6= [·], e is neither π · Si nor π ·Ai

and S is a fresh variable

Figure 1 The flatten-rule.

(Elm1)
(Γ ·∪{e .= e

.= M},∇, θ)
(Γ ·∪{e .= M},∇, θ)

(Elm2)
(Γ ·∪{{e}},∇, θ)

(Γ,∇, θ)

(Slv1)
(Γ ·∪{π1·S

.= π2·V
.= M},∇, θ)

(Γσ ·∪{π2·V
.= Mσ},∇σ, θ ∪ σ)

if S 6= V , V is an S- or A-variable or atom, and
σ = {S 7→ π−1

1 ·π2·V }

(Slv2)
(Γ ·∪{π1·A

.= π2·X
.= M},∇, θ)

(Γσ ·∪{π2·X
.=Mσ},∇∪{A=π−1

1 ·π2·X}, θ∪σ)
if X 6=A is an atom or atom-
variable, and σ={A 7→π−1

1 ·π2·X}

(Slv3)
(Γ ·∪{π1·X1

.= π2·X2
.= M},∇, θ)

(Γ ·∪{π1·X1
.= M},∇∪ {X1=π−1

1 ·π2·X2}, θ)
if X1, X2 are atom-variables s.t.
X1=X2, or X1, X2 are atoms

(Slv4)
(Γ ·∪{π·S .= e

.= M},∇, θ)
(Γ ·∪{e .= M},∇, θ ∪ {S 7→ π−1·e})

if S does not occur in M , e or Γ

(Mrg)
(Γ ·∪{π1·S

.= M1} ·∪{π2·S
.= M2},∇, θ)

(Γ ·∪{S .= π−1
1 ·M1

.= π−1
2 ·M2},∇, θ)

(Slv5)
(Γ ·∪{S .= π·S .= M},∇, θ)

(Γ ·∪{S .= M},∇ ·∪{supp(π)#S},∇, θ)

(ff)
(Γ ·∪{(f e1 . . . ear(f))

.= (f e′1 . . . e′ar(f))
.= M},∇, θ)

(Γ ·∪{(f e1 . . . ear(f))
.= M} ·∪{e1

.= e′1, . . . , ear(f)
.= e′ar(f)},∇, θ)

(Abstr)
(Γ ·∪{λX.e1

.= M},∇, θ)
(Γ ·∪{λA′1.e1

.= M},∇ ·∪{A′1 = X}, θ)
if X is of the form a or π·A where π is
not trivial, and A′1 is fresh

(λλ)
(Γ ·∪{λA1.e1

.= λA2.e2
.= M},∇, θ)

(Γ ·∪{λA1.e1
.= M, e1

.= (A1 A2)·e2},∇ ·∪{A1#λA2.e2}, θ)

Figure 2 Rules of NomUnifyASD for Variables and Decomposition.

(eD)
(Γ ·∪{e1

.= (π·D)[e2] .= M},∇, θ,∆)
(Γ ·∪{e1

.=e2
.=M},∇[[·]/D], θ∪{D 7→ [·]},∆)

if tops(e1) is an atom variable, atom,
or tops(e1)=S, S occurs in e2; D 6∈∆

(fD)
(Γ ·∪{f e1 . . . en

.= (π1·D1)[e′1] .= . . .
.= (πm·Dm)[e′m]},∇, θ,∆)

(Γ ·∪{{ek} ∪ {Di,1[e′i] | k = j(i), i ∈ {1, ..,m}} | k = 1, . . . , n},
∇, θ ∪ {Di 7→ π−1

i ·(f e1 . . . Di,1︸︷︷︸
j(i)

. . . en) | i = 1, . . . ,m},∆)

if ∀i : Di ∈ ∆, and where context variables Di,1 for i = 1, . . . ,m are fresh
and where for all i = 1, . . . ,m, the index position j(i) of Di is guessed.

(λD)
(Γ ·∪{λX.e0

.= (π1·D1)[e1] .= . . .
.= (πm·Dm)[em]},∇, θ,∆)

(Γ ·∪{e0
.= (X A1)·(D1,1[e1]) .= . . .

.= (X Am)·(Dm,1[em])},
∇∪ {X #λAi.Di,1[ei] | i = 1, . . . ,m}, θ ∪ {Di 7→ π−1

i ·(λAi.Di,1)},∆)
if ∀i : Di ∈ ∆ and X is an atom or atom-variable and Ai, Di,1 are fresh

Figure 3 Rules of NomUnifyASD for F-D-Decomposition.



M.Schmidt-Schauß and D. Sabel 28:11

(DDPrf)
(Γ ·∪{(π1·D1)[e1] .= (π2·D2)[e2] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{e1

.= P2·((π2·D2,2)[e2]) .= . . .
.= Pn·((πn·Dn,2)[en])},

∇∪ {CA(D1)#π−1
1 ·((πi·Di)[ei]), i = 2, . . . , n}

∪{supp(Pi) ⊆ (CAO(π1·D1) ∪ CAO(πi·Di,1)) | i = 2, . . . , n},
θ ∪ {Di 7→ Di,1Di,2, Di,1 7→ π−1

i ·P
−1
i ·π1·D1 | i = 2, . . . , n},

∆ ∪ {Di,1 | i = 2, . . . , n}) where Di,1, Di,2, P2, . . . , Pn are fresh.

if ∀i:Di∈∆

(DDPRm)First apply (DDPRm*); then apply rule (DDFrk) to the resulting multi-equation.
(DDFrk) Apply (DDFrk*), then remove all introduced variables Si,j using (Slv4)

(DDPRm*)
(Γ ·∪{(π1·D1)[e1] .= (π2·D2)[e2] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{(π1·D1,1)[e1] .=P2·((π2·D2,1)[e2]) .= . . .

.=Pn·((πn·Dn,1)[en])},
∇∪ {CA(D1,0)#(π2·D2)[e2], . . . ,CA(Dn,0)#(πn·Dn)[en]}
∪ {supp(Pi) ⊆ (CAO(D1,0) ∪ CAO(Di,0)) | i = 2, . . . , n},

θ ∪ {D1 7→ (π−1
1 ·D1,0)D1,1, . . . , Dn 7→ (π−1

n ·Dn,0)Dn,1,

D2,0 7→ P−1
2 ·D1,0, . . . , Dn,0 7→ P−1

n ·D1,0},
∆ ∪ {Di,j | i = 1, . . . , n, j = 0, 1}) where Pi, Di,j are fresh.

if ∀i:Di∈∆

(DDFrk*)
(Γ ·∪{(π1·D1)[e1] .= . . .

.= (πn·Dn)[en]},∇, θ,∆)
(Γ ·∪{{(πi·D′i)[ei] | i ∈M1} ∪ {πi·Si,1 | i 6∈M1}}

·∪ . . . ·∪
{{(πi·D′i)[ei] | i ∈Mm} ∪ {πi·Si,m | i 6∈Mm}},∇, θ ∪ σ,∆)

where f with ar(f)≥2 and the index positions j(i) for i=1, . . . , n are guessed
such that |{j(i) | 1 ≤ i ≤ n}| ≥ 2; andMk := {h | j(h) = k} for k = 1, . . . ,m;
and σ = {Di 7→ (f Si,1 . . . D′i[·]︸︷︷︸

j(i)

. . . Si,m) | 1 ≤ i ≤ n} where D′i, Si,i′ are fresh.

if ∀i: Di∈∆

Figure 4 Rules of NomUnifyASD for D-D-decomposition.

(GuessDEmpty)
(Γ,∇, θ,∆)

(Γ[[·]/D],∇[[·]/D], θ ∪ {D 7→ [·]},∆)
If D 6∈ ∆, D occurs in Γ

(GuessDNonEmpty)
(Γ,∇, θ,∆)

(Γ,∇, θ,∆ ∪ {D})
If D 6∈ ∆, D occurs in Γ

Figure 5 Rules of NomUnifyASD for guessing D empty or nonempty.

(Clash)
(Γ ·∪{e1

.= e2
.= M},∇, θ)

Fail

if tops(e1) and tops(e2) are different atoms; or tops(e1)
and tops(e2) are atom, λ or a function symbol, and
tops(e1) 6= tops(e2); or tops(e1) is an atom or atom-
variable, and tops(e2) is λ or f ∈ F .

(Cycle)
(Γ ·∪{S1

.= e1
.= M1, . . . , Sn

.= en
.= Mn},∇, θ,∆)

Fail
if all ei are neither variables nor suspensions, all context variables occurring
in ei are in ∆, Si+1 occurs in ei for i = 1, . . . , n− 1, and S1 occurs in en

(eDFail)
(Γ ·∪{e1

.= (π·D)[e2] .= M},∇, θ,∆)
Fail

if tops(e1) is atom or an atom-variable,
or tops(e1)=S and S occurs in e2; D∈∆

Figure 6 Failure Rules of NomUnifyASD.
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I Example 4.3. For f aS2 S1
.= f S1 (λa.S3)S3 there is a substitution that equates the

expressions. However, if there are dvc-constraints for the top expressions then these cannot
be satisfied, since for example, the instantiation ρ(S3) = a cannot be α-renamed. Another
example is f S S .= f (λa.a) (λb.b), which is solvable by {S 7→ λa.a}: it does not lead to a
dvc-violation, since it is treated as instantiation modulo α.

We define the non-deterministic algorithm that checks satisfiability of the output con-
straints, where we give the justification later in Section 5. The algorithm exploits the
execution sequence of NomUnifyASD, since without this information a decision algorithm
appears to be impossible since permutation-variables as well as context-variables appear in
the constraint.

I Definition 4.4. The algorithm NomFreshASD operates on the output (∇, θ,∆) of
NomUnifyASD and uses the set of all atoms and atom-variables occurring in the exe-
cution sequence H leading to this output, and the number d of context-variables in the input.
It performs the following steps:
(I) Iteratively guess the solution of atom-variables, i.e. for an atom-variable A guess that

A is mapped by the solution to an already used atom in H, or to a fresh one, and
replace the atom-variable A accordingly in H. In the next iteration the fresh atom is
among the used ones. Let H ′ be the adjusted execution sequence. Note that the exact
names of fresh atoms are irrelevant. Thus there is only a linear number (w.r.t. the
number of used atoms) of possibilities for every atom-variable. Let MA be the set of
all atoms in the execution sequence H ′.

(II) Replace every expression-variable S that occurs in H ′ and that is not instantiated by
θ, by a constant c from the signature.

(III) Construct M∞ as a set of |MA| ∗ (d!)2 atoms by extending the set MA by further
fresh atoms, where d is the number of context-variables in Γ. Guess for every context-
variable D that occurs in Γ,∇, θ and that is not instantiated by θ, the ordered set of
captured atoms from the given set of atoms.

(IV) Guess the permutation-variables as bijections on the set M∞.
(V) Test the freshness constraints, equality, disequality, extended freshness constraints, and

non-emptiness constraints, which are now immediately computable. To test whether
the θ violates the dvc in Γ, use dynamic programming to compute the sets FA,BA for
every expression- and context-variable, and CA(D) for the context-variables D that
are not instantiated by θ. Then test the dvc-property, which is possible in polynomial
time.

5 Properties of NomUnifyASD and NomFreshASD

An example which shows that implicitly requiring the dvc is not stable, in contrast to
requiring explicit dvc-constraints, is {S1

.= f (λa.a) (λa.a)}. It does not satisfy the dvc,
but after applying (flatten), we obtain {S1

.= (f S (λa.a)), S .= λa.a} which has the solution
{S 7→ λa.a, S1 7→ (f (λa′.a′) (λa.a)). If the initial set ∇ contains dvc(f (λa.a) (λa.a)),
then there is no solution before and after flattening, since (flatten) cannot be applied to
expressions within ∇.

I Lemma 5.1. If the input is (Γ,∇), then the application of (flatten) to a subexpression of
e of the equations Γ does not change the set of solutions.

I Proposition 5.2. For a nominal unification problem (Γ,∇) in NLaASD as input, the
non-deterministic algorithm NomUnifyASD terminates after a polynomial number of steps.
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Proof. Let maxArity be the maximal arity of function symbols in the signature. Let
µ1 := µ1,1 + 2 ∗ maxArity ∗ µ1,2 where µ1,1 is the number of expressions in Γ and µ1,2 is the
number of occurrences of function symbols and λ-s in Γ. Let µ2 be µ1,1 minus the number
of multi-equations. Let µ3 be the pair of the number of occurrences of context-variables in
Γ and the number of context-variables in Γ which are not in ∆. Let µ4 be the number of
occurrences of expressions λX, where X is ∅·a, π·a, or π·A and π is nontrivial. The following
table lists the relation between Γ before and after the application of the rule or subalgorithm,
where GD(N)E abbreviates rules (GuessDEmpty) and (GuessDNonEmpty).

rule µ1 µ2 µ3 µ4

any rule of Fig. 2 except Abstr >
Abstr = = = >

eD = = >

rule µ1 µ2 µ3

fD >

λD >

GD(N)E = = >

rule µ1 µ2 µ3

DDPrf = = >

DDPRm= >

DDFrk = >

It can be verified for (Elm1), (Elm2), (Slv1), (Slv2), (Slv3), (Slv4), (Mrg), (Slv5), (ff),
(Abstr), (λλ), and (eD) by a simple check. It is correct for (fD) and (λD), since f e1 . . . em is
removed, which counts 2*maxArity. (DDPrf) removes one occurrence of a context-variable.
(DDFrk) splits the context-directions, and first introduces expression-variables Si, which are
then removed. Hence the number of expressions in multi-equations is the same, but there
are more multi-equations. For (DDPRm), it suffices to check (DDFrk). The measure µ3
is not increased by any rule, and µ2 ≤ µ1, and µ4 ≤ µ1, hence the number of executions
of rules is polynomial. Since there are multiple sub-steps, we have to argue that a single
rule application can be done in polynomial time. The number of steps within the rules is
polynomial due to the strict decrease w.r.t. the orderings. J

I Lemma 5.3. If all top expressions of the initial set of equations Γ are restricted by the
dvc, then this also holds for all top-expressions in the equations in the sequence of rule
executions of the algorithm NomUnifyASD.

I Proposition 5.4. Inspecting the details of all rules of NomUnifyASD shows soundness:
The solutions of the final data structure are also solutions of the input. The following rules
of the algorithm NomUnifyASD do not lose any solutions, i.e. for every solution ρ of the
data structure Q before application, there is a solution ρ′ of the output data structure Q′,
such that ρ(X) ∼α ρ′(X) for all atom-, expression-, context- and permutation-variables X
occurring in Q: Rules from Fig. 2, rules (eD), (λD) from Fig. 3, and the failures rules.

I Proposition 5.5. The algorithm NomUnifyASD is complete: If ρ is a solution of the
intermediate data structure Q, Γ is not empty and no failure rule applies, then there is a
possible rule application, such that there is solution ρ′ of the output Q′, and ρ(X) ∼ ρ′(X)
for all atom-, expression-, context- and permutation-variables X occurring in Q.

We now consider the correctness and complexity of NomFreshASD.

I Lemma 5.6. Let H be an execution of NomUnifyASD starting with S0 := (Γ0,∇0, θ0,∆0)
where Γ0 = Γ, context variables occur at most once, and θ0,∆0 are trivial or empty. Let the
sequence H end with Sout = (∅,∇out, θout,∆out), and let ρ be a solution of the input as well
as of the output Sout. Then there is also a solution ρ′ that uses only a set of atom VA∞
with |VA∞| ≤ |VA| ∗ ((d!)2), where the visible set VA of atoms VA = {a | a occurs in H} ∪
{Aρ | A occurs in H}, and where d is the number of context-variables in Γ.

I Proposition 5.7. Let (∇out, θout,∆out) be the output of NomUnifyASD for input (Γ,∇).
The algorithm NomFreshASD decides satisfiability of the output in NEXPTIME in the size
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of the input, where the main components are |(Γ,∇)|∗((d!)2), where d is the number of context-
variables in Γ. For a fixed upper bound on the number of context-variables, satisfiability can
be checked in NP time.

I Remark. There is a complexity jump between freshness constraints and dvc-constraints in
NLaSD, since satisfiability of freshness constraints in NLaSD is in PTIME whereas satisfiability
of dvc-constraints in NLaSD is NP-hard.

Combining Propositions 5.5, 5.2, and 5.7 shows:

I Theorem 5.8. For Γ,∇ as input the algorithm NomUnifyASD terminates and is sound
and complete. The computation of some output (∇′, θ′,∆′) can be done in NP-time, and the
collecting version of the algorithm produces at most exponentially many outputs (∇′, θ′,∆′).
Decidability of solvability of output constraints, and hence of the input, is in NEXPTIME,
and if the number of context-variables is fixed, then in NP time.

I Theorem 5.9. Solvability of ASD1-unification problems is in NEXPTIME.

6 Specializations, Applications and Examples

We consider nominal unification in NLaS with freshness and dvc-constraints extending the res-
ult of [37] (see Theorem 2.7) by allowing dvc-constraints and by restricting NomUnifyASD

I Theorem 6.1. The nominal unification problem in NLaS where freshness- and dvc-
constraints are permitted in ∇ is solvable in polynomial time. Moreover, for solvable (Γ,∇),
there exists a most general unifier of the form (∇′, θ) which can be computed in polynomial
time, i.e., the problem class is unitary.

Proof. We assume that the algorithm computes in polynomial time a unifier (∇′, θ) consisting
of a substitution θ and a constraint set ∇′, where in addition we assume that the output
substitution θ is represented in triangle-form and that it is of polynomial size (see [33] for the
technique). Soundness and completeness of computing only a single execution path follows
from Proposition 5.4 since there are no permutation-variables and no context-variables.

For the final satisfiability test, we instantiate the expression-variables in the codomain of
θ with a constant from the signature. Note that also λa.a could be used if there is no such
constant. For expression-variables S, it is possible to compute FA(Sθ) in polynomial time
using dynamic programming. The bound atoms in FA(Sθ) are irrelevant, since these will
be renamed by the substitution process which is done modulo α. Then the check for every
constraint dvc(e), whether eθ satisfies the dvc, can be performed in polynomial time. J

The application of NomUnifyASD to NLAS also yields at most one most general unifier,
however, the complexity to check solvability is increased, since already the solvability of
freshness constraints in NLAS is NP-hard [33].

We now consider applications and examples.

I Example 6.2. As a first example, we consider the equation λA1.λA2.A1
.= λA1.λA2.A2

together with dvc-constraints for both expressions. The algorithm NomUnifyASD finds a
potential candidate for a solution, which sets A1 7→ A2. However, constraint checking using
NomFreshASD fails, since for any instantiation which instantiates A1 and A2 with the
same atom, the dvc does not hold.

As a second example, consider the input equation λA1.λA2.A1
.= λA2.λA1.A2 together

with dvc-constraints for both expressions. The algorithm NomUnifyASD finds a potential
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candidate for a solution, which is the identity substitution for A1 and A2. Algorithm
NomFreshASD shows satisfiability of the dvc-constraints, where a requirement is that A1
and A2 are set to different atoms.

As a third simple example, consider the equation D1[A] .= D2[B] with dvc-constraints for
the input and the additional constraint A 6= B. We consider the execution that applies rule
(DDPrf): This results in the potential solution which sets A 7→ P2 ·B, D2 7→ D2,1, D2,1 7→
P−1

2 ·D1 and adds the constraints CA(D1)#D2[B], supp(P2) ⊆ CAO(D1) ∪ CAO(D2,1) to
∇. Algorithm NomFreshASD detects satisfiability, for instance, by instantiating A 7→ a,
B 7→ b, and then guessing CAO(D1) = {a} and P2 = (a b).

We now consider reductions and transformation rules. Most of them in the application
domain of functional programming languages require freshness and/or dvc-constraints to
exclude invalid instances of the rules.

I Example 6.3. The rule app (λA.S) S′ → let A = S′ in S is a sharing-variant of β-
reduction. It needs the constraint dvc(app (λA.S) S′) if let is recursive, to ensure that for
the instances, there are no free occurrence of Aρ in S′ρ.

The rule let A = S in D[A]→ let A = S in D[S] copies a single expression represented
by the variable S to the target position represented by context-variable D. The constraint
dvc(let A = S in D[A]) prevents capturing in instances, s.t. Aρ is not captured by Dρ.
The constraint dvc(let A = S in D[S]) prevents that Dρ captures atoms that are free in
Sρ. Since instances Sρ are α-renamed in (let A = S in D[S])ρ, these constraints suffice.

I Example 6.4. We describe an exemplary unification problem that occurs in correct-
ness proofs of program transformations. A reduction rule in the let-calculus of [2] is
letAx=(letAy=Sy inSx) inSr → letAy=Sy in letAx=Sx inSr with dvc-constraint
dvc(letAx=(letAy=Sy inSx) inSr) that prevents the occurrence of Ay as free atom in Sr,
and thus an unwanted capture in the right hand side. To check whether there is a (nontrivial)
overlap of the left hand side of the rule with itself (as a transformation) we form the uni-
fication equation letAx=(letAy=Sy inSx) inSr

.= D[letA′x=(letA′y=S′y inS′x) inS′r]
where the context-variable D is intended as a representation of the reduction strategy4. For
correct application of the rule, the dvc-constraints dvc(letAx=(letAy=Sy inSx) inSr)
and dvc(D[letA′x=(letA′y=S′y inS′x) inS′r]) are required. We omit the case that D 7→ [·]
and analyze the instantiation which sets D 7→ (letAx=D1 inSr). We obtain the equa-
tion letAy=Sy inSx

.= D1[letA′x=(letA′y=S′y inS′x) inS′]. Guessing D1 7→ [·] results
in letAy=Sy inSx

.= letA′x=(letA′y=S′y inS′x) inS′r. Guessing Ay 7→ A′x, we obtain as
solution Sy

.= (letA′y=S′y inS′x), Sx
.= S′r. If we alternatively guess Ay 6= A′x, we obtain as

solution Sy
.= (letA′y=S′y inS′x) and Sx

.= (AxA′y)·S′r together with the constraint Ay #S′r.

7 Conclusion and Further Work

We described and analyzed a nominal unification algorithm for a language with higher-order
expressions and variables for atoms, expressions and contexts, where unification problems
consist of unification equations, freshness and dvc-constraints. Further work is to extend
and adapt the unification and constraint solution method to more constructs of higher-order
languages, like a recursive-let, or context-classes.

4 In general, the reduction strategy has to be represented by context classes as in [31].
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A Detailed Proofs

A.1 Completeness of NomUnifyASD
I Definition A.1. We introduce n-contexts for some n ≥ 1 (also called multi-contexts)
in NLa. These are expressions of NLa extended by constants (holes) [·]i, i = 1, . . . , n,
where every hole occurs at most once. For n ≥ 1 and two n-contexts C1, C2 the relation
C1 ∼α C2 holds, iff for all n-tuples a1, . . . , an of (perhaps equal) atoms ai, it holds that
C1[a1, . . . , an] ∼α C2[a1, . . . , an] as expressions, which is a generalization from contexts to
multi-contexts.

The following lemma helps in the completeness proof of rule (DDFrk).

I Lemma A.2. Let n ≥ 1, C1, C2 be NLa-n-contexts, and e1,i, e2,i, i = 1, . . . , n be NLa-
expressions, such that the corresponding hole positions of C1 and C2 are identical, and
such that C1[e1,1, . . . , e1,n] and C2[e2,1 . . . , e2,n] satisfy the dvc. Then C1[e1,1, . . . , e1,n] ∼α
C2[e2,1, . . . , e2,n] iff the following holds:

CA(C1) #C2[e2,1 . . . , e2,n], and there is a permutation π that does not change free atoms
in C2[e2,1 . . . , e2,n] with C1 ∼α π·C2 and e1,i ∼α π·e2,i for all i, π maps CAO(C2) to
CAO(C1), and supp(π) ⊆ CAO(C1) ∪ CAO(C2).

I Proposition 5.5. The algorithm NomUnifyASD is complete: If ρ is a solution of the
intermediate data structure Q, Γ is not empty and no failure rule applies, then there is a
possible rule application, such that there is solution ρ′ of the resulting data structure Q′, and
ρ(X) ∼ ρ′(X) for all atom-, expression-, context- and permutation-variables X occurring in
Q.

Proof. Let ρ be a solution of the current state. We scan the cases:
1. We can assume that all multi-equations have at least two expressions since otherwise rule

(Elm1) is applicable.
2. We can also assume that all context-variables that occur in Γ are contained in ∆, by

applying either (eD), or one of the rules (GuessDEmpty) or (GuessDNonEmpty), where
the choice is directed by the solution.

3. If there is a multi-equation that has only context-variables as top symbols, then one of
the rules from Fig. 4 is applicable, depending on the solution ρ, and there is a solution ρ′
of the output that extends ρ. The condition that top-expressions in the input satsify the
DVC and that the input are ASD1-unification problems is necessary for the application
of Proposition 3.3.

4. If there is a multi-equation such that all but one expression have context-variables as top
symbols, then there are several possibilities: Since D ∈ ∆ for all D, one of the rules from
Fig. 3 is applicable, since either the context-variables’ instances have a common prefix or
not. Proposition 3.3 and the knowledge on permutations show that the execution of the
rules is possible. In any case, there will be a solution ρ′ after the application that is an
extension of ρ (on the variables of Q).

5. For the other cases there are at least two expressions in the multi-equation, which do
not have a context-variable as top-symbol. The failure rules are not applicable, since
otherwise, there is no solution. If the top symbols of two expressions are λ, or function
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symbols, then rules (ff), (Abstr) or (λλ) can be applied and there is a solution ρ′ extending
ρ after the application. If there are two expressions of the form π·X, where X is an atom
or expression-variable, then (Slv1), (Slv2), (Slv3), or (Slv4) is applicable, and there is a
solution ρ′ extending ρ after the application. Similar for the case where tops(.) yields
atom twice. If one expression is of the form π·X, and the other is not of this form, then
we apply (Slv4) if this is possible.

6. The final case is that for all equations, the equation pattern permits only applications
of rule (Slv4), all multi-equations have only two expressions, but the conditions on
non-containment of S in rule (Slv4) prevent this. Defining a quasi-ordering on the
expression-variables generated by the containment ordering over equations shows that
there are no finite instance-expressions for some expression-variable, which is impossible,
since we have assumed that there are solutions. Indeed in this case a failure rule would
apply. J

A.2 Satisfiability of Constraints of NomUnifyASD
I Lemma 5.6. Let H be a sequence of executions of NomUnifyASD starting with S0 :=
(Γ0,∇0, θ0,∆0) where Γ0 = Γ, the condition on the input are as stated in Definition 4.4, and
θ0,∆0 are trivial or empty. Let the sequence H end with Sout = (∅,∇out, θout,∆out), and
let ρ be a solution of the input as well as of the output Sout. Then there is also a solution
ρ′ that uses only a set of atom VA∞ with |VA∞| ≤ |VA| ∗ ((d!)2), where the visible set VA
of atoms VA = {a | a occurs in H} ∪ {Aρ | A occurs in H}, and where d is the number of
context-variables in Γ.

Proof. We show a stronger claim by induction on the steps of the execution: Let DF and
DP be the set of context-variables D1 in the applications of (DDPrf) in H and D1,0 in the
application of (DDPRm) in H, and Pi, i = 2, . . . , n in the applications of (DDPrf) and
(DDPRm), resp. Let us call these the focused context-variables and the focused permutation-
variables in the respective rule applications. These are the set of context-variables that
are moved to the codomain of θ. The permutation-variables are exactly all the generated
ones in H. Let VA = {a | a occurs in H} ∪ {Aρ | A occurs in H}. Then the size of VA is
polynomial, since the execution sequence H can be generated in polynomial time according
to Proposition 5.2. The claim is: there is a solution ρ′ that uses only the set VA∞ of atoms,
where VA0=VA, and VAi is constructed below, such that |VAi+1| ≤ |VAi|∗d2, where d is the
number of context-variables in the input, and where |VAi+1|>|VAi| only if rule (DDPrf) or
(DDPRm) was executed. The construction implies VAi ⊆ VAi+1. The final VA∞ is defined
as the final VAi.

We define the construction: Let i be an index in H and Si = (Γi,∇i, θi,∆i) be a state in
H with set VAi, such that the next step is (DDPrf) or (DDPRm) leading to Si+1. Let us
assume that it is the first occasion in H such that a focussed context-variable or permutation-
variable that is in the focus of a rule application (DDPrf) or (DDPRm), uses an atom a′ in
its instances under ρ, where a′ 6∈ VAi. Then the following changes are made to the solution
ρ, resulting in ρ′ and a modified execution sequence H ′.

First consider the modification concerning the rule (DDPrf):
Using the same notation as in the rule application, we consider the instances
(CAO(π1·D1)ρ), (CAO(P2·π2·D2,1)ρ),. . . , (CAO(Pn·πn·Dn,1)ρ). We can assume that
(π1·D1)ρ, (P2·π2·D2,1)ρ,. . . , (Pn·πn·Dn,1)ρ only consist of λak,1, . . . , ak,m.[·] where
m = |CAO(π1·D1)|, by modifying the solution ρ, which is without effect on the further
execution of the algorithm NomUnifyASD and solvability. We show that the number
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of binders can be bounded: Luckily, we can also eliminate the binder at position j,
if ak,j is not in VAi for all k: eliminate the binder j in every context above, then
modify the instantiation of the permutation-variables Pk such that these map exactly
(πi·Di,1)ρ to CAO(π1·D1) for k ≥ 2, which is justified by Proposition 3.3. Hence Pk
does not need any extra fresh atoms in its support. Using the thus modified ρ, we
replace all atoms (as expressions) by the constant c at the following positions: If the
atom at this position in the instance eiρ is an atom ak,j for some k.
Since binders cannot be repeated, an upper bound on the maximal number of binders
for a single context-variable is |Vi| ∗ d′, where d′ is the number of context-variables in
Γi. The number of all used atoms in the instances is at most |Vi| ∗ d′ ∗ d′.
Let ρ′ be ρ after these modifications. The ground substitution ρ′ is a solution of the
state Si+1, and such that the same execution still leads to a final state that covers ρ′.
There is no effect on the execution of the rules of the algorithm, since the changes are
only in the solution.

Now consider the modification for the rule (DDPRm). It is similar to the previous case,
but we detail it, since the names of variables are different.

Consider the instances (CAO(π1·D1,0)ρ), . . . , (CAO(πn·Dn,0)ρ). We can assume that
(πk·Dk,0)ρ only consist of λak,1, . . . , ak,m.[·] where m = |CAO(D1,0)|, by modifying the
solution ρ, which is without effect on the execution of the algorithm NomUnifyASD
and solvability. We can also eliminate the binder at position j, if ak,j is not in VAi

for all k, as follows: eliminate the binder j in every (πk·Dk,0)ρ, then modify the
instantiation of the permutation-variables Pk such that these map exactly CAO(Dk,0)
to CAO(D1,0) for k ≥ 2. Using the thus modified ρ, we replace atoms by the constant
c at all the following positions: If the atom at this position in the instance eiρ is an
atom with erased binder: ak,j for some k.
An upper bound on the maximal number of binders for a single context-variable is
|Vi|∗d′∗d′ where d′ is the number of context-variables in Γi.
Let ρ′ be ρ after these modifications. The ground substitution ρ′ is a solution of the
state Si+1, and such that the same execution still leads to a final state that covers ρ′.

The number of executions of rules (DDPrf), (DDPRm) is at most the number of differ-
ent context-variables. This holds, since (DDPrf) removes one context-variable, and since
(DDPRm) calls (DDFrk), and (DDFrk) can be applied also at most as often as there are expres-
sions with topmost context-variables. As additional argument, all other rules keep the number
of context-variables, and there is never a merge of two multisets that only contain context-
variables. The estimation for the maximal number of variables is that in (CAO(π1·D1)ρ),
there can at most be di ∗ |Vi| variables, where di is the number of context-variables in Γi.
Since there is an iterated multiplication, we obtain |VA| ∗ d ∗ d ∗ (d− 1) ∗ (d− 1) . . ., which
leads to the estimation as claimed.

This change can be iterated until there are no (DDPrf), (DDPRm)-steps having an index
j where completely fresh variables are used for all context-variables in the multi-equation.
Finally, we have constructed VA∞, and the modified solution ρ′. J
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1 Introduction

In higher-order dependent type theories every type is a term and hence has a type. As
expected, having a type of all types which is a term of its own type, leads to inconsistencies
such as Girard’s paradox [7] and Hurken’s paradox [9]. To avoid this, a predicative hierarchy
of universes is usually employed. The predicative Calculus of Inductive Constructions (pCIC)
at the basis of the Coq proof assistant [16], additionaly supports cumulativity: as a Pure
Type System with subtyping, it includes the rule: ΠΓ.Typei ≤ ΠΓ.Typei+1.

Earlier work [15] on universe-polymorphism in Coq allows constructions to be polymorphic
in universe levels. The quintessential universe-polymorphic construction is that of categories:

Record Categoryi,j := { Obj : Type\[@{i}; Hom : Obj → Obj → Type\]@{j}; · · · }.1

However, pCIC does not extend the subtyping relation (induced by cumulativity) to
inductive types. As a result, there is no subtyping relation between distinct instances of a
universe-polymorphic inductive type. That is, for a category C, having both C : Categoryi,j

and C : Categoryi′,j′ is only possible if i = i′ and j = j′.
In this work, we build upon the preliminary and in-progress work of Timany and Jacobs [17]

on extending pCIC to pCuIC (predicative Calculus of Cumulative Inductive Constructions).

1 Records in Coq are syntactic a special form of inductive types. Type@{i} is Coq’s syntax for Typei.
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In pCuIC, subtyping of inductive types no longer imposes the strong requirement that
both instances of the inductive type need to have the same universe levels. In addition,
in pCuIC we consider two inductive types, that are in mutual cumulativity relation, to
be judgementally equal. This cumulativity relation is also extended to the constructors of
inductive types, resulting in a very lax criteria for conversion of constructors. In pCuIC,
in order for a term C : Categoryi,j to have the type Categoryi′,j′ , i.e., for the cumulativity
relation Categoryi,j � Categoryi′,j′ to hold, it is only required that i ≤ i′ and j ≤ j′. This
is indeed what a mathematician would expect when universe levels of the type Category are
thought of as representing (relative) smallness and largeness. For more details on representing
relative size reasoning in category theory using universe levels see Timany and Jacobs [18].

Contributions. Timany and Jacobs [17] give an account of then work-in-progress on ex-
tending pCIC with a single rule for cumulativity of inductive types. The authors show
the soundness of a rather restricted subsystem their system. In this paper, we extend and
complete this work, through the following contributions:

We extend Timany and Jacobs [17] to support lowering levels as well as lifting them.
For instance, given universe levels i < j and a type A : Typei, the old system of Timany
and Jacobs [17] only allowed the subtyping listi A � listj A. Our generalization of
the subtyping relation for inductive types also allows listj A � listi A and furthermore
judgementally equates them.Similarly for constuctors, it justifies nili A ' nilj A, rendering
universe annotations computationally irrelevant in this case.
This generalization allows universe polymorphism to subsume the functionality of template
polymorphism, a feature of Coq which allows under certain conditions two instances of a
non-universe-polymorphic inductive type at different universe levels to be unified.
We prove soundness of cumulativity by giving a model in ZFC which builds on the one of
Lee and Werner [10]. This model naturally supports cumulativity for inductive types, as
most set-theoretic models will. However, the argument for consistency in [10] assumes
strong normalization to model recursive functions, which already implies consistency. We
solve this problem by resorting to eliminators instead of the fixpoint and case constructs.
Cumulativity of inductive types as presented in this paper is integrated in the stable
version 8.7 of Coq [16]. We discuss remaining issues regarding the replacement of
template polymorphism by universe polymorphism with cumulative inductive types.
We highlight two applications of Cumulative Inductive Types: one to the formalization
of the Yoneda lemma, and the other one to the construction of definitional translations /
syntactic models of type theories.

Structure of the paper. In §2 we present the system pCIC. Section 3 discusses universes
in pCIC, universe-polymorphic constructions and also how template polymorphism treats
monomorphic constructions. In §4 we define the pCuIC and describe how the cumulativity
relation is extended to inductive types. In §5 we present our model of pCuIC in ZFC set
theory and prove soundness of pCuIC. Section 6 briefly describes the implementation of
pCuIC in Coq and §7 two applications of Cumulative Inductive Types. In Section 8 we give
a short discussion of related and future work. We conclude with a discussion in §9.

2 Predicative calculus of inductive constructions (pCIC)

In this section we give a short account of the system pCIC, presented with an equality
judgment. Note that this system does not feature universe polymorphism. We will discuss
universe polymorphism in Section 3. The full system pCuIC (and pCIC being its sub-
system) can be found in Timany and Sozeau [19]. The sorts of pCIC are as follows:



A. Timany and M. Sozeau 29:3

WF-ctx-hyp
Γ ` A : s x 6∈ dom(Γ)

WF(Γ, x : A)

WF-ctx-def
Γ ` t : A x 6∈ dom(Γ)
WF(Γ, (x := t : A))

Prop
WF(Γ)

Γ ` Prop : Typei

Hierarchy
WF(Γ) i < j

Γ ` Typei : Typej

Let
Γ, (x := t : A) ` u : B

Γ ` letx := t : A inu : B [t/x]

App
Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B [N/x]

Var
WF(Γ) x : A ∈ Γ or (x := t : A) ∈ Γ

Γ ` x : A

App-eq
Γ `M 'M ′ : Πx : A.B Γ ` N ' N ′ : A

Γ `M N 'M ′ N ′ : B [N/x]

Prod
Γ ` A : s1 Γ, x : A ` B : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B : s3

Lam
Γ, x : A `M : B Γ ` Πx : A.B : s

Γ ` λx : A.M : Πx : A.B

Prod-eq
Γ ` A ' A′ : s1 Γ, x : A ` B ' B′ : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B ' Πx : A′. B′ : s3

Figure 1 An excerpt of the typing rules for the basic constructions.

Prop, Set = Type0, Type1, Type2, . . . We write the dependent product (function) type as
Πx : A.B. This is the type of functions that given t : A, produce a result of type B [t/x].
We write lambda abstraction in the Church style, λx : A. t. The term letx := t : A inu is
the Church style let binding. We write function applications as juxtapositions, e.g., M N .
Figure 1 shows an excerpt of the typing rules for these basic constructions.

There are three different judgements in this figure: well formedness of typing contexts
WF(Γ), the typing judgement, Γ ` t : A, i.e., term t has type A under the typing context
Γ, and judgemental equality, Γ ` t ' t′ : A, i.e., terms t and t′ are judgementally equal
terms of type A under the typing context Γ. Most of the basic constructions (wherever it
makes sense) come with a rule for judgemental equality. These rules indicate which parts
of the constructions are sub-terms that can be replaced by some other judgementally equal
term. For example, the rule Prod-eq states that the domain and codomain of (dependent)
function types can be replaced by judgementally equal terms. The relation Rs(s1, s2, s3)
determines the sort of the product type based on the sort of the domain and codomain.
The relation is defined as follows: Rs(Typei, Typej , Typemax{i,j}), Rs(Prop, Typei, Typei) and
Rs(s, Prop, Prop). Note that the impredicativity of the sort Prop is enforced by this relation.

Inductive types. In this paper we consider blocks of mutual inductive types that live in
predicative universes. We avoid inductive types in Prop because they add extra complexity
to the construction of set theoretic models. On the other hand, they can be encoded using
their Church encoding. For instance, the type False and conjunction of two predicates can
be defined as follows:
Definition conj (P Q : Prop) := forall (R : Prop), (P → Q → R) → R.
Definition False := forall (P : Prop), P.

We write Indn {∆I := ∆C} for an inductive block where n is the number of parameters,
∆I is list of inductive types of the block and ∆C is the list of constructors. The arguments
of an inductive type that are not parameters are known as indices. The following are some
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Ind-WF
In(Γ,∆I ,∆C) (A ≡ Πp : P.Πm : M.Ad Γ ` A : sd for all (d : A) ∈ ∆I)
(T ≡ Πp : P. T ′ Γ,∆I , p : P ` T ′ : Ad for all (c : T ) ∈ ∆C if c ∈ Constrs(∆C , d))

WF(Γ, Indn {∆I := ∆C})

Assuming D ≡ Indn {∆I := ∆C} ∈ Γ and WF(Γ):

Ind-type
di ∈ dom(∆I)

Γ ` D.di : ∆I(di)

Ind-constr
c ∈ dom(∆C)

Γ ` D.c : ∆C(c)
[ #       »∆I .d/

#»

d
]

Ind-Elim
dom(∆I) = {d1, . . . , dl} dom(∆C) = {c1, . . . , cl′}

Γ ` Qdi : Π #»x : #»
A. (di #»x )→ s′ where ∆I(di) ≡ Π #»x : #»

A. s for all 1 ≤ i ≤ l
Γ ` t : D.dk #»m Γ ` fci : ξ

#»
Q
D (ci,∆C(ci)) for all 1 ≤ i ≤ l′

Γ ` Elim(t;D.dk;Qd1 , . . . , Qdl )
{
fc1 , . . . , fcl′

}
: Qdk

#»m t

Figure 2 Typing rules for inductive types and eliminators.

of the examples of inductive types written in this format: natural numbers, lists, vectors and
a mutually inductive encoding of forests respectively.

Ind0{nat : Set := Z : nat, S : nat → nat}
Ind1{list : ΠA : Set. Set := nil : ΠA : Set. list A, cons : ΠA : Set. A→ list A→ list A}
Ind1{vec : ΠA : Set.nat → Set :=
vnil : ΠA : Set. vec A Z, vcons : ΠA : Set.Πn : nat. A→ vec A n→ vec A (S n)}
Ind0{FTree : Type0,Forest : Type0 :=
leaf : FTree,node : Forest → FTree,Fnil : Forest,Fcons : FTree → Forest → Forest}

Figure 2 shows the typing rules for inductive types and their eliminators. Rule Ind-WF
describes when an inductive type is well-formed. Here, Adi is a sort that is called the arity
of the inductive type di. This rule requires that all inductive types and constructors of the
block are well-typed. The set Constrs(∆C , d) is the set of constructors in ∆C that produce
something of type d. The proposition In(Γ,∆I ,∆C) describes the syntactic constraints for
well-formedness of an inductive block. For precise details see our extended technical appendix
[19]. It requires that all inductive types and all constructors of the block have as their first
arguments the parameters of the block, e.g., A in list above. The parameters must be fixed
for the whole block. In particular, the codomain type of each constructor must construct
an inductive type that is applied to the parameters of the block, i.e., every constructor of
list must construct a term of type list A. All inductive types above satisfy these criteria.
Both constructors of the type vec, for instance, start with the argument A : Type0 and also
they both construct a vector vec A n for some natural number n. Moreover, all arguments
of constructors that are vectors take the same parameter A. This is the essential difference
between parameters and indices. In addition, In(Γ,∆I ,∆C) also requires that all occurrences
of inductive types of the block in any of the constructors of the block are strictly positive.
I Remark. Note that the names of inductive types and constructors of an inductive block in
a typing context are not part of the domain of that context. We never refer to an inductive
type or constructor without mentioning the block. In particular, we require for well-formed
contexts that no variable appears in the domain of the context more than once. This
restriction does not apply to inductive types and constructors in mutual inductive blocks.
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Beta
Γ, x : A `M : B Γ, x : A ` B : s Γ ` N : A

Γ ` (λx : A.M) N 'M [N/x] : B [N/x]

Eta
Γ ` t : Πx : A.B

Γ ` t ' λx : A. t x : Πx : A.B

Figure 3 An excerpt of judgemental equality rules.

Eliminators. In this work, we consider eliminators for inductive types as opposed to Coq’s
structurally recursive definitions, i.e., Fixpoints and match blocks in Coq. Note, however, that
these can be encoded using eliminators as they are presented here [12] using the accessibility
proof of the subterm relation, definable for any (non-propositional) inductive family.

Rule Ind-Elim in Figure 2 describes the typing for eliminators. Inductive types in a
mutual inductive block can appear in one another. Hence, we define the elimination of
inductive types for the entire block. We write Elim(t;D.dk;Qd1 , . . . , Qdl

)
{
fc1 , . . . , fcl′

}
for

the elimination of t that is of type of the inductive type D.dk (applied to values for parameters
and indices). The term Qdi

is the motive of elimination for the inductive type D.di. This is
basically a function that given the #»a and u such that u has type D.di #»a produces a type
(a term of some sort s′). The idea is that eliminating the term u should produce a term of
type Qdi

#»a u. Note that the elimination Elim(t;D.dk;Qd1 , . . . , Qdl
)
{
fc1 , . . . , fcl′

}
is a term

of type Qdk

#»

b t where t has type dk
#»

b .
In the elimination above the terms fci

are case-eliminators. The case-eliminator fci
is a

function that describes the elimination of terms that are constructed using the constructor ci.
The term fci

is a function. It takes arguments of the constructor ci together with the result
of elimination of the (mutually) recursive arguments and produces a term of the appropriate
type (according to the motives). This type is exactly what is formally defined as the type of
the case eliminator for constructor ci, ξ

#»
Q
D (ci,∆C(ci)). The formal definition of the types of

case-eliminators can be found in Timany and Sozeau [19]. A simple example of eliminator is
the induction principle for natural numbers:

λP : nat → Prop.λpz : P Z.λps : Πx : nat. P x→ P (S x).λn : nat.Elim(n; nat;P ) {pz, ps}

which has the type ΠP : nat → Prop. (P Z)→ (Πx : nat. P x→ P (S x))→ Πn : nat. P n.

Judgmental equality. Figure 3 depicts an excerpt of the rules for judgemental equality.
The rules Beta and Eta correspond to β and η equivalence. In this figure, we have
elided the rules that specify that judgemental equality is an equivalence relation. The rules
Delta, Zeta and Iota, respectively corresponding to unfolding definitions, expansion of
let-ins and simplification of eliminators are also elided in Figure 3. The rule Iota basically
states that when the term being eliminated is a constructor c applied to certain values,
then the result of elimination is judgementally equal to the corresponding case-eliminator
fc applied to the arguments of the constructor where (mutually) recursive arguments are
appropriately eliminated. See Timany and Sozeau [19] for details. Note that the equivalence
of the judgmental equality presentation and the implementation of definitional equality by
conversion (as implemented in Coq) is a tricky issue and it is still an open problem to
formally show equivalence for a system with cumulativity [14], we leave this to future work.

Conversion/Cumulativity. Figure 4 shows an excerpt of conversion/cumulativity rules. The
core of these rules is the rule Cum. It states that whenever a term t has type A and the
conversion/cumulativity relation A � B holds, then t also has type B. The rule Eq-Cum says
that two judgementally equal (convertible) types M and M ′ are in conversion/cumulativity
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Prop-in-Type
Γ ` Prop � Typei

Cum-Type
i ≤ j

Γ ` Typei � Typej

Cum-Prod
Γ ` A1 ' B1 : s Γ, x : A1 ` A2 � B2

Γ ` Πx : A1. A2 � Πx : B1. B2

Cum
Γ ` t : A Γ ` A � B

Γ ` t : B

Eq-Cum
Γ `M 'M ′ : s

Γ `M �M ′

Figure 4 An excerpt of conversion and cumulativity rules of pCIC.

relation M � M ′. The rules Prop-in-Type and Cum-Type specify the order on the
hierarchy of sorts. The rule Cum-Prod states the conditions for conversion/cumulativity
between two (dependent) function types. Note that in this rule, Π-types are not contravariant
w.r.t. their domain. This is also the case in Coq. This condition is crucial for the construction
of our set-theoretic model, since set-theoretic functions (i.e., functional relations) are not
contravariant.

3 Universes in Coq and pCIC

In the system that we have presented in this section, and for most of this paper, universe
levels, e.g., i in Typei, are explicitly specified. However, Coq enjoys a feature known as
typical ambiguity. That is, users need not write universe levels explicitly; these are inferred
by Coq. The idea here is that it suffices that there are universe levels, that can be placed
in the appropriate place in the code, so that the code makes sense and respects consistent
universe constraints. From a derivation with a consistent set of universe constraints one can
always derive a pCIC derivation, using a valuation of the floating universe variables into the
U0 . . .Un universes. This is exactly what is guaranteed using global universes and a global
set of constraints on universe variables. In this sense the system pCIC as briefly discussed
above forms a basis for Coq.

Universe polymorphism [15] extends Coq so that constructions can be made universe-
polymorphic, i.e., parameterized by some universe variables, following Harper and Pollack’s
seminal work [8]. That is, each universe-polymorphic definition will carry a context of
universes together with a local set of constraints. The idea here is that any instantiation of
a universe-polymorphic construction with universe levels that satisfy the local constraints
is an acceptable one. In the implementation of conversion, universe levels only play a role
when comparing two sorts or two polymorphic constants, inductives or constructors. In the
kernel of Coq, only checking of the constraints is involved, they are hence global to a whole
term type-checking process. The system is justified by a translation to pCIC as well, making
“virtual” copies of every instance of universe-polymorphic constants and inductive types.

In this section we discuss these two features and how they treat inductive definitions.
For the rest of this paper we will consider the systems pCIC and its extension pCuIC
without either typical ambiguity or universe polymorphism. When describing the system
pCuIC we will consider how changes to the base theory allows a different treatment of
universe-polymorphic inductive types compared to pCIC.

Typical ambiguity, global algebraic universes and template polymorphism. The user can
only specify Prop, Set or Type. This is done by considering a collection of global algebraic
universes (as opposed to local ones in universe-polymorphic constructions as we will see).
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These universes are generated from the carrier set {Set} ∪ {U`, |` ∈ L} for some countably
infinite set of labels L (a.k.a. levels) with the operations max and successor (+1) (constructing
algebraic universes).2 Each use of the sort Type is replaced with some TypeU`

for some fresh
universe level `. A global consistent set of constraints on the universe levels is kept at all
times. When Coq type checks a construction, it may add some constraints to this set. If
adding a constraint would render the constraints inconsistent then the definition at hand is
rejected with a universe inconsistency error. Let us consider the example of lists in Coq3.
Inductive list (A : Type@{U`}) : Type@{U`} :=
| nil : list A | cons : A → list A → list A. (\[* constraint added : U` > Set *)

When Coq processes the inductive definition of lists above, one constraint about U`
is added to the set of constraints, enforcing Set < `, as ` is global. The following set of
constraints are added with the following definitions:
Definition nat_list := list nat.
(\]* constraint added : U` ≥ Set, already implied *)

Definition Set_list := list Set.
(\[* constraint added : U` > Set, already implied *)

Definition Type_list := list Type.
(\]* constraint added : U` > U`′ for some fresh U`′ for the occurrence o\[f Type *)

Template Polymorphism. Template polymorphism is a simple form of universe polymor-
phism for non-universe-polymorphic inductive types. It only applies to inductive types whose
sort contain levels that appear only in one of their parameters and nowhere else in that
inductive type. A prime example is the definition of list above. The sort of the inductive
type appears only in the type of the only parameter. In case template polymorphism applies,
different instantiations of the inductive types with different arguments for parameters can
have different types. For instance, the terms above have different types:
Check (list nat). (* list nat : Set *)
Check (list Set). (* list Set : Type@{Set+1} *)

Here Type\]@{U} is Coq syntax for TypeU. This feature is very important for reusability
of the basic constructions such as lists. Crucially, template polymorphism considers two
instances of a template-polymorphic inductive type convertible, whenever they are applied
to arguments that are convertible, regardless of the universe in which these arguments are
considered. That is, the following Coq code type checks.
Universe i j. Constraint i < j.
Definition list_eq : list (nat : Type\[@{i}) = list (nat : Type\]@{j}) := eq_refl.

Universe polymorphism in pCIC and inductive types. The system pCIC has been extended
with universe polymorphism [15]. This allows for definitions to be parameterized by universe
levels. The essential idea here is that instead of declaring global universes for every occurrence
of Type in constructions, we use local universe levels (always ≥ Set, which we omit in local
constraints). That is, each universe-polymorphic construction carries with itself a context

2 In Coq, the sort Prop is treated in a special way. In particular, Prop is never unified with a universe
TypeU`

for any algebraic universe U`.
3 Here we show algebraic universes for the sake of clarity. These neither need to be written by the user

nor are visible unless explicitly asked for. From now on, we will freely mention universe levels and
constraints for presentation purposes but they can all be omitted.
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of universe variables for universes that appear in the type and body of the construction
together with a set of local universe constraints. These constraints may also mention global
universe variables. This could happen in cases where the universe-polymorphic construction
mentions universe-monomorphic constructions.

This feature allows us to define universe-polymorphic inductive types. The prime example
of this is the polymorphic definition of categories:
Record Category@{i j} :=
{ Obj : Type\[@{i}; Hom : Obj → Obj → Type@{j}; . . . }. (* local constraints: ∅ *)

This also allows us to define the category of (relatively small) categories as follows:4

Definition Cat@{i j k l} : Category@{i j} :=
{ Obj : Category@{k l}; . . . }. (* local constr.: {k < i, l < i, k ≤ j, l ≤ j} *)

See Timany and Jacobs [18] for more details on using universe levels and constraints of Coq
to represent (relative) smallness and largeness in category theory.

Note that the construction above, of the category of (relatively small) categories, could not
be done in a similar way with a universe-monomorphic definition of category. This is because,
the constraint k < i would be translated to U < U for some algebraic universe U that is
taken to stand for the type of objects of categories. This would immediately make the global
set of universe constraints inconsistent and thus the definition of category of categories would
be rejected with a universe inconsistency error. Also notice that the universe-monomorphic
version of the type Category is not template-polymorphic as the universe levels in the sort
appear in the constructor of the type, and not only in its parameters and type.

Universe polymorphism treats inductive types at different universe levels as different types
with no relation between them. This means that, in order to have a subtyping/cumulativity
relation between two inductive types it requires the two instances to be at the exact same level.
That is, for the subtyping relation Category@{i j} � Category@{i’ j’} to hold it is required
that i = i’ and j = j’. This means, among other things, that the category of categories
defined above is not the category of all categories that are at most as large as k and l but
those categories that are exactly at the level k and l.

This is not only about small and large objects like categories. Let A : Type@{i} be a type,
obviously, A : Type@{j}, for any j > i. However, for the universe-polymorphic definition of
lists, uplist, the types uplist@{i} (A : Type@{i}) and uplist@{j} (A : Type@{j}) are neither
judgementally equal nor does the expected subtyping relation hold. In other words, the
following Coq code will be accepted by Coq, i.e., the reflexivity tactic will fail.3

Polymorphic Inductive uplist@{k} (A : Type@{k}) : Type@{k} :=
| upnil : uplist A | upcons : A → uplist A → uplist A.
Universe i j. Constraint i < j.
Lemma uplist_eq : uplist@{i} (nat : Type\]@{i}) = uplist@{j} (nat : Type\[@{j}).
Fail reflexivity.

Abort.

As we discussed and demonstrated earlier, a similar equality with universe-monomorphic def-
inition of lists does indeed hold. Note that the manually added constraint, Constraint i < j,
is crucial here as otherwise the reflexivity tactic would succeed and Coq would silently
equate universe levels i and j.

4 There can be some other local constraints that we have omitted given rise to by mixing of universe-
polymorphic and universe-monomorphic constructions, e.g., if the definition of categories or Cat uses
some universe-monomorphic definitions from the standrad library of Coq.
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4 Predicative calculus of cumulative inductive constructions (pCuIC)

The system pCuIC extends the system pCIC by adding support for cumulativity between
inductive types. This allows for different instances of a polymorphic inductive definition to
be treated as subtypes of some other instances of the same inductive type under certain
conditions.

The intuitive definition. The intuitive idea for subtyping of inductive types is that an
inductive type I is a subtype of another inductive type I ′ if they have the same shape, i.e., the
same number of parameters, indices and constructors, and corresponding constructors take
the same number of arguments. Furthermore, it should be the case that every corresponding
index (note that these do not include parameters) and every corresponding argument of
every corresponding constructor have the expected subtyping relation (the one from I is a
subtype of the one from I ′, i.e., covariance) and also that corresponding constructors have
the same end result type. One crucial point here is that we only compare inductive types if
they are fully applied, i.e., there are values applied for every parameter and index. This is
because the cumulativity relation is only defined for types and not general arities.

Put more succinctly, given a term of type I applied to parameters and indices, it can be
destructed and then reconstructed using the corresponding constructor of I ′, i.e., terms of
type I can be lifted to terms of type I ′ using identity coercions. Note that we do not consider
parameters of the inductive types in question. This is because parameters of inductive types
are basically forming different families of inductive types. For instance, the type list A and
list B are two different families of inductive types. Not considering parameters allows our
cumulativity relation for universe-polymorphic inductive types to mimic the behavior of
template-polymorphic inductive types where the type of lists of a certain type are considered
judgementally equal regardless of which universe level the type in question is considered to
be in. Consider the following examples:

Example: categories. The type Category being a record is an inductive type with a sin-
gle constructor. In this case, there are no parameters or indices. The single constructors
are constructing the same end result, i.e., Category. As a result, in order to have the
expected subtyping relation between Category@{i j} � Category@{i’ j’}, i ≤ i’ and j ≤ j’,
we need to have that these constraints suffice to show that every argument of the con-
structor of Category@{i j} is a subtype of the corresponding argument of the constructor
of Category@{i’ j’}. Note that it is only the first two arguments of the constructors that
differ between these two types. The rest of the arguments, e.g., composition of morphisms,
associativity of composition, etc., are identical in both types. Hence, we only need to have
the subtyping relations 5 Typei � Typei′ and Obj → Obj → Typej � Obj → Obj → Typej′

to hold and they do hold.

Example: lists. The type of lists has a single parameter and no index, also notice that
the universe level i in list@{i} does not appear in any of the two constructors. Hence, the
subtyping relation list@{i} A � list@{j} A holds for any type A regardless of the relation
between i and j.

5 For the sake of clarity we have omitted the context under which these cumulativity relations need to
hold.
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Assuming D ≡ Indn {∆I := ∆C} and D′ ≡ Indn {∆′
I := ∆′

C} we have:

Ind-leq
D ∈ Γ D′ ∈ Γ dom(∆I) = dom(∆′

I) dom(∆C) = dom(∆′
C)[

∆I(d) ≡ #»p : #»
P .Π #»z : #»

V . s ∆′
I(d) ≡ #»p :

# »

P ′.Π #»z :
# »

V ′. s′ Γ, #»p : #»
P ` #»

V �
# »

V ′(
∆C(c) ≡ Π #»p : #»

P .Π #»x : #»
U. d #»u ∆′

C(c) ≡ Π #»p :
# »

P ′.Π #»x :
# »

U ′. d
#»

u′ Γ, #»p : #»
P ` #»

U �
# »

U ′

Γ, #»p : #»
P , #»x : #»

U ` #»u '
#»

u′ :
# »

P ′,
# »

V ′ for c ∈ Constrs(∆C , d)
)

for d ∈ dom(∆I)
]

Γ ` D �† D′

C-Ind
Γ ` D �† D′ Γ ` D.d #»a : s Γ ` D′.d #»a : s′

Γ ` D.d #»a � D′.d #»a

Figure 5 Cumulativity for inductive types.

Ind-Eq
Γ ` D.d #»a � D′.d #»a Γ ` D′.d #»a � D.d #»a Γ ` D.d #»a : s Γ ` D′.d #»a : s

Γ ` D.d #»a ' D′.d #»a : s

Assuming Γ ` D.c #»m : D.d #»a and Γ ` D′.c #»m : D′.d #»a we have :

Constr-Eq-L
Γ ` D′.d #»a � D.d #»a

Γ ` D.c #»m ' D′.c #»m : D.d #»a

Constr-Eq-R
Γ ` D.d #»a � D′.d #»a

Γ ` D.c #»m ' D′.c #»m : D′.d #»a

Figure 6 Judgemental equality for inductive types.

Figure 5 shows the typing rules for cumulativity of inductive types. The rule C-Ind
describes the condition for subtyping of inductive types D.d #»a and D′.d #»a . This subtyping
relation holds if the two types are fully applied, that is, the applications are terms of some
sort s and s′ respectively. It is also required that the inductive blocks D and D′ are related
under the �† relation. The rule Ind-leq is rather lengthy but it essentially states what we
explained above intuitively. It says that the relation D �† D′ holds if the two blocks are
defining inductive types with the same names and constructors with the same names. It
also requires that for every corresponding inductive type in these blocks, the corresponding
indices, are in the expected subtyping relation; similarly for corresponding arguments of
corresponding constructors. Furthermore, corresponding constructors need to construct
judgementally equal results.

Judgemental equality of inductive types. Figure 6 shows the typing rules for judgemental
equality of inductive types and their constructors. The rule Ind-Eq states that two inductive
types are considered to be judgementally equal if they are in mutual cumulativity relations.

This, and the judgemental equality for constructors explained below, allow universe
polymorphism to mimic the behavior of template polymorphism for monomorphic inductive
types. For instance, as we saw types list@{i} A is a subtype of list@{j} A for any type A
regardless of i and j. Hence, using the rule Ind-Eq it follows that the two types list@{i} A
and list@{j} A are judgementally equal. However, the conditions of judgemental equality
of universe-polymorphic inductive types is much more general compared to the conditions
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JΓ ` PropKγ , {∅, {∅}} JΓ ` TypeiKγ , Vκi JΓ ` t uKγ , App(JΓ ` tKγ , JΓ ` uKγ)

JΓ ` Πx : A.BKγ ,
{

Lam(f)
∣∣f : Πa ∈ JΓ ` AKγ . JΓ, x : A ` BKγ,a

}
JΓ ` λx : A. tKγ , Lam

({
(a, JΓ, x : A ` tKγ,a)

∣∣a ∈ JΓ ` AKγ
})

Figure 7 Excerpts of the model.

for template polymorphism to apply. Template polymorphism simply does not apply as
soon as the universe in the sort is mentioned in any of the constructors. According to the
rule Ind-Eq, in order to get that the two types Category@{i j} and Category@{i’ j’} are
judgementally equal it is required that i = i’ and j = j’ as expected.

Judgemental equality of constructors. The rules Constr-Eq-L and Constr-Eq-R spec-
ify judgemental equality of constructors of inductive types in cumulativity relation. Let
D.d #»a and D′.d #»a be two inductive types in the cumulativity relation D.d #»a � D′.d #»a .
Furthermore, let c be a constructor of the inductive blocks D and D′ and #»m be terms such
that D.c #»m has type D.d #»a and D′.c #»m has type D′.d #»a . In this case, the rules Constr-Eq-L
and Constr-Eq-R specify that D.c #»m and D′.c #»m are judgementally equal at the highest of
the two types D.d #»a and D′.d #»a .

This is another behavior of template polymorphism that the rules Constr-Eq-L and
Constr-Eq-R allow us to mimic. For instance, consider the monomorphic and template-
polymorphic inductive type of lists defined above. Template polymorphism of list implies that,
e.g., the empty list (the constructor nil) for the type of lists of a type A are judgementally equal
regardless of the sort that A is in. That is, we have nil (A : Type@{i}) ' nil (A : Type@{j})
regardless of i and j. Using the rules Constr-Eq-L and Constr-Eq-R we can achieve a
similar result for the universe-polymorphic and inductive type of lists uplist defined above.
These rules imply that upnil@{i} A ' upnil@{j} A for any type A regardless of i and j.

5 Consistency

We establish the consistency of pCuIC by constructing a set theoretic model for the theory
inspired by the model constructed by Lee and Werner [10]. We use our model to show (using
relative consistency) that there are types that are not inhabited in the system. In fact,
the model of Lee and Werner [10] does support cumulativity of inductive types. However,
it is not suitable for showing consistency as it relies on the normalization of the body of
fixpoints (structural recursion in Coq) for interpreting them. Furthermore, we work in ZFC
set theory and use the axiom of choice only to show that the interpretation of inductive types
constructed through fixpoints does indeed belong to the interpretation of the sort of the
inductive type. Lee and Werner [10] work in ZF (with suitable cardinals, similarly to what
we have assumed below) but we were not able to find a proof of this aspect of correctness of
their interpretation of inductive types. See our extended technical appendix [19] for details.

The model. Here, we briefly present the most important parts of the model (see our
extended technical appendix [19] for more details). We construct our set theoretic model
in ZFC together with the axiom that there is a strictly increasing sequence of uncountable
strongly inaccessible cardinals: κ0, κ1, . . . with κ0 > ω. Universe Typei is interpreted as set
theoretic (von Neumann) universes Vκi

[5]. It is well-known [5] that the von Neumann universe
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Vκ is a model of ZFC for any uncountable strongly inaccessible cardinal κ. We interpret the
sort Prop as the set {∅, {∅}}. Figure 7 shows excerpts of our model of pCuIC. Interpretation
of inductive types and eliminators are discussed below. We write A↓ for well-definedness of
the object A. We write Πa ∈ A.B(a) for dependent set theoretic functions: Πa ∈ A.B(a) ,{
f ∈

(⋃
a∈AB(a)

)A∣∣∣∀a ∈ A. f(a) ∈ B(a)
}
. Here Lam and App are respectively functions

that trace-encode a set-theoretic function and evaluate a trace encoded functions. Trace
encoding is a standard technique [2] for set-theoretic representation of functions in a type
theory with a proof-irrelevant universe (Prop in our case) which is a sub-type of another
non-proof-irrelevant universe (Prop � Typei in our case).

Modeling inductive types and eliminators. The basic idea of the interpretation of inductive
types, constructors and eliminators is straightforward. However, the general presentation of
the construction is lengthy and involves arguments regarding the general shape of inductive
types. In particular, the strict positivity condition plays a crucial role. Here, we present
the general idea and give some examples. Further details are available in Timany and
Sozeau [19]. Following Lee and Werner [10], who follow Dybjer [6] and Aczel [2], we use
inductive definitions (in set theory) constructed through rule sets to model inductive types.
Here, we give a very short account of rule sets for inductive definitions. For further details
refer to Aczel [1]. A rule set is a set of rules. A pair (A, a) is a rule based on a set U where
A ⊆ U is the set of premises and a ∈ U is the conclusion. We write A

a for a rule (A, a). The
fixpoint I(Φ) of a rule set Φ is the smallest set X such that for any rule A

a if A ⊆ X then
a ∈ X. Every rule set has a fixpoint [1].

The idea here is to construct a rule set for the whole inductive block. For each collection
of arguments that can possibly be applied to a constructor we add a rule to the rule
set. The premises of the rule requires that all (mutually) recursive arguments are in the
fixpoint. We define the interpretation of individual inductive types based on this fixpoint.
Let D ≡ Ind0{nat : Set := Z : nat, S : nat → nat} be the inductive block for inductive
definition of natural numbers. The rule set for this inductive block is as follows:

ΦD ,

{
∅

〈0; nil; nil; 〈0; nil〉〉

}
∪
{
{〈0; nil; nil; a〉}
〈0; nil; nil; 〈1; a〉〉

∣∣∣∣a ∈ Vκ0

}
The rule corresponding to Z has no premise as Z takes no recursive argument. This rule
concludes that the term 〈0; nil〉, i.e., zeroth constructor applied to nil arguments is a term
of zeroth type with nil as both parameters and indices. The rules corresponding to S

state that 〈1; a〉 is an element of the zeroth type if a is. Based on this fixpoint we define
the semantics of natural numbers, J· ` D.natKnil , {〈k; #»a 〉|〈0; nil; nil; 〈k; #»a 〉〉 ∈ I(ΦD)}, zero,
J· ` D.ZKnil , 〈0; nil〉 and successor, J· ` D.SKnil , Lam ({(a, 〈1; a〉)|a ∈ J· ` D.natKnil}).

Interpreting eliminators. We use rule sets to also define the interpretation of eliminators.
For each constructor applied to a sequence of arguments we add a rule to the rule set. This
rule states that the result of elimination is exactly the result of applying the corresponding
case eliminator where the result of elimination of (mutually) recursive arguments are taken
as arbitrary sets. The premise requires that each set taken as elimination of a (mutually)
recursive argument is mapped correctly in the fixpoint. We define the interpretation of
elimination of a term t of an inductive type as the set a if a is the unique set such that the
pair (JtK, a) is in the fixpoint of the elimination. Assume we have sets r, rz and rs such that
r, rz, rs ∈ JΓK where Γ = Q : nat → Typei, qz : Q Z, qs : Πx : nat. Q x→ Q (S x). The rule
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set for the elimination of natural numbers is as follows:

ΦELB ,

{
∅

(〈0; nil〉 , rz)

}
∪

{
{(a, b)}

(〈1; a〉 , #     »App(rs, a, b))

∣∣∣∣∣ a ∈ JΓ ` D.natKr,rz,rs ,

b ∈ Vκi

}

We define the interpretation of elimination of the term n as a if a is the unique set such
that the pair (JΓ ` nKr,rz,rs , a) ∈ I(ΦELB).

Soundness theorem and consistency.

I Theorem 1 (Soundness of the model).
1. If WF(Γ) then JΓK↓
2. If Γ ` t : A then JΓK↓ and for any γ ∈ JΓK we have JΓ ` tKγ↓, JΓ ` AKγ↓ and JΓ ` tKγ ∈

JΓ ` AKγ
3. If Γ ` t ' t′ : A then JΓ ` tKγ↓, JΓ ` t′Kγ↓, JΓ ` AKγ↓ and JΓ ` tKγ = JΓ ` t′Kγ ∈ JΓ ` AKγ
4. If Γ ` A � B then JΓ ` AKγ↓, JΓ ` BKγ↓ and JΓ ` AKγ ⊆ JΓ ` BKγ

Proof. By mutual induction on the typing derivations. For C-Ind we need to show that
the interpretation of one inductive type is a subset of the interpretation of the other one.
This follows from the fact that the arguments of constructors of the two types have the
required subset relation (by induction hypothesis).The cases Ind-Eq, Constr-Eq-L and
Constr-Eq-R are trivial. J

I Corollary 2 (Consistency of pCuIC). Let s be a sort, then, there does not exist any term
t such that · ` t : Πx : s. x.

Proof. If there were such a term t, by Theorem 1 we would have J· ` tKnil ∈ J· ` Πx : s. xKnil.
However, J· ` Πx : s. xKnil = ∅. J

6 Coq implementation

We implemented the extension to pCIC, that are presented in this paper, in the Coq system,
which is now available as of the stable 8.7 version of the system [16], documented6 and even
experimented with already in the UniMath library.7

From the user point of view, this adds a new optional flag on universe-polymorphic
inductive types that computes the cumulativity relation for two arbitrary fresh instances of
the inductive type that can be printed afterwards using the Print command. Cumulativity
and conversion for the fully applied inductive type and its constructors is therefore modified
to use the cumulativity constraints instead of forcing equalities everywhere as was done
before, during unification, typechecking and conversion. As cumulativity is always potentially
more relaxed than conversion, users can set this option in existing developments and maintain
compatibility. Of course actually making use of the new feature is not backward-compatible.

6 https://coq.inria.fr/distrib/current/refman/addendum/universe-polymorphism.html
7 See the discussion on GitHub: https://github.com/UniMath/UniMath/issues/648
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Impact on the Coq codebase. The impact of this extension is relatively small as it
involves mainly an extension of the data-structures representing the universes associated with
polymorphic inductive types in the Coq kernel, and their use during the conversion test of
Coq, which was already generic in the tests used for comparing polymorphic inductives and
constructors. Note that we have not needed to adapt the two efficient reduction strategies of
Coq, vm_compute and native_compute, as universes are irrelevant for reduction. A good
chunk of changes involved cleanups of the kernel API for registering inductive declarations.

Performance. When no inductive type is declared cumulative, the extension has no impact,
as we tested on a large set of user contributions including the Mathematical Components and
the Coq HoTT library (the common stress-tests for universes). When activated globally, we
hit one case in the test-suite of Coq taken from the HoTT library where the computation of
the subtyping relation for a given inductive blows up, due to conversion unfolding definitions
to infer the subtyping constraints. In this case we know that the relation would be trivial
(cumulativity collapses to equality), hence we were motivated to make the Cumulative flag
optional. The performance is otherwise not affected, as far as we know.

7 Applications

In this section we briefly discuss two motivating applications that are made possible thanks
to the new cumulativity feature for inductive types that we have presented here.

Yoneda embedding. Each category C : Category@{i j} is equipped with a hom-functor,
Hom_func : C × Cop → Type_Cat@{j}. Here Type_Cat is the category of types and functions,
which plays the role of the Set category. It is expected that one could define the Yoneda
embedding Y(C) as Curry Hom_func where Curry is the exponential transpose of the cartesian
closed structure of the category of categories Cat. However, the cartesian closed version of
Cat@{i’ j’ k’ l’} has the constraints k′ = l′ = j′ and Type_Cat@{j} : Category@{k j} with the
side constraint j < k. This means that Type_Cat is not an object of any cartesian closed
version of Cat making it impossible to use Curry on Hom_func. See Timany and Jacobs [18]
for a detailed discussion of this issue.

Cumulativity of inductive types solves this issue. In pCuIC, Type_Cat is indeed an object
of a cartesian closed version of Cat at some higher universe level allowing us to directly use
exponential transpose to define the Yoneda embedding.

Syntactical models of type theories. In [4], Boulier et al. advocate the study of syntactical
models of type theory, that is models defined by definitional translations from a source type
theory to a target type theory. A definitional translation of dependent type theory must
preserve its conversion relation, which is known as “computational soundness” in proof theory
in general. In pCIC and pCuIC, it must preserve the cumulativity relation.

A most basic example of syntactical model is the “cross-bool” model, which interprets
every type as the type itself crossed with booleans, i.e., using a polymorphic pair type:
[Typei] = (Typei ×j,Set B, true) where i < j JAK = [A].1

Likewise, every term is interpreted as the term itself plus a boolean. This model can be
used to show that type extensionality, hence univalence, is independent from CCω (op. cit.).
However, this model does not scale to Coq’s type theory as the cumulativity rule is not
validated through the translation. Indeed to validate cumulativity one must have, assuming
i ≤ k∧ i < j ∧k < l: JTypeiK ≤ JTypekK , (Typei×j,Set B, true).1 ≤ (Typek×l,Set B, true).1
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This judgement holds only if j = l and i = k in pCIC, and is relaxed to only i = k in
pCuIC. The latter constraint is forced due to the appearance of the types as parameters of
the pair type. We can go one step further and define a specialized inductive type:
Inductive TyInterp@{i j | i < j} : Type@{j} := { T : Type@{i}; b : bool }.

The subtyping constraints on TyInterp will only require that i ≤ k, as assumed! Note also
that template polymorphism would not help here as the type is not a parameter anymore.

8 Future and related work

Moving from template polymorphism to universe polymorphism. One motivation for
this extension to explain the so-called “template-polymorphic” inductive types of Coq in
terms of cumulative universe-polymorphic inductive types. This puts the system on a clean
and solid theoretical ground. Furthermore, we would like to switch the standard library of
Coq to full universe polymorphism. Making the template-polymorphic inductives, in the
standard library, interact with universe-polymorphic code is prone to introduce universe
inconsistencies; the two systems work in quite different ways. Hence, we have tried to set
universe polymorphism on everywhere.

Our experiments are encouraging but not without issues. We are able to make the basic
inductive types of the standard library cumulative universe-polymorphic, and all constants
polymorphic (except in a few files devoted to the formalization of paradoxes). We found that
the relaxed rule on constructors was necessary in some cases, this is a case where practice
met theory: our model construction justified the required relaxation for these examples.

However, we hit an orthogonal problem with the definitions of modules and module types,
used to formalize the number and finite map and set libraries for example, where definitions
drastically change meaning when interpreted in universe-polymorphic mode. Indeed, when a
module parameter A : Type is declared in monomorphic mode, one gets a floating universe,
i.e., it is elaborated to A : Type` for some global universe `. In universe polymorphism mode
it is elaborated to A@{`} : Type` instead, which can only be instantiated by Prop and types
in Set, at the bottom of the hierarchy. The only way to fix this is to add user annotations in
the files to switch between monomorphic and polymorphic mode, which is work-in-progress.

We believe that our extension to pCIC maintains strong normalization and that the
model constructed by Barras [3] could be easily extended to support our added rules.

Related Work. We are not aware of any other system providing cumulativity on inductive
types, neither Matita nor Lean, the closest cousins of Coq, implement cumulativity. They
prefer the algebraic presentation of universes that is also used in Agda and where explicit
lifting functions must be defined between different instances of polymorphic inductive types.
In [11], McBride presents a proposal for internalizing “shifting” of universe-polymorphic
constructions to higher universe levels akin to an explicit version of cumulativity that was
further studied by Rouhling [13], but parameterized inductive types are not considered there.

9 Conclusion

We have presented a sound extension of the predicative calculus of inductive constructions
with cumulative inductive types, which allows to equip cumulative universe-polymorphic
inductive types with definitional equalities and reasoning principles that are closer to the
“informal” mathematical practice. Our system is implemented in the Coq proof assistant
and is justified by a model construction in ZFC set theory. We hope to make this feature
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more useful and applicable once we resolve the remaining, orthogonal issue with the module
system, allowing users of the standard library of Coq to profit from it as well.
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Abstract
We propose an abstract completion procedure for logically constrained term rewrite systems
(LCTRSs). This procedure can be instantiated to both standard Knuth-Bendix completion and
ordered completion for LCTRSs, and we present a succinct and uniform correctness proof. A
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1 Introduction

Rewriting in the presence of side constraints captures simplification processes in various
areas, such as expression rewriting in compilers, theorem provers, or SMT solvers [10, 15, 17].
The imposed side constraints can often be expressed as logical formulas. Logically constrained
rewrite systems [13] formalize this rewriting mechanism, admitting side constraints over an
arbitrary first-order logic. Though their application for practical analysis tasks relies on
satisfiability checks in the respective logic, thanks to the advent of powerful SMT solvers in the
last decade LCTRSs are valuable in a wide range of areas, including program verification [7].

Often simplification procedures aim for unique results. Knuth-Bendix completion [11]
thus poses a natural means to obtain a presentation of the rewrite system which is confluent
and terminating, such that unique results are guaranteed. In particular, such a presentation
can be used to decide the validity problem. Standard completion may fail if unorientable
equations are encountered. To address this drawback, ordered completion was proposed by
Bachmair, Dershowitz, and Plaisted [3]. This variant of completion never fails, at the price
of the resulting system being only ground complete.

In this paper we propose an abstract inference system for completion of LCTRSs. This
deduction scheme can be instantiated to both standard and ordered completion procedures,
depending on the success condition satisfied by a run. To this end, we also state and prove a
critical pair lemma for LCTRSs. Correctness proofs of completion procedures traditionally
relied on proof orders. In contrast, we give proofs that exploit the more recent notion of
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peak decreasingness [9] to show (ground) confluence, which is the key part of the proof. This
approach permits a succinct and uniform proof for finite runs of both standard and ordered
completion. It also shows how peak decreasingness does not only apply to ordered completion,
but also extends to the considerably more intricate setting of constrained rewriting.

To ensure termination of the resulting rewrite system, we propose the notion of a
constrained reduction order, which generalizes the recursive path order presented in [13].
Since any terminating LCTRS gives rise to such an order, the proposed completion procedures
can also be implemented using termination tools instead of a fixed reduction order, a known
approach in the unconstrained setting [19]. We outline an implementation within the tool
Ctrl [14] and give examples that illustrate the practicality of our method.

Overview. The remainder of this paper is organized as follows. In Section 2 we summarize
the relevant background. Section 3 is devoted to constrained reduction orders. To analyze
peaks over LCTRSs, we prove a critical pair lemma in Section 4. Our inference system along
with all proofs is presented in Section 5. Section 6 outlines our implementation in Ctrl before
we conclude in Section 7. Due to space limitations, some proofs were moved to an appendix.

2 Preliminaries

We assume familiarity with the basic notions of term rewrite systems (TRSs) and completion [1,
2], but shortly recapitulate terminology and notation that we use in the remainder. In
particular, we recall the notion of logically constrained rewriting as defined in [7, 13].

Terms. We assume a sorted signature F = Fterms ∪ Ftheory. The set T (F ,V) denotes the
terms over this signature. We assume a mapping I which assigns to every sort ι occurring in
Ftheory a carrier set I(ι), and an interpretation J that assigns to every symbol f ∈ Ftheory
of sort ι1 × · · · × ιn → κ a function fJ : I(ι1) × · · · × I(ιn) → I(κ). Moreover, for every
sort ι occurring in Ftheory we assume a set Valι ⊆ Ftheory of value symbols, such that all
c ∈ Valι are constants of sort ι and J constitutes a bijective mapping between Valι and I(ι).
Thus there exists a constant symbol for every value in the carrier set. The interpretation J
naturally extends to an interpretation of ground terms, mapping ground terms to values:

[f(t1, . . . , tn)]J = fI([t1]J , . . . , [tn]J )

Thus every ground term has a unique value. We demand that theory symbols and term
symbols overlap only on values, i.e., Fterms ∩ Ftheory ⊆ Val holds. A term in T (Ftheory,V)
is called a logical term. Moreover we assume existence of a sort bool such that I(bool) =
B = {>,⊥}, Valbool = {true, false}, [true]J = >, and [false]J = ⊥ hold. Logical terms of sort
bool are called constraints. A constraint ϕ is valid if [ϕγ]J = > for all substitutions γ such
that γ(x) ∈ Val for all x ∈ Var(ϕ).

Rewriting with Constraints. A constrained equation is a triple ` ≈ r [ϕ] where `, r ∈ T (F ,V)
are of the same sort and ϕ is a constraint. If ϕ = true then the constraint is often omitted,
and the equation denoted as ` ≈ r. Sometimes s ' t is used to abbreviate “s ≈ t or t ≈ s”. A
constrained rewrite rule is a constrained equation such that root(`) ∈ Fterms \ Ftheory holds
and which is denoted ` → r [ϕ]. For a set of constrained equations E , we write E−1 for
{v ≈ u [ϕ] | u ≈ v [ϕ] ∈ E} and E± to denote E ∪ E−1. A set of constrained rewrite rules is
called a logically constrained rewrite system (LCTRS for short). We now define rewriting
using constrained equations. To this end, a substitution σ is said to respect a constraint ϕ if
ϕσ is valid and σ(x) ∈ Val for all x ∈ Var(ϕ).
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I Definition 1. Let E be a set of constrained equations.
A calculation step s →calc t satisfies s = C[f(s1, . . . , sn)] for some f ∈ Ftheory \ Val,
t = C[u], si ∈ Val for all 1 6 i 6 n, and u ∈ Val is the value symbol of [f(s1, . . . , sn)]J .
In this case f(x1, . . . , xn)→ y [y = f(x1, . . . , xn)] with y ∈ V is a calculation rule.
A rule step s→`≈r [ϕ] t satisfies s = C[`σ], t = C[rσ], and σ respects ϕ.

We also write →rule, E to refer to the relation {→α}α∈E , and denote →calc ∪→rule, E by →E .

We sometimes write →p,E to indicate that the rewrite step takes place at position p. The
subscript E is dropped if clear from the context. Moreover, the LCTRS Rcalc refers to the
set of all calculation rules. In contrast to [13] we also use equations for rewriting, so we do
not require that a rule step using ` ≈ r [ϕ] with substitution σ satisfies σ(x) ∈ Val for all
logical variables of the rule, i.e., also for x ∈ Var(r) \ (Var(`) ∪ Var(ϕ)).

Note that →calc is terminating since calculation steps strictly reduce the number of
non-value symbols in terms.

I Example 2. Consider the sort int (besides bool) and let Ftheory consist of symbols ·, +,
−, 6, and > as well as values n for all n ∈ Z, with the usual interpretations on Z. Let
Fterms = Val ∪ {fact}. The LCTRS R consisting of the rules

fact(x)→ 1 [x 6 0] fact(x)→ fact(x− 1) · x [x− 1 > 0]

admits the following rewrite steps:

fact(2)→rule fact(2− 1) · 2 (as 2− 1 > 0 is valid)
→calc fact(1) · 2 →rule (fact(1− 1) · 1) · 2 (as 1− 1 > 0 is valid)
→calc (fact(0) · 1) · 2 →rule (1 · 1) · 2 (as 0 6 0 is valid)
→+

calc 2

An LCTRS R is terminating if →R is well-founded, and confluent if ∗
R← · →∗R ⊆

→∗R · ∗R←. We use peak decreasingness [9] as confluence criterion. An abstract rewrite
system A = 〈A, {→α}α∈I〉 is peak decreasing if there exists a well-founded order > on I

such that for all α, β ∈ I the inclusion α← · →β ⊆
∗←−−→
∨αβ

holds. Here ∨αβ denotes the set
{γ | α > γ or β > γ}.

I Lemma 3 ([9]). Every peak decreasing ARS is confluent.

Rewriting Constrained Terms. Logically constrained rewriting aims to rewrite uncon-
strained terms with constrained rules. However, for the sake of analysis, rewriting constrained
terms is useful. In particular, our completion procedure will maintain sets of constrained
equations, and rewrite constrained terms. We recall the relevant notions [7, 13].

A constrained term is a pair s [ϕ] of a term s and a constraint ϕ. Two constrained terms
s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ], if for every substitution γ respecting ϕ
there is some substitution δ that respects ψ such that sγ = tδ, and vice versa. For example,
fact(x) ·x [x = 1∧x < y] ∼ fact(1) ·y [y > 0∧y < 2] holds, but these terms are not equivalent
to fact(x) · y [x = y] or fact(1) [true].

I Definition 4. Let E be a set of constrained equations.
A calculation step s [ϕ] →calc t [ϕ ∧ x = f(s1, . . . , sn)] satisfies s = C[f(s1, . . . , sn)] for
some f ∈ Ftheory \ Fterms and t = C[x] such that s1, . . . , sn ∈ Var(ϕ) ∪ Val and x is a
fresh variable.
A constraint rewrite rule α : `→ r [ψ] admits a rule step s [ϕ]→α t [ϕ] if ϕ is satisfiable,
s = C[`σ], t = C[rσ], σ(x) ∈ Val ∪ Var(ϕ) for all x ∈ Var(ψ), and ϕ⇒ ψσ is valid.
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Given an LCTRS E , we again write →rule, E for {→α}α∈E . The main rewrite relation →E on
constrained terms is defined as ∼ · (→calc ∪→rule, E) · ∼.

I Example 5. Consider the LCTRS from Example 2, the constraint ϕ = x > 1 ∧ y > 0, and
let z be a fresh variable. Then the following rewrite steps are possible:

fact(x+ y) [ϕ]→rule fact(x+ y − 1) · (x+ y) [ϕ]
fact(x+ y) [ϕ]→calc fact(z) [ϕ ∧ z = x+ y]

The following key results relate rewriting on constrained terms to rewriting on uncon-
strained terms.

I Lemma 6 ([13, Lemma 2]). If s [ϕ]→rule t [ψ] and γ respects ϕ then sγ →rule tγ. The two
steps take place at the same positions.

I Lemma 7 ([7, Theorems 2.19 and 2.20]). Suppose s [ϕ]→p,R t [ψ].
1. If γ respects ϕ then sγ →p,R tδ for some substitution δ respecting ψ.
2. If δ respects ψ then sγ →p,R tδ for some substitution γ respecting ϕ.

Using a fresh binary term symbol 〈·, ·〉, we show a slightly stronger version of Lemma 7.

I Lemma 8. Suppose 〈s, u〉 [ϕ]→R 〈t, v〉 [ψ] at a position of the form 1p.
1. If γ respects ϕ then sγ →R tδ and uγ = vδ for some substitution δ respecting ψ.
2. If δ respects ψ then sγ →R tδ and uγ = vδ for some substitution γ respecting ϕ.

Proof. Note that whenever 〈t1, t2〉 ∼ w for terms t1 and t2 then w must be of the form
〈w1, w2〉, by the definition of ∼ and because respectful substitutions introduce only values.
We can therefore consider a step

〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] −→
1p
〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] (1)

1. Since γ respects ϕ there is some γ′ respecting ϕ′ such that 〈s, u〉γ = 〈s′, u′〉γ′.
First, if (1) involves a rule step then ϕ′ = ψ′. Hence 〈s′, u′〉γ′ →rule,1p 〈t′, v′〉γ′ by Lemma 6
and we have u′γ′ = v′γ′. Because γ′ respects ψ′ and 〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] there is some
δ respecting ψ such that 〈t′, v′〉γ′ = 〈t, v〉δ. We thus have sγ = s′γ′ →R t′γ′ = tδ and
uγ = u′γ′ = v′γ′ = vδ.
Second, suppose (1) involves a calculation step. By the definition of →calc we have
ψ′ = (ϕ′ ∧ x = f(s1, . . . , sn)) for some x ∈ V , f ∈ Ftheory, and s1, . . . , sn ∈ Var(ϕ′) ∪ Val.
So f(s1, . . . , sn)γ′ ∈ T (Ftheory) since γ′ respects ϕ′. For w being the value symbol
corresponding to f(s1, . . . , sn)γ′, the substitution β given by β(y) = w if y = x and
β(y) = γ′(y) otherwise, respects ψ′ and satisfies both s′γ′ →calc t

′β and u′γ′ = v′β

because x is fresh. Because 〈t′, v′〉 [ψ′] ∼ 〈t, v〉 [ψ] there is some δ respecting ψ such that
〈t′, v′〉β = 〈t, v〉δ. So sγ = s′γ′ →R t′β = tδ and uγ = u′γ′ = v′β = vδ.

2. Similar, see the appendix. J

We conclude this section with an auxiliary result relating rewrite steps on constrained
term pairs to steps on unconstrained term pairs.

I Lemma 9. Suppose the LCTRS R admits a rewrite step 〈s, u〉 [ϕ]→R 〈t, u〉 [ψ]. For all
substitutions γ and δ and all contexts C,
1. if C[sγ]←−−−−→

s≈u [ϕ]
C[uγ] then C[sγ] −→

R
· ←−−−→
t≈u [ψ]

C[uγ], and

2. if C[tδ]←−−−→
t≈u [ψ]

C[uδ] then C[tδ]←−
R
· ←−−−−→
s≈u [ϕ]

C[uδ].
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Proof.
1. The substitution γ respects ϕ. By Lemma 8(1) there is some δ respecting ψ such that

sγ →R tδ and uγ = uδ. Hence C[sγ] −→
R

C[tδ]←−−−→
t≈u [ψ]

C[uδ] = C[uγ].

2. The substitution δ respects ψ. By Lemma 8(2) there is some γ respecting ϕ such that
sγ →R tδ and uγ = uδ. Hence C[tδ]←−

R
C[sγ]←−−−→

s≈u [ϕ]
C[uγ] = C[uδ]. J

3 Constrained Reduction Orders

To ensure termination of the resulting system, completion procedures rely on reduction
orders. In [13] the following definition of a recursive path order was given.

I Definition 10. Suppose Ftheory contains a symbol >ι for every sort ι occurring in Ftheory
such that >ι is interpreted as a (partial) well-founded order =ι on Iι. Moreover, let >p be a
precedence on Fterms \ Ftheory. For terms s and t and constraint ϕ
1. s >rpo

[ϕ] t if one of the following alternatives applies:
a. s, t ∈ T (Ftheory,Var(ϕ)) and ϕ⇒ (s = t ∨ s >sort(s) t) is valid,
b. s = f(s1, . . . , sn) and t = f(t1, . . . , tn) with f /∈ Ftheory and si >rpo

[ϕ] ti for all 1 6 i 6 n,
c. s >rpo

[ϕ] t, or s = t and s ∈ V;

2. s >rpo
[ϕ] t if one of the following alternatives applies:

a. s, t ∈ T (Ftheory,Var(ϕ)) and ϕ⇒ s >sort(s) t is valid,
b. s = f(s1, . . . , sn) for some f /∈ Ftheory and one of

i. si >rpo
[ϕ] t for some 1 6 i 6 n,

ii. t = g(t1, . . . , tm), either g ∈ Ftheory or f >p g, and s >rpo
[ϕ] tj for all 1 6 j 6 m,

iii. t = f(t1, . . . , tn), si >rpo
[ϕ] ti for all 1 6 i 6 n and si >rpo

[ϕ] ti for some 1 6 i 6 n,
iv. t ∈ Var(ϕ).

We now generalize this notion.

I Definition 11. A ternary relation >[·] on T (F ,V) × Tbool(Ftheory,V) × T (F ,V) is a
constrained reduction order if there exists a reduction order > such that s >[ϕ] t if and only
if sγ > tγ for all substitutions γ that respect ϕ.

The relation >rpo
[·] is a constrained reduction order according to this definition (Lemma 9

in the full version of [13]).

I Example 12.
1. Any reduction order > gives rise to a constrained reduction order in which the constraints

are simply ignored: setting s >[ϕ] t for all ϕ whenever s > t vacuously satisfies the
definition.

2. Let n =int m if m > 0 and n > m. For the LCTRS from Example 2, rule (1) can be
oriented using the recursive path order by condition 2.b.ii in Definition 10. For rule
(2) and ϕ = x − 1 > 0, we have x >rpo

[ϕ] x − 1 by condition 2.a since the implication
x − 1 > 0 =⇒ x > x − 1 is valid. From this we obtain fact(x) >rpo

[ϕ] fact(x − 1) by
condition 2.b.iii. Moreover, fact(x) >rpo

[ϕ] x by 2.b.i such that fact(x) >rpo
[ϕ] fact(x− 1) · x

follows from 2.b.ii. Note that the rules could not have been oriented by RPO when
ignoring the constraints.
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3. A well-founded F -algebra A extending I with monotone (wrt =int) interpretations for the
function symbols in Fterms gives rise to a constrained reduction order: s >[ϕ] t if and only
if [α]A(s) > [α]A(t) is satisfied for all substitutions α that respect ϕ. Moreover, if the
carrier of A is Val then compatibility is decidable whenever the language of constraints is.
For instance, consider again Example 2 and let A extend I by the monotone interpretation
factA(x) = (x+ 1)! + 1 if x > 0 and factA(x) = 2 otherwise. We have

factA(x) = 2 > 1 = 1A for all x 6 0
factA(x) = (x+ 1)! + 1 > (x! + 1) · x = factA(x−A 1) ·A x for all x > 1

I Lemma 13. Let >[·] be a constrained reduction order and let ϕ and ψ be constraints.
1. The relation >[ϕ] is transitive.
2. If s >[ϕ] t and σ respects ϕ then sσ >[ϕ] tσ.
3. If s >[ϕ] t then C[s] >[ϕ] C[t].
4. If ψ ⇒ ϕ is valid and Var(ϕ) ⊆ Var(ψ) then s >[ϕ] t implies s >[ψ] t.

I Lemma 14. If s [ψ]→σ
α,p t [ψ] using α : `→ r [ϕ] satisfies ` >[ϕ] r then s >[ψ] t.

Proof. By assumption ψ ⇒ ϕσ is valid and σ(x) ∈ Val ∪ Var(ψ) for all x ∈ Var(ϕ). Now
suppose γ is a substitution which respects ψ, i.e., the constraint ψγ is valid and γ(x) ∈ Val
for all x ∈ Var(ψ). Then ϕσγ is valid and (σγ)(x) ∈ Val for all x ∈ Var(ϕ), so σγ respects
ϕ. From ` >[ϕ] r we thus obtain s|pγ = `σγ > rσγ = t|pγ, and hence sγ > tγ by
Lemma 13(3). J

A reduction pair (>,>) consists of a reduction order > and a reduction preorder > such
that →calc ⊆ > and > · > · > ⊆ >.

I Lemma 15. If there is a reduction pair (>,>) such that ` >[ϕ] r for all ` → r [ϕ] ∈ R
then R is terminating.

Proof. By Lemma 14, the inclusion →calc ⊆ >, and the compatibility of > and >. J

Kop and Nishida (Lemmata 6 and 8 in the full version of [13]) showed that a suitable
reduction preorder exists for the recursive path ordering. Similar to the case of plain term
rewrite systems, any terminating LCTRS induces a constrained reduction order.

I Lemma 16. If R is a terminating LCTRS then the relation defined by s >[ϕ] t if and only
if s [ϕ]→+

rule t [ϕ] is a constrained reduction order.

Proof. Let > be the relation such that s > t if and only if s [true]→+
rule t [true]. Since R is

terminating > is a reduction order. So by Lemma 6 all substitutions γ respecting ϕ satisfy

s >[ϕ] t ⇐⇒ s [ϕ]→+
rule t [ϕ] =⇒ sγ →+

rule tγ ⇐⇒ sγ > tγ J

The following example shows that a constrained reduction order is not necessarily
compatible with the equivalence relation ∼ on constrained terms in the sense that s [ϕ] ∼ s′ [ψ]
and s >[ϕ] t imply s′ >[ψ] t.

I Example 17. For instance, for the constrained reduction order >rpo
[·] we have f(x) >[x=0] x

and f(x) [x = 0] ∼ f(0) [true] but f(0) >[true] x does not hold.
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We conclude this section by comparing our concept of a constrained reduction pair to
definitions from the literature. Our notion resembles the definition by Falke and Kapur [5,
Definition 23] for the theory of Peano arithmetic (PA). Whereas they demand C[s] (> ∩ 6)
C[t] for all s←→∗PA t, we use the more relaxed condition →calc ⊆ >.

Fuhs et al. [6] define the order pair (�Pol,�Pol) as a reduction pair processor for integer
term rewrite systems. Since the order pair is based on max-polynomial interpretations, which
are not strictly monotone, the resulting order on terms in not a reduction order, and hence
does not produce a constrained reduction order in our sense.

4 Critical Pair Lemma

In this section we establish the Critical Pair Lemma, which is a key result to obtain confluence
of the result of our completion procedure described in the next section.

I Definition 18. An overlap of an LCTRS R is a triple 〈`1 → r1 [ϕ1], p, `2 → r2 [ϕ2]〉
satisfying the following properties:

`1 → r1 [ϕ1] and `2 → r2 [ϕ2] are variable-disjoint variants of rewrite rules in R∪Rcalc,
p ∈ PosF (`2),
`1 and `2|p are unifiable with mgu σ and σ(x) ∈ T (Ftheory,V) for all x ∈ Var(ϕ1)∪Var(ϕ2),
ϕ1σ ∧ ϕ2σ is satisfiable, and
if p = ε then `1 → r1 [ϕ1] and `2 → r2 [ϕ2] are not variants, or Var(r1) * Var(`1).

In this case `2σ[r1σ]p ≈ r2σ [ϕ1σ∧ϕ2σ] is a constrained critical pair. The set of all constrained
critical pairs of R is denoted by CP(R).

Note that in the last condition also Var(r2) 6⊆ Var(`2) since we may assume that the two
rules are variants.

I Example 19. Consider the following rewrite rules:

(1) f(x)→ g(x, x) [x 6 0] (3) g(f(x), y)→ g(x, z) [x > 0 ∧ z > x]
(2) h(f(x))→ h(x) [x > 0] (4) g(x, x+ y)→ f(y) [x > 0 ∧ y > 0]

The constrained critical pair h(g(x, x)) ≈ h(x) [x 6 0 ∧ x > 0] is obtained from the overlap
〈(1), 1, (2)〉. There is also an overlap 〈(3), ε, (3′)〉 between rule (3) and a renamed version
(3′) of itself, which gives rise to the critical pair g(x, z) ≈ g(x,w) [x > 0 ∧ z > x ∧ w > x].
Finally, the constrained critical pair g(x, z) ≈ f(y) [x > 0 ∧ y > 0 ∧ z = x + y] originates
from the overlap 〈Rcalc, 2, (4)〉. There is no constrained critical pair between rules (1) and
(3) since the conjunction x 6 0 ∧ x > 0 ∧ z > x is not satisfiable. There is also no critical
pair between (3) and (4) because any mgu σ of g(f(x), y) and g(x′, x′ + y′) assigns (a variant
of) f(x) to x′, violating the third condition in Definition 18.

I Lemma 20 (Constrained Critical Pair Lemma). Let R be an LCTRS. If t R← s→R u then
t ↓R u or t←→CP(R) u.

Proof. We abbreviate `1 → r1 [ϕ1] by α1 and `2 → r2 [ϕ2] by α2, and consider a peak

t
p1,σ1←−−−
α1

s
p2,σ2−−−→
α2

u

where σ1 and σ2 denote the employed substitutions. We distinguish three cases.
(1) If p1 ‖ p2 then t

p2,σ2−−−→
α2

s
p1,σ1←−−−
α1

u since the same substitutions can be used for the
respective steps such that constraints are still respected.
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Otherwise one position must be above the other one. Without loss of generality we assume
that p1 6 p2, so there must be a position p such that p2 = p1p. We further assume that the
rewrite rules α1 and α2 have no variables in common. Hence Dom(σ1) ∩ Dom(σ2) = ∅ and
the substitution σ = σ1 ∪ σ2 is well-defined. We distinguish two further cases depending on
whether the peak is an instance of an overlap.
(2) Suppose 〈α1, p, α2〉 is an overlap. Let γ be a most general unifier of `2|p and `1. We

have `2γ[r1γ]p ≈ r2γ [ϕ1γ ∧ ϕ2γ] ∈ CP(R). The substitution σ is a unifier of `2|p and
`1 because (`2|p)σ = (`2σ2)|p = `1σ1 = `1σ. Consequently there exists a substitution
τ such that σ = γτ . Since validity of ϕ1σ = ϕ1γτ and ϕ2σ = ϕ2γτ implies validity of
(ϕ1γ ∧ ϕ2γ)τ we have

`2σ2[r1σ1]p = (`2γ[r1γ]p)τ ←→CP(R) (r2γ)τ = r2σ2

and hence also t←→CP(R) u.
(3) Since ϕ1σ1 ∧ ϕ2σ2 = ϕ1σ ∧ ϕ2σ = (ϕ1γ ∧ ϕ2γ)τ is valid, the constraint ϕ1γ ∧ ϕ2γ is

satisfiable. So if 〈α1, p, α2〉 is not an overlap then either p = ε and α1 and α2 are variants
with Var(r1) ⊆ Var(`1), or p /∈ PosF (`2). In the first case also Var(r2) ⊆ Var(`2) must
hold, which implies r1σ1 = r2σ2 and t = u. In the second case, there must be positions
q1 and q2 such that p = q1q2 and q1 is a variable position in `2. Let x be the variable at
`2|q1 , so σ2(x)|q2 = `1σ1. We define the substitution σ′2 as

σ′2(y) =
{
σ2(y)[r1σ1]q2 if y = x

σ2(y) if y 6= x

Clearly the step σ2(x)→q2,α1,σ1 σ
′
2(x) is valid. Hence r2σ2 →∗ r2σ

′
2 and `2σ2[r1σ1]p =

`2σ2[σ′2(x)]q1 →∗ `2σ
′
2. The substitution σ′2 also respects ϕ2. This can be seen as follows.

Since σ2 respects ϕ2 we have σ2(y) ∈ Val for all y ∈ Var(ϕ2). So x /∈ Var(ϕ2) as xσ2 ·� `1
and left-hand sides of rules cannot be values. Therefore σ2(y) = σ′2(y) holds for all
y ∈ Var(α2), and we have ϕ2σ2 = ϕ2σ

′
2. In summary, there exists a joining sequence

`2σ2[r1σ1]p
σ1−−−−−−−→

`1→r1 [ϕ1]
∗ `2σ

′
2

ε,σ′2−−−−−−−→
`2→r2 [ϕ2]

r2σ
′
2
∗ σ1←−−−−−−−
`1→r1 [ϕ1]

r2σ2 J

Extended Critical Pairs. For ordered rewriting in a constrained setting, we consider a
reduction pair (>,>) that gives rise to a constrained reduction order >[·] and define

E> = {uγ → vγ [ϕγ] | u ≈ v [ϕ] ∈ E± and uγ >[ϕγ] vγ}

for any set of constrained equations E . Moreover, CP>(E) denotes all constrained critical
pairs originating from an overlap 〈`1 ≈ r1 [ϕ1], p, `2 ≈ r2 [ϕ2]〉 with most general unifier σ
such that `1 → r1 [ϕ1], `2 → r2 [ϕ2] ∈ E± and neither r1σ >[ϕ1σ] `1σ nor r2σ >[ϕ2σ] `2σ. A
reduction order is called complete for a set of constrained equations E if s←→∗E t implies s > t,
s < t, or s = t for all ground terms s and t. The proof of the next result is in the appendix.

I Lemma 21. If > is complete for R ∪ E and R ⊆ >[·] then the inclusion ←−−−−−→
CP(R∪E>)

⊆
←−−−−−→
CP>(R∪E)

∪ ↓R∪E> holds on ground terms.

5 Abstract Completion

In this section we define an abstract inference system that can be instantiated to both
standard and ordered completion. We consider a fixed reduction pair (>,>) that gives rise
to a constrained reduction order >[·].



S. Winkler and A. Middeldorp 30:9

Table 1 The inference rules of CKB.

deduce E ,R
E ∪ {s ≈ t [ϕ]},R if 〈s, u〉 [ϕ] R∪E±← 〈u, u〉 [ϕ]→R∪E± 〈u, t〉 [ϕ]

compose E ,R] {s→ t [ϕ]}
E ,R∪ {s→ u [ψ]} if 〈s, t〉 [ϕ]→R∪E> 〈s, u〉 [ψ] and s >[ϕ] u

orient E ] {s ' t [ϕ]},R
E ,R∪ {s→ t [ϕ]} if s >[ϕ] t and root(s) ∈ Fterms \ Ftheory

simplify E ] {s ' t [ϕ]},R
E ∪ {u ≈ t [ψ]},R if 〈s, t〉 [ϕ]→R∪E> 〈u, t〉 [ψ]

delete E ] {s ≈ t [ϕ]},R
E ,R if sγ = tγ for all γ respecting ϕ

collapse E ,R] {t→ s [ϕ]}
E ∪ {u ≈ s [ψ]},R if 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ]

splitE
E ] {s ' t [ϕ]},R

E ∪ {s ≈ t [ϕ ∧ ¬ψ], s ≈ t [ϕ ∧ ψ]},R if Var(ψ) ⊆ Var(ϕ)

splitR
E ,R] {s→ t [ϕ]}

E ,R∪ {s→ t [ϕ ∧ ¬ψ], s→ t [ϕ ∧ ψ]} if Var(ψ) ⊆ Var(ϕ)

I Definition 22. The inference system CKB of constrained (Knuth-Bendix) completion
operates on pairs (E ,R) consisting of constrained equations E and constrained rules R, and
consists of the inference rules of Table 1.

Below we provide some comments on the inference rules. The rewrite steps in e.g. simplify
rewrite a pair 〈s, t〉 rather than a single term s. As observed in [7] it does not suffice to
assume a rewrite step s [ϕ]→R u [ψ]. For example, we have

f(x+ 0) [x > y] ∼ f(x+ 0) [true]→calc f(z) [z = x+ 0] ∼ f(x) [true] ∼ f(x) [x < y]

but it is not desirable to replace y ≈ f(x + 0) [x > y] by y ≈ f(x) [x < y]. The same
holds for compose, collapse, and deduce. The deduce rule is quite general in that it allows
to add arbitrary equations that emerge from a peak between two R ∪ E steps. Below we
will show that only (extended) critical pairs are necessary; hence as usual with completion
procedures, an implementation will likely limit the application of deduce to these equations.
Moreover, ordered rewriting is permitted in all rules that perform rewrite steps. Though this is
uncommon in (unconstrained) standard completion, it gives more freedom to implementations
and allows us to present only one set of inference rules for both settings. Furthermore, it is
uncommon to perform a term comparison in compose. However, since additional variables
may be introduced by →calc steps and ∼, s >[ψ] u need not hold. For instance, consider >[·]
defined as s >[·] t if s >lpo t holds, for some fixed reduction order >lpo with precedence f > g.
Given a rule f(x+ y)→ g(x+ y) [true], we have f(x+ y) >[true] g(x+ y). We further have
g(x+ y)→calc g(z) [z = x+ y] but f(x+ y) >[z=x+y] g(z) does not hold.1 Finally, the split
rules are inspired by [8], they allow for a case distinction.

An inference step from equations and rules (E ,R) to (E ′,R′) using one of the inference
rules of Definition 22 is denoted by (E ,R) ` (E ′,R′). We illustrate CKB on a concrete
example, before presenting some basic properties related to inference steps.

1 Note that if a pure →rule step is performed then s >[ψ] u is guaranteed by Lemma 14.
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I Example 23. Consider the theory of integer arithmetic, RPO > with precedence h > f > g,
and the following set of input equations:

(1) f(x, y) ≈ f(z, y) + 1 [x > 1 ∧ z = x− 1] (3) f(x, 0) ≈ g(1, x) [x 6 1]
(2) g(0, y) ≈ y [y 6 0] (4) h(x) ≈ f(x, 0) + 1

We apply orient to equations (1) and (2) to obtain rewrite rules

(1) f(x, y)→ f(z, y) + 1 [x > 1 ∧ z = x− 1] (2) g(0, y)→ y [y 6 0]

In rule (1) the variable z occurs on the right but not on the left-hand side, hence we deduce
the critical pair

f(w, y) + 1 ≈ f(z, y) + 1 [x > 1 ∧ z = x− 1 ∧ w = x− 1]

which can, however, be dropped using delete. (Note that a syntactic equality check of the
equated terms would not suffice at this point.) Next we orient equation (3) from left to right.
At this point the critical pair

g(1, x) ≈ f(z, 0) + 1 [x > 1 ∧ z = x− 1 ∧ x 6 1]

results from the overlap 〈(3), ε, (1)〉. But we can instead deduce the simpler, unconstrained
equation (5) g(1, 1) ≈ f(0, 0) + 1 as follows:

g(1, 1) [true] ∼ g(1, x) [x = 1] (3)←−−
rule

f(x, 0) [x = 1] ∼ f(1, 0) [true] ∼ f(x, 0) [x = 1 ∧ z = 0]

(1)−−→
rule

f(z, 0) + 1 [x = 1 ∧ z = 0] ∼ f(0, 0) + 1 [true]

When applying simplify with rule (3), equation (5) gets replaced by (6) g(1, 1) ≈ g(1, 0) + 1.
An application of orient produces the corresponding rule (6) g(1, 1)→ g(1, 0) + 1. A case
split on [x 6 1] using splitE followed by orientations replaces equation (4) by the rules
(7) h(x) → f(x, 0) + 1 [x 6 1] and (8) h(x) → f(x, 0) + 1 [¬(x 6 1)]. Now compose using
rule (3) can replace rule (7) by (9) h(x)→ g(1, x) + 1 [x 6 1]. Since this is a pure rule step,
h(x) >[x61] g(1, x) + 1 holds by Lemma 14. Another application of compose applying rule (1)
to rule (8) results in (10) h(x)→ f(z, 0) + 1 + 1 [x > 1 ∧ z = x− 1]. We can apply compose
again to (10), performing a calculation step to obtain (11) h(x) → f(x − 1, 0) + 2 [x > 1]
(using f(z, y) + 2 [x > 1 ∧ z = x− 1] ∼ f(x− 1, y) + 2 [x > 1]). Note that in both compose
steps the orientation using >[·] is preserved. At this point no equations are left, and all
constrained critical pairs among the current set of rules

(1) f(x, y)→ f(z, y) + 1 [x > 1 ∧ z = x− 1] (6) g(1, 1)→ g(1, 0) + 1
(2) g(0, y)→ y [x 6 0] (9) h(x)→ g(1, x) + 1 [x 6 1]
(3) f(x, 0)→ g(1, x) [x 6 1] (11) h(x)→ f(x− 1, 0) + 2 [x > 1]

have been considered. Thus the system is complete according to Theorem 33 below.

I Lemma 24. If (E ,R) ` (E ′,R′) and the LCTRS R satisfies R ⊆ >[·] then also R′ is an
LCTRS such that R′ ⊆ >[·].

Proof. We show that any step (E ,R) ` (E ′,R′) satisfies R′ \ R ⊆ >[·]. If (E ,R) ` (E ′,R′)
applies orient or compose then this holds by definition. If splitR was applied then s >[ϕ∧¬ψ] t

and s >[ϕ∧ψ] t follow from s >[ϕ] t by Lemma 13(4). The side condition root(s) ∈ Fterms \
Ftheory in the orient rule ensures that R′ is an LCTRS whenever R is. J
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We next show that the conversion relation associated with (E ,R) is not changed by
inference steps. Note that from now on we consider conversions between unconstrained terms,
as opposed to the rewrite steps that are performed when applying inference rules.

I Lemma 25. If (E ,R) ` (E ′,R′) then −−−→
E∪R

\←−−−→
E′∪R′

⊆ =−−−−−→
R′∪E′>

· =←→
E′
· =←−−−−−
R′∪E′>

.

Proof. We perform a case distinction on the applied inference rule.
If compose was applied then 〈s, t〉 [ϕ]→R∪E> 〈s, u〉 [ψ] implies 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ].
If there is a step C[sσ]→ C[tσ] using s→ t [ϕ] then σ respects ϕ. Applying Lemma 9(1)
to C[tσ]← C[sσ] yields C[tσ]→R · ↔u≈s [ψ] C[sσ] and thus C[sσ]↔s≈u [ψ] · R← C[tσ].
As s→ u [ψ] ∈ R′ and R ⊆ R′ we have C[sσ]→R′ · R′← C[tσ].
In the case orient was applied to s ' t [ϕ] ∈ E then for a step C[sσ] ↔ C[tσ] we have
C[sσ]→s→t [ϕ] C[tσ] or C[tσ] s→t [ϕ]← C[sσ]. The claim holds because s→ t [ϕ] ∈ R′.
Suppose simplify was applied with 〈s, t〉 [ϕ]→R∪E> 〈u, t〉 [ψ]. Given a step C[sσ]↔ C[tσ]
using s ≈ t [ϕ], σ respects ϕ. By Lemma 9(1) we have C[sσ]→R · ↔u≈t [ψ] C[tσ]. The
claim holds because u ≈ t [ψ] ∈ E ′.
If delete was applied and there is a step C[sσ] ↔ C[tσ] using the deleted equation
s ≈ t [ϕ], then ϕσ is valid, so sσ = tσ must hold.
Suppose collapse was applied with 〈t, s〉 [ϕ] →R∪E> 〈u, s〉 [ψ]. If C[tσ] ↔ C[sσ] then
C[tσ]→R · ↔u≈t [ψ] C[sσ] by Lemma 9(1). As u ≈ s [ψ] ∈ E ′ and R \ {t→ s [ϕ]} ⊆ R′
we have C[sσ]←→E′ · R′← C[tσ].
In the case of splitE and a step C[sσ]↔ C[tσ] using s ≈ t [ϕ], the substitution σ respects
ϕ. Since Var(ψ) ⊆ Var(ϕ), σ must respect either ψ or ¬ψ.
Similarly, in the case of splitR and a step C[sσ]→ C[tσ] using s→ t [ϕ], the substitution
σ respects ϕ. Since Var(ψ) ⊆ Var(ϕ), σ must respect either ψ or ¬ψ such that one of the
two new rules can be applied. J

I Lemma 26. If (E ,R) ` (E ′,R′) then ←−−−→
E′ ∪R′

⊆ ∗←−−→
E ∪R

.

The proof of Lemma 26 is similar to that of Lemma 25 and can be found in the appendix.
In combination the last two lemmata show the invariance of the conversion relation.

I Corollary 27. If (E ,R) `∗ (E ′,R′) then the relations ∗←−−→
E∪R

and ∗←−−−→
E′∪R′

coincide.

We now follow the proof approach in [9] by showing that whenever a term multiset
dominates a conversion in (E ,R) then this property is preserved by CKB steps. To this end,
we compare terms with the (well-founded) relation � defined as the lexicographic combination
of > and →+

calc, using > as preorder. The relation � denotes its reflexive closure. We label
rewrite steps by multisets of terms and write s S−→

R
t if s→R t and there exist terms s′, t′ ∈ S

such that s′ � s and t′ � t.

I Lemma 28. If R ⊆ >[·] then →R ⊆ �.

Proof. For a rule step s →rule,R t we have s > t by Lemma 14 and hence s � t. A step
s→calc t satisfies s > t by assumption and s � t by the definition of �. J

I Lemma 29. If (E ,R) ` (E ′,R′) and R ⊆ >[·] then
S←−−→
E∪R

∗ ⊆ S←−−−→
E′∪R′

∗.

Proof. We consider a single step

C[tσ] S←−−−→
t≈u [ϕ]

C[uσ]

FSCD 2018



30:12 Completion for Logically Constrained Rewriting

such that t ≈ u [ϕ] ∈ E ∪R and σ respects ϕ, and show C[tσ] S←−−−→
E′∪R′

∗ C[uσ]. The statement
of the lemma follows then by induction on the length of the conversion. According to
Lemma 25 there exist terms v and w that satisfy

C[tσ] =−−→
R′

v
=−−−−→

E′∪R′
w

=←−−
R′

C[uσ]

There must be terms t′ and u′ in S such that t′ � C[tσ] and u′ � C[uσ]. From the assumption
R ⊆ >[·] we obtain C[tσ] � v and C[uσ] � w by Lemmata 24 and 28 and thus t′ � v and
u′ � w. Hence all (non-empty) steps between C[tσ] and C[uσ] can be labeled by S such that
C[tσ] S←−−−→

E′∪R′
∗ C[uσ]. J

We now consider a run, that is, a finite sequence of the form

Γ: (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn)

where R0 ⊆ >[·] is assumed.2 Simple induction proofs using Lemma 24, Corollary 27, and
Lemma 29 extend the respective results to the final system En ∪Rn of the run.

I Corollary 30. The inclusion Rn ⊆ >[·] holds.

I Corollary 31. The relations ∗←−−−→
E0∪R0

and ∗←−−−→
En∪Rn

coincide.

I Corollary 32. The inclusion S←−−−→
Ei∪Ri

∗ ⊆ S←−−−→
En∪Rn

∗ holds.

5.1 Standard Completion

The run Γ is successful if En = ∅ and the inclusion CP(Rn) ⊆
n⋃
i=0
←→
Ei

holds.

I Theorem 33. If Γ is successful then Rn is a complete presentation of E0 ∪R0.

Proof. From Corollary 30 we obtain Rn ⊆ >[·] and thus Rn is terminating by Lemma 15.
In order to establish confluence, consider a peak

t
S1←−−
Rn

s
S2−−→
Rn

u

From Rn ⊆ >[·] and Lemma 28 we obtain s � t and s � u. Using Lemma 20 and the
definition of success, two cases are distinguished.

If t ↓Rn
u then all steps in this joining sequence can be labeled with {t, u}, again using

Lemma 28.
Suppose t ←→Ei

u for some i > 0. We can label this step with {t, u} and thus obtain
t
{t,u}←−−→∗Rn

u from Corollary 32 since En is empty.

In both cases there is a conversion t {t,u}←−−→∗Rn
u. Since s � t and s � u imply S1 �mul {t, u}

and S2 �mul {t, u}, Rn is peak decreasing and hence confluent by Lemma 3. J

2 Rather than requiring the usual R0 = ∅, the more general condition R0 ⊆ >[·] is useful when the
orientation of the input equations needs to be preserved.
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5.2 Ordered Completion

In this section we assume that the reduction order > is complete for E0∪R0, so by Corollary 31
complete for En ∪Rn. We use the following modified notion of success: Γ is successful if

CP>(Rn ∪ En) ⊆
n⋃
i=0
←→
Ei

holds. We write Sn for the LCTRS Rn ∪ E>n .

I Theorem 34. If Γ is successful then Sn is a ground complete presentation of E0 ∪R0.

Proof. The LCTRS Sn is contained in >[·] by Corollary 30 and the definition of E>n , hence
Sn is terminating by Lemma 15. For showing ground confluence we consider a ground peak

t
S1←−−
Sn

s
S2−−→
Sn

u

From the inclusion Sn ⊆ >[·] and Lemma 28 we obtain both s � t and s � u. By Lemma 20
t ↓Sn

u or t ←→CP(Sn) u hold. The latter in turn implies t ↓Sn
u or t ←→CP>(Rn∪En) u by

Lemma 21. Taking the definition of success into account there are two possibilities.
If t ↓Sn

u then all steps in this joining sequence can be labeled by {t, u}, using Lemma 28.
If t ←→Ei

u for some i > 0 then this step can be labeled with {t, u} and therefore
t
{t,u}←−−→∗Rn∪En

u is obtained from Corollary 32. Then there also exists such a conversion
between t and u where all intermediate terms are ground. Since the reduction order > is
assumed to be complete, v →Sn w or w Sn← v for every step v ←→En w in this conversion.
Hence t {t,u}←−−→∗Sn

u follows.

So in both cases we obtain a conversion t
{t,u}←−−→∗Sn

u. From s � t and s � u we obtain
S1 �mul {t, u} and S2 �mul {t, u}. Hence Sn is peak decreasing on ground terms with respect
to �mul and therefore ground confluent by Lemma 3. J

6 Implementation and Applications

We implemented the inference system CKB presented in Section 5 on top of the Ctrl tool [14]
which now supports both standard Knuth-Bendix completion and ordered completion for
LCTRSs. To establish termination of the resulting system, either RPO (Definition 10) with
a user-specified precedence or the termination proving facilities already present in Ctrl can
be used (which are rather powerful due to a DP framework for LCTRSs [12]). For the latter
mode, we adapted the approach of [19] to the LCTRS setting. If desirable, the orientation of
the input equations can be preserved (provided that the termination proving capabilities
of Ctrl suffice, obviously). In the Ctrl infrastructure, the underlying theory can be specified
by the user in a theory specification file. For common theories such as integers, bit vectors,
strings, and matrices these specification files are already present. As SMT solvers we used
Ctrl’s internal solver and Z3 [4].

I Example 35. As one of many optimizations on the intermediate representation, LLVM
provides the Instcombine pass to simplify expressions, comprising over 1000 simplification
rules. In [15,16] about 500 of these rules were expressed in the domain-specific Alive language,
which closely resembles constrained rewrite systems. We transformed this rule set into an
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LCTRS, resulting in rules of the following shape:3

add(x, x)→ shift_left(x,#x01) (1)
add(add(xor(or(x, c1), y),#x01), w)→ sub(w, and(x, c2)) [c1 =∼ c2] (2)

add(xor(x, c), z)→ sub(c+ z, x) [isPowerOf2(c+ #x01) ∧ . . . ] (3)

Here the set of values comprises all bit vectors of a fixed length (e.g., 8). The set of function
symbols Ftheory adds logical, arithmetic, and shift operations on bit vectors, which allow to
express auxiliary predicates like isPowerOf2. On the other hand Fterms consists of symbols
such as add, sub, and xor which refer to the bit vector operations in programs that get replaced
in the Instcombine pass. For example, rule (1) replaces addition of two equal numbers by a
left-shift by one bit. Rule (2) simplifies two consecutive additions with bitwise operations
in their arguments to a subtraction, but is only applicable if the constant c1 is the bitwise
negation of the constant c2. Also rule (3) implements some bit twiddling, checking whether a
constant is a power of 2 (among other constraints). Since the optimization set is community
maintained and constantly in flux, unintended interaction and overlapping patterns are not
uncommon, despite the expectation of the community that there be a “canonical” form for
every expression. For example rule (2) admits a critical pair with rule (1).

Completing the entire system is beyond the reach for our tool, but Ctrl completes for
instance 11 optimizations for expressions rooted by an addition to a system of 15 rules,
thereby eliminating some sources of nonconfluence. We maintained the orientation of the
input rules, and could use the termination prover present in Ctrl.

The next example illustrates that LCTRS completion can prevail over completion of
standard rewrite systems even in the absence of constraints: using a “background theory”
such as integer arithmetic may admit a much more succinct presentation.

I Example 36. The tool AQL4 performs data integration, i.e., the transformation of data
from one database scheme to another, by means of a category-theoretic approach which
takes advantage of (ordered) completion [18]. More precisely, it attempts to get a complete
presentation for a set of ground equations describing data in the first database, plus non-
ground equations describing the transformation to the second schema. A (ground) complete
system can then be used to build the initial term model describing the data in the second
schema, by enumerating terms and rewriting them to normal form until a fixed point is
reached. The following example is taken from AQL’s problem suite:

workAt(mng(e)) ≈ workAt(e) workAt(sec(x)) ≈ dep(x) agec(e) ≈ age(e) + age(mng(e))
first(a) ≈ “Alice” first(b) ≈ “Bob” first(c) ≈ “Carl”

mng(a) ≈ b mng(b) ≈ b sec(b) ≈ a
workAt(a) ≈ m dname(s) ≈ “CS” dname(m) ≈ “Math”

Here the set of values consists of integers and strings, and Ftheory contains integer arithmetic.
The signature Fterms contains symbols dep, workAt, mng, and sec to represent a database
schema that describes departments and employees working therein, with relations to designate
managers and secretaries. There are equations defining general relations between relations
as in the first row, and many ground equations describing the actual data (the constants a,

3 Full details can be found at http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_completion/.
4 http://categoricaldata.net/aql.html

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_completion/
http://categoricaldata.net/aql.html
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b, c refer to entries in a database table). Not all equations of the latter type are shown due
to reasons of space. Ctrl can easily complete this system of 22 equations to an LCTRS of
25 rules within less than a second. Input problems for AQL often relate to standard data
types like integers and strings, thus it is a key advantage if, e.g., numbers and arithmetic are
already present in the theory and do not need to be axiomatized explicitly.

We conclude this section with an example on ordered completion.

I Example 37. In its ordered completion mode, Ctrl can verify ground completeness of the
following system describing sorting the elements in an unordered tree:

[ ] @ xs→ xs (x : xs) @ ys→ x : (xs @ ys)
add(x, [ ])→ [x] add(x, y : ys)→ x : (y : ys) [x < y]

add(x, y : ys)→ y : add(x, ys)) [x > y] sort([ ])→ [ ]
sort(x : xs)→ add(x, sort(xs)) flatten(L(x))→ [x]

flatten(N(x, y))→ flatten(x) @ flatten(y)
tsort(t)→ sort(flatten(t)) N(x, y) = N(y, x)

where the logical constraints are expressed over the theory of integer arithmetic. Obviously,
standard completion fails on this example because of the commutativity equation. For this
example we used constrained RPO such that the resulting system is complete with respect
to a ground-total reduction order.

7 Conclusion

In this paper we presented an abstract completion inference system for both standard and
ordered completion of LCTRSs. We provide a new and succinct correctness proof. Our
prototype implementation shows the potential of completion for this powerful rewriting
concept also on practical examples.

A completion procedure for a different kind of constrained rewrite systems was already
proposed in [8]. However, the work presented in this paper differs from this older approach in
several crucial aspects. It is known [13] that LCTRSs can express systems where the version
of constrained systems from [8] admits no finite presentation. Moreover, our inference system
covers not only standard but also ordered completion, and we give full and novel proofs which
are very concise due to the use of peak decreasingness. We also employ constrained instead
of standard reduction orders, which gives a lot more flexibility to implementations and allows
in particular to perform completion with termination tools. Finally, the implementation
mentioned in [8] was restricted to integers and is no longer available.

For future research a variety of directions is conceivable. There are several opportunities
to enhance efficiency and effectiveness of the tool, such as stronger termination techniques and
critical pair criteria [2]. Theoretical results on infinite runs can shed light on the interesting
case of systems generated in the limit. Finally, formalization of LCTRSs and respective
completion procedures in a proof assistant would enhance reliability.

FSCD 2018



30:16 Completion for Logically Constrained Rewriting

References

1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

2 L. Bachmair. Canonical Equational Proofs. Birkhäuser, 1991.
3 L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without failure. In H. Aït

Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2:
Rewriting Techniques of Progress in Theoretical Computer Science, pages 1–30. Academic
Press, 1989.

4 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. 14th TACAS, volume
4963 of LNCS, pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.

5 S. Falke and D. Kapur. Dependency pairs for rewriting with built-in numbers and semantic
data structures. In Proc. 19th RTA, volume 5117 of LNCS, pages 94–109, 2008. doi:
10.1007/978-3-540-70590-1_7.

6 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination
of integer term rewriting. In Proc. 20th RTA, volume 5595 of LNCS, pages 32–47, 2009.
doi:10.1007/978-3-642-02348-4_3.

7 C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting
induction. ACM TOCL, 18(2):14:1–14:50, 2017. doi:10.1145/3060143.

8 Y. Furuichi, N. Nishida, M. Sakai, K. Kusakari, and T. Sakabe. Approach to procedural-
program verification based on implicit induction of constrained term rewriting systems.
IPSJ Transactions on Programming, 1(2):100–121, 2008. In Japanese.

9 N. Hirokawa, A. Middeldorp, and C. Sternagel. A new and formalized proof of abstract
completion. In Proc. 5th ITP, volume 8558 of LNCS, pages 292–307, 2014. doi:10.1007/
978-3-319-08970-6_19.

10 K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov. Preprocessing techniques for
first-order clausification. In Proc. 12th FMCAD, pages 44–51, 2012.

11 D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.
doi:10.1016/B978-0-08-012975-4.

12 C. Kop. Termination of LCTRSs. In Proc. 13th WST, pages 59–63, 2013.
13 C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. 9th FroCoS,

volume 8152 of LNAI, pages 343–358, 2013. Full version available at https://www.cs.ru.
nl/~cynthiakop/frocos13.pdf. doi:10.1007/978-3-642-40885-4_24.

14 C. Kop and N. Nishida. Constrained Term Rewriting tooL. In Proc. 20th LPAR, volume
9450 of LNAI, pages 549–557, 2015. doi:10.1007/978-3-662-48899-7_38.

15 N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct peephole optimiz-
ations with Alive. In Proc. 36th PLDI, pages 22–32, 2015. doi:10.1145/2737924.2737965.

16 N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Practical verification of peephole
optimizations with Alive. Communications of the ACM, 61(2):84–91, 2018. doi:10.1145/
3166064.

17 A. Nadel. Bit-vector rewriting with automatic rule generation. In Proc. 16th CAV, pages
663–679, 2014. doi:10.1007/978-3-319-08867-9_44.

18 P. Schultz and R. Wisnesky. Algebraic data integration. JFP, 27(e24):51 pages, 2017.
doi:10.1017/S0956796817000168.

19 I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion with
a modern termination checker. In Proc. 17th RTA, volume 4098 of LNCS, pages 287–296,
2006. doi:10.1007/11805618_22.

http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1145/3060143
http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.1016/B978-0-08-012975-4
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1007/978-3-662-48899-7_38
http://dx.doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1145/3166064
http://dx.doi.org/10.1145/3166064
http://dx.doi.org/10.1007/978-3-319-08867-9_44
http://dx.doi.org/10.1017/S0956796817000168
http://dx.doi.org/10.1007/11805618_22


S. Winkler and A. Middeldorp 30:17

A Proofs

The following fact becomes useful in the sequel.

I Lemma 38. If ϕ⇒ ψ is valid, Var(ψ) ⊆ Var(ϕ), and γ respects ϕ then γ respects ψ.

Proof of Lemma 8(2). Since δ respects ψ there is some δ′ respecting ψ′ such that 〈t, v〉δ =
〈t′, v′〉δ′.

First, (1) involves a rule step then ϕ′ = ψ′, 〈s′, u′〉δ′ →rule, 1p 〈t′, v′〉δ′, and u′δ′ = v′δ′ by
Lemma 6. Because 〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] there is some γ such that 〈s, u〉γ = 〈s′, u′〉δ′. We
thus have sγ = s′δ′ →R t′δ′ = tδ and uγ = u′δ′ = v′δ′ = vδ.

Next suppose (1) involves a calculation step. By the definition of →calc we have ψ′ =
(ϕ′ ∧ x = f(s1, . . . , sn)) for some x ∈ V, f ∈ Ftheory, and s1, . . . , sn ∈ Var(ϕ′) ∪ Val. Since
x is fresh we have s′δ′ →calc t

′δ′ and u′δ′ = v′δ′. From 〈s, u〉 [ϕ] ∼ 〈s′, u′〉 [ϕ′] we obtain a
substitution γ respecting ϕ such that 〈s, u〉γ = 〈s′, u′〉δ′. Therefore sγ = s′δ′ →R t′δ′ = tδ

and uγ = u′δ′ = v′δ′ = vδ. J

Proof of Lemma 13.
1. For any γ that respects ϕ we have sγ > tγ and tγ > uγ, hence sγ > uγ follows from

transitivity of >.
2. Suppose γ satisfies ϕ. We have to show that (sσ)γ > (tσ)γ holds. By assumption σ

respects ϕ, hence so does σγ. From s >[ϕ] t we therefore obtain s(σγ) > t(σγ), so also
(sσ)γ > (tσ)γ holds.

3. This follows from closure under contexts of >.
4. Any substitution γ that respects ψ also respects ϕ by Lemma 38, hence sγ > tγ because

of s >[ϕ] t. J

Proof of Lemma 21. Suppose a step C[sτ ]←→CP(R∪E>) C[tτ ] between ground terms C[sτ ]
and C[tτ ] uses a critical pair s ≈ t [χ] in CP(R ∪ E>) originating from an overlap 〈`1 →
r1 [ϕ1], p, `2 → r2 [ϕ2]〉 with most general unifier σ. Hence we have `1 → r1 [ϕ1], `2 →
r2 [ϕ2] ∈ R ∪ E> ∪ Rcalc, s = `2σ[r1σ]p, t = r2σ, and χ = ϕ1σ ∧ ϕ2σ. Then there are
u1 ≈ v1 [ψ1] and u2 ≈ v2 [ψ2] in R∪E ∪Rcalc and a substitution γ such that `1 → r1 [ϕ1] =
(u1 ≈ v1 [ψ1])γ and `2 → r2 [ϕ2] = (u2 ≈ v2 [ψ2])γ (assuming that equations and rules in
R∪ E ∪Rcalc are renamed apart).

We distinguish two cases. First, suppose p ∈ PosF (u2). We have u2γσ = u2γσ[u1γσ],
so u2|p and u1 must be unifiable. Let ρ be their most general unifier, so there is some
substitution δ such that γσ = ρδ. Since χτ = (ϕ1∧ϕ2)στ = (ψ1∧ψ2)γστ is valid, (ψ1∧ψ2)γ
is satisfiable. So there is an overlap 〈u1 ≈ v1 [ψ1], p, u2 ≈ v2 [ψ2]〉. Moreover, since τ
respects χ, the substitution στ respects ϕ1 = ψ1γ. If u1 ≈ v1 [ψ1] ∈ R ∪ E> then we have
u1γ >[ψ1γ] v1γ and hence u1γστ > v1γστ ; if u1 ≈ v1 [ψ1] ∈ Rcalc then u1γστ > v1γστ

by the properties of a reduction pair. In either case v1γ >[ψ1γ] u1γ cannot hold because
> is well-founded. Similarly, v2γ >[ψ2γ] u2γ cannot hold. So the overlap gives rise to a
constrained extended critical pair u2ρ[v1ρ]p ≈ v2ρ [ψ1γ ∧ ψ2γ], and we have a step

C[sτ ] = C[u2[v1]pγστ ] = C[u2ρ[v1ρ]pδτ ]←−−−−−→
CP>(R∪E)

C[v2ρδτ ] = C[v2γστ ] = C[tτ ]

Second, if p /∈ PosF (u2) then the peak u2γ[v1γ]p ← u2γ[u1γ]p = u2γ → v2γ forms a variable
overlap between u1 ≈ v1 [ψ1] and u2 ≈ v2 [ψ2]. There are positions p′ and q such that u2|p′
is some variable x and γ(x)|q = u1γ. Note that u2 ≈ v2 [ψ2] cannot be a calculation rule
since γ(x) /∈ Val. Let γ′ be the substitution defined by γ′(x) = γ(x)[v1γ]q and γ′(y) = γ(y)
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for all y 6= x. Then x cannot occur in ψ2 since γ(y) ∈ Val for all y ∈ Var(ψ2), but left-hand
sides are headed by non-theory symbols. Therefore γ′ respects ψ2 and thus we obtain

u2γ[v1γ]p
∗−−−−−−−→

`1→r1 [ϕ1]
u2γ
′ ←−−−−−−→
u2≈v2 [ψ2]

v2γ
′ ∗←−−−−−−−
`1→r1 [ϕ1]

v2γ

Since u2γ and v2γ are ground, u2 ≈ v2 [ψ2] ∈ R ∪ E± and > is complete for R ∪ E , either
u2γ
′ →R∪E> v2γ

′ or v2γ
′ →R∪E> u2γ

′ must hold. J

Proof of Lemma 26. We perform a case distinction on the applied inference rule.
Suppose deduce was applied and there is a step C[sσ]↔ C[tσ] using s ≈ t [ϕ] ∈ E ′. The
substitution σ must respect ϕ. From 〈u, u〉 [ϕ]→R∪E± 〈s, u〉 [ϕ] and Lemma 8(2) we ob-
tain a substitution γ1 such that uγ1 →R∪E± sσ and uγ1 = uσ, and from 〈u, u〉 [ϕ]→R∪E±
〈u, t〉 [ϕ] a substitution γ2 such that uγ2 →R∪E± tσ and uγ2 = uσ. We have

C[sσ] R∪E±← C[uγ1] = C[uσ] = C[uγ2]→R∪E± C[tσ]

and thus C[sσ]←→∗E∪R C[tσ].
If compose was applied then 〈s, t〉 [ϕ] →R∪E> 〈s, u〉 [ψ] and hence 〈t, s〉 [ϕ] →R∪E>

〈u, s〉 [ψ]. If there is a step C[uσ]← C[sσ] then C[sσ]←→2
E∪R C[uσ] by Lemma 9(2).

Next, suppose simplify was applied so we have 〈s, t〉 [ϕ] →R∪E> 〈u, t〉 [ψ]. For a step
C[sσ]←→ C[uσ] using s ≈ u [ψ] we thus have C[sσ]←→2

E∪R C[uσ] by Lemma 9(2).
If collapse was applied we have 〈t, s〉 [ϕ]→R∪E> 〈u, s〉 [ψ]. If there is a step C[uσ]↔ C[sσ]
using u ≈ s [ψ] then C[sσ]←→2

E∪R C[uσ] follows again from Lemma 9(2).
The case of orient is trivial, and in the case of delete there is nothing to show. Also the
split cases are easy since substitutions respecting ϕ ∧ ψ (or ϕ ∧ ¬ψ) also respect ϕ. J



ProTeM: A Proof Term Manipulator
Christina Kohl
Department of Computer Science, University of Innsbruck, Austria
christina.kohl@uibk.ac.at

https://orcid.org/0000-0002-8470-2485

Aart Middeldorp
Department of Computer Science, University of Innsbruck, Austria
aart.middeldorp@uibk.ac.at

https://orcid.org/0000-0001-7366-8464

Abstract
Proof terms are a useful concept for reasoning about computations in term rewriting. Human cal-
culation with proof terms is tedious and error-prone. We present ProTeM, a new tool that offers
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1 Introduction

Proof terms represent computations in term rewriting. They were introduced by van Oostrom
and de Vrijer for first-order left-linear rewrite systems to study equivalence of reductions in
[12] and [9, Chapter 8]. Extensions to higher-order rewriting and infinitary rewriting are
reported in [1] and [5], respectively. Hirokawa and the second author used proof terms for
confluence analysis of left-linear rewrite systems [2, 3].

Our motivation for studying proof terms is to close an important gap between proofs
produced by automatic confluence checkers and certified proofs. Numerous confluence criteria
described in the literature have been formalized in IsaFoR, a large Isabelle/HOL library for
term rewriting, see [7] for a recent overview. This includes the well-known result of Huet [4]
stating that a left-linear rewrite system is confluent if its critical pairs are closed by a parallel
step [8]. Its extension to multisteps (also called development steps) by van Oostrom [11] thus
far escaped all attempts to obtain a formalized proof. The picture proof in [11] conveys the
intuition but is very hard to formalize in a modern proof assistant. We believe that proof
terms together with residual theory [9, Section 8.7] will help to close the gap.

Calculations with proof terms are tedious and error-prone to do by hand, which is why
we developed ProTeM. Besides providing basic operations for manipulating proof terms that
represent multisteps in left-linear rewrite systems, like join and residual, ProTeM supports
new operations on proof terms that are required for a formalized proof of the main result of
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[11]. The latter include an inductive definition for computing the amount of overlap and a
function that returns the critical overlaps between co-initial proof terms.

In the next section we recall proof terms and introduce new operations for measuring
overlap between two proof terms. The web interface of ProTeM is described in Section 3 and
in Section 4 we present some implementation details. We conclude in Section 5 with ideas
for future extensions of ProTeM.

2 Proof Terms

Proof terms are built from function symbols, variables, and rule symbols. The latter represent
rewrite rules and have a fixed arity which is the number of different variables in the represented
rule. We use Greek letters as rule symbols. In this section we present the operations on proof
terms that are implemented in ProTeM. The following example will be used to illustrate
various definitions.

I Example 1. Consider the rewrite rules
f

g

h

h f

i f g

i i a

a a

α

γγ

α
δ

β
α : f(g(x))→ g(h(x, i(a)))
β : g(h(h(i(x), y), f(z)))→ h(h(y, y), f(z))
γ : i(x)→ x

δ : h(x, f(y))→ h(i(f(y)), f(y))
ε : g(h(x, y))→ h(x, y)

and the term s = f(g(h(h(i(i(a)), f(i(a))), f(g(a))))). By
marking certain redexes in s we obtain the two proof
terms

A = α(h(δ(i(γ(a)), i(a)),α(a)))
B = f(β(i(a), f(γ(a)), g(a)))

This situation is illustrated on the right, where the redexes in A are indicated in red and
those in B in green.

If α is a rule symbol then lhs(α) (rhs(α)) denotes the left-hand (right-hand) side of the
rewrite rule represented by α. Furthermore var(α) denotes the list (x1, . . . , xn) of variables
appearing in α in some fixed order. The length of this list is the arity of α. Given a rule
symbol α with var(α) = (x1, . . . , xn) and terms t1, . . . , tn, we write 〈t1, . . . , tn〉α for the
substitution {xi 7→ ti | 1 6 i 6 n}. A proof term A witnesses a multistep from its source
src(A) to its target tgt(A), which are computed as follows:

src(x) = tgt(x) = x

src(f(A1, . . . , An)) = f(src(A1), . . . , src(An))
src(α(A1, . . . , An)) = lhs(α)〈src(A1), . . . , src(An)〉α
tgt(f(A1, . . . , An)) = f(tgt(A1), . . . , tgt(An))
tgt(α(A1, . . . , An)) = rhs(α)〈tgt(A1), . . . , tgt(An)〉α
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Here f is an n-ary function symbol. Proof terms A and B are co-initial if they have the
same source. We define the orthogonality predicate A ⊥ B by the following clauses:

x ⊥ x
f(A1, . . . , An) ⊥ f(B1, . . . , Bn) ⇐⇒ Ai ⊥ Bi for all 1 6 i 6 n

α(A1, . . . , An) ⊥ lhs(α)〈B1, . . . , Bn〉α ⇐⇒ Ai ⊥ Bi for all 1 6 i 6 n

lhs(α)〈A1, . . . , An〉α ⊥ α(B1, . . . , Bn) ⇐⇒ Ai ⊥ Bi for all 1 6 i 6 n

In all other cases A ⊥ B is false. Next we recall the join (A t B) and residual (A/B)
operations on co-initial proof terms:

x t x = x /x = x

f(A1, . . . , An) t f(B1, . . . , Bn) = f(A1 tB1, . . . , An tBn)
α(A1, . . . , An) t α(B1, . . . , Bn) = α(A1 tB1, . . . , An tBn)

α(A1, . . . , An) t lhs(α)〈B1, . . . , Bn〉α = α(A1 tB1, . . . , An tBn)
lhs(α)〈A1, . . . , An〉α t α(B1, . . . , Bn) = α(A1 tB1, . . . , An tBn)

f(A1, . . . , An) / f(B1, . . . , Bn) = f(A1 /B1, . . . , An /Bn)
α(A1, . . . , An) /α(B1, . . . , Bn) = rhs(α)〈A1 /B1, . . . , An /Bn〉α

α(A1, . . . , An) / lhs(α)〈B1, . . . , Bn〉α = α(A1 /B1, . . . , An /Bn)
lhs(α)〈A1, . . . , An〉α /α(B1, . . . , Bn) = rhs(α)〈A1 /B1, . . . , An /Bn〉α

These are partial operations. The next operation that we define on proof terms is deletion
A−B, which is used to remove steps from a multistep:

x− x = x

f(A1, . . . , An)− f(B1, . . . , Bn) = f(A1 −B1, . . . , An −Bn)
α(A1, . . . , An)− α(B1, . . . , Bn) = lhs(α)〈A1 −B1, . . . , An −Bn〉α

α(A1, . . . , An)− lhs(α)〈B1, . . . , Bn〉α = α(A1 −B1, . . . , An −Bn)

Like join and residual, deletion is a partial operation.

I Example 2. The proof terms A and B in Example 1 are not orthogonal. Let C =
B − f(β(i(a), f(i(a)), g(a))) = f(g(h(h(i(i(a)), f(γ(a)), f(g(a))))). We have A ⊥ C. Moreover,

A/C = α(h(δ(i(γ(a)), a), α(a)))
C /A = g(h(h(h(i(f(γ(a))), f(γ(a))), g(h(a, i(a)))), i(a)))

An important concept in the correctness proof of the confluence theorem in [11] is the
amount of overlap between two multisteps. Below we present an inductive definition for
measuring the overlap between co-initial proof terms. It is based on a special labeling of the
source of a proof term. We write lhs](α) for the result of labeling every function symbol in
lhs(α) with α as well as the distance to the root of α: lhs](α) = ϕ(lhs(α), α, 0) with

ϕ(t, α, i) =
{
t if t ∈ V
fαi(ϕ(t1, α, i+ 1), . . . , ϕ(tn, α, i+ 1)) if t = f(t1, . . . , tn)

The mapping src] computes the labeled source of a proof term:

src](x) = x

src](f(A1, . . . , An)) = f(src](A1), . . . , src](An))

src](α(A1, . . . , An)) = lhs](α)〈src](A1), . . . , src](An)〉α
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Given two co-initial proof terms A and B, the following function computes a single labeled
term in which all function symbols corresponding to redex patterns in A and B are marked:

merge(A,B) = merge′(src](A), src](B))

with merge′(s, t) = s for s, t ∈ V and merge′(s, t) = fab(merge′(s1, t1), . . . ,merge′(sn, tn)) if
s = fa(s1, . . . , sn) and t = fb(t1, . . . , tn). Here we identify an unlabeled function symbol f
with f−. The merge function is used to measure the amount of overlap between co-initial
proof terms: N(A,B) = measure(merge(A,B)) with measure(u) = 0 if u ∈ V and

measure(fakbl(u1, . . . , un)) =


1 +

n∑
i=1

measure(ui) if ak 6= − and bl 6= −
n∑
i=1

measure(ui) otherwise

Finally the overlaps function collects all pairs of overlapping redexes in co-initial proof terms:

overlaps(A,B) =
{

(p, α, q, β)
∣∣∣∣ p, q ∈ PosF (u), `1(u(p)) = α0, `2(u(q)) = β0, and either
p 6 q and `1(u(q)) = α|q\p| or q < p and `2(u(p)) = β|p\q|

}

Here u = merge(A,B) and PosF (u) is the set of function positions in u. The functions `1 and
`2 extract the first and second label of a labeled function symbol: `1(fab) = a and `2(fab) = b.
The condition `1(u(q)) = α|q\p| in the first case of the definition of overlaps(A,B) ensures
that q\p is a position in lhs(α).

I Example 3. For the proof terms in Example 1 we have

merge(A,B) = fα0−(gα1β0(h−β1(hδ0β2(i−β3(iγ0−(a)), fδ1−(i−γ0(a))), fα0β2(gα1−(a)))))

and N(A,B) = 3. Here a abbreviates a−−. Furthermore, overlaps(A,B) consists of the tuples
(ε,α, 1,β), (111, δ, 1,β), and (112,α, 1,β).

3 Web Interface

In this section we will first give a brief overview of the main parts of ProTeM’s user interface,
subsequently we will describe all features in more detail. The web interface of ProTeM can
be accessed at

http://informatik-protem.uibk.ac.at/

The layout of our application is displayed in Figure 1. At the center of the screen we have a
large area for displaying the history of commands a user has entered (on the left), together
with result output corresponding to these commands (on the right). We also offer the
possibility to export the commands and results of the current session as a simple text file via
the “Session Log” button underneath the output area. Below that there is a smaller panel
where all rules of the currently loaded term rewrite system are displayed. At the bottom
of the screen we have a command line with several buttons above it, that help users enter
unusual symbols such as Greek letters for rule symbols or the ⊥ symbol for the orthogonality
predicate on proof terms. To the left of the screen we have a sidebar that gives an overview
of the syntax that is used for commands. In the navigation bar at the top right corner of the
screen we have a link leading to a help page with details about every component and feature
of ProTeM.

http://informatik-protem.uibk.ac.at/
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Figure 1 Screenshot of a ProTeM session.

3.1 Uploading a Term Rewrite System
When first opening the website, a simple example rewrite system is loaded per default. Users
can upload their own rewrite systems from .trs files. The files need to correspond to a
simplified form of the standard TRS-format as described in [6], where only the VAR and
RULES sections are taken into account. Additionally the rule symbols ProTeM should use
can be specified in the file by prepending each rule with its corresponding symbol followed
by a colon. For reference, an example .trs file is available in the help section of the tool. If
one or more rules have no specified rule symbols, ProTeM chooses a new Greek letter for
each rule, starting from α. In cases where there are more than 24 rules, ProTeM begins
to append digits to each Greek letter, e.g. α1, β1, γ1, . . . . When uploading a new rewrite
system, the buttons above the command line will automatically change according to the new
rule symbols.

3.2 Commands
There are two types of commands available, one are assignments, the other computations
on proof terms. Assignments have syntax id = proofterm where id can be any string
and proofterm any valid proof term. Notably it is possible to use nested expressions in
assignments (e.g. C = D t ((B − d2)/d1), see also Figure 1). Commands for rule symbols
are lhs(α), rhs(α) and vars(α) where α can be any rule symbol used in the current TRS.
Commands for proof terms include all operations described in Section 2 and their nested
applications. The syntax of these operations is listed in the sidebar of our application.

Commands have to be entered into the text field at the bottom of the screen. The
blue buttons above it can be used to enter special symbols that are used for some of the
commands (like ⊥ for orthogonality, or N for measuring the amount of overlap between two
proof terms). In addition there is one orange button for each currently used rule symbol.
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When pressing one of the buttons, the corresponding symbol appears in the command line,
with the focus returning immediately to the text field itself so that the user can carry on
typing. A command can be submitted either by pressing enter or by using the “Submit”
button. If the command line contains a valid command, it will be sent to the server and
executed. The result will then be displayed in the output area above. If the command was
not valid (e.g. trying to assign the result of an undefined operation), an error message will
be displayed (see Figure 2 in Appendix A).

3.3 Export to LATEX
A proof term or labeled proof term can be exported as a LATEX string. To correctly insert proof
terms from ProTeM into a LATEX document it is first necessary to add the required macros.
These define colors and provide support for UTF8 encoding of Greek letters. In particular
we define three new commands \pfun, \pvar, \prule which define the representations of
function symbols, variables and rule symbols respectively. The macros can be downloaded
by clicking on the “LATEX macros” entry in the sidebar. Clicking on any proof term in the
output area will open a popup view, which contains a text field with the LATEX representation
of that proof term (see Figure 3 in Appendix A). It can then be copy-and-pasted into any
document.

4 Implementation Details

The core functionality of ProTeM is written in Scala. For the web component we used the
Vaadin framework [10]. Vaadin is a Java web application framework that makes it easier
for developers who don’t have much experience with web technologies, such as JavaScript,
HTML and HTTP requests, to design responsive and interactive web applications. Vaadin
allows developers to write all required code in pure Java (or any other language that runs on
the JVM). Applications can also be extended with custom HTML or JavaScript and themed
with CSS. From a technological point of view the UI logic of a Vaadin application runs as
a Java Servlet in a Java application server. On the client side Vaadin uses JavaScript to
render the user interface in the browser and communicate user events to the server. All
communication is automated and makes heavy use of AJAX (Asynchronous JavaScript and
XML) to make applications as responsive as possible. An additional benefit for our particular
application was that Vaadin automatically stores the state of each user session (as long as
the browser window is open), so that we can provide users with an interactive interface and
still call our Scala functions on the server for all computations on proof terms.

5 Conclusion

In this paper we presented ProTeM, a tool that supports operations on proof terms that
represent multisteps in first-order left-linear rewrite systems. There are several possibilities
to extend the functionality of ProTeM. First of all, adding a composition operation to the
language of proof terms allows to represent rewrite sequences that are not single multisteps.
Equivalence testing and normalization become then interesting questions. Also one could
ask the tool to compute proof terms that represent a given rewrite sequence. Another useful
extension will be automatic support for visualizing co-initial proof terms, like the figure in
Example 1. Dropping the left-linearity requirement will be a challenging task, which requires
the development of new theory.
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Figure 2 An invalid assignment; the join operation of these two proof terms is not defined.

Figure 3 Popup view containing the LATEX representation of a labeled proof term.
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1 Confluence Competition

The annual Confluence Competition (CoCo)5 has driven the development of techniques for
(dis)proving confluence and related properties of a variety of rewrite formalisms automatically.
Starting in 2012 with 4 tools competing in 2 categories, CoCo has grown steadily to 11
categories with 11 tools in 2017, and several tools ran in multiple categories.

CoCo is executed on the dedicated high-end cross-community competition platform
StarExec [3]. A speciality of CoCo is that the whole competition is conducted within one
slot at a conference or workshop (IWC in 2012–2017 and FSCD in 2018). The progress of
the live competition is shared with the audience visually through the LiveView tool which
interacts with StarExec. A screenshot of the LiveView of CoCo 2017 is shown in Figure 1.

2 Categories

CoCo supports two kinds of categories, competition and demonstration categories. The latter
are one-time events for demonstrating new rewrite formats or properties. These can be
requested until 2 months before a competition. Competition categories run also in future
editions of CoCo. These can be requested until 6 months prior to the competition, in order to
allow the CoCo steering committee to make a well-informed decision on the format (precise
syntax as well as semantics) of the new categories and to extend the Confluence Problems
database (Cops) accordingly. In CoCo 2018, we have the following 11 competition categories:
TRS/CTRS/HRS These three categories are about confluence of three important formalisms

of rewriting, namely, first-order term rewriting (TRS), conditional term rewriting (CTRS),
and higher-order rewriting (HRS).

CPF-TRS/CPF-CTRS These two categories are for certified confluence proofs. Participating
tools must generate certificates that are checked by an independent certifier.

GCR This category is about ground confluence of many-sorted term rewrite systems.
NFP/UNC/UNR These categories are about confluence-related properties of first-order

term rewrite systems, namely, the normal form property (NFP), unique normal forms
with respect to conversion (UNC), and unique normal forms with respect to reduction
(UNR).

CPF This category is the combination of the CPF-TRS and CPF-CTRS categories, evaluating
the overall power of tools that generate certified confluence (dis)proofs.

UN This category is the combination of the NFP, UNC, and UNR categories. Tools compete
to prove the strongest property among these three.

As GCR and NFP/UNC/UNR are new categories introduced in the last competition, we
provide some more details. The other categories are described in the CoCo 2015 report [1].
Applications based on initial algebra semantics often rely on confluence of well-sorted ground

5 http://coco.nue.ie.niigata-u.ac.jp/
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Figure 1 LiveView of CoCo 2017 upon completion.

terms, which is the reason why the GCR category deals with confluence of all well-sorted
ground terms in a many-sorted term rewrite system. Uniqueness of normal forms also plays
an important role in applications of rewriting. The notion is formalized in three different
ways: A TRS satisfies NFP if s→∗ t whenever s↔∗ t with t a normal form. A TRS satisfies
UNC if s = t whenever s↔∗ t with s and t normal forms. Finally, a TRS satisfies UNR if
s = t whenever s ∗← · →∗ t with s and t normal forms. The properties GCR, NFP, UNC,
and UNR are all weaker than confluence and the implications “NFP ⇒ UNC ⇒ UNR” hold.

3 Problems

Problems selected for CoCo originate from Cops, an online database of confluence problems.6
Via its web interface, everyone can retrieve and download confluence problems, and also
submit new problems. Figure 2 shows the submission interface of Cops. Submitted problems

6 http://cops.uibk.ac.at/
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Figure 2 The submission interface of Cops.

are reviewed by the CoCo steering committee and then integrated into Cops. We refer to the
website and [2] for detailed information about Cops. Problem selection for CoCo is subject
to the following constraints:

Only problems stemming from the literature are considered. This includes papers
presented at informal workshops like the International Workshop on Confluence (IWC)
and PhD theses. The reason for this restriction is to avoid bias towards one particular
tool or technique.
For the GCR, NFP, UNC and UNR categories, only non-confluent problems are considered.

For the CTRS and CPF-CTRS categories, only oriented conditional term rewrite systems
of type 3 are considered.
The restriction to pattern rewrite systems in the HRS category for CoCo 2015–2017 has
been removed in CoCo 2018.

Further selection details are available from the CoCo website.
For the live competition, 100 suitable problems are randomly selected for each category.

In the demonstration categories, participating tool authors are requested to provide the
problems for the competition.

4 Evaluation

Given a problem, participating tools must—in the first line of their output—answer YES
or NO within 60 seconds; any other answer indicates that the tool could not determine the
status of the problem. The winner of each category is determined by the total number of
YES/NO answers. The combined UN category is an exception to this rule. The winner in that
category is determined by summing up the points earned according to Table 1. Here, the
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Table 1 Scoring in the UN category.

none UNR UNC NFP
none 0 3 4 5

¬NFP 3 4 5
¬UNC 4 5
¬UNR 5

column corresponds to the strongest property proved by the tool, and the row corresponds
to the weakest property refuted by the tool. For example, a tool that proves UNR, disproves
NFP, but does not decide UNC, would score 4 points (row: ¬NFP, column: UNR).

Shortly after each competition, detailed competition results are made available on the
CoCo website and integrated into Cops as metadata to indicate the statuses of problems in
past competitions. If a tool has given a non-plausible answer, it is disqualified as a winner of
the categories in which those answers are involved. Moreover, the records are corrected if
such an erroneous answer is spotted after the live competition.

Most participating tools are available at the CoCo website. Moreover, CoCoWeb7 [2]
provides a convenient web interface to execute tools without local installation.

5 Outlook

We expect CoCo to grow with new categories and tools in the years ahead. Natural candidates
are commutation, rewriting modulo AC, and nominal rewriting. We are planning to enhance
the functionality of the LiveView tool. In particular, we want to have it recognize YES/NO
conflicts among participating tools in real time. It would also be nice if the scores of the
UN and CPF categories are computed and viewed in real time. Based on the metadata
of (completed) competitions imported into Cops, a website8 admits to view details of past
competitions, including the output of tools. Importing the metadata in real time would make
all details of the live competition immediately accessible.
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