3rd International Conference on
Formal Structures for
Computation and Deduction

FSCD 2018, July 9-12, 2018, Oxford, United Kingdom

Edited by
Hélene Kirchner

\\v LIPICS

LIPlcs — Vol. 108 — FSCD 2018 www.dagstuhl.de/lipics

Editor

Héléne Kirchner
Inria
helene.kirchner@inria.fr

ACM Classification 2012

Theory of computation — Models of computation, Theory of computation — Formal languages and
automata theory, Theory of computation — Logic, Theory of computation — Semantics and reasoning,
Software and its engineering — Language features, Software and its engineering — Formal language
definitions

ISBN 978-3-95977-077-4

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-077-4.

Publication date
July, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.FSCD.2018.0

ISBN 978-3-95977-077-4 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-077-4
http://www.dagstuhl.de/dagpub/978-3-95977-077-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-077-4
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU Miinchen)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

FSCD 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
HeElene Kirchner 0:vii—0:viii

Invited Talks

Analysing Privacy-Type Properties in Cryptographic Protocols

Stéphanie Delauneo 1:1-1:21
Formal Design, Implementation and Verification of Blockchain Languages

GTIGoTE ROSU « oo 2:1-2:6
Challenges in Quantum Programming Languages

Peter Selingero 3:1-3:2
Proof Techniques for Program Equivalence in Probabilistic Higher-Order
Languages

Valeria Vignudelli 4:1-4:2

Regular Research Papers

A Unifying Framework for Type Inhabitation

Sandra Alves and Sabine Broda 5:1-5:16
Confluence of Prefix-Constrained Rewrite Systems

Nirina Andrianarivelo and Pierre RELYo, 6:1-6:15
Fixed-Point Constraints for Nominal Equational Unification

Mauricio Ayala-Rincon, Maribel Ferndndez, and Daniele Nantes-Sobrinho 7:1-7:16
Strict Ideal Completions of the Lambda Calculus

Patrick Bahr 8:1-8:16
Term-Graph Anti-Unification

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret 9:1-9:17
Proof Nets for Bi-Intuitionistic Linear Logic

Gianluigi Bellin and Willem B. Heijlljes, 10:1-10:18
Counting Environments and Closures

Maciej Bendkowski and Pierre Lescannec.cooiiiiiiniiianienn.. 11:1-11:16
Higher-Order Equational Pattern Anti-Unification

David M. Cerna and Temur KutSia 12:1-12:17
Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

Lukasz Czafkao 13:1-13:19
Decreasing Diagrams with Two Labels Are Complete for Confluence of Countable
Systems

Jorg Endrullis, Jan Willem Klop, and Roy Overbeek 14:1-14:15

3rd International Conference on Formal Structures for Computation and Deduction.
Editor: Hélene Kirchner

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Coherence of Gray Categories via Rewriting

Simon Forest and Samuel MImramo 15:1-15:16
Completeness of Tree Automata Completion

Thomas GENett e e e 16:1-16:20
A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

Amar Hadzihasanovic, Giovanni de Felice, and Kang Feng Ng 17:1-17:20
On Repetitive Right Application of B-Terms

Mirai ITkebuchi and Keisuke Nakanoo, 18:1-18:15
Index-Stratified Types

Rohan Jacob-Rao, Brigitte Pientka, and David Thibodeaw 19:1-19:17
A Syntax for Higher Inductive-Inductive Types

Ambrus Kaposi and Andrds Kovdcs i 20:1-20:18
Lifting Coalgebra Modalities and IMELL Model Structure to Eilenberg-Moore
Categories

Jean-Simon Pacaud LEMAY e 21:1-21:20

Internal Universes in Models of Homotopy Type Theory
Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters 22:1-22:17

The Clocks They Are Adjunctions
Denotational Semantics for Clocked Type Theory

Bassel Mannaa and Rasmus Ejlers Magelbergo i .. 23:1-23:17
Call-by-Name Gradual Type Theory

Mazx S. New and Daniel R. Licataoounueeeii i, 24:1-24:17
Unique perfect matchings and proof nets

Lé Thanh Ding NQuyéno oo 25:1-25:20
Narrowing Trees for Syntactically Deterministic Conditional Term Rewriting
Systems

Naoki Nishida and Yuya Maeda 26:1-26:20

Homogeneity Without Loss of Generality
Pawel Paryso. oo 27:1-27:15

Nominal Unification with Atom and Context Variables
Manfred Schmidt-SchaufS and David Sabel i 28:1-28:20

Cumulative Inductive Types In Coq
Amin Timany and Matthieu S02eau, 29:1-29:16

Completion for Logically Constrained Rewriting
Sarah Winkler and Aart Middeldorp i, 30:1-30:18

System Descriptions and Competition

ProTeM: A Proof Term Manipulator
Christina Kohl and Aart Middeldorpo e 31:1-31:8

Contents 0:vii

Confluence Competition 2018
Takahito Aoto, Makoto Hamana, Nao Hirokawa, Aart Middeldorp, Julian Nagele, Naoki
Nishida, Kiraku Shintani, and Harald Zankl i .. 32:1-32:5

FSCD 2018

Preface

The 3rd International Conference on Formal Structures for Computation and Deduction
(FSCD 2018) was held 9 — 12 July 2018 in Oxford, UK as part of FLoC 2018, 6 — 19 July
2018.

FSCD (http://fscd-conference.org/) covers all aspects of formal structures for com-
putation and deduction from theoretical foundations to applications. Initially building on
two communities, RTA (Rewriting Techniques and Applications) and TLCA (Typed Lambda
Calculi and Applications), FSCD embraces their core topics and broadens their scope to
closely related areas in logics and proof theory, new emerging models of computation (e.g.
homotopy type theory or quantum computing), semantics and verification in new challenging
areas (e.g. blockchain protocols or deep learning algorithms). A special effort was made
in 2018 to address some of these new topics through invited speakers. The FSCD program
featured four invited talks given by Stéphanie Delaune (CNRS/IRISA, France), Grigore Rosu
(U.of Tlinois at Urbana-Champaign, US), Peter Selinger (Dalhousie U., Canada), and Valeria
Vignudelli (ENS, Lyon, France).

FSCD 2018 received 65 submissions with contributing authors from 21 countries. The
program committee consisted of 29 members from 20 countries. Most of the submitted
papers were reviewed by at least three PC members (two had only two reviewers) with the
help of 112 external reviewers. The reviewing process, which included a rebuttal phase, took
place over a period of nine weeks. A total of 27 papers, 26 regular research papers and one
system description, were accepted for publication and are included in these proceedings. As
an example of tools comparison, the Confluence Competition (CoCo) was presented and took
place during the conference.

The Programme Committee awarded the FSCD 2018 Best Paper Award for Junior
Researcher to Ambrus Kaposi and Andras Kovacs for their paper “A Syntax for Higher
Inductive-Inductive Types”. The first author got his PhD less than three years ago and the
second is a PhD student, at the time of the Conference.

FSCD 2018 was part of the Federated Logic Conference (FLoC) that brings together
several international conferences related to mathematical logic and computer science. FSCD
was co-located with SAT, LICS, ITP and CSF, back-to-back with CAV, IJCAR, ICLP and
FM.

FSCD 2018 was preceded by the Corrado Bohm Memorial, organised by Mariangiola
Dezani, with two invited talks by Henk Barendregt (Radboud University, Nijmegen, The
Netherlands) and Silvio Micali (MIT Computer Science & Artificial Intelligence Lab, US).

In addition to the main program, 15 FSCD-associated workshops were planned on three
days mostly before the conference:

7th International Workshop on Classical Logic and Computation CL&C 2018

10th International Workshop on Computing with Terms and Graphs TERMGRAPH 2018
7th International Workshop on Confluence IWC 2018

Higher-Dimensional Rewriting and Algebra HDRA 2018 - 4th edition

9th Workshop on Higher Order Rewriting HOR 2018

Workshop on Homotopy Type Theory and Univalent Foundations HoTT/UF 2018 - 4th
edition

IFIP Working Group 1.6: Rewriting IFIP Meeting 2018 - 20th edition

9th Workshop on Intersection Types and Related Systems ITRS 2018

3rd International Conference on Formal Structures for Computation and Deduction.
Editor: Hélene Kirchner

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://fscd-conference.org
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:x

Preface

2018 Joint Workshop on Linearity & TLLA (5th International Workshop on Linearity
and 2nd Workshop on Trends in Linear Logic and Applications)

International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
LFMTP 2018 - 12th edition

7th Workshop on Mathematically Structured Functional Programming MSFP 2018
Workshop on Modular Knowledge (Tetrapod) - 1st edition

Programming And Reasoning on Infinite Structures PARIS 2018 - 1st edition

5th International Workshop on Rewriting Techniques for Program Transformations and
Evaluation WPTE 2018

32nd International Workshop on Unification UNIF 2018

This volume of FSCD 2018 is published in the LIPIcs series under a Creative Common
license: online access is free to all and authors retain rights over their contributions. We
thank in particular Michael Wagner from the Leibniz Center for Informatics at Schloss
Dagstuhl for his efficient and reactive support during the production of these proceedings.

Many people helped to make FSCD 2018 a successful meeting. On behalf of the Program
Committee, I thank the many authors of submitted papers for considering FSCD as a
venue for their work and the invited speakers who have agreed to speak at this meeting.
The Program Committee and the external reviewers deserve big thanks for their careful
review and evaluation of the submitted papers (the members of the Program Committee
and the list of external reviewers can be found in the following pages). The many associated
workshops made a big contribution to the lively scientific atmosphere of this meeting and
I thank the workshop organizers for their efforts to bring their meetings to Oxford. The
EasyChair conference management system was a useful tool in all phases of the work of
the Programme Committee. Paula Severi, the Conference Chair for FSCD 2018, deserves
warm thanks for producing the Web site, for the smooth functioning of this year’s meeting
and for coordination with the FLoC organizers. Sandra Alves, as Publicity Chair, made a
great contribution in advertising the Conference. The steering committee, lead by Luke Ong,
provided valuable guidance in setting up this meeting and is ensuring that FSCD will have a
bright and enduring future. Finally, I thank all participants of the conference for creating a
lively and interesting event.

FSCD 2018 benefited from being held in-cooperation with the ACM SIGLOG and ACM
SIGPLAN.

Hélene Kirchner
Program Chair of FSCD 2018

Steering Committee

T. Altenkirch
S. Alves

M. Ferndndez
C. Fuhs

D. Kesner

N. Kobayashi
D. Miller

L. Ong (Chair)
B. Pientka

S. Staton

R. Thiemann

Nottingham U.
Porto U.

King’s College London
Birkbeck, London U.
Paris U.

U. Tokyo

Inria

Oxford U.

McGill U.

Oxford U.

Innsbruck U.

3rd International Conference on Formal Structures for Computation and Deduction.
Editor: Hélene Kirchner

\\v LIPICS

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Program Committee

S. Akshay

Takahito Aoto

Pablo Arrighi

Lars Birkedal

Eduardo Bonelli

Adel Bouhoula

Carlos Castro

Ugo Dal Lago

Santiago Escobar

Maribel Ferndndez

Vijay Ganesh

Herman Geuvers

Masahito Hasegawa

Héléne Kirchner (Program Chair)
Paul Blain Levy

Christof Loding

Alexandre Miquel

Georg Moser

Claudia Nalon

Vivek Nigam

Peter Csaba Olveczky
Grigore Rosu

Paula Severi (Conference Chair)
Viorica Sofronie-Stokkermans
Nicolas Tabareau

Rene Thiemann

Alwen Tiu

Femke van Raamsdonk
Lihong Zhi

3rd International Conference on Formal Structures for Computation and Deduction.

Editor: Hélene Kirchner

IIT Bombay
Niigata U.
Marseille U.
Aarhus U.
Quilmes U.
Carthage U.

Federico Santa Maria Technical U.

Bologna U.

U.P. Valencia
King’s College London
Waterloo U.
Nijmegen U.

Kyoto U.

Inria

U. of Birmingham
Aachen U.

UdelaR, Montevideo
Innsbruck U.
Brasilia U.

Paraiba U. & fortiss
Oslo U.

Illinois U.

U. of Leicester
Koblenz-Landau U.
Inria

Innsbruck U.

NTU

VU Amsterdam
CAS Bejing

India

Japan
France
Denmark
Argentina
Tunisia
Chile

Italy

Spain

UK

Canada
Netherlands
Japan
France

UK
Germany
Uruguay
Austria
Brazil
Brazil & Germany
Norway

Us

UK
Germany
France
Austria
Singapore
Netherlands
China

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

External Reviewers

Beniamino Accattoli
Maria Alpuente

Danil Annekov

Andrei Arusoaie
Kazuyuki Asada
Eugene Asarin

Martin Avanzini
Mauricio Ayala-Rincon
David Baelde

Pablo Barenbaum
Hanene Boussi Rahmouni
Curtis Bright

Arnaud Carayol

David Cerna
Xiaohong Chen

Karl Crary

Deepak D’Souza
Ankush Das

Daniel de Carvalho
Ugo de Liguoro
Andrej Dudenhefner
Alejandro Diaz-Caro
Bertram Felgenhauer
Dan Frumin

Soichiro Fujii

Ronald Garcia
Francesco Antonio Genco
Bernhard Gittenberger
Marek Gluza

Stéphane Graham-Lengrand

Charles Grellois
Amar Hadzihasanovic
Matthew Hague

Jad Hamza

Ichiro Hasuo
Paul He

Hugo Herbelin
Claudio Hermida
Everett Hildenbrandt
Nao Hirokawa
Jan Hoffmann
Ross Horne
Dominic Horsman
Naohiko Hoshino
Florent Jacquemard
Faouzi Jaidi
Michael Jarret
Stefan Kahrs
Jeroen Ketema
Maja Kirkeby
Joachim Kock
Temur Kutsia
Stepan Kuznetsov
Gyesik Lee

Tan Li

John Longley
Giuliano Losa
Dorel Lucanu
Salvador Lucas
Sebastian Maneth
Bassel Mannaa
Alexander Maringele
Simone Martini
Ralph Matthes
Patrick Meredith
Aart Middeldorp
Etienne Miquey
Kenji Miyamoto
Naoki Nishida
David Obwaller
Luc Pellissier
Jean Pichon

Andrew Polonsky
Colin Riba
Christophe Ringeissen
Camilo Rocha

Luca Roversi

David Sabel
Katsuhiko Sano
Julia Sapina
Haruhiko Sato
Alexis Saurin
Michael Schaper
Aleksy Schubert
Ulrich Schépp
Andrei Stefanescu
Lutz Strassburger
Sorin Stratulat
Kazushige Terui
Amin Timany
Ashish Tiwari
Alessandro Tosini
Christian Urban
Benno van den Berg
Niels van der Weide
Rob van Glabbeek
Vincent van Oostrom
Daniel Ventura
Pierre Vial

Jamie Vicary
Laurent Vigneron
Renaud Vilmart
Johannes Waldmann
Yuting Wang

Sarah Winkler
Akihisa Yamada
Toshiyuki Yamada
Hans Zantema.

3rd International Conference on Formal Structures for Computation and Deduction.

Editor: Hélene Kirchner

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

List of Authors

Sandra Alves (5)
DCC-Faculty of Science & CRACS,
University of Porto, Portugal

Nirina Andrianarivelo (6)
LIFO - Université d’Orléans, France

Takahito Aoto (32)
Faculty of Engineering, Niigata University,
Japan

Mauricio Ayala-Rincén (7)
Departments of Mathematics and Computer
Science, Universidade de Brasilia, Brazil

Patrick Bahr (8)
IT University of Copenhagen, Denmark

Alexander Baumgartner (9)
Department of Computer Science (DCC),
University of Chile, Santiago, Chile

Gianluigi Bellin (10)
Universita di Verona, Italy

Maciej Bendkowski (11)

Jagiellonian University, Faculty of
Mathematics and Computer Science,
Krakow, Poland

Sabine Broda (5)
DCC-Faculty of Science & CMUP,
University of Porto, Portugal

David M. Cerna (12)

Research Institute for Symbolic
Computation, Johannes Kepler University,
Linz, Austria

FLukasz Czajka (13)
University of Copenhagen, Denmark

Giovanni de Felice (17)
Department of Computer Science, University
of Oxford, UK

Stéphanie Delaune (1)
Univ Rennes, CNRS, IRISA, France

Jorg Endrullis (14)
Vrije Universiteit Amsterdam, Department
of Computer Science, Netherlands

Maribel Ferndndez (7)
Department of Informatics, King’s College
London, UK

Simon Forest (15)
LIX, Ecole Polytechnique, France

Thomas Genet (16)
Univ Rennes/Inria/IRISA, France

Amar Hadzihasanovic (17)
RIMS, Kyoto University, Japan

Makoto Hamana (32)
Department of Computer Science, Gunma
University, Japan

Willem B. Heijltjes (10)
University of Bath, UK

Nao Hirokawa (32)
School of Information Science, JAIST, Japan

Mirai Tkebuchi (18)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Rohan Jacob-Rao (19)
Digital Asset, Sydney, Australia

Ambrus Kaposi (20)
Faculty of Informatics, E6tvos Lorand
University, Budapest, Hungary

Jan Willem Klop (14)

Vrije Universiteit Amsterdam, Department
of Computer Science, and Centrum
Wiskunde & Informatica (CWI), Amsterdam,
Netherlands

Christina Kohl (31)
Department of Computer Science, University
of Innsbruck, Austria

Andrés Kovécs (20)
Faculty of Informatics, Eétvos Lorand
University, Budapest, Hungary

Temur Kutsia (9, 12)

Research Institute for Symbolic
Computation, Johannes Kepler University
Linz, Austria

3rd International Conference on Formal Structures for Computation and Deduction.

Editor: Hélene Kirchner

\\v LIPICS

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.6
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.7
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.8
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.10
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.11
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.12
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.13
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.1
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.14
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.7
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.15
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.16
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.10
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.18
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.20
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.14
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.20
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.12
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xviii

Authors

Jean-Simon Pacaud Lemay (21)
University of Oxford, Computer Science
Department, UK

Pierre Lescanne (11)
University of Lyon, Ecole normale supérieure
de Lyon, LIP, France

Jordi Levy (9)

Artificial Intelligence Research Institute
(ITTA), Spanish National Research Council,
(CSIC), Barcelona, Spain

Daniel R. Licata (22, 24)
Wesleyan University Dept. Mathematics &
Computer Science, Middletown, USA

Yuya Maeda (26)
Graduate School of Informatics, Nagoya
University, Japan

Bassel Mannaa (23)
Department of Computer Science, IT
University of Copenhagen, Denmark

Aart Middeldorp (30, 31, 32)
Department of Computer Science, University
of Innsbruck, Austria

Samuel Mimram (15)
LIX, Ecole Polytechnique, France

Rasmus Ejlers Mggelberg (23)
Department of Computer Science, IT
University of Copenhagen, Denmark

Julian Nagele (32)

School of Electronic Engineering and
Computer Science, Queen Mary University
of London, UK

Keisuke Nakano (18)
Tohoku University, Sendai, Miyagi, Japan

Daniele Nantes-Sobrinho (7)
Departments of Mathematics and Computer
Science, Universidade de Brasilia, Brazil

Max S. New (24)
Northeastern University, Boston, USA

Kang Feng Ng (17)
Department of Computer Science, University
of Oxford, UK

Lé Thanh Diing Nguyén (25)

Département d’informatique, Ecole normale
supérieure, Paris Sciences et Lettres and
Université Paris 13, Sorbonne Paris Cité,
LIPN, CNRS, France

Naoki Nishida (26, 32)
Graduate School of Informatics, Nagoya
University, Japan

Tan Orton (22)
University of Cambridge, Dept. Computer
Science & Technology, UK

Roy Overbeek (14)
Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, Netherlands

Pawel Parys (27)
University of Warsaw, Poland

Brigitte Pientka (19)
McGill University, Montreal, Canada

Andrew M. Pitts (22)
University of Cambridge, Dept. Computer
Science & Technology, UK

Grigore Rosu (2)
University of Illinois at Urbana-Champaign
and Runtime Verification, Inc., USA

Pierre Réty (6)
LIFO - Université d’Orléans, France

David Sabel (28)
Goethe-University Frankfurt, Germany

Manfred Schmidt-Schaufl (28)
Goethe-University Frankfurt, Germany

Peter Selinger (3)
Dalhousie University, Halifax, Canada

Kiraku Shintani (32)
School of Information Science, JAIST, Japan

Matthieu Sozeau (29)
Inria Paris & IRIF, Paris, France

Bas Spitters (22)
Aarhus University Dept. Computer Science,
DK

David Thibodeau (19)
McGill University, Montreal, Canada

https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.21
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.11
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.24
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.15
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.18
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.7
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.24
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.25
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.26
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.14
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.27
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.2
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.6
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.28
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.28
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.3
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.29
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19

Authors

Amin Timany (29)
imec-Distrinet, KU Leuven, Belgium

Valeria Vignudelli (4)
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon
1, LIP, France

Mateu Villaret (9)

Departament d’Informatica, Matematica
Aplicada i Estadistica, Universitat de Girona,
Spain

Sarah Winkler (30)
Department of Computer Science, University
of Innsbruck, Austria

Harald Zankl (32)
Innsbruck, Austria

0:xix

FSCD 2018

https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.29
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.4
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
https://dx.doi.org/10.4230/LIPIcs.FSCD.2018.32

Analysing Privacy-Type Properties in
Cryptographic Protocols

Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France
stephanie.delaune@Qirisa.fr

—— Abstract

Cryptographic protocols aim at securing communications over insecure networks such as the
Internet, where dishonest users may listen to communications and interfere with them. For
example, passports are no more pure paper documents. Instead, they contain a chip that stores
additional information such as pictures and fingerprints of their holder. In order to ensure privacy,
these chips include a mechanism, i.e. a cryptographic protocol, that does not let the passport
disclose private information to external users except the intended terminal. This is just a single
example but of course privacy appears in many other contexts such as RFIDs technologies or
electronic voting.

Formal methods have been successfully applied to automatically analyse traditional protocols
and discover their flaws. Privacy-type security properties (e.g. anonymity, unlinkability, vote
secrecy, ...) are expressed relying on a notion of behavioural equivalence, and are actually more
difficult to analyse than confidentiality and authentication properties. We will discuss some recent
advances that have been done to analyse automatically equivalence-based security properties, and
we will review some issues that remain to be solved in this field.

2012 ACM Subject Classification Security and privacy — Logic and verification

Keywords and phrases cryptographic protocols, symbolic models, privacy-related properties,
behavioural equivalence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.1
Category Invited Talk

Funding This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agreement
No 714955-POPSTAR) and the ANR project TECAP.

1 Introduction

Cryptographic protocols are widely used today to secure communications with the aim of
achieving various security goals. For instance, TLS (Transport Layer Security) is a protocol
that is widely used to provide authentication and encryption in order to send sensitive data
such as credit card numbers to a vendor. Those protocols use cryptographic primitives as
building blocks such as encryptions, signatures, and hashes.

For a long time, it was believed that designing a strong encryption scheme was sufficient to
ensure secure message exchanges. Starting from the 1980’s, researchers understood that even
with perfect encryption schemes, message exchanges were still not necessarily secure due to
some logical attacks coming from the poor design of the protocol itself. As an example, we can
cite the well-known man-in-the-middle attack on the Needham Schroeder protocol [55] that
has been discovered by Lowe seventeen years after the publication of the original protocol [53].
This is just a single example for which Lowe proposed a simple fix: the second message

© Stéphanie Delaune;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélene Kirchner; Article No. 1; pp. 1:1-1:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:stephanie.delaune@irisa.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Analysing Privacy-Type Properties in Cryptographic Protocols

{Na, Ny} pun(B) is replaced by {B, N4, Ny }pun(p) in the fixed version of the protocol, i.e. the
name of the sender has been simply added into the ciphertext. Such a modification was
sufficient to discard the man-in-the-middle attack and to prove the protocol secure. Even if
protocols are relatively small programs, they are rather difficult to analyse and the difference
between a secure protocol and an insecure one may be rather subtle. For instance, replacing
the second message by {N,, Ny, B}pub(B), i.e. the name of B is now appended at the end of
the original message, results in a protocol on which a man-in-the-middle attack similar to
the one discovered by Lowe is again possible (see [37] for a description of this attack).

One successful approach when designing and analysing security protocols, is the use of
formal methods. The purpose of formal verification is to provide rigorous frameworks and
techniques to analyse protocols and find their flaws. For example, a flaw has been discovered
in the Single-Sign-On protocol used e.g. by Google Apps. It has been shown that a malicious
application could very easily get access to any other application (e.g. Gmail or Google
Calendar) of their users [7]. This flaw has been found when analysing the protocol using
the Avantssar validation platform [5]. Another example is a flaw on vote secrecy discovered
during the formal and manual analysis of an electronic voting protocol [42]. All these results
have been obtained using formal symbolic models, where most of the cryptographic details are
ignored using abstract structures, and the communication network is assumed to be entirely
controlled by an omniscient attacker. Although less precise than computational models
used by cryptographers, this symbolic approach benefits from automation and can thus
target more complex protocols and scenarios than those analysed using the computational
approach. The techniques used in symbolic models have become mature and several tools for
protocol verification are nowadays available, e.g. Avantssar platform [5], ProVerif [15], and
Tamarin [58].

Most of the results existing in this field focus on reachability properties such as au-
thentication or secrecy: for any execution of the protocol, it should never be the case that
an attacker learns some secret (confidentiality property) or that an attacker makes Alice
think she’s talking to Bob while Bob did not engage a conversation with her (authentication
property). However, privacy properties such as vote secrecy, anonymity, or untraceability
cannot be expressed as reachability properties. Formally the behaviour of a protocol can be
modelled through a process algebra such as the pi-calculus, enriched with terms to model
cryptographic messages. Then, privacy-type properties are expressed relying on a notion of
behavioural equivalence between processes. For example, Alice’s identity remains private if
an attacker cannot distinguish a session where Alice is talking from a session where Bob is
talking. As mentioned above, many results and tools have been developed in the context of
reachability properties. Results for equivalence properties are more rare but a lot of attention
has been devoted to its study during the ten past years.

In this paper, we will review existing results and tools dedicated to the study of equivalence-
based properties. We will present some recent advances that have been done in this area,
and discuss some challenges that remain to be solved.

2 Some examples

We briefly describe in this section some cryptographic protocols on which privacy-type
properties are particularly relevant. For illustrative purposes, we first consider a rather
simple RFID protocol following a description given in [61] before explaining two protocols
coming from the e-passport application: the BAC protocol and its successor the PACE
protocol.

S. Delaune

TAG READER
k, id k, id

nRr

id® nrp, h(?’LR, k) & nr

id ® (id ® nr) ® (h(ng, k) ® nr)

?

h(nR7 k)
I

Figure 1 Description of an RFID protocol due to Kim et al. [51].

2.1 A simple RFID protocol

To illustrate our formalism along this paper, we will consider a rather simple RFID protocol
proposed by Kim et al. [51] in 2007. We follow the description given in [61]. In this protocol,
the reader and the tag id share a secret symmetric key k. The protocol does not rely on
any encryption algorithm but instead uses a hash function, denoted h, and the exclusive or
operator, denoted @, which is commutative and associative. Moreover, it has the property
that equal terms cancel each other out, i.e. ¢ &t = 0 where 0 is the neutral element.

The reader starts by sending a nonce, i.e. a fresh random number ng. Once it receives
this first message, the tag generates its own nonce ny and computes its answer relying on
the hash function and the exclusive-or operator. When receiving this second message, the

reader will be able to retrieve ny from the first component by cancelling out the value id.

Then, it will xor this value with the second component and check whether the result is equal
to h(ng, k). Note that since the reader knows ng and k, it can indeed easily compute the
message h(ng, k).

The aim of this protocol is not only to authenticate the tag but also to ensure its
unlinkability. An attacker should not be able to observe whether he has seen the same
tag twice or two different tags. Actually, this unlinkability property is not satisfied. An
attacker can simply send his own nonce n% and infer whether the tag in presence is the same
or not from the message he received. For this, the attacker simply apply the exclusive-or
operator on the two components of the message sent by the tag. The result of this operation
is id ® h(n%, k) and once n% is fixed, this value only depends on the identity of the tag.

We will formalise this later on as an indistinguishability property, relying on the notion
of trace equivalence.

2.2 Electronic passport

An e-passport is no more a pure paper document but instead contains an RFID chip that
stores the critical information printed on the passport. The International Civil Aviation
Organisation (ICAQO) standard specifies several protocols through which this information
can be accessed. In particular, access to the data stored on the passport are protected by
the Basic Access Control (BAC) protocol, or now its successor the Password Authenticated
Connection Establishment (PACE) protocol.

1:3

FSCD 2018

1:4 Analysing Privacy-Type Properties in Cryptographic Protocols

TAG READER

ke, km ke, km
| get_ Challenge

new nrtr

nr

new ng, new kg
zenc < {ng,nr, kg e
xmac < mac(zenc, km)

Trenc, rmac
{zenc,)

new kr

yenc < {nr,nr, k7 b
ymac < mac(yenc, km)
Yseed < kT @ kR

(yenc, ymac)

Tseed < kT @ kR

Figure 2 Basic Access Control protocol.

BAC protocol

This is a password-based authenticated key exchange protocol (see Figure 2) whose security
relies on two master keys, namely ke and km. Actually, before executing the BAC protocol,
the reader optically scans a low entropy secret from which these two keys ke and km are
derived. Thus, these keys are symmetric keys shared between the passport (the RFID tag)
and the reader. Then, the BAC protocol establishes a key seed from which two sessions
keys kenc and kmac are derived. The session keys are then used to prevent skimming and
eavesdropping on the subsequent communication with the e-passport. In particular, they are
used to encrypt and mac the messages exchanged during the execution of the subsequent
protocols.

First, we may note that the nonces nr and ny are not placed in the same order in the
two ciphertexts: {ngr,nr,krtke and {nr,ng, kr}tre. Actually, this is not an insignificant
choice. This choice prevents a replay attack which would be possible otherwise since it would
be possible for an attacker to answer to the message send by a reader without knowing the
keys ke and km. Indeed, an attacker could simply replay the message he just received, and
this will lead to the computation of the seed xseeq = kr ® kr = 0.

Second, the low entropy secret printed in the first page of a passport and from which the
keys ke and km are derived makes the BAC protocol vulnerable to off-line guessing attacks.
Indeed, an attacker who listens to the communication will learn e.g. {ng,nr, kg }tre. Then,
he can simply try to decrypt this ciphertext using all possible values for ke until he finds a
value that allows him to obtain np (nonce that has been sent in clear and that is therefore
known by the attacker).

Third, we may note that when the passport receives an incorrect message (xenc, xmac>,
the behaviour of the passport is not specified, Due to this, some implementations of the
BAC protocol breaches unlinkability [29]: in the french implementation, the passport tag
replies different error messages depending on whether the problem comes from an incorrect

S. Delaune

TAG READER
k k
|

| new s, new nr |

{s7}k

g"r

g"r
Yy < gen(st, (g"R)"T) xg < gen(sr, (g"T)"R)
new n/, " new n'y

.',EG .

np

Yo

TR np
e G FVG
Yy, <+ (25" = a o zy < (yg")"r = yg
mac(y.", x},)

Figure 3 Password Authenticated Connection Establishment protocol.

mac or an incorrect nonce (i.e. the nonce ny inside the ciphertext is not the one previously
generated by the passport). An attacker could then trace a passport (without knowing the
keys ke and km) in the following way:
1. he listens to a first session between a reader and a tag T and store m = (xenc, rmac);
2. then, in a different session, he sends the message m and wait for the tag’s response;

a. if he receives a nonce error then he knows that the tag succeeded to mac zenc with

his own key ke and so this tag is T’;

b. if he receives a mac error then he knows that the tag is not 7.

This gives the attacker a way to distinguish between two different passports. Such a flaw

does not exist in other implementations where the same error messages is sent in both cases.

PACE protocol

The Password Authenticated Connection Establishment protocol [56] (PACE) has been
proposed by the Bundesamt fiir Sicherheit in der Informationstechnik (BSI) to replace the
BAC protocol. Similarly to BAC, the purpose of PACE is to establish a secure channel
based on an optically-scanned key k. A description is given in Figure 3. The tag and the
reader perform a first Diffie-Hellman exchange and derive G. Then, they perform a second
Diffie-Hellman exchange based on the parameter G computed at the previous step, and they
derive a session key k’. In a final stage, they confirm the values that have been exchanged
using message authentication codes.

First, we may note that the low entropy of the secret k is not a problem anymore assuming
that the decryption operation on the ciphertext {sr}x will not fail when the key used to
decrypt is not k. This means that the resulting computation sdec({sr }«, k) will be a valid
message even if k £ ky, and thus the protocol will pursue its execution normally.

1:5

FSCD 2018

1:6

Analysing Privacy-Type Properties in Cryptographic Protocols

Second, we would like to comment on the disequality test performed by the reader. Such a
test is important to prevent an attacker to execute with success the PACE protocol. Without
such a test, an attacker can eavesdrop a message {sr}x from an honest session, and then
reuse it to execute a session with a reader. He simply has to send the ciphertext, and then
answer to the reader by replaying the message he just received. This means that the attacker
would not have to know k to successfully execute the protocol whereas he is supposed to
know it to compute G. Of course, this directly leads to an authentication issue that can be
turned into a linkability attack.

Third, the fact that the format of the two last messages are similar is surprising. Due
to this, an attacker can send {sr}x (eavesdrop during a previous session) to two different
readers and then simply forward the messages from one reader to another. Both readers will
be able to compute the two rounds of Diffie-Hellman, and the mac verification phase will not
prevent this behaviour. Even if in practice, this flaw seems hard to exploit, it could be a
real privacy concern in some other contexts. Actually, as proposed in [48], this flaw can be
fixed by adding tags in the two last messages in order to avoid confusions between reader’s
messages and tag’s messages.

3 Modelling protocols

Several symbolic models have been proposed for cryptographic protocols. The first one has
been described by Dolev and Yao [45] and several other models have been proposed since
then (e.g. strand spaces [59], multiset rewriting [19], spi-calculus [3]). A unified model would
enable better comparisons between the different existing results but unfortunately such a
model does not exist currently. Nevertheless, all existing models share some common features:
messages are modelled using first-order terms, and they propose some constructions for
modelling communication and taking into account the concurrency nature of these programs.

3.1 Messages as terms

In symbolic models, messages are a key concept. Whereas messages are bitstrings in the real-
world (and in the computational approach as well), they are modelled using first-order terms
within the symbolic model. Formally, we consider an infinite set N of names to represent
atomic data such as keys, nonces, and we also consider two infinite sets of wvariables X
and W. The variables in & are used to model unknown parts of the messages expected by
a participant, whereas variables in W, called handles, are used as pointers. They refer to
messages that have been previously sent on the network and that are therefore known to the
attacker.

To model cryptographic primitives, such as encryptions, signatures, hashes, etc, we rely on
function symbols, namely a signature, that allows one to build terms representing messages
sent over the network by the participants. The set of terms built from a set of atomic data A
by applying function symbols in a signature ¥ are denoted 7 (3, A).

» Example 1. To model the BAC and the RFID protocols described in Section 2, we may
consider the signature:

Yex = {senc,sdec, (), projy, proj,, mac, h, &, 0}.

The function symbols senc and sdec (both of arity 2) represent symmetric encryption, whereas
(') (arity 2) is used to concatenate messages. The two components of such an operator can
be retrieved using the projection functions proj; and proj, (both of arity 1). We also consider

S. Delaune

a function symbol to model an hash function, the symbol h (arity 1), as well as a function
symbol mac (arity 2) to model message authentication codes. Lastly, the function symbol ¢
(arity 2) is used to model the exclusive-or operator, and the constant 0 is its neutral element.

Then, we assign a meaning to the function symbols through an equational theory. Formally,
we consider a set of equations between terms (without names), and we denote =g the smallest
congruence relation which is closed under the substitution of terms for variables.

» Example 2. Going back to our previous example, we will typically consider the following
set Eox of equations:

proj;((z,9)) = = z®({y®z2) = (r®y)dz 60 = =z
proj((z,4)) = y T®y = ydz t®zr = 0
sdec(senc(z,y),y) = =«

Considering m = senc((ng, (nr, kr)), ke), we have that proj; (proj,(sdec(m, ke))) =g, ny. We
may note that the symbols mac and h are not involved in any equation. Those primitives are
modelled using free function symbols since they are one-way functions which are typically
assumed to be collision resistant.

Sometimes, function symbols are split into two sets: constructors and destructors. In such
a case, a rewriting system is used to assign a meaning to the function symbols. Constructors
symbols, typically senc, (), etc are used to build messages, whereas destructor symbols, such
as sdec, proj;, and proj,, are only there to perform computations meaning that a rewriting
rule has to apply to make them disappear. If no rewriting rule applies, and the destructor is
still there, it means that the computation fails, and the resulting term is not considered as a
message. This gives us two slightly different ways to model e.g. symmetric encryption. Both

are useful when modelling protocols depending on the properties of the encryption scheme.

For instance, going back to the PACE protocol, it is important here to model encryption
relying on an equation to take into account the fact that sdec(senc(sr, k), k’) is a computation
that does not lead to a failure but instead gives a result, i.e. a message, and the reader will
proceed with the resulting value.

At a particular point in time, while engaging in one or more sessions of one or more
protocols, an attacker may know a sequence of messages (i.e. terms without variable)
U1, ...,U,. This means that he knows all messages and also their order. When analysing
equivalence-based security properties, it is not enough to say that the attacker knows the set
of terms {uy,...,u,}. In the applied-pi calculus [2], such a sequence of messages is organised
into a frame, i.e. a substitution of the form:

¢ ={wy = up,..., wy — uyt.

The handle w; € VW enables us to refer to the message u;, and these variables will allow us
to make explicit the order in which these messages are sent. Given a frame ¢, we denote
dom(¢) its domain, i.e. dom(¢p) = {w1,...,wy}.

We need also to consider computations feasible by an attacker. We call such a computation
a recipe. Formally, a recipe is a term built from (public) function symbols and handles
from W.

» Definition 3. Given a frame ¢ and a term u € T(X,N), we say that u is deducible
from ¢, denoted ¢ Fg u, when there exists a recipe R, i.e. a term in T (3, dom(¢)), such that
R¢ =E U.

1:7

FSCD 2018

1:8

Analysing Privacy-Type Properties in Cryptographic Protocols

3.2 Protocols as processes

A popular way to model protocols is to rely on a process algebra. Several calculus have been
proposed to model protocols, e.g. CSP [49], spi-calculus [3], applied-pi calculus [2]. They
have similar constructs as those in the pi-calculus introduced by Milner in 1999 [54]. However,
instead of exchanging atomic data, terms that are exchanged are first-order terms. This
allows us to model in a more faithful way cryptographic protocols that use cryptographic
messages. Typically, considering a set Ch of public channel names, processes are generated
by a grammar as follows:

PQ = 0 null
| P|@Q parallel
| in(e,z).P input
| out(c,u).P output
| P replication
| new n.P restriction
|

if uy = uo then P else) conditional

where u1,ug,u € T(E,NUX), c €Ch,and n € N.

Most of the constructions are rather standard in process algebra. As usual, the null
process, denoted 0, represents the process that does nothing. Such a process is often omitted
for sake of conciseness. The process P | @ runs P and @ in parallel meaning that we do
not know in which order the actions of P and @ will be done. All the interleavings should
be considered. The process in(c, x).P waits to receive a message on the public channel ¢,
and then continues as indicated in P. However, the occurrence of the variable x in P will
be replaced by the received message. The process out(c, u).P outputs the message u on the
public channel ¢, and then continues as P. The process ! P represents an infinite number of
copies of P running in parallel, i.e. P |...| P. The restriction newn.P is used to model the
creation in a process of new random numbers (e.g., nonces or key material). The process
if u; = ug then P else @ first checks whether w; is equal to ug (modulo the equational theory),
and runs P if equality holds or runs) otherwise. Note that the terms u, u;, and us that
occur in the grammar may contain variables. However, these variables will be instantiated
during the execution, and these terms will become ground when the evaluation will take
place.

The constructions newn.P and in(c,z).P are binding constructs, respectively for the
name n and for the variable z, and in both cases the scope of the binding is P.

» Example 4. To illustrate our syntax, we consider the RFID protocol described in Section 2.1.
Using our formalism, the two roles of this protocol are modelled as follows:

Prag = in(er,). newny. out(er, (id & ny, h((z, k)) & nr)). 0
Preader = newnp. out(cg,nr). in(cr,y). if (proj; (y) @ id) @ projs(y)
= h((ng,,k))thenOelse 0.

where ¢, cgr € Ch, id € N, and =,y € X.

Then, we may consider the process new k.new id.(Prg | Preader) Which corresponds to
one instance of each role. We may also consider more complex scenario. For instance, the
process new k. new id.! (Piag | Preader) represents multiple instances of the tag id (with key k)
and multiple instances of a reader ready to communicate with tag id. Lastly, the process
Inew k.new id.! (Prag | Preader) represents a situation with many tags (and readers), each of
them being able to execute many instances of the protocol.

S. Delaune

THEN ({if u; = uy then P, else P} WP;¢) — (P WP;¢) when u; = us
ELSE ({if u; = up then P; else P} WP;¢) = (PoWP;¢) when uy #g us
IN ({in(c, 2). P} WP;¢) IR (P{z— u}WP;o) when ¢ Fg u

Out ({out(c,u).P}WP;¢) outlew), (PWUP;¢U{w;t1 — u}) where i = |dom(¢)].

NEwW ({new n.P}WP;¢) = (P{n — n'} & P;¢) where n/ € N is fresh
PAR ({P1 | P} WP;¢) = ({P1, P} W P;)
REPL ({IP}WP;¢) = ({IP,P} ¥ P;0)

Figure 4 Semantics of our processes.

Configurations represent processes together with a frame representing the knowledge of
the attacker so far.

» Definition 5. A configuration is a pair (P;¢) where
P is a multiset of ground processes; and
o ={wy = ug,...,w, — u,} is a frame.

The applied-pi calculus, as introduced in [2], does not consider this notion of configurations
but rely instead on a notion of extended processes and a notion of structural equivalence to
identify processes that are equal modulo e.g. associativity and commutativity of the parallel
operator. Our notion of configurations, also used in some other works, can be seen as a more
canonical way to represent an extended process.

Then, we define the operational semantics of our calculus through a labelled transition
system over configurations explaining how a process can evolve (see Figure 4). All the rules
are rather standard and correspond to the informal semantics introduced at the beginning of
this section. For instance, when outputting a message u on the public channel ¢, the resulting
message is stored into the frame ¢ and is given to the attacker through the handle w;. The
rule IN is more involved. The idea is that the attacker can build any term using his current
knowledge and then send the resulting message to the participant. Therefore, the participant
is ready to accept any term deducible by the attacker form ¢. The rules THEN and ELSE
allow one to execute a conditional. Note that the equality is done modulo E. The three
remaining rules allow one to execute a restriction, split a parallel composition, and unfold a
replication. The IN and OUT rules are the only observable actions.

» Example 6. To continue with our running example, we consider Psame = {-Ptaga Ptag}7 and
Paitt = { Peag, Pt’ag} where P/, is as Py, but id and k have been replaced by id" and k'. Let

B0 = {wy — id,wy — id'}. \t;/'ge have that:
({ Puir}; ¢o)
R, 7, ({out(er, (id @ nr, h((n%, k) © nr), Pag): o)
ML), ({Plg); o fws > (id @ nr, h((n, k) @ nr)})
M; ({out(cr, (id’ @ n/p, h((n%, k') @ n%)).0}, o W {ws — (id © nr, h((n%, k) @ nr)})
({0}, do W {ws = {id @ nr, h({(n%, k) @ nr), wa > (id’ @ n’p, h({(n%, k")) & n4)})

out(cp,wg)
out(er wa),

We denote ¢gifr the resulting frame. The same sequence of actions is also feasible starting
from (Psame; ¢0)- Indeed, we have that:

1:9

FSCD 2018

1:10

Analysing Privacy-Type Properties in Cryptographic Protocols

) in(cr,n%)-T-out(cr,ws)-in(cr,n%)-7-out(cr ,wa) (

(Psame; ¢O 0; ¢same)

where Gsame = ¢o W {ws — (id & nr, h((n%, k) ® nr), wy — (id & -, h((n%, k) & nf)}.

4 Modelling privacy-type properties

In order to express privacy-type properties such as the unlinkability property briefly discussed
in Section 2, we need to formally define the notion of indistinguishability we are interested in.
The notion of trace equivalence is formally introduced in Section 4.1, and then we explain
how to express privacy-type security properties such as vote-privacy, unlinkability, or strong
flavours of secrecy relying on this notion.

4.1 Trace equivalence

To start, we consider two protocols P and @, and we assume a passive attacker who simply
listens to the communication. We would like to know whether such a passive attacker is
able (by simply listening to the communication) to tell which protocol is currently under
execution: i.e. P or (). Typically, the attacker will observe two sequences of messages, i.e.
two frames, and he will try to distinguish them. Intuitively, two frames ¢ and 1) are in static
equivalence if an attacker cannot distinguish them, i.e. any test that holds in ¢ also holds in

.

» Definition 7. Two frames ¢ and 1 are in static equivalence, written ¢ ~g v, if they have
the same domain, i.e. dom(¢) = dom(y)), and for any recipes R, R’ € T (3, dom(¢)), we
have that: R¢p =g R'¢ if, and only if, Ry =g R'v).

» Example 8. Consider the two following frames:
Gdifr = do W {wz > (id ® nr, h((n%, k) & nr),ws — (id" © nlp, h((n%, k') & nk)}, and
¢same = ¢0 & {W3 — <|d o nr, h(<n%7 k>) D nT>aW4 = <|d D n/T7 h(<n%7 k>) D n,T>}
The following test holds in ¢sme: proj; (ws) @ proj,(ws) L proj; (wy) @ projo(wy).
Indeed, we have that:
[proj (ws) @ projy(wWa)ldsame =, (id & nr) & (h((nk. k)) & nr) =¢,, id & h((n}, k)), and
[proj; (w3) @ projs(Wa)]dsame =€.. (id ® 1) & (h({n, k)) ® nf) =, id ® h({nk, k).
However, this test does not hold in ¢gif since id # id” and k # k’. This means that an attacker
can observe a difference between these two frames by xoring the two components of each
message and checking whether this computation yields an equality, therefore retrieving the
attack described in Section 2.1. Note that such an equality crucially relies on the algebraic
properties of the exclusive-or operator.

Then, trace equivalence is the active counterpart of static equivalence taking into account
the fact that the attacker may interfere during the execution of the process in order to
distinguish between the two situations. Given a configuration K = (P; ¢), we define trace(K)
as follows: trace(K) = {(tr,¢') | (P;¢) < (P’;¢) for some configuration (P'; ¢')}.

» Definition 9. Given two configurations Kp and Kq, Kp T, Kq if for every (tr,¢) €
trace(Kp), there exists (tr',) € trace(Kg) such that tr and tr’ are equal up to 7 actions,
and ¢ ~g 9. The configuration Kp and Kq are in trace equivalence, denoted Kp ~; Ko, if
Kp Et KQ and KQ Et Kp.

S. Delaune

4.2 Some security properties

We show here how the notion of trace equivalence can be used to model interesting privacy-
type properties.

Unlinkability

Intuitively, protocols are said to provide unlinkability (or untraceability) according to the
ISO/IEC 15408-2 standard, if they

[...] ensure that a user may make multiple uses of [them] without others being able to
link these uses together.

Formally, this is often defined as the fact that an attacker should not be able to distinguish
a scenario in which the same agent (i.e. the user) is involved in many sessions from one
that involved different agents in each session. Going back to our BAC protocol, this can be
expressed through the following equivalence:

I'new ke. new km. ! (Pag(ke, km) | Preager(ke, km))
it

!'new ke. new km.(Prag(ke, km) | Preader(ke, km)).

In case of the french implementation of the BAC protocol, as explained in Section 2.2, it
has been shown that this equivalence does not hold [4].

» Example 10. To illustrate our notion of trace equivalence, we consider the RFID protocol
given in Section 2.1. In order to simplify the setting, we consider a simple scenario which
consists of two sessions of the role of the tag. We assume that one session is executed by the
tag with identity id and key k, whereas the second one is executed either by the same tag or
another one. We would like to know whether the attacker is able to distinguish these two
situations. This corresponds to the configurations Kgme = (Psame; ¢0) and Kaie = (Paitr; ¢o)
described in Example 6. Actually, we have that Ksyme and Kgif are not in trace equivalence.
More precisely, we have that Keame ¢ Kyitr- Indeed, we have shown that:

in(c ,n0 -T-out(c,w3z)-in(c ,no -T-out(cr,w
Koame (o7) T-out{e,ws) in(or mp) 7-out{er wa) (0, Psame) (see Example 6); and

[proj; (w3) @ proj,(ws)=g,,proj; (Ws) @ projs(wa)|psame (see Example 8).
However, the only configuration (P’; ¢’) such that (up to some 7 actions)

in(c,n%)-out(c,wz)-in(c,n%)-out(c,wa)

Kaife (P',¢")
is (0, dairr) and we have seen that proj, (ws3) @ proj,(ws) L proj; (wy) @ projs(ws) does not hold
in ¢gifr (see Example 8).

This corresponds to the attack scenario briefly described in Section 2.1.

Vote secrecy

In the context of electronic voting, privacy means that the vote of a particular voter is not
revealed to anyone. This is one of the fundamental security properties that an electronic
voting system has to satisfy.

Vote secrecy is typically defined (see e.g. [44]) by the fact that an observer should not
observe when two honest voters swap their votes, i.e. distinguish between a situation where

1:11

FSCD 2018

1:12

Analysing Privacy-Type Properties in Cryptographic Protocols

Alice votes yes and Bob votes no and a situation where these two voters have swapped their
vote. This security property is formally expressed as follows:

S[V(A,yes) | V(B,no)] =~ S[V(A,no) | V(B,yes)].

Ideally, such an equivalence should be established considering an empty context S.
However, very often such a property holds under some trusted assumptions. For instance, we
may have to trust the tallying authority. The context S makes explicit all these assumptions.

Strong flavours of secrecy

The notion of secrecy usually considered by symbolic approaches is a weak form of secrecy
expressed as a non-deducibility property. However, relying on trace equivalence, we can also
express strong forms of secrecy. Intuitively, strong secrecy means that an attacker cannot see
any difference when the value of the secret changes [14]. One way to express this it to let the
attacker choose the values of the secret:

in(c, z1).in(c, x2).P(x1) ~¢ in(c, x1).in(¢, x2).P(x2).

Intuitively, in the equivalence above, P(x) is the protocol in which the value of the secret is
replaced by x, i.e. by a value chosen by the attacker. Another flavour of secrecy of interest is
real-or-random secrecy. The idea is to let the attacker interact with the protocol, and once
the secret value has been established, typically a fresh session key k, we want to see if the
attacker is able to distinguish the real situation (the one in which the fresh established key &
will be used) from an ideal situation in which the key k is replaced by fresh random value 7.
If the adversary is unable to distinguish these two scenarios, we say that the protocol satisfies
real-or-random secrecy of the secret key.

The notion of trace equivalence can also be used in presence of low entropy secret such
as the values ke and km in the BAC protocol to check resistance of the protocol to off-line
guessing attacks. This can be modelled relying on trace equivalence by checking whether the
attacker can see the difference between a scenario where the real password is revealed at the
end, and another one where a wrong password is revealed (see e.g. [36]).

5 Verifying equivalence-based properties

The formal symbolic approach allows one to benefit from existing verification tool that rely
on various techniques ranging from model-checking to resolution, and rewriting techniques.
This is appealing as manual proofs are tedious and error-prone. However, verifying in such
a setting the most simple form of secrecy (expressed as a non-deducibility of a term) is a
difficult problem which is well-known to be undecidable. Privacy-type properties are actually
more difficult to handle and have been shown undecidable even for some classes where secrecy
is actually decidable [32].

5.1 Warm-up

Several papers are devoted to the study of the intruder deduction problem, i.e. the problem
of deciding whether a term (typically the secret) is deducible from a given set of terms
representing the knowledge of the attacker. This problem has been shown decidable (often
in PTIME) for various equational theories, e.g. homomorphic encryption, blind signatures,
various equational theories with an associative and commutative symbol (AC). However,

S. Delaune

Theory E

Deduction

‘ Static Equivalence

subterm convergent

PTIME [1]

blind sign., addition,

homo. encryption

decidable [1]

ACU NP-complete decidable [1]
PTIME [39]
ACUN/AG PTIME [27] PTIME |1, 39]
ACUh NP-complete [52] decidable [39]
ACUNh/AGh PTIME [43] decidable [39]
AGh; ... h, decidable [39] decidable [39]

Figure 5 Some decidability and complexity results for deduction and static equivalence.

when considering equivalence-based properties, the natural question we have to solve is not to
decide whether a term is deducible or not, but rather whether two frames are indistinguishable
or not. This problem can be formally stated as follows:

Static equivalence problem:
Input Two frames ¢ and 1 having the same domain.
Output Are ¢ and v in static equivalence, i.e. ¢ ~g ¢ ?

Again depending on the equational theory under study, this problem may or may not be
decidable. Actually, even if such a problem is often more complex to solve than the intruder
deduction problem, this problem is now well-understood. Efficient (often PTIME) algorithms
and tools (e.g. FAST [35], and KISS [33]) have been developed to solve this problem for
various equational theories. Some existing results for deduction and static equivalence are
briefly summarised in Figure 5. Moreover, thanks to the combination result provided in [39],
deduction and static equivalence are also decidable for the union of any disjoint theories of
this tabular.

5.2 Bounded number of sessions

When analysing a protocol, a reasonable assumption under which the verification problem
has been shown decidable is the so-called bounded number of sessions assumption. This
amounts to consider processes without replication. Note that processes without replication
allows us to consider traces of bounded length, but the problem remains difficult: the labelled
transition system representing all the possible interactions of the honest participants with the
attacker is still infinitely branching. This issue has been tackled in various ways using forms
of symbolic execution and the development of dedicated procedures. Obtaining a symbolic
semantics to avoid potentially infinite branching of execution trees due to inputs from the
environment is often a first step towards automation of equivalence.

Some theoretical results. Under such an assumption, the problem of deciding trace equi-
valence has been first shown decidable in [50], where a fragment of the spi-calculus (no
replication, no else branch) is considered. In 2005, Baudet designs a constraint solving
procedure that is not only able to solve satisfiability problems (sufficient for reachability

1:13

FSCD 2018

1:14

Analysing Privacy-Type Properties in Cryptographic Protocols

properties) but also to establish equivalences (i.e. two systems have the same sets of solu-
tions), which are needed when one wants to verify equivalence-based security properties [13].
Few years later, a shorter proof of this result was proposed by Chevalier and Rusinowitch
in [28]. In this work, it is shown that when two processes are not in trace equivalence, then
there exists a small witness of this fact. The main issue with the results mentioned so far is
practicality. Consequently, they have not been implemented.

Since then, a lot of progress has been made leading to more efficient procedures imple-
mented in various verification tools. We review the most popular ones and briefly explain
their features.

Spec. This tools implements a decision procedure for the notion of open bisimulation: a
notion that is strictly stronger than trace equivalence [60]. Processes given in input are written
in the spi-calculus syntax and else branches are not allowed. Regarding the cryptographic
primitives, the tool has been recently extended to deal with asymmetric primitives, and
therefore is now able to handle all the standard primitives.

Akiss. The procedure described in [20] deals with rich user-defined term algebras provided
that they can be defined using a convergent rewriting system enjoying the finite variant
property [34].This includes all the standard primitives, but also some other primitives such
blind signatures, and trapdoor commitment used e.g. in electronic voting protocols. However,
due to some approximations, this procedure is only able to check trace equivalence for the
class of determinate processes. Moreover, its termination is only guaranteed for subterm
convergent equational theories. Regarding the input syntax, processes are written as linear
roles and originally the tool only allows inputs, outputs, and equality tests. Recently, some
extensions have been implemented. In particular, the procedure has been extended to deal
with the exclusive-or operator [8], and various RFID protocols have been analysed such as
the RFID protocol presented in Section 2.1. The tool has also been extended to deal with
else branches [47].

Apte/DeepSec. The tool Apte [21] implements the decision procedure described in [23].
Such a procedure deals with all the standard cryptographic primitives. Actually, the procedure
presented in [23] allows for slightly more general processes than those presented in Section 3
since it deals with private channels and internal communications. This procedure has been
extended to deal with some forms of side-channel attacks regarding the length of messages [25],
and the computation time [24]. Recently, getting some inspiration from the Apte tool, a
new verification tool DeepSec has been implemented [26]. It deals with a large variety
of cryptographic primitives that encompasses all the standard primitives. Moreover, it is
significantly more efficient than other existing tools, namely Spec, Akiss, and its predecessor
Apte.

SAT-Equiv. Following an approach originally developed for checking reachability proper-
ties [6], SAT-Equiv relies on more general verification techniques, namely graph planning
and SAT-solving [38]. The procedure deals with symmetric encryption and pairs, and only
consider simple processes (each process in parallel works on a dedicated channel) without
else branches. However, an extension is currently under preparation and the tool will be
able to cover all standard primitives soon. In order to benefit from graph planning and
SAT-solvers, the size of messages has to be bounded and this bound needs to be practical.
The soundness of the tool is based on a typing result [30] guaranteeing the existence of a

S. Delaune

witness of non-equivalence where messages comply to a certain format (induced by a typing
system). The resulting implementation, SAT-Equiv, outperforms other existing tools. It
can analyse several sessions (typically more than 20 for rather simple protocols) where most
existing tools have to stop after few sessions. Termination has been established, and this
is the most efficient tool able to decide trace equivalence. However, the class of processes
that it is able to consider is rather limited (e.g. no else branch, simple processes satisfying a
type-compliance assumption).

5.3 Unbounded number of sessions

The decidability results and the tools mentioned so far only consider a bounded number
of sessions, and thus assume that the protocol is executed a limited number of times. The
problem is that even if the protocol has been proved secure for n sessions, there is no
guarantee that the protocol will remain secure if it is executed one more time.

Some theoretical results. It is well-known that replication allowing us to model an un-
bounded number of sessions leads to undecidability even when considering a simple secrecy
property. The first decidability result for trace equivalence has been obtained for a rather
restricted class: the class of ping-pong protocols built using standard primitives (but without
pairs) [32]. This result has been obtained through a characterisation of equivalence of
protocols in terms of equality of languages of (generalised, real-time) deterministic pushdown
automata.

Assuming finitely many nonces and keys, another decidability result has been obtained
in [30] for the class of simple processes built using symmetric encryptions and pairs. Such
a decidability result is based on a typing result which means that messages comply to a
certain format. A well-known class of protocols that satisfies such a requirement, is the class
of tagged protocols. The typing result mentioned above has also been used to establish the
first decidability result in presence of fresh nonces [31]. This decidability result inherits the
restrictions of the typing result (symmetric encryption only, type-compliance) on which it is
based. Additionally, a notion of dependency graph allowing one to represent the dependencies
between the actions of the protocols is carefully designed. In case this graph is acyclic, a
bound on the length of an attack trace can be deduced, giving us an algorithm to decide
trace equivalence.

ProVerif, Tamarin, and Maude-NPA. Since the problem of checking trace equivalence
for rich class of protocols is undecidable, many works aim at developing procedures that
are sound but not complete w.r.t. trace equivalence. In particular, several tools consider
the notion of diff-equivalence (a notion stronger than trace equivalence). This notion has
been introduced in [16] and implemented in the ProVerif tool. Since then, this notion of
diff-equivalence has been integrated in Tamarin [12] and Maude-NPA [57]. Due to the fact
that the equivalence under study is the so-called notion of diff-equivalence, these tools are
not well-suited to analyse some privacy-type properties such as unlinkability, or vote secrecy.

To extend the scope of the ProVerif tool, several extensions have been recently proposed
to go beyond diff-equivalence, e.g. [22, 17]. For instance, ProSwapper [17] allows one to go
beyond diff-equivalence by rearranging automatically processes before launching ProVerif.
This front end is particularly relevant to analyse vote secrecy. ProVerif has also been used as
a back end to analyse anonymity and unlinkability properties [48]. This approach proposes
sufficient conditions that are actually checkable using ProVerif, and from which the security of
the protocol can be established. This method allows to automatically verify unlinkability and

1:15

FSCD 2018

1:16

Analysing Privacy-Type Properties in Cryptographic Protocols

anonymity of some protocols that were out of the scope of existing tools, e.g. unlinkability
of the fixed version of the BAC protocol has been established for the first time relying on
this technique, and some of the weaknesses presented in Section 2.2 on the PACE protocol
have been discovered using this method.

Whereas ProVerif and Maude-NPA are completely automatic, Tamarin provides two
ways of constructing proofs: an efficient, fully automated mode that uses heuristics to guide
proof search and an interactive mode. Regarding the cryptographic primitives, these tools
support a rich term algebra including all the standard primitives. In addition, Tamarin
also supports Diffie-Hellman exponentiation, and recently exclusive-or has been added into
the tool. The Maude-NPA tool also supports a rich term algebra but the tool suffers from
termination issues, especially when considering the exclusive-or operator. Despite some
non-termination issues that may happen from time to time, these tools are efficient. For
instance, ProVerif generally concludes within few seconds. These good performances are due
to some well-chosen over-approximations that are done on the protocols at the beginning of
the security analysis that may lead sometimes to false attacks.

Type-Eq. Recently, an approach based on type systems has been developed and implemented
in the tool Type-Eq [40, 41]. This approach is very efficient and can prove security of protocols
that require a mix of bounded and unbounded number of sessions This tool only consider
the standard cryptographic primitives, and requires the user to enter all the information
regarding types. While this approach allows to go beyond diff-equivalence, e.g. allowing else
branches to be matched with then branches, it is not yet possible to analyse e.g. unlinkability
of the BAC protocol.

6 Some challenges

In the past ten years, equivalence-based properties have received a lot of attention and we now
have tools to check automatically privacy-type security properties when considering rather
simple protocols. However, new applications are coming or are already there (electronic
voting, contactless payment, keyless systems, ...) and these applications often rely on
security protocols that can not be analysed relying on existing verification tools due to
various reasons.

State-explosion problem. Systems we are interested in are highly concurrent and all the
existing methods and tools which naively explore all possible symbolic interleavings are
causing the so called state-explosion problem. This problem seriously limits the practical
impact of tools such as Akiss, Spec, Apte and, to a lesser extent, DeepSec. Actually,
recent works [9, 10] have partially addressed this issue by developing dedicated partial order
reduction (POR) techniques to dramatically reduce the number of interleavings to explore.
They have been implemented in Apte, Akiss, and DeepSec, and brought significant speed-up.
However, these techniques can only be applied on action-deterministic processes, and this is
not sufficient to analyse e.g. unlinkability. To mitigate this problem, it should be possible to
leverage classical POR techniques for use in the specific security setting. A recent result in
this direction has been obtained in [11] regarding the persistent and sleep sets techniques,
and other POR techniques deserve attention to obtain performance gains.

Cryptographic primitives. Most of the tools deal with standard primitives, i.e. encryptions,
signatures, and hashes. However, many protocols, such as RFID protocols or electronic
voting protocols rely on primitives that do not fall into this class. For instance, protocols

S. Delaune

that contain some time-critical steps often rely on low-level operator to reduce computation
(and communication) time. As demonstrated by some recent works (e.g. [8]), dealing with a
simple operator such as the exclusive-or and its algebraic properties in the symbolic setting is
actually challenging. Electronic voting protocols have to achieve antagonist security properties
and they often rely on exotic cryptographic primitives to try to achieve them, e.g. blind
signatures, zero-knowledge proofs, homomorphic encryptions, ... To avoid missing attacks,
these primitives together with their algebraic properties have to be modelled faithfully when
performing the formal security analysis.

Mutable global states. Many modern protocols involve a notion of state meaning that
some data are conveyed from one session to another through e.g. a register. This is the
case for instance of many RFID protocols as those presented in [18, 61]. Several protocols
proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G
mobile network communications are also stateful. For instance, the Authentication and Key
Agreement (AKA) protocol relies on a state to store a counter across different sessions, and a
state is also used in a crucial way to store temporary identifiers (namely TMSI) in the TMSI
reallocation procedure. Moreover, these protocols are supposed to guarantee unlinkability.
Existing results regarding the formal verification of such protocols model states in a very
abstract way, considering for instance that the client and the server already (magically) share
a fresh name instead of modelling the sequence number mechanism. Recent advances have
been made in this direction though an extension of the Tamarin prover [46]. Nevertheless,
methods for checking trace equivalence on stateful protocols are in their infancy.

—— References

1 M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-
ories. Theoretical Computer Science, 387(1-2):2-32, 2006.

2 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages 104—
115. ACM Press, 2001.

3 Martin Abadi and Andrew D Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. of the 4th ACM conference on Computer and communications security,
pages 36-47. ACM, 1997.

4 Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd Computer Security Foundations
Symposium (CSF’10), pages 107-121. IEEE Computer Society Press, 2010.

5 A. Armando et al. The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In Proc. 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’12), volume 7214,
pages 267-282. Springer, 2012.

6 Alessandro Armando, Roberto Carbone, and Luca Compagna. SATMC: a SAT-based
model checker for security-critical systems. In Proc. 20th international Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14), pages
31-45. Springer, 2014. doi:10.1007/978-3-642-54862-8_3.

7 Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and Llanos To-
barra Abad. Formal analysis of saml 2.0 web browser single sign-on: Breaking the saml-
based single sign-on for google apps. In Proc. 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE 2008), pages 1-10, 2008.

8 David Baelde, Stéphanie Delaune, Ivan Gazeau, and Steve Kremer. Symbolic verification
of privacy-type properties for security protocols with xor. In Proc. 30th IEEE Computer

1:17

FSCD 2018

http://dx.doi.org/10.1007/978-3-642-54862-8_3

1:18

Analysing Privacy-Type Properties in Cryptographic Protocols

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Security Foundations Symposium (CSF’17), pages 234-248. IEEE Computer Society Press,
2017.

David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for security
protocols. In Proc. 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of LIPIcs, pages 497-510. Leibniz-Zentrum fiir Informatik, 2015.

David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for deciding
trace equivalence. Logical Methods in Computer Science, 2017.

David Baelde, Stéphanie Delaune, and Lucca Hirschi. POR for Security Protocols Equival-
ences - Beyond Action-Determinism. arXiv, 2018. arXiv:1804.03650.

David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of observa-
tional equivalence. In Proc. 22nd Conference on Computer and Communications Security
(CCS’15), pages 1144-1155. ACM, 2015.

Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
12th ACM conference on Computer and communications security (CCS’05), pages 16-25.
ACM, 2005.

Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Proc. . 200
Symposium on Security and Privacy, pages 86-100. IEEE Computer Society Press, 2004.
Bruno Blanchet. An automatic security protocol verifier based on resolution theorem prov-
ing (invited tutorial). In Proc. 20th International Conference on Automated Deduction
(CADE-20), July 2005.

Bruno Blanchet, Martin Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3
51, 2008.

Bruno Blanchet and Ben Smyth. Automated reasoning for equivalences in the applied pi
calculus with barriers. In Proc. 29th Computer Security Foundations Symposium (CSE’16),
2016.

Mayla Brusé, Konstantinos Chatzikokolakis, and Jerry Den Hartog. Formal verification
of privacy for RFID systems. In Proc. 23rd Computer Security Foundations Symposium
(CSFE’10), pages 75-88. IEEE Computer Society Press, 2010.

I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In Proc. 12th Computer Security Foundations Workshop (CSEFW’99),
pages 55-69. IEEE Computer Society Press, 1999.

Rohit Chadha, Stefan Ciobaca, and Steve Kremer. Automated verification of equivalence
properties of cryptographic protocols. In Proc. European Symposium on Programming
(ESOP’12), pages 108-127. Springer, 2012.

Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Proc. 20th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’14), volume 8413 of LNCS, pages 587-592, 2014.

Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with
ProVerif. In Proc. 2nd Conference on Principles of Security and Trust (POST’13), volume
7796 of LNCS, pages 226—246. Springer, 2013.

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace equivalence decision:
Negative tests and non-determinism. In Proc. 18th ACM Conference on Computer and
Communications Security (CCS’11), pages 321-330. ACM Press, 2011.

Vincent Cheval and Véronique Cortier. Timing attacks in security protocols: symbolic
framework and proof techniques. In Proc. 4th Conference on Principles of Security and
Trust (POST’15), pages 280-299. Springer, 2015.

Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy — or
how to check for equivalences with length. In Proc. 25th International Conference on

http://arxiv.org/abs/1804.03650

S. Delaune

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Computer Aided Verification (CAV’13), volume 8044 of LNCS, pages 708-723. Springer
Berlin Heidelberg, 2013.

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec: Deciding equivalence
properties in security protocols - theory and practice. In Proc. 39th IEEE Symposium
on Security and Privacy (S€P’18). IEEE Computer Society Press, 2018. Accepted for
publication.

Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. Deciding the security of proto-
cols with Diffie-Hellman exponentiation and product in exponents. In Proc. 23rd Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTETCS03),
volume 2914 of LNCS, pages 124-135. Springer-Verlag, 2003.

Yannick Chevalier and Michael Rusinowitch. Decidability of symbolic equivalence of deriv-
ations. Journal of Automated Reasoning, 48(2):263-292, 2012.

Tom Chothia and Vitaliy Smirnov. A traceability attack against e-passports. In Proc. 14th
International Conference on Financial Cryptography and Data Security (FC’10), 2010.

Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Typing messages for free in se-
curity protocols: the case of equivalence properties. In Proc. 25th International Conference
on Concurrency Theory (CONCUR’1/), volume 8704 of LNCS, pages 372-386. Springer,
2014.

Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equival-
ence for protocols with nonces. In Proc. 28th Computer Security Foundations Symposium
(CSE’15), pages 170-184. IEEE Computer Society Press, 2015.

Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. From security protocols to
pushdown automata. ACM Transactions on Computational Logic, 17(1:3), 2015.

Stefan Ciobaca, Stéphanie Delaune, and Steve Kremer. Computing knowledge in se-
curity protocols under convergent equational theories. Journal of Automated Reasoning,
48(2):219-262, 2012.

Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to get rid
of some algebraic properties. In Proc. International Conference on Rewriting Techniques
and Applications (RTA’05), pages 294-307. Springer, 2005.

Bruno Conchinha, David A. Basin, and Carlos Caleiro. FAST: an efficient decision proced-
ure for deduction and static equivalence. In Proc. 22nd International Conference on Re-
writing Techniques and Applications, RTA 2011, volume 10 of LIPIcs, pages 11-20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol security
against off-line dictionary attacks. Electonic Notes in Theoretical Computer Science, 121:47—
63, 2005.

Véronique Cortier. Vérification automatique des protocoles cryptographiques. These de
doctorat (PhD thesis), Laboratoire Spécification et Vérification, ENS Cachan, France, mar
2003.

Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. Sat-equiv: an efficient tool for
equivalence properties. In Proc. 30th IEEE Computer Security Foundations Symposium
(CSF’17). IEEE Computer Society Press, aug 2017.

Véronique Cortier and Stéphanie Delaune. Decidability and combination results for two
notions of knowledge in security protocols. Journal of Automated Reasoning, 48(4):441-487,
2012.

Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A type system for

privacy properties. In 24th ACM Conference on Computer and Communications Security
(CCS’17), pages 409-423. ACM, October 2017.

1:19

FSCD 2018

1:20

Analysing Privacy-Type Properties in Cryptographic Protocols

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Equivalence
properties by typing in cryptographic branching protocols. In Proc. 7th International
Conference on Principles of Security and Trust (POST’18), pages 160-187, April 2018.
Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of ballot secrecy.
In Proc. 24th Computer Security Foundations Symposium (CSF’11), pages 297-311. IEEE
Computer Society Press, 2011.

Stéphanie Delaune. Easy intruder deduction problems with homomorphisms. Information
Processing Letters, 97(6):213-218, 2006. URL: http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/SD-ipl05.pdf.

Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for the
applied pi calculus. Journal of Computer Security, 18(2):317-377, mar 2010.

D. Dolev and A. C. Yao. On the security of public key protocols. In Proc. 22nd Symposium
on Foundations of Computer Science (FCS’81), pages 350-357. IEEE Computer Society
Press, 1981.

Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Sasse Ralf. Automated unbounded
verification of stateful cryptographic protocols with exclusive OR. operations. In Proc.
31st IEEE Computer Security Foundations Symposium (CSF’18). IEEE Computer Society
Press, 2018.

Ivan Gazeau and Steve Kremer. Automated analysis of equivalence properties for security
protocols using else branches. In Proc. 22nd Furopean Symposium on Research in Computer
Security (ESORICS’17), volume 10493 of Lecture Notes in Computer Science, pages 1-20.
Springer, sep 2017. doi:10.1007/978-3-319-66399-9_1.

Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-
type properties: the unbounded case. In Proc. 37th Symposium on Security and Privacy
(SEP’16), 2016.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-677, 1978.
doi:10.1145/359576.359585.

Hans Hiittel. Deciding framed bisimilarity. FElectronic Notes in Theoretical Computer
Science, 68(6):1-18, 2003.

Il-Jung Kim, Eun Young Choi, and Dong Hoon Lee. Secure mobile RFID system against
privacy and security problems. In Third International Workshop on Security, Privacy and
Trust in Pervasive and Ubiquitous Computing, SECPerU 2007, Istanbul, Turkey, July 19,
2007, pages 67-72. IEEE Computer Society, 2007.

Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. In Proc. 16th International Conference on Rewriting
Techniques and Applications (RTA’05), volume 3467 of LNCS, pages 308-322. Springer,
2005.

G. Lowe. An attack on the Needham-Schroeder public key authentication protocol. In-
formation Processing Letters, 56(3):131-133, 1995.

Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

R. Needham and M. Schroeder. Using encryption for authentification in large networks of
computers. Communications of the ACM, 21(12):993-999, 1978.

Technical advisory group on machine readable travel documents (tag/mrtd). URL: http:
//www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WPO5.pdf.

Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. A formal
definition of protocol indistinguishability and its verification using Maude-NPA. In Security
and Trust Management, pages 162—177. Springer, 2014.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/SD-ipl05.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/SD-ipl05.pdf
http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1145/359576.359585
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf

S. Delaune

58

59

60

61

Benedikt Schmidt, Simon Meier, C. J. F. Cremers, and David Basin. Automated analysis of
Diffie-Hellman protocols and advanced security properties. In Proc. 25th Computer Security
Foundations Symposium (CSF’12), pages 78-94. IEEE Computer Society Press, 2012.

F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191-230, 1999.

Alwen Tiu. A trace based bisimulation for the spi calculus. In Programming Languages
and Systems, pages 367-382. Springer, 2007.

Ton van Deursen and Sasa Radomirovic. Attacks on RFID protocols. JACR Cryptology
ePrint Archive - Report 2008/310, 2008. URL: http://eprint.iacr.org/2008/310.

1:21

FSCD 2018

http://eprint.iacr.org/2008/310

Formal Design, Implementation and Verification
of Blockchain Languages

Grigore Rosu

University of Illinois at Urbana-Champaign and Runtime Verification, Inc., USA
http://fsl.cs.illinois.edu/grosu

grosu@illinois.edu

—— Abstract

This invited paper describes recent, ongoing and planned work on the use of the rewrite-based
semantic framework K to formally design, implement and verify blockchain languages and virtual
machines. Both academic and commercial endeavors are discussed, as well as thoughts and
directions for future research and development.

2012 ACM Subject Classification Security and privacy — Logic and verification, Software and
its engineering — Software verification, Theory of computation — Logic and verification

Keywords and phrases Formal semantics, Program verification, Blockchain
Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.2

Category Invited Talk

Related Version https://www.ideals.illinois.edu/handle/2142/97207

Funding NSF CCF-1421575; NSF SBIR-II-1660186; IOHK grant; Ethereum Foundation grant.

Acknowledgements This work would have not been possible without the sustained dedication
of the K-team (http://www.kframework.org/index.php/People) and numerous other contrib-
utors and enthusiasts. I would like to particularly thank Philip Daian, Everett Hildenbrandt,
and Charles Hoskinson for bringing the blockchain needs for formal verification to our team’s
attention, and for evangelizing our language-parametric verification approach in blockchain com-
munities. Warm thanks to Héléne Kirchner and the entire FSCD’18 program committee for
inviting me to present this work at the conference and to submit this paper.

1 Introduction and Motivation

Many of the recent expensive cryptocurrency bugs and exploits are due to flaws or weaknesses
of the underlying blockchain programming languages or virtual machines [6, 4, 1, 3, 12].
The usual post-mortem approach to formal language semantics and verification, where the
language is firstly implemented and used in production for many years before a need for
formal semantics and verification tools naturally arises, does simply not work anymore. New
blockchain languages or virtual machines are proposed at an alarming rate, followed by new
versions of them every few weeks, sometimes every few days, together with programs (a.k.a.
smart contracts) in these languages that are responsible for financial transactions totaling
more than $1B/day only on the Ethereum blockchain [7]. Formal analysis and verification
tools for such languages and virtual machines are therefore needed immediately.

In order to formally verify a program in any given language, a formal model of the
program is necessary. Such a program model can be developed manually, in mechanical
theorem provers such as Coq [10] or Isabelle [13], but this is usually expensive and thus

© Grigore Rosu;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 2; pp. 2:1-2:6

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://fsl.cs.illinois.edu/grosu
mailto:grosu@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.2
https://www.ideals.illinois.edu/handle/2142/97207
http://www.kframework.org/index.php/People
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Formal Design, Implementation and Verification of Blockchain Languages

done rarely, mostly in the context of mission critical systems and in combination with other
activities, such as defining model abstractions and protocol/algorithm/model validation. The
norm is for tools to extract such program models automatically, based either on translations
of the program to particular intermediate languages such as Boogie [2] or Why [8] that serve
as input to specialized program verifiers, or on direct implementations of Hoare logics or
verification condition (VC) generators for the target programming language.

The translation approach has the advantage that the same verifier can be used across
various target languages, but it has the drawback that program behaviors may be lost in
translation, so a trusted formal semantics of the original language and a proof of correctness
of the translation are needed for increased confidence. Additionally, backwards translations
of failed proofs need to be engineered, so users see error messages specific to their original
language and not to the level of the intermediate language. The direct approach avoids both
the translation correctness and the translation of failed proofs problems, but it is usually
significantly more complex to implement, which can lead to subtle implementation errors
that are hard or impossible to expose by testing (Hoare logics are not easily executable).
Therefore, to increase confidence in such direct program verifiers, the underlying Hoare logic
or VC generation procedure needs to be proved sound with respect to some trusted reference
model of the target programming language, typically an operational semantics.

Therefore, a formal trusted semantics of the target programming language is required for
increased confidence of program verification. The K framework [11] (http://kframework.
org) takes the firm position that a formal language semantics should be needed to validate
not only program verifiers, but essentially all the target language tools. Moreover and
more importantly, that no other formal or informal, direct or indirect semantics of the
target language should be required for any of the tools, and that the tools should be either
generated automatically from or take as input the formal language semantics. That is, that
all the language-specific tools for a given language should be produced automatically by the
framework, correct-by-construction, from the formal semantics of the language. Figure 1
depicts the K belief and approach. This is nevertheless the best we can hope for in our field.
But does it really work? Isn'’t it too idealistic? Aren’t the tools too inefficient to be practical?

Some initial practical instances of the K approach were reported in [5], where existing
formal semantics of C, Java and JavaScript were used as inputs to K’s language-parametric
program verifier, to yield program verifiers specific to these three languages. The resulting
program verifiers were comparable in performance with existing state-of-the-art verifiers
developed specifically for these languages. Here we bring additional evidence for the feasibility
of the K approach, this time in the context of the blockchain. Specifically, we discuss recent
academic and commercial results in designing blockchain languages and virtual machines
by formalizing their semantics. Implementations for these are generated automatically from
their semantics, in a correct-by-construction fashion, and so are program verifiers for them.

Why target the blockchain as an application domain for the K approach? First, because
it is a new field in desperate need of formal verification; if cryptocurrencies are the future
of money, then we ought to do our best to increase the security, safety and reliability of
blockchain transactions. Second, because the entire blockchain space is a moving target,
with paradigms and languages that change on a daily basis with no time to develop program
verifiers following the traditional Hoare logic or VC generation approaches; therefore, it is
a sweet spot for our language-parametric approach. Third, because two major blockchains
holding cryptocurrencies, Ethereum and Cardano, showed unreserved interest in pushing
formal methods in the design and implementation of their languages, and even deploy new
versions of the blockchain using technology resulting from this research initiative. Finally,

http://kframework.org
http://kframework.org

G. Rosu
module LAMBDA syntax Exp ::= "if" Exp "then" Exp
imports SUBSTITUTION "else" Exp [strict(1)]
syntax Val rule if true then E else _ => E
o ." Exp [binder] rule if false then _ else E => E
Test-case | —_—
) generation Deductive syntax Exp :: : .
[Parser) \ v ‘program R [strict, left] syntax Exp ::= "let" Id "=" Exp "in" Exp
po e [bracket] rule let X=E in E’ => (lambda X . E’) E
syntax KVariable ::= Id
syntax KResult ::= Val syntax Exp ::=
am— Formal Language Definition prmm— "letrec" Id Id "=" Exp "in" Exp
Interpreter (Syntax and Semantics) | Model rule (lambda X:Id . E:Exp) V:Val => E[V / X] | "mu" Id "." Exp [binder]
C, C++, Java, JavaScript, (checker) rule letrec F:Id X = E in E’
Solidity, Python, EVM, LLVM syntax Val ::= Int | Bool =>let F = mu F . lambda X . E in E’
syntax Exp ::= Exp "*" Exp [strict, left] rule mu X . E => E[(mu X . E) / X]
| Exp "/" Exp [strict]
(Compiler) (Em—— (' Symbolic | > Exp "+" Exp [strict, left] syntax Exp ::= "callcc" Exp [strict]
€ 4 Semantic " gt i .
debugger‘ | execution | > Exp "<=" Exp [strict] syntax Val ::= cc(K) B
€ D — rule I1 * I2 => I1 *Int I2 rule <k> (callcc V:Val => V cc(K))
rule I1 / I2 => I1 /Int I2 -> K </k>
rule I1 + I2 => I1 +Int I2 rule <k> cc(K) V ~> _ => V ~> K </k>
rule I1 <= I2 => I1 <=Int I2 endmodule

Figure 1 Left: the K framework approach to language design, implementation and verification.
Center and right: the K definition of a call-by-value lambda calculus with arithmetic and callcc.

because it offers an environment where a language framework like K can be pushed even
beyond its original, already ambitious goal: it can serve as a universal language of languages,
where language semantics (or more exactly their hashes) are stored on the blockchain, and
then correct-by-construction compilers and interpreters for such languages are generated
automatically; this way, smart contract developers can program and verify them using their
favorite languages, provided that they have a formal semantics on the blockchain.

2 K Framework

K is a rewrite-based executable semantic framework in which programming languages, type
systems and formal analysis tools can be defined using configurations, computations and
rules. Configurations organize the state in units called cells, which are labeled and can
be nested. Computations carry computational meaning as special nested list structures
sequentializing computational tasks, such as fragments of program. Computations extend
the original language abstract syntax. K (rewrite) rules make it explicit which parts of the
term they read-only, write-only, read-write, or do not care about. This makes K suitable for
defining truly concurrent languages even in the presence of sharing. Computations are like
any other terms in a rewriting environment: they can be matched, moved from one place to
another, modified, or deleted. This makes K suitable for defining control-intensive features
such as abrupt termination, exceptions or call/cc. Figure 1 left depicts the K architecture.

Figure 1 center and right shows the complete K definition of a simple call-by-value
lambda calculus language with builtin arithmetic, conditional, let, letrec, and call/cc. Note
that syntax is define using conventional BNF, with terminals in quotes. The | separates
production of same precedence, while > states that the previous productions bind tighter
than the subsequent ones. A parser is generated automatically and is used to parse both
the programs and the semantic rules; i.e., rules can use concrete syntax. Syntax and rule
declarations can be tagged with attributes. Some attributes have meaning for the parser,
such as left for left associativity, others have semantic meaning, such as binder (used
by the builtin variable-capture free substitution) and strict (which defines appropriate
evaluation contexts). For K’s internal substitution to work out of the box, we also need to tell
it which syntactic categories act as variables, by subsorting them to KVariable. Similarly,
for efficiency we need to tell it which categories build non-reducible results by subsorting to
KResult. Most of the semantic rules are self-explanatory. The call/cc rules use K’s specific
local rewriting: rewriting takes place in context, specifically in the <k/> cell, and not at the
top level. This gives K additional convenience and modularity in language definitions.

2:3

FSCD 2018

2:4

Formal Design, Implementation and Verification of Blockchain Languages

Taking such formal language definitions as input, K generates a variety of tools for the
defined language as shown in Figure 1, without any other piece of knowledge about the
given language except its formal syntax and semantics. Complete languages semantics for
real-world languages like C, Java and JavaScript have been defined this way, and tools for
them have been generated and shown to have acceptable performance when compared to
existing adhoc tools for the same languages [5].

3 Current Progress

KEVM: Ethereum, the second largest blockchain cryptocurrency after Bitcoin, implements
a general-purpose replicated “world computer” that allows for the development of arbitrary
programs, called “smart contracts”, that execute in blockchain transactions using the block-
chain to synchronize their state globally. Smart contracts are written in various high-level
languages, but are ultimately translated to a low-level language called the Ethereum Virtual
Machine (EVM) [14]. Among other features, these contracts can tally user votes, commu-
nicate with other contracts, store or represent digital assets, and send or receive money in
cryptocurrencies, without requiring trust in any third party to faithfully execute the contract.
Their correct and secure operation relies entirely on the correctness of their EVM code. Any
code error can be immediately exploited resulting in significant financial loss [6, 4, 1, 3, 12].

To enable the formal verification of smart contracts, in a project partially funded by the
research and engineering company IOHK (http://iohk.io, the creators of the Cardano
blockchain and the ADA cryptocurrency), we have formalized the semantics of the EVM [9].
Our K semantics of the EVM, which we refer to as KEVM, is as complete as it can be.
We know this because we tested it by running the automatically generated interpreter
(see Figure 1) against the comprehensive 40,000-program test suite that comes with the
official C++ implementation of the EVM, which serves as a conformance suite for EVM
implementations. Building upon KEVM, the startup Runtime Verification has formally
verified several smart contracts as part of their commercial verification services (https:
//runtimeverification.com/smartcontract/).

A pleasant surprise was that the EVM interpreter automatically generated from KEVM
turned out to be only one order of magnitude slower on average than the official C4++
implementation offered by the Ethereum Foundation [9]. Since smart contracts are small
and fast executing programs, the above suggests that KEVM can serve not only as a
reference executable model of the EVM, but also as an actual production implementation.
We are grateful to IOHK for launching a testnet on Cardano in Summer 2018 to test this
hypothesis in a real-world setting. If successful, this experiment can be the first step towards
a world where virtual machines are generated automatically from their formal specifications,
correct-by-construction. If performance is not a problem, why should it be any other way?

IELE: One of the major lessons we learned during the EVM formalization effort was that
EVM can be improved along various dimensions, improvements that could make both
implementations and smart contract verification easier and faster. Instead of doing so, we
preferred to design and implement a new virtual machine, IELE: https://github.com/
runtimeverification/iele-semantics. Unlike the EVM, which is a stack-based machine,
IELE is a register-based machine, like LLVM. IELE also directly supports functions, like
LLVM, and is human readable. It has an unbounded number of registers and also supports
unbounded integers. Like KEVM, the design of IELE was also done in a semantics-based
style, using K, and a VM was automatically generated from its formal specification. To our

http://iohk.io
https://runtimeverification.com/smartcontract/
https://runtimeverification.com/smartcontract/
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/iele-semantics

G. Rosu

knowledge, IELE is the first VM that was completely designed and implemented using formal
methods. There is no line of low-level code written by humans; all code is automatically
generated from its formal specification. The IELE project was funded by IOHK, with
the explicit objective of eventually powering real-world blockchains, including Cardano.
The project is complete and like with KEVM, a test net will be deployed in Summer
2018 by IOHK to evaluate IELE in a real-world setting. To make migration of existing
Ethereum smart contracts to IELE possible, we have also developed a IELE compiler
for the most commonly used smart contract language, Solidity: https://github.com/
runtimeverification/solidity. We are currently also working on a IELE compiler for
Plutus, a high-order functional programming language for future smart contracts developed by
IOHK under the supervision of Philip Wadler: https://github.com/kframework/plutus-
core-semantics.

Vyper, Casper: Vyper (https://github.com/ethereum/vyper) is a novel programming
language for smart contracts that aims for increased security, simplicity, and human readabil-
ity; Vyper currently compiles to the EVM. Casper (https://github.com/ethereum/casper)
is a novel consensus protocol implemented in Vyper, meant to save wasteful electricity ex-
penditures and at the same time provide greatly increased security. Vyper and Casper are both
proposed by the Ethereum Foundation and, unfortunately, both are moving targets. Inconsist-
encies and bugs are found and fixed in Vyper on a weekly basis, which may potentially influence
the Casper implementation, which itself still changes due to other forces. Funded by Ethereum
Foundation, we have formalized the semantics of Vyper in K, discovering several bugs and in-
consistencies in the process: https://github.com/kframework/vyper-semantics; and we
are also formally verifying the Casper code in Vyper, as compiled to EVM: https://github.
com/runtimeverification/verified-smart-contracts/tree/master/casper. For veri-
fication purposes, we are currently regarding Casper as a smart contract eventually executed
on the EVM, but its inherent complexity makes it highly non-trivial to correctly specify
its intended behavior. To reduce the risk of misspecifying its Vyper code correctness, in a
joint effort with the Etherum Foundation and the University of Texas at Austin we are also
formalizing the actual protocol in Coq and in Isabelle, and validate the model by proving
its intended safety and liveness properties. Then we will show that the proved Vyper code
properties are consistent with the Coq and Isabelle models. All these are necessary due to
the extremely important role that Casper will play in the near future for Ethereum.

4 Conclusion and Future Work

While K may not be the final answer to our quest for an ideal language framework, we believe
that it has demonstrated that it is possible, and feasible, to generate a variety of formal
execution and analysis tools for a given language from the formal semantics of that language.
Moreover, only one, executable semantics for any given language suffices in order to generate
all the tools, and that the so generated tools can be correct-by-construction, thus eliminating
the need for redundant semantics and complex proofs of correctness.

Some years may still need to pass before sufficient evidence is accumulated to convince
the skeptical formal methodist that the approach has merit even with mainstream languages
like C and Java, for which well-engineered formal verification tools already exist. But for
emerging fields like the blockchain, which come with new languages that routinely change
every few days and require mostly small but tricky programs, the language-parametric
semantic framework approach appears to be the only solution quickly available.

2:5

FSCD 2018

https://github.com/runtimeverification/solidity
https://github.com/runtimeverification/solidity
https://github.com/kframework/plutus-core-semantics
https://github.com/kframework/plutus-core-semantics
https://github.com/ethereum/vyper
https://github.com/ethereum/casper
https://github.com/kframework/vyper-semantics
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper

2:6

Formal Design, Implementation and Verification of Blockchain Languages

We hope that this wave of interest in language frameworks like K will lead to the

development of several important advances in the field, which will then be applicable across
all languages. On the foundational side, we need to develop language- /paradigm-independent

logics that allow us to specify any desired properties about any programs in any programming

languages. On the practical side, automation is critical for the success of any verification

environment. Also, generation of proof objects to act as correctness certificates for the

various formal tools generated for a given language would increase demand and adoption of

such tools, especially in the blockchain domain.

—— References

1

10

11

12

13
14

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on Ethereum
smart contracts. JACR Cryptology ePrint Archive, 2016:1007, 2016.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO’05), volume 4111 of LNCS, pages 364-387, 2006.

Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Giin Sirer. An in-depth look at the
parity multisig bug, 2017. URL: http://hackingdistributed.com/2017/07/22/deep-
dive-parity-bug/.

Vitalik Buterin. Thinking about smart contract security, 2016. URL: https://blog.
ethereum.org/2016/06/19/thinking-smart-contract-security/.

Andrei Stefinescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu. Semantics-
based program verifiers for all languages. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’16). ACM, Nov 2016.

Phil Daian. DAO attack, 2016. URL: http://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/.

Etherscan. Ethereum transactions, 2018. URL: https://etherscan.io/.
Jean-Christophe Fillidtre and Claude Marché. The why/krakatoa/caduceus platform for
deductive program verification. In CAV, volume 4590 of LNCS, pages 173-177, 2007.
Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,
Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Stefanescu, and Grigore
Rosu. KEVM: A Complete Semantics of the Ethereum Virtual Machine. In Computer
Security Foundations Symposium (CSF’18), 2018. URL: http://jellopaper.org.

The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0. URL: http://coq.inria.fr.

Grigore Rosu and Traian Florin Serbanuta. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397-434, 2010.

Jutta Steiner. Security is a process: A postmortem on the parity multi-sig lib-
rary self-destruct, 2017. URL: https://blog.ethcore.io/security-is-a-process-a-
postmortem-on-the-parity-multi-sig-library-self-destruct/.

The Isabelle development team. Isabelle, 2018. URL: https://isabelle.in.tum.de/.
Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014. (Up-
dated for EIP-150 in 2017) http://yellowpaper.io/.

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://etherscan.io/
http://jellopaper.org
http://coq.inria.fr
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://isabelle.in.tum.de/
http://yellowpaper.io/

Challenges in Quantum Programming Languages

Peter Selinger

Dalhousie University, Halifax, Canada

selinger@mathstat.dal.ca
https://orcid.org/0000-0003-3161-856X

—— Abstract

In this talk, I will give an overview of some recent progress and current challenges in the design of
quantum programming languages. Unlike classical programs, which can in principle be debugged
by stopping the program at critical moments and examining the contents of variables, quantum
programs are not amenable to traditional debugging because the state of a quantum system
cannot usually be examined in a meaningful way. Therefore, we need other methods for ensuring
the correctness of quantum programs, such as formal verification. For this reason, I advocate

the use of strongly typed, functional programming languages for quantum computing. As far as
functional quantum programming languages are concerned, there is currently a relatively wide
gap between theory and practice. On the one hand, we have languages with strong theoretical
foundations, such as the quantum lambda calculus, which operate at a relatively low level of
abstraction and lack many features that would be useful to practical quantum programmers. On
the other hand, we have practical functional quantum programming languages such as Quipper,
which is implemented as an embedded language in Haskell, has many high-level features, and
has been used in large-scale projects, but lacks a theoretical basis and a strong type system
[1, 2, 3, 6]. We have recently attempted to narrow this gap through a family of languages called
Proto-Quipper, which are designed to offer Quipper-like features while having sound theoretical
foundations [5, 4]. I will give an overview of Quipper and its most useful features, report on
the progress we made with formalizing fragments of Quipper, and outline several of the still
remaining challenges.

2012 ACM Subject Classification Theory of computation — Quantum computation theory,
Theory of computation — Program semantics

Keywords and phrases Quantum programming languages

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.3

Category Invited Talk

—— References

1 Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Va-
liron. An introduction to quantum programming in Quipper. In Proceedings of the 5th
International Conference on Reversible Computation, RC 2013, Victoria, British Columbia,
volume 7948 of Lecture Notes in Computer Science, pages 110-124. Springer, 2013. Also
available from arXiv:1304.5485. doi:10.1007/978-3-642-38986-3_10.

2 Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron.
Quipper: a scalable quantum programming language. In Proceedings of the 84th Annual
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2013, Seattle, volume 48(6) of ACM SIGPLAN Notices, pages 333-342, 2013. Also available
from arXiv:1304.3390. doi:10.1145/2499370.2462177.

3 Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron.
The Quipper language. Software implementation, available from http://www.mathstat.
dal.ca/~selinger/quipper/, 2013.

© Peter Selinger;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléene Kirchner; Article No. 3; pp. 3:1-3:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:selinger@mathstat.dal.ca
https://orcid.org/0000-0003-3161-856X
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.3
http://arxiv.org/abs/1304.5485
http://dx.doi.org/10.1007/978-3-642-38986-3_10
http://arxiv.org/abs/1304.3390
http://dx.doi.org/10.1145/2499370.2462177
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

Challenges in Quantum Programming Languages

Francisco Rios and Peter Selinger. A categorical model for a quantum circuit descrip-
tion language. Extended abstract. In Proceedings of the 14th International Workshop on
Quantum Physics and Logic, QPL 2017, Nijmegen, volume 266 of Electronic Proceedings
in Theoretical Computer Science, pages 164—178. Open Publishing Association, 2018. Also
available from arXiv:1308.4557. doi:10.4204/EPTCS.266.11.

Neil J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis,
Department of Mathematics and Statistics, Dalhousie University, 2015. Available from
arXiv:1510.02198.

Jonathan M. Smith, Neil J. Ross, Peter Selinger, and Benoit Valiron. Quipper: concrete
resource estimation in quantum algorithms. Extended abstract for a talk given at the 12th
International Workshop on Quantitative Aspects of Programming Languages and Systems,
QAPL 2014, Grenoble. Available from arXiv:1412.0625, 2014.

http://arxiv.org/abs/1308.4557
http://dx.doi.org/10.4204/EPTCS.266.11
http://arxiv.org/abs/1510.02198
http://arxiv.org/abs/1412.0625

Proof Techniques for Program Equivalence in
Probabilistic Higher-Order Languages

Valeria Vignudelli
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
Lyon, France

—— Abstract

While the theory of functional higher-order languages, starting from lambda-calculi, is a well-
established research field, it is only in recent years that the operational semantics of higher-order
languages with probabilistic operators has started to be extensively studied. A fundamental
notion in the semantics of programming languages is that of program equivalence. In higher-
order languages, program equivalence is generally formalized as a contextual equivalence [6],
which can be hard to prove directly. This has motivated the study of proof techniques for
contextual equivalence, from inductive ones, such as logical relations [7], to coinductive ones,
mainly in the form of bisimulations [1]. In this talk I will discuss proof techniques for program
equivalence in languages combining higher-order and probabilistic features. Several operational
methods, traditionally developed in a deterministic setting, have been adapted to probabilistic
higher-order languages [2, 5, 3]. I will discuss these proof methods and focus on bisimulation-
based techniques, showing how probabilities, combined with different language features, force a
number of modifications to the definition of bisimulation [4, §].

2012 ACM Subject Classification Theory of computation — Lambda calculus, Theory of com-
putation — Operational semantics, Theory of computation — Probabilistic computation

Keywords and phrases Lambda Calculus, Contextual Equivalence, Bisimulation, Probabilistic
Programming Languages

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.4
Category Invited Talk

Funding The author has been funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157).

—— References

1 Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor, Research topics
in functional programming, pages 65—116. Addison-Wesley, 1990.

2 Ales Bizjak and Lars Birkedal. Step-indexed logical relations for probability. In Proc.
FoSSaCS’15, pages 279-294, 2015.

3 Raphaélle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-
by-value A-calculi. In Proc. ESOP’14, LNCS 8410, pages 209-228. Springer, 2014. doi:
10.1007/978-3-642-54833-8_12.

4 Raphaglle Crubillé, Ugo Dal Lago, Davide Sangiorgi, and Valeria Vignudelli. On applicative
similarity, sequentiality, and full abstraction. In Roland Meyer, André Platzer, and Heike
Wehrheim, editors, Correct System Design, LNCS 9360, pages 65-82. Springer, 2015.

5 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs. In Proc. POPL’14, pages 297-308. ACM,
2014.

© Valeria Vignudelli;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 4; pp. 4:1-4:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.4
http://dx.doi.org/10.1007/978-3-642-54833-8_12
http://dx.doi.org/10.1007/978-3-642-54833-8_12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages

6 James H. Morris. Lambda-calculus models of programming languages. PhD thesis, Mas-
sachusetts Institute of Technology., 1968.

7 Andrew Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 7, pages 245-289. MIT Press, 2005.

8 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic

higher-order languages. In Proc. POPL’16, pages 595-607. ACM, 2016.

A Unifying Framework for Type Inhabitation

Sandra Alves!
DCC-Faculty of Science & CRACS, University of Porto, Portugal
sandra@dcc.fc.up.pt

https://orcid.org/0000-0001-8840-5587

Sabine Broda?
DCC-Faculty of Science & CMUP, University of Porto, Portugal
sbb@dcc.fc.up.pt

https://orcid.org/0000-0002-3798-9348

—— Abstract

In this paper we define a framework to address different kinds of problems related to type inhabit-
ation, such as type checking, the emptiness problem, generation of inhabitants and counting, in a
uniform way. Our framework uses an alternative representation for types, called the pre-grammar
of the type, on which different methods for these problems are based. Furthermore, we define a
scheme for a decision algorithm that, for particular instantiations of the parameters, can be used
to show different inhabitation related problems to be in PSPACE.

2012 ACM Subject Classification Theory of computation — Type theory, Theory of computa-
tion — Lambda calculus, Theory of computation — Rewrite systems

Keywords and phrases simple types, type inhabitation, rewriting, PSPACE

Digital Object ldentifier 10.4230/LIPIcs.FSCD.2018.5

1 Introduction

Inhabitation of simply typed A-terms and its related problems, such as type checking, the
emptiness problem, generation of inhabitants, counting algorithms, etc. have been extensively
studied throughout the years [2, 3, 5, 15, 14, 10, 12, 13, 6], using a variety of formalisms such
as context-free grammars [15], tree-based methods [4], automata theory [13], amongst others.
Despite the diversity of methods, there are common fundamental features that emerge from
the different approaches.

One of these features is the implicit relation between the structure of a type and its
normal inhabitants. The Formula-Tree Method by Broda and Damas [4] explores this relation
by looking at a tree representation of the type, identifying what are called the primitive parts,
which are then combined following a set of rules determined by the structure of the type.
In the case of the inhabitation machines defined by Schubert et al. [13], the states of the
automata used to recognize the inhabitants of a given type, as well as the transition relation
between configurations of the machines, are obtained directly from the sub-expressions of the
type. More recently, while studying the complexity of the principal inhabitation problem,
Dudenhefner and Rehof [6] use the structure of the type to define a path relation identifying
subformulas with the same atomic type. This path relation is then used in the definition

! Partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-01-0145-
FEDER-006961, and by National Funds through the FCT as part of project UID/EEA /50014/2013.

2 Partially funded by CMUP (UID/MAT/00144,/2013), which is funded by FCT (Portugal) with national
(MEC) and european structural funds through the programs FEDER, under the partnership agreement
PT2020.

© Sandra Alves and Sabine Broda;

37 licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 5; pp.5:1-5:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sandra@dcc.fc.up.pt
 https://orcid.org/0000-0001-8840-5587
mailto:sbb@dcc.fc.up.pt
 https://orcid.org/0000-0002-3798-9348
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

A Unifying Framework for Type Inhabitation

of an algorithm that addresses principal inhabitation. Types and their structure are also
fundamental in the definition of the context-free grammars by Takahashi et al. [15].

In this paper we highlight the importance of the underlying structure of types in the
definition of methods for type inhabitation related problems. To that end, we present an
alternative unifying representation of the type’s structure, which we call the pre-grammar of
the type. From this simple, yet powerful, device we extract rewriting methods to deal with
type-checking, counting and generation of inhabitants.

Secondly, we explore the uniformity of decision algorithms defined over the years to prove
that different inhabitation related problems are in PSPACE. Complexity of inhabitation
related problems was first addressed by Statman [14] in the realm of propositional intuitionistic
logic. The decidability of the logic was proved to be PSPACE complete, and therefore also
the emptiness problem for the simply typed lambda calculus, due to the well-known Curry-
Howard correspondence [11]. A direct syntactic proof of the same result, for the simply
typed A-calculus, was later given by Urzyczyn [16]. PSPACE completeness of the infiniteness
problem was proved by Hirokawa [10], by reducing the emptiness problem to the infiniteness
problem. In [6], PSPACE completeness was proved for the problem of principal inhabitation,
by means of a non-deterministic algorithm for choosing a particular path relation for a
given type. Also in the case of inhabitation machines [13], a PSPACE completeness result is
obtained for the emptiness problem by means of a polynomial time alternating algorithm. In
fact, several of the results mentioned above rely on polynomial time alternating algorithms.
Note that the class of problems decidable in alternating polynomial time (AP) corresponds
to the class of problems decidable in polynomial space (PSPACE). Following that, we define
a scheme for a polynomial time alternating decision algorithm, which operates on the rules
of the pre-grammar of the type. By instantiating the parameters of the algorithm scheme,
we obtain different PSPACE decision algorithms for the problems of emptiness, counting and
principal inhabitation.

We will restrict our methods and definitions to terms in normal form. In fact, most of
the interesting questions related to inhabitation can be reduced to, or even just make sense
for, normal terms. For instance, an inhabited type may have only a finite number of normal
inhabitants, but has always an infinite number of (not necessarily normal) inhabitants. Also,
every inhabited type is the principal type of an infinite number of terms, while it may not be
the principal type of a term in normal form [9].

The rest of the paper is structured as follows. In the next section we introduce some
preliminary notions. In Section 3, we present the notion of pre-grammars and prove some
basic results. Using the pre-grammar representation, in Section 4, we define rewriting
methods to address type checking and the emptiness problem, and explore closure properties,
for intersection and union types. In Section 5 we define the scheme of an alternating decision
algorithm, and its instances. Finally, in Section 6, we draw some conclusions and highlight
some future work.

2 Preliminaries

In this paper we assume familiarity with the simply typed A-calculus & la Curry [8]. We
denote type variables (atoms) by a,b,c,... and arbitrary types by lower-case Greek letters
a, B,7,0,7,.... The set of simple types is denoted by 7. We denote A\-terms by M, N, ...,
which are built from an infinite countable set of term variables V. Unless stated otherwise,
we identify terms modulo a-equivalence. For type assignment we consider the system TA) as
described in [8] and consider its inference rules for terms in S-normal form. Note that every

S. Alves and S. Broda

[B-normal A-term is of the form Az.N or Ny --- N, where N, Nq,..., N are in normal form
and s > 0. Different from [8] we define the depth of a A-term by depth(Ax.N) = 1+depth(N),

and depth(zNy - -+ Ng) = 1 + max(depth(Ny),...,depth(N;)) for s > 1, and depth(z) = 1.

With this definition the depth of a term M, such that I' - M : 7, corresponds directly to the
height of the unique TAy-deduction of this fact, as defined below. A context is a finite set T’
of declarations = : o, where z € V and ¢ € T, such that all term variables occurring in T’

are distinct from each other. The set of term variables occurring in T' is denoted by Subj(T").

The union of contexts is consistent if it does not contain different type declarations for the
same term variable.

» Definition 1. We write I' H M : 7 and say that type 7 can be assigned to term M in
context I, if this formula can be obtained by applying the rules below a finite number of
times.
IfTFN:ogand T'U{x: 01} is consistent, then '\ {z : 01} F Ax.N : 01 — 03.
T FN;tog, for 1 <i<s(s>0),then’FaN;-- Ng:o, f L =T7U---UT U{z:
01 — -+ — 05 — 0} is consistent;
If ' = (), then we also write = M : 7 instead of I' = M : 7 and say that M is an inhabitant of
type 7. The set of all (normal) inhabitants of 7 is denoted by Nhabs(7).

One knows that I' = M : 7 implies that the set of term variables in I" coincides with the set
of free variables in M, i.e. Subj(I") = FV(M), cf. Lemma 2A10 in [8]. Furthermore, for every
derivable formula I' M : 7 there is exactly one deduction in TAj.

» Example 2. Consider type oo = ((0 — 0) = 0 — 0) — 0 — o, which will be our running
example throughout this paper. Normal inhabitants of « are, for instance, My = Azy.x(Az.y)y
and My = Az.x(Ay.y), for which one has depth(M;) = 5 and depth(My) = 4.

» Definition 3. The polarity of occurrences of subtypes in a type 7 is defined as follows.
T is a positive occurrence in T;
if p — o occurs positively (resp. negatively) in 7, then that occurrence of p is negative
(resp. positive) and that occurrence of o is positive (resp. negative) in 7.
Following the notation in [8], we will on occasions write 0 when referring to a particular
occurrence of an object o. Every type 7 can be uniquely written as =7 — ... - 7, — a,
where a is a type variable and [> 0. Type variable a is called the tail of 7 and denoted by
tail(r). If I > 1, then 7q,...,7; are called the arguments of 7. An occurrence ¢ in 7 is called
a negative subpremise of T iff it is the argument of a positive occurrence of a subtype in 7.
Consider a term M and a type 7 such that F M : 7, as well as a formula ' - N : o,
appearing in the unique TAj-deduction of - M : 7. In the following, we assign to each
X € Subj(T') U{N} an occurrence st(X) of a subtype in 7. The definition of st is bottom-up,
starting with - M : 7.
For - M : 7, let st(M) = 7.
Now consider '\ {z : 01} - Ax.N : 01 — 09, because I' - N : 09 and because T'U {x : 01}
is consistent. Consider st(Ax.N) =01 — o3 for '\ {z : 01} - Ax.N : 61 — 2. Then, for
'k N : oy let st(N) be the occurrence of oy in st(Az.N). If € Subj(T"), then st(z) is
the occurrence of o1 in o3 — g9. All other variables in Subj(T") are assigned the same
occurrences as for the formula '\ {z : 01} - Ae.N : 01 — 09.
Finally let T'F 2Ny -+ N : 0, because I'; F N; : g4, for 1 < i < s (s > 0), and because
r=rnu.---rsu{z:0y =+ — os — o} is consistent. If st(z) =0y = --- > 05 — 0,
then st(XV;) is the occurrence of o; in st(x), for I'; F N; : 0; and 1 <4 < s (s > 0). The
variables in Subj(T';) are assigned the same occurrences as for I' - Ny - - - N; : 0.

5:3

FSCD 2018

5:4

A Unifying Framework for Type Inhabitation

The following lemma, cf. [4], establishes the relationship between occurrences of variables
in abstraction sequences and occurrences of subterms in M, respectively with negative
subpremises and positive occurrences of subtypes in 7 and can be easily proved using the
definition of st above, as well as Definition 3. The established relationship will be explored
in the definition of pre-grammars in the next section.

» Lemma 4. Consider a term M in S-normal form and a type T such that = M : T, as well
as a formulaT'+ N : o, appearing in the unique TA)-deduction of - M : 7. If x : 0, € T, then
st(z) = o, is a negative subpremise in 7. Furthermore, st(N) = ¢ is a positive occurrence of
subtype o in T.

3 Pre-grammars

In this section we describe how to obtain for a type 7 a set of rewriting rules, which we
call the pre-grammar of 7 and denote by pre(r). We start by associating to each type T
a set occT (7) that contains for each type occurrence ¢ a tuple (o,n,l), where n € N, and
l € {var}U{n — m|n,meN }. Distinct occurrences of subtypes are assigned distinct
tuples. This set is uniquely defined, up to isomorphism between integers used in the tuples.

» Definition 5. Given a type 7 € T let occT(7) be the smallest set satisfying the following.
For each occurrence of a type variable @ in 7 there is a tuple (a,n,var) € occT (7);
if p — o is an occurrence of a subtype of 7, and (p,n,l,), (0, m,|,) € occT () are the
tuples corresponding to p and o in this occurrence, then (p — o, k,n — m) € occT (7);
for each n € N there is at most one tuple (o, n,l) € occT (7).
Furthermore, given a particular occurrence ¢ of a subtype of 7 we denote by n(g) the unique
integer n such that (o,n,l) € occT (7). We frequently will refer to n(c) as the identifier of o
w.r.t. occT (7). Finally, t(n) = o, lab(n) =, and N(7) = { n | (o,n,]) € occT (1) }.

In order to deal correctly with the correspondence between occurrences of subtypes and
occurrences of subterms, polarities have to be taken into account. With this purpose, and
whenever convenient, we might superscript an integer n with '+’ if n corresponds to a positive
occurrence of a subtype, i.e. an occurrence that can be the type of a subterm of an inhabitant,
and with "=’ if it corresponds to a negative subpremise, i.e. if it corresponds to an occurrence
that can be the type of a variable in an abstraction sequence. Integers that correspond to a
negative occurrence, which is no subpremise, will not be superscripted.

» Definition 6. We say that two integers n,m € N(7) are equivalent w.r.t. occT (1), and
write n =ocar m, if and only if t(n) = t(m). The binary relation T'(7) C N(7) x N(7) is defined
by (p2,p3) € T(7) iff (8,p3,p1 — p2) € occT(7), ie. B = B1 — B2, n(B1) = p1, n(B2) = p2,
and n(f) = p3. Furthermore, for (pa,p3) € T(7) let q(p2,p3) = p1.

» Lemma 7. If 7 contains s occurrences a1, ..., as, of type variables, then the graph of T(T),
whose set of nodes is N(7), consists of s unary trees with roots n(ay), ..., n(as), respectively.

» Example 8. For a = ((0 = 0) = 0 = 0) = 0 — o from Example 2 the set occT ()
contains eleven tuples (5,n,l), where 3, n and | are given below.

Bln| | g |

n n |
| 8 [n |
o | 0 | var o 4 var
0—o0 8 4 —5
o | 1| var o 5 var
(0o—s0)—=0—0]| 9 |67
o | 2 | var o—o | 6 |0—=>1
a 10 | 9—8
o | 3 | var o—o | T7T|2—3

S. Alves and S. Broda

The equivalence relation =, partitions N(«) into four equivalence classes, which are {107},

{97}, {6%,7,8"}, and {0~,1%,2%,3,47,5%}. The associated graph T'(«) is depicted below.

10+ 9~
9t 6]
8+ 6+ 7
41 of QT
5t 1+ 2t 3 4~ 0~

Now, pre(7) can be computed from occT (1) and T'(7) as follows.

» Definition 9. Given a type 7 and a set of tuples occT (), we denote by pre(7) the smallest
set of rules satisfying the following conditions.
If m*,k~,n" € N(7), (8,m,k — n) € occT (1), then m := Ak.n € pre(7);
if m*,py € N(7) and (ps, ps—1),- - (P2, p1), (P1,p0) € T(7), for some s > 0, m* =ocer ps,
q(pi, pi—1) = n; for 1 <4 < s, then m :=py ny ---ns € pre(r).

» Note 10. If 7 is inhabited, then there is exactly one rule for n(7) in pre(7). This rule is of
the form n(7) := Ak.n, for some k=, n" € N(7). Also, n(7) occurs in no other rule.

Tt is straightforward to verify the following two properties of pre(7).

» Lemma 11.

1. Consider a positive occurrence of a subformula p — o in 7 and the corresponding tuple
in (p— o,m,k —n) €occl(r). Then, m := \k.n € pre(7), and there is no other rule of
the form m := Ak'.n’ in pre(T).

2. Consider a negative subpremise p = oy — -+ = 05 — o in 7 and let (o1,n1,l1),...,
(0s,ms,1s), (o,n, 1), (p, k,Ii) be the tuples in occT(7) corresponding to oy,...,0s,0,p,
respectively. If m* € occT (1), such that m™ =ocaq n, then m := k ny---n, € pre(r).
Furthermore, there is no other rule of the form m :=knl---n} (t > 0) in pre(7).

» Example 12. From occT(a) and T'(«) in Example 8 we obtain the following set pre(c)
containing fourteen rewriting rules.

10 := X9.8 6 = X0.1|96 2 == 962[4]0
8 = AJ5|96 5 96240 1 96240

4 Inhabitation

4.1 Type Checking

In the following we describe a rewriting algorithm that, given a type 7 and a term M, verifies
if - M : 7, ie. checks if M € Nhabs(7). During the rewriting process we use objects with the
structure of A-terms, but such that integers can be used as placeholders for variables. We
refer to these objects as extended terms. We denote by N[k/x] the (extended) term obtained
from N by replacing all free occurrences of variable z in N by placeholder k.

» Definition 13. Given a type 7, we write (M, m) — (Ny,n1)---(Ns,ns), (s > 0), where
M, Ny,..., N, are extended terms and m,ny,...,ns € N(7), if one of the following applies.
If m := Ak.n € pre(7), then (Az.N,m) — (N[k/z],n);
if m:=kny---ng € pre(r), then (k Ny---Ng,m) — (Ny,n1),...,(Ns,ng).

5:5

FSCD 2018

5:6

A Unifying Framework for Type Inhabitation

The definition of — extends, in the usual way, to rewriting of sequences of pairs, where
we assume that sequences of pairs are processed from left to right. Then, <—* denotes the
reflexive, transitive closure of <.

Note that, by Lemma 11, in each step of (M, n(7)) <* ¢, at most one rule of pre(r) applies
to each pair. Consequently, the type-checking algorithm is deterministic and the sequence
from (M, n(7)) to € is unique.

» Example 14. Consider « as before and My = Azy.z(Az.y)y from Example 2. Then,

(Azy.x(Az.y)y, 10) (Ay.9(A\z.9)y,8) — (9(Az.4)4,5)

(%
— (A2.4,6),(4,2) = (4,1),(4,2) = (4,2) — €.

» Theorem 15. Nhabs(7) = { M | (M, n(7)) —* € }.

Proof. We show that for any term M, context I' = {21 : 01,...,2, : on} and type o,
if ' M : o, then (M[n(o1)/x1,--+ ,n(on)/xs],n(0)) —* €, using M[I'] as an abbrevi-
ation for M[n(o1)/x1,-+- ,n(on)/2,]. As a consequence it follows that Nhabs(r) C { M |

(M,n(7)) —* € }. We proceed by induction on depth(M). First, consider M = xN; --- N,
and suppose that '+ 2Ny -+ N : 0, because I'; F N; : gy, for 1 <i < s (s > 0), and because
r=ru---ulrsu{z:01 = -+ = o5 — o} is consistent. By Lemma 4, we know that there
is a negative subpremise st(z) = oy — --- — 0, — o in 7, as well as a positive occurrence
st(xNy --- Ng) of ¢ in 7, corresponding to I' - xNy - - - Ny : 0. Let n and m be respectively
the identifier of the occurrence of ¢ in st(z), and of the positive occurrence st(zNj - - - Ny) of
o in 7. Then, m™ =qcq n and it follows from Lemma 11 that m := k n(oy)---n(os) € pre(7),
where k =n(oy — -+ — 05 = o). Thus (M[I'],m) < (N1[['],n(c1)), ..., (Ns[I'],n(cs)). But
N;[I] = N;[Ty], for 1 < i < s. Consequently, the result follows from the induction hypothesis.
Now, consider M = Az.N and suppose that we have T'\ {z : o1} F Ae.N : 01 — o9,
because I' = N : o2 and T" U {& : o1} is consistent. It follows from Lemma 4 that
st(Az.N) = o1 — 09 is a positive occurrence of o1 — o9 in 7. We consider the corres-
ponding tuple (01 — 02, m,k — n) € occl (1), where n(o; — 02) = m, n(o1) = k, and
n(oz) = n. By Lemma 11, there is a rule m := Ak.n € pre(r). Furthermore, Subj(T") = FV(V)
and Subj(T'\ {z : 01}) = FV(Ax.N). Thus, we have (M[I'\ {z : o1}],m) — (N[I'],n). The
result follows from the induction hypothesis.

For the other inclusion consider a term M, such that (M, n(7)) <* e. Let (F,p) be any
pair appearing in the corresponding rewriting sequence, where F is an extended term and
p = n(o), for some type occurrence ¢ in 7, i.e. ¢ = t(p). Naturally, we have (E,p) —* €. Let
P ={p1,...,pi} be the set of placeholders that occur in E. Furthermore, let us interpret each
of the integers in P as the name of a term variable. We will show, by induction on the length
of (E,p) —* ¢, that Tp - E : t(p), where I'p = {p1 : t(p1),...,p1 : t(p;)}. In particular,
it follows that = M : 7. First, consider E = Ax.E’ such that (\x.E’,p) — (E'[k/z],n)
by rule p := Mk.n € pre(r). This means that there is a positive occurrence of a subtype
t(p) = t(k) — t(n) in 7. By the induction hypothesis, we have 'y U{k : t(k)} b E'[k/z] : t(n).
Thus, I'g F Ak.E'[k/x] : t(p), but Ak.E'[k/x] =4 Az.E'. Finally, consider E =k E; --- E;,
such that (k Ey---Es,p) < (E1,n1),...,(Fs,ng) by rule p := k ny---ns € pre(r), where
s > 0. Then, t(k) = t(n1) — -+ = t(ns) — t(p) is a negative subpremise in 7. By the
induction hypothesis, we have I'g, - E; : t(n;), for 1 < ¢ < s and s > 0. Furthermore,
g =Tg U---UTg, U{k:t(k)} is consistent by definition. Thus, I'g F E : t(p). <

S. Alves and S. Broda

4.2 The Emptiness Problem

In this subsection we define a rewriting algorithm to decide if a given type 7 has a normal
inhabitant. Contrary to the previous one, this algorithm is non-deterministic, since more
than one rule may apply at each step. On the other hand, it provides us with a simple tool
to show that the emptiness problem for simple types is in PSPACE, and can be used for
generation as well as for counting.

» Definition 16. Given a type 7, an identifier m € N(7) and a set V' C N(7), we write
(m, V) ~ (n1,V’),...,(ns, V') if one of the following applies.

If m := Ak.n € pre(7), then (m, V) ~ (n,V U {k});

ifm:=kny---ns € pre(r) and k € V, then (m,V) ~ (n1,V),..., (ns, V).
The definition of ~» extends, in the usual way, to rewriting of sequences of pairs. Then, ~~*
denotes the reflexive, transitive closure of ~.

» Definition 17. For a particular rewriting sequence of (n(7),?) ~* ¢, we define a function

pair that computes for each (m, V') in that rewriting sequence a tuple (M,T) = pair(m, V).

For convenience we will use identifiers as indexes of term variables in such a way that the
type assigned to a variable with name z,,, for n € N(7), is always t(n). The function pair is
recursively defined as follows.
If (m, V) ~ (n,VU{k}) because m := Ak.n € pre(r), then pair(m,V) = (Azp.N, T\ {zy :
t(k)}), where (N,T') = pair(n, V U {k});
if (m,V) ~ (n1,V),...,(ns,V) because m := k ny---ngs € pre(r) and k € V, then
pair(m,V) = (zy N1+ Ns,{xp : t(k)} UT1 U---UTy), where (N;,T';) = pair(n;, V), for
1<i<s(s>0).
Note that function pair actually does not depend on set V', but on the identifier m and on
the rule in pre(7), which is used in each step of the rewriting sequence. The rule is implicitly
given by the pairs appearing on the right of ~» in Definition 16, unless it is of the form
m := k. In that case (m, V) ~» € and there might be more than one identifier k£ € V such that
m:=k € pre(r). To guarantee that pair is well-defined, we suppose that in each rewriting
step, the corresponding rewriting rule is given, either implicitly or explicitly. The correctness
of function pair is stated in the following lemma.

» Lemma 18. If (m,V) ~* € and (M,I') = pair(m, V') for some corresponding rewriting
sequence, then T+ M : t(m).

Proof. By structural induction on M. We first consider the case where pair(m,V) =
(Axg.N, T\ {zx : t(k)}), which follows from (m,V) ~» (n,V U {k}) ~»* € because m :=
Ak.n € pre(r) and (N,T) = pair(n,V U {k}). By the induction hypothesis, I' - N : t(n)

and by definition I' U {z, : t(k)} is always consistent. Therefore, I' = Az N : t(k) — t(n).

Now consider pair(m,V) = (xpNy -+ Ng,{z) : t(k)} UT1 U---UT,), which follows from
(m, V) ~ (n1,V),...,(ns, V) ~* € because m := kmny---ngs € pre(r) and k € V, (N;,I;) =
pair(n;, V), for 1 < i < s (s > 0). By the induction hypothesis I'; - N; : t(n;) and by
definition {xy : t(k)} UT; U--- UL is consistent. It follows from m :=k ny ---ns € pre(7)
that t(k) = t(n1) — -+ = t(ns) — t(m). Therefore {z) : t(k)} UT1U---UTs F 2Ny -+ Ny :
t(m). <

» Example 19. Consider a and pre(a) from Example 8. Then,
(10,0) ~ (8,{9}) ~ (5,{4,9}) ~ €. Similarly,

(10, (Z)) ~ (8, {9}) ~ (6, {9}) ~ (1, {0’9}) ~ (6, {07 9}), (2, {0’9})
~(1,{0,9}),(2,{0,9}) ~ (2,{0,9}) ~ €.

5:7

FSCD 2018

5:8

A Unifying Framework for Type Inhabitation

For the first two pairs in this last rewriting sequence we have respectively pair(10,0) =
(Azg.19(AT0.To(AT0.70)To), D) and pair(8,{9}) = (w9(Axo.wo(Azo.70)T0), {79 : t(9)}), where
t(9) = (0 = 0) = 0 — o. Also, b Axg.xg(Azg.xg(Axg.70)xg) : t(10) and {zg : t(9)} F
xg9(Axg.9(ALg.20) o) : t(8), where t(8) = 0 — o0 and t(10) = .

For the first rewriting sequence we have pair(10,0) = (Awgws.z4,0), pair(8,{9}) =
(Azq.24,0), and pair(5,{4,9}) = (z4, {z4 : t(4)}), where t(4) = 0. Also, b Azgz4.74 : t(10),
F Azg.zq :t(8), and {z4 : t(4)} F 24 : £(5), with t(5) = o.

» Theorem 20. Nhabs(7) # 0 if and only if (n(7),0) ~* €.

Proof. The ’if’ part follows from Lemma 18. For the ’only if’ part, we show that for any term
M, context I and type o, if I' - M : o, then (n(o), Vp) ~* €, where V0o = {n(p) |[z:p €T }.
First, consider M = Az.N and suppose that we have '\ {z : 01} b Ax.N : 01 — 02, because
' N :oyand 'U{z : 01} is consistent. It follows from Lemma 4 that st(Az.N) =
01 — 09 is a positive occurrence of 07 — 09 in 7. We consider the corresponding tuple
(01 = o2,m,k — n) € occl (1), where n(o; — 02) = m, n(o1) = k, and n(o2) = n. By
Lemma 11, there is a rule m := Mk.n € pre(7). Thus, (m, Vi (2:0,}) ~ (7, Vi\ {204} U {k}).
But, Vi\{z:0,3 U {k} = Vr and (n, V1) ~* € follows from the induction hypothesis. Now,
consider M = zN;---N; and suppose that I' - xNy---Ng : o, because I'; - N; : oy,
for 1 <i < s (s>0),and because ' =T U---UT U{x : 07 = -+ = 05 — 0}
is consistent. By Lemma 4, st(z) = 04 — --- = 0, — 0 is a negative subpremise of 7.

It follows from Lemma 11 that m := k n(o1)---n(os) € pre(r), where m = n(o) and
k=n(oc;y == 05 = o). Thus (m,Vr) ~ (n(o1),Vr),...,(n(0s), Vr). By the induction
hypothesis, we have (n(o;),Vr,) ~* €, for 1 < i < s. Since V, C Vi, we conclude that
(n(61),Vr),...,(n(cs), Vr) ~* €. <

4.3 Closure Properties

In this section we combine the pre-grammars of two types 7, and 75 in order to obtain
pre-grammars for Nhabs(7;) N Nhabs(72) and for Nhabs(7;) U Nhabs(7z), respectively. This
allows us to extend our methods to a bigger range of types, such as sum types of rank 1.

» Definition 21. Given types 71 and 7o, we define N(my N 72) = N(71) x N(72). Furthermore,
let pre(r; N 72) denote the smallest set of rules satisfying the following.

If m; := Aki.n; € pre(r;) (i = 1,2), then (mq, ma) := \(k1, k2).(n1,ne) € pre(ti N 72);

if m; :=k; ni---nl €pre(r;) for i = 1,2 and s > 0, then

(m1,ma) == (k1,ka) (n},n?)---(nl,n?) € pre(r1 N).

» Example 22. For « from Example 2 and 8 = ((a = b) - a = b) = (a = b) - a — b,
pre-grammar pre(/3) consists of the following rewriting rules.

14
13

A12.13 11
A0.11[12 8

A6.7]|128|10 7 := 1282|104 4 := 0]6
20.1]128 1 1282104 2 = 0]6

After removing obsolete rules we obtain the following set of rules for pre(a N g).
(10,14) := A(9,12).(8,13) (8,13) := A\(4,10).(5,11) (5,11) := (4,10)

It is easy to see that a term M passes the type checking algorithm for this grammar if and
only if M =, Azy.y, which is the only normal term that inhabits both types.

S. Alves and S. Broda

Note that the definition above can be extended in the obvious way to a finite number of

intersections, i.e. types of the form 71 N---N7,, for n > 1, where 7q,..., 7, are simple types.

This corresponds to the set of intersection types of rank 1 [7]. We prove the correctness of
our construction for the case of one intersection.

» Theorem 23. Consider two simple types 11, T2, and a term M. Then, one has M €
Nhabs(71) N Nhabs(mz) if and only if (M, (n(71),n(72)) —* €, with pre-grammar pre(Ty N 72).

Proof. Consider two pairs (F1,m1) and (Fs,ms) such that there is some A-term @ and for
i = 1,2: there are placeholders pt, ..., pt € N(7;) and {z1,...,2,} 2 FV(Q), such that E; =

QO; for 0; = [p' /z1,...,pl/z,]; and E; is either of the form A\z.(Q'6;) or p;— (Q105) - - (Qnbs).

It follows from Definition 13 that, if some rule r; € pre(r;) applies to (E;,m;) (i = 1,2), then
both pairs rewrite to a sequence of pairs of equal length, i.e. there is some s > 0 such that
(Ei,mi) = (Bf,mi)--- (EL,m.,) (i =1,2), and for each j = 1,...,s we have that (E},m})
and (E7,m3) verify the suppositions made on (Ey,m;) and (Ea,mg). Furthermore, this
guarantees that (ry,ry) € pre(7; N 72), where (rq, r2) denotes the rule in pre(m; N 72), built
from r; and ry as described in Definition 21.

If M € Nhabs(7;) N Nhabs(7z), then we have by Theorem 15 that (M, n(r;)) —* ¢, for
i = 1,2, in which pairs are assumed to be processed from left to right. The conditions
above clearly apply to (M,n(71)) and (M, n(72)), and consequently to every other couple
of pairs (E1,m1) and (F3,msy) in these rewriting sequences. One obtains a rewriting
sequence for (M, (n(m),n(m2))) —* € using Q(01,02) instead of QO; (i = 1,2), where
(01,62) = [(p1,p?) /71, .., (pL,p?)/x,]. The proof in the other direction is symmetrical, using
the projections on the first or on the second coordinate in each step, in order to obtain
rewriting sequences for (M, n(m)) —=* € or for (M,n(m2)) —* €, respectively. <

In order to address sum types of rank 1 we will now define pre-grammars for the union of two
languages. Consider rank 1 types 71 and 72, with sets N(7;) and N(72) for which, without
loss of generality, we assume we use two distinct sets of identifiers. Consequently, there is no
overlapping of the corresponding grammars.

» Definition 24. Consider rank 1 types 7 and 75 and the corresponding identifiers n(r;) €
N(7;), for i = 1,2. Let N(1qy U72) = {(n(71),n(m2))} UN(m) UN(72). Furthermore, consider
the unique rule n(7;) := Ak;.n; in pre(r;) and let pre(r;)’ = pre(r;) \ {n(7;) := Ak;.n;}, for
i =1,2. We define,

pre(1 + 72) = {(n(71),n(12)) := Ak1.n1; (n(71), n(72)) := Mka.no} U pre(ry)’ U pre(rs)’.
Again, it is straightforward to extend this definition to finite sums of rank 1 types.

» Theorem 25. Consider two rank 1 types 11, T2, and a term M. Then, one has M €
Nhabs(71) U Nhabs(72) if and only if M —* €, with pre-grammar pre(my + 72).

Proof. Straightforward, using Note 10 and Definition 24. |

5 Proving Inhabitation Related Problems to be in PSPACE

In this section we present the scheme of an alternating decision algorithm operating on tuples
of the form (m, V), where {m}UV C N(7) and i € N. The algorithm takes as input a simple
type 7, a positive integer depth, a vector/register reg, a function f : N x pre(7) X reg — reg
manipulating the contents of reg depending on the values of (7,r) € N x pre(r), as well as an
accepting condition ac : reg — {T, L}. Functions f and ac are supposed to be computable

5:9

FSCD 2018

5:10

A Unifying Framework for Type Inhabitation

in linear time w.r.t. the size of their input. The integer depth is the limit for recursion, such
that a loop of the algorithm aborts with failure, whenever this limit is exceeded. In each
step, during the execution of the algorithm, one rule r € pre(r) is applied to a tuple (m, Vi),
and the values in reg are updated to f(i,r, reg). Upon a terminated run, condition ac(regf)
determines on success or failure, where reg; is the configuration of reg at that point. We
represent the empty register by @. Furthermore, let fz be such that fz (4, r, reg) = reg for all
(i,r) € N x pre(7), and act such that act(reg) = T for any configuration of reg. Depending
on the instantiation of the parameters, the algorithm can be used to show that different
inhabitation related problems, such as the emptiness problem, infiniteness, or principal
inhabitation, are in PSPACE.

» Definition 26 (PS). Consider a simple type 7, a positive integer depth, a register reg,
as well as (linear) functions f : N x pre(7) x reg — reg and ac : reg — {T, L}. Then,
PS(7, depth, reg, f, ac) operates as follows, starting with the initial tuple (m, V,i) = (n(7),0,0):
if i > depth the loop aborts with failure;
otherwise the algorithm:
non-deterministically chooses a rule in r € pre(7) such that:

(m, V) ~ (n1, V'), ..., (ns, V');

updates reg according to f(i,r, reg);
universally applies to (n1, V', i+ 1),...,(ns, V', i+ 1).
A run is successful if ac(reg;) = T, where reg; is the final configuration of reg.

Note that, other than by failure, a loop finishes if the rule chosen from pre(7) is such that
s = 0. In order to show that PS is an alternating polynomial time algorithm w.r.t. the size
|| of 7, we start by defining some measures on 7.

» Definition 27. Given a type 7, let |7| = |7|, + |7|—, where |7, represents the number of
occurrences of type variables in 7 and |7|—, the number of occurrences of — in 7. Furthermore,
let |7|T and ||~ denote the number of positive occurrences of subformulas and the number
of negative subpremises in 7, respectively. Similarly, we use |7|; and |7|, respectively for
the number of positive and negative occurrences of type variables in 7.

The following lemma is a direct consequence of the definitions of occT (7), N(7), and pre(r).

» Lemma 28. One has, |7|" < |7|, |7|” < |7|> < |7], as well as [N(7)| = |7|. For the
number of rules in pre(t) we have |pre(7)| < |7|* - |7|” + |7|. Furthermore, the number of
elements of N(1) occurring in a rule of pre(t) is always < |7|T + 1.

» Example 29. For a = ((0 = 0) = 0 — 0) = 0 — 0, we have |o| = |a|, +|a| =6+5=
11 = N(«). Furthermore, |a|™ - |a|” + || =634+ 5 =23 > 14 = |pre(a)|. Finally, the
maximum number of identifiers occurring in the rules of pre(a) is 4 and 4 < 6+1 = |a|T + 1.

» Proposition 30. Consider a type 7 and constants ki, k2 € N. Suppose that depth < |7|*1,
[reg| < ks - |7|, and that functions f : N x pre(r) x reg — reg and ac : reg — {T, L} are
computable in linear time w.r.t. the size of their input. Then, PS(7, depth, reg,f, ac) is an
alternating polynomial time algorithm w.r.t. |7].

Proof. The algorithm is alternating by design. Polynomial time is a consequence of the
conditions imposed on the complexity of depth, reg, f and ac. <

S. Alves and S. Broda

In the following we establish the relationship between a successful run of algorithm PS
with reg = &, fz and acT, and the existence of a rewriting sequence for (n(7),) ~* e. Note,
that each rewriting sequence of (n(7),) ~»* € can be represented in the usual way by a unique
derivation tree t, whose internal nodes are labelled with pairs (m, Vi) and such that all leafs
are labelled with e. The root of t is (N(7), 0, 0), and whenever a rule r € pre() is applied to
a pair (m, V), such that (m, V) ~ (n1,V’),..., (ns, V'), then the corresponding node in t,
labelled with (m,V,4), has s children labelled with (ny, V', i+1),...,(ns, V',;i+1) if s > 0,
and it has one child labelled with ¢ if s = 0. Conversely, we can replace each pair (m,V) in
the rewriting sequence by the label (m, V) of the corresponding node in t. Furthermore,
the height of t is height(t) = depth(M), where (M,) = pair(N(7), ?), corresponding to that
rewriting sequence of (n(7),0) ~* e.

» Example 31. The annotated version of the second rewriting sequence from Example 19 is
as follows.

(10,0,0) ~ (8,{9},1) ~ (6,{9},2) ~ (1,{0,9},3) ~ (6,{0,9},4), (2,{0,9},4)
~ (1,{0,9},5),(2,{0,9},4) ~ (2,{0,9},4) ~ €.

The corresponding derivation tree has height 6. Also, depth(Azg.zg(Axg.x9(Axo.20)xo)) = 6
and pair(10,0) = (Azg.z9(Azg.29(Ax0.70)T0), D).

» Lemma 32. Consider a type 7 and an integer d > 0. Then, PS(7,d, &, fy,acT) succeeds
if and only if there is a rewriting sequence for (n(7),0) ~* €, whose derivation tree t has
height < d + 1. Furthermore, height(t) = depth(M), where (M,0) = pair(n(7),0) for that
rewriting sequence of (n(7),0) ~* e.

Proof. It is easy to see that PS(7,d, @, g, act) succeeds if and only if there is some tree
t with root (n(7),0,0) and such that for every node (m,V,i) in that tree, there is a rule
r € pre(r) such that (m,V) ~ (n1,V’),...,(ns, V'), and node (m,V,4) has s children
(n1,V',i+1),...,(ns,V',i+ 1) if s > 0, and one child labelled with € if s = 0. The value of
7 in a node of t labelled with (m, Vi) is < d, and all leaf nodes are labelled with €. Thus, the
height of t is at most d + 1. On the other hand, every tree t satisfying the conditions above
corresponds to an (annotated) rewriting sequence of (n(7),#) ~~* € and vice-versa. It remains
to show that height(t) = depth(M), where (M, () = pair(n(7), () for that rewriting sequence
of (n(7),0) ~* e. Consider a subtree t’ of t, whose root is labelled with a tuple (m, V; %), and
the corresponding rewriting sequence of (m, V) ~»* e. We show by induction on the height of
this subtree that height(t') = depth(M), where (M, T') = pair(m, V). If height(t’) = 1, then
(m,V) ~ € because m := k € pre(r) and k € V. Thus, pair(m,V) = (ag, {zx : t(k)}) and
depth(zy) = 1. If (m,V,4) has s > 0 children labelled with (nq,V,i+1),...,(ns, V,i+ 1)
because m := k ny---ns € pre(r) and k € V, then (m,V) ~ (n1,V),...,(ns, V) and
pair(m,V) = (zx N1+ - Ng,{zg : t(k)} UL U---UTy), where (NV;,T;) = pair(n;, V), for
1 <4 < s. Furthermore, height(t’) equals 1 plus the maximum of the heights of the subtrees
rooted in (n1,V,i+1),..., (ns, V,i+1), while depth(zy Ny --- N;) equals 1 plus the maximum
of the depths of Ny,..., Ns. Thus, the result follows from the induction hypothesis. Finally,

suppose that (m, Vi) has one child labelled with (n, VU{k},i4+1) because m := Ak.n € pre(7).

Then, height(t’) equals 1 plus the height of the subtree rooted in (n,V U {k},i+1). On
the other hand, pair(m,V) = (Azx.N,T'\ {zx : t(k)}), where (N,T") = pair(n, V U {k}). We
have depth(Az;.N) = 1 + depth(N) and consequently the result follows from the induction
hypothesis. |

5:11

FSCD 2018

5:12

A Unifying Framework for Type Inhabitation

5.1 Emptiness

In the following we reprove the well-known result [14, 16], stating that the emptiness problem
for TA, is in PSPACE, by instantiation of algorithm PS. We say that a derivation tree t
corresponding to a particular rewriting sequence of (N(7),0) ~~* € has a repetition, if and
only if there is a branch in t containing two nodes with labels (m, V, i) and (m, V,4") such that
i # 4'. Furthermore, we have (N(7), %) ~* € if and only if there is some rewriting sequence
for that fact, whose derivation tree t contains no repetition. By Lemma 32 it suffices to
execute algorithm PS with a value for depth that guarantees that every derivation tree with
depth > depth has a repetition. For this, we define D(7) = |7|* - |7| ™.

» Proposition 33. PS(7,D(7), D, fs,acT) succeeds if and only if Nhabs(7) # 0.

Proof. The limit D(7) is chosen so that for a pair (m, V,d) with d > D(r), there is a repetition
in the corresponding derivation tree t. Since there are at most |7|* different identifiers m
and at most |7|~ different sets V', there has to be a repetition in the branch leading from the
root of t to (m,V,d). Thus, the result follows from Lemma 32. <

5.2 Counting

In [2], Ben-Yelles defined a counting algorithm that answers the question of how many
normal inhabitants a given type 7 has. The main focus, when asking this question, is usually
on determining if Nhabs(7) is empty, finite or infinite. In [10], the infiniteness of Nhabs(7)
was shown to be PSPACE complete. In the following, we show how algorithm PS can be
instantiated in order to prove this problem to be in PSPACE.

We already argued that Nhabs(7) # () if and only if there is some derivation tree for
(N(7),0) ~* € of height < D(7) + 1 =|7|* - ||~ + 1. In the following we establish a lower
limit d(7), such that the existence of a tree of height > d(7) guarantees that |Nhabs(7)| = co.
Consider a tree t containing a branch with two nodes n = (m,V,d) and n’ = (m, V', d’),
with d < d’. Then, V C V' and one can construct a new derivation tree by replacing in t
the subtree t,s rooted in n’ by the subtree t,, rooted in n, changing every label (m”, V")
to (m”, V" UV’ i+ (d' —d)). Repeating this process, it is possible to construct an infinite
number of derivation trees of increasing height. Thus, Nhabs(7) is infinite. On the other hand,
for d(7) = |7|*, if t has some branch of length > d(7), then this branch contains necessarily
two such nodes n and n’. Now, suppose that the height of t is < d(7) and that some branch
in t contains two nodes n and n’ as above. Then d,d’ < d(7) and 0 < (d’ — d) < d(7). Then,
it is clear that repeating the process described above, at some point, one obtains a derivation
tree of height D, with d(7) < D < D(r), as long as |7|~ > 1. We conclude that for 7, such
that ||~ > 1, we have Nhabs(7) = oo if and only if there is some derivation tree of height
D, with d(7) +1< D < D(7) + 1.

» Lemma 34. If |7|~ <1, then Nhabs(7) # 0 iff 7 = a — a, for which |Nhabs(7)| = 1.

Proof. If |7|~ = 0, then 7 = a and Nhabs(r) = 0. For ||~ = 1, it is easy to show, by
induction on the number of implications in 7, that 7 is of the form (a; — --- — a, = b) = a,
which is inhabited exactly if n =0 and a = b. <

» Proposition 35. The counting problem for Nhabs(7) is in PSPACE.

Proof. If |7|~ <1, then |[Nhabs(7)| =1 if 7 = a — a, and [Nhabs(7)| = 0 otherwise.

If |7|~ > 1, then |[Nhabs(7)| = oo if and only if there is some derivation tree of height
D such that d(7) < D < D(7) + 1. This can be checked by instantiating algorithm PS as
follows:

S. Alves and S. Broda

depth = D(7);

[reg| = 1 and reg[0] = 0;

f(i,r,reg) = (IF (i == d(7)) THEN reg[0] := 1);

ac(reg) = (reg[0] == 1).
If the algorithm succeeds, then |Nhabs(7)| = co. Otherwise, according to Lemma 32 we can
run PS(7,d(7) — 1,9, fz, acT) in order to check if Nhabs(7) is finite, but not empty. <

5.3 Principal Inhabitation

We now use our algorithm to address the closely related problem of principal inhabitation,
which although more complex, is still PSPACE-complete [6]. The principal inhabitation
problem is about the existence of a normal inhabitant M of 7, such that 7 is the principal
type of M. A term M is a principal inhabitant of 7, if = M : 7 and if every type o,
such that - M : ¢, is an instance of 7. Then, 7 is called the principal type of M. When
searching for principal inhabitants, it is sufficient to consider principal inhabitants in long
normal form, for which a characterisation was given in [4] in terms of proof trees, in the
context of the formula-tree method. In this section we instantiate the algorithm PS to
decide principal inhabitation, based on that characterisation. This characterisation was
used in [1] to define deterministic principal inhabitation machines for normal inhabitants
obtained from pre-grammars, following the formalism of Schubert et al. An inhabitant M
of a type is called long, if every variable occurrence, which is in function position, is given
as many arguments as allowed by its type. It is straightforward to change the definition of
pre(7) in order to apply exactly to the set of long normal inhabitants of 7. For this, it is
sufficient to drop in pre(7) all rules of the form m := k n; - - - ng such that lab(m) # var. The
pre-grammar thereby obtained is denoted by preL(7) and verifies the following. If m™ € N(7)
and lab(m) = k — n, then there is exactly one rule for m in preL(7), which is m := Ak.n. If
m* € N(7) and lab(m) = var, then all rules for m are of the form m : =k ny---ng (s > 0),
such that t(k) = t(n1) — -+ — t(ns) — t(n), where lab(n) = var and t(m) = t(n), i.e. m
and n are different occurrences of the same type variable. For convenience we denote n by
tail(k). Note that tail(k) is the root of the (unary) tree in graph 7'(7), that contains k.

» Example 36. The pre-grammar prel(«a) for the set of long normal inhabitants of a from
Example 2 is the following.

10 := X9.8 6 = 0.1 2 = 96240
8 = M5 5 = 962[4]0 1 := 962[4]0

The approach in [4] establishes that, initially all occurrences of type variables in 7 have
to be made different. Here, this is already achieved by the association of different identifiers
to different occurrences of subtypes. During the search of an inhabitant, the application of a
rule m :=k nq - - - ng, as described above, forces that m and n must represent the same type
variable in any type of that inhabitant®. When instantiating the algorithm, this information
will be kept in register reg and the execution will only be successful if all occurrences of
the same type variable are unified. The remaining condition in the characterisation of

principal inhabitants in [4] states that all composed negative subpremises have to be used.

This information will also be stored in reg. We denote the number of composed negative

subpremises in 7 by |7|- and define P(7) = |7|* - ||~ - |7, - |7|Z for the limit of recursion.

3 Note that, limiting the search to long inhabitants avoids dealing with the unification of composed types,
but restricts this operation to occurrences of type variables.

5:13

FSCD 2018

5:14

A Unifying Framework for Type Inhabitation

For practicality, we convention that type variables and negative subpremises have identifiers
0,...,|7le =1, and |7y, ..., |7]s + |7|Z — 1, respectively?. Finally, we denote by var(7) the
number of different type variables in 7.

» Example 37. In our running example there are three negative subpremises, respectively
with identifier 9, 4 and 0. We have tail(9) = 3, tail(4) = 4 and tail(0) = 0. Only t(9) is
composed. Thus, ||, =1 and P(a) =6-3-6-1 =108, while var(a) = 1.

Now, we define a function fp that stores the information concerning unification of different type
variable occurrences and the use of composed negative subpremises in reg. For this, initially
the identifier of each variable is stored in the first |7, positions of reg, each representing
its own class, which at that point is a singleton. The number of different classes, which is
initially |7|,, is stored in the last position of reg and decreased whenever two classes are
merged. In this case, all elements (positions in reg) of these classes are represented by the
same identifier. The intermediate positions of reg are used to register the application of
composed negative subpremises.

fp(i,r, reg):
IF r == (m:=kny-- ns) THEN
n = tail(k);

MIN := min(reg[m], reg[n]);
MAX := max(reg[m], reg[n]);
IF MIN # MAX THEN

reg[|7]y + [7|c] := regl|Tl + T[] = 1;
FOR (j =0 TO ||, — 1) DO
IF (reg[j] == MAX) THEN reg[j] := MIN;

IF (s > 0) THEN reg[k] := 1;

In order to determine success or failure of a run, function acp checks if all ||, composed
have been used and if there are exactly as many classes of occurrences of type variables as
there are different type variables in 7.

acp(reg):
COUNT := 0;
FOR (.7 = ‘T|v TO |T|v + |T‘c_ - 1) DO
COUNT := COUNT + reglj];
IF (COUNT # |7|.) THEN (RETURN 1)
ELSE (RETURN (reg[|T], + |7].] == var(7)));

» Proposition 38. The principal inhabitation problem for Nhabs(7) is in PSPACE.

Proof. This can be checked by instantiating algorithm PS as follows:

depth = P(7);

reg] = [rlo + 7l; + 1, reglj] = j (for 0 < j < |7, — 1),

reglj] = 0 (for |r], < j < [rlu + |7l — 1), and regr], + [r|5] = |7lu;

f = fp and ac = acp.
Function fp registers (during the execution of PS) all necessary information for deciding
on principality in reg, which is checked by acp after completion of a run. Thus, there is

4 This convention does not hold for the composed negative subpremise with identifier 9 in our example.

S. Alves and S. Broda

some principal inhabitant of 7 iff there is a successful run using a limit of recursion, possibly
bigger than depth = P(7). We consider such a successful run (for a principal inhabitant),
and the corresponding derivation tree t. Finally, we argue that it is possible to obtain a
new derivation tree from t, corresponding to a successful run, within the established limit
P(7). Consider any node n = (m,V,i) in t. We associate to node n the number Eg, of
equivalence classes, as well as the set C, of negative composed subpremises, that are induced
by the derivation steps in the subtree rooted in n. There is a repetition in a branch of t if it
contains two nodes n = (m, Vi) and n’ = (m, V,i’) with ¢ < ¢/, such that Fq, = Fq¢, and
C,, = C,. If that is the case, one can replace the subtree rooted in n by the smaller subtree
rooted in n’, obtaining a tree still corresponding to a successful run. Since 7 < ¢’ implies that
Eq, < Equ <|7|y, as well as |7| > |Cy| > |Cy|, there is a repetition in every branch of
length > P(7). Consequently, the process described above can be repeated until one obtains
a derivation tree, thus a successful run, within the limit established for depth. <

6 Conclusions

In this paper we presented a unifying framework to study type inhabitation related problems
and their complexity, using the notion of pre-grammar. From the pre-grammar of a type
we obtained different methods to address several inhabitation related problems. A scheme
for a decision algorithm was given, which we instantiated to decide emptiness, counting
and principal inhabitation. Since each instantiation produces a polynomial time alternating
algorithm, this also shows these problems to be in PSPACE. For principal inhabitants we
focused on terms in long normal form, for which we used a simplified and smaller set of
rules. In a similar way, one could define different sets of pre-grammar rules, corresponding
to particular subclasses of terms, such as terms in total discharge form, term-schemes, etc.
This is left for future work, where we also would like to further develop the study of closure
properties, in particular study an instantiation of our algorithm for union types of rank 1.

—— References

1 Sandra Alves and Sabine Broda. Inhabitation machines: determinism and principality. In
Applications, NCMA 2017, pages 57-70, 2017.

2 Ch. Ben-Yelles. Type Assignment in the Lambda-Calculus: Syntax and Semantics. PhD
thesis, University College of Swansea, September 1979.

3 S. Broda and L. Damas. Counting a type’s (principal) inhabitants. Fundam. Inform.,
45(1-2):33-51, 2001.

4 S. Broda and L. Damas. On long normal inhabitants of a type. J. Log. and Comput.,
15:353-390, June 2005.

5 M.W. Bunder. Proof finding algorithms for implicational logics. Theoretical Computer
Science, 232(1-2):165-186, 2000.

6 Andrej Dudenhefner and Jakob Rehof. The complexity of principal inhabitation. In Com-
putation and Deduction, FSCD 2017, volume 84 of LIPIcs, pages 15:1-15:14, 2017.

7 Silvia Ghilezan. Inhabitation in intersection and union type assignment systems. J. Log.
Comput., 3(6):671-685, 1993.

8 J.R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

9 R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Amer.
Math. Soc, 146:29-60, December 1969.

10 S. Hirokawa. Infiniteness of proof («) is polynomial-space complete. Theor. Comput. Sci.,

206(1-2):331-339, 1998.

5:15

FSCD 2018

5:16

A Unifying Framework for Type Inhabitation

11

12

13

14

15

16

W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: FEssays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 479-490. Academic Press, 1980.

Y. Komori and S. Hirokawa. The number of proofs for a BCK-formula. J. Symb. Log.,
58(2):626—628, 1993.

Aleksy Schubert, Wil Dekkers, and Hendrik Pieter Barendregt. Automata theoretic account
of proof search. In CSL 2015, pages 128-143, 2015.

R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.
Seci., 9:67-72, 1979.

M. Takahashi, Y. Akama, and S. Hirokawa. Normal proofs and their grammar. Information
and Computation, 125(2):144-153, 1996.

P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic approach). In TLCA’97,
volume 1210 of LNCS, pages 373-389. Springer, 1997.

Confluence of Prefix-Constrained Rewrite Systems

Nirina Andrianarivelo
LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
Nirina.AndrianariveloQuniv-orleans.fr

Pierre Réty
LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
Pierre.Rety@univ-orleans.fr

——— Abstract

Prefix-constrained rewriting is a strict extension of context-sensitive rewriting. We study the
confluence of prefix-constrained rewrite systems, which are composed of rules of the form L : [— r
where L is a regular string language that defines the allowed rewritable positions. The usual
notion of Knuth-Bendix’s critical pair needs to be extended using regular string languages, and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems, which
makes the word problem decidable. Moreover we present an extended Knuth-Bendix completion
procedure, to transform a non-confluent prefix-constrained rewrite system into a confluent one.

2012 ACM Subject Classification Theory of computation — Rewrite systems
Keywords and phrases prefix-constrained term rewriting, confluence, critical pair

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.6

1 Introduction

Term rewriting is a rule-based formalism that can be used to study properties of functional
programs, security protocols, musical rhythmics,... More generally, it provides a finite
abstraction of a system whose configurations are represented by ranked terms. In this
framework, and also to ensure the termination of rewrite computations, it is often necessary
to restrict the possible rewrite positions, using strategies, or by allowing only some redex
positions. In context-sensitive rewriting [10], some arguments of a function symbol may be
defined as being non-rewritable. Prefix-constrained rewriting [8] is an extension of context-
sensitive rewriting, where rewritable positions are defined by a regular string language that
indicates the allowed prefixes.

Given a term ¢, a normal form of ¢ is an irreducible term (denoted ¢]) obtained by
rewriting ¢. Termination of a rewrite relation — ensures the existence of normal forms,
whereas confluence ensures their uniqueness. Together, termination and confluence ensure
that the word problem is decidable, because t =g t' is equivalent to t|= ¢'|. On the
other hand, from a functional programming point of view, termination ensures that any
program run will terminate, and confluence ensures that all functions are deterministic, i.e.
each function call yields at most one result. These properties have also been addressed for
context-sensitive rewriting ([5] for termination and [11] for confluence). On the other hand,
the termination of prefix-constrained rewriting has been addressed in [1]. Both [5] and [1]
consist in transforming the context-sensitive or prefix-constrained rewrite system into an
ordinary one by a termination-preserving transformation, and studying the termination of
the ordinary rewrite system.

© Nirina Andrianarivelo and Pierre Réty;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 6; pp.6:1-6:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Nirina.Andrianarivelo@univ-orleans.fr
mailto:Pierre.Rety@univ-orleans.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Confluence of Prefix-Constrained Rewrite Systems

In this paper, we study the confluence of prefix-constrained rewrite systems. In contrast
to ordinary rewriting, prefix-constrained rewriting (and context-sensitive rewriting) is not
closed under context application, which is a major difference. This is why the usual notion
of Knuth-Bendix’s critical pair needs to be extended (using regular string languages), and
the convergence of all critical pairs is not enough to ensure local confluence. Thanks to an
additional restriction we get local confluence, and then confluence for terminating systems,
which makes the word problem decidable. Moreover we present an extended Knuth-Bendix
completion procedure, to transform a non-confluent prefix-constrained rewrite system into a
confluent one.

The paper is organized as follows. The preliminaries are introduced in Section 2. Local-
confluence is studied in Section 3, and a comparison with [11] is given at the end of the
section. The operational point of view to handle string languages is given in Section 4. An
extended Knuth-Bendix completion procedure is presented in Section 5. Further work is
outlined in Section 6.

2 Preliminaries

Term and Substitution. Consider a finite ranked alphabet ¥ and a set of variables X. Each
symbol f € ¥ has a unique arity, denoted by ar(f). The notions of first-order term, position
and substitution are defined as usual. T'(X, X') denotes the set of terms over XU X, and T'(X)
denotes the set of ground terms (without variables) over ¥. For a term ¢, Var(t) is the set of
variables of t, Pos(t) is the set of positions of ¢, PosVar(t) is the set of variable positions of
t, PosNonVar(t) = Pos(t)\PosVar(t), and € is the root position. For p € Pos(t), t(p) is the
symbol of ¥ U X occurring at position p in ¢, and t|, is the subterm of ¢ at position p. For
p,p’ € Pos(t), p < p’ means that p occurs in ¢ strictly above p’, whereas p || p’ means that
p#p and p £ p’ and p’ £ p. The term t is linear if each variable of ¢ occurs only once in t.
The term t[t], is obtained from ¢ by replacing the subterm at position p by ¢'.

Given o and ¢’ two substitutions, o o ¢’ denotes the substitution such that for all variable
x, coo’(x) = o(o'(xz)). The substitution o is a unifier of the terms ¢t and ¢’ if o(t) = o ().
If in addition, for all unifier 6 of ¢ and ', there exists a substitution v such that § = v o o,
then o is called the most general unifier of t and t' (denoted mgu(t,t')). If it exists, the
most general unifier is unique up to a variable renaming.

Term Rewrite System (TRS). A rewrite rule is an oriented pair of terms, written [— r.
We always assume that [is not a variable, and Var(r) C Var(l). A rewrite system R is a
finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation — g is defined as follows: ¢ — g t’ if there exist a non-variable position p € Pos(t), a
rule | — 7 € R, and a substitution 6 s.t. t[, = 0(l) and ¢’ = ¢[0(r)], (also denoted t —%, t').
—>JI§ denotes the transitive closure of —g, and —} denotes the reflexive-transitive closure of
—p. t'isa descendant of t if t =7, t'. If I is a set of ground terms, R*(I) denotes the set
of descendants of elements of I. The rewrite rule | — r is left (resp. right) linear if I (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is
linear if R is both left and right linear. [— r is said collapsing if r is a variable.

Let Iy — r1 and Iy — ro be rewrite rules such that 1|, and [y are unifiable for some
p € PosNonVar(ly). Let o0 = mgu(l1|p,l2). Then the pair of terms (o(r1), o(l1)[o(r2)],) is
called critical pair'.

1 As usual, we do not consider trivial critical pairs (o(r1), o(r1)) coming from the case where I; =l and

N. Andrianarivelo and P. Réty

Context-Sensitive Term Rewrite System (CS-TRS) [4, 10]. A context-sensitive rewrite
relation is a sub-relation of the ordinary rewrite relation in which rewritable positions are
indicated by specifying arguments of function symbols. A mapping 1 : ¥ — P(IN) is said to be
a replacement map (or X-map) if u(f) C{1,...,ar(f)} forall f € X. A context-sensitive term
rewriting system (CS-TRS) is a pair R = (R, u) composed of a TRS and a replacement map.
The set of p-replacing positions? Pos*(t) (C Pos(t)) is recursively defined: Pos*(t) = {e} if t
is a constant or a variable, otherwise Pos*(f(t1,...,t,)) = {e}U{i.p | i € u(f), p € Pos*(t;)}.
The rewrite relation induced by a CS-TRS R is defined: ¢ —»g t' if t =% ¢’ for some
p € Post(t).

» Example 1. Let ¥ = {f\2,¢'\2,6\°,0\°} and R = {a — b} with pu(f) = {1} and u(g) = {2}.

The positions allowed by w in the term f(a,a) are written in bold. Then the only derivation

issued from this term is f(a,a) <% f(b,a). On the other hand, consider t = f(g(a,a),a).

Then the only derivation issued from this term is f(g(a,a),a) —r f(g9(a,b),a).

String Language. Given an alphabet X, the set of all strings over X is denoted by ¥*, and
€ denotes the empty string. Symbol ”) denotes the concatenation.

String Automaton. A finite string automaton is a 5-tuple A = (£, Q, Qr, Qs, A) where Q
is a set of states, Q; C @ is the set of initial states, @y C @ is the set of final states, and
A C Q x X x Q is the set of transitions. The transition relation — A between elements of

Q x ¥* is defined as follows: for ¢,¢' € Q, a € X, w € ¥*, (q,a.w) —a (¢, w) iff (¢,a,q") € A.

The reflexive-transitive closure of — is written —%. The language recognized by A is
La={weX"|3q € Qr, g € Qy, (qr,w) =X (¢r,€)}. A regular string language is a
set of strings recognized be some finite string automaton. It is well known that regular
languages are closed under union, intersection, complement, and membership and emptiness
are decidable.

A is said deterministic (resp. complete) if Q; contains at most (resp. at least) one state,
and for each ¢ € Q and a € X, there exists at most (resp. at least) one ¢’ € @ such that
(g,a,q") € A. Tt is well known that every automaton can be determinized and completed
into an automaton that recognizes the same language. However the determinization step
is exponential in the number of states. Let us write A = (2,Q,Qr,Q\Qy, A). If A is
deterministic and complete, it is well known that A is deterministic and complete, and
L;i=%"\Ly,ie. A recognizes the complement of the language of A.

Consider the automata A; = (3, Q', Q}, Q}, A') and Ay = (3, Q% Q7, Q% A%).

Let us define the automaton A; N Ay = (3, Q' x Q% Q xQ7, Q x QF, A'®@A?) with
A'@A% = {((q1,q2),a,(¢),d5)) | (q1,a,q)) € A1 A (g2, a,qb) € Ag}. Tt is well known that

La,na, = La, N Ly,, ie. the automaton A; N Az recognizes the language intersection.

Moreover if A; and A, are deterministic and complete, so is A; N As.

Prefix Constrained Term Rewrite System (pCTRS) [8]. Prefix constrained rewriting
allows rewrite steps only at the positions p of ¢ s.t. the path from the root of ¢ and p
belongs to a given regular string language. More precisely, consider the set of directions
Dir(X) = {{g,4) | g € £,1 < i < ar(g)}. For a variable x € X, let path(x,e) = € and for

ri =rg and p=e.
2 Also called positions allowed by .

6:3

FSCD 2018

6:4

Confluence of Prefix-Constrained Rewrite Systems

aterm t = g(t1,...,twr(g)) € T(X,X) and a position p, path(t,p) € Dir(X)* is defined
recursively by:

path(g(tl, cee 7t(ar(g)))a 6) =€
path(g(ty, ... tar(g))):4-P) = (g,1).path(t;, p) with 1 <i < ar(g) and i.p € Pos(t)

A prefiz constrained rewrite system is a finite set R of prefix constrained rewrite rules of
the form L : I — r s.t. L C Dir(X)* is a regular string language over Dir(X), 1 € T(X, X)\X,
and r € T(X,var(l)). A term ¢ is rewritten to ¢’ in one step by a pCTRS R, denoted by
t — g t', if there exist a prefix-constrained rewrite rule L : | — r in R, a position p € Pos(t)
s.t. path(t,p) € L, and a substitution ¢ s.t. t|, = o(l) and ¢’ = ¢[o(r)],. The reflexive-
transitive closure of < is denoted by —7%. The equality =g is the reflexive, symmetric
and transitive closure of the pCTRS rewriting <. A rewrite step t <>y ¢’ at position p of t
by rewrite rule L : [— r through substitution o is noted ¢ <, 1..1—r,0] t'. Let us note that
prefix-constrained rewriting is stable under instantiation.

» Example 2. Let ¥ = {f\2,9'2,a\9,b\°} and R = {((f,1).{g,2))* : @ — b}. Let
t = f(g9(a,a),a). Note that t(1.2) = a (in bold in t) and path(t,1.2) = (f,1).(g,2) €
({(f,1).{g,2))*. Then this position can be reduced by prefix constrained rewriting, i.e.
t = f(g9(a,a),a) =g f(g(a,b),a), whereas the other occurrences of a are not reducible.
Note that the term f(a,a) is not reducible by the pCTRS R, whereas it is reducible by the
CS-TRS of Example 1. However the pCTRS Ry = {({f,1)|{g,2))* : a — b} is equivalent to
the CS-TRS of Example 1.

» Remark. Context-sensitive rewriting is a particular case of prefix-constrained rewriting [8].

Confluence and Church-Rosser Property. For any binary relation S over the set of terms,
let S* be the reflexive-transitive closure of S, and =g be the reflexive-symmetric-transitive
closure of S.

We say that the pair of terms (¢1,t2) converges for S (denoted t1 |g t2) if there exists a term
t’ such that t; S*t' and to S* ¢'.

S is said locally confluent if t Sty and t Sty implies t1 | g t2, for all terms ¢, tq, to.

S is said confluent if t S*t; and t S* to implies t |g t2, for all terms ¢, 1, to.

S has the Church-Rosser property if t1 =g to implies t1 |g to, for all terms ¢, ¢4, to.

» Theorem 3. [3] Church-Rosser property and confluence are equivalent.
S is said terminating (or well-founded) if there is no infinite sequence of terms t1 St St3 S

» Theorem 4. (Newman’s lemma) [6] If S is locally confluent and terminating, then S is
confluent.

Now, let us consider a TRS R and the associated binary relation — .

» Theorem 5. (Knuth-Bendiz’s theorem) [9] R is locally confluent® if and only if all critical
pairs of R are convergent.

3 Le. =g is locally confluent.

N. Andrianarivelo and P. Réty

3 Local Confluence of pCTRSs

When positions p; and p, are parallel, rewriting at p; does not change the prefix of po, and
conversely. Therefore such a peak converges as for ordinary TRSs.
» Lemma 6. Let R={Ly:1l; =11, Ly :la = ro} UR' be a pCTRS.

Ift <_>[p1,L1:l1~>7‘1,01] tl and t c—>[p2,L2:lg~>r2,02] t2 and P1 H P2,
then t ?[pa,Lala—72,02] t3 and to lp1, L1l —r1,01] l3.

Proof. Since p1||p2, we have t1|,, = t|p, and path(ti, p2) = path(t,p2) € La. Then t1 — ts.

Since p1||p2, we have to|,, = t|,, and path(ti,p1) = path(t,p1) € L1. Then ty < t3. <

With an ordinary TRS, a peak coming from an overlap in a variable position converges. It
may be wrong when considering a pCTRS. Consequently, a pCTRS without critical pairs
may not be locally confluent.

» Example 7. Consider the pCTRS R = {{e} : f(z) — g(z), {{f,1)} : a« — b}. So
f(a) =g g(a) and f(a) =g f(b) —r g(b). Note that g(a) is irreducible by R because the
second rewrite rule needs a prefix with symbol f to be applied. Then this peak starting
from f(a) does not converge, therefore R is not locally confluent. Moreover R does not have
critical pairs.

In the previous example, the non-convergent peak comes from the fact that along the step
f(a) =g g(a), the occurrence of a in f(a) is allowed to be reduced by the second rule,
whereas it is forbidden in g(a). In other words, the prefix (f,1) of a in f(a) belongs to the
language of the second rule, whereas the prefix (g, 1) of a in g(a) does not. We introduce the
notion of prefiz-preserving to avoid this situation, which is based on the same idea as in the
context-sensitive case (Definition 4.4 of [11]).

Notations: for a variable x and a term t, let Pos(t,x) = {p € Pos(t) | t(p) = x}. On the
other hand, we use the character ”’ to denote the string concatenation.

» Definition 8. The pCTRS R is prefiz-preserving if for all rewrite rules Ly : [; — 1 and
Ly :ly — rg of R, for all z € Var(ly), for all p,p’ € Pos(ly, x), for all p” € Pos(ry,x), for all
u,w € Dir(X)*:

w € Ly A w.path(ly,p)w € Ly = wu.path(ly,p’).w € Ly A u.path(r,p”).w € Ly

In the previous definition, p’ is for considering the case where 1 is not linear. The pCTRS of
Example 7 is not prefix-preserving (with u = w = ¢).

» Example 9. Consider the pCTRS R = {L : if(true,z,y) — =, L : if(false,x,y) — y},
where L is the set of all words of Dir(X)* except the words that contain at least one
occurrence of (if,2) or (if,3). Thus, the first argument (the condition) of f should be
evaluated before the second or the third argument. R is prefix-preserving because the
position of x (resp. y) in the left-hand-side of the first (resp. second) rule is forbidden
with respect to L, i.e. the pre-condition of the implication of Definition 8, that means more
precisely, Yu € Dir(2)*,Yw € Dir(X)* w.path(l,pos(l,x)).w € L, is always wrong.

» Lemma 10. Let R = {Ly : l; = 7, Ly : lo — ro} U R’ be a prefiz-preserving pCTRS.
If t = Lty om0 1 and t = (p, Loy —sry,00) T2 and pa = prv.w with v € Pos(ly,x) for

. . "
some variable x, then there exist ts and ty such that t1 ‘_>[Pl-Ui~'LU7---471-U-,m-w,LZ:lz—W’%UZ] ts and

* . g ’
ta <_>[pl.v1.w,...,pl.v".w,LQ:lz—wz,az] l3 T p1,Laili—r,00) ty, with POS(Thx) = {Ulv s 7vm} and

Pos(ly,z) = {v,v1,...,0,}.

6:5

FSCD 2018

6:6

Confluence of Prefix-Constrained Rewrite Systems

Proof. Let us write u = path(t,p1). Then we have u € Ly and path(t,p;.v.w) € La. But
path(t, p2) = path(ty, pr.v.w) = u.path(ly, v).path(oy(z), w) € La.

Since R is prefix-preserving, we have Vi, u.path(ly,v;).path(o1(z),w) € Lo, then to —* t3
and w.path(ry, v}).path(o1(z), w) € Lo, then ¢ —* t4.

Furthermore, path(ts,p1) = path(t,p1) € Ly then t3 S py,Li:l 0] ta With oi(x) =
o1(z)[o2(r2)]w and Vy, s.t. y # z,01(y) = o1(y). <

Prefix-preserving is helpful to get local confluence, but it is not always necessary. The
following pCTRS is locally confluent, whereas it is not prefix-preserving.

» Example 11.

R={{e}: f(z) > g(x), {(£,1).(h, 1)} :a 2 b, {(g,1)}: h(a) > h(b)}

The only peak is f(h(a)) < g(h(a)) by rule 1, and f(h(a)) — f(h(b)) by rule 2. This peak
is convergent since g(h(a)) < g(h(b)) by rule 3 and f(h(b)) — g(h(b)) by rule 1. Therefore
R is locally confluent, and consequently confluent since R is terminating. Note the use of
rule number 3 to get confluence.

Let Ly and Lo be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because using the notations of Definition 8, let v = ¢ € Ly and w = (h, 1), and we have
w.path(f(x),1).w = (f,1).(h,1) € Ly whereas u.path(g(x),1).w = {g,1).(h,1) & Lo.

If we replace rule 3 by {(g,1)} : h(x) 3 h(b), the pCTRS is not terminating anymore, but it
is still locally confluent and not prefix-preserving.

As seen above, the prefix-constraints of a pCTRS could be annoying to get local confluence.
However, they could also be favorable.

» Example 12. The TRS R = {f(a) — ¢, a — b} is not locally confluent because f(a) — g ¢,
fla) =g f(b), and ¢ and f(b) are irreducible. Actually there is a critical pair (¢, f(b)), which
is not convergent.

Now, Consider the pCTRS R’ = {{¢} : f(a) — ¢, {€} : a = b}. Now there is only one
derivation issued from f(a), i.e. f(a) < g/ ¢, because the occurrence of a in f(a) is forbidden
for the second rule. Actually, the pCTRS R’ is locally confluent, and the previous critical
pair (¢, f(b)) is not relevant for R’.

The definition of critical pairs should be modified to fit pCTRSs.

» Definition 13. (critical pair for a pCTRS) Let Ly : {1 — 71 and Ly : I — 79 be
prefix-constrained rewrite rules such that {,], and Iy are unifiable for Vp € PosNonVar(ly).
Let 0 = mgu(lilp,l2) and L = {u € Ly | u.path(li,p) € Lo}. If L # 0, the triple
(o(r1), o(l1)[o(r2)]p, L) is called a critical pair.

Let us notice that L is necessarily regular.

When considering the rules of the pCTRS R’ of Example 12, we get p = 1 and L = ().
Therefore the critical pair (¢, (b)) of the TRS R does not produce a critical pair for the
pCTRS R'.

If there is a peak coming from an overlap at a non-variable position, then there is a
critical pair.

» Lemma 14 (extended critical pair lemma). Let R = {Ly : Iy — r1, Ly : lo = r2} UR/
be a pCTRS. If t = [p, L1:i—r,00] 11 ANA T Sy Loilo—sro,00] L2 and p2 = p1.v with v €
PosNonVar(ly), then there exists a critical pair (s1,s2,L) and a substitution v such that
path(t,p1) € L and t1 = t[y(s1)]p, and ta = t[y(s2)]p,-

N. Andrianarivelo and P. Réty

Proof. Let us assume Var(ly) N Var(la) = . Since ¢ < t1, we have path(t,p1) € Ly
and t|,, = o01(l1). Since t — ¢, we have path(t,ps) € Lo and t|p,, = o2(l2). Then
o2(l2) = tlp, = (tlp)]e = (61(11))|v = (01(l1]v)) because v € PosNonVar(ly). Let us
write § = o1 U os. Then 1], and Iy are unifiable by 6 and there exists a substitution 7 s.t
0 = v omgu(l|y,l2). Let us write L = {u € Ly | u.path(ly,v) € Lo} and a = mgu(ly]y, l2).
Then path(t,p1) € L because path(t,p1) € Ly and path(t,p2) = path(t, p1).path(ly,v) € La.
Then L # 0, consequently (a(ry), (a(ly)[a(r2)]y, L) is a critical pair. Let us write s; = a(ry)

and s = a(li)[a(rz)],. Then t[y(si)lp, = t[y(a(r))lp, = t0(r1)]e = tloi(r)] = t.
Moreover t[y(s2)lp, = t[y(a(l))[y(a(r2)]ulp, = tO)[O(r2)]u]p, = tlor(l)[o2(r2)]e]p, =
tloa(r2)lp, v = tloa(r2)]p, = t2 <

Conversely, if there is a critical pair, then there is a peak.

» Lemma 15. Let Ly : [y — 71 and Lo : Iy — 1o be prefiz-constrained rewrite rules. If
(o(r1), o(l1)[o(r2)]w, L) is a critical pair, then for each term t and p1 € Pos(t):

t|;l71 = U(ll)/\path(t’pl) €L = tc—>[p17LlilI‘>T1] t[a(rl)];ﬂl At %[;DLU,L2112HT2] t[U(TQ)]PLU
Note that at least one pair (¢, p;) exists since L # ().

Proof. Since L C Ly then path(t,p1) € Ly therefore t <, 1,4, t[o(r1)]p,. On the
other hand, path(t,p1.v) = path(t,p1).path(t|,,,v) = path(v,p1).path(ly,v). Moreover,
path(t,p1) € L, consequently path(t,p1.v) € La. tlp,.0 = (tlp)|o = (0(l1))]e = o(li]y) =
o(lz). Therefore t =, o Ly:05—r0] to(12)]ps .0 <

» Definition 16. The critical pair (s, s2, L) is said convergent if
Vit e T(X,X), Vp € Pos(t), (path(t,p) € L = t[s1]p {r t[s2]p)

» Theorem 17. (extended Knuth-Bendiz’s theorem) Let R be a prefiz-preserving pCTRS. R
is locally confluent if and only if all critical pairs of R are convergent.

Proof.
1. '="
Let us write s; = o(r1) and s = o(l1[o(r2)]y and t’ = t[o(l1)]p,. Through Lemma 15
applied on ¢ and p, we get t' — t'[s1], = t[s1]p and ¢’ — t'[o(12)]p.v = t{o(L1)[o(r2)]0]p =
t[sa]p. Through the local confluence property, ¢[s1], Lr t[s2]p-
2. "'
Assume t “pr, L1l —sr1,01] L1 and ¢ pa,L2:la—sra,00] 12
if p1||p2, through Lemma 6, t; < t5 < to
without loss of generality, assume p; < py
if pa.p1 € PosNonVar(ly), through Lemma 10, we have t; <—* t4 <" to.
otherwise through lemma 14, there exist a substitution 7, and a critical pair
(s1,82,L), s.t. path(t,p1) € L and t1 = t[y(s1)]p, and to = [y(s2)]p,. This critical
pair is convergent and since path(t,p1) € L, we have t[s1],, <—* <" t[sa],,. Since,
pCTRS rewriting is stable through instantiation, t; <—* <=* t, <
In general, to check the convergence of a critical pair according to Definition 16, infinitely
many contexts ¢ should be tried, which is impossible. Therefore we need to define a stronger
sufficient condition. Let us first introduce the notion of rewriting under a prefix language.
As usual, for a string w and a string language L, we define L.w by L.w = {v.w | v € L}.

6:7

FSCD 2018

6:8

Confluence of Prefix-Constrained Rewrite Systems

» Definition 18. Let R ={L:1 — r} UR' be a pCTRS, and L' C Dir(%)*.

t cL—>[p7L:l_mo] t" if L'.path(t,p) C L and o is a substitution s.t. t|, = o(l) and t' = t[o(r)],.

)% L)%
We also write t < t/, and <% will denote the reflexive-transitive closure of < g.
/ fe} /
> Remark. ¢ =, pasn t = t = rasnt.

» Lemma 19. Ift &[pymﬁﬂ t' then

Vto € T(X, X), Vp' € Pos(to), (path(to,p’) € L' = to[tly —pr.p, i tolt']p)

Proof. Through the hypothesis ¢ <L—>[p7L:l_>,n] t', we have t —, ;. t' and L'.path(t,p) C L.
Assume path(to,p’) € L'. Then path(to[t],,p’ .p) = path(to,p’).path(t,p) € L. Then
toltly = pr.p,Li—sr) tolt']p- <

L L L
» Corollary 20. If L' # () and t; <sg to R -+ <R tn,

then there exists to € T(X,X) and p’ € Pos(tg) s.t. to[t1]py—=r toltelpy—r =R toltnlp-
LI
» Corollary 21. If I’ # () and <R is not terminating, then < g is not terminating.
L/
Consequently, if — g is terminating, then — g is terminating.

» Definition 22. The critical pair (s1, s2, L) is said strongly convergent if there exits a term

L L
t such that s; =<k t and sy < t.

Therefore, if the pCTRS R is terminating, the strong convergence of a critical pair (s1, 2, L)
can be checked by computing all descendants of s; and of sy under prefix-language L, which
are finitely many, and looking for common elements.

» Lemma 23. Strong convergence implies convergence.

L I

Proof. We have s; <*s3 and sy —"s3. Let to € T(X),p € Pos(to) s.t path(to,p) € L.
Through corollary 20

to[s1]p —* to[ss]p and to[s2]p, <™ to[ss], then the critical pair is convergent. <

» Theorem 24. Let R be a prefiz-preserving pCTRS.
If all critical pairs of R are strongly convergent, then R is locally confluent.

Proof. It is naturally deduced from Lemma 23 and Theorem 17. |

Let us note that the converse is wrong as illustrated by the following Example .

» Example 25. Consider the pCTRS

R={{(h1}: fla) = {{h1).(f,1)}:a = b {e} : h(f (b)) = h(c)}

R is prefix-preserving since the rewrite rules do not contain variables.
There is only one critical pair (¢, f(b), {(h,1)}), which is convergent because h(f (b)) —r h(c).

From Theorem 17, R is locally confluent. However, the critical pair is not strongly convergent

h,1
since according to Definition 18, ¢ and f(b) are irreducible by {<<—>>1]%.

N. Andrianarivelo and P. Réty

The context-sensitive case

In this section we compare the previous results with those of [11]. A CS-TRS (Ry, pt) may
be viewed as a particular pPCTRS R = {Lyj : Iy — r | (I — r) € Ro}, where all languages
Ly, are the same (say L), and L is composed of all strings (including the empty string) over

the alphabet {(f,%) | f € X,i € u(f)}.

» Example 26.
Ro = {f(h(z,y),y) — g(z,y),h(a,b) = i(a),a — b}s.t.

u(f) = p(h) =1,
then we can view this CS-TRS as the following pCTRS

R={L: f(h(z,y),y) = g(z,y),L : h(a,a) = i(a),L : a — b}s.t.

L=((f.1) | (h1)"

In this framework, note that u,v,w € L <= uww.w € L, and path(t,p) € L < p €
Post(t). Consequently, the pCTRS R is prefix-preserving if and only if the CS-TRS (Ry,)
is with left homogeneous replacing variables (Definition 4.4 of [11]).

According to Definition 13, a critical pair between L : [y — 71 and L : [— 7y is of the
form (o(r1), o(l1)[o(r2)]p, L') where L' = {u € L | u.path(ly,p) € L} # 0. Since L' # 0,
there exists at least one string u € L s.t. u.path(ly,p) € L. Therefore path(l1,p) € L,
then p € Pos*(l;). On the other hand, for all uw € L, we have u.path(l;,p) € L (because
path(ly,p) € L). Consequently L' = L.

For instance, for the example 26 we have two critical pairs

(f(i(a),a)), g(a,a), L)
(h(b,a),i(a),L).

Since all critical pairs have the same language, we can omit it, and we get the same
notion (called p-critical pair) as in Definition 4.7 of [11].

Therefore, Theorem 17 gives the same result as Theorem 4.9 of [11]. However, as
mentioned previously, with a pCTRS infinitely many contexts should be tried to check the
convergence of a critical pair. Fortunately ¢ € L, and when using Definition 16 we can

consider p as the root position, i.e. the critical pair should also converge without context.

Conversely, if the critical pair converges without context, it also converges with any context ¢
assuming p € Pos*(t), which holds because path(t,p) € L is assumed. Thus, the convergence
of a critical pair can be checked without using a context, i.e. as in [11].

As a conclusion, if the pCTRS is context-sensitive, thanks to Theorem 17 we get the
same result as [11]. If the pCTRS is not context-sensitive, we can ensure local-confluence
using Theorem 24.

4 Working with String Automata

From an operational point of view, Section 3 does not say anything for handling prefix
languages, for checking whether a pCTRS is prefix-preserving, for computing the language of
a critical pair, and for computing ‘£>R steps. This is why we consider in this section that for
apCTRS R={Ly : Iy — rr | 1 <k < n}, each language Lj, C Dir(X)* is defined by a finite
string automaton A* = (Dir(X), Q%, QF, Q%, A¥).

6:9

FSCD 2018

6:10

Confluence of Prefix-Constrained Rewrite Systems

For efficiency of further computations, we assume that each each A* is deterministic and
complete. In other words, we consider that the automata are determinized and completed at
the beginning, and the new automata generated by the computations will be still deterministic
and complete.

For any automaton A = (£,Q,Qr,Q¢,A) and ¢ € Q, let us define L a(q) = {w € ¥* |
Jdgr € Qf, (¢, w) =X (gf,€)}. Note that Ly = Ug,eq,La(qr), and L4(q) is recognized by
the automaton (X, @, {q}, Qr, A).

Let w be a string and L C ¥* be a string language. Let us define L*~ = {u € ¥* | w.u €
Lyand L™ ={u e ¥* |uw € L}.

For a string w, let QY™ = {¢ € Q | Jqr € Q1,(qr,w) —4x (g,€)}, and let QJT“’ =
{e € Q@ | Jgr € Qf.(q,w) =i (7,6} Let A" = (¥,Q,Q7,Qf,A) and A7 =
(£,Q,Q1,Q7", A).

» Lemma 27. L u- = (La)Y" and Ly-w = (La)~". Moreover, if A is deterministic and
complete, so are AY~ and A™"Y.

Proof.

1. Let us prove that L g4u- C (L4)“~
Let u € L gw—. There exists ¢ € Q7 and ¢y € Qf such that (¢, u) —X (gf,€). Then there
exists gr € Qr such that (¢r, w) =% (g,€). Consequently, (qr, w.u) =% (q,u) =% (gf,€)-
Then w.u € L4, then u € (L4)"".

2. Let us prove (L4)"~ C L gw-
Let u € (La)"~. Then w.u € Ly. Consequently, there exists g5 € Qr, ¢r € Q5 and
q € @ such that (g7, w.u) =} (g,u) ==& (gr,€). Then (g7, w) —% (g,€), that is ¢ € Q7™

Consequently, u € (L4)"~.

3. If A is deterministic and complete, then |QY ™| = [{¢ € Q | g1 € Q1. (q1,w) —X (¢, €)}],
where |A| denotes the number of elements of the set A, as usual. But |Q;| =1 and A is
the set of the transitions in A. Then |Q7 ™| = 1. On the other part, the transitions in

A¥~ and A are the same.

4. Let us prove Lg—w C (Ly)™¥
Let u € L 4—w. There exists q; € Qr, q € Q;w such that (gr,u) —3% (q,€). Then there
exists ¢r € Qy, (¢, w) —34 (gf,€). Consequently, (gr,u.w) —% (g,w) =4 (¢r,¢). Then
uw € Ly, the uw e (Lg)™™.

5. (Lg) " CLgw
Let u € (La)™". Then u.w € L. Consequently, there exists ¢r € Qr, ¢r € Q5 and
g € @Q such that (¢7,u.w) =} (¢, w) =X (gf,€). Then ¢ € Q;w and (gr,u) =34 (g,€).
Consequently, u € L 4—w.

6. The initial states and the transitions of A" and A are the same. <

Prefix preserving. To check whether a pCTRS is prefix-preserving (Definition 8), we use
the following result.

» Theorem 28. For the prefiz-constrained rewrite rules Ly : 1y — r1 and Lo : ly — 1o,
let Ay = (E,Ql,Q},Q},Al) and Ay = (E,QQ,Q%Q?,AQ) be deterministic and complete
automata that recognize L1 and Lo respectively. Let Si 2 =
{g € Q| 3(q;,q7) € QF x Q7,3u € Dir(¥)*,3q} € Q},((47,47),w) —higa> ((¢f,9),6)},
which can be computed by saturating {(q+,q?)} with the transitions of Al ® A2,

The pCTRS R is prefix-preserving if and only if for all rewrite rules Ly : l; — r1 and
Ly :ly — 1o of R, Vo € Var(ly), Vp,p' € Pos(ly,x), Vp" € Pos(r1,x), Vg € S1.2:

Lo, (q)P)= = [y, (q)Pth(0P)= C Ly, (g)peth(mr™)=

N. Andrianarivelo and P. Réty

Proof.
Let us begin by proving the implication "=-".
Let us assume u € Ly and u.path(ly,p).w € Lo. Then there exists ¢; € Q}, ¢7 € Q%, q} €
Q}, q € Q% such that (¢}, u)—* a1 (q}, €) and (¢%,u)—*a2(q,€). Then g € Sy 2. Moreover,
path(ly,p).w € La,(q), then w € L 4,(¢q)P?*"(1:P)= Through the hypothesis, we have
w € L, ()PP~ and w € L,(q)P*""12")= Then path(ly,p').w € La,(¢) and
path(ry,p”).w € La,(q). As (g7, u)—*az(q,€), we get u.path(ly,p').w € La, = Ly and
w.path(ry,p”).w € L4, = La. Consequently, R is prefix-preserving,.
Let us continue by proving the implication "<=".
Let ¢ € S15 and w € La,(q)P*"(11:P)= . There exists u € Dir(%)*, qf € Q}, ¢? €
Q7,4 € Q} such that (g7, u)—*a1(g}, €) and (¢7,u)—*a2(g,€). Then u € L;. Moreover
path(ly,p).w € La,(q), then there exists g7 € Q} such that (¢, path(l1, p).w)—=*a2(g7,€).
Consequently, u.path(ly,p).w € La. As R is prefix-preserving, we have u.path(ly,p').w €
Ly = Ly, and w.path(ry,p”’)w € Ly = Lyu,. Then path(ly,p’).w € La,(q) and
path(ry,p").w € La,(q), then w € L a,(q)P*"11P)~ and w € L 4,(q)P*""1:»")~ There-
fore, La,(q)P*"P)= C L4, ()P P)= and L4, (q)P*"(1P)= C L, (q)rethtrr)=,
On the other hand, we prove that L 4, (q)P*"(1:2)= C L 4, (¢q)P**"11:2)= by exchanging p
and p’. <

Critical pair. Let A; and As be two deterministic and complete automata that recognize the
languages L1 and Lo of the two rules in the critical pair Definition 13. Then the language L of

(l1,p)

the critical pair is recognized by the automaton .4; N A, " ath , which is still deterministic

and complete.

Rewriting under context. Let A’ and A be deterministic and complete automata that
recognizes the languages L’ and L of Definition 18. To check whether L'.path(t,p) C L, we
use the following result:

> Lemma 29. L'.path(t,p) C L <= L qna)-rarncr) = 0.

Proof.

1. "'
By contradiction. Let us assume there exists u € L’ such that u.path(t,p) ¢ L. Then
u.path(t,p) € L = L ;5. Then u € (L z)7Path(tr) = L gy-vatncm . Since u € L', we have
u € Ly, then u € LA,N(A),pam(t,p) = () according to the hypothesis. Contradiction.

2, '="'
By contradiction. Let assume there exists u € LA,Q(A)_MMU,},). Then v € L' and
u.path(t,p) € L, that is u.path(t,p) € L and u.path(t,p) € L'.path(t,p). Consequently,
L’ .path(t,p) € L. Contradiction. <

Note that checking equalities or inclusions of languages as in Theorem 28, or computing the
complement as in Lemma 29, is polynomial since automata are deterministic and complete.

5 Extended Knuth-Bendix Completion

The goal of extended completion is to transform an arbitrary initial pPCTRS R (or a set
of equalities) into a confluent and terminating pCTRS R’ without changing the equality
modulo the pCTRS, i.e. such that =g and =g are identical. To do it, we use the result of
Theorem 24, therefore the pCTRS needs to be prefix-preserving. However, with the notations

6:11

FSCD 2018

6:12

Confluence of Prefix-Constrained Rewrite Systems

of Definition 8, whenever u € Ly A u.path(ly,p).w € Ly whereas u.path(r,p”).w & Lo, i.e.
the pCTRS is not prefix-preserving, we could make it prefix-preserving by extending Lo into

4 so that w.path(ry,p”).w € L}. Unfortunately, this may change the equality modulo the
pCTRS.

» Example 30. Let ¥ = {f,g,a,b,¢,d} and

R={{e}: fz) 5 gz, 0), {(f, 1)} :a > b}

Let Ly and Lo be the prefix-languages of rules 1 and 2 respectively. R is not prefix-preserving
because, let u = € € L; and w = ¢, and we have u.path(f(z),1).w = (f,1) € Ly whereas
w.path(g(x,c),1).w = (g,1) ¢ La. Note that R is not confluent since there is the peak
f(a) = g(a,c) by rule 1, and f(a) < f(b) < g(b,c) by rules 1 and 2, which is not convergent
since g(a,c) and g(b, ¢) are irreducible.
Now let us extend Ly by considering the pCTRS:
1 2

R ={{e}: f(z) = g(z,0), {{£.1)}U{{g; 1)} :a = b}
R’ is prefix-preserving. However g(a,d) < g/ g(b,d) whereas g(a,d) #r g(b,d). In other
words, =r and =g+ are not identical.

This difficulty may depend on the orientation of rewrite rules. The pCTRS R of Example 30
is terminating, however let us reverse the first rule of R, i.e. let

R" = {{e} : g(z,¢) 5 fl@), {{f/;1)}:a 2 b}

R is prefix-preserving and is also terminating. Moreover =g and =g~ are identical. Un-
fortunately, changing the orientation does not always make the pCTRS prefix-preserving,
and may not preserve termination. In other words, extended completion will fail when one
cannot get a prefix-preserving pCTRS.

The usual Knuth-Bendix completion generates an inter-reduced TRS R, which means
(roughly) that the left-hand-side and the right-hand-side of each rule of R are not reducible
by the other rules of R. This notion cannot be extended to pCTRSs in an easy way.

» Example 31. Consider the TRS R = {f(z) N g(z), g(x) N h(z)}. Then R is not
inter-reduced since the right-hand-side of rule 1 is reducible by rule 2. Now let

R = {(i, D}ULG, 1)} : f@) 5 g(@), {0, 1)} : g(x) 2 h(x)}

So, the right-hand-side of rule 1 is reducible by rule 2 under context i, but not under context
j. An inter-reduced pCTRS R’ such that =g and =g~ are identical, could be

R = {{, 1)} : f(2) 5 h(@), {G, 1)} f(@) S g(@), {G, 1)} g(x) 5 hix)}

In this paper, we present a basic extended Knuth-Bendix completion, which does not
attempt to produce an inter-reduced pCTRS. It is described by inference rules, as in [2], and
computes (P11, Ri11) from (P;, R;) using a derivation relation denoted -, where P;, P11
are sets of prefix-constrained equalities of the form L : p = ¢* and R;, Ri;, are sets of
prefix-constrained rewrite rules of the form L : [— r.

1 We assume that = is commutative, i.e. L : p = ¢ is the same equality as L : ¢ = p.

N. Andrianarivelo and P. Réty

1. Orient

PU{L:p=gq}, R
P, RU{L:p—q}

if RU{L : p — ¢} is prefix-preserving and terminating

2. Deduce

PR
PU{L:p=gq}, R

if (p,q, L) is a critical pair between rules of R

3. Simplify
PuU{L:p=gq}, R . L
f /
PU{L:p=q;, R PTRP
4. Delete
PU{L:p=p}, R
P, R

Orient needs to check that RU {L : p — ¢} is terminating. This can be done by
transforming the pCTRS into an ordinary TRS [1], which preserves termination, and checking
the termination of the ordinary TRS using the usual techniques and tools. This transformation
can even be done incrementally: each time Orient is run, new rewrite rules are added into
the ordinary TRS.

With our basic completion above, inference rules Simplify and Delete are only applied
on (non-oriented) equations of P. During the completion procedure, oriented rules of R are
neither simplified nor deleted.

» Lemma 32 (Soundness). If (P,R) b (P', R'), then =pur and =pypr are identical.

Proof.

1. Orient :
t =rp=q t' <=t =[.pq t' because =p.p—, is a symmetric relation.

2. Deduce :
Let us consider the critical pair (p, ¢, L) obtained from the rewriting rules Ly : [y — r; € R
and Lo : Iy — r2 € R. Then (p,q, L) = (o(r1),0(l1)[o(r2)]v, L). If t' =[p 1.p—q.6) t", then
t' = to[0(p)]p,t" = tol0qlp and path(to,p’) € L. Let us write t = tg[o(l1)],. Through
Lemma 15, we have t <= 1,0, —r, tH{o(r1)lp = to[ply and t =y 4 10051 Ho(r2)]pr o
tolo(li[o(r2)]olp) = tolalp - Since t' = 1p—gq.0) t”, let us assume Var(p) N Var(t') =
and Var(q) N Var(t”) = 0. Then Var(p) N Var(ty) = 0 and Var(q) N Var(ty) =
Consequentl}@ e(t) (_>[p’,L1:l1—>r1] tO[e(p)]p' =t and e(t) f_>[p’.v,L2:l2—>r2} tO[e(q)]P' =t
Then t' =5 t”.

3. Simplify
a. '—=

If t =[y,1:p—q,0) t', then we have t|, = o(p)] and t' = t[o(q)] and path(t,

0
0

€ L. But

Sequently, ¢ a0 1ra—srr-o8) Ho (0D = Hhalo (@) ule = oD OF)]l
tlo(p([0(r')]v]u = tlo(p')]u since path(t,u.v) = path(t,u).path(p,v) € L' (note that
path(t,u) € L). Furthermore, t[o(p')]u =[Lp=q tlo(q)]u = t' since path(t,u) € L
Consequently t =pu(r.p—g} t'-

b. '«<="
The converse is similar since the direction of the rewrite step p < p’ does not matter.

4. Delete
If t =p.p—p t’, then t =t'. Thus t =pyp t'. <

u)

D (£>[U7L,:l,_,,./,9] p’, then p|, = 6(I') and p’ = p[f(r')], and L.path(p,v) C L'. Con-
(r
(n

6:13

FSCD 2018

6:14

Confluence of Prefix-Constrained Rewrite Systems

Consider a derivation (Py, Rg) F -+ F (P, Ry). Note that Ry C Ry C--- C R,,.

» Lemma 33. (Completeness) Let (p,q, L) be a critical pair between some rules of Ry,. If
L L
p =k, p and g =%k, ¢, then (p,q,L) is strongly convergent in R, U{L :p' — ¢'}.

L L L
Proof. p' < g ¢ since L.path(p’,e) = L C L. Consequently, p =k, p" —[c..p/—q] @

L
and ¢ =%, ¢’. Then the critical pair is strongly convergent in R, U{L :p" — ¢'}. <

Fairness hypothesis. (Py, Ro) F -+ (P, Ry,) is fair if for all critical pair (p, g, L) between
rules of R, there is some i € {0,...,n} such that (L : p = ¢) € P;. In other words, all
critical pairs have been computed thanks to Deduce. From Lemmas 32, 33 and Theorems 24,
4 we get:

» Corollary 34. If (Py, Ry) -+t (P, Ry) is fair and Ry = P, = 0, then R, is confluent
and terminating. Moreover the relations =p, and =g, are identical.

However, like the usual Knuth-Bendix completion, the extended Knuth-Bendix completion
fails if we cannot obtain P, = () for some n. In particular, it arises if Orient cannot orient a
persistent critical pair because the resulting pCTRS would not be prefix-preserving or would
not be terminating.

The above basic completion could be improved by including more inference rules like
Simplifiying and Deleting oriented rules of R. However, the proof of correctness and com-
pleteness of such completion procedure would be more complicated and could be done, for
instance, by extending the proof transformation method of [2].

6 Conclusion and Further Work

In this paper, we present a sufficient condition that ensures the local confluence of prefix-
constrained rewrite systems, and consequently the confluence of terminating ones. This
result subsumes that of [11] about local-confluence of context-sensitive rewrite systems.
Prefix-preserving and critical-pair strong convergence assumptions are sufficient, but are not
necessary. Finding weaker assumptions is an interesting challenge.

The second contribution of this paper is an extended Knuth-Bendix completion procedure
for prefix-constrained rewrite systems. This procedure could be improved to get inter-reduced
systems, by adding some inference rules, which could also improve the efficiency.

Controlled rewriting [7] is an extension of prefix-constrained rewriting, where rewritable
positions are defined by a regular tree language that considers the entire term (i.e. not only
prefixes). It could be interesting to study local-confluence, and define a completion procedure
for controlled rewrite systems.

—— References

1 Nirina Andrianarivelo, Vivien Pelletier, and Pierre Réty. Transforming prefix-constrained
or controlled rewrite systems. In Mohamed Mosbah and Michaél Rusinowitch, editors,
SCSS 2017, The 8th International Symposium on Symbolic Computation in Software Sci-
ence 2017, April 6-9, 2017, Gammarth, Tunisia, volume 45 of EPiC Series in Computing,
pages 49-62. EasyChair, 2017. URL: http://www.easychair.org/publications/paper/
Transforming Prefix-constrained_or_Controlled_Rewrite_Systems.

http://www.easychair.org/publications/paper/Transforming_Prefix-constrained_or_Controlled_Rewrite_Systems
http://www.easychair.org/publications/paper/Transforming_Prefix-constrained_or_Controlled_Rewrite_Systems

N. Andrianarivelo and P. Réty

10

11

Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a congruence.
In Pierre Lescanne, editor, Rewriting Techniques and Applications, 2nd International Con-
ference, RTA-87, Bordeaux, France, May 25-27, 1987, Proceedings, volume 256 of Lecture
Notes in Computer Science, pages 192—-203. Springer, 1987. doi:10.1007/3-540-17220-3_
17.

Alonzo Church and J. B. Rosser. Some properties of conversion. Transactions of the Amer-
ican Mathematical Society, 39(3):472-482, 1936. URL: http://www.jstor.org/stable/
1989762.

Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer. Prin-
ciples of OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on Principles
of Programming Languages, New Orleans, Louisiana, USA, January 1985, pages 52-66,
1985. doi:10.1145/318593.318610.

Jirgen Giesl and Aart Middeldorp. Transformation Techniques for Context-Sensitive
Rewrite Systems. J. Funct. Program., 14(4):379-427, 2004. doi:10.1017/
S0956796803004945.

Gérard P. Huet. Confluent reductions: Abstract properties and applications to term re-
writing systems: Abstract properties and applications to term rewriting systems. J. ACM,
27(4):797-821, 1980. doi:10.1145/322217.322230.

Florent Jacquemard, Yoshiharu Kojima, and Masahiko Sakai. Controlled Term Rewrit-
ing. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining
Systems, 8th International Symposium, FroCoS 2011, Saarbriicken, Germany, October 5-
7, 2011. Proceedings, volume 6989 of Lecture Notes in Computer Science, pages 179-194.
Springer, 2011. doi:10.1007/978-3-642-24364-6_13.

Florent Jacquemard, Yoshiharu Kojima, and Masahiko Sakai. Term Rewriting with Prefix
Context Constraints and Bottom-Up Strategies. In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of LNCS, pages
137-151. Springer, 2015. doi:10.1007/978-3-319-21401-6_09.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Siekmann
and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on Computational
Logic 1967-1970, pages 342—-376. Springer, Berlin, Heidelberg, 1983.

S. Lucas. Context-Sensitive Computations in Functional and Functional logic Programs.
Journal of Functional and Logic Programming, 1998(1), January 1998.

Salvador Lucas. Context-sensitive computations in confluent programs. In Herbert Kuchen
and S. Doaitse Swierstra, editors, Programming Languages: Implementations, Logics, and
Programs, 8th International Symposium, PLILP’96, Aachen, Germany, September 24-27,
1996, Proceedings, volume 1140 of Lecture Notes in Computer Science, pages 408-422.
Springer, 1996. doi:10.1007/3-540-61756-6_100.

6:15

FSCD 2018

http://dx.doi.org/10.1007/3-540-17220-3_17
http://dx.doi.org/10.1007/3-540-17220-3_17
http://www.jstor.org/stable/1989762
http://www.jstor.org/stable/1989762
http://dx.doi.org/10.1145/318593.318610
http://dx.doi.org/10.1017/S0956796803004945
http://dx.doi.org/10.1017/S0956796803004945
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1007/978-3-642-24364-6_13
http://dx.doi.org/10.1007/978-3-319-21401-6_9
http://dx.doi.org/10.1007/3-540-61756-6_100

Fixed-Point Constraints for Nominal Equational
Unification

Mauricio Ayala-Rincén!
Departments of Mathematics and Computer Science, Universidade de Brasilia, Brasilia, Brazil

Maribel Fernandez
Department of Informatics, King’s College London, London, UK

Daniele Nantes-Sobrinho?
Departments of Mathematics and Computer Science, Universidade de Brasilia, Brasilia, Brazil

—— Abstract

We propose a new axiomatisation of the alpha-equivalence relation for nominal terms, based on a
primitive notion of fixed-point constraint. We show that the standard freshness relation between
atoms and terms can be derived from the more primitive notion of permutation fixed-point, and
use this result to prove the correctness of the new alpha-equivalence axiomatisation. This gives

rise to a new notion of nominal unification, where solutions for unification problems are pairs of
a fixed-point context and a substitution. Although it may seem less natural than the standard
notion of nominal unifier based on freshness constraints, the notion of unifier based on fixed-
point constraints behaves better when equational theories are considered: for example, nominal
unification remains finitary in the presence of commutativity, whereas it becomes infinitary when
unifiers are expressed using freshness contexts.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting,
Theory of computation — Lambda calculus, Theory of computation — Algebraic semantics

Keywords and phrases nominal terms, fixed-point equations, nominal unification, equational
theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.7

1 Introduction

This paper presents a new axiomatisation of a-equivalence for nominal terms via permutation
fixed points, and revisits nominal unification in this setting.

In nominal syntax [16], atoms are used to represent object-level variables and atom
permutations to implement renamings, following the nominal-sets approach advocated by
Gabbay and Pitts [10, 12, 14]. Atoms can be abstracted over terms, the syntax [a]s represents
the abstraction of @ in s. To rename an abstracted atom a to b, a swapping permutation
m = (ab) is applied. Thus, the action of m over [a]s, written as (ab) - [a]s, produces the
nominal term [b]s’, where s’ is the result of replacing all occurrences of @ in s by b, and all
occurences of b in s by a. The a-equivalence relation between nominal terms is specified
using swappings together with a freshness relation between atoms and terms, written b#s,
which roughly corresponds to b not occurring free in s.

In this setting, checking a-equivalence requires another first-order specialised calculus to
check freshness constraints. For instance, checking whether [a]s =2, [b]t reduces to checking

L Author partially funded by CNPq 307672/2017-4.
2 Author partially supported by FAP-DF 0193.001381,/2017.

© Mauricio Ayala-Rincén, Maribel Ferndndez, and Daniele Nantes-Sobrinho;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).

Editor: Héléne Kirchner; Article No. 7; pp. 7:1-7:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Fixed-Point Constraints for Nominal Equational Unification

whether s ~, (ba) -t and a#t. The action of a permutation propagates down the structure
of nominal terms, until a variable is reached: permutations suspend over variables. Thus,
7 - s represents the action of a permutation over a nominal term, but is not itself a nominal
term unless s is a variable; for instance, 7 - X is a suspension (also called moderated variable),
which is a nominal term.

The presence of moderated variables and atom-abstractions makes reasoning about
equality of nominal terms more involved than in standard first-order syntax. For example,
7-X =’ p- X is only true when X ranges over nominal terms, say s, for which all atoms in
the difference set of m and p (i.e., the set {a : w(a) # p(a)}) are fresh in s.

If the support of a permutation 7 is fresh for X then 7 - X =, id - X. Thus a set of
freshness constraints (i.e., a freshness context) can be used to specify that a permutation will
have no effect on the instances of X. This is why in nominal unification [16], the solution for
a problem is a pair consisting of a freshness context and a substitution.

The use of freshness contexts is natural when dealing with “syntactic” nominal unification,
but in the presence of equational axioms (i.e., equational nominal unification) it is not
straightforward. For example, in the case of C-nominal unification (nominal unification
modulo commutativity), to specify that a permutation has no effect on the instances of
X modulo C, in other words, to specify that the permutation does not affect a given C-
equivalence class, we need something more than a freshness constraint (note that (a b)(a+b) =
b+ a=¢ a+b, so the permutation (a b) fixes the term a + b, despite the fact that a and b
are not fresh).

In this paper, we propose to axiomatise a-equivalence of nominal terms using permutation
fixed-point constraints: we write 7 A ¢ (read “7 fixes t”) if ¢ is a fixed-point of 7. We show
how to derive fixed-point constraints from primitive constraints of the form 7= A X, and show
the correctness of this approach by proving that the a-equivalence relation generated in
this way coincides with the one axiomatised via freshness constraints. We then show how
fixed-point constraints can be used to solve nominal unification problems modulo C.

In [4, 3, 2], the authors have proposed techniques to deal with a-equivalence modulo the
equational theories A, C and AC using the standard approach via freshness constraints. The
works [3, 2] show that despite the fact that C-unification problems have solutions generated
by a finite family of fixed-point equations, there is no finitary representation of the admissible
set of solutions using only freshness constraints and substitutions. Also, in [15] it is shown
how nominal unification problems in a language with recursive let operators gives rise to
solutions expressed in terms of freshness constraints and nominal fixed-point equations.

In this paper, we will develop an extension of fixed-point constraints modulo commutativity,
namely, A¢, and provide a set of rules for checking fixed-point judgements and a-equivalence
judgements modulo C'; which will provide a finitary representation of nominal C-unification
solutions, consisting only of primitive fixed-point constraints and substitutions.

Overview

Section 2 presents the required preliminaries on nominal syntax. Section 3 introduces
nominal a-equivalence using fixed-point constraints instead of freshness constraints. Section
4 introduces a sound and complete rule-based algorithm for nominal unification using fixed-
point constraints. Before concluding, Section 5 shows how fixed-point constraints are used to
finitely represent solutions of fixed-point equations, and so of nominal C-unification problems.

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

2 Preliminaries

We assume the reader is familiar with the notions of nominal set and nominal syntaz. In this
section we recall the main concepts and notations that are needed in this paper; for more
details we refer the reader to [14, 16].

2.1 Nominal Terms

Let A be a fixed and countably infinite set of elements a, b, ¢, ..., which will be called atoms
(atomic names). A permutation on A is a bijection on A with finite domain.

Fix a countably infinite set X = {X,Y, Z,...} of variables and a countable set F =
{f,g,...} of function symbols.

» Definition 1 (Nominal grammar). Nominal terms are generated by the following grammar.

s,¢ti=alla]t | (t1,...,tn) |[fEt]7m- X

where a is an atom term, [a|t denotes the abstraction of the atom a over the term ¢, (¢1,...,t,)
is a tuple, f t denotes the application of f to t and 7 - X is a moderated variable or suspension,
where 7 is an atom permutation.

We follow the permutative convention [11, Convention 2.3] for atoms throughout the
paper, i.e., atoms a, b, ¢ range permutatively over A so that they are always pairwise different,
unless stated otherwise.

Atom permutations are represented by finite lists of swappings, which are pairs of different
atoms (a b); hence, a permutation 7 is generated by the following grammar:

m:=1d| (a b)7.

We call Id the identity permutation, which is usually omitted from the list of swappings
defining a permutation. Suspensions of the form Id - X will be represented just by X. We
write 7~ for the inverse of 7, and use o to denote the composition of permutations. For
example, if 7 = (a b)(b ¢) then 7(c) = a and ¢ = 7~ *(a).

The difference set of two permutations 7, 7’ is ds(m, 7’) = {a | 7(a) # 7'(a)}.

We write Var(t) for the set of variables occurring in ¢. Ground terms are terms without
variables, that is Var(¢) =). A ground term may still contain atoms, for example a is a
ground term and X is not.

» Definition 2 (Permutation action). The action of a permutation 7 on a term ¢ is defined
by induction on the number of swappings in 7:

Id-t=tand ((a b)7)-t=(ab) (7-t), where
(ab)-a=0b,
(ab)-b=a,
(ab)-c=c

(ab)-(m-X)=((ab)om) X, (ab) [t =[(ab) c](abd) -t
(ab)-ft=f(ab)-t, (ab)-(t1,...,tn) = ((ab) t1,...,(ab) t,)
» Definition 3 (Substitution). Substitutions are generated by the grammar
ou=1id | [X — s]o.

Postfix notation is used for substitution application and o for composition: t(o oo’) = (to)o’.
Substitutions act on terms elementwise in the natural way: tid = ¢, t{X — slo = (t{X — $])o,
where

alX — sl=a (t1, ..y tp)[X = 8] = (t1[X = s8], ..., tn[X — s])
(f O)[X — s] = f(t[X — s]) (m- X)X—s|=m-s
([a]t)[X — s] = [a] (¢[X — s]) (r- V)X —sl=n-Y

7:3

FSCD 2018

7:4

Fixed-Point Constraints for Nominal Equational Unification

2.2 Nominal sets and support

Let S be a set equipped with an action of the group Perm(A) of finite permutations of A.

» Definition 4. A set A C A is a support for an element x € S if for all 7 € Perm(A), the
following holds

(VaeA)n(a)=a)=>7m-2=2 (1)

A nominal set is a set equipped with an action of the group Perm(A), that is, a Perm(A)-set,
all of whose elements have finite support.

As in [14], we denote by suppg(z) the least finite support of z, that is,
suppg(z) == n{A € P(A) | Ais a finite support for z}.

We write supp(x) when S is clear from the context. Clearly, each a € A is finitely supported
by {a}, therefore supp(a) = {a}.

3 Constraints

The native notion of equality on nominal terms is a-equivalence, written s =, t. This
relation is usually axiomatised using a freshness relation between atoms and terms, written
a#t —read “a fresh for ¢”, which, intuitively, corresponds to the idea of an atom not occurring
free in a term (see for instance [16, 8]). However, freshness is not a primitive notion in
nominal sets; it is derived using the quantifier /I combined with a notion of fixed-point, as
shown by Pitts [14]:

a#X < WNd.(ad) X =X.

In this work, instead of defining a-equivalence using freshness, we define it using the
more primitive notion of fized-point under the action of permutations. We will denote this
relation ~,, and show that it coincides with ~, on ground terms, i.e., the relation defined
using fixed-points of permutations corresponds to the relation defined using freshness. For
non-ground terms, there is also a correspondence, but under different kinds of assumptions
(fixed-point constraints vs. freshness constraints).

3.1 Fixed-points of permutations and term equality

We start by defining a binary relation that describes which elements of a nominal set S are
fixed-points of a permutation = € Perm(A):

» Definition 5 (Fixed-point relation). Let S be a nominal set. The fized-point relation
A CPerm(A)x S is defined as: m A © < dom(w) N supp(z) = 0. Read “m A a7 as “m fizes x”.

The fixed-point relation between permutations and terms will play an important role
in the definition of a-equality. Below we define the fized-point constraints and equality
constraints using predicates A and éa and then give deduction rules to derive fixed-point
and equality judgements. Intuitively,

s éa t will mean that s and t are a-equivalent, i.e., equivalent modulo renaming of

abstracted atoms.

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

r—1

T a) =a T
ma)=a (1a) supp(r”) C supp(perm(Y|x)) (var)
YThrha TrrAr X
THx At THmAt: ... YrExTAty

—— (Af) (Atuple)
TrHrAft TExA(tr,... tn)
T,(c1 c2) AVar(t) Fm A (ac1) - t (1abs) c1 and co

Tk mAlalt " new names

Figure 1 Fixed-point rules.

A
7 At will mean that the permutation 7 fixes the nominal term ¢, that is, 7 - t =, t. This
means that 7 has “no effect” on t except for the renaming of bound names, for instance,
(a b) A [a]a but not (a b) A f a.

» Definition 6 (Fixed-point and equality constraints). A fized-point constraint is a pair ™ A ¢

of a permutation m and a term t. An a-equivalence constraint is a pair of the form s Qa t.
We call a fixed-point constraint of the form 7 A X a primitive fized-point constraint and a set
of such constraints is called a fized-point context. T, W, ... range over fixed-point contexts.
We write m A Var(t) as an abbreviation for the set of constraints {m A X | X € Var(¢)}.

The set of variables Var(T) is defined as expected. The set of permutations of a fixed-point
context T with respect to the variable X € Var(Y), denoted by perm(Y|x), is defined as
perm(Y|x) := {mw | # A X € T}. For a substitution ¢ and a fixed-point context T we define
Yo={mnAXo|mAX €T}

To define the relation A, we rely on the notion of conjugation of permutations. The

conjugate of 7 with respect to p, denoted as 7, is the result of the composition: pomo p~t.

T A p;; A 5 A 5 A
o b opla) o @) o (@)

» Definition 7 (Judgements). A fized-point judgement is a tuple T F 7 A ¢ of a fixed-point

context and a fixed-point constraint. An a-equivalence judgement is a tuple ¥ + s éa t of a
fixed-point context and an equality constraint. The derivable fixed-point and a-equivalence
judgements are defined by the rules in Figures 1 and 2.

» Example 8. The term [a]fa is a fixed-point for the permutation (a b), since (a b)[alfa =,
[b]fb, therefore, (a b) A [a]fa. However, fa is not a fixed-point for (a b), since (a b) - fa Afb.

Rule (Aa) states that if a ¢ dom(w), then a is a fixed-point of 7.

In rule (Avar), the condition supp(ﬂ"r/_l) C supp(perm(Y|x)) means that the permuta-
tion can be generated from perm(Y|x), hence it fixes X. Rules (Af) and (Atuple) are
straightforward. Rule (Aabs) is the most interesting one. The intuition behind this rule is
the following: [a]t is a fixed-point of 7 if 7 - [a]t is a-equivalent to [al]t, that is, [7(a)]7 - t is
a-equivalent to [a]t; the latter means that the only atom that could be affected by = is a,
hence, if we replace occurrences of a in ¢ with another, new atom c¢;, 7 should have no effect.

The a-equality relation is defined in terms of fixed-point constraints. Rules (éa a),
(q), (éa [a]) and (’ﬁia tuple) are defined as expected, whereas the intuition behind rule

S
A A
(=, var) is similar to the corresponding rule in Figure 1. The most interesting rule is (=, ab).

7:5

FSCD 2018

7:6

Fixed-Point Constraints for Nominal Equational Unification

(Raa) supp((n') ™" o m) C supp(perm(Y|x)) B var)
A ~a
ThaXaa Thr X%, X
THtRat o Thty Rt .. THitnRat ,
— (=af) - (=aq tuple)
YTHftrR.ft Th(t,.. o tn) Ra (1., th)
THt Rt X [Tkséa(ab)-t T,(c1cz)AVar(t)F(acl)At(A b)
— (Rala Rqa
T [a]t A [a T+ [a]s o Bt

Figure 2 Rules for equality. In rule (éa ab), ¢1 and ¢y are new names.

Intuitively, it states that for two abstractions [a]s and [b]t to be equivalent, we must obtain
equivalent terms if we rename in one of them, in our case t, the abstracted atom b to a, so
that they both use the same atom. Moreover, the atom a should not occur free in ¢, which is
checked by stating that (a ¢1) fixes ¢ for some new atom c¢; that is not in the support of the
variables occurring in t.

We prove below that éa is indeed an equivalence relation, for which we need to study

A
the properties of the relations ~, and A, starting with inversion and equivariance.

. . A . .
» Lemma 9 (Inversion). The inference rules for =, are invertible.

The notion of equivariance relies on the conjugation of the permutation = by p, 7. The
following basic property is used in the proofs in this section.

» Lemma 10. Let p be a permutation in Perm(A) and a,b atoms in A. Then (a b)P =
(p(a) p(b))-

» Lemma 11.
i.) YEm At if and only if supp(w) N supp(t) = 0.
i.) If TEs Xt then supp(s) = supp(t).

Proof. Both parts are proved by induction. In part (i), we analyse cases depending on the
last rule applied in the derivation of YT F 7w A . We show the cases for rules (Avar) and
(Aabs), the other cases follow directly by induction.

If the last rule applied is (Avar) then ¢t = 7/ X and T F 7 A #’- X if and only if (Inversion
Lemma) supp(w”lfl) C supp(perm(Y|x)), if and only if supp(w) C 7' - supp(perm(Y|x)).
Since supp(X) Nsupp(perm(Y|x)) = @ by Definition 5, we deduce supp(7) Nsupp(n’- X) =0
as required.

If the last rule applied is (Aabs), then t = [a|t’ and T F 7 A [a]t’ if and only if (Inversion
Lemma) Y, (¢; ¢2) A Var(t') b 7 A (a ¢1) - t'. By induction, supp(7) Nsupp((a ¢1)t') = () and
since supp([a|t’) = supp((a ¢1) - t') — {c1} (because ¢ is a new atom and (¢ c2) A Var(t')),
we obtain supp(w) N supp([a]t’) = () as required.

The proof for part (ii), by induction on the derivation of T F s éa t, is similar. In the
case of rule (éa var), the premise implies that ds(7, 7") Nsupp(X) = 0, hence supp(7- X) =

supp(7’ - X). In the case of rule (éa ab), by induction hypothesis supp(s) = supp((a b) - t)
and since we know that (a ¢1) A t, using part 1 we obtain the result. |

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

» Lemma 12 (Equivariance).
i.) YEr A tiff YExP A p-t, for any permutation p.

i) IFYF syt then Thmesa, -t
Proof. By induction on the rules of Figures 1 and 2. <
» Lemma 13 (A preservation under éa) IfYFs Ratand THr As then TH At
Proof. Direct consequence of Lemma 11. |

» Proposition 14 (Strengthening for A). If T, 7 A X F 7’ A s and supp(w) C supp(perm(Y|x))
or X ¢ Var(s) then T F 7' A s.

» Proposition 15 (Strengthening for éa) IfY,mnAXkEs éa t and
supp(m) C supp(perm(Y|x)) or X ¢ Var(s,t), then TF s éa t.

» Proposition 16 (Weakening). Suppose that T+ Y'o. Then,
1. T’I—7rfs:>'fl—7rkia.
2. Y Esr,t=TFso~r,to.

Proof. By induction on the rules of Figures 1 and 2. |
» Example 17. Notice that (a ¢) A X F (a b) A (b¢)- X, for
(@) AXF (@b AX s (ac) A XF(ac) A X (by Equivariance) (2)
The following correctness property states that A is indeed the fixed-point relation:

» Theorem 18. Let T, m and t be a fized-point context, a permutation and a nominal term,
. . A
respectively. THm At iff THm-t~,t.

Sketch. In both directions the proof follows by induction on the structure of the term ¢ and by

case analysis on the last rule applied in the derivation. We show only T+ 7w At = T F 7t éa t.

Below we sketch the interesting cases, the other cases follow by induction hypothesis easily.
1. The last rule is (Avar). In this case, t = 7’- X and supp((n’) "toror’) C supp(perm(Y|x))
and therefore, 7 - (' - X) Xo 7 - X, via rule (éa var).

2. The last rule is (Aabs). In this case, ¢t = [a]t’ and 7 A t has a derivation of the form:
II

Y, (c1 c2) AVar(t') Fm A (acp) -t

YTEmAl[at
From Y, (¢1 ¢2) AVar(t') A (a ¢1) -t it follows, from Lemma 11:

supp(m) N supp((a ¢1) - ') = 0. (3)

We need to prove that T + [7(a)]7 - ¢/ R [a]t/, that is, T -7 - ¢/ R (m(a) a) -t and also

T, (c1 c2) AVar(t') b (w(a) ¢1) At for some new atoms cy, ca.
By IH, there exist a proof I’ for T, (¢1 ¢2) A Var(t') -7 ((a ¢1).t') éa (acp)-t. Let
T =7, (c1 c2) A Var(t'). The following equivalence holds:

Y Fr(lact) t) R (act) t < Y+ () c) (1-t) % (ac) t (4)

Also, Y+ (7 -) Ra (m(a) ¢1) - ((a ¢1) - ') by Equivariance. And since Y/ + (7(a) ¢1) -
A

((a c1) - t') =y (w(a) a) - t', we are done. <

77

FSCD 2018

7:8

Fixed-Point Constraints for Nominal Equational Unification

- 7 Ha)#X € A
A a#td (#a) m (#var)
AF a#t Al a#ts ... Al a#t,
Arapri) AFadn g (feuple)
A b a#t
I # - @
AF ot) T agpn)

Figure 3 Rules for freshness.

N#X CA

~ . ('\N"a a) dS(ﬂ—’ﬂ-)# — o var
Al—azaa A}_TI"X%QTI',-X(@)

AFtrgt At oty .. Abtyrat,

— (Ra — — (=a tuple)

Abftm,ft Al (t1,. . tn) o (t1,. .., tn)

Aty t AlF s=q (ab)t Al a#t
—_— (Ra X, ab
A i 7 o @) Y [a)s ~a (bt (o ab)

Figure 4 Rules for a-equality via freshness.

3.2 From freshness to fixed-point constraints

In this section we show that the a-equivalence relation defined in terms of freshness constraints,
denoted as =, is equivalent to ém given that a transformation []* from freshness to
fixed-point constraints and a transformation []# from fixed-point to freshness constraints
can be defined. In the standard approach [13, 8], the freshness relation (a#t) and the
a-equivalence relation s =2, t (w.r.t. #), are axiomatised using the rules in Figures 3 and 4,
respectively.

To define =, we use the difference set of two permutations in rule (=, var), and
ds(m, 7)#X = {a#X | a € ds(m, ')}

The symbols A and V denote freshness contexts, that is, sets of freshness constraints of
the form a# X, meaning that a is fresh in X. The domain of a freshness context A, denoted
by dom(A), consists of the atoms occurring in A; A|x consists of the restriction of A to the
freshness constraints on variable X, that is, the set {a#X | a#X € A}. Below we denote
by § the family of freshness contexts, and by §, the family of fixed-point contexts. The
mapping [_], below associates each freshness constraint in A with a fixed-point constraint:

[7]A . A — SA
a#X +— (acy) A X where ¢, is a new name.

We denote by [A], the image of A under [_],.
The mapping [], below associates each fixed-point constraint in T with a freshness
constraint:

[Jg: T — 3
T A X — supp(m)#X.

We denote by [Y]4 the image of T under [].

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

» Lemma 19.
1. Ak a#t < [Al, (c2 1) AVar(t) F (a c1) At

2. THr At< [Y]gt supp(m)#t.

» Theorem 20. éa coincides with =, on ground terms, that is, F s =, t < F s éa t.
More generally,
A

1. Absmy,t= [AlF syt
2. Thsrgt= [Tk sagt.

Sketch.
1. The proof is by induction on the derivation of A F s ~, t. The interesting case is when

the derivation is an instance of (=, var):
ds(m,m)#X CA

Abrm - X=,m-X

We want to show that [A], F - X Xq 71+ X. To use rule (éa var), we need to show that

(~ var)

supp(m; t o) C supp(perm(([A]A)|x)). Let b € supp(r; ' o) and suppose b ¢ ds(m, 7).

Then 7(b) = m1(b) and 77 '(7(b)) = b, contradiction. Therefore, b € ds(m,m;) and
(b ep) A X € [A] (for ¢ a new name), and the result follows. <

. . . . A,
As a corollary, since =,, is an equivalence relation [16], we deduce that =, is also an
equivalence relation.

A X .
» Theorem 21. =, is an equivalence relation.

4 Nominal Unification via fixed-point constraints

In this section we define the notion of nominal unification in terms of fixed-point constraints.

» Definition 22. A unification problem Pr consists of a finite set of equations and fixed-point
?

N
constraints of the form s &, t and 7 A’ ¢, respectively.

We design a unification algorithm via the simplification rules presented in Table 1. These
rules act on unification problems Pr. We abbreviate (t1,...,t,) as (£),, and for a set S,
TAS={rAX|XeS}

We write Pr = Pr’, when Pr’ is obtained from Pr by applying a simplification rule from
Table 1 and we write = for the reflexive and transitive closure of =

» Lemma 23. There is no infinite chain of reductions = starting from a problem Pr.

Proof. Termination of the simplification rules follows directly from the fact that the following

measure of the size of Pr is strictly decreasing:

[Pr] = (n1, M) where nq is the number of different variables used in Pr, and M is the multiset

of sizes of equality constraints and non-primitive fixed-point constraints occurring in Pr.
Each simplification step either eliminates one variable (when an instantiation rule is

used) and therefore decreases the first component of the interpretation, or leaves the first

component unchanged but replaces a constraint with smaller ones and/or primitive ones. <

The normal form of Pr by = is defined as expected and denoted by (Pr)n.
?

We say that an equality constraint s ,’@u t is reduced when one of the following holds:
1. s:=a and ¢ := b are distinct atoms;
2. s and t are headed with different function symbols, that is, s :=f s’ and t := g t/;

7:9

FSCD 2018

7:10

Fixed-Point Constraints for Nominal Equational Unification

Table 1 Simplification Rules for Problems. In (Aabs) and (éa abs2), ¢1 and ¢z are new names.

(Aat) Prw{r A a} = Pr, if m(a)=a
(L) Pri {m A" ft} — PrU{m A"t}
(At) Pri{m A" (t).} = PrU{m A" t1,...,m A"t}
(Aabs) Prw {m A" [a]t} — PrU{m A" (a c1)-t,(c1 c2) A7 Var(t)}
(Avar) Prw{r A" 7' - X} = PrU{ﬂ’(’r/)_1 ATXY, ifn #£1d
(éa a) Pr{a éa a} = Pr
(% f) Pri{fta, ft} = PrU{t~.'t}
~ ? ?
(R t) Pr {(Dn ma’ (F)n} = PrU{ti R th, .. tn R th}
? ?
(R absl) Prw{[at 2, [alt!} = PrU{tX,t}
? ? —_——
(Ro abs2) Prw{[a]t X, [b]s} = PrU{t~, (ab)-s (ac1) A’ s, (c1 ca) A7 Var(s)}
(Ra var) Pr&J{W~X$;W'~X}:> Pr U{(7")tom A" X}
? a1t
(Racinstl) Pre{m X &, 1) 2 pr{X s al), if X ¢ Var(t)
? a1
(Ra inst2) Prw{t, m X} 2 T pr{X e rli), if X ¢ Var(t)

3. s and t have different term constructors, that is, s = [a]s’ and ¢t = f ¢/, for some term
former f, or s = 7 - X and t = a, etc.

A fixed-point constraint m A’ s is reduced when it is of the form 7 A” @ and 7(a) # a, or

m A7 X, the former is called inconsistent whereas the latter is called consistent.

2

» Example 24. For Pr = [a]f(X,a) ~
derivation chain:

[BIf((b ¢) - W, (a ¢) - Y), we obtain the following

[e3

K: f(X,a) éa f((ab)o(be)-W,(ab)o(ac) Y),
[a]f(X,a) =, [bf((bc)- W, (ac) Y) =9 (ac;) ATf((be) W, (ac) Y),
(CQ Cl) k? VV, (62 Cl))\? Y

:{Xél<ab>o<bc>-w,aél<ab>o<ac>-Y, }
(@aci) N (be)-W,(ac)) A (ac) Y, (cacr) NI W, (ca c1) AT Y

[Yb] L? (be) 7 ? ? ?
X =, (ab)o(bc) W, (acr) AN Wo(acr) A7b,(cg 1) Ao W (caer) A7 b

2

= { X2, @h)obo) Wiae) K7W (e e) 7 W

[XH(G%Z) c)-W]| { (a Cl) 2? W, (62 Cl) 2w } — <Pr>nf

» Definition 25. Let Pr be a problem such that (Pr),; = Pr’. We say that (Pr),s is
reduced when it consists of reduced constraints, and successful when Pr’ = () or contains only
consistent reduced fixed-point constraints; otherwise, (Pr),s fails.

» Definition 26. A solution for a problem Pr is a pair of the form (®, o) where the following
conditions are satisfied:
1. d+ 7 Ato, if 7 A7 t € Pr;

?

A7 A°
2. PFsox,to,if s~ t€Pr.

3. Xo = Xoo for all X € Var(Pr) (the substitution is idempotent).

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

The solution set for a problem Pr is denoted by U(Pr).

The simplification rules (Table 1) specify a unification algorithm: we apply the simplifica-
tion rules in a problem Pr until we reach a normal form (Pr),s. In the case (Pr)ns fails or
contains reduced equational constraints, we say that Pr is unsolvable; otherwise, (Pr)ys is
solvable and its solution consists of the composition o of substitutions applied through the
simplification steps and the fixed-point context ® = {7 A X |7 A* X € (Pr)nt}.

» Example 27 (Continuing example 24). Notice that (¥, o), where ¥ = {(a ¢1) AW, (¢c2 ¢1) A
W}and o ={Y — b, X — (a b) o (bc) W}, is a solution for Pr.

» Theorem 28 (Correctness). Let Pr be a unification problem and (Pr)ns = Pr’, then
1. U(Pr) =U(PY'), and
2. if Pr’ contains equational or inconsistent reduced fized-point constraints then U(Pr) = 0.

Proof. The proof is by induction on the length of the derivation Pr == Pr’.
Base Case. 7 = 0. Then Pr = Pr’ and the result is trivial.

Induction Step. Suppose, n > 0 and consider the reduction chain
Pr =Pr; = ... = Pr,,_; = Pr,, =Pr’.

The proof follows by case analysis on the last rule applied in Pr,,_;.

1. The rule is (Aat). In this case, Pr,,_; = Pr/,_; W{r A’ a} = Pr/,_, = Pr,,, and 7(a) = a.

Let (¥,0) € U(Pr,_1), then
a. Vi Ato, forall o/ A"t €Pr],_

A A7
b. Ut tox, s, foralltx,sé€Pr, i;

c. Xo=Xoo, for all X € Var(Pr},_,).
Therefore, (¥, o) € U(Pr,) and U(Pr,—1) C U(Pr,). The other inclusion is trivial.
2. Theruleis (Avar). In this case, Pr,_; = Pr/, w{mA’n-X} = Pr/, ,U{n(") ' \’X} =
Pr,, and «’ # Id.
Let (U,0) € U(Pr,,_1), then
a. Uk a' Ato, forall o A7t ePr and V7 A7 Xo.

n—1»
A A? ’
b. VFto~, so, forallt~,se€Pr],_j;
c. Xo=Xoo, forall X € Var(Pz),_,).
Notice that

UVhkrir - Xo =Vkr- (- Xo) éa (7' Xo), hence
Uk (r)tororn (Xo) X, Xo via Lemma 12
=¥k A Xo.

Therefore, (¥, 0) € U(Pr,,) and U(Pr,,_1) C U(Pr,). The other inclusion is similar.
3. The rule is (Aabs). Then

Pr, 1 =Pr' W {m A7 [a]s} = Pr' U {(c; ¢2) A7 Var(s), 7 A7 (a ¢1).5} = Pr,,.

where ¢; and co are new names not occurring anywhere in the problem.
Let (¥,0) € U(Pr,,—1) be a solution for Pr,_;:
a. Ui Ato, forall 7/ A7t €Pr’ and ¥ I 7 A ([a]s)o.

A A?
b. ¥Fto=,so,forallt~,secPr.

7:11

FSCD 2018

7:12

Fixed-Point Constraints for Nominal Equational Unification

Since ¥ + 7 A ([a]s)o and ([a]s)o = [a]so, it follows that U F 7 A ([a)s)o. From inversion
and rule (A[a]), this implies that there exists a proof for U, (¢1 ¢3) AVar(so) - wA(a c1).s0.
Notice that we can always choose ¢; and ¢ such that supp((c; ¢2)) Nsupp(so) = 0, from
Lemma 11, it follows that ¥ F (¢; ¢2) A so. Since U, (¢1 ¢2) A Var(so) -7 A (a ¢1).80, it
follows that U F 7 A (a ¢1).s0, by Proposition 16. <

» Remark. Theorem 18 guarantees the equivalence between ~, and éa, therefore, we can
associate the unification algorithm proposed, with the standard nominal unification algorithm
proposed in [16]. The problem Pr introduced in Example 24, is equivalent to the nominal
unification problem P = {[a]f(X,a) ~," [B|f((b c) - W, (a ¢) - Y}, and using the standard
simplification rules [16]:

[Y=0]

= P ={X =" (ab)- ((be) W),at'W}
[X—(a %b c)-W] {a#?W} =P

The pair (P)so1 = ({a#W},0), where § = {Y/b, X — (a b) o (b ¢) - W} is a solution for
P. Using the translation [],, we obtain [(P)so1]x = {la#W]r},0) = ((a ca) A W,0),
where ¢, is a new name, which is equivalent to ((a ¢,) A W, (¢q c1) A W, 6), for ¢, and ¢;

Y—b
P ==

()

?
not occurring anywhere in P. Therefore, [(Pso1)]. is a solution for Pr = {[alf(X,a) éa

[Blf((b ¢) - W, (a ¢) - Y}. Similarly, from the solution (¥, o) proposed in Example 27, we
obtain ([¥]x, o) = (a#W, c1#W, co#W, o), which is a solution for P.

A
In the theorem below Pr, denotes a unification problem w.r.t. =, and A, and P4 denotes
a unification problem w.r.t. =, and #.

» Theorem 29. Let Pr, and Py be unification problems such that [Pr,]# = Py and
(P,0) e U(Pr,) and (A,0) € U(Py4) be solutions for Pr, and Py, respectively. Then

L. ([V]x,0) € U(Py).

2. <[A]A7(5> S Z/{(PI'A)

5 Nominal C-unification via fixed-point constraints

In this section we propose an approach to nominal unification modulo commutativity via the
notion of fixed-point constraints.
For example, assuming + is commutative, i.e., X +Y =Y + X, a problem of the form

2

+{(ab)- X,a) &, +{Y, X) (6)

can be solved by unifying (a b) - X with ¥ and a with X, or (a b) - X with X and a with Y.

In [2], a simplification algorithm for solving nominal C-unification was proposed. This
algorithm was based on the standard nominal unification algorithm [16] where a-equivalence
is defined w.r.t. the notion of freshness. Upon the input of a unification problem P, the
algorithm outputs a finite family of triples of the form (V, o, P), where V is a freshness
context, o a substitution and P is a set of fixed-point constraints. In [3] we proved that even
a simple unification problem, as (a b) - X ~, X could produce an infinite and independent
set of solutions, whenever the signature contains commutative function symbols: {X/a +
b, X/f(a+b), X/le][(a+b,b+a),...}. Therefore, we could not provide a finite set of solutions
consisting only of freshnesvs constraints and substitutions. However, we remark that the
problem +((a b) - X, a) éa (Y, X) mentioned above has in fact a finite number of most
general solutions (indeed, two) if we solve it using fixed-point constraints. The most general
unifiers are {X — a,Y +— b} and {Y — a,(a b) A X}.

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

m(a) =a supp(7™) C supp(perm(Y

(rca) PP() < ppl(p (T]x)) (Aovar)
TrH7Aca TrEmienm - X
Thmict THrtoRacti THT-t Rac tin mo

f;é + ()\Cf) - lo ,C T l1 ,C U(i41) d 2 = 071()\0_"_)
TExAeft TF7Ac +(t0,t1)
TYrEmAhcti ... YTExTActn Y,(c1 c2) AeVar(t) Fm Ac (ac1) -t

1 < (Actuple) (1 c2) Ao WF7io(ea) (Acabs)
ThmAie (t1,...,tn) ThExAc[a]t

Figure 5 Fixed-point rules modulo commutativity.

A YH@) tomhe X

— (Ra,c a) () ¢ (éa,c var)
ThaXaca T X Racn X

A A A
THtxact Yt Racts .. THtnRacty i
—_— (Ra,c f,f #+) - (Xa,c tuple)
Y Fft =g, o ft’ YTF (t,. . s tn) Rao (t1, .-, tn)

THt éa,c t' n TH s QA:QYC (ab)t T,(c1 c2) AcVar(t)F (ac1) het a
~ Ra.c [a]) - (Ra.c ab)

T+ [a]t Ra.c [a]t’ T [a]s Ra,c [b]t

A A
TF soRa,cti S1~a,c t(it1) mod 2 . A

ot) i=0,1 (Rac+)
T F +(s0,51) Ra,c +(to,11)

Figure 6 Rules for equality modulo commutativity.

» Definition 30 (C-constraints). A C-fized-point constraint is a pair of the form m A¢ ¢, of a
permutation 7 and a term ¢t. A C-a-equality constraint (for short, C-equality constraint) is a

A
pair of the form s =, ¢ t, for nominal terms s and .

" A . . o
Intuitively, s =, ¢ t will mean that s and ¢t are a-equivalent modulo commutativity of some
function symbols, and ™ A¢ ¢t will mean that the permutation 7 has no effect on term ¢
except for the commutativity of some subterms. For instance, (a ¢) A¢ +{a,c), but not
(a ¢) Ac f{a,c), if f is not a commutative symbol

The notions of C-fixed-point contexts and C-judgements are defined as expected, and
derivable according to the rules in Figures 5 and 6.

Rule (A ¢var) is similar to the previous one. Rule (=, ¢ var) relies on the primitive notion
of fixed-point constraints, it is equivalent to the rule given earlier. There is a branching rule

. . . A . .

(Ac+) for C-fixed-point constraints and a branching rule (=, ¢ +) for C-equality constraints
(more precisely, in the case of C operators, there are two possible rules to apply, but we have
written them in a compact way as one rule with parameter ¢). Technical results proven in
Section 3 can be extended to C-constraints.

» Theorem 31. Let T, 7 and t be a C-fixed-point context, a permutation and a nominal

term, respectively. T m Aot iff T Emw-t éa,C t.

Proof. The proof is by induction on the structure of ¢, and follows the same lines of the
proof of Theorem 18. <

7:13

FSCD 2018

7:14 Fixed-Point Constraints for Nominal Equational Unification

VEs=copt
V[s Racy [t

VE 8o Ria,cy tis VI S1 R0} i) mod2
V£ (s0,81) Rpacy f5 (to 1)

, B/ # C or both s and ¢ are not pairs (~,,c} app)

y 7 = 0, 1 (%{a,c} C)

Figure 7 Additional rules for {a, C'}-equivalence.

5.1 From freshness to C-fixed-point constraints

In [2] the relation ~(, ¢} was defined as an extension of =, (see the rules in Figures 3 and
4) with rules for commutative symbols:

Using the functions [], and []x defined in Section 3.2, we can obtain results that
extend Lemma 19 and Theorem 20.

» Lemma 32. A F a#t = [A]S, (c1 o) Ao Var(t) F (a ¢1) Ao t,
where [A]{ = {7 Ac X | 7 A X € [A]}.

» Theorem 33.
L THsRact=[Ylgbs~act

2. Aks N, C} t = [A]E Fs é(x,C t.

5.2 Solving nominal C-unification problems via fixed-point constraints

Similarly to Section 4, we define the notion of nominal C-unification in terms of C-fixed-point
constraints.

» Definition 34. A C-unification problem Pr consists of a finite set of C-equality and

?
C-fixed-point constraints of the form s A%C tand 7)\?C t, respectively®.

We write Pr =>¢ Pr’ when Pr’ is obtained from Pr by applying a simplification rule
from Table 2 and we write = ¢ for the reflexive and transitive closure of =>¢. We omit
the subindex when it is clear from the context.

» Lemma 35. There is no infinite chain of reductions =>¢ starting from a C-unification
problem Pr.

The simplification rules (Table 2) specify a C-unification algorithm: we apply the simpli-
fication rules in a problem Pr until we reach a normal form (Pr),s. The notions of solution,
consistency, failure, correctness, etc. obtained in Section 4 can be extended to C-unification.

» Remark. As with standard nominal unification, one can use the functions |]z and
[_]x to represent solutions (V,o, P) of nominal C-unification problems w.r.t. freshness
constraints [2, 3] (where P is a set of fixed-point equations of the form 7.X zza,c} X) as
solutions ([V], U{P,},o) of nominal C-unification problems via C-fixed-point constraints,
where Py, = {r Ac¢ X | 7. X %Ea,C} X € P}

A7
3 To ease the notation, we will denote s =~ ¢ ¢ by s ~° ¢

M. Ayala-Rincdn, M. Fernandez, and D. Nantes-Sobrinho

Table 2 Simplification Rules for C-unification problems. In rules (Acabs) and (éa,c abs2), c1
and ¢z are new names.

(¢ at) Prw{m AL a} = Pr, if w(a)=a
(A f) Pr {m)\;’C ft} — PruU{m AL thiz+
(he+1) Pruy {m)\§ +(to, t1)} = PrU{r - to ~ to, 7 b1 ~ ti1}
(Ac-ﬁ-z) PI‘H’J{TK' Ao —l;<to,t1>} — PrU{ﬂ"to ~ ti, Tt~ to}
(Ac tuple) Pri{m AL (t)n} = PrU{m ALty ..., 7T hotn}
(Acabs) Prw {m AL [a]t} = Pru{m A/?ci(la c1) - t,(c1 c2) AG Var(t)}
(Acvar) Pri{m AL - X} = PruU{r")" AL X}, if 7' #£1d
(éa,c a) Pri{a ~’ a} = Pr

A
(Ra.c f) Prw {ft ~° ft'} = PruU{t="t'}, f#+

A

(Ra,c +1) Prw {+{to,t1) =" +(s0,51)} = PrU {to " so,t1 ~" s1}

A

(%a,C +2) Pr {—|—<t0,t1> ~' —|—<80,S1>} - Pr U {to ~7 S1,101 ~7 So}

A ~ ~

(Ra,c t) Priw{(t)n =" (t')n} = PrU{ti =" t],...,tn ="t}
(R absl) Prw{[a]t ~" [a]t'} — PrU{tx"t}

A 4 P 5
(Ra,c abs2) Prw{[a]t =~ [b]s} = PrU{t~" (ab) s, (aci)Ass,

(c1 c2) AL Var(s)}
(éa,c var) Prw{r X ="7 . X} = Pr U{(nx)tom AL X}
. a1l
(R instl) Pri{r- X ~'t} K2 pr(X o o Lt), if X ¢ Var(t)
[Xm— 1t

(~q inst2) Pruw{t~"m. X} Pr{X — 7 '.t}, if X ¢ Var(t)

6 Conclusions and Future Work

The notion of fixed-point constraints allowed us to obtain a finite representation of solutions
for nominal C-unification problems. This brings a novel alternative to standard nominal
unification approaches in which just the algebra of atom permutations and the logic of
freshness constraints are used to implement equational reasoning (e.g., [1, 5, 6, 7, 9]), and in
particular to their extensions modulo commutativity, for which only infinite representations
were possible in the standard approach. With the new proposed approach the development
of algorithms for the generation of solutions of nominal equational problems modulo theories
such as C, AC, etc would be simplified avoiding with the use of fixed-point constraints the
development of procedures for the generation of infinite independent sets of solutions.

In future work we plan to extend this approach to matching and unification modulo
different equational theories as well as to the treatment of equational problems in nominal
rewriting modulo.

—— References

1 T. Aoto and K. Kikuchi. A Rule-Based Procedure for Equivariant Nominal Unification. In
Pre-proc. of Higher-Order Rewriting (HOR), pages 1-5, 2016.

2 M. Ayala-Rinc6on, W. Carvalho-Segundo, M. Fernandez, and D. Nantes-Sobrinho. Nominal
C-Unification. In Pre-proc. of the 27th Int. Symp. Logic-based Program Synthesis and Trans-
formation (LOPSTR), pages 1-15, 2017. URL: https://arxiv.org/abs/1709.05384.

3 M. Ayala-Rincén, W. Carvalho-Segundo, M. Fernandez, and D. Nantes-Sobrinho. On Solv-
ing Nominal Fixpoint Equations. In Proc. of the 11th Int. Symp. on Frontiers of Combining

7:15

FSCD 2018

https://arxiv.org/abs/1709.05384

7:16

Fixed-Point Constraints for Nominal Equational Unification

10

11

12

13

14

15

16

Systems (FroCoS), volume 10483 of Lecture Notes in Computer Science, pages 209-226.
Springer, 2017. doi:10.1007/978-3-319-66167-4_12.

M. Ayala-Rincén, W. de Carvalho Segundo, M. Fernandez, and D. Nantes-Sobrinho. A
formalisation of nominal a-equivalence with A and AC function symbols. FElectronic Notes
in Theoretical Computer Science, 332:21-38, 2017. doi:10.1016/j.entcs.2017.04.003.
C. F. Calves. Unifying Nominal Unification. In 24th International Conference on Rewriting
Techniques and Applications (RTA 20183), volume 21 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 143-157, 2013. doi:10.4230/LIPIcs.RTA.2013.143.

C. F. Calves and M. Ferndndez. A Polynomial Nominal Unification Algorithm. Theoretical
Computer Science, 403(2-3):285-306, 2008. doi:10.1016/j.tcs.2008.05.012.

J. Cheney. Equivariant unification. Journal of Automated Reasoning, 45(3):267-300, 2010.
doi:10.1007/s10817-009-9164-3.

M. Fernédndez and M. J. Gabbay. Nominal Rewriting. Information and Computation,
205(6):917-965, 2007. doi:10.1016/j.ic.2006.12.002.

M. Fernandez, M. J. Gabbay, and I. Mackie. Nominal Rewriting Systems. In Proc. of
the 6th Int. Conf. on Principles and Practice of Declarative Programming (PPDP), pages
108-119. ACM Press, 2004. doi:10.1145/1013963.1013978.

M. J. Gabbay. A Theory of Inductive Definitions With a-equivalence. PhD thesis, DPMMS
and Trinity College, University of Cambridge, 2000.

M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra.
Formal Aspects of Computing, 20(4-5):451-479, 2008. doi:10.1007/s00165-007-0056-1.
M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects of Computing, 13(3-5):341-363, 2002. doi:10.1007/s001650200016.

A. M. Pitts. Nominal Logic, a First Order Theory of Names and Binding. Information and
Computation, 186(2):165-193, 2003. doi:10.1016/50890-5401(03)00138-X.

A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

M. Schmidt-Schauf; T. Kutsia, J. Levy, and M. Villaret. =~ Nominal Unification of
Higher Order Expressions with Recursive Let. In 26th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR), Revised Selected Pa-
pers, volume 10184 of Lecture Notes in Computer Science, pages 328-344, 2016. doi:
10.1007/978-3-319-63139-4_109.

C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Computer
Science, 323(1-3):473-497, 2004. doi:10.1016/j.tcs.2004.06.016.

http://dx.doi.org/10.1007/978-3-319-66167-4_12
http://dx.doi.org/10.1016/j.entcs.2017.04.003
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.143
http://dx.doi.org/10.1016/j.tcs.2008.05.012
http://dx.doi.org/10.1007/s10817-009-9164-3
http://dx.doi.org/10.1016/j.ic.2006.12.002
http://dx.doi.org/10.1145/1013963.1013978
http://dx.doi.org/10.1007/s00165-007-0056-1
http://dx.doi.org/10.1007/s001650200016
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1007/978-3-319-63139-4_19
http://dx.doi.org/10.1007/978-3-319-63139-4_19
http://dx.doi.org/10.1016/j.tcs.2004.06.016

Strict Ideal Completions of the Lambda Calculus

Patrick Bahr

IT University of Copenhagen, Denmark
paba@Qitu.dk
https://orcid.org/0000-0003-1600-8261

—— Abstract

The infinitary lambda calculi pioneered by Kennaway et al. extend the basic lambda calculus by
metric completion to infinite terms and reductions. Depending on the chosen metric, the res-
ulting infinitary calculi exhibit different notions of strictness. To obtain infinitary normalisation
and infinitary confluence properties for these calculi, Kennaway et al. extend S-reduction with
infinitely many ‘1 -rules’, which contract meaningless terms directly to L. Three of the resulting
Bohm reduction calculi have unique infinitary normal forms corresponding to Bohm-like trees.

In this paper we develop a corresponding theory of infinitary lambda calculi based on ideal
completion instead of metric completion. We show that each of our calculi conservatively extends
the corresponding metric-based calculus. Three of our calculi are infinitarily normalising and con-
fluent; their unique infinitary normal forms are exactly the Bohm-like trees of the corresponding
metric-based calculi. Our calculi dispense with the infinitely many L-rules of the metric-based
calculi. The fully non-strict calculus (called 111) consists of only 3-reduction, while the other
two calculi (called 001 and 101) require two additional rules that precisely state their strictness
properties: Axz.L — 1 (for 001) and L M — L (for 001 and 101).

2012 ACM Subject Classification Theory of computation — Rewrite systems

Keywords and phrases lambda calculus, infinitary rewriting, Bohm trees, meaningless terms,
confluence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.8

Related Version For space considerations we abridged and in some cases omitted proofs. The
corresponding full proofs can be found in the extended version of this paper [5], https://arxiv.
org/abs/1805.06736.

1 Introduction

In their seminal work on infinitary lambda calculus, Kennaway et al. [10] study different
infinitary variants of the lambda calculus, which are obtained by extending the ordinary
lambda calculus by means of metric completion. Different variants of the calculus are obtained
by choosing a different metric. The ‘standard’ metric on terms measures the distance between
two terms depending on how deep one has to go into the term structure to distinguish two
terms. For example the term x y is closer to the term x z than to the term x, because in the
former case both terms are applications whereas in the latter case one term is an application
and the other is a variable.

The different metric spaces arise by changing the way in which we measure depth.
Kennaway et al. [10] indicate this using a binary triple abc with a,b,c € {0,1}, where a =0
indicates that we do not count lambda abstractions when calculating the depth, and b = 0
or ¢ = (indicates that we do not count the left or the right side of applications, respectively.
More intuitively these three parameters can be interpreted as indicating strictness. For
example, a = 0 indicates that lambda abstraction is strict, i.e. if M diverges, then so does
Ar.M.

© Patrick Bahr;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 8; pp. 8:1-8:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:paba@itu.dk
https://orcid.org/0000-0003-1600-8261
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.8
https://arxiv.org/abs/1805.06736
https://arxiv.org/abs/1805.06736
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Strict Ideal Completions of the Lambda Calculus

Since the set of infinite terms is constructed from the set of finite terms by means of
metric completion, each calculus has a different universe of terms, as well as a different mode
of convergence, which is based on the topology induced by the metric. For instance, from
the lambda term N = (Az.x 2 y)(Az.x 2 y), we can derive the infinite reduction N — Ny —
Nyy — In the fully non-strict calculus, where abc = 111, this reduction converges to
the infinite term M = ...yyy (i.e. M satisfies M = M y). By contrast, in the calculus 101,
which is strict on the left-hand side of every application, this reduction does not converge.
In fact, M is not even a valid term in the 101 calculus.

In order to deal with divergence as exemplified for the 101 calculus above, Kennaway
et al. [10] extend standard fS-reduction to Bohm reduction by adding rules of the form
M — 1 for each term M that causes divergence such as the term NV in the 101 calculus. The
resulting 001, 101, and 111 calculi based on Béhm reduction have unique normal forms, which
correspond to the well-known Bohm Trees [14, 6], Levy-Longo Trees [13, 15] and Berarducci
Trees [7], respectively.

In this paper, we introduce infinitary lambda calculi that are based on ideal completion
instead of metric completion with the goal of directly dealing with diverging terms without the
need for additional reduction rules that contract diverging terms immediately to L. To this
end, we devise for each metric of the calculi of Kennaway et al. [10] a corresponding partial
order with the following property: Ideal completion of the set of finite lambda terms yields
the same set of infinite lambda terms as the corresponding metric completion (Section 3).
We also find a strong correspondence between the modes of convergence induced by these
structures: Each ideal completion yields a complete semilattice structure, which means
that the limit inferior is always defined. We show that this limit inferior is a conservative
extension of the limit in the corresponding metric completion in the sense that both modes
of convergence coincide on total lambda terms, i.e. terms without L (Section 3).

Based on these partial order structures we define infinitary lambda calculi by a straight-
forward instantiation of transfinite abstract reduction systems [2]. We find that the ideal
completion calculi form a conservative extension of the metric completion calculi of Kennaway
et al. [10] (Section 4). Moreover, in analogy to Blom [9] and Bahr [3], we find that the
differences between the ideal completion approach and the metric completion approach are
compensated for by adding L-rules to the metric calculi in the style of Kennaway et al. [11]
(Section 5). Finally, we also show infinitary normalisation for our ideal completion calculi
and infinitary confluence for the 001, 101, and 111 calculi (Section 5). However, in order
to obtain infinitary confluence for 001 and 101, we need to extend S-reduction with two
additional rules that precisely capture the strictness properties of these calculi: Axz.l — |
(for 001) and L M — L (for 001 and 101). In Section 6, we give a brief overview of related
work.

2 The Metric Completion

In this section, we introduce infinite lambda terms as the result of metric completion of the
set of finite lambda terms. Before we get started, we introduce some basic notions about
transfinite sequences and lambda terms. We presume basic familiarity with metric spaces
and ordinal numbers.

A sequence over a set A of length « is a mapping from an ordinal « into A and is written
as (a,),<«, which indicates the mapping ¢ — a,; the notation |(a,),<«| denotes the length «
of (a,),<a. If v is a limit ordinal, then (a,),<, is called open; otherwise it is called closed.
If (a,),<« is finite, it is also written as (ag,...,aq—1); in particular, () denotes the empty

P. Bahr

sequence. We write S - T for the concatenation of two sequences S and T'; S is called a
(proper) prefiz of T, denoted S < T (resp. S < T) if there is a (non-empty) sequence S’ such
that S -S” = T. The unique prefix of a sequence S of length 8 < |S| is denoted by S|s.

We consider lambda terms with an additional symbol L; the resulting set of lambda terms
A is inductively defined by the following grammar:

M,N:=1|z| Xe.M|MN

where z is drawn from a countably infinite set V of variable symbols. The set of total lambda
terms A is the subset of lambda terms in A | that do not contain L. Occurrences of a variable
z in a subterm Axz.M are called bound; other occurrences are called free. We use the notation
Mz — y] to replace all free occurrences of the variable = in M with the variable y. We use
finite sequences over {0, 1,2}, called positions, to point to subterms of a lambda term; we
write P for the set of all positions. For each M € A, P(M) denotes the set of positions
of M (excluding ‘L’s) recursively defined as follows: P(L) =0, P(z) = {()}, P(M1 M3) =
{0YU{() - pli € {1,2},p € P(My)}, and P(Ax.M) = {0} U{(0) - p|p € P(M)}.

A conflict [10] between two lambda terms M, N is a position p € P(M)UP(N) such that:
(a) if p = (), then M and N are not identical variables, not both L, not both applications,
and not both abstractions; (b) if p = (i) - ¢ and 7 € {1,2}, then M = M; My, N = N1 Ny,
and ¢ is a conflict of M; and N;; (¢) if p = (0) - ¢, then M = Az.M’, N = \y.N’, and ¢ is a
conflict of M'[x — z] and N'[y — z], where z is a fresh variable occurring neither in M nor
N. The terms M and N are said to be a-equivalent if they have no conflicts. By convention

we identify a-equivalent terms (i.e. A and A are assumed to be quotients by a-equivalence).

» Definition 2.1. Given a triple @ = agajas € {0, 1}37 called strictness signature, a position
is called @-strict if it is of the form ¢ - (i) with a; = 0; otherwise it is called @-non-strict. If @
is clear from the context, we only say strict resp. non-strict.

That is, a strictness signature indicates strictness by 0 and non-strictness by 1. For example,
if @ = 011, lambda abstraction is strict, and application is non-strict both from the left and
the right. We shall see what this means shortly: Following Kennaway et al. [10], we derive,
from a strictness signature @, a depth measure |-|*, which counts the number of non-strict,
non-empty prefixes of a position. From this depth measure we then derive a corresponding
metric d* on lambda terms.

» Definition 2.2. Given a strictness signature a, the a-depth of a position p, denoted |p|E, is
recursively defined as [()|* = 0 and |¢- (i)]” = |¢|* + a;. The @-distance d®(M, N') between
two terms M, N € A, is 0 if M and N are a-equivalent and otherwise 2-¢, where d is the
least number satisfying d = |p|a for some conflict p of M and N.

Kennaway et al. [10] showed that the pair (A, ,d?%) forms an ultrametric space for any a.

Intuitively, the consequence of the definition of these metric spaces is that sequences of terms,
such as the sequence N, Ny, Nyuy, ..., only converge if conflicts between consecutive terms
are guarded by an increasing number of non-strict positions. In the example, conflicts between
consecutive terms are guarded by an increasing stack of applications to y. If a; = 1, these
applications correspond to non-strict positions, and thus the sequence converges. However, if
a1 = 0, the sequence does not converge.

We turn now to the metric completion. To facilitate later definitions and to illustrate the
resulting structures, we use a partial function representation in the form of lambda trees taken

8:3

FSCD 2018

8:4

Strict Ideal Completions of the Lambda Calculus

from Blom [9], which will serve as mediator between metric completion and ideal completion.
A lambda tree is a (possibly infinite) labelled tree where a label A indicates abstraction and
@ indicates application; labels in V indicate free variables and a label p € P indicates a
variable that is bound by an abstraction at position p. There is no label corresponding to L,
which instead is represented as a ‘hole’ in the tree. We write D(f) to denote the domain of a
partial function f, and f(p) ~ ¢g(q) to indicate that the partial functions f and g are either
both undefined or have the same value at p and ¢, respectively.

» Definition 2.3. A lambda tree is a partial function ¢t: P — £ with £ ={A\, Q} WP WV so

that
(a) p-(0) € D(t) = tp) = A,
(b) p-(1)eDE)orp-(2)eD(Et) = t(p)=Q,and
(¢c) t(p) =¢q, where g € P = ¢ <pandt(q) =\

As one would expect, the domain D(t) of a lambda tree ¢ is prefix closed.

The set of all lambda trees is denoted 77°. The set of L-positions in t, denoted D (t),
is the smallest set satisfying (a) () ¢ D(t) implies () € Dy (t); (b) t(p) = A, p- (0) & D(t)
implies p - (0) € D, (¢); and (c) t(p) = Q,p- (i) € D(t),i € {1,2} implies p- (i) € D, (¥). A
lambda tree ¢ is called total if D (t) is empty. The set of all total lambda trees is denoted
T°°. A lambda tree ¢ is called finite if D(¢) is a finite set. The set of all finite (total) lambda
trees is denoted T, (respectively T). A renaming of a lambda tree ¢ is a lambda tree s such
that there is a bijection f: V — V with the following properties: s(p) = t(p) if t(p) € L\ V,
s(p) = f(t(p)) if t(p) € V, and otherwise s(p) is undefined.

In order to avoid confusion, we use upper case letters M, N for lambda terms and lower case
letters s, t, u for lambda trees. Below, we give a bijection from lambda terms to finite lambda
trees that should help illustrate the idea behind lambda trees. At the heart of this bijection
are the following constructions based on Blom [9]:

» Definition 2.4. Given lambda trees t,t1,t2 € 7° and a variable x € V, let L, x, Ax.t and
t1 to be partial functions of type P — L defined by their graph as follows:

L=0 x={)}
Mt = {(0, A} UL(0) - p. D) [T € I @V {a}, (p, 1) € £}
U{((0) - p,(0)- @) [q € P, (p.q) €t} UL{((0) - p, () [(p,x) €t}

lity = {(<>7@)} U{(<Z> 'pal) |7’ € {172}7l € {A,@}&JV,(p,l) € ti}
U{((@) - p. (i) -q)|i€{1,2},q € P, (p,q) €ti}
One can easily check that each of the above four constructions yields a lambda tree, where
1 is the empty lambda tree, x the lambda tree consisting of a single free variable x, Ax.t is a
lambda abstraction over x with body ¢, and ¢; to is an application of ¢1 to t. The following
translation of lambda terms to finite lambda trees illustrates the use of these constructions:
» Definition 2.5. Let [-] : AL — 71 be defined recursively as follows:

[L] =L [Ax.M] = Ax. [M] [«] = x [M N] =[M] [N]

One can easily check that [-] : A, — 7, is indeed a bijection, which, if restricted to A, is
a bijection from A to 7. Moreover, one can show that each ¢ € 77° with some (i) - p € D(¢)

! In the companion report [5] we give a direct proof of the correspondence between metric and ideal
completion based on the meta theory of Majster-Cederbaum and Baier [16].

P. Bahr

is equal to Ax.t’ if ¢ = 0 and to ¢ to if ¢ € {1,2}, for some t',¢1,t2 € T7°. Following this
observation, we define, for each t € 77° and p € D(t), the subtree of t at p, denoted ¢|,, by
induction on p as follows: |, = t, Ax.t|0).p = t[p, and t1 tal(s)., = tilp for i € {1,2}. One
can easily check that t|, is uniquely defined modulo renaming of free variables.

» Definition 2.6. An infinite branch in a lambda tree ¢t € 7™ is an infinite sequence S such
that each proper prefix of S is in D(t). We call a proper prefix of S a position along S.

Note that by instantiating Koénig’s Lemma to lambda trees, we know that a lambda tree
is infinite iff it has an infinite branch.

The idea of the metric d® on lambda terms is to disallow (in the ensuing metric completion)
infinite branches that have only finitely many non-strict positions along them. The following
definition makes this restriction explicit on lambda trees:

» Definition 2.7. An infinite branch S of a lambda tree t is called @-bounded if the a-depth
of all positions along S is bounded by some n < w, i.e. |p|a < n for all p < S. The lambda
tree t is called a-unguarded if it has an a-bounded infinite branch S. Otherwise, ¢ is called
a-guarded. The set of all a-guarded (total) lambda trees is denoted 77 (respectively 7¢). In
particular, 7% = 7, and T} = 7.

For example, the lambda tree s with s = sy is 101-unguarded while ¢t with ¢t = Ay.ty is
101-guarded as each application is guarded by an abstraction (which is non-strict).

For each strictness signature @, we give a metric dg— on lambda trees that corresponds to
the metric d* on lambda terms.

» Definition 2.8. For each two lambda trees s,t € 77°, define d%-(s,t) = 0 if s = ¢ and
otherwise d%(s,t) = 27¢, where d is the least [p|* with s(p) % t(p).

From the characterisation of the metric completion of (A ,d?) from Kennaway et al. [10,
Lemma 7] we know that the metric space of @-guarded lambda trees (7, d%) is indeed
the metric completion of (A ,d?) with the isometric embedding [-] : Ay — 71 (cf. the
companion report [5]). Analogously, (7%,d%) is the metric completion of (A, d®).

3 The Ideal Completion

In this section, we present an alternative to the metric completion from Section 2 that is
based on a family of partial orders on lambda terms indexed by strictness signatures. In the
following we assume basic familiarity with order theory.

» Definition 3.1. Given a strictness signature @, the partial order <9 is the least transitive,
reflexive order on A satisfying the following for all M, M/, N,N' € A, and z € V:

(a) 1<i M

(b) Az.M <% .M’ if M<%M and M# Lorag=1
(c) MN <% M'N if M<%M and M# Lora =1
(d) MN <% MN' if N<% N and N# _Lloras=1

For the case that @ = 111, we obtain the partial order <, that is typically used for
ideal completions. This order is fully monotone, i.e. M <, M’ implies \o.M <, Az.M’,
MN <, M'N and NM <, NM’'. By contrast, Sf_ restricts monotonicity of abstraction in
case ag = 0 and of application in case a; = 0 or as = 0. Intuitively, we have M gi N iff N
can be obtained from M by replacing occurrences of L in M at non-strict positions with

8:5

FSCD 2018

8:6

Strict Ideal Completions of the Lambda Calculus

arbitrary terms. For example, if @ = 001, then neither Az.L <% Az.x x nor Az. L x <% A\z.zx;
but we do have that Az.z L <% \z.zx.

With this intuition in mind, we translate Si to a corresponding order ﬁi on lambda
trees as follows:

» Definition 3.2. Given lambda trees s, ¢ € T°, we have s <9 ¢ if
(a) D(s) CD(¥),
) s(p) =tlp) for all p € D(s), and
(¢) peD(s) = p- (i) € D(s) for all a-strict positions p- (i) € D(t).

Conditions (a) and (b) alone would give us the corresponding order for the standard partial
order <. Condition (c) ensures that the partial order <¢ may not fill a hole in a strict
position in the left-hand side tree.

One can check that (77°,<9) forms a partially ordered set. Moreover, we have the
following correspondence between the two families of orders <9 and <9:

» Proposition 3.3. [-]: (AL, <%) — (T1,<%) is an order isomorphism.

For the remainder of this section, we turn our focus to the partial orders <% on lambda
trees. In particular, we show that (7, <%) forms a complete semilattice and that it is
(order isomorphic to) the ideal completion of (A, <%). A complete semilattice is a partially
ordered set (A, <) that is a complete partial order (cpo) and that has a greatest lower bound
(glb) [B for every non-empty set B C A.2 A partially ordered set (A, <) is a cpo if it has a
least element, and each directed set D in (A, <) has a least upper bound (lub) | | D; a set
D C A is called directed if for each two a,b € D there is some ¢ € D with a,b < c.

In particular, for any sequence (a,),<, in a complete semilattice, its limit inferior, defined
by liminf, ,, a, = |—|,B<o¢ (H5§L<a ab>, exists. While the metric completion lambda calculi
are based on the limit of the underlying metric space, our ideal completion lambda calculi
are based on the limit inferior.

To show that (7, <%) forms a complete semilattice structure, we construct the appro-
priate lubs and glbs:

» Theorem 3.4 (cpo (T{,<9)). The partially ordered set (T, <%) forms a complete partial
order. In particular, the lub t of a directed set D satisfies the following:

D(t) = Usep D(5) s(p) =t(p) forall s € D,p e D(s)

Proof sketch. The lambda tree L is the least element in (7, <%). Construct the lub ¢ of
D as follows: t(p) = s(p) iff there is some s € D with p € D(s). One can check that ¢ indeed
is a well-defined lambda tree that is a-guarded and is the least upper bound of D. |

» Proposition 3.5 (glbs of <%). Every non-empty subset T of T has a glb [T in (T{,<%)
such that D([|T) is the largest set P satisfying the following properties:

(1) If p € P, then there is some l € L such that s(p) =1 for all s € T.

(2) If p- (i) € P, thenp € P.

(8) Ifpe P, a; =0, and p- (i) € D(s) for some s € T, thenp- (i) € P.

2 Equivalently, complete semilattices are bounded complete cpos. Hence, complete semilattices are a
generalisation of Scott domains (which in addition have to be algebraic).

P. Bahr

Proof sketch. Let P C P be the largest set satisfying (1) to (3). As these properties are
closed under union, P is well-defined. We define the partial function t: P — L as the
restriction of an arbitrary lambda tree in T' to P. Using (1) and (2), one can show that ¢ is
indeed a well-defined a-guarded lambda tree. One can then check that ¢ is the glb of T. <«

For instance [] {Ax.xy, Ax.yx} is Ax.L L for 011, Ax.L for 110, and L for 001.
» Theorem 3.6. (77, <%) is a complete semilattice for any a.

Proof. Follows from Theorem 3.4 and Proposition 3.5. <

We conclude this section by establishing the partially ordered set (7, <%) as (order
isomorphic to) the ideal completion of (A, <%). Recall that, given a partially order set
(4, <), its ideal completion is an extension of the original partially ordered set to a cpo. A
set B C A is called an ideal in (A, <) if it is directed and downward-closed, where the latter
means that for all @ € A,b € B with a < b, we have that a € B. The ideal completion of
(A, <), is the partially ordered set (Z,C), where Z is the set of all ideals in (4, <) and C is
standard set inclusion.

» Theorem 3.7. The ideal completion of (A, <%) is order isomorphic to (T, <%).

Proof sketch. By Proposition 3.3, it suffices to show that the ideal completion (Z,C) of
(7T1,<%) is order isomorphic to (7%, <%). To this end, we define two functions ¢: 7 — 7
and ¢: T — T as follows: ¢(t) = {s € T |s <% t }; (T) = | |T. Well-definedness of ¢ and
1) follows from Konig’s Lemma and Theorem 3.4, respectively. Both ¢ and 1 are obviously
monotone and one can check that ¢ and 1 are inverses of each other. Hence, (Z, C) is order

isomorphic to (77, <%) <

Now that we have established the connection between 7| and the metric completion resp.

the ideal completion of A |, we turn our focus to 7{* for the rest of this paper.

The characterisation of lubs and glbs for the complete semilattice (77, <%) allows us to
relate the corresponding notion of limit inferior with the limit in the complete metric space
(T,d%) as summarised in the following theorem:

» Theorem 3.8. Let (t,),<o be a sequence in TP

(i) Iflim, o t, =t in (T{,d%), then liminf, o ¢, =t in (71, <9).
(i) If liminf, .o t, =t in (T{,<%) and t is total, then lim,_,ot, =t in (T{,d%).

The key to establish the correspondence above is the following characterisation of the
limit ¢ of a converging sequence (,),<q in (71, d%):

D(t) = UpscaNs<ica P(t), and t(p) =1 <= I <aVB <t <a: t(p) =1

The proof of the correspondence result makes use of a notion of truncation similar Arnold
and Nivat’s [1] but generalised to be compatible with the <% -orderings.

From the above findings we can conclude that the limit inferior in (77, <99) restricted to
total lambda trees coincides with the limit in (7%,d%). In other words, the limit inferior is
a conservative extension of the limit. In the next section, we transfer this result to (strong)
convergence of reductions.

8:7

FSCD 2018

8:8

Strict Ideal Completions of the Lambda Calculus

4 Transfinite Reductions

In this section, we study finite and transfinite reductions on lambda trees. To this end, we
assume for the remainder of this paper a fixed strictness signature @ such that all subsequent
definitions and theorems work on the same universe of lambda trees 7" and its associated
structures d% and <9 (unless stated otherwise). Moreover, we need a suitably general
notion of reduction steps beyond the familiar 5- and n-rules in order to accommodate Béhm

reductions in Section 5.

» Definition 4.1. A rewrite system R is a binary relation on 77 such that (s,t) € R implies
that s # L. Given s,t € T{ and p € P, an R-reduction step from s to t at p, denoted
5 —Ryp t, is inductively defined as follows: if (s,t) € R, then s =g t; if t =g, t', then
At =R oyp AXL, T8 =R (1y.p t' s, and st —p (2y., st' for all s € T{'. If R or p are irrelevant
or clear from the context, we omit them in the notation — g ,. If (¢,t) € R, then t is called
an R-redex. If s =, t, then s is said to have an R-redex occurrence at p. A lambda tree ¢
is called an R-normal form if no R-reduction step starts from ¢. The prefix “R-” is dropped
if R is irrelevant or clear from the context.

» Example 4.2. The familiar 8- and n-rules form rewrite systems as follows:
= {((Ax.t)s,t[z/s])|s,t € T} = {(Mx.txt)|t € T, = ¢ Range(t) }

where substitution ¢ [x/s] is defined as follows: for each p € P we have t[z/s] (p) = t(p) if

t(p) € L\{x}; tlx/s] (p) = s(p2) i p = p1-p2,t(p1) = 2, 5(p2) € L\P; t[x/s] (p) = p1-s(p2)
if p=p1-p2,t(p1) = x,s(p2) € P; and t[z/s] (p) is undefined otherwise.

The resulting -reduction step relation — on lambda trees is isomorphic (via the
isomorphism of Theorem 3.7) to the lifting of the ordinary finitary S-reduction step relation
on lambda terms to the ideal completion via the lifting operator [-) of Blom [8]. An analogous
correspondence can be shown for as well.

» Definition 4.3. A sequence S = ({, = Rrp, ti41)i<a Of R-reduction steps is called an
R-reduction; S is called total if each ¢, is total. If S is finite, we also write S: tg =% ta.

The above notion of reductions is too general as it does not relate lambda trees ¢35 at
a limit ordinal index 8 to the lambda trees (¢,),<p that precede it. This shortcoming is
addressed with a suitable notion of convergence and continuity. In the literature on infinitary
rewriting one finds two different variants of convergence/continuity: a weak variant, which
defines convergence/continuity only according to the underlying structure (metric limit or
limit inferior), and a strong variant, which also takes the position of contracted redexes into
consideration. While both the metric and the partial order lend themselves to either variant,
we only consider the strong variant here and refer the reader to the companion report [5] for
the weak variant.

We use the name m-convergence and p-convergence to distinguish between the metric-
and the partial order-based notion of convergence, respectively. Our notion of (strong)
m-convergence is the same notion of convergence that Kennaway et al. [10] used for their
infinitary lambda calculi. For our notion of (strong) p-convergence we instantiate the
abstract notion of strong p-convergence from our previous work [2]. The key ingredient of
p-convergence is the notion of reduction context, which assigns to each reduction step s — ¢
a lambda tree ¢ with ¢ <9 s, ¢. Intuitively, this reduction context ¢ comprises the (maximal)
fragment of s that cannot be changed by the reduction step, regardless of the reduction rule.

P. Bahr

For instance, the reduction context of Ax.(Ay.y)x — Ax.x is Ax.L if ag = 1, and L otherwise.

The notion of p-convergence is defined using the limit inferior of the sequence of reduction
contexts (instead of the original lambda trees themselves). The canonical approach to derive
such a reduction context for any complete semilattice is to take the greatest lower bound of
the involved lambda trees s and ¢ that does not contain any position of the redex:

» Definition 4.4. The reduction context of a reduction step s —, t is the greatest lambda
tree ¢ in (77, <9) with ¢ <% s,t and p & D(c); we write s —. t to indicate the reduction
context c.

In order to simplify reasoning and provide an intuitive understanding of the concept, we
give a direct construction of reduction contexts as well:

» Definition 4.5. Given t € 77° and p € D(t), we write ¢ \ p for the restriction of ¢ to the
domain {q € D(t)|p £ q}, and p|® for the longest non-strict prefix of p.

That is, ¢ \ p is obtained from ¢ by replacing the subtree at p with L. Moreover, |% can be

characterised as follows: ()] = (); (p- (i)){* = p- (i) if a; = 1; and (p- (i))|* = p|* if a; = 0.

» Lemma 4.6. The reduction context of s —, t is equal to s\ pJ* and t \ pJ®.

Proof sketch. By a straightforward induction on p. <

That is, the reduction context of s —, ¢ is obtained from s by removing the most deeply
nested subtree that both contains the redex and is in a non-strict position. The ensuing
notions of strong convergence of reductions are spelled out as follows:

» Definition 4.7. An R-reduction S = (t, —p, ¢, ti+1)i<a M-converges to to, denoted
S:tg Bog tg, if lim,,, t, = ¢, and (\pb|a)b<v tends to infinity for all limit ordinals v < a. S
p-converges to t,, denoted S: ty B»p tq, if liminf, ,, ¢, = ¢, for all limit ordinals v < a. S
is called m-continuous resp. p-continuous if the corresponding convergence conditions hold
for limit ordinals v < « (instead of v < «).

Intuitively, strong convergence under-approximates convergence in the underlying structure
(i.e. weak convergence) by assuming that every contraction changes the root symbol of the
redex. Thus, given a reduction step s —, t, strong convergence assumes that the shortest
position at which s and ¢ differ is p.

The semilattice structure underlying p-convergence ensures that p-continuous reductions
always p-converge, whereas m-convergence does not necessarily follow from m-continuity:

» Example 4.8. Given 2 = (Ax.xx)(Ax.xx) and t = (Ax.x§2)y, we consider the -reduction

S:t—t— ... that repeatedly contracts the redex €2 in ¢. S is trivially m- and p-continuous.

However, it is not m-convergent, since contraction takes place at a constant a-depth, namely
[(1,0,2)|*. But it p-converges to ¢\ (1,0,2)]%, which is also the reduction context of each
reduction step in S and is equal to (Ax.x L)y if as =1, to (Ax.L)y if ag =0 but ap = 1, to
1Ly ifa=010, and to L if @ = 000.

Similarly to the correspondence between the limit and the limit inferior in Theorem 3.8,
we find a correspondence between p- and m-convergence.

» Proposition 4.9. For each reduction S: s ™ t, we also have that S: s B» t.

8:9

FSCD 2018

8:10

Strict Ideal Completions of the Lambda Calculus

Proof sketch. Let S = (t, =p, c, ti+1)i<a- If S m-converges, then (|pL|E)L<,Y tends to infinity
for all limit ordinals y < a, i.e. for each d < w we have that |p,|* > d after some § < ~. With
the help of Lemma 4.6, one can show that the latter implies that ¢, and ¢, coincide up to
a-depth d for all 6 < ¢ < . Consequently, lim, - ¢, = lim,_,~ ¢,, which, by Theorem 3.8 (i),
implies lim,,~ ¢, = liminf, .- ¢,. Since this holds for all limit ordinals v < a, we know that
S also p-converges to t. |

With the proposition above, we derive the other direction of the correspondence:
» Proposition 4.10. S: s 2t implies S: s ™ t whenever S and t are total.

Proof sketch. One can show that the totality of S and ¢ implies that the a-depth of contracted
redexes in each open prefix of S tends to infinity. Using Proposition 5.5 from [2], we can
show that the latter implies that S also m-converges. Then according to Proposition 4.9, S
must m-converge to the same lambda tree . |

Note that it is not sufficient that the two trees s and ¢ are total. For example, the -reduction
S:(Axy) Q 2» (Ax.y) L — y p-converges to y but does not m-converge.

Putting Propositions 4.9 and 4.10 together we obtain that p-convergence is a conservative
extension of m-convergence:

» Corollary 4.11. S: s ™ ¢ iff S: s B»t whenever S and t are total.

5 Beta Reduction

So far we have only studied the properties of p-convergence independent of the rewrite
system. In this section, we specifically study -reduction and show infinitary normalisation
for all of our calculi, and infinitary confluence for three of them. However, considering
pure -reduction, infinitary confluence only holds for the 111 calculus. We can construct
counterexamples for the other calculi:

» Example 5.1 ([10]). Given az = 0 and t = (Ax.y) 2, we find reductions t 2&» L and t — .
Givenaz = 1,a1 =0, and t = (Ax.xy) Q, we have t & (Axxy)L — Lyandt— Qy®2» L.
Similarly, given ag = 1, ag = 0, and ¢t = (Ax.\y.x) Q, we have t 2 (Ax.Ay.x) L — Ay.L and
t— A2 L.

Infinitary confluence of pure -reduction fails for all m-convergence calculi of Kennaway
et al.[10] — including the 111 calculus. On the other hand, the Bohm reduction calculi of
Kennaway et al. [11], which extend pure -reduction with infinitely many rules of the form
t — 1, do satisfy infinitary confluence for the 001, 101, and 111 calculi.

We would like to obtain similar confluence results for the 001, 101, and 111 p-convergence
calculi. However, the gap we have to bridge to achieve infinitary confluence is much narrower
in our p-convergence calculi. Intuitively, confluence fails for 001 and 101 because p-convergence
only captures partiality that is due to infinite reductions, but not partiality that can propagate
via finite reductions: For example, in the 101 calculus we have Qy 2> 1 but Ly % 1. In
order to obtain the desired confluence properties, we have to add the rules Ax.L — L (for
001) and Lt — L (for 001 and 101). More generally we define these S-rules formally as
follows:

S= {(tth,J_) |t1,t2 S Tf,ti =1l,a; = O} U{()\X.J_,J_)) |a0 ZO}

We use the notation S to denote US. Abusing notation, we also write (S) to refer to
or S, e.g. if a property holds for either system. Note that for the 111 calculus, S =

P. Bahr

In addition, we continue studying the relation between m-convergence and p-convergence:
In general, they are subtly different, but we show that a p-converging (S)-reduction can be
adequately simulated by an m-converging B-reduction and vice versa, where B is an extension
of , called Béhm rewrite system, which additionally contains rules of the form ¢ — L. This
result uses the same construction used by Kennaway et al. [11] to study so-called meaningless
terms.

In the remainder of this section we first characterise the set of lambda trees that p-
converge to L (Section 5.1); we then establish a correspondence between pure p-convergence
and m-convergence extended with rules ¢ — L for lambda trees t that p-converge to L
(Section 5.2); and finally we prove infinitary confluence and normalisation for p-convergent

S-reductions in the 001, 101, and 111 calculi (Section 5.3). For the infinitary confluence
result, we make use of the correspondence between p-convergence and m-convergence.

5.1 Partiality

We begin with the characterisation of lambda trees that p-converge to L:

» Definition 5.2. Given an open reduction S = (t, —p, t,11).<a, & position p is called
volatile in S if, for each 8 < «, there is some 3 <y < a with p,J* < p < p,. If p is volatile
in S but no proper prefix of p is, then p is called outermost-volatile in S.

For instance, in the -reduction in Example 4.8, (1,0,2) is volatile and (1,0,2){* is
outermost-volatile. Note that outermost-volatile positions must be non-strict, because if p is
volatile, then so is pl®.

The presence of volatile positions characterises partiality in p-convergent reductions,
which by Corollary 4.11 can be stated as follows:

» Proposition 5.3. S: s ™t iff no prefix of S has volatile positions and S: s 2» t.

Proof sketch. Let S = (t, =, t,11).<a- The “only if” direction follows from Proposition 4.9
and the fact that if (|p,|*),<p tends to infinity, then S|z has no volatile positions. For the
“if” direction, the infinite pigeonhole principle yields that (|p,|*),<s tends to infinity. Using
this fact, one can show that S: s ™ ¢. <

More specifically, outermost-volatile positions pinpoint the exact location of partiality in
the result of a p-converging reduction.

» Lemma 5.4. If p is outermost-volatile in S: s 2»t, then p € D ().

Proof sketch. Let S = (t, —p,.c, ti+1)i<a. Since p is volatile in S, we find for each § < «
some 3 < ¢ < a with p,J* < p. Hence, by Lemma 4.6, we know that p & D(c,). Consequently,
by Theorem 3.4 and Proposition 3.5, we have that p & D(t). If p = (), then p € D, (t) follows
immediately. If p = ¢ - (0), then one can use the fact that no prefix of ¢ is volatile to show
that t(q) = A, which means that p € D, (¢). The argument for the cases p = ¢ - (1) and
p = q- (2) is analogous. <

This characterisation of partiality in terms of volatile positions motivates the following
notions of destructiveness and fragility:

» Definition 5.5. A reduction S is called destructive if it is p-continuous and () is volatile in
S. A lambda tree t € T is called fragile if there is a destructive -reduction starting from .
The set of all fragile total lambda trees is denoted F°.

8:11

FSCD 2018

8:12

Strict Ideal Completions of the Lambda Calculus

Note that fragility is defined in terms of destructive -reductions. However, one can show
that a destructive -reduction exists iff a destructive S-reduction exists.
The following proposition explains why destructive reductions have deserved their name:

» Proposition 5.6. An open reduction is destructive iff it p-converges to L.

Proof sketch. The “only if” direction follows from Lemma 5.4; the converse direction can
be shown using the characterisation of the limit inferior (Theorem 3.4, Proposition 3.5). <«

For example, the -reduction Q — Q — ... (cf. Example 4.8) p-converges to L and is thus
destructive. As a corollary from the above proposition, we obtain that every fragile lambda
tree — such as {2 — can be contracted to L by an open p-convergent reduction.

5.2 Correspondence

To compare m- and p-converging reductions, we employ Béhm rewrite systems and the
underlying notion of L-instantiation from Kennaway et al’s work on meaningless terms [11].

» Definition 5.7. Let Y C 7°° and ¢t € 7°. A lambda tree s € 7°° is called a L-instance of
t w.r.t. U if s is obtained from ¢ by inserting elements of ¢ into ¢ at each position p € D (t),
ie. s(p) =t(p) for all p € D(t) and s|, € U for all p € D, (¢). The set of lambda trees that
have a L-instance w.r.t. I/ that is in U/ itself is denoted U, . In other words, t € U, iff there
is a lambda tree s € U such that s is obtained from ¢ by replacing occurrences of | in ¢ by
lambda trees from .

In particular, we will use the above construction with the set of fragile total lambda trees
F, which gives us the set F7.
Finally, we give the construction of Bohm rewrite systems.

» Definition 5.8. For each set i C 7%, we define the following two rewrite systems:
L) ={ L)[teUd \{L}}, BU)= uLuU)
If U is clear from the context, we instead use the notation I and B, respectively.

In particular, we consider the Bohm rewrite system w.r.t. fragile total lambda trees, denoted
by B (.7-'6). We start with one direction of the correspondence between p-converging (S)-
reductions and m-converging B (}'E)—reductions:

» Theorem 5.9. If s 2 g t, then s ™g t, where B=B (]—"E).

Proof sketch. Given S: s 2» g ¢, we construct a B-reduction 7" from S that also p-converges
to t but that has no volatile positions in any of its open prefixes. Thus, according to
Proposition 5.3, T': s ®»g t. The construction of 7' removes steps in S that take place at
or below any outermost-volatile position of some prefix of S and replaces them by a single
li-step. Such a li-step can be performed since a fragile lambda tree must be responsible for
an outermost-volatile position. Moreover, S-steps in S are l-steps in T since S C 1 (]-'E).
Lemma 5.4 can then be used to show that the resulting B-reduction T' p-converges to t. <«

The converse direction of Theorem 5.9 does not hold in general. The problem is that
li-steps can be more selective in which fragile lambda subtree to contract to L compared
to p-convergent reductions with volatile positions. If p is a volatile position, then so is
pl@. Consequently, volatile positions and thus ‘L’s in the result of a p-converging reduction
are propagated upwards through strict positions. For example, let ag = 0, and t = \y.Q2.

P. Bahr

Since 2 is fragile, we have the reduction ¢ —, Ay.l. On the other hand, via p-convergent
-reductions, ¢t only reduces to itself and 1. This phenomenon, however, does not occur if

we restrict ourselves to the strictness signature 111 or if we only consider l-normal forms.

Indeed, in the above example, Ay.L is not a ll-normal form and can be contracted to L with
a ll-step.

» Theorem 5.10. LetB =B (}'5) and s ™pg t such that s is total. Then s 2» t ifa =111
ort is a IL-normal form.

Proof sketch. The reduction s g ¢ can be factored into S: s ™ s" and T: s ™, ¢ (by the
same proof as Lemma 27 of Kennaway et al. [11]). Moreover, we may assume w.l.o.g. that T

contracts disjoint l-redexes in s’ (using an argument similar to Lemma 7.2.4 of Ketema [12]).

By Proposition 4.9, we have that S: s 2 s’ and that T': s’ », t. For each step u —, , v in
T we find a reduction T,,: u 2 o’ in which p is volatile since u|, must be fragile. Given that

a =111 or that ¢ is a ll-normal form, we can show that p is in fact outermost-volatile in T},.

Hence, the equality v = v’ follows from Lemma 5.4. Therefore, we may replace each step
u —y p v in T by T, which yields a reduction s’ 2» t. <

That is, in general we get one direction of the correspondence — namely from metric to
partial order reduction — only for reductions to normal forms. However, this does not matter
that much as p-converging (S)-reductions (an thus also m-converging B (}'E)—reductions)
are normalising as we show below.

5.3 Infinitary Normalisation and Confluence

We begin by recalling the notion of active lambda trees [11], which we use to establish
infinitary normalisation and as an alternative characterisation of fragile lambda trees (in the
001, 101, and 111 calculi).

» Definition 5.11. A lambda tree ¢ is called stable if no lambda tree ¢’ with t —* ¢’ has a

-redex occurrence at a-depth 0; ¢ is called active if no lambda tree ¢’ with ¢ —* ¢’ is stable.

The set of all active total lambda trees is denoted by .A4°.

To construct normalising p-convergent reductions, we follow the idea of Kennaway et al. [11]:
We contract all subtrees of the initial lambda tree into stable form. The only way to achieve
this for active subtrees is to annihilate them by a destructive reduction. The basis for that
strategy is the following observation:

» Lemma 5.12. FEvery active lambda tree is fragile.

Proof. If ty is active, we find a reduction ¢y —* t{, to a -redex at a-depth 0. By contracting
this redex we get a lambda tree t; that is active, too. By repeating this argument we obtain
a destructive reduction tg —* t), — t1 =* 7 — <

The following normalisation result then follows straightforwardly:
» Theorem 5.13. For each s € T?, there is a normalising reduction s » (s) t.

Proof sketch. Similar to Theorem 1 of Kennaway et al. [11]: an active subtree at position
p is by Lemma 5.12 also fragile. Hence, there is a -reduction in which a prefix of p is
outermost-volatile. By Lemma 5.4, such a reduction annihilates the active subtree at p. This
yields a reduction s 2» ¢ to -normal form ¢, which can be extended by a reduction ¢ 2»g u
to a S-normal form w. <

8:13

FSCD 2018

8:14

Strict Ideal Completions of the Lambda Calculus

From the above we immediately obtain the corresponding result for m-convergence:

» Theorem 5.14. For each s € T there is a normalising reduction s m—»B(]_.g) t.

Proof. By Theorem 5.13 and 5.9, as S-normal forms are also B (}"E)—normal forms. |
Consequently, we can derive the following correspondence result.

» Corollary 5.15. For each s € T® with s m—»B(}-g) t, there is a reduction t m—»B(]_-g) t' such
that s B» t'.

Proof. According to Theorem 5.14, there is a normalising reduction ¢ %B(Fa) t’. Then a
reduction s 2» ¢’ exists by Theorem 5.10. |

A shortcoming of this correspondence property and the correspondence properties es-
tablished in Section 5.2 is that they consider m-convergence in the system B (]-'E), which is
unsatisfactory since F% is defined using p-convergence. A more appropriate choice would be
the set A® of active terms, which is defined in terms of finitary reduction only. To obtain a
correspondence in terms of A%, we will show that 7% = 4% for strictness signatures 001, 101,
and 111. To prove this equality of fragility and activeness, we need the following key lemma,
which can be proved using descendants and complete developments.

» Lemma 5.16 (Infinitary Strip Lemma). Given S: s 2» g t1 and T': s —*g to, there are
reductions S': t1 B» st and T': ty ®» g t, provided @ € {001,101, 111}.

Recall that S = for @ = 111, i.e. the infinitary strip lemma holds for pure -reduction in
the 111 calculus; but it does not hold for 001 and 101 as Example 5.1 demonstrates. Hence,
the need for S-rules. By contrast, in the metric calculi of Kennaway et al. [10] the infinitary
strip lemma does not hold for any @. In order to obtain the infinitary strip lemma and
confluence, Kennaway et al. extended S-reduction to Béhm reduction.

We use the Infinitary Strip Lemma to show that p-convergent reductions to L can be
compressed to length at most w.

» Lemma 5.17. Ifa € {001,101,111} and S: ¢ &> g L, then there is a reduction T: ¢t 2» g L
of length < w. If t is total, then T is a -reduction of length w.

Proof sketch. If |S| < w, we are done. Otherwise, we can construct a finite reduction
t —*g t' with at least one contraction at a-depth 0 either using a finite approximation
property of p-convergence (in case S contracts -redex at a-depth 0) or by an induction
argument (in case S contracts S-redex at root position). By Lemma 5.16, there is a reduction
S’:t' B» g L. Thus, we can repeat the argument for S’. Iterating this argument yields either
a reduction t —*g L or a reduction ¢ 2» g s’ of length w with infinitely many contractions
at a-depth 0, and thus s’ = L. If s is total, then T cannot be finite, as finite S-reductions
preserve totality. Hence, no step in 7" can be an S-step. |

» Lemma 5.18. Ifa € {001,101,111}, a total lambda tree is active iff it is fragile.

Proof. The “only if” direction follows from Lemma 5.12. For the converse direction let ¢ be
total and fragile, and let ¢ —* ¢;. Since t is fragile, there is a reduction t &» g 1 according
to Proposition 5.6. Hence, by Lemma 5.16, there is a reduction T': t; 2» g 1, which we
can assume, according to Lemma 5.17, to be a -reduction of length w. Since T is, by
Proposition 5.6, destructive, there is a proper prefix 7”: t; 2» t5 of T such that ¢5 has a
redex occurrence at a-depth 0. Because T is of length w, T” is finite i.e. T": t; —* ts. <

P. Bahr

The above lemma allows us to derive confluence w.r.t. p-convergent reductions from the
confluence results w.r.t. m-convergence of Kennaway et al. [10]:

» Theorem 5.19 (infinitary confluence). Given @ € {001,101,111}, we have that s 2» s t;
and s B» gty implies that t1 B» st and t3 2 g t.

Proof. According to Theorem 5.13, we can extend the existing reductions by normalising
reductions t; 2» g t] and ty 2» g ¢5,. By Theorem 5.9 and Lemma 5.18, the resulting

normalising reductions s 2» g t| and s » g t} are also m-convergent B (.A%)-reductions.

Kennaway et al. [10] have shown that such reductions are confluent. Hence, | = ¢} (as
S-normal forms are B (A%)-normal forms t00). <

Together with the earlier normalisation result, this means that the 001, 101, and 111
calculi have unique normal forms w.r.t. 2» 5. By the correspondence results between the
metric and the partial order calculi, these normal forms are the same as the unique normal
forms w.r.t. "—“»B(AT) [10], which in turn correspond to Boéhm Trees, Levy-Longo Trees, and

Berarducci Trees, respectively.

6 Related Work

The use of ideal completion in lambda calculus to construct infinite terms has a long history
(see e.g. Ketema [12] for an overview), in particular in the form of constructing infinite normal
forms such as Béhm Trees. In that line of work, the ideal completion is typically based on
the fully monotone partial order <, generated by L <, M for any term M. Different kinds
of infinite normal forms are then obtained by modulating the set of rules that are used to
generate the normal forms. In this paper, we instead modulated the partial order and we
have constructed full infinitary calculi in the style of Kennaway et al. [10]. Blom’s abstract
theory of infinite normal forms and infinitary rewriting based on ideal completion [8] has
been crucial for developing our infinitary calculi.

In previous work, we have compared infinitary rewriting based on partial orders vs. metric
spaces in a first-order setting [3, 4]. However, in that work we have only considered fully

non-strict convergence, whereas we consider varying modes of strictness in the present paper.

Blom’s work [9] on preservation calculi is similar to our ideal completion calculi. Blom
also considers different calculi indexed by strictness signatures and relates them to the
corresponding metric calculi. However, he uses the same partial order <1!! for all calculi;
the different calculi vary in the notion of reduction contexts they use. Blom’s reduction
contexts are the same as our reduction contexts, and his 2-rules are more general variants of
our S-rules. However, his approach of using a single partial order has some caveats:

Firstly, there is no corresponding weak notion of preservation sequences that corresponds
to weak m-convergence. Secondly, the partially ordered set (77, <1!!) is only a complete
semilattice for @ = 111; otherwise it is not even a cpo and limit inferiors do not always
exist. For example, let ¢ be an a-unguarded lambda tree (i.e. t ¢ T%), and for each i < w
let t; be the restriction of ¢ to positions of depth < ¢, which means that ¢; € Tf. Then
liminf; ., t; w.r.t. <IM s ¢ itself and thus not in 72 even though all ¢; are. This does not

cause a problem, if one only considers reduction contexts of p-continuous reductions, though.

For the comparison of his preservation calculi with the metric calculi, Blom uses a notion
of 0-active terms, which is different from the notion of active terms as used here and by
Kennaway et al. [10, 11] (under the names 0-activeness resp. abc-activeness). Blom defines
that a lambda tree is O-active iff there is a destructive reduction of length w starting from
it. 0-activeness is demonstrably different from activeness for any strictness signature with
as = 0 as Example 5.1 shows. But 0O-activeness and activeness do coincide for 001, 101, and
111 as we have shown with the combination of Lemma 5.17 and Lemma 5.18.

8:15

FSCD 2018

8:16

Strict Ideal Completions of the Lambda Calculus

—— References

1

10

11

12

13

14

15

16

André Arnold and Maurice Nivat. The metric space of infinite trees. algebraic and topolo-
gical properties. Fundamenta Informaticae, 3(4):445-476, 1980.

Patrick Bahr. Abstract Models of Transfinite Reductions. In Christopher Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques and Applica-
tions, volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 49—
66, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2010.49.

Patrick Bahr. Partial order infinitary term rewriting and Bohm trees. In Christopher
Lynch, editor, Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 67-84, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.RTA.2010.67.

Patrick Bahr. Infinitary term graph rewriting is simple, sound and complete. In Ashish
Tiwari, editor, 23rd International Conference on Rewriting Techniques and Applications
(RTA’12), volume 15 of Leibniz International Proceedings in Informatics (LIPIcs), pages
69-84, Dagstuhl, Germany, 2012. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2012.69.

Patrick Bahr. Ideal completions of the lambda calculus. Companion report, available from
the author’s web site, 2018.

Henk P Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathemantics. Elsevier Science, revised edition,
1984.

Alessandro Berarducci. Infinite A-calculus and non-sensible models. In A Ursini and
P Agliand, editors, Logic and algebra, number 180 in Lecture Notes in Pure and Applied
Mathematics, pages 339-378. CRC Press, 1996.

Stefan Blom. Term Graph Rewriting—Syntax and Semantics. PhD thesis, Vrije Universiteit
te Amsterdam, 2001.

Stefan Blom. An approximation based approach to infinitary lambda calculi. In Vincent
van Qostrom, editor, Rewriting Techniques and Applications, volume 3091 of Lecture Notes
in Computer Science, pages 221-232. Springer Berlin / Heidelberg, 2004. doi:10.1007/
b98160.

Richard Kennaway, Jan Willem Klop, M R Sleep, and Fer-Jan de Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175(1):93-125, 1997. doi:D0I:10.1016/
S50304-3975(96)00171-5.

Richard Kennaway, Vincent van QOostrom, and Fer-Jan de Vries. Meaningless terms in
rewriting. Journal of Functional and Logic Programming, 1999(1):1-35, 1999.

Jeroen Ketema. Bohm-Like Trees for Rewriting. PhD thesis, Vrije Universiteit Amsterdam,
2006. URL: http://dare.ubvu.vu.nl/handle/1871/9203.

Jean-Jacques Lévy. An algebraic interpretation of the ASK-calculus; and an application
of a labelled A-calculus. Theoretical Computer Science, 2(1):97-114, 1976. doi:10.1016/
0304-3975(76)90009-8.

Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,
Université Paris VII, 1978.

Giuseppe Longo. Set-theoretical models of A-calculus: theories, expansions, isomorphisms.
Annals of pure and applied logic, 24(2):153-188, 1983.

Mila E Majster-Cederbaum and Christel Baier. Metric completion versus ideal completion.
Theoretical Computer Science, 170(1-2):145-171, 1996. doi:D0I1:10.1016/30304-3975(96)
80705-5.

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.49
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.67
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.69
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/DOI: 10.1016/S0304-3975(96)00171-5
http://dx.doi.org/DOI: 10.1016/S0304-3975(96)00171-5
http://dare.ubvu.vu.nl/handle/1871/9203
http://dx.doi.org/10.1016/0304-3975(76)90009-8
http://dx.doi.org/10.1016/0304-3975(76)90009-8
http://dx.doi.org/DOI: 10.1016/S0304-3975(96)80705-5
http://dx.doi.org/DOI: 10.1016/S0304-3975(96)80705-5

Term-Graph Anti-Unification

Alexander Baumgartner
Department of Computer Science (DCC), University of Chile, Santiago, Chile
abaumgar@dcc.uchile.cl

Temur Kutsia
Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria
kutsia@risc.jku.at

Jordi Levy

Artificial Intelligence Research Institute (IITA), Spanish National Research Council, (CSIC),
Barcelona, Spain

levy@iiia.csic.es

Mateu Villaret

Departament d’Informatica, Matematica Aplicada i Estadistica, Universitat de Girona, Girona,
Spain
mateu.villaret@Qudg.edu

—— Abstract

We study anti-unification for possibly cyclic, unranked term-graphs and develop an algorithm,
which computes a minimal complete set of generalizations for them. For bisimilar graphs the
algorithm computes the join in the lattice generated by a functional bisimulation. These results
generalize anti-unification for ranked and unranked terms to the corresponding term-graphs, and
solve also anti-unification problems for rational terms and dags. Our results open a way to widen
anti-unification based code clone detection techniques from a tree representation to a graph
representation of the code.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting
Keywords and phrases Cyclic term-graps, anti-unification, least general generalization
Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.9

Funding Supported by the Austrian Science Fund (FWF) under the projects P 28789-N32 and J
3909-N31, by MINECO/FEDER projects TIN2015-71799-C2-1-P (RASO) and TIN2015-66293-R
(LoCos), and by UdG project MPCUdG2016/055.

1 Introduction

Term-graphs are rooted, directed, labeled graphs, which may contain cycles. They can be
used to represent functional expressions compactly and to process them efficiently with
the help of graph transformations. Rewriting with term-graphs has been studied quite
intensively, see, e.g., [4,6,15,19,20,27]. Term-graphs can be represented in various ways, for
instance, as constraints [6], hypergraphs [27], systems of recursion equations [4], or arrows in
a category [15]. With cycles, term-graphs can express infinite terms and can model regular
infinite data structures. Some related (not necessarily equivalent) representations, that are
widely used in computer science, include dags, u-terms, control flow graphs, abstract semantic
graphs, program dependency graphs, certain kinds of flowcharts, process graphs, etc.

© Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret;

37 licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No.9; pp.9:1-9:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:abaumgar@dcc.uchile.cl
mailto:kutsia@risc.jku.at
mailto:levy@iiia.csic.es
mailto:mateu.villaret@udg.edu
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Term-Graph Anti-Unification

In this paper, we study the anti-unification problem for term-graphs: Given two such
graphs G; and Gy (maybe with cycles), our goal is to find a graph G, which is a least general
common generalization of G; and Gs. It means, there should exist variable substitutions o
and o9 such that the instances of G with respect to them, i.e., the graphs Go; and Gos, are
equivalent to G; and G, respectively.

Our representation of term-graphs follows the approach from [4], based on recursion
equations. The difference is that we are not restricted to ranked alphabets. Variadic function
symbols are permitted and, to take the advantage of such variadicity, hedge variables are used
together with individual variables. The latter stands for single graphs, while the former can
be instantiated by hedges (finite sequences) of graphs. The equivalence relation is bisimilarity.

It has already been shown in [22] that anti-unification for unranked finite terms is finitary:
There are, in general, finitely many least general generalizations (lggs). The same holds for
unranked term-graphs, discussed in this paper. We develop an algorithm, which computes
such lggs. Equivalence class of a term-graph with respect to bisimilarity is a complete lattice.
For bisimilar terms, our algorithm computes the lgg, which is the join in this lattice.

The intuition behind lggs is that they should contain “maximal similarities” between the
input graphs and should abstract differences between them by variables uniformly. While
this might sound similar to the problem of computing maximal common subgraphs (mcs)
between graphs [23,24], lggs, in general, might contain more edges than mcs’s and also give
information about differences, which is usually neglected in mcs’s.

The results reported in this paper extend our previous results for unranked finite terms
[8,22] to unranked cyclic graphs. In particular, we extend rigid anti-unification from terms
to graphs. The rigid version is a more efficient variant of the unranked anti-unification
algorithm, since it computes only certain kind of generalizations. It is guided by a rigidity
function, which, essentially, decides which nodes of the input graphs should be retained in
the generalization. Rigidity function is a parameter of the algorithm. Properties of the latter
are proved for arbitrary values of this parameter. As special cases of our results, we obtain
anti-unification for ranked term-graphs, rational trees, u-terms, and dags. To the best of our
knowledge, generalization for these structures has not been addressed yet in the literature.

Anti-unification has a pretty wide scope of interesting applications. Originally, it was
introduced for inductive reasoning [26]. As a method of computing generalizations, variants of
anti-unification are important ingredients of techniques and tools that have found applications
in various areas of artificial intelligence, machine learning, reasoning, linguistics, program
synthesis, analysis, transformation, verification, etc. We can not give an exhaustive overview
of all related work here. A couple of recent references (motivated by different applications)
include, e.g., [1,2,7,9,10,13,18,21,25]. A particularly interesting motivation comes from
software code clone detection, where anti-unification has been successfully incorporated at
the level of abstract syntax trees [14,16,28]. Our results can serve as a starting point to
extend these techniques for graph-based representation of code (e.g., abstract semantic graphs
or program dependence graphs) or graph-based languages (e.g., for model transformation).
Besides, term-graph anti-unification can be used to construct an index for sets of dags (e.g.,
substitution tree indexing), which can be useful in declarative programming and reasoning.

The paper is organized as follows: In Sect. 2, we introduce the notions related to unranked
term-graphs. Sect. 3 briefly recalls results about term-graph bisimilarity. The notions related
to substitutions and generalizations are introduced in Sect. 4. The term-graph generalization
algorithm is described in Sect. 5. Conclusions and the future work are discussed in Sect. 6.

An experimental implementation of our anti-unification algorithm can be accessed online:
http://www.risc. jku.at/projects/stout/software/tgau.php.

http://www.risc.jku.at/projects/stout/software/tgau.php

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

(1) (1)
ONG6G () (1)
) OROWN O

Finite term Infinite non-rational term Infinite rational term

f(z, F(X)) f(a, f(a,a, f(a,a,a, f(...)))) fla, f(a, f(a, f(...)))

Figure 1 Unranked terms and their tree representations.

2 Unranked Cyclic Term-Graphs

We start by defining unranked (possibly infinite) terms. A position p € N* is a sequence of
natural numbers. We use a period to separate numbers in a position, e.g. 1.2.3. The empty
sequence is denoted by e.

» Definition 1. Given pairwise disjoint sets of unranked function symbols F (symbols
without fixed arity), term variables Vi, and hedge variables Vs, an unranked term is a partial
mapping ¢ : N* = F UV, U Vs such that
the domain of ¢, denoted dom(t), is non-empty and prefix-closed (i.e., if p1, p» € N* and
p1.p2 € dom(t), then p; € dom(t)),
for all p € N*, if t(p) € F, then there exists a natural number n > 0 such that p.i € dom(¢)
for all 1 <i < n and p.i ¢ dom(t) for all i > n,
for all p € N* if ¢(p) € V; UV, then for all n we have p.n ¢ dom(t).

t(e) ¢ Vs.

A term t is finite if dom(t) is a finite set. Otherwise it is infinite. A term is rational if it
has finitely many distinct subterms. Hedges are finite (possible empty) sequences of terms
and hedge variables. The set of terms (respectively, hedges) over F, V, and Vs is denoted by
T(F,V, Vs) (vespectively, H(F,Vy, Vs)). We use the letters f, g, h,a,b, ¢, and d for function
symbols, z,vy, z and u for term variables, X, Y, Z, and U for hedge variables, x,v,v and w
for a term variable or a hedge variable, ¢t and r for terms, s and g for a hedge variable or a
term, and § and ¢ for hedges. The empty hedge is denoted by e. Given a sequence §, the
ith element of § is denoted by §|;. Furthermore, §|Z denotes the subsequence between the
positions ¢ and j where ¢ < j, that is, §|;41,...,5];—1. Unranked terms (resp. hedges) can
be naturally represented as unranked trees (resp. forests).

» Example 2. In Fig. 1 we visualize three examples of a finite, infinite non-rational, and
infinite rational terms in form of trees. The triangles represent infinite subtrees:

For a term ¢, we denote by Vi(t), Vs(t), and V(¢) respectively the sets of term variables,
hedge variables, and all variables occurring in t. The notation extends to hedges as well.

Now we define unranked cyclic term-graphs with the help of recursion equations. We
start with a very general notion of a system of recursion equations and subsequently impose
restrictions to get to the interesting concept.

» Definition 3. A system of recursion equations over F, Vi, and Vs is a set of equations
{z1=t1,...,2p =1tp, X1 =51,...,X; =55}, where for all 4,5, 1 <i < j<mn, z; #z,,all
t’s are finite terms, for all ¢,7, 1 <i < j < m, X; # X;, and §’s are hedges consisting of
finite terms or hedge variables. The variables x1,...,x,, X1, ..., X, are called recursion
variables. They are bound in the system. All other variables occurring in the system are free.

9:3

FSCD 2018

9:4

Term-Graph Anti-Unification

We will use different notation for free and bound variables in systems of recursion
equations, writing the latter in bold font. One recursion variable (usually, the leading
variable of the first equation) is a designated one and we call it the root of the system T,
denoted by root(T"). It is always a term variable.

A recursion variable v is reachable from a recursion variable x in a system I if I' contains
an equation of the form x = § € T and either v € V(§), or v is reachable from some recursion
variable v € V(§). In particular, we say that a hedge variable Y is horizontally reachable
from a hedge variable X in I, if I' contains an equation X = § such that either § has the
form (§1,Y, 82), or it has the form (31, Z, 32) and Y is horizontally reachable from Z. An
equation is called useless in T if its leading recursion variable is not reachable from root(T).

A system I' is called horizontally bounded if no hedge variable is reachable from itself in T,
i.e., I' contains no horizontal cycle.! For instance, {x = f(x), X = (x,Y)} is a horizontally
bounded system, while {x = f(x), X = (z, X)} is not.

We do not distinguish between two systems of recursion equations if they differ from each
other only by renaming of bound variables.

A system of recursion equations is called flat, if the equations have one of the following
three possible forms: © = f(xq,...,X,), € = u where u is a free or bound term variable, and
X = (vy,...,V,) where n > 0 and each v; is a free or bound term or hedge variable.

A system of recursion equations I' is in canonical form if it does not contain useless
equations and each equation in I' has one of the following forms:

= f(X1,---,Xn), Wwhere the x’s are (not necessarily distinct) recursion variables, or

x =y, where y is a free variable, or

X =Y, where Y is a free variable.

For instance, {x = f(y, X, X),y =g(x),X =Y} and {x = f(y,2,2),y = g(x),z = a}
are in canonical form, while {x = f(g(x), X), X =Y}, {x = f(y,X),y = g(x)}, {x =
fly, X),y=g(x),X =a}, and {z = f(y,X),y =g(x), X =Y,Y = Z} are not.

Every canonical system is flat and horizontally bounded. On the other hand, each flat
horizontally bounded system can be transformed to the canonical form by performing the
following canonicalization steps as long as possible:

Remove useless equations.

Remove trivial equations of the form & = y and replace all occurrences of by y. If

y = x, then replace the equation by x = e, where e is some predefined constant from F.

Replace equations of the form X = (vy,...,V,), n > 1, where v’s are free or bound term
or hedge variables, by n new equations Y; = v;, 1 <1i < n, where Y;’s are fresh hedge
variables, and replace each occurrence of X by (Yi,...,Yy,).

Replace equations of the form X = u by & = u and replace each occurrence of X by x,
where u is a free or bound term variable and « is a fresh term variable.

Remove trivial equations of the form X =Y and replace all occurrences of X by Y.
Remove equations of the form X = ¢ and remove each occurrence of X.

Essentially, this canonicalization extends the canonicalization from [4] by four steps
dealing with hedge variables. These steps split each equation of the form X = (s1,...,sy)
into n new equations (one for each s;), and, eventually only those are retained for which s;
is a free variable. The bound s;’s at the end replace their leading recursion variables.

! Systems that are not horizontally bounded can be used to define cyclic term-graphs where cycles are
formed both vertically and horizontally. Such term-graphs can model infinitely branching trees of
infinite depth. These structures go beyond the scope of this paper.

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

Intuitively, canonical systems of recursion equations can be naturally represented by
graphs: The nodes will be the recursion variables; a node will be connected to a node x by
an edge if the system contains an equation = f(...,X,...); each node x will have a label f
for an equation & = f(...) or the label y for an equation & = y, each node X will have a
label Y for an equation X =Y. Every node is reachable from the root. Cycles and sharings
are defined by the occurrences of recursion variables. This intuition justifies the definition:

» Definition 4. A term-graph is a system of recursion equations in canonical form.

» Example 5. We show some term-graphs and their defining recursion equations.

‘ Equations: =z = f(y,x)
y=a

=(1)
2. Graph: ' ‘ Equations: = f(z,y)
e Y y=9(y,z)

1. Graph:

<
O

3. Graph: Equations: y = f(u,z)
z= f(u,y)
u z
U=z

A flat horizontally bounded system and its canonical form have the same (possibly infinite)
term unwinding. In the rest of the paper we consider only canonical systems of recursion
equations. The words “system of recursion equations” and “(term)-graphs” will be used
interchangeably. The letter G will be used to denote term-graphs.

Given a term-graph G and an equation & = t, the subgraph of G rooted at x is the set
subgraph(G,x) = {x =t} U{x = s | X = s € G, where x is reachable from x}. Obviously,
subgraph(G, root(G)) = G.

The set of nodes of a term-graph G is denoted by nodes(G). If @ € nodes(G) and
v is its ith successor (i.e., ¢ =t € G for some ¢t and v is ith argument of t), we will
write € —; v. An access path of v € nodes(G) is a possibly empty finite sequence of
positive natural numbers (i, ...,i;) such that there exist X;,...,X;_1 € nodes(G) with
700t(G) —iy X1 —ip ** —ri;_y Xj—1 —i; V- A node may have several access paths. The set
of all access paths of a node x is denoted by acc(x).

We will also consider term-graph hedges, defined analogously to hedges: they are finite,

possibly empty sequences of term-graphs and hedge variables. We will use G to denote them.

3 Bisimilarity Relation

It is straightforward to adapt the notions of bisimulation and bisimilarity [4] to our graphs:

» Definition 6. Let Ty = {x; =51,...,X, = Snt and Iy = {v1i = q1,..., Vi = ¢} be two
systems of recursion equations. Then R is a bisimulation from 'y to I'y iff

R is a binary relation with the domain {x;,...,X,} and codomain {vy,...,vp}.

The roots of I'y and I'y are related: x; Rv;.

9:5

FSCD 2018

9:6

Term-Graph Anti-Unification

Ifx; Rvj, x; =l(xi,...,x5,) €T1, ki >0, and v; = b(v{,...,vij) €Ty, k; > 0, then
li = 1o, ki = kj, and x, Rv, forall 1 < u < k. (It applies also when [; and Iy are
variables: In this case k; = k; = 0.)
In short, bisimulation means that the roots are related, related nodes have the same label,
and their successor nodes are again related.

» Definition 7. Two graphs are bisimilar, if there exists a bisimulation from one to another.

Bisimilarity is an equivalence relation, see, e.g., [4]. We write G; ~ Gy if G; and Go
are bisimilar, and G; &> Go if there exists a functional bisimulation from G; to Gs (i.e., a
bisimulation which is a function).

Functional bisimulation collapses a graph into a smaller one. For the other way around,
one says that the graph gets expanded, copied, unwinded, or unraveled. In [4] it is shown
that the equivalence class of a term-graph G with respect to bisimilarity is a complete
lattice, partially ordered by functional bisimulation. The least upper bound in this lattice
is a rational term, denoted by AG, and the greatest lower bound is a fully collapsed graph,
denoted by VG. Hence, AG &> G > VG.

» Example 8. Let G be the term graph {x = f(y,2),y =a,z = f(y,z)}. Then AG is the
infinite rational term depicted in Fig. 1 in Example 2, and VG is the first graph in Example 5.

Given a bisimulation relation R from a term-graph G; to a term-graph Gs, its associated
graph G# is defined as follows: (i) nodes(Ga) = R, root(G) = (r00t(G1), root(Gs)), the label
of each (X;,X2) € nodes(Ga) is that of x; (which is the same as the label of x,); (ii) if
X1 € nodes(G1), Xo € nodes(G2), (X1,X2) € R, X1 —i X1, and X5 —; X5, then in G4 we have
(Xl,XQ) i (X/17X/2)

4 Substitutions and Generalizations

The notions related to substitutions, formulated for finite unranked terms and hedges in [22],
can be reused with a slight modification for (possibly) infinite terms and hedges.

A substitution is a mapping from term variables to terms and from hedge variables to
hedges, which is the identity almost everywhere. We use the traditional finite set repres-
entation of substitutions, e.g., {x — f(a, f(a,...)), X =€, Y = (X,9(Y,9(Y,...,Y),Y))},
which stands for the substitution that maps every variable to itself except x, X, and Y that
are mapped respectively to f(a, f(a,...)), ¢ and (X, g(Y,g(Y,...,Y),Y)).

The lower case Greek letters are used to denote substitutions, with the exception of the
identity substitution for which we write Id. The domain and range of a substitution o are
defined in the usual way: dom(o) = {x € V | o(x) # x} and ran(o) = {o(x) | X € dom(o)}.

Substitutions can be applied to terms and hedges using the congruences o(f(s1,...,8,)) =
flo(s1),...,0(sn)) and o(s1,...,8n) = (0(s1),...,0(sn)). We call o(s) and o(§) the in-
stances of respectively s and § and use postfix notation to denote them, writing so and So.
We also say that § is more general than ¢ if ¢ is an instance of § and denote this fact by
§<qG. If 5<Gand § < 5, then we write § ~ ¢. If § < ¢ and § 2 ¢, then we say that § is
strictly more general than ¢ and write 5§ < q.

The composition of two substitutions o and 14, written as o4, is defined as the composition
of two mappings: We have s(cd) = (so)d for all s. A substitution o is more general than
o9 with respect to a set of variables X C V, written o1 <y 03, if there exists ¥ such that
xo1¥ = Xoo, for each x € X. The relations ~ and < are extended to substitutions: o1 ~y o9
means 01 <y 09 and o2 <y 01, and g1 <y 02 means oy <y 03 and 01 Fx 9.

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

Next we define substitutions directly for term-graphs, i.e., for systems of recursion
equations (in canonical form). Instead of writing the whole systems of recursion equations in
the range of substitutions, only the roots of the corresponding term-graphs appear there.
Hedge variables in the image remain unchanged. For instance, assume the term-graphs G;
and G, are given by the systems of recursion equations: G, = {x = f(y,x),y = a}, and
Go = {x = g(X,2,X),X =Y} Then the substitution {z — f(a, f(a,...)), X = €Y —
(X,9(Y,g9(Y,...,Y),Y))} we considered above can be written as {x — root(G1), X — €,Y —
(X, 100t(G2))}. The bound variables in G; and Gy should be appropriately renamed to
guarantee that the names are distinct from each other and from free variables.

To define application of such a substitution to a term-graph, we assume that all term-
graphs are in canonical form and the bound variables are appropriately renamed. Let ¢ be a
substitution and G be a term-graph. Then the term-graph o(G), the instance of G under
0, is obtained by canonicalizing the following flat horizontally bounded system of recursion
equations: {x =0(3) | x =8§€ G}UG U---UG,, where G1,...,G, are all term-graphs whose
roots appear in ran(o). Substitution application naturally extends to term-graph hedges.

» Example 9. Let G be the term-graph:
G ={xo = f(zo, X1, 21, X1,®2), X1 = X, &) = g(Xa, 22, X3), Xo =Y, x5 = z}.

Let o = {x — r00t(G1), X — (root(G2), X),Y — €}, G ={y = f(y)}, G2 = {z = a}. Then
o(G) ={xo = f(z0,2, 24, 21,2, Z,y), 2 =0, Z =X, m1 = g(y), y = f(y)}.

The notion of more general term-graphs and term-graph hedges is defined modulo
bisimilarity: g} is more general than GQ, if there is a substitution o such that g~10 ~ Gg.
We reuse the symbol < for this relation over term-graphs and term-graph hedges, and also
write C;l ~ g} if Ql < g} and g} =< g}. For the strict part of < we reuse <. Analogously
for substitutions: A substitution over term-graphs oy is more general than a substitution
over term-graphs oy with respect to a set of variables X C V), if there exists ¥ such that
xo19 ~ Xog for each x € X. Also in this case we reuse the =< symbol and write o1 <x 09
(and similarly for the relations ~ and < for substitutions).

A term-graph hedge G is called a generalization of two term-graph hedges G, and G, if
C; < _C';l and C; = _C';z. We say that a term-graph C; is a least general generalization (lgg in
short) of Q~1 and g} if Gis a generalization of C;l and _C';g and there is no generalization G of
_C';l and QNQ that satisfies QN < C;' . That means, there are no generalizations of C;l and ,C';g that
are strictly less general than their least general generalization.

An anti-unification triple, AUT in short, is written x : G1 2 Go, where x does not occur
in G1 and G». Intuitively, x is a variable that stands for the most general generalization of Gy
and Go. An anti-unifier of x : Gi & Gy is a substitution o such that dom(c) C {x} and xo is
a generalization of both G: and Gy. An anti-unifier o of an AUT X : G1 2 G, is least general
(or most specific) if there is no anti-unifier ¥ of the same problem that satisfies o <,y . If
o is a least general anti-unifier of an AUT x : G1 £ Go, then xo is an lgg of G; and G.

A complete set of generalizations of two term-graph hedges G, and G is a set G of
term-graph hedges that satisfies the properties:

Soundness: Each G € G is a generalization of both Ql and g}.
Completeness: For each generalization G’ of .C';1 and ,C';z, there exists G € G such that ¢’ < G.

G is a minimal complete set of generalizations (mcsg) of G; and G if, in addition to
soundness and completeness, it satisfies also the following property:

9:7

FSCD 2018

9:8

Term-Graph Anti-Unification

Minimality: For each Qi, Qé e G, if QN{ = ,C';é then G; = Gé

» Lemma 10. For any hedges § and q there exists their minimal complete set of generaliza-
tions. This set is finite and unique modulo ~.

Proof. Similar to the analogous lemma for hedges with finite terms, see [22]. <

» Theorem 11. For any term-graph hedges Gy and G there exists their minimal complete
set of generalizations. This set is finite and unique modulo ~ and ~.

Proof. Note that G ~ AG for all G. Let G, = (G},...,G}) and G, = (G3,...,G2). By
Lemma 10, the hedges (AG},...,AG}) and (AG?,..., AGZ) have a finite minimal complete
set of generalizations, unique modulo ~. |

Our goal is not to compute minimal complete sets of generalizations. We would rather
focus on so called rigid generalizations, which we define below. The motivation comes from
the experience with finite unranked term anti-unification, where unrestricted mcsg can grow
too big and it makes sense to restrict consecutive hedge variables in the generalization. For
the details, see [22].2

» Definition 12 (Alignment, Rigidity Function). Let w; and ws be strings of symbols. Then
the sequence aq[i1, j1] - - - anlin, jn], for n > 0, is an alignment if ’s and j’s are positive integers
such that 0 < i1 < -+ <4y, < |’LU1| and 0 < 1< <gn< |1L)2|7 and aj = ’LU1|Z‘k_ = ’LU2|jk for
all 1 <k <n. A rigidity function R is a function that returns, for every pair of strings of
symbols w; and we, a set of alignments of w; and ws.

For instance, if R computes the set of all longest common subsequences, then R(abcda,
bcad) = {b[2,1]c[3, 2]a[5, 3], b[2,1]c[3,2]d[4,4]}.

The top symbol of a term is defined as top(xz) = x for any variable z, and top(f(8)) =
for any term f(§). The notion is extended to hedges: top(X) = X and top(s1,...,Sn)
(top(s1), ..., top(sn)). {x; = $1,--.,X1 = $n} € G, n > 0, then we define top(xy,...,Xn, G)
as top(si, ..., sn). Moreover, we define top(G) = top(root(G),G).

f

» Definition 13 (R-Generalization). Given two term-graphs G; and G (without common free
and bound variables) and the rigidity function R, we say that a term-graph G that generalizes
both G, and Gs is their generalization with respect to R, or, shortly, an R-generalization, if
either

R(top(G1), top(G2)) € {0, {e}} and G = {x = y}, where = is a new bound term variable

and y is a new free term variable, or

fI1,1] € R(top(Gy), top(Ga)) for some f and G = {root(G) = f(X)} UY UG U--- UG/,

where X does not contain pairs of consecutive hedge recursion variables.

The sequence X, the set), and the graphs Gi, ..., G, are defined as follows:

For i = 1,2, the original graph G; contains an equation root(G;) = f(V;) and there exists

an alignment gi[i1, j1] - gn[in, jn] € R(top(V1,G1), top(Va, G2)), satisfying the following

conditions:
1. If we remove all hedge recursion variables that occur as elements of x, we get a sequence
of term recursion variables (1, ..., &y), such that &, = root(G,,) and each G, contains

an equation of the form @ = g5 () for all 1 < k < n, and

2 Note that unrestricted unranked term anti-unification (i.e., without a rigidity function) can be also
modeled as associative anti-unification with the unit element. The latter problem has been studied, e.g.,
in [2,3].

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret 9:9

2. For every 1 < k < n, there exists a pair of term recursion variables y,ﬁ and y,% such
that vi|;, = y}, V2|j, = yi, and G}, is an R-generalization of subgraph(Gi,y;) and
subgraph(Ga, y3).

3. Y= =2%4,...,Y, = Z,}, where Y1, ...,Y,, are all hedge recursion variables in X
and Z1,...,Z, are new free hedge variables.

» Example 14. Let R compute the set of all longest common subsequences and let G, = {x¢ =
flx1,22), 1 = g(x2,®2), T2 = a} and G2 = {yo = f(Y1,%0,Y2,%0), Y1 = g, Y2 = a}.
The term graph {zg = f(z1,2Z1,22,2Z1), z1 = g(Z2), 20 = a, Z1 = 71, Zy = Z} is an
R-generalization of Gy and Go while {2z = f(21, Z1, 22, Z1), 21 = 9(Z2,Z2), zo =a, Z1 =
Zy, Zy = Zs} and {z0 = f(21,21,22,21), 21 =z, 22 =a, Z1 = Z1} are not.

5 The Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on quadruples
A; S;T; G, called configurations. Here A, S, and T are sets of anti-unification triples and G is
a term-graph. The rules transform configurations into configurations. Intuitively, the problem
set A contains AUTs that have not been solved yet, the store S contains the already solved
AUTs, the trail T keeps track of the names of recursion variables, and G is the generalization
which becomes more and more specific as the algorithm progresses by applying the rules.

To keep the notation short, in anti-unification triples we only use variables from the
graphs to be generalized. Those graphs are not explicitly present in the configurations, but
are global parameters, denoted by G; and G,. For simplicity, we assume that G; and G do
not contain free variables. This is not a restriction, because we can replace free variables
by new constants, use the algorithm defined below, and in the generalization replace those
constants back with variables. (In case of hedge variables, we might need to replace their
corresponding generalization term variables by generalization hedge variables.) The rigidity
function R is yet another global parameter. In the rules below, generalization term-graphs
are assumed to be implicitly transformed into the canonical form.

Step: Simplification Step
{x:y22YUA; S;T; G= AgUA; S; TU{u:y = z2}; Gz~ u}U{u=t},
where y = [(V) € Gy, 2 =1(0) € Go, [1,1] € R(top(y, G1), top(z,G2)), T does not contain an

AUT of the form _ :y £ 2z, and w is a fresh recursion term variable. If v = 0 = € then t = |
and Ay = (), otherwise t = [(X) and Ay = {X : ¥V 2 0} where X is a fresh hedge variable.

Dec-S: Decomposition and Solving

{X:vEDIUA; S; T; G =

AU{ykillLk éf)|jk | 1 Skgn},

SU{Yo s V5 2 O JU{Y: VI 200 [1<k <m—1JU{Y, - 9] T 2 9Py

T; GoU{Zy=Yy,...,.Z, =Y},
if R(top(Vv,G1), top(V, G2)) contains a sequence ly[i1, j1] - - ln[in, jn], » > 0. The y’s are fresh
term variables, the Y’s are fresh hedge variables, the Z’s are fresh recursion hedge variables,
and the substitution is o = {X — (Zo,y1, Z1,..., Zn—1,Yn, Zn)}. For each 1 < i < n, if the
new AUT has the form Yj : € £ ¢, then it is not added to S and Z; does not appear in o.

FSCD 2018

9:10

Term-Graph Anti-Unification

Solve: Solving
{Xx:VEV YA S T; = A; SU{x:V =20} T; G{x— w}U{w =x},

if R(top(v,G1), top(0,Gs)) = 0 or R(top(V,G1), top(V,G2)) = {€}. The variable w is a fresh
recursion variable. If x € V;, then w € V; and if x € Vs, then w € V.

Share: Sharing
{z:y22YUA S; {u:y22}uT; G=A; S; {u:y22}UT; G{z — u}.

Merge: Merging Nodes in the Store

@; {X1 Z{/éf),XQ:{'éf)}US; T; {(1)1 = X1, Wso i)(2}ng>
0; SU{XL:VEOE T; G{we = wi} U{w: =x1},
where x1,X2 € Vy U Vs such that if x; € Vs, then X2 € V.

The rules never generate the AUTSs of the form X : ¢ £ €. To compute R-generalizations
of G; and Go, we start with {x : r00t(G;) £ root(G2)},0,0, {x = 2} and apply the rules on
the selected AUTs in all possible ways. The obtained procedure is denoted by Gen(R).

The notation =* abbreviates finite (possible empty) sequence of rule applications. If
we want to make it clear which rule is used to transform a configuration, we will write
the rule name as the index at the arrow like, e.g., A;5 : TG = step A'; 5" : T7; G’ for the
transformation with the rule Simplification Step.

» Example 15. Let R be the longest common subsequence. Then the term-graphs G; and
Go below have a unique R-1gg G:

G1 = {xo = f(x1,®2, T3, T0, T3, T2, T3), T1 = g(T1,T2), T2 =b, 3 = a}.
Ga = {yo = f(y1,90,Y3); Y1 = 9(Y1,92), Y2 = b, y3 = a}.
G ={z0= f(21,21,20,23,2Z1), 21 = g(21,22), Z=U, z3=a, zo = b}.

Graphically:

The algorithm Gen(R) computes G, e.g., in the following way:

{uo : o = yo}; 0;0; {z0 = uo} =>step
{Uo : (w1, T2, @3, T, T3, T2, 3) = (Y1,Y0,Y3) }5 0; {20 : w0 = yo };
{z0 = f(2Zy), Zo = Us} =>Decs
(Choosing the common subsequence: g[1,1]f[4,2]a[5, 3]), corresponding to the
node pairs @1 and y1, o and yo, the second occurrence of x3 and ys.)
{ur : @y £ y1, up i 2o £ yo, us w3 = ysh; {Ur: (@a,@3) S €, Us: (2, 23) £ €}
{z0: 2o = wol;
{z0 = f(u1, Z1,us,us, Z>),
w1 =uy, Z1 = Uy, ug = ug, ug = ug, Zo = Us} =>step
{ug : o £ yo, us : 3 = y3, Us : (@1, 22) £ (y1,92)

{Ur : (z2,3) £ €, Uy : (z2,@3) 2 €}; {20: @0 = Yo, 21:T1 = Y1 };

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

{20 = f(21, Z1,u2,u3, Z3),
z1 = g(Z3), Zy = Uy, uz = ug, uz = ug, Zo = Us, Z3 = Uz} =>spare
{us : xs £ y3, Us: (x1,22) = (y1,92) 5
{Ur: (zo,23) 2 ¢, Unt (@2,®3) £ ¢} {2020 £ yo, 21: 21 Sy}
{z0 = f(2z1, Z1, 20, u3, Z3),
z1 =9(Zs), Z1 = Uy, ug = u3, Zy = Us, Z3 = Uz} =>step
{Us : (@1, 22) = (y1,92) };
{Ur: (®2,23) 2 ¢, Uzt (z2,23) 2 €} {2020 2 4o, 21: 21 2 Y1, 23 %3 = ya s
{z0 = f(21, Z1, 20, 23, Z2),
z1 = 9(Z3), Z, = Uy, 23 = a, Zy = Uy, Z3 = Uz} =>Decs
(Choosing the common subsequence: g[1,1]b[2,2]), corresponding to the
node pairs 1 and y1, 2 and ys.)
{ug 1 21 £ Y1, Us : T2 £ Yol
{Uy : (o, 3) £ €, U : (x2,23) £ €}; {20: @0 S yo, 21:T1 £ Y1, 23 T3 = Ys);
{z0 = f(z1, Z1, 20, 23, Z2),
z1 = g(ug,us), Z1 = Uy, 23 = a, Zy = Us, ug = Uy, Us = Us} =Share
{us : x2 = Y2}
{UL: (m2,23) £ ¢, Us : (@2, 23) £ €}; {z0: @0 Lyo, 21T Eyp, 2z xz = Ys};
{20 = f(21, 21, 20, 23, Z2),
z1 =g(z1,us5), Z1 =Ur, z3 =0, Zy =Us, us = us} =—Step
0; {Uy : (22, 23) =€, Us: (T2, T3) = €}
{Zoiwoéyo, Z1 .21 éyh Zsiwséy& Z22$2éy2};
{z0 = f(2z1, Z1, 20, 23, Z>2),
z1 = g(21,22), Z1 = Uy, z3 = a, Zy = Us, 22 = b} = Merge
0; {Uy : (w2, 3) £ e}; {z0: @0 Sy, z1: @ Sy, 33 S Y3, 2w = Y2}
{z0 = f(z1, 21, 20,23, Z1), 21 = g(21,22), Z1 =U1, 23 =a, zo =b}.
The obtained generalization is equal to G modulo renaming variables. The store and the
trail suggest how to obtain the original term-graphs from the computed generalization. For
instance, to obtain G; from G, we just apply the substitution {U; — (22, z3)} to G. In the

obtained term-graph we will have x5 = b and x3 = a alongside to zo = b and z3 = a, but it
will be bisimilar to G;.

» Example 16. Let G1 = {xg = f(x1,22), 21 = g(x0,x3), X2 = a,x3 = b} and Gy = {yo =
f(y1>y2)7y1 = h(y07y3)7y2 = a,Ys = b} Then the algorithm ends with @, {Z T £ yl}a
{20 : o = Yo,22 : T2 = Ya},{z0 = f(21,22),21 = 2,22 = a}. Obtaining G; from the
computed generalization can be illustrated as {zo = f(21,22),21 = 2,220 = a}{z— @1} =

{z0 = f(®1,22), 22 = a, 1 = g(To, T3),x0 = f(x1,%2), T2 = a,x3 = b} ~ .

» Theorem 17 (Termination). The procedure Gen(R) terminates on any input and produces
a configuration 0; S; T'; G, where S is irreducible with respect to the merging rule.

Proof. Let the size of a hedge, size(§), be the number of symbols in it. the size of an AUT

x :t; 2ty be size(ty) + size(tz) + 1, and the size of X : 51 £ 55 be size(51) + size(32) + 2.

9:11

FSCD 2018

9:12

Term-Graph Anti-Unification

The size of a set of AUTSs is the multiset of the sizes of its elements. Then the only rule
that increases the size of A is Step. However, this step can be applied only finitely many
times, since each time it strictly decreases the number of unvisited node pairs (x;,Xs), where
X1 € G1 and X, € Go. Any other rule strictly decreases the size of A or, in case of Merge, the
size of S. Moreover, Merge does not change the size of A. The rule Dec-S can introduce only
finite branching. Therefore, the algorithm terminates. |

» Definition 18. Given a set A of AUTs where all the generalization variables are pairwise
distinct. We define two substitutions that can be obtained from A:

op(A)={x—V|x:v20c A} or(A) ={x—V|x:vE0c A}

» Lemma 19 (Transformation Invariant). Let G1, Go be the two term graphs to be generalized
and let A; S;T;G be a configuration such that all the generalization variables from A, S,T
are unique among all the other variables from A, S, T, including those occurring in graphs or
hedges. Furthermore, let Gor,(T)or(S)orL(A) = G1 and Gor(T)or(S)or(A) = Ga, and let G
be a rigid generalization of G and G; where i € {1,2}.

If A; S;T;G = A';S;T'; G’ is a transformation step applying one of the defined rules
then all the generalization variables from A',S',T' are unique among all the other variables
from A, S, T'. Moreover, G'or (T)or.(S)or(A") = G1 and G'or(T")or(S)or(A") = Ga,
and G is a rigid generalization of G’ and G; where i € {1,2}.

Proof. We prove that each rule preserves those properties. We can omit the proof for
G'op(T")or(S")or(A") = Ga, since it is equivalent to proving G'or(T")or (S)or(A’) = G1.
For the same reason, we omit the proof that G’ is a rigid generalization of G’ and G,.

In Step we have two cases, namely (i) v =0 = ¢, and (ii) V # € or 0 # e. We only
illustrate the more general case (ii) since the two proofs are largely identical. Therefore,
we have A = {z:y 2 2} U (A \{X:v20}),S=8,Tu{u:y =z} =T, and
G{z = u} U{u =I(X)} = G, where y = (V) € G1, z = (V) € G2 and u, X are fresh.
Since w, X are fresh, all the generalization variables from A’, S, T are still unique among all
the other variables from A’, 8", T’. Obviously, Gor(T)oL(S)oL(A) = Gor(T)oL(S)or({z :
y 22z} U(A\{X :v270}) = G. From the uniqueness of x, and by definition of
substitution application follows that G; = G{x +— y}or(T)or(S")or(A'\{X : v £ ¥}) =
Glz = y}U{y = 1(V)DNor(T)or(S)or (A \ {X : v £ 0}). From the uniqueness of X
follows G; = (G{z — y} U{y = I(X)})or(T)or(S)or(A"). Finally, from the uniqueness
of u follows G; = (G{z — y} U{y = I(X)D{y = ulor,(TU{u:y = 2})or(S)or(4') =
gIO'L(T/)O’L(S/)O‘L(A/).

Since Step can’t lead to consecutive hedge variables and I[1, 1] € R(top(y, G1), top(z, G2)),
it follows that G’ is a rigid generalization of G’ and G;.

Now we analyze Dec-S, which is a bit more involved. We have A = {X : v £ 0}u(A"\ {ys :
o 20l [1<k <)), SO Yy 2 OV VT 2 O [1<k <
n— 1 U{Y, V[P 2P = ¢ T = T, and Go U {Zy = Y,..., Z, = Y} = G,
where R(top(v,G1), top(,Gs)) contains a sequence ly[i1, j1] - - ln[in, jn], n > 0, the y’s,
Y’s, and Z’s are fresh, and o = {X — (Zo,y1,Z1,--,Zn-1,Yn, Zn)}. Since all the vari-
ables introduced by the transformation are fresh, all the generalization variables from
A’ 8", T are still unique. We get Gop(T)op(S)or(A) = Gop(T)or(S"\ ({Yo : V|j 2
ORI U{Ys VT2 B 1 <k < -1 u{Y, s v 2 o e (X
v EOUYU A N\{w : Vi, 20, | 1 <k <n}) = G. By uniqueness of X, fol-

lows G1 = G{X — V}ior(T)or(S"\ ({Yo : \7|61 = f)|61} U{Y: : \7|l:’€+1 = 6\;:*1 | 1<

i

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

B<n =130 (Y, P 2 9P o (A7 {y 1 V], 2 0], |1 <k < n}). Now
observe that G{X + v} is equivalent to G{X (Yo,y1,Y1,..., Y0 1,90, Yo) H{Yo =
YEHYe = Y | 1<k <n— 1Y, = 97 Hye = i, | 1 < k < n}, therefore
G =G{X = (Yo,91, Y1, -, Yo 1, un, Yo) Huw = Vi | 1 <k <ntor(T")or(S")or(A\{ys :
{,|ik = l~)|]k ‘ 1 S k S n}) = Q{X — (}/Oyylzyh--~7Yn—1;y'ruYn)}UL(T/)UL(S/)UL(A/) =
(g{X — (Zo,yl, Zl, ey Zn—hyny Zn)} U {ZO = Yb, ey Zn = Yn})O'L(T/)O'L(S/)O'L(A/) =
Gor(Thor(S)or(A).

Since Dec-S cannot lead to consecutive hedge variables, it follows that G’ is a rigid
generalization of G’ and G.

We omit the case of Solve because it is very similar to the case of Step.

In Share we have A = {z : y 2 2} U A, S =5, T =T, and G{z — u} = G,
where {u : y £ 2} € T. Uniqueness of generalization variables from A’,S’, T’ is obviously
maintained. We get Gor,(T)or(S)or(A) = Gor(T)or(S)or({z : y £ 2} U A') = G; and
by uniqueness of = follows G; = G{z + y}or(T")or(S)or(A"). The trail {u:y = 2} € T
tells us that there is already a recursion variable w in G that represents the node y in G;.
Therefore, instead of substituting x with y we may as well substitute it with w. This
consideration leads to G1 = G{z — u}o(T")or (S)oL(4).

The property that G’ is a rigid generalization of G’ and G; is obviously maintained during
this transformation.

In Merge we have A = A’ = (), S = {x2 : V2 O}US T =T, G = {w; =x1,ws =
Xt WG and G = G"{wy — w;i}U{w; = x1}, where {x1 : v £ 0} € §'. We get
gO'L(T)UL(S)O'L((Z)) = ({(Ul = X1, Wy = Xg}] g//)O'L(T/)UL({XQ (v E f)} C] S/) = Gy and
by uniqueness of X2 follows G1 = ({w1 = x1, W2 =x2} UG){x2 — V}IoL(T")or(S"). Since
or(S") also contains the mapping {x1 — v} we get G1 = ({w1 = x1, W2 = X2} UG) {x2 —
x1}tor(T)or(8") = (¢"{ws = w1t U{wi =x1})or(T")or(S).

The property that G’ is a rigid generalization of G’ and G; is maintained because of the
condition that from x; € Vs follows X2 ¢ V; forbids the instantiation of a term variable by a
hedge variable. |

» Theorem 20 (Soundness). If {x : root(G1) £ root(G2)}; 0;0; {x = z} =* 0;S;T;G is a
derivation in Gen(R), then G is an R-generalization of G and Gs.

Proof. The assumptions of Lemma 19 hold for the initial configuration {z : root(G;) £
root(Ga)}; 0;0; {x = z}. Since Gen(R) terminates on any input (Theorem 17), it follows
that all the generalization variables from S and T are unique among all the other variables
from S and T. Moreover, Gor(T)or(S) = G1 and Gog(T)or(S) = G2, and G is a rigid
generalization of G and G; where i € {1,2}. Obviously G is a generalization of G; and G5. To
prove that G is an R-generalization, it remains to show that the recursion from Definition 13
item 2 has been applied exhaustively. This follows from the fact that the store is complete,
ie.,, Gor(T)or(S) = G1 and Gor(T)or(S) = Go, and from the condition of the rule Solve
that R(top(V,G1), top(V,Gs)) is either) or {e}. <

» Corollary 21 (Soundness of the Store). If {z : r00t(G1) = root(Go)}; 0;0; {x = 2} =*
0; S;T; G is a derivation in Gen(R), then Gor(T)or(S) = G1 and Gor(T)or(S) = Go.

Notice that Gen(R) computes generalizations that do not have free term variables.
Therefore, they are not considered in the completeness theorem. However, we show in [12]
that this restriction can be lifted by adding an additional transformation rule.

» Theorem 22 (Completeness). Let G be an R-generalization of G1 and Ga. Then Gen(R)
computes an R-generalization G' of G1 and G such that G < G'.

9:13

FSCD 2018

9:14

Term-Graph Anti-Unification

Proof. By our assumption, G; and G, do not contain free variables. If G has a form {root(G) =
x}, then 2 must be a fresh variable and any generalization computed by Gen(R) satisfies
the theorem. Now assume root(G) = f(0) € G. Then we should have root(G1) = f(x) € G1
and root(Gs) = f(V) € G2 and we can start the derivation with Step. We can make the next
step immediately by Dec-S rule, taking the same alignment (from R(top(X,G1), top(V,G2)))
which is used in f(U) (since G is an R-generalization, such an alignment exists). Further, if
Merge is applicable, we make this step as long as possible.

After these steps, in the set of new AUTs we will have only those which have counterparts
for term variables occurring in v. In the store there will be those AUTSs which are generalized
by hedge variables in U. It can be that we merged more variables than it is done in v, but it
does not harm, since we are going to compute a generalization that is less general than G.
The trail will store the seen pair of the nodes (in this case the roots of G; and Gs). The
generalization graph will contain the equation root(G’) = f(@), that corresponds to the root
equation of G, maybe with more shared variables. The bound term variables from v will
have their counterparts in @, but the equations which correspond to those variables in the
current version of G’ will have fresh free variables in the right hand side.

Next, we will pick an AUT in the new configuration. Its generalization variable has a
unique counterpart in G, which suggests how to make the next step, basically repeating the
reasoning as above, unless the AUT has the form z : £ y and 2’ : & £ y is already in the
trail. We will use the Sharing rule to make the step. It can be horizontal or vertical sharing.

If it is a horizontal sharing, then it does not matter whether those nodes in G which
correspond to z and z’ are shared. If they are, then our construction of G’ at this place
directly imitates the structure of G. If they are not, the G at this place is an expansion of G,
but this operation preserves bisimilarity. In the vertical sharing, in addition to the above
considered ones, it is also possible that at this place G is a collapsed version of G’. But again,
bisimilarity is preserved. Note that the construction of our derivation is not influenced by
whether a particular node of G has already been seen or not. They are used to guide the
construction, and the same node might guide more than one steps.

Iterating this process, eventually we stop with a generalization G’ such that G < G'. <«

» Theorem 23. For two bisimilar term-graphs, Gen(R) computes their join in the lattice
generated by functional bisimulation.

Proof. It is easy to see that our algorithm returns only one answer for bisimilar graphs (since
there is no branching at Dec-S rule) and the computed generalization contains no new free
variables (the store is empty). Then the set T gives exactly a bisimulation, which justifies
bisimilarity between the original term-graphs: Ry = {(v,v) | x : v £ v € T for some x}.
The computed generalization G is the same as the term-graph gﬁT associated to Ry. (The
node x € G can be seen as the node (v,v) € QQT for each x : v £ v € T.) By construction
of T, for each (v,v) € Ry, the access paths are not disjoint: acc(v) N acc(v) # 0 (otherwise
there would be a new free variable in the generalization introduced by Dec-S). By Proposition
3.13 in [4], it implies that Ry is a minimal bisimulation. Therefore, from the constructive
proof of Theorem 3.19 in [4] we conclude that QQT (i.e. G) is the join of G; and Gs. >

» Example 24. Let G = {xo = f(x1),21 = f(x2), 22 = f(x3), 23 = f(x4), 24 = f(x5),
x5 = f(xs)} and Go = {yo = f(y1),y1 = [(Y2),¥2 = f(y3), Y3 = f(ya), Y2 = f(y5),y5 =
f(ye),y6 = f(y7),y7 = f(y2)}. They are bisimilar. The algorithm computes their lgg

G ={z0 = f(z1), 21 = f(22), 22 = [(23), 23 = f(24), 20 = [(25), 25 = [(26), 26 = f(27),
z7 = f(zs),2z8 = f(z3)}. It is the join in the lattice of the bisimilarity class of G; and Ga [4].

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret

6

Conclusion

We have presented an anti-unification algorithm for (unranked) term-graphs, which are given
as systems of recursion equations. The algorithm is sound, complete, and terminating, and
uses a parameter, called rigidity function. The function selects common edges outgoing
from the pair of nodes to be generalized. While longest common subsequence is the most
intuitive instance of the rigidity function, the properties of the algorithm hold for any concrete

rigid instance of the parameter. As a future work, extending simply typed lambda term

anti-unification [11] to cyclic lambda terms [5] would provide a generalization of our results

from a first-order language to a higher-order one.

—— References

1

10

11

12

13

Hassan Ait-Kaci and Gabriella Pasi. Lattice operations on terms over similar signatures.
In Pre-proceedings of the 27th International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’17), 2017. URL: https://arxiv.org/abs/1709.00964.
Maria Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. ACUOS: A system
for modular ACU generalization with subtyping and inheritance. In Fermé and Leite [17],
pages 573-581. doi:10.1007/978-3-319-11558-0.

Marfa Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A modular order-
sorted equational generalization algorithm. Inf. Comput., 235:98-136, 2014. doi:10.1016/
j.1c.2014.01.006

Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Fundam. Inform.,
26(3/4):207-240, 1996.

Zena, M. Ariola and Jan Willem Klop. Lambda calculus with explicit recursion. Inf.
Comput., 139(2):154-233, 1997. doi:10.1006/inco.1997.2651.

Hendrik Pieter Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert, Richard
Kennaway, Marinus J. Plasmeijer, and M. Ronan Sleep. Term graph rewriting. In J. W.
de Bakker, A. J. Nijman, and Philip C. Treleaven, editors, PARLE, Parallel Architectures
and Languages Europe, Volume II: Parallel Languages, volume 259 of LNCS, pages 141-158.
Springer, 1987. doi:10.1007/3-540-17945-3.

Adam D. Barwell, Christopher Brown, and Kevin Hammond. Finding parallel func-
tional pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-

unification. Future Generation Comp. Syst., 79:669-686, 2018. doi:10.1016/j.future.

2017.07.024.

Alexander Baumgartner. Anti- Unification Algorithms: Design, Analysis, and Imple-
mentation. PhD thesis, Johannes Kepler University Linz, 2015. Available from http:
//www.risc.jku.at/publications/download/risc_56180/phd-thesis.pdf.

Alexander Baumgartner and Temur Kutsia. A library of anti-unification algorithms. In
Fermé and Leite [17], pages 543-557. doi:10.1007/978-3-319-11558-0.

Alexander Baumgartner and Temur Kutsia. Unranked second-order anti-unification. Inf.
Comput., 255:262-286, 2017. doi:10.1016/j.1c.2017.01.005.

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order
pattern anti-unification in linear time. J. Autom. Reasoning, 58(2):293-310, 2017. doi:
10.1007/s10817-016-9383-3.

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Term-graph anti-
unification. RISC Report Series 18-02, Research Institute for Symbolic Computation, Jo-
hannes Kepler University Linz, Austria, 2018.

Tarek Richard Besold and Enric Plaza. Generalize and blend: Concept blending based
on generalization, analogy, and amalgams. In Hannu Toivonen, Simon Colton, Michael

9:15

FSCD 2018

https://arxiv.org/abs/1709.00964
http://dx.doi.org/10.1007/978-3-319-11558-0
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1006/inco.1997.2651
http://dx.doi.org/10.1007/3-540-17945-3
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1016/j.future.2017.07.024
http://www.risc.jku.at/publications/download/risc_5180/phd-thesis.pdf
http://www.risc.jku.at/publications/download/risc_5180/phd-thesis.pdf
http://dx.doi.org/10.1007/978-3-319-11558-0
http://dx.doi.org/10.1016/j.ic.2017.01.005
http://dx.doi.org/10.1007/s10817-016-9383-3
http://dx.doi.org/10.1007/s10817-016-9383-3

9:16

Term-Graph Anti-Unification

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Cook, and Dan Ventura, editors, Proceedings of the Sixzth International Conference on
Computational Creativity, pages 150-157. computationalcreativity.net, 2015. URL: http:
//computationalcreativity.net/iccc2015/7page_id=331.

Petr Bulychev and Marius Minea. An evaluation of duplicate code detection using anti-
unification. In Proc. 3rd International Workshop on Software Clones, 2009.

Andrea Corradini and Fabio Gadducci. An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures, 7(4):299-331, 1999. doi:10.1023/A:
1008647417502.

Rylan Cottrell, Joseph J. C. Chang, Robert J. Walker, and Jorg Denzinger. Determining
detailed structural correspondence for generalization tasks. In Ivica Crnkovic and Antonia
Bertolino, editors, 6th joint meeting of the Furopean Software Engineering Conference and
the ACM SIGSOFT Int. Symposium on Foundations of Software Engineering, pages 165—
174. ACM, 2007.

Eduardo Fermé and Jodo Leite, editors. Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 201/. Proceed-
ings, volume 8761 of Lecture Notes in Computer Science. Springer, 2014. doi:10.1007/
978-3-319-11558-0.

Adelaine Gelain, Cristiano D. Vasconcellos, Carlos Camarao, and Rodrigo Ribeiro. Type
inference for GADTs and anti-unification. In Alberto Pardo and S. Doaitse Swierstra,
editors, Programming Languages - 19th Brazilian Symposium SBLP 2015, volume 9325 of
LNCS, pages 16-30. Springer, 2015. doi:10.1007/978-3-319-24012-1.

Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. On the
adequacy of graph rewriting for simulating term rewriting. ACM Trans. Program. Lang.
Syst., 16(3):493-523, 1994. doi:10.1145/177492.177577.

Jan Willem Klop. Term graph rewriting. In Gilles Dowek, Jan Heering, Karl Meinke, and
Bernhard Moller, editors, Higher-Order Algebra, Logic, and Term Rewriting, Second Inter-
national Workshop, HOA’95, Selected Papers, volume 1074 of LNCS, pages 1-16. Springer,
1995. doi:10.1007/3-540-61254-8.

Boris Konev and Temur Kutsia. Anti-unification of concepts in description logic EL. In
Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Principles of Knowledge
Representation and Reasoning: Fifteenth International Conference, KR’16, pages 227-236.
AAAT Press, 2016. URL: http://www.aaai.org/Library/KR/kri6contents.php.

Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms and
hedges. J. Autom. Reasoning, 52(2):155-190, 2014.

Giorgio Levi. A note on the derivation of maximal common subgraphs of two directed or
undirected graphs. Calcolo, 9(4):341, 1973.

James J McGregor. Backtrack search algorithms and the maximal common subgraph
problem. Software: Practice and Ezxperience, 12(1):23-34, 1982.

Santiago Ontanén and Ali Shokoufandeh. Refinement-based similarity measures for dir-
ected labeled graphs. In Ashok K. Goel, M. Belén Diaz-Agudo, and Thomas Roth-
Berghofer, editors, Case-Based Reasoning Research and Development - 24th Interna-
tional Conference, ICCBR’16, volume 9969 of LNCS, pages 311-326. Springer, 2016.
doi:10.1007/978-3-319-47096-2.

Gordon D. Plotkin. A note on inductive generalization. Machine Intell., 5(1):153-163,
1970.

Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg, editors, Handbook of Graph Grammars and Computing by Graph Transformation,
volume 2, chapter 1, pages 3—61. World Scientific, 1999.

http://computationalcreativity.net/iccc2015/?page_id=331
http://computationalcreativity.net/iccc2015/?page_id=331
http://dx.doi.org/10.1023/A:1008647417502
http://dx.doi.org/10.1023/A:1008647417502
http://dx.doi.org/10.1007/978-3-319-11558-0
http://dx.doi.org/10.1007/978-3-319-11558-0
http://dx.doi.org/10.1007/978-3-319-24012-1
http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.1007/3-540-61254-8
http://www.aaai.org/Library/KR/kr16contents.php
http://dx.doi.org/10.1007/978-3-319-47096-2

A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret 9:17

28 Simon J. Thompson, Huiqing Li, and Andreas Schumacher. The pragmatics of
clone detection and elimination. Programming Journal, 1(2):8, 2017. doi:10.22152/
programming-journal.org/2017/1/8.

FSCD 2018

http://dx.doi.org/10.22152/programming-journal.org/2017/1/8
http://dx.doi.org/10.22152/programming-journal.org/2017/1/8

Proof Nets for Bi-Intuitionistic Linear Logic

Gianluigi Bellin
Universita di Verona, Verona, Italy
gianluigi.bellin@Qunivr.it

Willem B. Heijltjes
University of Bath, Bath, United Kingdom
w.b.heijltjes@bath.ac.uk

—— Abstract

Bi-Intuitionistic Linear Logic (BILL) is an extension of Intuitionistic Linear Logic with a par,
dual to the tensor, and subtraction, dual to linear implication. It is the logic of categories with
a monoidal closed and a monoidal co-closed structure that are related by linear distributivity,
a strength of the tensor over the par. It conservatively extends Full Intuitionistic Linear Logic
(FILL), which includes only the par.

We give proof nets for the multiplicative, unit-free fragment MBILL-. Correctness is by local
rewriting in the style of Danos contractibility, which yields sequentialization into a relational
sequent calculus extending the existing one for FILL. We give a second, geometric correctness
condition combining Danos-Regnier switching and Lamarche’s Essential Net criterion, and demon-
strate composition both inductively and as a one-off global operation.

2012 ACM Subject Classification Theory of computation — Linear logic, Theory of computa-
tion — Proof theory

Keywords and phrases proof nets, intuitionistic linear logic, contractibility, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.10

Acknowledgements We are grateful to the anonymous referees for their constructive feedback,
and in particular for improving our sequentialization procedure.

1 Introduction

Obtaining good proof-theoretic characterizations of FILL [17], intuitionistic linear logic with
a “par” connective dual to the tensor, and BILL, which further adds “subtract” dual to linear
implication, has proved difficult. The main challenge is in combining par, whose natural
home is a multi-conclusion calculus, and linear implication, which is most naturally expressed
by a single-conclusion calculus. The dual situation holds for tensor and subtraction (below
on the right), where tensor naturally prefers multiple assumptions, but subtraction a single
assumption. These are the natural sequent rules:

I'tACD ' ArB ABTFA DFCA
I'-A CpD I'- A—B AB T'F A D-CFA

A system with the above rules, however, does not satisfy cut-elimination [22, 3]: the
single-conclusion and single-assumption rules for linear implication and subtraction are too
restrictive. But their multi-conclusion and multi-assumption variants,

I'AFB A IDFCA
' A—B A I D-CFA

© Gianluigi Bellin and Willem Heijltjes;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 10; pp. 10:1-10:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gianluigi.bellin@univr.it
mailto:w.b.heijltjes@bath.ac.uk
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

Proof Nets for BILL

are unsound: they collapse the logic into MLL, since mapping linear implication A — B onto
A+ o B and subtraction D — C onto D ® C* preserves provability (in both directions) [6].
Intermediate ground between these variants is found by annotating the rules with a relation
between the antecedent and the consequent, and requiring that the discharged assumption A
in a rule introducing A — B is not related to any additional conclusions A (and dually for
D — C). With this side-condition, and without describing the development of the relation R
into S, the rules are as below. The sequent calculus (for FILL) with relational annotation
enjoys cut-elimination [4, 11].

I' Abr B A I'DFrC A

TrsAoB A M rD Crsa

Traditionally, the sequent calculus is a meta-calculus, describing the construction of
natural deduction proofs. For linear logic, naturally described in sequent style, the question
of what underlying proof objects were constructed led to the development of proof nets [12].
In this paper we ask the same question for BILL: what are the underlying, canonical proof
objects of BILL?

Our answer is a notion of proof nets, presented as a graph-like natural deduction calculus,
that embodies the perfect duality between tensor and par, and between implication and
subtraction. It exposes the relational annotation of the sequent calculus as recording the
directed paths through the proof net constructed by the sequent proof. We give two
correctness conditions: one by local rewriting in the style of Danos contractibility [8] and the
parsing approach of Lafont, Guerrini and Masini [18, 14]; and a global, geometric criterion
that combines Danos-Regnier switching [9] and Lamarche’s essential net condition [19]. We
introduce our proof nets with an example in Section 1.2.

We have aimed for canonical proof nets: those that factor out all sequent calculus per-
mutations. To this end we have restricted ourselves to the fragment MBILL—, multiplicative
bi-intuitionistic linear logic without units. MBILL with units, even though it omits negation,
includes unit-only MLL, where canonical proof nets are unavailable: the proof equivalence
problem, which canonical proof nets would solve efficiently, is PSPACE-complete [15].

1.1 Background and related work

In the late 1960s Lambek initiated the study of substructural logics, which restrict contraction
and weakening, through category theory and with a particular focus on non-commutative
variants [20]. The central point of FILL, the relation between par and linear implication,
was investigated in the early 1980s by Grishin [13]. The advent of linear logic in the late
1980s [12] created an interest also in intuitionistic variants. Schellinx observed that for a
multi-conclusion sequent calculus with single-conclusion —o R rule, cut-elimination fails [22,
p.555].

To obtain cut-elimination, Hyland and De Paiva formalize FILL through a sequent
calculus annotated by a term calculus [17]. The terms describe natural deduction derivations
whose open assumptions, identified by free variables in the terms, give a side-condition to a
multi-conclusion —o R-rule similar to that of the current relational calculus. Unfortunately,
as pointed out by Bierman, the term assignment introduces spurious dependencies that break
cut-elimination. Three solutions to this problem were proposed: a modification of the term
assignment by the first author, in private communication to Hyland and Bierman (cfr. [1]);
a different term assignment using pattern matching by Bierman, [3]; and a sequent calculus
with relational annotation by Braiiner and De Paiva [4]. This is the calculus we adopt here,
extended with subtraction. Eades and De Paiva [11] later revisited the term-annotated

G. Bellin and W. B. Heijltjes

calculus, with the first author’s correction, to prove semantic correctness. In the late 90s the
first author developed proof nets for FILL (including the MIX rule) that sequentialize into
the term-annotated sequent calculus [1]. Around the same time Cockett and Seely gave a
graph-like natural deduction calculus for FILL, and for the variant of BILL corresponding to
the plain, un-annotated multi-conclusion sequent calculus, which collapses onto MLL [6].
Recently, Clouston, Dawson, Goré and Tiu gave annotation-free alternatives to sequent
calculi, in the form of deep-inference and display calculi for BILL that enjoy cut-elimination [5].

1.2 Proof nets for MBILL- via contractibility

We will introduce our proof nets through an example. It is shown below, in two modes of
representation. On the left, it is viewed as a dag-like natural deduction proof. It is built from
links, the equivalent of a natural deduction inference, shown as solid or dashed horizontal lines
connecting premises above to conclusions below. The bottom link in the example, labelled
x, introduces a linear implication, and as in natural deduction, closes the corresponding
assumption by a matching link also labelled x. The (green) links from negative to positive
atomic formulas, a~ to at, are aziom links.

In a multiplicative linear logic such as MBILL—, each connective in the conclusion
of a sequent proof is introduced once, by exactly one proof rule; that is, connectives in
the conclusion are 1-1 related to inferences in the sequent proof. Proof nets are similar:
connectives in open assumptions and conclusions correspond 1-1 to (non-axiom) links. Via
this correspondence, proof nets can be represented by only the sequent of open assumptions
and conclusions, plus the axiom links, connected to the atomic subformulas in the sequent.
This gives the second representation below.

G_(W—d)_d_ (a=pd™)~
(@—-b) at ar
b~ ¢ (d—-¢o)"

bt ct
(bi0)+ . ((a+_0@+pc+)+ (d+—)t

We stress that these are two different representations of one and the same graphical object,
and thus the same proof net. Because the former is more explicit on logical inference, we
choose it as our main representation, and as the basis of our definitions (we could have
chosen either). We make axiom links explicit to emphasize the connection with the second
presentation.

We may explicitly annotate formulae with their polarity, in the standard notion that

reverses on the left of an implication. In BILL, it also reverses on the right of a subtraction.

In a proof net, polarity is positive for conclusions and negative for assumptions, and indicates
whether a formula is being introduced (+) or eliminated (—). An axiom link indicates a
change from an elimination phase (above) to an introduction phase (below). In a sequent
calculus, the negative formulae would be those in the antecedent I' of a sequent I' = A, and
the positive those in the consequent A.

Figure 1 sequentializes the above example by contraction. It is initiated by giving an
axiom for each axiom link (matched by colouring). Contraction is driven by the coloured
links; in the second row, the links on a and b have contracted the —o-elimination link between
them, and the links on ¢ and d have contracted the —-introduction link. The corresponding
sequent rules are added on the right.

10:3

FSCD 2018

10:4 Proof Nets for BILL

at a b kDb c ke

a b a bFDb dF d c F c

@b apd
b pc d—c
(a—b)—bpc

apd
(a—b)—obpc d—c

= {
= {

a—-ob,at b dFc,d—c

a bt a bEDb dF d c F c
a—ob,atF b dFc,d-—c

a—ob,apdtr b,c,d—c

a bt a b D dF d ck c
a—ob,at b dFc,d-—c
a—ob,apdtFr b, c,d—c

a—ob,apdtsg bpc, d—c

a - a b b d ‘- d c k¢
a—ob,atF b dFc,d-—c
a—ob,apdtrb,c,d—c
a—ob,apdts bpc,d—c
apd bt (a—ob)—bpc,d-c

(O“Ob’b)a (a@d7b)’ (apd,c), (a@d7dfc)}
(@a—b,bpc), (apd,bpc), (apd,d-c)}

Figure 1 An example contraction and sequentialization sequence.

G. Bellin and W. B. Heijltjes

''rA A AT Fg A

Abp A T-% T T Fp A A TR
%U{C T:DBC*R*Q FFI}?I“A’}ZAS—I;/"_AS’A/ T = Rug gfc*s

Figure 2 Relational sequent calculus for MBILL—.

The next step contracts both active links with the p-elimination link, and introduces
an explicit relation R between the premises and the conclusions of the resulting link. Its
purpose is to maintain the connectedness by directed (top-down) paths through the proof
net. In this case, there was no directed path from a — b to ¢ or to d — ¢, and to reflect this
in the link created by the contraction, the relation R connects a — b only to b. In the third
step, the p-introduction link is contracted. It uses a dashed line because it is switched, and
may only contract if both premises connect to the same link.

Preserving top-down connectedness is the key to showing the correctness of —o-introduction
links, in the last step, which must (at least) fulfil the standard intuitionistic condition: all
directed paths from the discharged assumption to an (open) conclusion must pass through
the discharging —o-introduction link (see [19]). The contraction step comes with the following
side-condition, analogous to that of the sequent rule: the assumption a — b may only be
related by S to the premise of the —o-introduction link, b o ¢, and not to other conclusions,
here d — c. For simplicity we omit the annotation for the final link again, as it is the full
relation between premises and conclusions.

This concludes the example: the net contracts to a single link, and is thus correct.

2 MBILL-

The language of MBILL— is given by the following grammar.
ABC »=a | AQB| A—B | ApB | A-B

We use a,b,c,... to range over propositional atoms. The connectives are tensor, (linear)
implication, par, and subtraction. The subformula occurrences of a formula have an implicit
polarity + or —, inherited from the parent formula but reversing to the left of an implication
and to the right of a subtraction: (A — B)T induces A~ and (A — B)" induces B, and
similarly with + and — reversed.

Figure 2 gives the relational sequent calculus of Braiiner and De Paiva [4], adapted for
MBILL— by introducing rules for subtraction, dual to implication. A sequent is of the form
I'Fr A, where I and A are multisets of formulae and R C I" X A is a relation from I to
A. (We assume that occurrences of the same formula can be distinguished, for instance by
naming them.)

The relational annotation maintains a notion of logical dependence between the formulas
of a sequent. Intuitively, it traces the subformula relation through a proof, and in addition

10:5

FSCD 2018

10:6

Proof Nets for BILL

A
At BT B AtBr B A
(A®B)+ (A—oB)‘i’ ’ (ApB)+ A- (B*A)+ At

: — B)” A* - B- A
-(-4-@-:5-)-“ ®F w‘oE MPE Q_E*I At cut
AT BT B~ A~ B~ B -

Figure 3 Links for the construction of MBILL— proof nets.

connects across axioms. An introduction rule for a linear implication A —o B then requires
that no formula other than B depends on the assumption A. This is closely related to the
correctness condition of Lamarche’s essential nets [19] for intuitionistic linear logic: all paths
from A must converge on A — B. The subtraction rule has a corresponding side-condition.

We use the following standard notation: relational composition R; S of R C T' x A with
S C A x A, the identity relation IDr on a sequent I'; and ARB for (A, B) € R. We extend
the latter by writing TRA if ARB for some A in I" and B in A, and TRA for the negation
of this proposition. We further adopt a useful notion of relational composition of Braiiner
and De Paiva [4]. The star-composition R xS of two relations R C I" x (AU A’) and
S C(A"UA") x A, where A, A’ and A" are pairwise disjoint, is

RxS = (RU]DAH); (IDA US) g (FUAN) X (AUA)

The above composition consists of three parts: R restricted to I' x A, S restricted to A” x A,
and R; S restricted to I' x A. It is a relational equivalent of linear distributivity [7], and
a generalization of both union (if A’ is empty) and composition (if A and A” are empty).
For ease of presentation, we write % for the full relation T" x A. Note that 7 stands for the
empty relation from the empty sequent to A; it is used, with (x)-composition, to restrict the
domain of a relation by removing A.

3 Proof nets

We shall define our proof nets for MBILL— as a graph-like natural deduction calculus. We
make axioms and cuts explicit, as inference rules that only change the polarity of a formula.
This gives a closer connection with sequent calculus and traditional proof nets, and simplifies
the definition of contractibility. First we define the underlying graphs, or pre-nets; then we
will introduce contractibility as a correctness condition, and define our proof nets as the
pre-nets satisfying contractibility.

» Definition 1 (Pre-nets). MBILL— pre-nets are built from the following notions.
Link: a node with n > 0 premise ports and m > 0 conclusion ports labelled with
formulas A;... A, and B;...B,, and a possibly empty label ¢. A relational link is
labelled with a relation R C {Ay,...,A,} x {B1...By;}. A link is drawn as follows.

A oL A,

B, ... B,"

Edge: a connection from a premise port to a conclusion port labelled with the same
formula, of the same polarity.

G. Bellin and W. B. Heijltjes

r
A ar A R , * I IV RS A cut A
Lo~ A AxA A A 2/ An;?:g A A A cut > A AxA
A®B
ATB T L M(A@BXAB)*R A B et A B, s
AR A®B A®B
AT T
A—eB A g A—B A, .. g B AR vl ﬁIDF;R*(BXA—oB)
B B y Arn A—B
T
DpC o Dy R o1 r
oL ZPY peoexpoe D O A gL " R«(DC x DgC)
D C D boc DpC A
D-C
D T - b-¢ T (D—C x D)*R;IDa D 4 D Liepe
" e C D-C C D-C

Figure 4 Contraction rules.

Pre-net: an acyclic directed graph N = (V| E) with V a set of links as in Figure 3,
and E a set of edges such that no two edges connect to the same port, satisfying the
following conditions. A premise / conclusion port with no attached edge is an open
assumption / conclusion. The —oI / —F links are in bijection with the closed as-
sumption / conclusion links, defined by the variable labels z in Figure 3. A relational
pre-net may contain also relational links.
In Figure 3, note that the illustrations for —I and —F links each show two links: the —of
link itself, plus a closed assumption link; and the —F link plus a closed conclusion link.
We abbreviate a pre-net with open assumptions I' and open conclusions A by a
==p double-lined link, as on the left. We may annotate it with a relation R that relates
Ain T to B in A if (and only if) there is a directed downward path from A to B.

3.1 Contractibility

Our correctness condition is in the style of Danos contractibility [8].} Contractibility for MLL
proof nets is, in essence, top-down sequentialization [18, 14], starting from the axioms rather
than the conclusion of a proof net. In our current natural deduction style, contraction is
inside-out, from axioms to assumptions and conclusions. Contracting a proof net corresponds
to the construction of a sequent proof or other inductive proof object. This can be made
explicit by carrying the constructed object as a label on the contracting links, which we will
do in Section 4.

The links of a proof net being contracted correspond to sequents of the proof being
constructed. As such, we will be contracting relational links (see Definition 1), corresponding
to relational sequents.

1 The second author has also used the term coalescence for the generalization of contractibility that
includes the additives—but as these are not currently present, we feel it is more appropriate to use the
terminology that was established earlier.

10:7

FSCD 2018

10:8 Proof Nets for BILL

r
R
. = a ThpA A ATFsA N
Abr 4 AT T T Fp AN AT
A
A®B r I
ABF"RA . ':A”@’B" F F}_RAA F/}_‘gA/B . R A B A/S
ASB T rr A Ry T T rr AN AGB
T A T @ Ao B
r CoD
I'krAC D . ﬁl{ CFFRA DF/FsA/ = T CpC T/
Trr A CpD b.c CoDT T br A A/ R s
DpC A A’
4" T RE
I AFr B A . " PhpAA BIksA A A A=B
Try A—B A YA _B . T AoB T A A B T
A—B p——
A/
D-cC P
I DFrC A — = TFrAD CT'kgA A D
T D-Crp AP & & TTrrAD-—CA D-CccC T
¢, A —s

Figure 5 De-sequentialization.

» Definition 2 (Contractibility). Contraction is the rewrite relation on relational pre-nets
given by the rewrite rules in Figure 4. Contraction is successful if it terminates with a single
link. A pre-net contracts, or is contractible, if it has a successful contraction path. It
strongly contracts if every contraction path is eventually successful.

» Definition 3 (Proof nets). A MBILL— proof net is a contractible MBILL— pre-net whose
open assumptions and conclusions have negative respective positive polarity.

An example contraction sequence was given in Figure 1 in the introduction. An example
of how contraction excludes incorrect nets is the following.

» Example 4. Below left is an incorrect pre-net. After several az, pF, ®I and * steps, we
obtain the pre-net below right, where R = { (a pb, a), (apb,b®c), (¢, b®c) }. Because
of the relation (a p b, b ® ¢) this prevents further contraction: there are two potential steps,
a —ol-step and a —E-step, and for both the side-condition is not met.

apb c—(b®c)y c—(b®c)
a b ¢ xapb Cp Y
z a b c a bRc
(apb)—a d®Cc, gE(apb)—oa !

4 Sequentialization and de-sequentialization

To de-sequentialize a sequent proof to a proof net, intuitively, is to take each sequent rule,
and separate the logical inference (e.g. from A — B and A to B) from the context (I' and
A). We visualize this in Figure 5, where the premises of each rule de-sequentialize to the
given (double-lined) pre-nets.

G. Bellin and W. B. Heijltjes

» Definition 5. A sequent proof de-sequentializes (=) to a proof net as illustrated in
Figure 5.

» Proposition 6. The de-sequentialization of a sequent proof contracts.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization % R

contracts to the relational link %R. <

Sequentialization is by contraction. First, we introduce a notion of open proof, a sequent
proof from (open) premise sequents - A and BF. We abbreviate an open proof by a double
line, as below left. The given open proof will result from contracting a pre-net with negative
assumptions I'~ and positive conclusions AT, plus positive assumptions A ... A+ and
negative conclusions By ... B, below right. The domain and range of the annotating relation

of a sequent are extended to include the open permises: R C (' Ay ... A,) X (A By ... By,).

The relation is otherwise constructed as before.

FAy ... FA, BiF ... BpF F*AY#A,*LR
'FrA AT By ...B,,

For sequentialization, we define a mapping from the contracting links of a proof net to
sequent proofs. For a star-composition,

I~ Af ... AT
R 1 n X '~ IV~ Af...Af
— — — + 1 *
At By ...B,, Ct IV An+1...A; s ™ AT AT B_”.BP_RS
AT B, . ..B; !

if the links in the redex map onto the open proofs

H_I—Al...l—An B+ ... Bk @_FC’ FApt1... FA, Byl ... Byk
B TFrAC B T kg A
then the contractum is mapped onto the open proof

FAy... A, Bk ... By
T T/ Fpes A A

obtained by replacing the open premise - C of ® with the open proof II, and adding the
conclusions I" and A to each inference from + C down to the conclusion of ®.

To the contractum of the steps ax, cut, @I, —oF, pFE, —I we assign the respective proofs:

rC CF FA FB FA BF CF Dk FC DF
AF A - FA@B A BF CpDF FC-D

10:9

FSCD 2018

10:10

Proof Nets for BILL

To the remaining steps we assign proofs as follows, where I' = T~ Af ... A} and A =
A" By ...B,,.

FAi... FA, BiF... Byt
498 s A®B T L L
A B FR > 7A(A®B><AB)*R ABT FgrA
A A@BT b A
AT T, - FA ... FA, BiF... Bnk
B . A i»))] mIDr;R*(BXAwB) I Atgp B N ,
A—B ARD rr AoB A 2
r FAi... FA, BiF... Byt
— R g r
Q,,,,g, A & D CiA Rx(D C x DpC) 1N l_RC D A
DpC v I'Fr CpD A
_ FAy... FA, Bib... B,k
&x B D—C T 1 1
D r r 7A(D—C><D)*R;IDA I DFgrC A/ ,
c, A e D Crp a7

Finally, recall that a proof net has only negative assumptions and positive conclusions. If
it contracts to a single link, this link maps to a regular (relational) sequent proof, without
open premises.

» Definition 7 (Sequentialization). A proof net sequentializes to a proof II if it contracts
to a single link that maps onto II.

» Proposition 8. The de-sequentialization of a sequent proof 11 sequentializes to T1.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization % R

N

of II contracts to the relational link A

R mapping to II. <

5 A geometric characterization

In this section we give a geometric correctness condition for MBILL— proof nets, and
demonstrate that a pre-net contracts if and only if it is correct. The condition has two
components: a switching condition in the style of Danos and Regnier [9] that integrates the
condition on Lamarche’s essential nets [19], and a bi-functionality condition that further
refines the essential net condition. We begin by giving the necessary definitions.

» Definition 9 (Switching). In a pre-net N:

Switched / solid. The switched links are pI, ® E, —I, and —F; other links are solid. A
switched edge is one connecting to an auxiliary port of a switched link or to a closed
assumption or conclusion link; other edges are solid.

Targets. The targets of a switched link are as follows:

the targets of a pI or ®F link are the two links connected by a switched edge;

the targets of a —of link A —o B are the link connected to the auxiliary port B plus
all links on a directed downward path starting from the associated closed assumption
link A, but not passing through A — B;

the targets of a —F link D — C are the link connected to the auxiliary port D plus all
links on a directed downward path ending at the associated closed conclusion link C,
but not passing through D — C.

G. Bellin and W. B. Heijltjes

Switching graph. A switching graph G for N is an undirected graph (V, E') whose vertices
V' are the links of N, and whose edges F connect:
any two links connected by a solid edge in NV;
any switched link to exactly one of its targets.
Switching condition. A pre-net satisfies the switching condition if every switching graph
is acyclic and connected.

» Definition 10 (Bi-functionality). A pre-net satisfies the bi-functionality condition if
a directed path from a closed assumption x to an open conclusion passes through —I, z;
a directed path from an open assumption to a closed conclusion y passes through —F, y;
a directed path from a closed assumption x to a closed conclusion y passes through —I, x
or —F,y.

» Remark. Closer observation will reveal that the first two components of the bi-functionality
condition are equivalent to assuming an implicit p/-link connecting all open conclusions, and
a ®F-link connecting open assumptions. The third component is equivalent to considering a
closed assumption x and its implication introduction link —oI, x to be one and the same link
for the purpose of the switching graph (though not for downward reachability).

» Definition 11 (Geometric correctness). A pre-net N is geometrically correct if it satisfies
both the switching condition and the bi-functionality condition.

A switching path is an undirected path in a switching graph G, which we will indicate
by (i) A single, switched edge will be written (--(-;-), and we may omit the superscript if G
is understood. For simplicity, we will refer to a link by its principal formula when indicating
switching paths. For a link A and switched link B in a switching graph G, write A <4 B if
A is on a switching path between two targets B; and By of B, i.e. if there is a switching
path B; -~ 4-% B,.

» Definition 12. A link A is in scope of a switched link B, written A < B, if A < B
for some G. The scope of a link B is the set {4 | A < B}.

We take the scope relation (<) as ranging over all links, though note that for a solid link
B there is never any A < B.

» Lemma 13. In a pre-net satisfying the switching condition, (<) is a strict partial order.

Proof. Irreflexivity: A =« A. Immediate, since a switching path Ay — A ---- Ay (with A
switched to As) creates a cycle A; — A ---- Ay by switching A to A;.

Transitivity: if A < B < C then A < C. Let B be a switched link with jump targets
Bi, By, and Bs, and C a switched link with targets C; and Cs. Let A < B <« C be
witnessed by switching graphs G and H, so that A <o B <y C, via the following paths.

By - A% B, oL B E Bt

We allow the possiblity that B; is the same as either of By and Bj, as is necessarily the case
for a binary switched link. First, we create a switching K which agrees with H everywhere
except the links on the below path, where it agrees with those links.

BBy £ A5 By

Crucially, no other path in G from B may connect to the above path, and so any path in K
not ending with a switched edge of B must agree with H. In particular this includes the path

10:11

FSCD 2018

10:12

Proof Nets for BILL

B — (5. Moreover, in H no path from the principal port of B reaches Cy, since there is
already a path C; — Bj ---- B. Then also in K no path from the principal port of B, which
must all agree with H, can reach C;. Instead, C7 and B must then be connected as follows.

¢, 2B, B

Let X be the link where this path first intersects the path Bs -%~ A - B;, where K agrees
with G; without loss of generality, assume thats X comes before A. This gives the following.

oL x*2 B BLXxEALp
Switching B to B3 we have the following path.
L XxE AL B BECG
Then A < C, as required. <

Our notion of scope is related to the first author’s notion of loop for MLL nets with Mix
[1]. Tt is further closely related to the De Naurois-Mogbil correctness condition [10]. This
uses the relation (<), over a fixed switching graph G. Unlike (<) the relation (<¢) is
not necessarily transitive. We write (<) for the transitive closure and (@) for the n-fold
relational composition,

A< A, = AgKchi<e - <Kg A, .

» Proposition 14. In a pre-net satisfying the switching condition, A <& B if and only if
A< B.

Proof. From left to right, A < B implies A < B, and (<) is transitive. From right to
left, we proceed by induction on the distance between A and B in (). First consider the
case where A and B are immediate neighbours (distance 1), i.e. there is no C such that
A <« C <« B. Then there is a path between the premises of B that does not contain any
switched links. Whichever way G switches on B, we have A <& B. In the case where there
is a C such that A <« C' < B, by induction we have A <, C and C <, B, and hence
AL B. |

The scope of a link A includes exactly those links that must be contracted before A
can be contracted itself. (We will use this to prove that a correct pre-net contracts, by
demonstrating that any link that is minimal in (<) may be contracted, as part of the proof
of Theorem 16 below.) The scope of A then corresponds to the smallest open subproof of
A in any sequentialization. In this way, the notion of scope is also closely related to the
standard notion of kingdom [2]: the kingdom kA of a subformula A corresponds to the
smallest subproof of A in any sequentialization.

For an MLL proof net, the kingdom kA is the smallest subgraph such that A € kA and:
1. if B € kA and B is in an axiom link with B+, then B+ € kA;

2. if BQC € kA then B € kA and C € kA;

3. If BpC € kA then kA includes the scope of Bp C: if D < B pC then D € kA.
Observe that (2) corresponds to the fact that a subproof containing B ® C' must contain also
subproofs for B and for C'; however, an open subproof need not. Because scope is transitive,
and because it does not need to be closed under (2) like kingdoms, we may avoid an inductive
definition. Interestingly, this implies that (smallest) open subproofs are a geometric concept,
not an inductive one.

G. Bellin and W. B. Heijltjes

We will now show that contractibility and geometric correctness are equivalent conditions.
First, we establish that if N contracts to M, then if either of N and M is geometrically
correct, both are. This is a straightforward induction on the contraction sequence.

r
R T T/
(@) A A Z’I g AT RS
(b) g g f =f ﬁmp;m(z—} x A—oB)
A-B . ARA —

» Lemma 15. Contraction preserves and reflects geometric correctness.

Proof. We will treat the star-contraction rule (a) and the contraction rule for linear implica-
tion (b); the other rules are similar, or trivial.

Let N ~ M by a x-step. The composition RxS ensures that directed paths are maintained
through the contraction step. It follows that the targets of any —ol or —F link are the same
in both N and M, save that if one of both contracted links in IV is a target then the resulting
link in M is a target, and vice versa. This leaves the geometry of the switching graphs in NV
and M unchanged.

Next, let N ~» M by a —oI-step. Because of the side-condition ARA, the only target of
the link A —o B is the contraction link R. It follows that there is a one-to-one correspondence
between switching graphs in N and in M, preserving their geometry. |

» Theorem 16. A pre-net N contracts if and only if it is geometrically correct.

Proof. From left to right, assume that N contracts. The end result, a single contracted link,
is geometrically correct. Since contraction reflects geometric correctness, by Lemma 15, by
induction on the contraction sequence N is geometrically correct.

From right to left, it must be shown that if IV is geometrically correct, a contraction step
applies. As contraction preserves geometric correctness (Lemma 15), it then follows that N
contracts, by induction on its size.

Contraction steps on solid links have no side conditions, and the star-contraction rule (a)
applies to any adjacent relational links. Applying these steps first, we may assume that N
consists solely of relational links separated by switched links. Consider a switched link that
is minimal in (). We will treat the case of a —oI link A—B and show that a —oI-step (b)
applies; the other three cases are similar.

Let X be the link connected to the port A of the closed assumption of A—B, and Y
the link connected to the auxiliary port B of the link A—oB. In any switching graph G
the links X and Y must be connected, and since both are targets of A— B, they cannot
be connected through its principal port, as this would violate irreflexivity of (<). Because
A—oB is minimal in (<) there can be no switched link on the switching path X — Y, and
since relational links are not adjacent (they would have been contracted), there can be only
one. Then X =Y is the unique relational link to which both ports A and B connect, as
required by the —I contraction step (b).

Finally, we show that the side condition ARA is satisfied. Suppose there is a port D in
A such that ARD. By the bi-functionality condition D cannot be an open conclusion, and
cannot connect to a closed one. The link L connected at D must then be a switched link
(since adjacent relational links were assumed to have been contracted). Note that L is a
target of A—B. If Lisa QF, —I, or pl link, also at least one link connected at an auxiliary

10:13

FSCD 2018

10:14

Proof Nets for BILL

A
. 5 v A
A ® B [®] é E B [:i] : Zu.’l‘ [MR;] A
A®B A B A_OBT . —cut
A B A-B A B
A—D A4 B
B
D
c D ¢ D-C o .
C @] D (0] g 2 D-C . -] : UCUL L{;] c
C £ D C D D) —ax
: C
C D : ol
C

Figure 6 Proof net normalization rules.

port of L (possibly X) is a target of A—B. This would mean L <« (A—B), contradicting
the assumption that A—B was minimal. It follows that ARA, and a —oI-contraction step
applies to A—B. <

To be effective, it is crucial to have strong contractibility, where any contraction path
(eventually) terminates with a single link. If only some paths would eventually be successful,
an algorithm for correctness would need to backtrack (or have a guaranteed strategy). Instead,
we should be able to use any contraction sequence, without the chance of failure. This is
established by the following theorem.

» Theorem 17 (Strong contractibility). MBILL— proof nets are strongly contractible.

Proof. Since proof nets are correct (Theorem 16), and contraction preserves correctness
(Lemma 15), any contraction step yields a correct proof net, which must then contract
(Theorem 16). <

6 Normalization

We give proof reduction as a graph-rewrite relation on pre-nets. There are six reduction
steps, one for each connective and two for axioms, given in Figure 6. Since proof nets strictly
reduce in size, termination is immediate. So is confluence: the only redexes that may overlap
are [L] and [R], but this critical pair converges trivially. A pre-net is in normal form if it
has no cuts, and in expanded normal form if in addition the formulas of axiom links are
atomic. The unique expanded normal form of a net N is denoted NJ. The example in the
introduction is in expanded normal form.

» Theorem 18 (Normalization preserves correctness). A proof net reduces to a proof net.

Proof. By inspection of the normalization steps, geometric correctness is preserved. |

6.1 One-step composition

Proof nets in expanded normal form have a compact alternative representation. In a purely
multiplicative logic such as MBILL—, a proof (or proof net) has exactly one rule (or link)

G. Bellin and W. B. Heijltjes

for every connective in the conclusion sequent. Identifying links with connectives, we can
display a proof net by drawing its open assumptions (above) and conclusions (below), and
connecting these with the axiom links. An example was given in the introduction; here is
another.

a
awz a (a—ob)—obpc a—ob
3 z
(a—ob)—obpc a —ob
bypc
b ¢ d b—d c
b —d c

d
d

We will formalize such proof nets as the compact form of a net in expanded normal form.

As in classical and intuitionistic MLL [16], composition of compact forms in MBILL—

particularly nice: it is path-composition along the axiom links of both nets, as connected
through the formula along which they are composed. This is demonstrated below. On the left
are the net from the introduction, in blue, and that from above in red (with the assumption
a —o b re-positioned on the left), with their common open conclusion and assumption

superimposed. Composing these nets along that common formula gives the net below right.

d b—d ¢ d-—c

WL]

We will formalize this concisely, as follows.

» Definition 19. The compact form |N| = A:T'F A of a pre-net N in expanded normal

form consists of the open assumptions I', the open conclusions A, and the axiom links A of
N.

Given two compact forms |[M| = Ap: Ty B Ay AT and |K| = Ax: A~ Tk F Ax,
define their composition along A as A: Ty 'k F Ay Ax where A consists of all
maximal paths in the undirected graph formed by Ays, Ak, and connecting corresponding
atoms in AT and A~. Correspondingly for (non-compact) pre-nets, the cut-composition
along A of pre-nets M with open conclusion AT and K with open assumption A, is the
(disjoint) union of both graphs together with a cut-link with premise A* and conclusion A~.

» Theorem 20. If N is the cut-composition along A of proof nets M and K in expanded
normal form, then | N]| is the composition along A of | M| and | K].

Proof. By induction on the cut-formula. |

10:15

FSCD 2018

10:16

Proof Nets for BILL

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21

22

Gianluigi Bellin. Subnets of proof-nets in multiplicative linear logic with MIX. Mathemat-
ical Structures in Computer Science, 7(6):663-669, 1997.

Gianluigi Bellin and Jacques van de Wiele. Subnets of proof-nets in MLL™. In Advances
in Linear Logic, pages 249-270, 1995.

G.M. Bierman. A note on full intuitionistic linear logic. Annals of Pure and Applied Logic,
79(3):281-287, 1996.

Torben Braiiner and Valeria de Paiva. A formulation of linear logic based on dependency-
relations. In 11th International Workshop on Computer Science Logic (CSL), 1997.
Ranald Clouston, Jeremy Dawson, Rajeev Gore, and Alwen Tiu. Annotation-free sequent
calculi for full intuitionistic linear logic. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

Robin Cockett and Robert Seely. Proof theory for full intuitionistic linear logic, bilinear
logic, and MIX categories. Theory and Applications of Categories, 3(5):85-131, 1997.
Robin Cockett and Robert Seely. Weakly distributive categories. Journal of Pure and
Applied Algebra, 114:133-173, 1997.

Vincent Danos. La Logique Linéaire appliquée a l’étude de divers processus de normalisation
(principalement du Lambda-calcul). PhD thesis, Université Paris 7, 1990.

Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Math-
ematical Logic, 28:181-203, 1989.

Paulin Jacobé De Naurois and Virgile Mogbil. Correctness of linear logic proof structures
is NL-complete. Theoretical Computer Science, 412(20):1941-1957, 2011.

Harley Eades and Valeria de Paiva. Multiple conclusion linear logic: Cut elimination and
more. In International Symposium on Logical Foundations of Computer Science (LFCS),
pages 90-105, 2016.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.

V. N. Grishin. On a generalization of the ajdukiewicz—lambek system. In Studies in Non-
Classical Logics and Formal Systems, pages 315-343. Nauka, Moscow, 1983.

Stefano Guerrini and Andrea Masini. Parsing MELL proof nets. Theoretical Computer
Science, 254(1-2):317-335, 2001.

Willem Heijltjes and Robin Houston. Proof equivalence in MLL is PSPACE-complete.
Logical Methods in Computer Science, 12(1), 2016.

Dominic J.D. Hughes. Simple free star-autonomous categories and full coherence. Journal
of Pure and Applied Algebra, 216(11):2386-2410, 2012.

Martin Hyland and Valeria de Paiva. Full intuitionistic linear logic. Annals of Pure and
Applied Logic, 64(3):273-291, 1993.

Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont, and L. Regnier,
editors, Advances in Linear Logic, volume 222 of London Mathematical Society Lecture
Notes, pages 225-247. Cambridge University Press, 1995.

Frangois Lamarche. Proof nets for intuitionistic linear logic: Essential nets. Research report
<inria-00347336>, INRIA, 2008.

Joachim Lambek. Deductive systems and categories II. Lecture Notes in Mathematics,
86:76—122, 1969.

Andrzej S. Murawski and C.-H. Luke Ong. Exhausting strategies, joker games and full
completeness for IMLL with unit. Theoretical Computer Science, 294(1):269-305, 2003.
Harold Schellinx. Some syntactical observations on linear logic. J. Logic and Computation,
1(4):537-559, 1991.

G. Bellin and W. B. Heijltjes

A Relations with existing syntax.

Lamarche [19] (see also Murawski and Ong [21]) developed a system of essential nets for ILL
where nets are polarized, edges are directed and the polarization of links reflects the structure
of ILL sequent calculus inferences. Notice that a @~ link is not switched and o™ links have a
canonical right switch. The links of polarized classical MLL— formuas correspond to the
intuitionistic ILL— inferences in red.

—=
+ + - - - + + - + ar — —_cut_ +
N A N/ A X ¥ —
e o~ ot ®
A v A v
+ - + -
QR ®L — R — L ax cut

» Definition 21. An essential net £ is a structure satisfying the following conditions:

1. (acyclicity) there is no cycle of directed edges in &;

2. (functionality of implications) for every p. link with premises A~ and BT, every directed
path from (the only positive) conclusion of € to A~ passes through B™.

Lamarche proves that every correct proof net can be sequentialized into an ILL sequent

derivation.

» Example 22. Essential net for ¢ ® (¢ — r) b (1 —o p) —o p, where X = ¢ ® (¢ — r) and
Y = (r —op) —op.

R
U Y U
q— g+ r— r+ p— p+
\ AN AN /
®— ®—

Ly v . Lo

2 pt+

i A

X Y

In order to extend the above representation to FILL— and BILL— we may add links for
intuitionistic par and subtraction, below left. However, in this extension it is no longer
possible to verify the acyclicity condition on directed paths. There is no directed cycle in the
pre-net below right:

+ + - - + - - + ax
~ 7 N ¥ N ¥ AN
Kﬁ’ + R~ ®+ - 16 + f ar ﬂ
d v 4 v B A At B+
+ - + - N N
pR oL —-R —L ®; B ®’T‘+

A solution is first test the MLL— acyclicity and connectedness condition of undirected DR-
graphs with switchings on par-like links, namely, links representing MBILL— ®L, pR (for
—o R and —L the switching is canonical), and then test a specific correctness condition, the
bifunctionality condition on — R and —L.

The first author [1] sequentializes proof nets for FILL into Hyland and De Paiva’s labelled
sequent calculus.

» Definition 23. A proof net R for FILL- is a polarized MLL- structure satisfying the
following conditions:

10:17

FSCD 2018

10:18 Proof Nets for BILL

1. (DR condition) for every switching s, sR is acyclic and connected;

2. (functionality of implications) for every p. link with premises A~ and BT, and conclusion
(ApB)™ every directed path from any positive conclusion X+ of R to A~ passes through
(ApB)™.

To prove sequentialization the following lemma is needed:

Lemma. Let D be a labelled sequent calculus derivation of S and let D~ be the polarized
proof net resulting from de-sequentializing D~. Then x : A occurs in t : B in some sequent
of D iff there is a directed path from (B')" to (A’)~ in D~, where (B")* and (A’)~ are the
translations of B and A in polarized MLL.

» Example 24.

R
ax ax ax
' Y N
q— g+ T+ r— p— p+
N 7 ~N
®+ ®——

Ly 7 Lo

o+ o+

A A

X Y

Here X = ¢ — (¢®7), Y = (rpp) —o p and there is a directed path from X to the premise rpp of Y
against the functionality of implication. In the following sequent derivation

y:qhuy:q z:rkz:r

Y:¢,z:rFyRxz:qT r:pkx:p
virpp,y:qbletvbez' — iny®z:q®r,letvbe —xinx:p

— R

v:rpph Ayletvbez — iny®z:q—oq®r,letvbe—aP inz:p R

FAyletvbez — iny®z:q—oq®r, dv.let vbe—2a? in x: (rpp) —p

the last inference —o R is incorrect because v still occurs free in the succedent.

Counting Environments and Closures

Maciej Bendkowski!

Jagiellonian University,

Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department,

ul. Prof. Lojasiewicza 6, 30-348 Krakow, Poland
maciej.bendkowski@tcs.uj.edu.pl

Pierre Lescanne

University of Lyon, Ecole normale supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL),

46 allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

—— Abstract

Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A
closure is a pair consisting of a lambda-term and an environment, whereas an environment is
a list of lambda-terms assigned to free variables. In this paper we investigate some dynamic
aspects of evaluation in lambda-calculus considering the quantitative, combinatorial properties
of environments and closures. Focusing on two classes of environments and closures, namely
the so-called plain and closed ones, we consider the problem of their asymptotic counting and
effective random generation. We provide an asymptotic approximation of the number of both
plain environments and closures of size n. Using the associated generating functions, we construct
effective samplers for both classes of combinatorial structures. Finally, we discuss the related
problem of asymptotic counting and random generation of closed environments and closures.

2012 ACM Subject Classification Mathematics of computing — Lambda calculus, Mathematics
of computing — Generating functions

Keywords and phrases lambda-calculus, combinatorics, functional programming, mathematical
analysis, complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.11

1 Introduction

Though, traditionally, computational complexity is investigated in the context of Turing
machines since their initial development, evaluation complexity in various term rewriting
systems, such as A-calculus or combinatory logic, attracts increasing attention only quite
recently. For instance, let us mention the worst-case analysis of evaluation, based on the
invariance of unitary cost models [26, 3, 1] or transformation techniques proving termination
of term rewriting systems [2].

Much like in classic computational complexity, the corresponding average-case analysis of
evaluation in term rewriting systems follows a different, more combinatorial and quantitative
approach, compared to its worst-case variant. In [10, 11] Choppy, Kaplan and Soria propose
an average-case complexity analysis of normalisation in a general class of term rewriting
systems using generating functions, in particular techniques from analytic combinatorics [19].

! Maciej Bendkowski was partially supported within the Polish National Science Center grant
2016/21/N/ST6,/01032.

© Maciej Bendkowski and Pierre Lescanne;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No.11; pp.11:1-11:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:maciej.bendkowski@tcs.uj.edu.pl
mailto:pierre.lescanne@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Counting Environments and Closures

Following a somewhat similar path, Bendkwoski, Grygiel and Zaionc investigated later the
asymptotic properties of normal-order reduction in combinatory logic, in particular the
normalisation cost of large random combinators [7, 4]. Alas, normalisation in A-calculus
has not yet been studied in such a combinatorial context. Nonetheless, static, quantitative
properties of A-terms, form an active stream of recent research. Let us mention, non-
exhaustively, investigations into the asymptotic properties of large random A-terms [15, 6] or
their effective counting and random generation ensuring a uniform distribution among terms
with equal size [8, 23, 22, 9].

In the current paper, we take a step towards the average-case analysis of reduction com-
plexity in A-calculus. Specifically, we offer a quantitative analysis of environments and closures
— two types of structures frequently present at the core of abstract machines modelling A-term
evaluation, such as for instance the Krivine or U- machine [13, 28]. In Section 3 we discuss
the combinatorial representation of environments and closures, in particular the associated
de Bruijn notation. In Section 4 we list the analytic combinatorics tools required for our
analysis. Next, in Section 5 and Section 6 we conduct our quantitative investigation into
so-called plain and closed environments and closures, respectively, subsequently concluding
the paper in Section 7.

2 A combinatoric approach to higher order rewriting systems

As said in the introduction, viewing the A-calculus from the perspective of counting is new,
especially in the scientific community of structures for computation and deduction and
requires motivation to be detailed.

First, clearly a new perspective on A-calculus enlightens the semantics and opens new
directions, especially by adding a touch of efficiency and a discussion on how the size
of structures with binders (like A-terms) can be measured. However, despite advanced
mathematical techniques are used, the goal is more practical and connected to operational
semantics and implementation. Counting allows assigning a precise measure on how a specific
algorithm performs. In [24]? Knuth calls analysis of Type A an analysis of a particular
algorithm and shows how important it is in computer science. He adds (p. 3): “Complexity
analysis provides an interesting way to sharpen our tools for the more routine problems we
face from day to day.”

Furthermore, a notion of probabilistic distribution as used in the average-case analysis of
algorithm, after Sedgewick and Flajolet [35], is deduced. In particular a notion of uniform
distribution is inferred in order to evaluate the average case efficiency of algorithms w.r.t.
this distribution. In this paper, the algorithms the authors have in mind are the several
reduction machines for the A-calculus, especially the Krivine machine and the U-machine,
for which analyses of Type A and more specifically average case analyses are expected to
be built. Another application is random generation of terms and several kinds of structures
for computation and deduction as used for instance in QuickCheck [12]. A fully and
mathematically justified random generator can only be built using the kind of tools developed
in this paper.

But average case analysis based on uniform distribution is not the only one. The so-called
smoothed analysis of algorithms [36] is another family of tools which is based on measures of
size. Here the distribution is no more uniform and this method has promising applications,
hopefully in structures for computation and deduction.

2 This paper is part of the book “Selected Papers on Analysis of Algorithms” [25] dedicated to Professor
N. G. de Bruijn.

M. Bendkowski and P. Lescanne

@ @ Q
RN AN VRN
Az Az A A A A
\ \ \ \ \ \
Ay @ A @ A Q
| e \ / \ /7 N\
Az Au \z)‘\ A \ A A 0
| I
Au JL ? | A0
|
/N /N / N\

_‘
x>
S8 &
o

= — > — >

Figure 1 Three representations of the A-term T' = (Azyzu.z(Ayz.y)) (Az.(Au.u)z).

3 Environments and closures

In this section we outline the de Bruijn notation and related concepts deriving from A-calculus
variants with explicit substitutions used in the subsequent sections.

3.1 De Bruijn notation

Though the classic variable notation for A-terms is elegant and concise, it poses considerable
implementation issues, especially in the context of substitution resolution and potential
name clashes. In order to accommodate these problems, de Bruijn proposed an alternative
name-free notation for A-terms [16]. In this notation, each variable z is replaced by an
appropriate non-negative integer n (so-called indez) intended to encode the distance between
x and its binding abstraction. Specifically, if = is bound to the (n + 1)st abstraction on its

unique path to the term root in the associated A-tree, then x is replaced by the index n.

In this manner, each closed A-term in the classic variable notation is representable in the
de Bruijn notation.

» Example 1. Consider the A-term T = (Azyzu.z(Ayz.y)) (Az.(Au.u)z). Figure 1 depicts
three different representations of 1" as tree-like structures. The first one uses explicit variables,
the second one uses back pointers to represent the bound variables, whereas the third one
uses de Bruijn indices.

In order to represent free occurrences of variables, one uses indices of values exceeding
the number of abstractions crossed on respective paths to the term root. For instance, Az.yz
can be represented as A\12 since 1 and 2 correspond to two different variable occurrences.

Recall that in the classic variable notation a A-term M is said to be closed if each of its
variables is bound. In the de Bruijn notation, it means that for each index occurrence n in
M one finds at least n + 1 abstractions on the unique path from n to the term root of M. If
a A-term is not closed, it is said to be open. If heading M with m abstractions turns it into
a closed A-term, then M is said to be m-open. In particular, closed A-terms are 0-open.

» Example 2. Note that AAAA(3(AA1)) (A(A0)0) is closed. The A-term 3(AA1) is 4-open,
however it is not 3-open. Indeed, AAA(3(AA1)) is 1-open instead of being closed. Similarly,
A(3(AA1)) is 3-open, however it is not 2-open.

11:3

FSCD 2018

11:4

Counting Environments and Closures

Certainly, the set £,, of m-open terms is a subset of the set of (m + 1)-open terms. In
other words, if M is m-open, it is also (m + 1)-open. The set of all A-terms is called the set
of plain terms. It is the union of the sets of m-open terms and is denoted as L,,. Hence,

LoC Ly C CLm C L1 C|JLi=Lu. (1)
=0

Let us note that de Bruijn’s name-free representation of A-terms exhibits an important
combinatorial benefit. Specifically, each A-term in the de Bruijn notation represents an
entire a-equivalence class of A-terms in the classical variable notation. Indeed, two variable
occurrences bound by the same abstraction are assigned the same de Bruijn index. In
consequence, counting A-terms in the de Bruijn notation we are, in fact, counting entire
a-equivalence classes instead of their inhabitants.

3.2 Closures and (B-reduction

Recall that the main rewriting rule of A-calculus is S-reduction, see, e.g. [14]
B) (AM) N — M{0+ N} (2)

where the operation {n <— M}, i.e. substitution of A-terms for de Bruijn indices, is defined
inductively as follows:

(M N){n + P} = M{n < P} N{n « P}
(AM){n < P} = A\(M{(n+1) « P})

m—1 ifm>n
mi{n < P} =¢70(P) ifm=n (3)

m ifm<n.

Th first rule distributes the substitution in an application, the second rule pushes a substitu-
tion under an abstraction and the third rule tells how a substitution acts when the term is
an index. 7'(P) tells how to update the indices of a term which is substituted for an index.
The operation 7*(M) is defined by induction on M as

7' (M N) = 7"(M) 7"(N)

7

7' (AM) = A(7%, (M)

7_in(m):{m—i-n—l ifm>i @)

m ifm<i.

A A-term in the form of (AM) N is called a 5-redex (or simply a redex). Lambda terms
not containing S-redexes as subterms, are called (S-)normal forms. The computational
process of rewriting (reducing) a A-term to its S-normal form by successive elimination of
[B-redexes is called normalisation. There exists an abundant literature on normalisation in
A-calculus; let us mention, not exhaustively [27, 33, 29, 13, 30].

One of the central concepts present in various formalisms dealing with normalisation in
A-calculus are environments and closures. An environment is a list of values meant to be
assigned to indices 0,1,2,...,m — 1 of an m-open A-term. A closure, on the other hand, is
a couple consisting of a A-term and an environment. Such couples are meant to represent
closed, not yet fully evaluated, A-terms. For instance, the closure (M,) consists of the

M. Bendkowski and P. Lescanne

A-term M evaluated in the context of an empty environment, denoted as [J, and represents
simply M. The closure (10, (\0,0) : (AX0,0) : O) represents the A-term (10) evaluated
in the context of an environment (\0,0) : (A0,0) : 0. Here, intuitively, the index 1 is
receiving the value A0 whereas the index 0 is being assigned AA0. Finally, A0 is applied
to AA0. And so, reducing the closure (10, (A0,0) : (A0,) : O) : O, for instance using a
Krivine abstract machine [13], we obtain AAQ.

Let us notice that following the outlined description of environments and closures, we can
provide a formal combinatorial specification for both using the following mutually recursive
definitions:

Clos ::= (A, Env)
Env =01 Clos: Env (5)

In the above specification, A denotes the set of all plain A-terms. Moreover, we introduce two
binary operators “(_,)7, i.e. the coupling operator, and “:”, i.e. the cons operator, heading
its left-hand side on the right-hand list. When applied to a A-term and an environment,
the coupling operator constructs a new closure. In other words, a closure is a couple of a
A-term and an environment whereas an environment is a list of closures, representing a list
of assignments to free occurrences of de Bruijn indices.

Such a combinatorial specification for closures and environments plays an important
role as it allows us to investigate, using methods of analytic combinatorics, the quantitative
properties of both closures and environments.

4 Analytic tools

In the following section we briefly? outline the main techniques and notions from the theory
of generating functions and singularity analysis. We refer the curious reader to [19, 37, 21]
for a thorough introduction.

Let (fn),, be a sequence of non-negative integers. Then, the generating function F(z)
associated with (f,),, is the formal power series F'(z) = Y -, fnz". Following standard
notational conventions, we use [2"]F(z) to denote the coefficient standing by 2™ in the
power series expansion of F'(z). Given two sequences (a,),, and (b,), we write a, ~ by, to
denote the fact that both sequences admit the same asymptotic growth order, specifically

lim — = 1. Finally, we write ¢ = c if we are interested in the numerical approximation ¢
n—oo n

of an expression .

Suppose that F'(z), viewed as a function of a single complex variable z, is defined in some
region) of the complex plane centred at zg € Q. Then, if F(z) admits a convergent power
series expansion in form of

F(z)= falz=20)" (6)

n>0

it is said to be analytic at point z. Moreover, if F(z) is analytic at each point z € €,
then F'(z) is said to be analytic in the region). Suppose that there exists a function G(z)
analytic in a region Q* such that Q N Q* # () and both F(z) and G(z) agree on Q N Q*,
i.e. Flaonas = Glana+. Then, G(z) is said to be an analytic continuation of F(z) onto Q*. If

3 In such a short presentation of a non-trivial theory, many terms, like “branch”, “Newton-Puiseux series”,
“locally convergent” etc. are not defined. They are defined in the references [19, 37, 21].

11:5

FSCD 2018

11:6

Counting Environments and Closures

F(z) defined in some region Q \ {zo} has no analytic continuation onto 2, then zy is said
to be a singularity of F'(z). When a formal power series F(z) = >, -, fn2" represents an
analytic function in some neighbourhood of the complex plane origin, it becomes possible
to link the location and type of singularities corresponding to F(z), in particular so-called
dominating singularities residing at the respective circle of convergence, with the asymptotic
growth rate of its coefficients. This process of singularity analysis developed by Flajolet and
Odlyzko [18] provides a general and systematic technique for establishing the quantitative
aspects of a broad class of combinatorial structures.

While investigating environments and closures, a particular example of algebraic combin-
atorial structures, the respective generating functions turn out to be algebraic themselves.
The following prominent tools provide the essential foundation underlying the process of
algebraic singularity analysis based on Newton-Puiseux expansions, i.e. extensions of power
series allowing fractional exponents.

» Theorem 3 (Newton, Puiseux [19, Theorem VII.7]). Let F(z) be a branch of an algebraic
equation P(z,F(z)) = 0. Then, in a circular neighbourhood of a singularity p slit along a ray
emanating from p, F(z) admits a fractional Newton-Puiseuz series expansion that is locally
convergent and of the form

F(z)= Y alz—p)"" (M)
k>ko

where kg € Z and k > 1.

Let F(z) be analytic at the origin. Note that [2"|F(z) = p~"[2"]F(pz). In consequence,
following a proper rescaling we can focus on the type of singularities of F'(z) on the unit
circle. The standard function scale provides then the asymptotic expansion of [2"]F(z).

» Theorem 4 (Standard function scale [19, Theorem VI.1]). Let o € C\ Z<o. Then, F(z) =
(1 —2)"" admits for large n a complete asymptotic expansion in form of

() = na: (1+ aa—1) , ala-1@-2@Ba-1) (1)) -

2n 24n? n3

where I': C\ Z<g — C is the Euler Gamma function defined as
oo
I'(z) = / w* e dy for R(z) >0 (9)
0

and by analytic continuation on all its domain.

Given an analytic generating function F'(z) implicitly defined as a branch of an algebraic
function P(z, F(z)) = 0 our task of establishing the asymptotic expansion of the corresponding
sequence ([2"]F(z)),, reduces therefore to locating and studying the (dominating) singularities
of F(z). For generating functions analytic at the complex plane origin, this quest simplifies
even further due to the following classic result.

» Theorem 5 (Pringsheim [19, Theorem IV.6]). If F(z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then the
point z = R is a singularity of F(z).

We can therefore focus on the real line while searching for respective singularities. Since /2
cannot be unambiguously defined as an analytic function at z = 0 we primarily focus on roots
of radicand expressions in the closed-form formulae of investigated generating functions.

M. Bendkowski and P. Lescanne

4.1 Counting \-terms

Let us outline the main quantitative results concerning A-terms in the de Bruijn notation,
see [6, 22]. In this combinatorial model, indices are represented in a unary encoding using
the successor operator S and 0. In the so-called natural size notion [6], assumed throughout
the current paper, the size of A-terms is defined recursively as follows:

0]
S nl

1 |M N|
In| = |n|+1 [AM|

|M|+|N|+1
|M|+1.

And so, for example, |A12|= 7. We briefly remark that different size notions in the de Bruijn

representation, alternative to the assumed natural one, are considered in the literature.

Though all share similar asymptotic properties, we choose to consider the above size notion
in order to minimise the technical overhead of the overall presentation. We refer the curious

reader to [22, 9] for a detailed analysis of various size notions in the de Bruijn representation.

Let [,, denote the number of plain A-terms of size n. Consider the generating function
Loo(2) = 2,50 lnz". Using symbolic methods, see [19, Part A. Symbolic Methods] we note
that Lo (2) satisfies

Loo(2) = 2Loo(2) + zLoo(2)’ + D(z) where D(2) = - —=> 2 (1)
n=0

In words, a A-term is either (a) an abstraction followed by another A-term, accounting for
the first summand, (b) an application of two A-terms, accounting for the second summand,

or finally, (c¢) a de Bruijn index which is, in turn, a sequence of successors applied to 0.

Solving (10) for Lo (z) we find that the generating function L. (z), taking into account that
the coefficients [,, are positive for all n, admits the following closed-form solution:

1—z—/(1—2)° - {&
Loo(z) = % S (11)

In such a form, L. (z) is amenable to the standard techniques of singularity analysis. In
consequence we have the following general asymptotic approximation of [,,.

» Theorem 6 (Bendkowski, Grygiel, Lescanne, Zaionc [6]). The sequence ([2"]Loo(%)),, cor-

n
responding to plain A-terms of size n admits the following asymptotic approximation:

[2"] Lo (2) ~ Cppn =3/ (12)
where
1[s 4 22/3
pro=3|V206+ 6v33 — ——— — 1| =0.29559 and C = 0.60676. (13)
v/ 13 4 3v/33

In the context of evaluation, the arguably most interesting subclass of A-terms are closed
or, more generally, m-open A-terms. Recall that an m-open A-term takes one of the following
forms. Either it is (a) an abstraction followed by an (m+1)-open A-term, or (b) an application
of two m-open A-terms, or finally, (c) one of the indices 0,1,...,m — 1. Such a specification
for m-open A-terms yields the following functional equation defining the associated generating
function L,,(2):

1—2z2m

Lin(2) = 2Lmy1(2) + 2Lm(2)° + —

(14)

11:7

FSCD 2018

11:8

Counting Environments and Closures

Since L., (z) depends on L,,1(2), solving (14) for L,,(z) one finds that

1— /1 =422 (L (2) + 225
Ly(2) = \/ (22+) . (15)

Such a presentation of L, (z) poses considerable difficulties as L,,(z) depends on L, 11(z)

depending itself on L,,42(z), etc. If developed, the formula (15) for L,,(z) consists of an
infinite number of nested radicals. In consequence, standard analytic combinatorics tools do
not provide the asymptotic expansion of [z"]L,,(2), in particular [z"]Lg(z) associated with
closed A-terms. In their recent breakthrough paper, Bodini, Gittenberger and Golebiewski [9]
propose a clever approximation of the infinite system associated with L,,(z) and give the
following asymptotic approximation for the number of m-open A-terms.

» Theorem 7 (Bodini, Gittenberger and Gotebiewski [9]). The sequence ([2"|Lm(2)), cor-

n
responding to m-open A-terms of size n admits the following asymptotic approximation:

[="]Lin(2) ~ Cpp =2/ (16)
where pr,_, is the dominant singularity corresponding to plain A-terms, see (13), and C,, is a

constant, depending solely on m.

Let us remark that for closed A-terms, the constant Cy lies in between 0.07790995266 and
0.0779099823. In what follows, we use the above Theorem 7 in our investigations regarding
what we call closed closures.

5 Counting plain closures and environments

In this section we start with counting plain environments and closures, i.e. members of Enwv
and Clos, see (5). We consider a simple model in which the size of environments and closures
is equal to the total number of abstractions, applications and the sum of all the de Bruijn
index sizes. Formally, we set

(M, e)| = |M] +|e] e el = |+ e| Bl =0.

» Example 8. The following two tables list the first few plain environments and closures.

size ‘ environments ‘ total
size ‘ closures ‘ total

0 O 1 5 5
1 (0,00 : O 1

~ 1 (0,00) 1

<Q: D> : <Qv D) 0 (0, (0,00))
2 (0,(0,00) : 00) : O 4 9 (A0,0y (1,00 3
(A\0,0):0, (1,0):0

By analogy with the notation L., for the set of plain A-terms, we write £, and C, to denote
the class of plain environments and closures, respectively. Reformulating (5) we can now
give a formal specification for both £, and C., as follows:

Eo=Cx:&x | O
Coo = (LooyEco) - (17)
In such a form, both classes £, and C become amenable to the process of singularity

analysis. In consequence, we obtain the following asymptotic approximation for the number
of plain environments and closures.

M. Bendkowski and P. Lescanne

» Theorem 9. The numbers e,, and c,, of plain environments and closures of size n, respect-
wely, admit the following asymptotic approximations:

en ~ C, -p_”n_3/2 and ¢, ~C.- p_”n_3/2 (18)
where
V& (109 + 35V/515)
C, = = 0.699997,
8/
\/10(48069\/510295\/@)
65v/109—301v5
C,. = = 0.174999 19
V(77— 3v/545) (19)
and
1
P=1 (25 - \/545) = 0.165476 giving p" = 6.04315™. (20)

Proof. Consider generating functions E(z) and Cw(z) associated with respective counting
sequences, i.e. the sequence (e,),, of plain environments of size n and (c,,),, of plain closures
of size n. Based on the specification (17) for £, and Co, and the assumed size notion, we
can write down the following system of functional equations satisfied by Fo.(z) and Coo(2):

Ex(2) = Co(2)Ex(z) +1
Coo(2) = Loo(2) Exo(2). (21)

Next, we solve (21) for Fu(z) and Cuo(z). Though (21) has two formal solutions, the
following one is the single one yielding analytic generating functions with non-negative
coeflicients:

Bou(s) = LoVEZAE) g o =t (1 /1 74Loo(z)) . (22)

2L (2) 2

Since Loo(z) > 0 for z € (0,pr..) there are two potential sources of singularities in (22).

Specifically, the dominating singularity pr_ of L. (2), see (13), or roots of the radicand
expression 1 — 4L, (2). Therefore, we have to determine whether we fall into the so-called
sub- or super-critical composition schema, see [19, Chapter VI. 9]. Solving 1 — 4Ly, (2) =0
for z, we find that it admits a single solution p equal to

1
P=15 (25 - \/545) = 0.165476.. (23)

Since p < pr, the outer radicand carries the dominant singularity p of both E (2) and Coo(2).

We fall therefore directly into the super-critical composition schema and in consequence
know that near p both E (%) and Cx(2) admit Newton-Puiseux expansions in form of

EOO(Z)ZGEOO+Z)EOQ1/1—Z—I—O(‘l—z)
P P

and
) (24)

cm@>cmm+m&le+o(bz
P P

11:9

FSCD 2018

11:10

Counting Environments and Closures

with ag__,ac. > 0 and bg_,bc,, < 0. At this point, we can apply the standard function
scale, see Theorem 4, to the presentation of F(z) and Coo(2) in (24) and conclude that

(2" Eso(2) ~ Cpp ™n™3/? and [2")Cu(z) ~ Cop "n=3/? (25)
be bc . . 1
where Cg,, = —3 and Cgo, = =—, respectively, with I'(—5) = 2y/m. In fact,
I'(—3) I'(=3)

reformulating (22) so to fit the Newton-Puiseux expansion forms (24) we find that

1
ap. =2, bp. = \/ 5 (109 n 35\/545) (26)

4V a7

and
9 10(48069v/5—10295v/109)

1 b 65v/109—301/5 (27)
a, = -, o =
G ¢ 3545 — 77
. L be bc .
Numerical approximations of Cg_ = I =1) and Ceo_ = I °°1) yield the declared asymp-
2 -2
totic behaviour of (e,), and (cy),,, see (18). <

Let us notice that as both generating functions Fw(z) and C(2) are algebraic, they are
also holonomic (D-finite), i.e. satisfy differential equations with polynomial (in terms of 2)
coefficients. Using the powerful gfun library for Maple [34] one can automatically derive
appropriate holonomic equations for F,(z) and C(2), subsequently converting them into
linear recurrences for sequences (e,),, and (c,),,-

» Example 10. We restrict the presentation to the linear recurrence for the number of plain
environments, omitting for brevity the, likely verbose, respective recurrence for plain closures.
Using gfun we find that e, satisfies the recurrence of Figure 2. Despite its appearance, this
recurrence is an efficient way of computing e,. Indeed, holonomic specifications for Cy(2)
and Ey(z) allow computing the coefficients [2"]C(2) and [2"]Eoo(2) using a linear number
of arithmetic operations, as opposed to a quadratic number of operations as following their
direct combinatorial specification. Let us remark that the computations involved operate on
large, having linear in n space representation, integers. For instance, ejpgp has about 600
digits. In consequence, single arithmetic operations on such numbers cannot be performed in
constant time.

» Remark. The analytic approach utilising generating functions exhibits an important benefit
in the context of generating random instances of plain environments and closures. With
analytic generating functions at hand and effective means of computing both [2"]E(2z) and
[2"]C(2), it is possible to design efficient samplers, constructing uniformly random (condi-
tioned on the outcome size n) structures of both combinatorial classes. For instance, using
holonomic specifications it becomes possible to construct exact-size samplers following the
so-called recursive method of Nijenhuis and Wilf, see [31, 20]. Moreover, since corresponding
generating functions are analytic, it is possible to design effective Boltzmann samplers [17],
either in their approximate-size variant constructing structures within a structure size inter-
val [(1 —e)n, (1 + &)n] in time O(|w|) where w is the outcome structure, or their exact-size
variants running in time O(n?). Remarkably, both sampler frameworks admit effective tuning
procedures influencing the expected internal shape of constructed objects, e.g. frequencies of
desired sub-patterns [5]. With the growing popularity of (semi-)automated software testing

M. Bendkowski and P. Lescanne

(125n% —125n) e, +

(—475n3 — 15012 + 325n) €41 +

(—1625n° — 13650 n? — 291250 — 17100) €y, 42 +

(5925 1% + 65550 n® + 204825 n + 190800) e,5 +

(1095073 — 149850 n2 — 609000 n. — 744300) €4 +

(43599 n® + 638460 12 + 3028701 n. + 4633680) €545 + o 1

(—97781 13 — 1680378 n? — 9481237 n — 17550960) €, 46 + e? _ 1 el = 1233816,
(122749 1% + 2388066 n” + 15211685 1 + 31648968) €, 17 + S enn = 6558106,
(—184402n® — 3954630 n? — 27717140 n — 63149544) €, 15 + s =17, ey = 352924487
(280081 1% + 6826380 1 + 54868451 11 + 145130568) €40 + es =TI, Zi _ 123;;}3;233
(~205649 1% — 5654610 n® — 51851980 1 — 158722620) €410 + e =364, e1s = 5704834700,
(37439 n® + 1339686 1> + 16635271 1 + T0682784) €111 + ¢ = 1776, e1g = 31494550253,
(—68686 1 — 3028038 n® — 43616336 1 — 205972920) €412 + i7 ziigéé err = 174759749005,
(222029 n® + 9258780 1% + 128417911 1 4 592399800) €113 + eZ —23 48076, elg = 974155147162
(24111513 — 10519830 n2 — 1528234751 — T39190880) €414 +

(134151 ® + 6201222 n? + 95476551 n + 489605640) €415 +

(—42231 13 — 2067834 n2 — 337293750 — 183277332) €n416 +

(747073 + 386418 n® + 66593161 + 38233296) €17 +

(—678n3 — 36972 n% — 671670 n — 4065240) €415 +

(2473 + 1380 n? + 26436 1 + 168720) €410 = 0.

Figure 2 Linear recurrence defining e,, with corresponding initial conditions.

techniques, see [12], combinatorial samplers for environments and closures exhibit potential
applications in testing normalisation frameworks and abstract machines implementations,
such as the Krivine machine. We briefly remark that randomly generated A-terms already
proved useful in finding optimisation bugs in compilers of functional programming languages,
see [32]. Our prototype samplers for environments and closures, within above sampler
frameworks, are available at Github*.

6 Counting closed closures

In this section we address the problem of counting so-called closed closures®. A closure is
said to be closed if it consists of an m-open term associated with an environment of length
m made itself out of closed closures. Note that such closures correspond to not yet fully
evaluated m-open A-terms. With such a description, the set Closg of closed closures can be
given using the following combinatorial specification:

Closg ::= LoxO | L1x(Closg) | L2x(Closy,Closg) | L3x{Closy,Closg,Closg) | --- (28)

* https://github.com/Pierrelescanne/CountingAndGeneratingClosuresAndEnvironments

5 We acknowledge that speaking of closed closures is a bit odd, however terms “closure” and “closed”
form a consecrated terminology that we merely associate together.

11:11

FSCD 2018

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

11:12 Counting Environments and Closures

» Example 11. The following table lists the first few closed closures.

size ‘ closures ‘ total
0,1 0
2 (X0,0) 1
3 (AA0,0) (0, (A0,0)) 2

D00 (ALY (n00). %)
4 (A0, (A0, 00)) (0,(AA0,00)) (0,(0,(A0,00))) | 6

Establishing the asymptotic growth rate of the sequence (¢,),, corresponding to closed
closures of size n poses a considerable challenge, much more involved than its plain counterpart.
In the following theorem we show that there exists two constants p,p < pr. such that

—n

. P .
lim =— =0and lim
n—00 Cp p n—oo

bounded by two exponential functions of n.

Co,n
——n

= 0. In other words, the asymptotic growth rate of (co,),, is

» Theorem 12. There exist p < p satisfying p < p < pr.. and functions 0(n), k(n) satisfying

limsup 6(n)"/" = limsup x(n)"/

n—o0 n—oo
con <P "K(n).

" =1 such that for sufficiently large n we have p~"0(n) <

Proof. Let us start with the generating function Cy(z) associated with closed closures Closy.
Note that from the specification (28) Cy(z) is implicitly defined as

Co(2) = Y Lin(2)Co(2)™. (29)

m>0
We can therefore identify a closed closure ¢ with a tuple (¢,c¢1, ..., ¢n) where m > 0, ¢ is an
m-open A-term and ¢y, ..., c,, are closed closures themselves. We proceed with defining two

auxiliary lower and upper bound classes C,(2) and C(z) such that [2"]C,(2) < [2"]Co(z) <
Co(z) for all n. Next, we establish their asymptotic behaviour and, in doing so, provide
exponential lower and upper bounds on the growth rate of closed closures.

We start with Cy(2) = >°,.~ Lo(2)Cy(2)™. Note that C,(z) is associated with closures
in which each term is closed, independently of the corresponding environment length. Hence,
as closed A-terms are m-open for all m > 0, we have [2"]C(z) < [¢"]Cy(z). Furthermore

Co(2) = 3 LG (2)" = Loz) T Cole)™ = 121 (30

m>0 m>0

2
form, it is clear that there are two potential sources of singularities, i.e. the singularity pr__

of Ly(z), see Theorem 7, or the roots of the radicand 1 — 4Lg(z). Since Ly(z) is increasing

and continuous in the interval (0,pr_) we know that if Lo(pr.) > 1 then there exists a

p < pr.. such that Lo(p) = 1. Unfortunately, we cannot simply check that Lo(p) > 1 as

there exists no known method of evaluating Lo(z), defined by means of an infinite system of
equations, at a given point. For that reason we propose the following approach.

Solving the above equation for Cy(z) we find that Cy(z) = & (1 —1- 4Lo(z)). In such a

Recall that a A-term M is said to be h-shallow if all its de Bruijn index values are (strictly)
bounded by h, see [22]. Let Lgf)(z) denote the generating function associated with m-open
h-shallow A-terms. Note that Léh)(z), i.e. the generating function corresponding to closed

M. Bendkowski and P. Lescanne

h-shallow A\-terms, has a finite computable representation. Indeed, we have
"(2) + 216" (2) L5V (2)

P (@) + 2L LM () + 2

Lgh) () = ngh)(z) + zLéh)(z)Léh)(z) + 2+ 22

oh/\
Z
—~
N
~—
Il
W
h
~ =~

L;ﬁl(z) = zLELh)(z) + zLEL]il(z)Lgi)l(z) 4242244
L (2) = 2L (2) + 2L LY (2) 4 2 4 22 4o 2 (31)

Consider m < h. Each m-open h-shallow A-term is either (a) in form of AM where M is an
(m 4+ 1)-open h-shallow A-term due to the head abstraction, (b) in form of M N where both

M and N are m-open h-shallow A-terms, or (c¢) a de Bruijn index in the set {0,1,...,m — 1}.

When m = h, we have the same specification with the exception of the first summand nglh) (2)

where, as we cannot exceed h, terms under abstractions are h-open, instead of (h + 1)-open.

Using such a form it is possible to evaluate L(()h)(z) at each point z € (0, p(y)) where

P(h) > PL., is the dominating singularity of L((Jh)(z) satisfying px) Sy see [22]. Certainly,
—00

each closed h-shallow A-term is in particular a closed A-term. In consequence, [z"]Lgh)(z) <

[2"]Lo(z) for each n. Moreover, for all sufficiently large n we have [z"]L(()h)(z) < [2"]Lo(%).

This coefficient-wise lower bound transfers onto the level of generating function values and
we obtain L(()h)(z) < Lo(z). Following the same argument, we also have L(()h)(z) < L(()h+1)(z)

for each h > 1. We can therefore use Léh)

(z) to approximate Lo(z) from below — the higher
h we choose, the better approximation we obtain. Using computer algebra software® it is
possible to automatise the evaluation process of Lgh) (pr..) for increasing values of h and

find that for A = 153 we obtain

L% (pr) = 0.25000324068941554 . (32)

Hence indeed, the asserted existence of p < pr_ such that Lo(p) = % follows (interestingly,
taking h = 152 does not suffice as L§*(p..) < 1). We fall hence in the super-critical

composition schema’ and note that C,(2) admits a Newton-Puiseux expansion near p as

follows:
) (33)

z z
Cy(z) =ag —bo /1—p+0(‘1—p

for some constants ag > 0 and by < 0. Hence, [2"]Cy(z) grows asymptotically faster than
bo
p~"0(n) where 0(n) = ——
’ &y B -
For the upper bound we consider Co(z) = >_, 50 Loc(2)Co(2) ', i.e. the generating
function associated with closures in which all terms are plain (either closed or open),

-3/2

n

independently of the constraint imposed by the corresponding environment length. Following
the same arguments as before, we note that [2"]Cq(z) > [2"]Co(z). Now

Co(2) = 3 Leo(2)Col2)"™ = Loo(2) 3 ()" = —Lel2)_ (34)

m>0 m>0 a 1- 6O(Z) '

% https://github.com/Pierrelescanne/CountingAndGeneratingClosuresAndEnvironments
7 Supercriticality ensures that meromorphic asymptotics applies and entails strong statistical regularities
(see [19] Section V.2 and Section IX.6).

11:13

FSCD 2018

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

11:14

Counting Environments and Closures

Solving the equation for Cy(z) we find that Co(z) = 1 (1 —/1—-4L (z)) Note that in
this case, we can easily handle the radicand expression 1 — 4L, (z) and find out that, as
in the lower bound case, we are in the super-critical composition schema. Specifically, p =
1—10 (25 — \/%) = 0.165476, cf. (20), is the dominating singularity of Co(z). In consequence,
Co(z) admits the following Newton-Puiseux expansion near p:

Co(z):czo—l)()H—FO(‘l—;) (35)

for some constants @y > 0 and by < 0. In conclusion, [2"]Cy(z) grows asymptotically slower

than (p) "6(n) where 6(n) = F(b_ol)
2

n~3/2, finishing the proof. <

With an implicit expression defining Cy(z), see (29), efficient random generation of closed
closures poses a difficult task. Though we have no efficient Boltzmann samplers, it is possible
to follow the recursive method and an obtain exact-size samplers for a moderate range of
target sizes. We offer a prototype sampler of this kind, available at Github®.

7 Conclusions

We view our contribution as a small step towards the quantitative, average-case analysis
of evaluation complexity in A-calculus. Using standard tools from analytic combinatorics,
we investigated some combinatorial aspects of environments and closures — fundamental
structures present in various formalisms dealing with normalisation in A-calculus, especially
in its variants with explicit substitutions [28]. Though plain environments and closures
are relatively easy to count and generate, their closed counterparts pose a considerable
combinatorial challenge. The implicit and infinite specification of closed closures based on
closed A-terms complicates significantly the quantitative analysis, namely estimating the
exponential factor in the asymptotic growth rate, or effectively generating random closed
closures. In particular, getting more parameters of the asymptotic growth will require more
sophisticated methods, like, for instance, the recent infinite system approximation techniques
of Bodini, Gittenberger and Golebiewski [9].

—— References

1 Beniamino Accattoli and Ugo Dal Lago. (leftmost-outermost) beta reduction is invariant,
indeed. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:
4)2016.

2 Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of func-
tional programs: higher-order meets first-order. In Kathleen Fisher and John H. Reppy,
editors, Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada., pages 152-164. ACM, 2015. doi:
10.1145/2784731.2784753.

3 Martin Avanzini and Georg Moser. Closing the gap between runtime complexity and poly-
time computability. In Christopher Lynch, editor, Proceedings of the 21st International
Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edin-
burgh, Scottland, UK, volume 6 of LIPIcs, pages 33-48. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010. doi:10.4230/LIPIcs.RTA.2010.33.

8 https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1145/2784731.2784753
http://dx.doi.org/10.1145/2784731.2784753
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

M. Bendkowski and P. Lescanne

10

11

12

13

14

15

16

17

18

19

20

Maciej Bendkowski. Normal-order reduction grammars. Journal of Functional Program-
ming, 27, 2017. doi:10.1017/S0956796816000332.

Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of multiparamet-
ric combinatorial samplers, pages 92-106. STAM, 2018. doi:10.1137/1.9781611975062.9.
Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Combinatorics
of A\-terms: a natural approach. Journal of Logic and Computation, 27(8):2611-2630, 2017.
doi:10.1093/1logcom/exx018.

Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normaliza-
tion in combinatory logic. Journal of Logic and Computation, 2017. doi:10.1093/logcom/
exx005.

Olivier Bodini, Dani¢le Gardy, and Bernhard Gittenberger. Lambda-terms of bounded un-
ary height. In Philippe Flajolet and Daniel Panario, editors, Proceedings of the Eighth Work-
shop on Analytic Algorithmics and Combinatorics, ANALCO 2011, San Francisco, Califor-
nia, USA, January 22, 2011, pages 23-32. STAM, 2011. doi:10.1137/1.9781611973013.3.
Olivier Bodini, Bernhard Gittenberger, and Zbigniew Golebiewski. Enumerating lambda
terms by weighted length of their de bruijn representation. CoRR, abs/1707.02101, 2017.
URL: https://arxiv.org/abs/1707.02101.

Christine Choppy, Stéphane Kaplan, and Michele Soria. Algorithmic complexity of term
rewriting systems. In Pierre Lescanne, editor, Rewriting Techniques and Applications,
2nd International Conference, RTA-87, Bordeaux, France, May 25-27, 1987, Proceed-
ings, volume 256 of Lecture Notes in Computer Science, pages 256—273. Springer, 1987.
doi:10.1007/3-540-17220-3_22.

Christine Choppy, Stéphane Kaplan, and Michele Soria. Complexity analysis of
term-rewriting systems. Theor. Comput. Sci., 67(2&3):261-282, 1989. doi:10.1016/
0304-3975(89)90005-4.

Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, pages 268-279. ACM, 2000.

Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Pro-
gramming (2nd Ed.). Birkhauser Boston Inc., Cambridge, MA, USA, 1994.

Pierre-Louis Curien, Thérese Hardin, and Jean-Jacques Lévy. Confluence properties of weak
and strong calculi of explicit substitutions. Journal of the ACM, 43(2):362-397, March 1996.
doi:10.1145/226643.226675.

René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier,
and Marek Zaionc. Asymptotically almost all A-terms are strongly normalizing. Logical
Methods in Computer Science, 9:1-30, 2013.

Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae (Proceedings), 75(5):381-392, 1972.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004.

Philippe Flajolet and Andrew M. Odlyzko. Singularity analysis of generating functions.
SIAM Journal on Discrete Mathematics, 3(2):216-240, 1990.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 1 edition, 2009.

Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer Science, 132(1):1-35,
1994.

11:15

FSCD 2018

http://dx.doi.org/10.1017/S0956796816000332
http://dx.doi.org/10.1137/1.9781611975062.9
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1137/1.9781611973013.3
https://arxiv.org/abs/1707.02101
http://dx.doi.org/10.1007/3-540-17220-3_22
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://dx.doi.org/10.1145/226643.226675

11:16

Counting Environments and Closures

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Etienne Ghys. A singular mathematical promenade. Ecole Normale Supérieure, 2017. URL:
http://perso.ens-1lyon.fr/ghys/promenade/.

Bernhard Gittenberger and Zbigniew Gotebiewski. On the number of lambda terms with
prescribed size of their de Bruijn representation. In 33rd Symposium on Theoretical Aspects
of Computer Science, STACS, pages 40:1-40:13, 2016.

Katarzyna Grygiel and Pierre Lescanne. Counting and generating terms in the bin-
ary lambda calculus. Journal of Functional Programming, 25, 2015. doi:10.1017/
S0956796815000271.

Donald E. Knuth. Mathematical Analysis of Algorithms, 2000. First chapter of [25].
Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of CSLI Lecture
Notes. Stanford, California: Center for the Study of Language and Information, 2000.
Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda calculus.
Logical Methods in Computer Science, 8(3), 2012. doi:10.2168/LMCS-8(3:12)2012.
Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308-320, 1964. doi:10.1093/comjnl/6.4.308.

Pierre Lescanne. From Ao to Av: A journey through calculi of explicit substitutions. In
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 60-69. ACM, 1994.

Michel Mauny and Ascdnder Suédrez. Implementing functional languages in the categorical
abstract machine. In LISP and Functional Programming, pages 266278, 1986.

John C. Mitchell. Concepts in Programming Language (1st Ed.). Cambridge University
Press, New York, NY, USA, 2002.

Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, 2 edition,
1978.

Michal H. Patka. Random Structured Test Data Generation for Black-Box Testing. PhD
thesis, Chalmers University of Technology, 2012.

Gordon David Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science, 1(2):125-159, 1975. doi:10.1016/0304-3975(75)90017-1.

Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of
generating and holonomic functions in one variable. ACM Transactions on Mathematical
Software, 20(2):163-177, 1994.

Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms
(2nd Edition). Createspace Independent Pub, 2014.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463, 2004. doi:
10.1145/990308.990310.

Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., 2006.

http://perso.ens-lyon.fr/ghys/promenade/
http://dx.doi.org/10.1017/S0956796815000271
http://dx.doi.org/10.1017/S0956796815000271
http://dx.doi.org/10.2168/LMCS-8(3:12)2012
http://dx.doi.org/10.1093/comjnl/6.4.308
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310

Higher-Order Equational Pattern Anti-Unification

David M. Cerna

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
david.cerna@risc.jku.at

Temur Kutsia
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
temur.kutsia@risc.jku.at

—— Abstract

We consider anti-unification for simply typed lambda terms in associative, commutative, and

associative-commutative theories and develop a sound and complete algorithm which takes two
lambda terms and computes their generalizations in the form of higher-order patterns. The
problem is finitary: the minimal complete set of generalizations contains finitely many elements.
We define the notion of optimal solution and investigate special fragments of the problem for
which the optimal solution can be computed in linear or polynomial time.

2012 ACM Subject Classification Theory of computation — Rewrite systems, Theory of com-
putation — Higher order logic

Keywords and phrases Simply typed lambda calculus, anti-unification, equational theories
Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.12

Funding This research is supported by the FWF project P28789-N32.

1 Introduction

Anti-unification algorithms aim at computing generalizations for given terms. A generalization
of t and s is a term r such that ¢ and s are substitution instances of r. Interesting
generalizations are those that are least general (lggs). However, it is not always possible
to have a unique least general generalization. In these cases the task is either to compute
a minimal complete set of generalizations, or to impose restrictions so that uniqueness is
guaranteed.

Anti-unification, as considered in this paper, uses both of these ideas. The theory is
simply-typed lambda calculus, where some function symbols may be associative, commutative,
or associative-commutative. A-, C-,; and AC-anti-unification is finitary even for first-order
terms, and a modular algorithm has been proposed in [1] to compute the corresponding
minimal complete set of generalizations. Anti-unification for simply typed lambda terms can
be restricted to compute generalizations in the form of Miller’s patterns [13], which makes it
unitary, and the single least general generalization can be computed in linear time by the
algorithm proposed in [8]. These two approaches combine nicely with each other when one
wants to develop a higher-order equational anti-unification algorithm, and we illustrate it in
this paper. Basically, it extends the syntactic® generalization rules from [8] by equational
decomposition rules inspired by those from [1], getting a modular algorithm in which different
equational axioms for different function symbols can be combined automatically. The

L We refer to the higher-order anti-unification algorithm from [8] as syntactic, although it works modulo
Bn-conversion.

© David M. Cerna and Temur Kutsia;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 12; pp. 12:1-12:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:david.cerna@risc.jku.at
mailto:temur.kutsia@risc.jku.at
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Higher-order Equational Anti-Unification

algorithm takes a pair of simply typed lambda terms and returns a set of their generalizations
in the form of higher-order patterns. It is terminating, sound, and complete. However, the
number of nondeterministic choices when decomposing may result in a large search tree.
Although each branch can be developed in linear time, there can be too many of them to
search efficiently.

This is the problem that we address in the second part of the paper. The idea is to use
a greedy approach: introduce an optimality criterion, use it to select an anti-unification
problem among different alternatives obtained by a decomposition rule, and try to solve
only that. In this way, we would only compute one generalization. Checking the criterion
and selecting the right branch should be done “reasonably fast”. To implement this idea,
we introduce conditions on the form of anti-unification problems which are guarantee to
compute “optimal” solutions, and study the corresponding complexities. In particular, we
identify conditions for which A-, C-, and AC-generalizations can be computed in linear time.
We also study how the complexity changes by relaxing these conditions.

Higher-order anti-unification has been investigated by various authors from different
application perspective. Research has been focused mainly on the investigation of special
classes for which the uniqueness of lgg is guaranteed. Some application areas include proof
generalization [14], higher-order term indexing [15], cognitive modeling and analogical
reasoning [9, 17], recursion scheme detection in functional programs [3], inductive synthesis of
recursive functions [16], just to name a few. Two higher-order anti-unification algorithms [6, 8]
are included in an online open-source anti- unification library [4, 5]. This related work does
not consider anti-unification with higher-order terms in the presence of equational axioms.
However, such a combination can be useful, for instance, for developing indexing techniques
for higher-order theorem provers [12] or in higher order program manipulation tools.

The organization of the paper is as follows: In Section 2 we introduce the main notions
and define the problem. In Section 3 we recall the higher-order anti-unification algorithm
from [8]. In Section 4 we extend the algorithm with equational decomposition rules. Section 5
is devoted to the introduction of computationally well-behaved fragments of anti-unification
problems. The next sections describe the behavior of equational anti-unification algorithms
on these fragments: In Section 6 we discuss associative generalization and speak about
optimality. Sections 7 and 8 are about C- and AC-generalizations. Sections 9 summarizes
the results and contains a discussion of future work and open problems.

2 Preliminaries

This work builds upon the formulations and results of [7, 8]. Higher-order signatures are
composed of types constructed from a set of base types (typically §) using the grammar
T =0 |7 — 7. We will consider — to be associative right unless otherwise stated. Variables
(typically X,Y, Z,xz,y,z,a,b,...) as well as constants (typically f,c,...) are assigned types
from the set of types constructed using the above grammar. A-terms (typically t, s, u,...)
are constructed using the grammar t ::= x| ¢ | Az.t | t; to where z is a variable and ¢ is a
constant, and are typed using the type construction mentioned above. Terms of the form
(...(h t1)...tm), where h is a constant or a variable, will be written as h(t1,...,tm), and
terms of the form Azq..... Azt as A\z1,...,T,.t. We use ¥ as a short-hand for z1,...,z,.
This basic language will be extended by higher-order constants satisfying equational axioms.
When necessary, we write a A-term t together with its type av as t : a.

Every higher-order constant ¢ will have an associated set of axioms, denoted by Az(c). If
Az(c) is empty then ¢ does not have any associated properties and is called free. Otherwise,

D. M. Cerna and T. Kutsia

Ax(f) C {A, C} where A is associativity, i.e. f(a, f(b,c)) = f(f(a,b),c) and C is commutativ-
ity, i.e. f(a,b) = f(b,a). Note that only functions of the type & — oo — « are allowed to have
equational properties. We assume that terms are written in flattened form, obtained by re-
placing all subterms of the formf(t1,..., f(81,-.+,8m)s---tn) by f(t1,- 381,y Smy---tn),
where A € Az(f). Also, by convention, the term f(¢) stands for ¢, if A € Az(f). Other
standard notions of the simply typed A-calculus, like bound and free occurrences of variables,
a-conversion, S-reduction, n-long S-normal form, etc. are defined as usual (see [2, 10]). By
default, terms are assumed to be written in n-long S-normal form. Therefore, all terms
have the form Axq,...,x,.h(t1, ..., tm), where n,m > 0, h is either a constant or a variable,
t1,...,tmn have this form, and the term h(ty,...,t,,) has a basic type.

The set of free variables of a term t is denoted by Vars(t). When we write an equality
between two A-terms, we mean that they are equivalent modulo «, 8 and n equivalence.

The size of a term ¢, denoted [¢[, is defined recursively as |h(t1,...,t,)| =1+ > |4l
and |[Az.t] = 1+ [t|. The depth of a term t, denoted depth(t) is defined recursively as
depth(h(ty, ..., tn)) = 1 +max;cqq,... o) depth(t;) and depth(Ax.t) = 1+ depth(t). For a term
t=MAr1,...,xn.h(t1,. .. ty) with n,m > 0, its head is defined as head(t) = h.

A higher-order pattern is a A-term where, when written in 7-long S-normal form, all
free variable occurrences are applied to lists of pairwise distinct (n-long forms of) bound
variables. For instance, Az.f(X(x),Y), f(c, \x.xz) and Ax.\y. X (Az.z(z),y) are patterns,
while Az. f(X (X (z)),Y), f(X(c),c) and Az.\y. X (z,x) are not.

Substitutions are finite sets of pairs {X; — t1,...,X, — t,} where X; and ¢; have
the same type and the X'’s are pairwise distinct variables. They can be extended to type
preserving functions from terms to terms as usual, avoiding variable capture. The notions of
substitution domain and range are also standard and are denoted, respectively, by Dom and
Ran.

We use postfix notation for substitution applications, writing to instead of o(t). As
usual, the application to affects only the free occurrences of variables from Dom(o) in t.
We write o for zy0,...,z,0,if Z = x1,...,x,. Similarly, for a set of terms S, we define
So = {to |t € S}. The composition of o and ¥ is written as juxtaposition o) and is defined
as (o) = (zo)¥ for all z. Another standard operation, restriction of a substitution o to a
set of variables S, is denoted by o|g.

A substitution o; is more general than oo, written o1 = o9, if there exists 1 such that
X019 = Xoy for all X € Dom(o1) UDom(oz). The strict part of this relation is denoted
by <. The relation < is a partial order and generates the equivalence relation which we
denote by ~. We overload < by defining s < t if there exists a substitution ¢ such that
so = t. The focus of this work is generalization in the presence of equational axioms thus
we need a more general concept of ordering of substitutions/terms by their generality. We
say that two terms s,t are s =¢ t if they are equivalent modulo £ C {A, C}. For example,
fla, f(b,c)) # f(f(a,b),c) but, f(a, f(b,c)) =¢ay f(f(a,b),c). Under this notion of equality
we can say that a substitution oy is more general modulo an equational theory € C {A, C} than
o9 written o1 =<¢ o9 if there exists ¥ such that Xo19 =¢ Xo for all X € Dom(o;)UDom(o2)
Note that < and ~ and the term extension are generalized accordingly. Form this point on
we will use the ordering relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory £
of two terms t1 and to if t <g ¢t and t <¢ to. It is a higher-order pattern generalization if
additionally ¢ is a higher-order pattern. It is the least general generalization (lgg in short),
aka a most specific anti-instance, of t; and to, if there is no generalization s of t; and ¢
which satisfies t <g 5. An anti-unification problem (shortly AUP) is a triple X (Z0) : t £ s

12:3

FSCD 2018

12:4

Higher-order Equational Anti-Unification

where

AZ.X(7), \Z.t, and A\Z.s are terms of the same type,

t and s are in n-long S-normal form, and

X does not occur in ¢ and s.
The variable X is called a generalization variable. The term X () is called the generalization
term. The variables that belong to @, as well as bound variables, are written in the lower
case letters x,y, z,. ... Originally free variables, including the generalization variables, are
written with the capital letters X, Y, Z,.... This notation intuitively corresponds to the usual
convention about syntactically distinguishing bound and free variables. The size of a set of
AUPs is defined as [{X1(Z7) : t1 = s1,..., Xn(Tn) t tn = sp}| = D i |ti| + |si]. Notice that
the size of X;(Z;) is not considered. An anti-unifier of an AUP X (7) : t = s is a substitution
o such that Dom(c) = {X} and AZ.X (7)o is a term which generalizes both AZ.t and A\Z.s.

An anti-unifier of X () : t £ s is least general (or most specific) modulo an equational
theory & if there is no anti-unifier 9 of the same problem that satisfies o <¢ 1. Obviously, if
o is a least general anti-unifier of an AUP X (@) : t £ s, then AZ.X(Z)0 is a lgg of ATt
and \7.s.

Here we consider a variant of higher-order equational anti-unification problem:

Given: Higher-order terms t and s of the same type in 77-long S-normal form and an equational
theory £ C {A,C}.
Find: A higher-order pattern generalization r of ¢ and s modulo £ C {A, C}.

Essentially, we are looking for r which is least general among all higher-order patterns
which generalize t and s (modulo £). There can still exist a term which is less general than
r, generalizes both s and ¢, but is not a higher-order pattern. In [8] there is an instance
for syntactic anti-unification: if ¢t = Az, y.f(h(z,z,y), h(z,y,y)) and s = Az, y.f(g(z, z,y),
g(z,y,y)), then r = Az, y.f(Y1(z,y), Ya(x,y)) is a higher-order pattern, which is an lgg of ¢
and s. However, the term Az, y.f(Z(z,z,y), Z(z,y,y)), which is not a higher-order pattern,
is less general than r and generalizes ¢ and s.

Another important distinguishing feature of higher-order pattern generalization modulo
£ is that there may be more than one least general pattern generalization (Igpg) for a given
pair of terms. In the syntactic case there is a unique lgpg. The main contribution of this
paper is to find conditions on the AUPs under which there is a unique lgpg for equational
cases, and introduce weaker-optimality conditions which allow one to greedily search the
space for a less general generalization compared to the syntactic one. We formalize these
concepts in the following sections.

3 Higher Order Pattern Generalization in the Empty Theory

Below we assume that in the AUPs of the form X (%) : ¢t £ s and the term A\Z.X (7)) is a
higher-order pattern. We now introduce the rules for the higher-order pattern generalization
algorithm from [8], which works for & = 0. It produces syntactic higher-order pattern
generalizations in linear time and will play a key role in our optimality conditions introduced
in later sections.

These rules work on triples A;S; o, which are called states. Here A is a set of AUPs
of the form {Xy(77) : t1 = s1,..., Xn(Tn) : t, = s, } that are pending to anti-unify, S is a
set of already solved AUPs (the store), and o is a substitution (computed so far) mapping
variables to patterns. The symbol W denotes disjoint union.

D. M. Cerna and T. Kutsia

Dec: Decomposition
{X(Z) s h(try .o tm) 2 (51, 8m) WA S; 0 =
{Yl(?) it £ 81y 7Ym(§>) ttm £ Sm} U A; S; J{X = Afh(}/l(f)a s 7Ym(§)))}7
where h is a free constant or h € 7, and Y7,...,Y,, are fresh variables of the appropriate
types.

Abs: Abstraction Rule
HUX(Z): At = Aes}wA; Sy 0=
{X'(Z,y):t £ s{z—=y}}UA; S; o {X = \Z,y.X"(Z,y)},

where X’ is a fresh variable of the appropriate type.

Sol: Solve Rule
{X(Z):t2s}WA; S 0= A4, {Y(¥):t25}US; o {X = \Z.Y(Y)}
where t and s are of a basic type, head(t) # head(s) or head(t) = head(s) = Z ¢ 7. The

sequence 3 is a subsequence of 7 consisting of the variables that appear freely in ¢ or in s,
and Y is a fresh variable of the appropriate type.

Mer: Merge Rule
A A{X(Z) 1 210, Y (Y) 151 25} WS; 0 =
A {X(D) 1 2t} US; o {Y = \T.X(Z7)}
Where 7 : {Z} — {¥} is a bijection, extended as a substitution with ¢;7 = s; and tom = so.
Note that in the case of the equational theory we will consider later we would use =¢ instead
of =.

We will refer to these generalization rules as Gpuse. To compute generalizations for two
simply typed lambda-terms in 7-long S-normal form ¢ and s, the algorithm from [8] starts
with the initial state {X : t £ s};0;(), where X is a fresh variable, and applies these rules as
long as possible. The computed result is the instance of X under the final substitution. It is
the syntactic least general higher-order pattern generalization of ¢ and s, and is computed in
linear time in the size of the input.

We will use this linear time procedure in the following section to obtain “optimal” least
general higher-order pattern generalizations of terms modulo an equation theory. These
optimal generalizations are dependent on the generalizations the syntactic algorithm produces.
When we need to check more than one decomposition of a given AUP in order to compute the
optimal generalizations modulo an equational theory, we compute the optimal generalization
for each decomposition path and than compare the results. The details are explained below.

We assume that terms are written in flattened form, obtained by replacing all subterms
of the formf(t1,..., f(s1,---y8m)s---tn) by f(t1,..., 81,y Sm,...tn), where A € Az(f).
Also, by convention, the term f(¢) stands for ¢, if A € Az(f).

4 Equational Decomposition Rules

In this section we discuss an extension of the basic rules concerning higher-order pattern
generalization by decomposition rules for A, C, and AC function symbols. Here, we consider
the general, unrestricted case. Efficient special fragments are discussed in the subsequent
section.

12:5

FSCD 2018

12:6

Higher-order Equational Anti-Unification

We start from decomposition rules for associative generalization:

Dec-A-L: Associative Decomposition Left
{X(@): fltr,. . tn) 2 f(s1,.. ., 8m)}WA; S; 0 =
(D) : fte,. o) 251, Yo(T) : fltrsrs-rtn) 2 f(52,.. ., 8m)} U A;
Sy o{X = AT f(N1(T), Y2(T))},
where Az(f) = {A},1 <k <n-1,n,m > 2, and Y7 and Y5 are fresh variables of appropriate
types.

Dec-A-R: Associative Decomposition Right
{X(@): fltr,. . tn) 2 f(51,.- ., 8m)}WA; S; 0 =
Yi(Z) :t1 2 f(s1yee0,88), Yo ()t fta, oo itn) 2 F(Shats - vy Sm)} U A;
S; o {X AT F(Vi(2), Va(7)},
where Az(f) = {A}, 1 <k <m-—1,n,m > 2, and Y; and Y5 are fresh variables of appropriate
types.

We refer to the extension of G,se by the above associativity rules as G4 and extend the
termination, soundness and completeness results for Gyuse to GA.

» Theorem 1 (Termination). The set of transformations G4 is terminating.

Proof. Termination follows from the fact that Gpuse terminates [8] and the rules Dec-A-L
and Dec-A-R can be applied finitely many times. |

» Theorem 2 (Soundness). If {X : t £ s};0;0) =* (); S; 0 is a transformation sequence of
Ga, then Xo is a higher-order pattern in n-long B-normal form and Xo <Xt and Xo < s.

Proof. It was shown in [8] that Gpse is sound. Let us assume as a base case that all
occurrences of associative function symbols in ¢t £ s have two arguments. Then the rules
Dec-A-L and Dec-A-R are equivalent to the Dec rule. As an induction hypothesis (IH),
assume soundness holds when all occurrences of associative function symbols in ¢ = s have
< n arguments. We show that it holds for n + 1. Let t £ s be of the form f(t1,...,tn) =
f(s1,...,8k) for max{k,m} < (n+ 1) and let associative function symbols occurring in
t1,...tm,S1,- .. Sk have at most n arguments. Any application of Dec-A-L or Dec-A-R will
produce two AUPs for which the TH holds, and thus, the theorem holds. We can extend this
argument to an arbitrary number of associative function symbols with n + 1 arguments with

another induction. |

» Theorem 3 (Completeness). Let \Z.t1 and AT .ty be higher-order terms and \Z.s be a
higher-order pattern such that A\@.s is a generalization of both \Z.t; and \Z .ty modulo
associativity. Then there exists a transformation sequence {X () : t; 2 to};0;0 =* 0;S; 0
in G4 such that \Z.s < Xo.

Proof. We can reason similarly to the previous proof. It was shown in [8] that Gpgse is
complete. Let us assume as a base case that all occurrences of associative function symbols
in t £ s have two arguments. Then the rules Dec-A-L and Dec-A-R are equivalent to the Dec
rule and completeness holds. When we have n + 1 arguments there are n ways to group the
arguments associatively and the decompositions rules Dec-A-L and Dec-A-R allow one to
consider all groupings. <

D. M. Cerna and T. Kutsia

The addition of associative function symbols allows for more than one decomposition
and thus more than one lgg in contrast to higher-order pattern generalization which results
in a unique lgg . If we wish to compute the complete set of lggs we would simply exhaust
all possible applications of the above rules. However, for most applications an “optimal”
generalization is sufficient. We postpone discussion till the next section.

The decomposition rule for commutative symbols is also pretty intuitive:

Dec-C: Commutative Decomposition
{X(2): f(t1,t2) = f(s1,82)}WA; S5 0 =
V(7)1 t1 2 55, Ya(T) 112 2 5(moa2)41} U A; S5 o X = AT f(V1(F), Ya(T))},
where Az(f) = {C}, i € {1,2}, and Y; and Y5 are fresh variables of appropriate types.

We refer to the extension of Gp,se by the commutativity rule as Go. We can easily extend
the termination, soundness, and completeness results to G¢c. Notice that also for commutative
generalization, the lgg is not necessarily unique.

Unlike commutativity, which considers a fixed number of terms, and associativity, which
enforces an ordering on terms, AC function symbols allow an arbitrary number of arguments
with no fixed ordering on the terms. The corresponding decomposition rules take it into
account:

Dec-AC-L: Associative-Commutative Decomposition Left
{(X(Z): f(t1y-eostn) = (51, 8m) W A; S5 0 =
Y(Z) : fltiys oo oti) & sky Ya(T) 1 f(tig oo ti)
L f(S1ye ey Sty Shaly---»>Sm)}UA;
S5 o{X = AT (VL (F), Ya(T))},
where Az(f) = {A,C}, {i1,...,in} ={1,...,n}le{l,....,n—1}, ke {1,...,m}, n,m > 2,
and Y7 and Y3 are fresh variables of appropriate types.

Dec-AC-R: Associative-Commutative Decomposition Right
{X(Z): flt1, o stn) 2 f(51,-- 5 8m)}WA; S; 0 =
Y(Z) it 2 f(8iys--550), Ya(T) s fltry ey thots tigts - tn)
= F(SiginyseeesSim) U4
85 o{X > AT ((Z), Ya(Z))},
where Az(f) = {A,C}, {i1,...,im} = {1,...,m}, 1l € {1,....m — 1}, k € {1,...,n},
n,m > 2, and Y7 and Y5 are fresh variables of appropriate types.

We refer to the extension of Gpuse by the AC decomposition rules as Gac. Again,
termination, soundness and completeness are easily extended to this case.

5 Towards Special Fragments

This section is devoted to computing special kind of “optimal” generalizations, which can be
done more efficiently than the general unrestricted cases considered in the previous section.

The idea is the following: The equational decomposition rules introduce branching in the
search space. Each branch can be developed in linear time, but there can be too many of
them. However, if the branching factor is bounded, we could choose one of the alternative
states (produced by decomposition) based on some “optimality” criterion, and develop only
that branch. Such a greedy approach will give one “optimal” generalization.

12:7

FSCD 2018

12:8

Higher-order Equational Anti-Unification

In order to have a “reasonable” complexity, we should be able to choose such an optimal
state from “reasonably
treat all the alternative states obtained by an equational decomposition step as syntactic

”

many alternatives in “reasonable” time. For this, our idea is to

anti-unification problems, compute lggs for each of them (which can be done in linear time),
choose the best one among those lggs (e.g., less general than the others, or, if there are
several such results, use some heuristics), and restart equational anti-unification algorithm
from the state which led to the computation of that best syntactic 1gg. When the branching
factor is constant, this leads to a quadratic algorithm, and when it is linearly bounded, we get
a cubic algorithm. These are the cases we consider below. We would also need to decompose
in a more clever way than in the rules above, where the decomposition was based on an
arbitrary choice of a subterm.

Hence, we need to identify fragments of equational anti-unification problems which
would have the decomposition branching factor constant or linearly bounded. We start by
introducing the following concepts.

» Definition 4 (E-refined generalization). Given two terms ¢ and s and their £-generalizations
r and ', we say that 7 is at least as good as r’ with respect to £ if either ' <¢ r or they are
not comparable with respect to <¢.

An E-generalization r of t and s is called their E-refined generalization iff r is at least as
good (with respect to &) as a syntactic lgg of ¢ and s.

Note that every syntactic generalization is also an £-generalization. A direct consequence
of this definition is that every element of the minimal complete set of £-generalizations
(where € is A, C, or AC) of two terms is an E-refined generalization of ¢ and s. However,
there might exist £-refined generalizations which do not belong to the minimal complete set
of generalizations.

Looking back at the informal description of the construction above, we can say that at
each branching point we will be aiming at choosing the alternative that would lead to “the
best” E-refined generalization.

The concept of E-refined allows us to compute better generalizations than the base
procedure would do, without concerning ourselves with certain difficult to handle decomposi-
tions. We will outline what we mean by “difficult” in later sections. Some of these difficult
decompositions can be handled by finding alignments between two sequences of terms.

» Definition 5 (Alignment, Rigidity Function). Let w; and wy be strings of symbols. Then
the sequence ai[i1, j1] - - anlin, jn], for n > 0 and aj are not variables, is an alignment if
©’s and j’s are integers such that 0 <i; < -+ < i, < |wi| and 0 < j; < -+ < jn, < |wal,
and
ap = wil;, = wal;, , for all 1 <k < n. An alignment of the form a;[¢, j] will be referred
to as a singleton alignment, where t|, denote the subterm at position a.

The set of all alignments will be denoted by A. A (singleton) rigidity function R is a
function that returns, for every pair of strings of symbols w; and ws, a set of (singleton)
alignments of wy; and ws.

The main intuition behind the use of rigidity functions for generalization is to capture the
structure (modulo a given rigidity property) of as many nonvariable terms as possible.

» Definition 6 (Pair of argument head sequences and multisets). Let t = f(¢1,...,t,) and
s= f(s1,...,8m). Then the pair of argument head sequences and the pair of argument head

D. M. Cerna and T. Kutsia

multisets of t and s, denoted respectively as pahs(t, s) and pahm(t, s), are defined as follows:

pahs(t,s) = ((head(t1), ..., head(t,)), (head(s1),...,head(sm))) .
pahm(t,s) = ({head(ty), ..., head(t,)}}, {head(s1),..., head(s,)}) .2

These notions extend to AUPs: A pair of argument head sequences (resp. multisets) of
an AUP X (7) :t £ s is the pair of argument head sequences (resp. multisets) of the terms ¢
and s.

There is a subset of AUPs, referred to as 1-Determined AUPs, which contain associative

function symbols and have interesting £-refined generalizations are computable in linear time.

The more general r-determined AUPs allow a bounded number of possible choices, that is r
choices, whenever associative decomposition may be applied. Even for 2-determined AUPs
computing the set of lggs is of exponential complexity. Therefore, we introduce the notion
of (R, C,G)-optimal generalization where R is a so called rigidity function [11] and C is a
choice function picking one of available decompositions. Under such optimality conditions,
we are able to compute an E-refined generalization in quadratic time for k-determined AUPs
and in cubic time for arbitrary AUPs with associative function symbols.

The equational decomposition rules above are too non-deterministic and the computed

set of generalizations has to be minimized to obtain minimal complete sets of generalizations.

However, even if we performed more guided decompositions, obtaining e.g., terms with
the same head in new AUPs (as in [11]), there would still be alternatives. For instance,
consider the following AUP where f is associative: X(@) : f(t1,...tiy- o tjyonostn) =
f(s1,.-- 8y, 84, ..., 8m). Now let head(t;) = head(s;), head(s;) = head(t;), and for every
other term comparison whose index is < j the head symbols are not equivalent. Under these

assumptions there is not enough information to decide which decomposition is less general.

Furthermore, this can be generalized from two possible decompositions to k possibilities.

Under certain conditions we can force a term to have a single decomposition path, what
we will refer to as a 1-determined condition which is equivalent to unique longest common
subsequence of head symbols. We formally define k-determined AUPs using the following
sequence of definitions:

» Definition 7 (k-determinate set). Given the pair of sequences of symbols (s, s2) with
s1 = (ay,...,a,) and so = (by,...,by), and a positive integer k, the (strict) k-determinate
set of s1 and ss, denoted det (k, s1, s2) (dets (k, s1,82)), is defined as follows:
If n = 0 and m # 0 or vice versa, then det (k, s1,52) = 0.
Otherwise, let 1 < ¢ < min(n,m) be a number such that for the multiset M; =
HarF n o) U {az,--.yai} N {ba,...,0:}}) # O we have M; N {biz1,...,bm}} =
M, N {ais1,...,a,}} = 0. Let K (Kj) be the set of pairs {a;, [j1,Jj2] | aj, = bj, and j; =
1iff jo =1} ({aj, [j1,72] | @j, = bj,}). If K has at most k elements, then

det(k, s1,82) := U add(aj, [j1,J2], det (k, (aj, 41, -5 an), (bjo41,---,0m)))-
ajq [j1,J2]€K
_ [@A)} | A#0
add(a, 4) = { 0 otherwise

Otherwise, det(k, s1,s2) = {0} .

2 {o}} denotes a multiset.

12:9

FSCD 2018

12:10

Higher-order Equational Anti-Unification
Note that detg (k, s1, s2) is defined analogously using K instead of K. We will refer to the
pairs (a, A) where a is a singleton alignment and A a k-determinate set as blocks.

We will use det (k, s1, $2) when considering commutativity in Section 7.

» Example 8. We illustrate the previous definition:

det (1, (a,b), (a,0)) = {(al1,1] ; {(b[1,1]; {OH)})}-

det (1, (,a), (b)) = {({al2,2) ; {O})}.

det (1,(@ ¢, ¢, b,a,c),(a,d,b,a,c)) = {(a[Ll]) {(b[372}) {(a[171]) {(C[l,l]) {@})})})})}
det (1, (a,b,a), (c,a,c, b)) = {0}

det (1, (a,b,d), (c,a,b,c)) = {(b[2,3] ; {0})}

det (2, (a,b,), (¢,) = {(02,3] ; {0)))

dets (1, (a,b), (b,a)) = {(a[1,2] ; {0}), (b[2,1] ; {O})}

det (2, (¢, ,b,), (d, by, d)) = {(af2,3] 5 {01), 003,2] 5 {0)).

det (3, (a,b,a,c,d), (c,a,b,a,d)) =

{(0[2,3] 5 {(a[t,1] 5 {0})}), (a[3,2] ; {(d[2,3] ; {O})}), (a[3,4] ; {O})}.
det (k, (a,a), (b,c,d)) = {0}.

det (k, (a,b), (a)) = 0.

det (k, (a,a), (a)) = {0}.
Even though det (k, (a,b), (a)) and det (k, (a,a),(a)) are related the formalism does not
handle them as similar. This merely makes the formalism a little more restricted. Notice
that a unique longest common subsequence of two symbol sequences is not equivalent to
k-determined. Consider the following example:

det (k, (Cvaaavd)’(c’a’b’a’d)) = {<C[1>1]) {(a[lvl] ; {(d[273] ; {®})}>})}

The alignment representing its longest common subsequence is
c[1,1]a[2,2]a[3, 4]d[4, 5]

» Definition 9 (k-determined term pairs). A pair of terms (t,s) is k-determined iff either
head(t) # head(s) or head(t) = head(s) = f and Az(f) = 0, or Az(f) = {A} and
det (k, pahs(t,s)) # 0. Furthermore we say that the pair (t,s) is total k-determined if
t = Ax1,...,2n.t', § = Ay1,...,yn.s’ and t' and s’ are n-equivalent to t” and s” with
[t"| = |s"| = 1, or for each (a[i,j],S) € det(k,pahs(t,s)) where t; is the term at the

b position of ¢t and s; is the term at the 4 position of s the term pair (¢;, s;) is total
k-determined.

» Proposition 1. The complexity of checking if the terms of an AUP

X (@) : Aoy, m f(tn, b)) 2L, Yk f (51, Sm)

is 1-determined is O(n) and total 1-determined is O(n?), where n is mazimum of the length
of the two terms.

Checking k-determinedness of an AUP is a harder problem complexity-wise. For example,
given the sequences (a,...,a) and (a,...,a) there are n? ways to align the terms which have
to be checked. Moreover, if we want to check total k-determinedness we have to again do a
quadratic check for each pair of aligned terms resulting in an O(n*) procedure.

D. M. Cerna and T. Kutsia

6 Associative Generalization: Special Fragments and Optimality

6.1 Associativity and 1-Determined AUPs

We provide a linear time algorithm for higher-order {A}-refined pattern generalization of
AUPs which are 1-determined. Essentially, at every step there is a single decomposition
choice which can be made.

» Theorem 10. A higher-order {A}-refined pattern generalizer for a total 1-determined
AUP can be computed in linear time.

Proof. If the AUP does not contain an associative function symbol, then its E-refined
generalization, which is also an lgg, can be computed in linear time [8]. If it does contain
an associative function symbol, we have two alternatives: either every occurrence of the
associative function symbol has two arguments (remember that our terms are in flattened
form), or not. In the former case, the associative decomposition rules do not differ from the
syntactic decomposition rule Dec and we can only apply the latter. It means that we can
still use the linear algorithm from [8]. The rest of the proof is about the case when there are
occurrences of associative function symbols with more than two arguments. The proof goes
by induction on the maximal number of such arguments.

We assume for the induction hypothesis that if every instance of the associative function
symbol in the AUP has at most n arguments, then it is solvable in linear time, and show
that the same holds for n + 1. Let us assume that the AUP we are currently considering
has the following form X(27) : f(t1,...,tm) = f(s1,...,5k) Where f is associative and
max{m, k} =n+ 1. Assume without loss of generality that K = n + 1. Also, assume that
no other occurrence of f in the given AUP has more than n arguments. We make this
assumption in order to reduce the complexity of associative decomposition in the AUP and
thus, apply the induction hypothesis. If head(t1) = head(sy),then their lgg should not be
a variable. Therefore, we can apply Dec-A-L, which results in the AUPs X (@) : t; 2 5
(whose further decomposition will make sure that they ¢; and s; are not generalized by a
generalization variable) and X (Z7) : f(t2,...,tm) = f(s2,...,5,41). Notice that both of the
resulting AUPs, by our assumptions, only contain f with not more than n arguments. Thus,
by the induction hypothesis the theorem holds in this case.

For the next step we assume s and ¢ are the terms of the AUP and that (h[l,1],5) €
det (1, pahs(t, s)) s.t. Ax(h) = {A}. Therefore, we can perform Dec-A-L only on the first
argument [— 1 times, which gives the following new AUPs: {X(Z) :t; £ 51,...,X;_1(7) :
tiy 2 s, Xo(Z) 2 f(teootm) 2 f(S1,--.,8041)}. All the resulting AUPs, by our
assumptions, only contain f with not more than n arguments, thus by the induction
hypothesis the theorem holds in this case.

For the next step we assume s and t are the terms of the AUP and that (h[i,j],S) €
det (1, pahs(t, s)) s.t. Ax(h) = {A} and i # j. This is similar to the previous case except
there is more than one possible way to apply associative decomposition. More precisely, the
number of possible ways is F(I — j 4+ 1) where

r+1
F(0) =1, F(T—l—l):ZF(r—i—l—w) for r > 0.

w=1

which is roughly F(r) = 2"=1. Note that F(.) is derived from the combinatorics of the
associative decomposition rule and concerns the number of possible pairings with respect to
1-determinacy. However, being that none of the head symbols of obtained term-pairs are

12:11

FSCD 2018

12:12

Higher-order Equational Anti-Unification

equivalent nor can their head symbols be equivalent to f, we know that none of the resulting
AUPs will require further decomposition. Thus, we need to apply associative decomposition.
This can be easily performed be performed by some heuristic. The result will be a set of
AUPs containing X (Z°) : f(j...tm) = f(s1,...8n+1) and thus by the induction hypothesis
and our assumptions, the theorem holds.

For the final step we just need to apply a simple induction argument on the number
of times in a term the associative symbol f occurs with arity n + 1. The above argument
provides the step case and base case being that we prove the theorem for one occurrence and

can use the proof for p occurrences. Thus, the theorem holds. |

In the next section we consider AUPs which are k-determined for k£ > 1. This will requires
a new concept of optimality based on a choice function greedily applied during decomposition.

6.2 Choice Functions and Optimality

In this section procedures and optimality conditions for total k-determined AUPs, for k£ > 1,
that is AUPs where there are at most k ways to apply equational decomposition.

If we were to compute the set of F-refined generalizations for a total k-determined AUP
by testing every decomposition, even for k = 2 the size of search space is too large to deal
with efficiently. However, we can find a (R, C, G)-optimal E-refined generalization (precisely
defined below) in quadratic time, where R is a singleton rigidity function, C' a R-choice
function, G is a set of state transformation rules. Essentially, (R, C, G)-optimality means the
R-choice function chooses the “right” computation path via G based on the singleton rigidity
function R. The effect is that we reduce the problem of total k-determined AUPs to the
case of total 1-determined AUPs with the additional complexity of computing the choice
function at each step. We will provide a choice function with linear time complexity based
on the procedure for Gpgse-

We will denote the set of all AUPs by A. We will need the concept for the following
definitions.

» Definition 11 ((P,a)-decomposition). Let P = X(z) : Azy,...,20.f(t1,...,tn) =
Y1, Yk-f(S1, .., Sm), a is an alignment of (wq,ws)p (see Definition 6). An (P, a)-
decomposition of P is dec(P,a) = {Y; jy(¥ (i j)) : ti = s; | h[i,j] € a }, where Y[, j) are new
variables of appropriate type and Z_I(i,j) are bound variables from @, which appear in t; = sj.

» Definition 12 (G-feasible). Let A;S;o be a state s.t. P € A where P = X(7) :
A1y f (b t) 2 AL, Yk f(S15- -+, Sm), a be an alignment of (w1, ws)p and
Grase C G be a set of state transformation rules. We say that dec(P, a) is G-feasible if there
exists 4;S;0 =* A’;S"; 0’ using G such that A’ = (A \ P) U dec(P,a).

» Definition 13 ((R, P, G)-branching). Let P = X(Z) : Av1,..., 2. f(t1, .. tn) = Ayi, - - -
Y- f (81,5 5m), (w1, w2) p be its pair of argument head sequences, R be a singleton rigidity
function, and Gpese € G be a set of state transformation rules. An (R, P,G)-branching is a
set B(R, P) = {dec(P,a) | a € R(w1,ws) and dec(P,a) is G-feasible}.

» Definition 14 (R-Choice function). Let R be a singleton rigidity function and Gpuse € G
be a set of state transformation rules. An R-choice function C(z gy : A — A is a partial
function from AUPs to alignments such that if for some P € A , Cg g)(P) = a, then
dec(P,a) € B(R, P).

» Definition 15 ((R, C, G)-optimal generalization). Let A be {X () : t = s}, R be a singleton
rigidity function, C' be an R-choice function, and Gpuse € G be a set of state transformation

D. M. Cerna and T. Kutsia

rules, which compute generalizations. We say that a generalization k of the terms ¢ and s
is an (R, C, G)-optimal generalization if r = Xo, where o is resulting from the derivation
A;0; 0 =* (); S; o using the rules of G, in which every decomposition is either syntactic or
respects C-equivalence.

In the following subsection we show how the above definitions can lead to a more general
result (compared to the one in the previous section) concerning associative generalization.

6.3 k-Determined Associative Generalization

Before defining our concrete choice function, we must define the singleton rigidity function
we will use. Intuitively, it should select alignments from prefixes of involved sequences. The
prefixes are of the same length and should be maximal among those that contain at most &k
common elements. Formally, it is defined as follows:

» Definition 16. Let wy = (a1,...,a,) and wy = (b1, ..., by,) be sequences of symbols and
k > 1 be an integer. We define the singleton rigidity function R’Af as

{ar[l,k] | (ar[l, k], S) € det (k,wy,wa)} | det (k,wi,ws) # 0

R un.) = { ;)

otherwise

Now we define a choice function taking an arbitrary singleton rigidity function.

» Definition 17. Let P = X(7) : Axy, ..., 2. f(t1, - tn) = M1y oo, Uk f(51,...,5m) be
an AUP and f a function symbol such that Az(f) # 0. We define the choice function Cx gy,
where R is a singleton rigidity function, and G is a set of state transformation rules containing
Gpase, as follows:

B(R,P)# 0
otherwise

(2)

undef

Amin
Clrg)(P) = {

where api, is an alignment of (head(ty),...,head(t,)) and (head(s1),...,head(s;,)) such
that
dec(P, amin) € B(R, P),
for dec(P,a) € B(R, P), let D(a) be the derivation D(a) = {P};0;) = dec(P,a);S";
o = 05500
Then for each @ # amin, the corresponding D(a) computes o, such that Xo, is more
general than Xo,, . , where o, is computed by D(amin). If there are several such
amin’s, C(r,g)(P) is defined as one of them (chosen by some heuristics).

The choice function outlined above uses the linear time procedure Gpese to make a
choice between the various possible alignments. Notice that we use associative decom-
position for {P};0;0) =* dec(P,a);S’;c’ and syntactic decomposition in the derivation
dec(P,a); ;0" =* 0;S;04.

» Theorem 18. A (R, C(RZVQA),QA)—optimal higher-order {A}-refined pattern generaliza-

tion for a total k-determined AUP X(Z7) :t = s can be computed in O(n?) where n is the
size of the AUP.

Proof. This follows from the existence of a linear algorithm for the computation of Iggs
using Gpgse and the linear time algorithm of theorem 10. Note that k is constant and thus
does not show up in complexity statement. <

12:13

FSCD 2018

12:14

Higher-order Equational Anti-Unification

6.4 Step Optimal Generalization for Full Associativity

Completely dropping the determinedness restrictions on the AUPs containing associative
function symbols is the same as considering O(n)-determined AUPs. We have already
shown that this problem is naively solvable by an exponential procedure, even when we
consigl(el)“ O(1)-determined AUPs. In this section we again consider the problem of finding

a (R,
the maximum number of arguments of any subterms in the given AUP. However, this time

,C(Ro(n) Gy’ G a)-optimal generalization where n in the Landau-notation refers to
A

the resulting algorithm is cubic in complexity being that r in r—determined is no longer a
O(n

constant. By R A(" we mean the singleton rigidity function which instead of looking for an

r-determined subsequence just considers the largest feasible multiset intersection.

O(n)

» Theorem 19. 4 (R, Ga)-optimal higher-order {A}-refined pattern gener-

) C O(n))

(RA 7gA)
alization for an AUP X (7)) :t = s can be computed in O(n?) time where n is the size the
AUP.

Now that we have completed our analysis of associative function symbols, the simplest of
the cases we consider, we move on to the more interesting cases of unit and commutative
decomposition as well as the combinations of these algebraic properties.

7 Commutative Case

Notice that in the case of commutative decomposition if all four terms (or three terms) have
the same head symbol we end up with similar issues as in the associativity case. We can use
strict 2-determined to restrict the considered AUPs.

» Theorem 20. A higher-order {C}-refined pattern generalization, for a total strict 1-
determined AUP can be computed in linear time.

Proof. Similar to the proof of Theorem 10. |

Note that the case f(ti,t2) = f(s1,82), where head(t;) = head(s;) and head(ty) =
head(ss), is considered by the procedure of Theorem 20, but not f(t1,ts) £ f(s2,s1) This
is an issue with the definition of total strict 1-determined. We can fix this problem by
performing an addition check to see if a permutation of the terms on the left or right side
results in a better alignment. We now present a procedure for full commutativity, that is
without restrictions which has a quadratic complexity (see Theorem 18.

» Definition 21. Let wy = (a1, ..., a,) and wy = (by, ..., by,) be sequences of symbols and
k > 1 be an integer. We define the rigidity function R¢ returning all alignments.

When the rigidity function Rc is used all by our procedure there will be at most 4
alignments.

» Corollary 22. A (Rc, C(rc.gc,)» Gicy)-optimal higher-order {C'}-refined pattern generaliz-

ation for an AUP can be computed in quadratic time.

8 Associative-Commutative Case

In this section we consider functions f such that Az(f) = {A,C}. Unfortunately, when a
function is both associative and commutative, the number of possible decomposition paths is
even greater than the previously considered cases and thus we need to further restrict the term

D. M. Cerna and T. Kutsia

structure. To provide a better understanding of why this is the case, consider a k-determined
AUP where the multiset intersection is of size O(k) and only contains one function symbol.
This implies that there are O(k?) possible decompositions of the terms in the first multiset
intersection of the terms containing & alignments. This is not even considering that there
might be more than one function symbol in the AUP. The problem is that the more terms
with the same head symbol, the more combinations we must check. Unlike commutativity,
which considers a fixed number of terms, and associativity, which enforces an ordering on
terms, associative-commutativity allows an arbitrary number of arguments with no fixed
ordering on the terms. We can get around this problem by considering special cases of AUPs
where arguments of an associative-commutativity symbol have distinct heads.

Unfortunately, the concept of (strict) k-determined AUPs does not lead to a linear
algorithm in the case of AC-generalization. Actually, this concept is not even meaningful for
such an equational theory, since terms are not ordered in any particular way. Instead, we
need to consider so called (k,!)-distinct AUPs, which are defined as follows:

» Definition 23. Let P = X(7) : Axy,..., 2. f(t, .- tn) = My Yre f(S15000)8m),
pahm(f(ty, ... tn), f(s1,...,8m)) = (T, S), and Az(f) = {A,C}. We say that P is (k,1)-
distinct if each h € T N S occurs at most k times in w; and at most k£ times in wo,
the number of symbols in TNS < land T\ (T'NS) = 0 iff S\ (T'NS)P. We say
P=X(Z):\x1,..., 20t 2 My1,...,yr.s is total (k,1)-distinct if [t| = |s| = 1 or for every
pair of subterms (¢, s") of t and s such that head(t') = head(s'), the AUP Y (7)) : ' £ 5 is
total (k,1)-distinct.

This concept is much simpler than k-determined in that it basically splits the arguments
of the left and right side of the given AUP into at most [sections dependent on the head
symbols of the arguments. Also, for head function symbol, there should be at most k
occurrences of it and the result of decomposition is an empty term iff the terms of the left
and right side of the AUP are empty.

When an AUP is total (1,[)-distinct there is only one way to decompose the AUP, i.e.
either a given symbol shows up in both w; and ws once and can be aligned, or it cannot be
aligned and is generalized by a new variable. This leads to the following results:

» Theorem 24. A higher-order {A, C}-refined pattern generalization for a total (1,1)-distinct
AUP can be solved in linear time.

Proof. Similar to the proof of Theorem 10. <

If we attempt to relax these constraints the time complexity of the algorithm increases
substantially, even when we consider the case of (2,1)-distinct AUPs under our restricted
optimality condition.

» Definition 25. Let wy = (aq,...,a,) and we = (by,...,by) be sequences of symbols. We

define the singleton rigidity function Rfféf) as follows

{arli,j] | ai=bj,1<i<nl<j<m }| if (wi,we)is (k,I)-distinct
0

(k1) _
Rac’ (wi,w2) = { otherwise

®3)

» Theorem 26. A (Rffél)’C(Rm,z) QAC),QAC)—optimal higher-order {A, C}-refined pattern
AC

generalization for a total (k,[)-distinct AUP is computed in O(k*'-n?) time where n is the
mput size.

12:15

FSCD 2018

12:16

Higher-order Equational Anti-Unification

Proof. There are O(k?) ways to pair the terms with the same head and there are [blocks
thus there are O(k?!) computations using Gpase (complexity O(n)) to be performed on an
AUP with size n. <

Obviously, computing the full set of E-refined generalizations from the results of Theorem 26
using a naive method would take in the order of O(k*'™) time.

9 Conclusion

The higher-order equational anti-unification algorithm presented in this paper combines
higher-order syntactic anti-unification rules with the decomposition rules for associative,
commutative and associative-commutative function symbols. This gives a modular algorithm,
which can be used for problems with different symbols from different theories without any
adaptation.

Higher order A-, C-, and AC-anti-unification problems are finitary. In practice, often it is
desirable to compute only one answer, which is the best one with respect to some predefined
criterion. We defined such an optimality criterion, which basically means that an optimal
equational solution should be at least a good as the syntactic 1gg. We then identified problem
forms for which optimal solutions can be computed fast (in linear or polynomial time) by a
greedy approach.

—— References

1 Maria Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A modular order-
sorted equational generalization algorithm. Inf. Comput., 235:98-136, 2014. doi:10.1016/
j-1c.2014.01.006.

2 Henk Barendregt. The Lambda Calculus. Its Syntaz and Semantics. North Holland, 1984.

3 Adam D. Barwell, Christopher Brown, and Kevin Hammond. Finding parallel func-
tional pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-
unification. Future Generation Comp. Syst., 79:669-686, 2018. doi:10.1016/j.future.
2017.07.024.

4 Alexander Baumgartner. Anti- Unification Algorithms: Design, Analysis, and Implementa-
tion. PhD thesis, Johannes Kepler University Linz, 2015.

5 Alexander Baumgartner and Temur Kutsia. A library of anti-unification algorithms. In
Eduardo Fermé and Jodo Leite, editors, Logics in Artificial Intelligence - 14th Furopean
Conference, JELIA 2014. Proceedings, volume 8761 of Lecture Notes in Computer Science,
pages 543-557. Springer, 2014. doi:10.1007/978-3-319-11558-0_38.

6 Alexander Baumgartner and Temur Kutsia. Unranked second-order anti-unification. Inf.
Comput., 255:262-286, 2017. doi:10.1016/j.ic.2017.01.005.

7 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. A variant of higher-
order anti-unification. In Femke van Raamsdonk, editor, 24th International Conference on
Rewriting Techniques and Applications, RTA 2018, volume 21 of LIPIcs, pages 113-127.
Schloss Dagstuhl, 2013.

8 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order
pattern anti-unification in linear time. J. Autom. Reasoning, 58(2):293-310, 2017.

9 Tarek R. Besold, Kai-Uwe Kiithnberger, and Enric Plaza. Towards a computational- and
algorithmic-level account of concept blending using analogies and amalgams. Connect. Sci.,
29(4):387-413, 2017. doi:10.1080/09540091.2017.1326463.

http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1007/978-3-319-11558-0_38
http://dx.doi.org/10.1016/j.ic.2017.01.005
http://dx.doi.org/10.1080/09540091.2017.1326463

D. M. Cerna and T. Kutsia

10

11

12

13

14

15

16

17

Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 1009-1062. Elsevier and MIT
Press, 2001.

Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms and
hedges. J. Autom. Reasoning, 52(2):155-190, 2014. doi:10.1007/s10817-013-9285-6.
Tomer Libal and Alexander Steen. Towards a substitution tree based index for higher-order
resolution theorem provers. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors,
Proceedings of the 5th PAAR Workshop, volume 1635 of CEUR Workshop Proceedings,
pages 82-94. CEUR-WS.org, 2016. URL: http://ceur-ws.org/Vol-1635/paper-08.pdf.
Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Log. Comput., 1(4):497-536, 1991. doi:10.1093/logcom/1.4.
497.

Frank Pfenning. Unification and anti-unification in the calculus of constructions. In LICS,
pages 74-85. IEEE Computer Society, 1991.

Brigitte Pientka. Higher-order term indexing using substitution trees. ACM TOCL, 11(1),
2009. doi:10.1145/1614431.1614437.

Ute Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding of
Finite Programs, and Schema Abstraction by Analogical Reasoning, volume 2654 of Lecture
Notes in Computer Science. Springer, 2003.

Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe Kithnberger. Heuristic-driven
theory projection: An overview. In Henri Prade and Gilles Richard, editors, Computational
Approaches to Analogical Reasoning: Current Trends, volume 548 of Studies in Computa-
tional Intelligence, pages 163—194. Springer, 2014. doi:10.1007/978-3-642-54516-0_7.

12:17

FSCD 2018

http://dx.doi.org/10.1007/s10817-013-9285-6
http://ceur-ws.org/Vol-1635/paper-08.pdf
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1145/1614431.1614437
http://dx.doi.org/10.1007/978-3-642-54516-0_7

Term Rewriting Characterisation of LOGSPACE
for Finite and Infinite Data

Lukasz Czajka'
University of Copenhagen, Denmark
luta@di.ku.dk

—— Abstract

We show that LOGSPACE is characterised by finite orthogonal tail-recursive cons-free constructor
term rewriting systems, contributing to a line of research initiated by Neil Jones. We describe a
LOGSPACE algorithm which computes constructor normal forms. This algorithm is used in the
proof of our main result: that simple stream term rewriting systems characterise LOGSPACE-
computable stream functions as defined by Ramyaa and Leivant. This result concerns character-
ising logarithmic-space computation on infinite streams by means of infinitary rewriting.

2012 ACM Subject Classification Theory of computation — Complexity theory and logic, The-
ory of computation — Equational logic and rewriting

Keywords and phrases LOGSPACE, implicit complexity, term rewriting, infinitary rewriting,
streams

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.13

1 Introduction

The goal of the field of implicit computational complexity is to characterise computational
complexity classes without reference to external measuring conditions. One of the first
such implicit characterisations was that of LOGSPACE as the class of problems which
can be decided by deterministic two-way multihead finite automata [6]. Inspired by this
well-known characterisation, Neil Jones gave new characterisations of this class as “cons-
free” tail-recursive programs in several formalisms [9, 7, 8]. In cons-free programs data
constructors cannot occur in function bodies. Put differently, cons-free programs are read-
only: recursive data can only be read from input, but not created or altered (except
taking subterms). Cons-free programming was subseqently used to characterise a variety of
complexity classes [9, 7, 8, 2, 3, 10, 11, 12].

In this paper we extend the cons-free approach to computation on infinite streams.
In [14, 13] Ramyaa and Leivant define the class of LOGSPACE-computable stream functions
and show that it is characterised by ramified corecurrence in two tiers. Our main contribution
is a cons-free infinitary term-rewriting characterisation of this class. We show that a stream
function is computable in LOGSPACE, in the sense of Ramyaa and Leivant, if and only if it
is definable in a simple stream TRS. As an intermediate step, we also give infinitary rewriting
characterisations of stream functions computable by (jumping) finite stream transducers.

In order to obtain our characterisation of LOGSPACE-computability on streams, we give
an algorithm to compute the (finite) constructor normal form of a (finite) term of a certain
form in a finite orthogonal tail-recursive cons-free constructor TRS. Using this algorithm we
obtain a term rewriting characterisation of LOGSPACE (in the ordinary finite sense).

1 Supported by Marie Sklodowska-Curie action “InfTy”, program H2020-MSCA-IF-2015, number 704111.

© Lukasz Czajka;
37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 13; pp. 13:1-13:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:luta@di.ku.dk
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

In previous work [9, 8, 2] LOGSPACE was characterised by tail-recursive cons-free
programs. The idea to transpose characterisations obtained via cons-free programs into the
formalism of TRSs has already been exploited to characterise other complexity classes in [3,
11, 10], but there orthogonality was not assumed. Our method of introducing L-reductions
may be seen as a degenerate case of the method in [3] (see also [10]), but the algorithm used
there to compute constructor normal forms in polynomial time is fundamentally different
from ours and does not easily adapt to logarithmic space computation. In the first part of
this paper, the main novelty is a trick to detect looping in logarithmic space, and using this
to obtain a LOGSPACE algorithm for computing constructor normal forms.

2 Term rewriting systems

We assume familiarity with term rewriting [1]. In this short section we fix the notation and
briefly recall some definitions.

» Definition 2.1. A term rewriting system (TRS) is a set of rules of the form [— r where
I,r are terms and [is not a variable and Var(r) C Var(l), where Var(¢) denotes the variables
occurring in ¢t. Given a TRS R, the reduction relation — g is the compatible closure of the
contraction relation {(ol,0r) |l — r € R, o a substitution}. We use —* for the transitive-
reflexive closure of —, and —= for the reflexive closure, and = for the parallel closure. For
precise definitions see [1]. In particular, = is reflexive.

A defined symbol in a TRS R is a function symbol which occurs at the root of a left-hand
side of a rule in R. A constructor symbol in a TRS R is a function symbol which is not a
defined symbol in R. A constructor term is a term which does not contain defined function
symbols (it may contain variables). A constructor normal form is a constructor term which
does not contain variables (so it contains only constructors). A constructor head normal
form (chnf) is a term of the from c(t1,...,t,) with ¢ a constructor. A constructor TRS is
a TRS R such that for I — r € R we have | = f(l,...,l,) where l,...,l, are constructor
terms.

A redex is innermost if it does not contain other redexes. A reduction step is innermost
if it contracts an innermost redex.

A decision problem is a set of binary words A C {0,1}*. Assuming the signature contains
the constants 0, 1,nil and a binary constructor symbol cons, every w € {0,1}* may be
represented by a term w in an obvious way. A TRS R accepts a decision problem A if there
is a function symbol f such that for every w € {0,1}* we have: f(w) =7 1 iff w € A.

3 LOGSPACE for finite data

In this section we show that finite orthogonal tail-recursive cons-free constructor TRSs
characterise LOGSPACE, i.e., a decision problem is in LOGSPACE iff it is accepted by a
finite orthogonal tail-recursive cons-free constructor TRS. As part of the proof we give an
algorithm which computes the constructor normal form of a term of a certain form, if there
exists one, or rejects otherwise. This algorithm will also be used in Section 6.

» Definition 3.1. A constructor TRS R is cons-free if for each | — r € R every chnf subterm
of r either occurs in [or is a constructor normal form. A constructor TRS R is tail-recursive if
there is a preorder > on defined function symbols such that for every f(ui,...,u,) > r € R
and every defined function symbol ¢ the following hold:

if r =g(ty,...,t;) then f = g,

if g(t1,...,tx) is a proper subterm of r then f > g.

t. Czajka

A TRS is strictly tail-recursive if it is tail-recursive and each right-hand side of a rule contains
at most one defined function symbol.

For terms ty,...,t, by B(t1,...,t,) we denote the sets of all constructor normal forms
occurring either in one of ¢; or in a right-hand side of a rule of R. Note that B(t1,...,t,) is
finite if R is.

Our definition of tail-recursiveness is based on standard definitions in the literature [8, 2],
adapted to the term rewriting framework.

» Proposition 3.2. Any problem decidable in LOGSPACE is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. This is a straightforward adaptation of previous work [7, 2]. One may e.g. easily
encode any CM\F program from [7] by a finite orthogonal strictly tail-recursive cons-free
constructor TRS. Because the obtained TRS is orthogonal and strictly tail-recursive, the
reduction strategy does not play a significant role. We skip the routine details. |

It is more difficult to show the other direction of the characterisation result, i.e., that any
decision problem accepted by a finite orthogonal tail-recursive cons-free constructor TRS is
in LOGSPACE. Indeed, if the TRS is tail-recursive but not strictly tail-recursive, then terms
which have a constructor normal form may also have arbitrarily large reducts. Consider
e.g. the following TRS R:

f(@) =g flg(x)) h(x) =ra

Then h(f(a)) —r a but also h(f(a)) =5 h(f(g"(a))) for any n € N. This example also
shows that the innermost strategy may fail to give a normal form even if a term has one.

We will show that a constructor normal form may always be reached by an eager R.1-
reduction, denoted —%, |, which contracts only innermost R-redexes and eagerly (as soon
as possible) replaces by L an innermost subterm with no constructor normal form in R.
For instance, in the example TRS R given above h(f(a)) =1 h(l) —r a is an eager
R1-reduction, but h(f(a)) —r h(f?(a)) is not. The term f(a) does not have a constructor
normal form in R, so it cannot be R-contracted in an eager R.1-reduction — it must be
contracted to L.

Whether a subterm has a constructor normal form in R may be decided using a constant
number of logarithmic counters. An eager R_-reduction has the form

fr(wi, o wn) = hie filth - tn) 2% 0l wn,) 2R (R 6,) 9% -

where #/ is the constructor normal form w.r.t. eager R_L-reduction of w] (L is considered to
be a constructor) and f; 2 f; for ¢ < j. At some point either we reach a constructor normal
form or a term f;(¢,... ,ti”) repeats. Because of cons-freeness, there are only polynomially
many such terms. Hence, a logarithmic counter may be used to detect looping. Because of
tail-recursiveness, computing the constructor normal form (w.r.t. eager R_l-reduction) t{
of wf may be done by a recursive invocation, and the recursion depth will be constant. The
rest of this section is devoted to making the above arguments precise.

» Definition 3.3. Let R be a constructor TRS and let L be a fresh constant, i.e., not
occurring in any of the rules of R. We define the L-contraction relation —¢ by: t =9 L
if ¢ does not R-reduce to a constructor normal form. The L-reduction relation —, is the
compatible closure of -9 . We set - = -r U — . An Rl-reduction is eager if only
innermost R_l-redexes are contracted and priority is given to L-reduction, i.e., an R-redex ¢
such that ¢ — | is not R-contracted in the reduction. We use — g, . for an eager one-step
R -reduction.

13:3

FSCD 2018

13:4

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

Note that L is a constructor. So a term of the form ¢(¢1, ... ,t,) with ¢ a constructor never
eagerly R1-reduces to L, because if it does not have a constructor normal form in R then
there is a R1-redex in one of the ¢;. Note that a term is in normal form w.r.t. R1-reduction
iff it is a constructor normal form.

We first show that in a left-linear constructor TRS L-reduction may be postponed after
R-reduction. This will imply that eager R1-reduction to a constructor normal form not
containing 1 may be replaced with R-reduction.

» Lemma 3.4. In a left-linear constructor TRS, if u =1 t —pr t' then there is v’ with
u—spu = t.

Proof. Without loss of generality we may assume that ¢ — g t' occurs at the root by a rule
Il — r with substitution o. By the choice of L the term [does not contain L. We have
t =o(l). So L in t may occur only below a variable position of I. Since L are the contracta
in u =, t, the expansions u = t in ¢ occur below variable positions of . Hence, there is ¢’
such that ¢’(z) =, o(z) for all z € Var(l) and u = ¢’(l). Then take v’ = o'(r). <

» Corollary 3.5. In a left-linear constructor TRS, if t =7}, t' then there is u with t =7
u—*t

» Lemma 3.6. In a left-linear constructor TRS, if t =}, s with s a constructor normal
form not containing L, then t =% s.

Proof. Induction on the number n of L-contractions in ¢t =%, s. If n > 0 then consider the
last L-contraction: t =%, t' =1 t” =% s. By Lemma 3.4 there is s’ with ¢ =%, s’ = s.
Because s does not contain L, we have s’ =s. Sot =%, s with n — 1 L-contractions. Hence
t —% s by the inductive hypothesis. |

The following lemma shows that eager R1-reduction in o(t), with ¢ a linear constructor
term, occurs below variable positions.

» Lemma 3.7. In a constructor TRS R, if t is a linear constructor term and o(t) —75, , t'
then there is o’ such that t' = o’(t) and o(x) =%, 0'(z) for all x € Var(t).

Proof. Induction on ¢. If ¢ = = then take o’(z) = /. Otherwise t = ¢(ty,...,t,) and
t'=c(t],...,t,) with o(t;) =% . t; and c a constructor. By the inductive hypothesis for
i =1,...,n there is o] with o}(¢;) = t; and o(z) =%, . oi(x) for € Var(¢;). Because t is

linear, Var(t;)NVar(t;) = 0 for i # j. So the o}s may be combined into a single substitution o’
with the required properties. |

» Corollary 3.8. In a left-linear constructor TRS R, if f(ti,...,t,) =% t and t; =5 . t;

fori=1,...,n, then there is t" with f(t,...,t,) =% t' 5 . t. Moreover, the contraction
Fth, ... 1)) =%t is by the same rule as f(t1,...,tn) =% t.

Proof. Assume f(t1,...,t,) =% t by arule f(l1,...,l,) = r with substitution o. Because
each [; is a linear constructor term and Var(l;) N Var(l;) = 0 for i # j, by Lemma 3.7
there is ¢’ such that for i = 1,...,n we have ¢’(l;) = t; and o(z) =%, ¢'(z). Thus u =
fle'(lh),...,d'(l,)) =g o'(r). Alsot' =o(r) =3, o'(r), because Var(r) C Var(ly,...,l,).
So we may take t' = o’(r). <

The next lemma shows a strengthening of the diamond property for eager R_L-reduction
in orthogonal TRSs.

t. Czajka

» Lemma 3.9. In an orthogonal TRS R, if t - gr1c t1 and t — g1 to then either t1 =ty or
there is t' withti —pi.t andtas =gl t.

Proof. If the redexes are parallel then the second part of the disjunction holds. Because both
redexes are innermost, if they are not parallel we may assume without loss of generality that

both of them are at the root. If both of them are R-redexes, then t; = t5 by orthogonality.

If both are l-redexes then t; = t; = L. It is not possible that one redex is a L-redex and
the other an R-redex, because the reductions are eager. <

The following simple lemma is needed in the proof of Lemma 3.11.

» Lemma 3.10. In a cons-free constructor TRS, if every subterm of t in chnf is in constructor
normal form and t =5 t' and t' is in chnf, then t' is in constructor normal form.

Proof. Because the TRS is cons-free, any chnf subterm of any R-reduct of ¢ must be in B(%).

More precisely, one shows that if ¢ — g u then still every subterm of « in chnf is in constructor
normal form. |

In the rest of this section we assume that R is a finite orthogonal tail-recursive cons-free
constructor TRS.

Note that because R is finite and tail-recursive the partial order on the equivalence classes
determined by > may be extended to a well order >g. We write t; >g to (1 >g t2) if the
greatest equivalence class of a defined function symbol in ¢; is greater (greater or equal) than
the greatest equivalence class of a defined function symbol in 5. We write f <g t if the
equivalence class of the defined function symbol f is less or equal to the greatest equivalence
class of a defined function symbol in ¢. Note that if t =% t' then t > t/, because R is
tail-recursive.

Our next goal is to show that every term has a constructor normal form (possibly
containing) reachable by eager R1l-reduction. This will imply that eager R1-reduction
commutes with R-reduction, and that eager R1-reduction is terminating.

» Lemma 3.11. Assume that for all t' with t' <g t there is s in constructor normal form
such that t' =%, s. If t' pé—t —R1c u then there is v’ with t' =75, u' 74 u.

Proof. Note that because the redex contracted in t =g, . u is innermost, it cannot happen
that the redex contracted in ¢t —g ' occurs strictly inside this redex. So we may assume
without loss of generality that the redex contracted in t — t’ occurs at the root.

If u= L1 then t = f(s1,...,s,) with s1,..., s, in constructor normal form, because the
R -reduction is innermost. Since ' <g t, there is a constructor normal form s such that
t' =5, . s If s=_1 then we may take v’ = L. Otherwise, s = ¢(s},...,s],) withc# L a

constructor. By Corollary 3.5 there is w with t - t' =5 w —7% s. Then w is in chnf. But
then by Lemma 3.10 it is in constructor normal form. This contradicts ¢t — L.

If ¢ - Rgie u contracts an R-redex at the root, then u = ¢’ because R is orthogonal, so
take v/ = t’. The remaining case, when the eager R1-contraction occurs strictly below the
root, follows from Corollary 3.8. <

» Lemma 3.12. Assume that for all t witht <g g there is s in constructor normal form such
that t =75 . s. If g(t1,. .., tn) =5 s with g a defined function symbol and s in constructor
normal form and t; <g g and t; =5, w; fori=1,...,n, then g(ws,...,w,) =75 s.

13:5

FSCD 2018

13:6

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

Proof. Induction on the number of root steps in g(t1,...,t,) =5 s. There is at least one
root step, so g(ti,...,tn) =5 g(th,...,t,) =% t =% s and, because R is cons-free and
tail-recursive, either t = s or t = ¢’(uq, ..., uy) with ¢’ <g g and u; <g g. By Lemma 3.11
there are w/, ..., w], such that w; =} w} and t; =%, w; for i =1,...,n. By Corollary 3.8
there is ¢’ with g(w},...,w},) =% ¢ and t =}, . t'. If t = s then t’ = s and we are
done. Otherwise, by Corollary 3.8, ' = ¢'(u},...,ul,
hypothesis ¢ —%, s. Hence g(w1,...,w,) =% glwi,...,w),) =rt =75 s. <

) and u; =7}, u;. By the inductive

» Lemma 3.13. Assume that for allt with t <g g there is s in constructor normal form such

thatt =%, . s If g(t1,...,tn) =) s with g a defined function symbol and s in constructor
normal form and t; <g g fori=1,...,n, then g(t1,...,tn) =5, S-
Proof. The reduction g(t1,...,t,) =} s has the form:

gt ty) =R g(ur, o un) =% gt th) 2R (Ul) = . oG s,

We proceed by induction on the number of root steps in this R-reduction. Since t; <g g

fori=1,...,n, there are s1,...,s, in constructor normal form such that ¢; =%, . s;. By
Lemma 3.11 we also have u; =7 . s;. By Corollary 3.8 there is t’ with g(s1,...,s,) =% t' and
either t' = s, or t' = g1 (w1, ..., wy,) and t} =%, w;. We have g(s1,...,S,) 2 RrLe s because
the R-reduction to ¢’ is innermost and g(s1, . .., $n) —75 § by Lemma 3.12. Hence if ' = s then
g1, tn) =51 5. So assume t' = gy (wy,...,wy,) with t] =%, w;. By the inductive
hypothesis g1(t1,. ...t}) =% . s- By Lemma 3.9 we obtain gi (w1, ..., w,,) =5, 5. Thus
g(t1, . tn) =50 9(S15- -, 8n) P R1e g1(W1, ..., W) =, S <

» Lemma 3.14. For every term t there exists s in constructor normal form? such that
t—hieS-

Proof. We proceed by induction on pairs (e,n) ordered lexicographically, where e is the
greatest, w.r.t. >p, equivalence class of a defined function symbol in ¢, and n is the size
of ¢. This is obvious if ¢ is a variable. So assume t = f(¢1,...,t,). Since each tj is smaller
than ¢, by the inductive hypothesis for each £ = 1,...,n there is a constructor normal
form sj, with ¢, =%, , sk. If f is a constructor then we are done, so assume it is a defined
function symbol. If f(s1,...,s,) does not R-reduce to a constructor normal form, then
f(s1,...,50) =Rr1e L, so we may take s = L. Otherwise f(s1,...,s,) =7 s for some s in
constructor normal form. Of course, f <pg t, so the inductive hypothesis implies that for
all ¢ with ¢’ <g f there is s’ in constructor normal form such that ¢ —7, . s’. Thus by
Lemma 3.13: ¢t =75, f(51,...,80) =51e S <

» Corollary 3.15. Ift' j<—t =75, . u then there is v’ with t' =7, |, u' He u.
Proof. Follows from Lemma 3.11 and Lemma, 3.14. <

» Remark. Corollary 3.15 fails if the R1-reduction is not required to be eager (though
innermost would suffice). Consider the TRS R:

f@) =r f(z) gle(z)) 2ra

We have g(c¢(f(x))) —r a, but also g(e(f(x))) =1 g(L) =1 L, because ¢(f(x)) does not
R-reduce to a constructor normal form.

2 Recall that L is considered to be a constructor.

t. Czajka

The corollary also fails if R is not required to be cons-free. Consider the TRS R:

f@) =g fl@) g(x) =g c(f(2))

Then g(x) =%, . L. On the other hand g(z) —r c(f(x)) and ¢(f(x)) A% . L.
If R is not required to be tail-recursive then this also fails. Consider the TRS R:

Mz) =g b(f(z)) f(z) 2rg(@ f(z)) g(z,y) 2rz

Then h(a) —gr1. L, because h(t) does not have a constructor normal form for any ¢. Also
h(a) =g h(f(a)). The term h(f(a)) has no constructor normal form, but h(f(a)) Arie L
because the |-redex is not innermost. And there is no constructor normal form s with
f(a) =%, . s (note that f(a) —r g(a, f(a)) =r a but the reduction is not innermost).
Hence, there is no eager R_1-reduction from h(f(a)) to L.

The proof of the next lemma is an adaptation of the standard argument that in an
orthogonal TRS if a term is weakly innermost normalising then it is innermost terminating.

» Lemma 3.16. Eager R -reduction is terminating.

Proof. Follows from Lemma 3.14 and Lemma 3.9. Assume there is an infinite eager R.-
reduction tg —g1e t1 —Rle t2 < R1e --.- By Lemma 3.14 there is u in constructor normal
form with tg —% ., u. Using Lemma 3.9 one shows by induction on the length of ¢y =%, u
that there is an infinite eager R.l-reduction starting at w. This contradicts that u is a
constructor normal form. <

Termination of eager R_L-reduction is crucial in justifying the correctness of the algorithm
described in the proof of the following theorem.

» Proposition 3.17. Let R be a finite orthogonal tail-recursive cons-free constructor TRS.
There is a LOGSPACE algorithm which given a term t = f(t1,...,t,), with t1,...,t, in
constructor normal form (possibly containing L), computes the constructor normal form s €
B(t, L) such thatt =%, s.

Proof. Note that because R is cons-free, if ¢ =7, t' then any subterm of ¢ with a constructor
symbol at the root is in B(t, L). Because the size of B(¢, L) is polynomial (there is only a
constant number of constructor normal forms occurring in right-hand sides of rules in R),
constructor normal forms occurring in R_L-reducts of ¢t may be represented using a logarithmic
number of bits.

Because R is a tail-recursive constructor TRS, f(t1,...,t,) either is R-irreducible, in
which case it may be contracted to L, or it R-contracts (eagerly) to a constructor normal
form, or it R-contracts (not necessarily eagerly) to a term f'(¢],...,t!) where [’ is a defined
function symbol and f > f’ and for each defined function symbol g in one of #;,...,t, we
have f > g. Apply the procedure recursively, in depth-first order, to subterms of ¢}, ..., of
the form g(uq,...,ux) with g a defined function symbol and w1, ..., ug in constructor normal
form. This results in sq,..., S, in constructor normal form such that t% —h e Sk- Note
that the number of defined function symbols in ¢}, ..., is constant and depends only on
the rule of R applied to t. Hence only logarithmic space is needed to store (representations
of) intermediate results. Note also that f > g for g a defined symbol in #,... ¢, which
guarantees termination of the recursion.

So f(ti,....tn) =% f/(th, ... th,) = hie f'(s1,...,8n) with s1,...,s, again in con-
structor normal form. We keep repeating the steps described in the previous paragraph,

13:7

FSCD 2018

13:8

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

starting with f’(sy,..., $;,) now, until we reach a constructor normal form or we detect
looping in which case L is returned. Looping detection may be realised using a single counter
with a logarithmic number of bits. Indeed, by repeating the steps described in the previous
paragraph we obtain a reduction of the form

t —>§% fl(wiv"'vw'rln) —>}<%Le fl(t%""vt}h) _>§i’, fQ(wfv”ww?zQ) —>EL6 fQ(t%7"'7t3L2) —>§% .

where the R.le-reductions occur strictly below the root. Let M be the maximum arity
of a defined function symbol in R, and K the number of defined function symbols in R,
and N the size of B(t) (note that N is bounded by the size of ¢ plus a constant). There
are at most NV different constructor normal forms occurring in the R1-reducts of ¢, so if
the above reduction contains more than KN root steps, then one of the root R-redexes
filth, ... ,t;i) must repeat. So we keep a counter and return L after performing KNM
root steps if we do not stop with a constructor normal form earlier. To see that this is
correct, note that if a root redex repeats then an infinite reduction of the above form may be
constructed. Assume ¢t —7% s for a constructor normal form s. Then the initial R-contraction

t—% fl(w%,...,w}ll) is eager, so t =7, ft ... ,1?,111)7 and thus fl(ti...,til) —% s by
Corollary 3.15. By induction on k we show that fi(t},...,t¥) =% s and each of the root
R-contractions fi(t},...,t8) =% fegr (Wit ,wflj‘jl) is eager, i.e.

t=hie filth, . th) =k (8,) —=h L s,) = h.

Hence, there exists an infinite eager R1-reduction from ¢, which contradicts Lemma 3.16.
Thus, if a root redex repeats then ¢ —; 1. So returning L is correct in this case.

The above algorithm terminates and the recursion depth (the maximum nesting of
recursive calls) is constant, because in the recursive calls for subterms of ¢},...,t, the
defined function symbol at the root is strictly smaller in the preorder 2. Also note that in
each recursive call on a subterm g(uq,...,u,) of one of t},... ¢! the constructor normal
forms uq,...,u, are in B(t, L), because then g(uy,...,u,) is a subterm of an R1l-reduct
of t. So uq,...,u, may still be represented in logarithmic space. Hence, at each recursive
invocation the algorithm uses logarithmic space to store the representations of the function
symbol arguments, a constant number of logarithmic-space variables to store the intermediate
results of recursive calls, and a logarithmic counter to detect looping. Since the recursion
depth is constant, the algorithm altogether uses logarithmic space. <

» Theorem 3.18. A decision problem is in LOGSPACE iff it is accepted by a finite orthogonal
tail-recursive cons-free constructor TRS.

Proof. The direction from left to right follows from Proposition 3.2. For the other direction
it suffices to show an algorithm which given a finite orthogonal tail-recursive cons-free
constructor TRS R and a term ¢ = f(t1,...,t,) with ¢1,...,¢, in constructor normal form
not containing |, computes in LOGSPACE the constructor normal for of ¢, if it has one,
or rejects otherwise. The algorithm is to run the procedure from Proposition 3.17 to find a
constructor normal form s with ¢ =%, . s. If s does not contain L then t =% s by Lemma 3.6.
Otherwise, ¢ does not have a constructor normal form in R and we reject. Indeed, if t —7, s
with s’ in constructor normal form then s’ does not contain L because ¢ does not. But s = s’
by Corollary 3.15. <

4 Stream Term Rewriting Systems

In this section we define stream TRSs which allow possibly infinite stream terms. We define
infinitary reduction in a stream TRS which captures the notion of a “limit” of an infinite
reduction sequence.

t. Czajka 13:9

» Definition 4.1. A stream TRS is a two-sorted constructor TRS with sorts s (the sort of
streams) and d (the sort of finite data), finitely many defined function symbols, finitely many
data constructors ¢; : d* — d, and one binary stream constructor cons : d X s — s. Terms of
sort s are stream terms. Terms of sort d are data terms. For stream TRSs we allow terms
to be infinite. We write ¢ :: t instead of consty to. If | — r € R is a rule, then we require
that [and r have the same sort.

Stream rules are the rules [— r such that [is a stream term. Data rules are the rules
I — r such that [is a data term. A stream (resp. data) function symbol is a defined function
symbol of type 71 X ... X 7, = s (resp. T4 X ... X T, — d).

A simple stream rule has the form:

flug, ..o up) =t oot g(wr, ..o W)

where k£ > 0 and we require:

1. wy,...,u, are constructor terms,

2. every stream subterm of one of ¢y,...,tg, wy,...,w, occurs (as a subterm) in uy, ..., Uy,

3. if k = 0 then every data subterm c(v1,...,v;) of each of wn,...,wy,, withc:d? - d a
data constructor, either occurs in uq,...,u, or is a constructor normal form.

The intuitive interpretation of the restrictions of a simple stream rule is that it is cons-free
with respect to stream subterms, and if the rule does not produce a new stream element
then it is also cons-free with respect to data subterms.

Note that by requiring uy, ..., u, to be constructor terms and every stream subterm of
each of t1,...,tg, w1,...,wy,, to occur in uq, ..., u,, we ensure that stream function symbols
cannot occur in ti,...,tg, w1,..., W, i.e., g is the only stream function symbol in the
right-hand side. Hence, the only function symbols present in ty,...,ts, w1,...,w, are of
data sort.

» Example 4.2. Here are some examples of simple stream rules, where z, 2’ are stream
variables, and y is a data variable, and c is a data constructor, and h is a defined data
function symbol:

flazzy) — a: flx,c(y))
flazabea’)y — aubsf(buad anx)
flazz) — a:g(z,cla))
flazay) — fz,h(y)
Here are some non-examples:

flazzy) — flzcy))
flazxz,bua’) — aub: flga),a:x)
flazz) — a:g:x cla))

flazz,h(y)) — [z, h(y))
» Definition 4.3. Given a stream TRS R, infinitary R-reduction is defined coinductively.

t—=Rpt tohuzw woFw

t =¥t t =% usw

Coinductive definitions of infinitary rewriting originate from [4, 5]. Intuitively, the
definition means that ¢ —% t' holds if this may be derived using the above rules in a
possibly infinite derivation. For example, if f(z) — x :: f(S(x)) is a stream rule in R, then

FSCD 2018

13:10

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

f(0) =% 0::.5(0) :: S(S(0)) == ..., ie., f(0) infinitarily reduces to an infinite stream of
consecutive natural numbers.

The above definition differs from the standard definition of infinitary reduction via
strongly convergent reduction sequences. The difference is mainly because we effectively
disallow an infinitary reduction to produce an infinite nesting of defined function symbols.
This eliminates the problems with confluence in infinitary rewriting. Infinitary R-reduction,
defined as above, is confluent if R is finite and orthogonal. First of all, confluence holds also
for finitary R-reduction.

» Lemma 4.4. If R is finite and orthogonal then the finitary reduction relation —g is
confluent.

Proof. Note that the terms may be infinite. But because both the left- and right-hand
sides of all rules are finite, we may use virtually the same proof as in the case of ordinary
orthogonal term rewriting systems, mutatis mutandis. |

Because of space limits we delegate the proof of confluence of infinitary reduction to
Appendix A. Here we only state the result.

» Theorem 4.5. If R is finite and orthogonal then —% is confluent, i.e., if t =% t1 and
t =% to then there exists t' such that t; =¥ t' and to = t'.

Let X be an alphabet. Assuming all elements of 3 are data constants in the rewriting
system, each Y-stream (infinite word in ¥*) may be treated as an infinite stream term.
Also, finite words over ¥ may be represented as stream terms in the TRS, where after the
symbols representing the word there is a term with no constructor head normal form, e.g.,
a::b:c:: Q represents the word abc, where €2 has no chnf. Note that a stream term in
chnf (Definition 2.1) has the form w :: w. We denote the set of terms representing finite and
infinite words over X by ST(X), and the set of terms representing infinite words by S(2).
More precisely, the set ST(X) is defined coinductively as follows.

t has no chnf ceX teST(Y)
teSt(X) (c:t) e STH(X)

For each term t in ST(X) there is exactly one corresponding finite or infinite word [¢]
in X% = ¥ U X* which this term represents.

» Lemma 4.6. Assumet —¥ t'. Then t has a chnf iff t' has a chnf.

Proof. Follows from definitions and Lemma 4.4. <

» Corollary 4.7. Let R be a finite orthogonal stream TRS. If t ¥ s and t —»% s and
5,8 € ST(X) then |s| =|s'].

» Definition 4.8. A stream function F : (X¥)" — X5 is defined by an n-ary stream
function symbol f if for any wq,...,w, € 3¢ and s1,...,8, € S(X) with |s;| = w; we
have f(s1,...,8,) =% s where |s| = F(w1,...,wy). A stream function is definable in a
stream TRS if it is defined by one of its stream function symbols.

A stream TRS R is data tail-recursive if the data rules of R form a single-sorted (i.e. neither
left- nor right-hand sides of data rules of R contain stream subterms) finite tail-recursive
cons-free constructor TRS.

t. Czajka

Note that if R is data tail-recursive then data terms do not contain stream subterms,

because then neither data constructors nor data function symbols can have stream arguments.

In particular, if] — ¢ :: 7 is a rule in R, then ¢ does not contain stream subterms.

» Definition 4.9. A pure stream TRS is a finite orthogonal stream TRS with simple stream
rules, no data rules and no data constructors of arity > 0.

A stream TRS has simple data if there exists a unary data constructor S : d — d such
that for every stream rule | — r € R, if ¢ is a data subterm of r such that Var(t) # () then
t = 5(t') or t is a variable.

A simple stream TRS is a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data.

» Example 4.10. Here is an example of a simple stream TRS, where x, ' are stream variables
and y,1’ are data variables.

flx) — g(z,2,0,0)
gy mx,2',0,y) — yugl, 2, SW),SY))
g0z, 2’ S(y),y) — gz, y,y)
g(lzx,2',S(y),y) — glx,2,y,y)

In this stream TRS the stream function symbol f defines a function F : ¥ — =% such
that F'(s) has in position n the first element of s following a block of n consecutive 0’s.
The following simple stream TRS defines the Thue-Morse sequence T*:

T — f(0) f@) = h(@x) s f(S(2))
h(0,0) — O h(0,0) — 1
h(0,2) — h(z,z) E(O,x) — fz(:v,x)
h(S(0),S(x)) — h(z,z)) h(S(0),S(z)) — {L(x,m)
h(S(S(2)),S(y) — Nhzy) WS(S()),S) — h(z,y)

The n-th element T;, of T is defined by the recurrence:

TO =0 TQn = Tn T2n+1 =1- Tn

Identifying natural numbers with their representations in the TRS, it may be shown by
induction on (2m — n,n) ordered lexicographically that the data term h(n,m) reduces
t0 Tom—n and h(n,m) to 1 — Topy—p.

5 Finite Stream Transducers

In this section we characterise the classes of stream functions computable by (jumping) finite
stream transducers. In short, pure stream TRSs characterise the class of stream functions
computable by jumping finite transducers, and right-linear pure stream TRSs characterise
the class of stream functions computable by finite transducers. We first recall the definitions
of (jumping) finite transducers from [14, 13].

» Definition 5.1. An n-ary jumping finite transducer (JET) over X-streams with m cursors is
a tuple (@, qo, C,,0) where @ is a finite set of states, qo is the start state, C' = {c1,...,cm}
is the set of cursors, v : C' — {1,...,n} is the initial cursor configuration, and

§:Qx¥™ > Qx(C—CU{+}) x (ZU{e})

13:11

FSCD 2018

13:12

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

is the transition function. Intuitively, 6(q, o1,...,0.,) consists of the next state, an indication
of cursor movement, and an optional output symbol. A cursor may either move forward or
jump to the position of another cursor. In other words, an n-ary JFT is a finite automaton
with n read-only input tapes and one write-only output tape, and m cursors which can move
forward on the input tapes and jump to positions of other cursors, but cannot be compared.

A finite transducer (FT) is a JFT such that no cursor ever jumps to the position of
another (except to itself, which is equivalent to not moving). A configuration of a JFT
consists of a state and a function 7 : C' — {1,...,n} x N which assigns to each cursor c a
stream index ¢ € {1,...,n} and a position in the stream. The successor configuration K’ of
a configuration K is determined in the obvious way by the transition function §. The initial
configuration is {(qo,mo) where mo(c) = (7(c),0) for ¢ € C. A run of a JFT (Q, qo, C,~,0) is
an infinite sequence of configurations Ky, K1, Ko, ... such that K is the initial configuration
and K, 1 is the successor configuration of K,, for each n € N. The function F' : (X¢)" — ¥<¢
computed by a given n-ary FT (JFT) is defined in an obvious way, with F(wy,...,w,) being
the output of the transducer on inputs wy, ..., w,. The output may be finite, because the
transducer may loop.

» Theorem 5.2. An n-ary stream function is definable in a pure stream TRS with maximum
function symbol arity m iff it is computable by an n-ary JFT with m cursors.

Proof. Let (@, qo,C,~,d) be an n-ary JFT with m cursors. Without loss of generality
C =1{1,...,m}. In the TRS we have a stream function symbol f, : s™ — s for each state
q € Q. There is also the “start” stream function symbol g : s — s. We have the rules e.g.

Jalov i ay, o om i xm) = 0 [(0,0 5 Tp1), T2, 0p(3) 2 Tp(3), - -)

when §(q,01,...,0m) = (¢, p,0) and p(1),p(3),... € C and p(2) = +. Intuitively, the
arguments of f; encode the m cursors. We also have the “start” rule:

g(@1, . xn) = foo(Ty@)s s Tym))-

Note that all of the above rules are simple stream rules and the TRS is orthogonal, so it
is a pure stream TRS. It is easy to see that for each si,...,s, € S(X) there is a bijective
correspondence between the infinite runs of the JFT on |s1],...,|$»| and infinite reductions
starting at g(si,...,8,). This implies that the function defined by g is the same as the
function computed by the JFT.

For the other direction, let R be a pure stream TRS with maximum function symbol
arity m, and let the n-ary symbol g define a function F : (X*)" — Y= where ¥ is the set of
data constants in R. We construct an n-ary JE'T with m cursors.

Because there are no data rules or data constructors of arity > 0, each rule is a simple
stream rule of the form e.g.

flazuzbuz,ay,c)—>dgluzb:xe)

where a,b,c,d,e € ¥, and u is a data variable. We will encode stream function symbols by
(possibly many) states. Stream arguments will correspond to cursor positions.

Let N be the maximum size of the left-hand side [of a rule | — r € R. For a function
symbol f with k stream and j data arguments, and words wy, ..., w; € £, and constants
€1,...,¢; € X, we add a state q}ul""’w’“’cl""’cj The words wy,...,wy buffer the last N
symbols read from each of the cursors. Let s; be a stream term representing the word w;,

with a variable z; at the tail, e.g., if w; = abc then s; = a :: b :: ¢ :: ;. Without loss of

t. Czajka

generality assume the stream arguments of f occur before the data arguments. Because R is
orthogonal, there is at most one rule I — r € R such that [matches f(s1,...,85,¢1,...,¢5)
with some substitution o, i.e., ol = f(s1,...,8k,¢1,...,¢;). Note that because of the choice
of N, if there is no rule [— r € R with [matching f(s1,..., Sk, c1,...,¢;), then no left-hand
side of a rule unifies with f(s1,...,s%,c1,...,¢;). Assume e.g.

ol=flazbuax,cdiy, c)
and
or=d:=glc:dybra,d:yc).

Then in the state q;b’Cd’Cl the JET outputs d and simultaneously sets the first cursor to the
second one, the second to the first, and the third to the second. Then it reads one symbol

from the second cursor and one from the third, moving them forward. Let the read symbols

cd,baq,dag,c

be ay, az respectively. The JE'T then enters the state gy

. This behaviour may always
be encoded using a finite number of states.

The JFT starts in a state go with the i-th cursor initialised to the beginning of the i-th
input tape, for i = 1,...,n, and other cursors initialised arbitrarily. Then the JFT reads N
symbols from each of the n input tapes, and reaches the state g;*»~"" where w; € N s
the word consisting of the symbols read from the i-th input tape.

We also add a “trash” state gr and add appropriate transitions to gr from other states

to make § a total function.

For any s1,...,s, € S(X) there is a bijective correspondence between the runs of the
JFT on [s1],...,]|sn| and the infinite reductions starting at g(s, ..., s,), and the function
computed by the JFT is the same as the function defined by g. |

» Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with mazimum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. An adaptation of the proof of Theorem 5.2. More details are in Appendix B. <

6 LOGSPACE for streams

In this section we show that stream functions definable in simple stream TRSs are exactly

the stream functions computable in LOGSPACE as defined by Ramyaa and Leivant [14, 13].

First, we recall the definition of jumping Turing transducers from [14].

» Definition 6.1. A jumping Turing transducer (JTT) is defined analogously to a JFT,
except that it has additional read-write work tapes with two-way cursors on them. The
function computed by a JTT is defined in an obvious way. A JTT operates in space f(n) if

the computation for the first n output symbols does not involve work-tapes of length > f(n).

A stream function is computable in LOGSPACE if there is a JTT computing this function
which operates in space O(logn).

Note that the space used by a JTT is defined in terms of the output. Time restrictions
defined in terms of the output do not make much sense for JTTs, because even for FTs no
restriction is placed on how long it takes to output the next symbol (e.g. consider an FT
over binary streams skipping all zeros and copying all ones).

We will show that JTTs operating in LOGSPACE compute exactly the stream functions
definable in simple stream TRSs. First, we generalise eager R_l-reduction from Section 3 to
stream TRSs.

13:13

FSCD 2018

13:14

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

» Definition 6.2. Let L be a fresh nullary data constructor. We define the relation —
by: t — L if t is a data term and it does not R-reduce to a constructor normal form. We
set -p1 = —rU—. A finitary R1-reduction is eager if only innermost R1-redexes are
contracted and priority is given to l-reduction. We denote one-step eager R_-reduction
by —r1e. The relation =%, . of infinitary eager R1-reduction is defined coinductively.

* / * .. o0 /
t =R .t t=2hunw w—oR W

[e'e] / o] . /
t—=% .1 t =% cuw

Because of space limits, the proofs of lemmas concerning infinitary eager R_L-reduction
are delegated to Appendix C.
In the rest of this section we assume R to be a simple stream TRS.

» Definition 6.3. A term is proper if all its data subterms are finite.
If t is proper and t — g t’ then t’ is also proper, because R is finite.

» Lemma 6.4. Ift is proper and t =% t1 and t =55, , to then there is t' with to =% t' and
t _>OROL5 to.

» Lemma 6.5. If s € ST(X) and s =%, . s (resp. s =¥ '), then s ~ 5" and s € ST(X).

» Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. Let F : (¥¥)" — X< be a function defined by an n-ary stream function symbol f, in
a simple stream TRS R, i.e., a finite orthogonal data tail-recursive stream TRS with simple
stream rules and simple data. We describe how to construct a JTT operating in LOGSPACE
which computes F.

For s1,...,5, € S(X) we have fo(s1,...,s,) =% s € ST () where F(|s1],...,[sn]) = |s|.
The constructed JTT will essentially compute an s € S*(X) such that fo(s1,...,5,) =%, 5,
for a certain fixed infinitary eager R1-reduction. By Lemma 6.4 and Lemma 6.5 we then
have |s| = |s'|.

Note that because the TRS is finite and has simple data, all constructor normal form
data terms occurring in any reduction fo(s1,...,s,) =%, . s have the form S™(t) where
either t € ¥ or it is one of the finitely many constructor normal form data terms occurring in
the right-hand sides of the stream or data rules. Because S cannot occur in the right-hand side
of a simple stream rule if no stream element is produced, and data rules are cons-free, m is at
most proportional to the number of output stream elements already produced. Hence S™ ()
may be represented in logspace, using a logarithmic counter for m and a constant number
of bits to represent t. Because the reduction is eager and the size of right-hand sides of
stream rules is bounded by a constant, using an analogon of Proposition 3.17 we obtain
a JTT which computes in logarithmic space the constructor normal form of a given data
term occurring in the reduction, if it has one. This JTT computes the constructor normal
forms “inside-out”. For a term f(¢1,...,%x) first the constructor normal forms ¢/, ...t

!

are computed. Each ¢} has the form S™: (u]

1) where u) is either L or one of the finitely

many constructor normal forms occurring in the right-hand sides of the rules. Then using
(an analogon of) Proposition 3.17 we compute the constructor normal form of f(#},...,%,).
For S(t) first the constructor normal form S™(t') of ¢ is computed using Proposition 3.17, and
then S™T1(#') is returned as the constructor normal form of ¢. Note that the only property
the constructor normal forms needed in Proposition 3.17 is that they can be represented

t. Czajka

using a logarithmic number of bits, and given a representation of S(t) the representation of ¢
may be computed in logarithmic space.

We construct the JTT like in Theorem 5.2, except that now the data arguments are
stored in memory instead of the state. We compute constructor normal forms of data terms
using Proposition 3.17. This is done eagerly, before transitioning to the state associated
with the stream function symbol in the right-hand side, which ensures that the size of the
“prefix” containing all defined function symbols of each data term occurring in the reduction
is constant — it is bounded by the size of the right-hand side of a rule in R. More details are
in Appendix C. |

» Theorem 6.7. If a stream function is computable in LOGSPACE then it is definable in a
simple stream TRS.

Proof. Let F: (X¥)" — X% be a function computed by a JTT operating in LOGSPACE.

As shown in [14, Proposition 2.4], the function F' is also computed by a JFT with a local
counter, i.e., a JF'T with an additional input tape which contains 1™ when computing the
n-th output symbol. In other words, a 1 is appended to the local counter whenever a symbol
is output by the JFT. Initially, the local counter contains the empty word. The JFT has a
fixed number of cursors on the local counter, which are reset to the beginning of the local
counter tape whenever a symbol is output. As with the cursors on the input, the cursors
on the local counter may move to the right or jump to other cursors. Hence, they may be
encoded in an analogous way as the cursors on the input stream.

A simple stream TRS defining a function computed by a JE'T with a local counter may
be constructed in a way analogous to the construction of a pure stream TRS in the proof
of Theorem 5.2. The difference is that now every function symbol f, corresponding to a
state ¢ has an additional data argument representing the local counter, and data arguments
encoding the cursors on the local counter. The local counter contents 1™ is represented by
the data term S™(0), where S : d — d and 0 : d. If a rule associated with f; produces a new
output symbol, then in the right-hand side of the rule the local counter is “increased” by
prepending S, and the data arguments encoding cursors on the local counter are set to the
local counter. This may be encoded in a simple stream rule. The resulting stream TRS has
simple data.

Note that the constructed simple stream TRS actually has no data rules. It is not a pure
stream TRS because it has a unary data constructor S. <

» Corollary 6.8. A stream function is computable in LOGSPACE iff it is definable in a
simple stream TRS.

7 Conclusions

We have shown an infinitary rewriting characterisation of LOGSPACE-computable stream
functions as defined by Ramyaa and Leivant. In the realm of finite data, we proved that
finite orthogonal tail-recursive cons-free constructor TRSs characterise LOGSPACE.

Our proof could probably be adapted to show that finite semi-linear [10] tail-recursive
cons-free constructor TRSs characterise NLOGSPACE. In the nondeterministic case the
trick with logarithmic counters is not necessary as the procedure may simply guess when to
contract a subterm to L. Semi-linearity ensures that subterms containing redexes cannot get
duplicated, which is crucial to show that a constructor normal form may always be reached
via an eager R.1-reduction.

13:15

FSCD 2018

13:16

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

—— References

1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1999.

2 G. Bonfante. Some programming languages for LOGSPACE and PTIME. In AMAST 2006,
pages 66-80, 2006.

3 D. de Carvalho and J. G. Simonsen. An implicit characterization of the polynomial-time
decidable sets by cons-free rewriting. In RTA-TLCA 2014, pages 179-193, 2014.

4 Jorg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra
Silva. A coinductive framework for infinitary rewriting and equational reasoning. In RTA
2015, 2015.

5 Jorg Endrullis and Andrew Polonsky. Infinitary rewriting coinductively. In TYPES 2011,
pages 16-27, 2011.

6 Juris Hartmanis. On non-determinancy in simple computing devices. Acta Informatica,
1(4):336-344, Dec 1972.

7 N. D. Jones. LOGSPACE and PTIME characterized by programming languages. Theor.
Comput. Sci., 228(1-2):151-174, 1999.

8 N. D. Jones. The expressive power of higher-order types or, life without CONS. J. Funct.
Program., 11(1):5-94, 2001.

9 Neil D. Jones. Computability and complexity - from a programming perspective. Foundations
of computing series. MIT Press, 1997.

10 C. Kop. On first-order cons-free term rewriting and PTIME. In DICE 2016, 2016.

11 C. Kop and J. G. Simonsen. Complexity hierarchies and higher-order cons-free rewriting.
In FSCD 2016, pages 23:1-23:18, 2016.

12 C. Kop and J. G. Simonsen. The power of non-determinism in higher-order implicit com-
plexity. In ESOP 2017, pages 668-695, 2017.

13 D. Leivant and R. Ramyaa. The computational contents of ramified corecurrence. In
FoSSaCS 2015, pages 422-435, 2015.

14 R. Ramyaa and D. Leivant. Ramified corecurrence and logspace. Flectr. Notes Theor.
Comput. Sci., 276:247-261, 2011.

A Confluence of infinitary reduction
» Lemma A.l. Ift =¥ t' =3 t" thent =% t".

Proof. By coinduction. If ¢ —% ¢’ then this is obvious. Otherwise ¢’ = u :: w’ and t =% u : w
y R R

and w —»¥ w' and t” =" : w” and v —% v’ and v’ —% w”. Then t —} u” :: w. By

coinduction also w —% w”. Hence t =% v” = w” =t". <

» Lemma A.2. Ift >t/ »F t" thent =% t".

Proof. By coinduction, using Lemma A.1. <

» Lemma A.3. Let R be finite and orthogonal. If t =¥ t' and t =75, s then there is s' with
s =% s andt! =¥ .

Proof. By coinduction, analysing ¢t —% ¢'. If t —% ¢’ then this follows from Lemma 4.4.

Otherwise t' = u :: w', and t —% w :: w and w —% w’. By Lemma 4.4 there are uy,w;
R R Yy

such that s =% u; :: w1 and v =% u; and w =% wi. By coinduction we obtain ws with

wy =¥ we and w' =% wy. Hence s =% uq :: wa, because s =75 ug w1 and wy; —F wa;

and t' =% uq :t we, because t' = u W' =% uy = w and W = we. <

t. Czajka

* o0 /
t—up s wy U W] ——> Wy

R T T N

.o .. * o0
Ug 11 Wy —>= U 1 W Ug —> U Wy ——= w —— wf

L L

/ 0 gy 200
wh —— wh —=>w

ce ! x ce ! ’ 1
wp W, ——unw, w, —— w,
" 200

e ! R

Figure 1 Proof of confluence of infinitary reduction.

Note that ¢ —7 s’ would not suffice in the conclusion of the above lemma, because the
infinitary reduction ¢t —% ¢’ may create in ¢’ infinitely many descendants of a redex in ¢.
The relation —%OO is defined coinductively.

t=t t=Fusw w—oE W

t =20t t =2y w
> Lemma A4, Ift »F t' —3° 1" then t —»5° 1.
Proof. Follows directly from Lemma A.2 <
» Lemma A.5. Ift —3° t/ then t =5 t'.
Proof. By coinduction, using Lemma A.4. <
» Theorem 4.5. If R is finite and orthogonal then —% 1is confluent, i.e., if t =% t1 and
t =% to then there exists t' such that t; =¥ t' and to = t'.

Proof. By coinduction we construct ¢’ such that t; —%° ¢’ and t5 —%° ¢'. This suffices by
Lemma A.5. If t =% ¢ or t =% t2 then the claim follows from Lemma A.3. Otherwise,
t; =u; o w) and t =% u; = w; and w; —»F w) for i = 1,2. By Lemma 4.4 there are u, w such
that u; =% v and w; —% w. By Lemma A.3 there are w{, w4 such that w, =% w} and

w =¥ wl. Hence t; = u; = w, =% v w). By coinduction we obtain w’ with w! —> w'.

Thus t; —%° u : w’, so we may take ¢’ = u :: w’. See Figure 1. <

B Characterisation of Finite Stream Transducers

» Theorem 5.3. An n-ary stream function is definable in a right-linear pure stream TRS
with mazimum function symbol arity m iff it is computable by an n-ary FT with m cursors.

Proof. First note that for an FT the construction of a stream TRS in the proof of Theorem 5.2
gives a right-linear system. Conversely, if the TRS is right-linear, then we may modify the
construction of a JE'T in the proof of Theorem 5.2 to obtain an FT, by keeping in the
state the information which cursor a given function argument corresponds to. So a state
corresponding to a function symbol f is now q}ul""’wk’cl’“"cj’“"”’““ where iy, ...,1; indicate

the cursors corresponding to the stream arguments of f. For instance, if

ol=flazbux,cdiy, c)

13:17

FSCD 2018

13:18

Term Rewriting Characterisation of LOGSPACE for Finite and Infinite Data

and

or=d:h(c:d:y bz, c)

then the transition from the state q;b’Cd’Cl’il’h is constructed as follows. First, output d
and read one symbol e from the i;-th cursor moving it forward. Then change the state

t q}cld,be,c,zg,zl. <

C Proofs for Section 6

In this section we assume that R is a simple stream TRS.

» Lemma C.1. Ift is proper and t =55 t1 and t —7, |, to then there is t' with to =% t' and
t —)%OJ_E to.

Proof. By coinduction, analysing t —% ¢;. If t =% ¢; then this follows from Corollary 3.15.
Otherwise ¢t =% v :: w and w =% w’ and t; = u :: w’. By Corollary 3.15 there are ug, wo
with 5 =% ug it wp and v —7% |, u2 and w —% | . wa. Note that w is proper. By coinduction
we obtain wy with we =% wj and w’ =%, wh. Take t' = uy :: wh. We have to =7, ug 1 wo
and wy =% wy, so ty =% . Also t; = u = w =5, ug = w and W =%, wh, so
tq —>%OL6 t. <

» Lemma 6.4. Ift is proper and t =¥ t1 and t =%, to then there is t’ with to =% t' and
tl %OROJ_e tQ.

Proof. By coinduction, analysing t =%, , t2. If t =% . t2 then this is a consequence of
Lemma C.1. Otherwise t =%, u: wand w —%°, w’ and ts = u :: w’. By Lemma C.1 there
Rle Rle y
are uy,w; such that ¢t =%, u1 = wy and v =% u; and w =% w;. Note that w is proper.
By coinduction we obtain ws such that w' —% ws and wy =%, . we. Take t' = uy :: we. We
y R Rle
have t1 =75, w1 =z wy and wy =%, wa, so t; =5, . Also to =u : w' —F up 2w’ and
w' =% wa, so ty =F t'. <

» Lemma C.2. Ift =}, w:w thent has a chnf (in R).

Proof. Induction on the number of L-reduction steps in ¢ =%, w :: w. If there are none
then t —% w :: w. Otherwise by the inductive hypothesis t =5 t' — t/ =5 v = '
Because R is finite, by the same argument as in the proof of Lemma 3.4 we conclude that
t =Rt wRu w5 W W <
» Lemma 6.5. Ifs € ST(X) and s =%, 5 (resp. s =% §'), then s ~ s' and s’ € ST(X).

Proof. Tt suffices to notice that if ¢ is a stream term without a chnf and t =%, t’ (resp. t =%
t’) then ¢ does not have a chnf either. This follows from Lemma C.2 (resp. Lemma 4.6). <«

» Theorem 6.6. If a stream function is definable in a simple stream TRS then it is computable
in LOGSPACE.

Proof. We describe in more detail the construction of a JTT already sketched in Section 6.
The constructed JTT computes the stream c; :: ¢ :: c3 :: ... where e.g.

fo(s1,...,8n) 2%t = fl(w%,...7w,1cl) —hleCl fl(u%,...,u,lﬁ) —%
cp ity ity fg(w%,...7w£2) —hleCliiCaiicy fg(u},...,u}cz) —% ...

t. Czajka

and none of the uf contain R1-redexes. So all of the root R-reduction steps are in fact eager
R -reductions. Note that all terms appearing in this reduction are proper.

Let N be the maximum size of the left-hand side [of a rule | — r» € R. For a
stream function symbol f with k stream arguments, and words wy, ..., w; € 2V we add a
W1 ,...

state qf
tail, like in the proof of Theorem 5.2. Assume without loss of generality that the stream

Wk TLet s; be a stream term representing the word w;, with a variable z; at the

arguments of f occur before the data arguments, and let y,...,y; be data variables. Let
li = r1,...,l, = 1y, € R be all rules such that f(s1,...,sk,y1,...,y;) unifies with [, with
substitution ;. Let M be the maximum number of data arguments of any defined stream
function symbol in R. We keep the representations of data arguments in constructor normal
form on M separate work tapes: we call them argument work tapes.

Assume e.g. k = 2 and w; = ab and wy = cd and j = 2. In the state q;b’Cd the JTT
first checks which of the left-hand sides Iy, ..., matches f(a :: b :: x1,¢ 2 d 2 T2, u1,u2)
where u is the first data argument — the data term whose representation is stored on the
first argument work tape. There is at most one matching [; because R is orthogonal, and
this can be checked using only logarithmic space (it suffices to check whether the two data

arguments in [; match uq, ug, respectively). If none of the I; matches then the JTT loops.

Assume e.g. [; matches with substitution o and
ol = flaxbua,end::z,SY),2)
and
or; = hi(a,b,y,z) : g(c:d i xe, b xy, d iz, ha(y),y).

Then the JTT outputs the constructor normal form of hq(a,b,t1,t3), computed using
Proposition 3.17, where S(¢1) is the constructor normal form of the first data argument,
stored on the first argument work tape, and ¢y is the constructor normal form of the second
data argument, sored on the second argument work tape. If the constructor normal form
of hi(a,b,t1,t2) is not in X, then the JTT loops. Next, the JTT simultaneously sets the
first cursor to the second one, the second to the first, and the third to the second. Then it
computes the constructor normal form of hs(t), using Proposition 3.17, and writes it to the
first argument tape, and also copies t to the second argument tape. Next, the JTT reads
one symbol from the second cursor and one from the third, moving them forward. Let these
symbols be aq, as respectively. The JTT then enters the state q;d’bal’d@. This behaviour
may always be encoded using a finite number of states.

The rest of the construction is like in the proof of Theorem 5.2.

It is clear that the constructed JTT computes a stream |s'| € £=% for an s’ € SH(X)
such that fo(s1,...,8,) =%, 5. As mentioned before, Lemma 6.4 and Lemma 6.5 imply
that this is correct. Indeed, we have fo(s1,...,s,) =% s where F(|s1],...,|sn]) = |s|.- By
Lemma 6.4 there is w with s »%,, w and s =% w. By Lemma 6.5 we have w € ST(X)
/

|.

and s ~ w and s’ ~ w. Thus |s| = |w| = |s’|. So the JTT computes the stream |s|, as

required. |

13:19

FSCD 2018

Decreasing Diagrams with Two Labels Are
Complete for Confluence of Countable Systems

Jorg Endrullis
Vrije Universiteit Amsterdam,

Department of Computer Science,
Amsterdam, the Netherlands

Jan Willem Klop

Vrije Universiteit Amsterdam,
Department of Computer Science,
Amsterdam, the Netherlands

and

Centrum Wiskunde & Informatica (CWI),
Amsterdam, the Netherlands

Roy Overbeek

Vrije Universiteit Amsterdam,
Department of Computer Science,
Amsterdam, the Netherlands

—— Abstract

Like termination, confluence is a central property of rewrite systems. Unlike for termination,
however, there exists no known complexity hierarchy for confluence. In this paper we investigate
whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing
diagrams technique is one of the strongest and most versatile methods for proving confluence of
abstract reduction systems, it is complete for countable systems, and it has many well-known
confluence criteria as corollaries.

So what makes decreasing diagrams so powerful? In contrast to other confluence techniques,
decreasing diagrams employ a labelling of the steps — with labels from a well-founded order in
order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask
how the size of the label set influences the strength of the technique. In particular, what class
of abstract reduction systems can be proven confluent using decreasing diagrams restricted to
1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving
confluence for every abstract rewrite system having the cofinality property, thus in particular for
every confluent, countable system. We also show that this result stands in sharp contrast to the
situation for commutation of rewrite relations, where the hierarchy does not collapse.

Finally, as a background theme, we discuss the logical issue of first-order definability of the
notion of confluence.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting
Keywords and phrases confluence, decreasing diagrams, weak diamond property

Digital Object ldentifier 10.4230/LIPIcs.FSCD.2018.14

Acknowledgements We thank Vincent van Oostrom and Bertram Felgenhauer for many useful
comments. We are also thankful to Bertram for presenting an early version of this paper at the
International Workshop on Confluence when none of the authors was able to attend. Finally, we
are thankful to the reviewers for many useful suggestions.
© Jorg Endrullis, Jan Willem Klop, and Roy Overbeek;

37 licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 14; pp. 14:1-14:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

Decreasing Diagrams: Two Labels Suffice

N\ 2N

. C
- s
d d

Figure 1 Confluence. Figure 2 Commutation.

1 Introduction

A binary relation — is called confluent if two coinitial reductions (i.e., reductions having the
same starting term) can always be extended to cofinal reductions, that is:

Vabe. (b« a—c=3d.b—»d«c). (1)

The confluence property is illustrated in Figure 1, in which solid and dotted lines stand for
universal and existential quantification, respectively. The relation — is called terminating if
there are no infinite sequences ag — a1 — as —

Termination and confluence are central properties of rewrite systems. For both properties
there exist numerous proof techniques, and there are annual competitions for comparing the
performance of automated provers. It is therefore a natural question how to measure and
classify the complexity of termination and confluence problems. While there is a well-known
hierarchy for termination [20], no such classification is known for confluence.

The termination hierarchy [20] is based on the characterisation of termination in terms
of well-founded monotone algebras. This entails an interpretation of the symbols of the
signature as functions over the algebra. Then the class of the functions (or other properties
of the algebra) used to establish termination can serve as a measure for the complexity of the
termination problem. For instance, if polynomial functions over the natural numbers suffice
to establish termination, then the rewrite system is said to be polynomially terminating.

In order to address the question of a hierarchy and complexity measure for the confluence
property, our point of departure is the decreasing diagrams technique [17]. Decreasing
diagrams are for confluence what well-founded interpretations are for termination. The
decreasing diagrams technique is complete for systems having the cofinality property [15,
p. 766]. Thus, in particular for every confluent, countable abstract reduction system, the
confluence property can be proven using the decreasing diagrams technique. The power of
decreasing diagrams is moreover witnessed by the fact that many well-known confluence
criteria are direct consequences of decreasing diagrams [17], including the lemma of Hindley—
Rosen [6, 13], Rosen’s request lemma [13], Newman’s lemma [12], and Huet’s strong confluence
lemma [7].

What makes the decreasing diagrams technique so powerful? The freedom to label the
steps distinguishes decreasing diagrams from all other confluence criteria, with the exception
of the weak diamond property [1, 4] by De Bruijn which has equal strength. This suggests
that the power of these techniques arises from the labelling. This naturally leads to the
following questions:

1. How does the size of the label set influence the strength of decreasing diagrams?

! Ketema and Simonsen [8] consider peaks ¢ « s — t2 and measure the length of joining reductions
t1 — - « to as a function of the size of s and the length of the reductions in the peak. The nature of
this function can serve as a complexity measure for a confluence problem.

J. Endrullis, J. W. Klop and R. Overbeek

2. What class of abstract reduction systems can be proven confluent using decreasing
diagrams with 1 label, 2 labels, 3 labels and so on?

3. Can the size of the label set serve as a complexity measure for a confluence problem?

Let DCR denote the class of abstract reduction systems (ARSs) whose confluence can be

proven using decreasing diagrams. For an ordinal «, we write DCR,, for the class of ARSs

whose confluence can be proven using decreasing diagrams with label set « (see Definition 15).

For every ARS A, we have
DCR(A) = DCR,(A) for some ordinal « (2)

The reason is that any partial well-founded order can be transformed into a total well-founded
order (thus an ordinal). This transformation does not require the Axiom of Choice, see [4].
Clearly, we have DCR, C DCRg whenever o < 3. So

DCRy € DCRy € DCRy € DCR3 C ... C DCR,, C ... (3)

But which of these inclusions are strict? From the completeness proof in [18] it follows that
all abstract reduction systems having the cofinality property, including all countable systems,
belong to DCR,,. In other words, for confluence of countable systems it suffices to label steps
with natural numbers.

Contribution and outline

Our main result is that all systems with the cofinality property are in the class DCR3, see
Section 4. In particular, for proving confluence of countable abstract reduction systems it
always suffices to label steps with 0 or 1 using the order 0 < 1. So for countable systems,
the hierarchy (3) collapses at level DCRy. This is somewhat surprising, as one might expect
that decreasing diagrams draws its strength from a rich labelling of the steps.

Interestingly, there is a stark contrast with commutation. For commutation the hierarchy
does not collapse, see Section 5. We prove that, for commutation of countable systems, all
inclusions are strict up to level DC,,.

Our findings also provide new ways to approach the long-standing open problem of
completeness of decreasing diagrams for uncountable systems, see Section 6.

2 Preliminaries

We repeat some of the main definitions, for the sake of self-containedness, and to fix notations.
Let A be a set. For a relation — C A x A we write —* or — for its reflexive transitive closure.

We write = for the empty step, that is, = = {(a,a) | a € A}, and we define == = - U =.

» Definition 1 (Abstract Reduction System). An abstract reduction system (ARS) A = (A, —)
consists of a non-empty set A together with a binary relation — C A x A. For B C A we
define A| g, the restriction of A to B, by A|lp = (B, — N (B x B)).

» Definition 2 (Indexed ARS). An indexed ARS A = (A, {—a}acr) consists of a non-empty
set A of objects, and a family {— }aer of relations —, C A x A indexed by some set I.

» Definition 3 (Confluence). An ARS (A, —) is confluent (CR) if « - — C — - «—, that is,
every pair of finite, coinitial rewrite sequences can be joined to a common reduct.

» Definition 4 (Commutation). Let (A, —,~+) be an indexed ARS. Then the relation —
commutes with ~ if <% - ~»* C ~~* . <*; see Figure 2.

14:3

FSCD 2018

14:4

Decreasing Diagrams: Two Labels Suffice

» Definition 5 (Countable). An ARS (A, —) is countable (CNT) if there exists a surjective
function from the set of natural numbers N to A.

» Definition 6 (Cofinal Reduction). Let A = (A, —) be an ARS. A set B C A is cofinal in A
if for every a € A we have a — b for some b € B. A finite or infinite reduction sequence
bp = by — by — -+ is cofinal in A if the set B = {b; | i > 0} is cofinal in A.

» Definition 7 (Cofinality Property). An ARS A = (A, —) has the cofinality property (CP) if
for every a € A, there exists a reduction a = by — by — by — - - - that is cofinal in Al | q—p}-

» Lemma 8. Let A= (A,—) be a confluent ARS and a € A. If a rewrite sequence is cofinal
in Al(y|asb}, then it is also cofinal in Al |acep)- <

» Theorem 9 (Klop [9]). Every confluent countable ARS has the cofinality property. <

3 First-order Definability of Confluence

As we are investigating a confluence hierarchy, the question of first-order definability of
confluence arises naturally. Namely, if confluence were definable by a set of first-order
formulas, then we could obtain a confluence hierarchy by imposing syntactic restrictions on
this set of formulas.

At first glance this question may appear trivial since confluence is typically defined via
the first-order formula (1). However, this formula involves the transitive closure — of the
one-step relation — which is itself not first-order definable. We show that confluence is not
first-order definable over the one-step relation —.

» Remark. In [16] it is shown that the first-order theory of linear one-step rewriting is
undecidable. In this paper it is mentioned as a conjecture that undecidable properties like
confluence and weak termination (see further [2]) cannot be expressed in the first-order logic
of one-step rewriting.

» Theorem 10. Confluence and local confluence cannot be defined in the first-order logic
with equality and the predicate — (one-step rewriting), neither by a single formula nor by a
set of formulas.

Proof. Assume, for a contradiction, that there is a set A of first-order formulas over the
predicate — such that for every ARS A = (A, —) it holds that:

Ais confluent <= AEA

Here A = A means that A is a model of A, that is, A satisfies all formulas in A. In what

follows, we write [c] for the interpretation of a constant c. For convenience, we write — for

the predicate symbol in formulas as well as for the actual one-step rewrite relation or \A.
Our goal is to describe the following non-confluent structure using formulas:

bo—> by —> by —>bg—> -
a
Co—»Cl—»Co—>»C3—» - -

We start by describing each single step by a formula:

A:{a%bo,CLg)Co}U{big)bH_l|i€N}U{Cj4)Cj+1|j€N}

J. Endrullis, J. W. Klop and R. Overbeek

We need to ensure that the interpretation of distinct constants is distinct:
Ap={z#y|z,ye N} where N={a}U{b|ieN}U{c;|jeN}

Finally, the following formula requires all elements, except for [a], to be deterministic:
E=Vayz. (x#ahNz = yhe —2z)=>y==2

This simple trick excludes that elements {[b,] | n € N} U {[c,] | n € N} admit steps other
than the ones specified in A.
Now consider the following set of formulas:

F'=AUAUAU{Y

By the above construction, any model of AU Ay U{¢} cannot be confluent. However, any
model of A must be confluent. Thus I does not have a model.

On the other hand, any finite subset I of T has a model. This can be seen as follows.

There exists a k € N such that none of the constants {b; | ¢ > k}U{¢; | j > k} appears in
I. Then the following structure is a model of I":

b(]—Vbl—ng—P"' —?bk

/ N
a d
Co—>»Cl—>»C2—> -+ —»Ck

This is a contradiction! Due to the compactness theorem, I' has a model if and only if every
finite subset of I' has a model. Thus confluence is not first-order definable.
Note that the same proof also shows undefinability of local confluence. <

» Theorem 11. For o > 2, DCR,, cannot be defined in the first-order logic with equality and
the predicate — (one-step rewriting), neither by a single formula nor by a set of formulas.

Proof. Follows by an extension of the proof for Theorem 10, noting that the model of I"
admits a decreasing labelling with 2 labels. |

Note that DCR; is equivalent to the diamond property for the reflexive closure of the
rewrite relation, and thus is first-order definable.

4 Decreasing Diagrams for Confluence with Two Labels

In this section we show that two labels suffice for proving confluence using decreasing diagrams
for any abstract reduction system having the cofinality property. We start by introducing
the decreasing diagrams technique.

» Notation 12. For an indexed ARS A = (A, {—a}acr) and a relation < C I x I, we define

- = Uae[—a —<p = Ua<6 —a —<p = UaSﬁ —a
Moreover, we use —<qu<g as shorthand for (=<, U —<3).

» Definition 13 (Decreasing Church—Rosser [17]). An ARS A = (4, ~) is called decreasing
Church—Rosser (DCR) if there exists an ARS B = (A4, {—4}aer) indexed by a well-founded
partial order (I, <) such that ~» = — and every peak ¢ <—3 a —, b can be joined by
reductions of the form shown in Figure 3.2

14:5

FSCD 2018

14:6

Decreasing Diagrams: Two Labels Suffice

a @ > b
§<a
¥
o

8 {Bor=
v
°
f<caUu<p

v

C wreeeeed| o R PO e »d

<p « <«
or = <ﬂ

Figure 3 Decreasing elementary diagram.

The following is the main theorem of decreasing diagrams.

» Theorem 14 (Decreasing Diagrams — De Bruijn [1] & Van Oostrom [17]). If an ARS is
decreasing Church—Rosser, then it is confluent. <

In other words DCR = CR.
As already suggested in the introduction, we introduce classes DCR,, restricting the
well-founded order (I, <) in Definition 13 to the ordinal c.

» Definition 15. For ordinals «, let DCR,, denote the class of ARSs A that are decreasing
Church—Rosser (Definition 13) with label set { 8 | 8 < a} ordered by the usual order < on
ordinals. We say that A has the property DCR,,, denoted DCR,(A), if A € DCR,,.

The remainder of this section is devoted to the proof that every system with the cofinality
property is DCRy. Put differently, it suffices to label steps with I = {0,1}. Let A = (4, —)
be an ARS having the cofinality property. Note that, for defining the labelling, we can
consider connected components with respect to <»* separately. Thus assume that A consists
of a single connected component, that is, for every a,b € A we have a <»* b. By the cofinality
property, which implies confluence, and Lemma 8 there exists a rewrite sequence

mgog — My — Mo — Mg —» - - -

that is cofinal in A; we call this rewrite sequence the main road. Without loss of generality
we may assume that the main road is acyclic, that is, m; # m; whenever i # j. (We can
eliminate loops without harming the cofinality property. Note that the main road is allowed
to be finite.)

The idea of labelling the steps in A is as follows. For every node a € A, we label precisely
one of the outgoing edges with 0 and all others with 1. The edge labelled with 0 must be
part of a shortest path from a to the main road. For the case that a lies on the main road,
the step labelled 0 must be the step on the main road. This is illustrated in Figure 4.

Note that there is a choice about which edge to label with 0 whenever there are multiple
outgoing edges that all start a shortest path to the main road. To resolve this choice, the

2 Van Oostrom [19] generalises the shape of the decreasing elementary diagrams by allowing the joining
reductions to be conversions. This can be helpful to find suitable elementary diagrams. However, if
there are conversions then we can always obtain joining reductions by diagram tiling. So a system
is locally decreasing with respect to conversions if and only if it is locally decreasing with respect to
reductions (using the same labelling of the steps).

J. Endrullis, J. W. Klop and R. Overbeek

P 7151_/ 1[
7 I n .
i 0 0 v 1.-73 — main road
i»’ ny
ng no — minimizing
0 4 0 0
1
1 M3 0 TR
. g 0 . - - -» non-minimizing
1
0 T2~ L ms =y
0 1M1 R - }
mo/v 1

Figure 4 Example labelling.

following definition assumes a well-order < on the universe A, whose existence is guaranteed
by the well-ordering theorem. Then, whenever there is a choice, we choose the edge for which
the target is minimal in this order.

» Remark. Recall that the Axiom of Choice is equivalent to the well-ordering theorem. In
many practical cases, however, the existence of such a well-order does not require the Axiom
of Choice. If the universe is countable, then such a well-order can be derived directly from
the surjective counting function f: N — A.

In the following definition we follow the proof in [15, Proposition 14.2.30, p. 766], employing

the notion of a cofinal sequence and the rewrite distance from a point to this sequence.

While the proof in [15] labels steps by their distance to the target node, we need a more
sophisticated labelling.

» Definition 16. Let A= (A, —) be an ARS and M : mg — m1 — ms — - -+ be a finite or
infinite rewrite sequence in A. For a,b € A, we write

(i) a € M if a = m,; for some i > 0, and

(ii) (a —b) € M if a =m; and b = m;4; for some ¢ > 0.
If M is cofinal in A, we define the distance d(a, M) as the least natural number n € N such
that @ =" m for some m € M. If M is clear from the context, we write d(a) for d(a, M).

» Definition 17 (Labelling with two labels). Let A = (A, —) be an ARS equipped with a
well-order < on A such that there exists a cofinal reduction M : mg — m1 — mg — --- that
is acyclic (that is, for all i < j, m; # m;).
We say that a step a — b is
(i) on the main road if (a — b) € M,
(ii) minimizing if d(a) = d(b) + 1 and b’ > b for every a — b’ with d(V') = d(b).
We define an indexed ARS Ayg 1y = (A, {—}ier) where I = {0,1} as follows:

a —9b <= a— band this step is on the main road or minimizing

a—1b <= a— band this step is not on the main road and not minimizing

for every a,b € A.

» Lemma 18. Let A= (A, —) be an ARS with a cofinal rewrite sequence M : mg — mq —
-+ that is acyclic. Furthermore, let < be a well-order over A. Then for Ago 1y = (A, =0, —1)
we have:

(i) » = 20 U—1;

(ii) for every a,b € M we have a —q -« b ;

(iii) for every a € A, there is at most one b € A such that a —¢ b ;

14:7

FSCD 2018

14:8

Decreasing Diagrams: Two Labels Suffice

(iv) for every a ¢ M, there exists b € A with a —¢ b and d(a) > d(b) ;

(v) for every a € A, there exists m € M such that a —¢ m ;

(vi) every peak c <—5 a —4 b can be joined as in Figure 3, and, explicitly for labels {0,1},
as in Figure 5.

Proof. Properties i and ii follow from the definitions.

For iii assume that b <—g a —¢ c¢. We show that b = ¢. The steps a — b and a — ¢ are
either minimizing or on the main road. We distinguish cases a € M and a ¢ M:

(i) Assume that a € M. Then d(a) = 0, and thus neither ¢ — b nor a — ¢ is a minimizing
step. Hence (a — b) € M and (a — ¢) € M. Since M is acyclic, we get b = c.

(ii) If a ¢ M, both steps a — b and a — ¢ must be minimizing. If d(b) # d(c), then we have
either d(a) # d(b) + 1 or d(a) # d(c) + 1, contradicting minimization. Thus d(b) = d(c).
Then by minimization we have b > ¢ and ¢ > b, from which we obtain b = c.

For iv, consider an element a ¢ M. Let B ={V' | a = b’ Ad(a) = d(V/) + 1}. By definition of
the distance d(-), B # @. Define b as the least element of B in the well-order < on A. It
follows that @ — b is a minimization step. Hence a —¢ b and d(a) > d(b). Property v follows
directly from iv using induction on the distance.

For vi, consider a peak ¢ <—3 a =, b. If b = ¢, then the joining reductions are empty steps.
Thus assume that b # c. By iii we have either « =1 or 8 = 1. By v there exist my, m. € M
such that b —y my and ¢ —g m.. By ii we have my —»¢ - «—g m.. Hence b - - «— c. These
joining reductions are of the form required by Figure 3 since —¢ = = <qu<g- |

» Theorem 19. If an ARS A = (A, —) satisfies the cofinality property, then there exists an
indezed ARS (A, (—a)acfo,1}) such that — = —o U —1 and every peak ¢ <—p a —o b can be
joined according to the elementary decreasing diagram in Figure 3, and, explicitly for labels
{0,1}, as in Figure 5.

Proof. It suffices to consider a connected component of A. Let B = (B, —) be a connected
component of A: we have a <>* b for all a,b € B. By the cofinality property and Lemma 8,
there exists a cofinal reduction mg — m; — --- in B. By the well-ordering theorem, there
exists a well-order < over B. Then B has the required properties by Lemma 18vi. |

» Corollary 20. DCR; is a complete method for proving confluence of countable ARSs.

Proof. Immediate from Theorems 9 and 19. <

Theorem 19 also holds for De Bruijn’s weak diamond property. Note the following
caveat: when restricting the index set I to a single label, the decreasing diagram technique
is equivalent to «+ - =+ C == - <=, i.e. the diamond property for — U =, while the weak
diamond property with one label is equivalent to strong confluence + - — C == - «.

The property DCR; is given implicitly by the decreasing diagrams as in Figure 3, but
it is also instructive to give explicitly the elementary reduction diagrams making up the
property DCRs. These are shown in Figure 5. Note that the 1-steps do not split in the
diagram construction, i.e. they cross over in at most one copy. This facilitates a simple proof
of confluence.

Actually, from our proof it follows that the joining reductions can be required to only
contain steps with label 0. Thus even the simple shape of diagrams shown in Figure 6 is
complete for proving confluence of systems having the cofinality property. Here the 1-steps
do not cross over at alll Note that while this set of elementary diagrams has a trivial proof
of confluence, the work to prove DCRy = CR from the original elementary diagrams as in
Figure 5, consists in showing from our earlier construction that it actually suffices to join by
using only 0’s.

J. Endrullis, J. W. Klop and R. Overbeek

0 0 1
O——»O0 O—P(.) O——»O0
0 = 1 01 0

¥ ¥
o o o »o o »o
= 0 0

Figure 6 A simple set of diagrams that is complete for confluence of countable systems.

» Remark. We note a certain similarity between the notion of a decreasing diagram based
on labels { 0,1} with 0 < 1 and the classical ‘requests’ lemma of J. Staples [10, 15, Exercise
2.08.5, p. 9]. In A = (A4, —1, —2) define: —; requests —o if

2
O—»(?
*1
1 o
*2
o »o

If in addition —; and —3 are confluent, then —; 2 = —1 U — is confluent.

The requests lemma states that the ‘dominant’ reduction —; needs the ‘support’ of the
secondary reduction —»o for making the divergence «1 - —o convergent. Similarly for the
property DCRs, the dominant reduction —1 needs support by —»(for making the divergence
<1 - —o convergent. However, the requests lemma employs —, not —.

5 Decreasing Diagrams for Commutation

The decreasing diagram technique can also be used for proving commutation, see [17]. It

turns out that the situation for commutation stands in sharp contrast to that for confluence.

For commutation the hierarchy does not collapse. In particular, we show that, for every
n < w, decreasing diagrams for commutation with n labels is strictly stronger than decreasing
diagrams with less than n labels.

The elementary decreasing diagram for commutation is shown in Figure 7, which is very
similar to Figure 3, but now refers to two ‘basis’ relations —, ~~.

» Definition 21 (Decreasing Commutation). An ARS A = (4, —,~>) is called decreasing
commuting (DC) if there is an ARS B = (A, {—=a}tacr {~a}tacr) indexed by a well-founded
partial order (I, <) such that —4 = —5 and ~»4 = ~-, and every peak ¢ <3 a ~+, b in B
can be joined by reductions of the form shown in Figure 7.

14:9

FSCD 2018

14:10

Decreasing Diagrams: Two Labels Suffice

a fvvvvvvv(\)é/vvvvvw b
<«
¥
o

g =
v
o
<au<pg

v — ¥

C v Q i O B (]

<p « <«
u<p

Figure 7 Decreasing elementary diagram for proving commutation.

If all conditions are fulfilled, we call B a decreasing labelling of A.

» Theorem 22 (Decreasing Diagrams for Commutation — Van Oostrom [17]). If an ARS
A = (A, —,~) is decreasing commuting, then — commutes with ~. <

Analogous to the classes DCR,, for confluence, we introduce classes DC,, for commutation.

» Definition 23. For ordinals «, let DC, denote the class of ARSs A = (A, —,~>) that
are decreasing commuting (Definition 21) with label set {8 | 8 < a'} ordered by the usual
order < on ordinals. We say that A has the property DC,, denoted DC,(A), if A € DC,.

In Definition 23 it suffices to consider total orders since every partial well-founded order
can be transformed into a total well-founded order. This transformation [4] preserves the
decreasing elementary diagrams and does not need the Axiom of Choice.

In order to show that the hierarchy for commutation does not collapse, we inductively
construct, for every n € N, an ARS A,, that is DC5,41, but not DC,,.

» Definition 24. For every n € N we define a tuple ®,, = (A,,, a1, a, ¢, b,by) consisting of an
ARS A,, = (A,, —n,~n) and distinguished elements a1, a, ¢, b,b; € A, by induction on n:
1. Let @9 = (Ao, a1,¢,c¢,c by) where Ay is the ARS displayed in Figure 8.

2. Let @, = (A, a,d,¢,b',b). We obtain A, 11 as an extension of A,, as shown in Figure 9.
The inner dark part with the darker background is A,. The extension consists of the
addition of fresh elements ai,...,ar and bq,...,b; and rewrite steps as shown in the
figure. We define ®,,11 = (Ap41,a1,a,¢,b,b1).

We start with a few important properties of the construction.

» Lemma 25. For every n € N and ®,, = (A,,a1,a,¢,b,b1) with A, = (4, —,~) we have
the following properties:
(i) The relations — and ~~ are deterministic.
(ii) For every element x € A,, we have x —* ¢ and x ~* c.
(iii) For x € A,, we have ay ~* x <* by if and only if a ~* x and a —* x.
(iv) For x € A, we have a; —* x «* by if and only if b ~* z and b =* x.

Proof. We use induction on n € N. For the base case n = 0, we have &y = (Ap, a1,¢,¢, ¢, b1)
where A is given in Figure 8. The properties follow from an inspection of the figure.

For the induction step, let n € N and assume that ®,, = (A,,a,d’, ¢, V', b) satisfies the
properties. By construction, A,+1 is an extension of A,, as shown in Figure 9, and we
have ®,11 = (Apt1,0a1,a,¢,b,b1). The fresh elements introduced by the extension are
X ={a1,...,a7,b1,...,b7 }. We check the validity of each property for A, 11:

J. Endrullis, J. W. Klop and R. Overbeek 14:11

as » Q @wvvvvvvbswvvwa

o PANPAN 1INV
ay ay (b
j}}{i \)4 WS(:W % ,f ‘\ P ;

Figure 9 From n to n+ 1 labels for commutation. Rough proof sketch:
Assume that at least one of the reductions a —* ¢, b ~" ¢, a ~* ¢ or
b —* ¢ contains two steps labelled with n. Then each of the peaks at
a1, aqg and ar, or each of the peaks at b1, by and by must contain a step
labelled with n + 1. As a consequence, one of the reductions a1 —* ¢,

b1 ~* ¢, a1 ~" c or by =™ ¢ contains two steps labelled with n + 1.

/~l

Figure 8 Base case:
one label suffices.

(i) There are no fresh steps with sources in A,. Every element € X admits precisely
one outgoing step — and one outgoing step ~». So both rewrite relations remain
deterministic, establishing property i.

(ii) For every element x € X we have x —* a or x —* b, and « ~~* @ or x ~* b. Together
with the induction hypothesis ii for n, this yields property ii for n + 1.

(iii) From Figure 9 it follows immediately that any reduction a; ~~* = <* by must be of the

form a; ~* a ~* x <* a +* b;. The reductions from both sides are deterministic and
the first joining element is a.

(iv) Analogous to property iii. <
From Lemma 25 ii it follows that — and ~~ commute in A,,. However, commutation is
not sufficient to conclude that A,, is decreasing commuting. Decreasing diagrams are not
complete for proving commutation as shown in [4].

We prove that A,, is decreasing commuting by constructing a labelling with 5n labels.
This bound is by no means optimal, but easy to verify and sufficient for our purpose.

» Lemma 26. For everyn € N, A, is DCsp11.

Proof. We use induction on n € N. For the base case n = 0, consider Ay shown in Figure 8.
For this system a single label suffices since the joining reductions in the elementary diagrams
have length at most 1.

For the induction step, assume that 4,, has the property DCs,11. So A, is decreasing
commuting with labels {0,...,¢} where £ = 5n. By construction, 4,41 is an extension of
A, as shown in Figure 9. We extend the labelling of A4,, with labels {0,...,£¢} to a labelling
of A1 with labels {0,...,¢+ 5} as follows:

{+4 l+2 42 (44
as » a5 » a 4/\/\/\vavvvv»b5<f\vavvvv»b2
o C S £ N & Vv “ % &
,J'F\,Liﬂ l;LyL‘l A‘F\’LJ: 1;3‘1 ;"\:,;fié [%) % for)
(© b7
X\ {/‘X X‘b = ho)
a‘ % o" w v Kj"lf \b_,fd K“wlsi v
a3NVWVWV\>CL6MVWV\/WVV\.> < b
b 0+2 6 3

Here A,, is the darker inner part. From the picture it is easy to verify that every peak < - ~~
in the extension can be joined by reductions that only contain labels strictly smaller than
labels of the peak. As a consequence, Ay 11 i8 DCs(y41)41- <

FSCD 2018

14:12

Decreasing Diagrams: Two Labels Suffice

Next, we show that A, does not admit a decreasing labelling with n labels.
» Lemma 27. For every n € N, A, is not DC,.

Proof. We prove the following stronger claim: for every n € N and ®,, = (A,,a1,a,¢,b,by),
and every decreasing labelling of A,, with labels from N it holds that at least one of the four
paths a; —* b, a1 ~* a, by —* a or by ~~* b contains two labels > n. Note that these paths
exist by Lemma 25. We prove this claim by induction on n € N.

For the base case n = 0, we have &y = (A, a1, ¢, ¢, ¢, by) where Ay is given in Figure 8.
It suffices to consider one of the four paths. For instance, the rewrite sequence a; —* ¢ has
length 2 and both steps must have a label > 0.

For the induction step, assume that the claim holds for n and ®,, = (A,,a,ad’,¢,V,b).
Accordingly, the induction hypothesis is that, for every decreasing labelling of A,, with labels
from N, one of the four paths a —* ¥/, a ~* a/, b —* @’ or b ~* b’ contains two labels > n.
We prove the claim for n + 1. Let ®,,+1 = (Ant1,a1,4a,¢,b,b1) where A, 17 is an extension
of A,, as shown in Figure 9. Let B be a decreasing labelling of the steps in A,; with labels
from N. We show that at least one of the paths a; —* b, a1 ~* a, by =* a or by ~* b
contains two labels > n + 1.

By construction, the systems A,,+; and 4,, contain the same steps with sources in A,.
Thus the restriction of the labelling B to A, is a decreasing labelling for A,,. By the induction
hypothesis, at least one of the paths (i) a —* ¥/, (ii) a ~* o, (iii) b —=* o or (iv) b ~* ¥/
contains two labels > n. Without loss of generality, by symmetry, assume that the path (i)
or (iv) contain two labels > n.

Consider the peak as < a1 ~ ag. As visible in Figure 9, every elementary diagram for
this peak must have joining reductions of the form a3z ~~* b ~~* x <* a +* ay for some
x € A,. From Lemma 25 iv we conclude that the joining reductions must be of the form

ag = b T ~F Y —Fa—Fas

The path (i) a —* b’ or (iv) b ~* b’ contains two labels > n. Thus, for the elementary

diagram to be decreasing, one of the steps in the peak a3 < a1 ~~ a2 must have label > n+1.
The same argument can be applied to the peaks ag < a4 ~~ a5 and b < a7 ~~ a. As a

consequence, each of the peaks az < a; ~ as, ag < as4 ~ a5 and b < a7 ~ a contains one

step with a label > n + 1. Hence at least one of the paths

1. a1 > a3 = ag4 — ag —> a7y — b, or

2. a1 ~ ag ~ A4 ~ A5 ~ a7 ~ Q

contains two steps with labels > n + 1.

If path (ii) a ~* o’ or (iii) b —=* o’ contains two labels > n, then an analogous argument
can be applied to the peaks by < by ~ bs, b5 < by ~» bg and a < b7 ~~ b, yielding that at
least one of the paths by —* a or by ~~* b contains two steps with labels > n + 1.

This proves the claim and concludes the proof. <

We have seen that, for every n € N, A,, that is DCj,,+1, but not DC,, (Lemmas 26 & 27).
From this we can conclude that an infinite number of the inclusions DCy € DC; € DCy C - -+
are strict. The following proposition allows us to infer that all of them are strict.

Roughly speaking, the following proposition states that if a level a + 1 of the hierarchy
does not collapse, then also the level a does not collapse. We state the proposition for the
commutation hierarchy, but it also holds for the confluence hierarchy.

» Proposition 28. If DC, C DCy11 for an ordinal o, then DCg C DC,, for every B < .
This also holds when the classes are restricted to countable systems.

J. Endrullis, J. W. Klop and R. Overbeek 14:13

Proof. Let A= (A, —,~) be in DCqy1 \ DC,. Then there exists a decreasing labelling B

of A with labels { 8 | 8 < a}. As A is not DC, some steps must have the maximum label a.

Note that

* If the joining reductions in a decreasing elementary diagram contain a step with label «,
then the corresponding peak must also contain a step with label a.

Let B’ be obtained from B by dropping all steps with label a, and let A’ be obtained from

B’ by dropping the labels. By (%), B’ is a decreasing labelling of A’, and hence A’ is DC,,.
For a contradiction, assume that DCg = DC, for some 3 < a.. Then A’ is DCg. Let B”

be obtained from B’ by adding all steps that we had previously removed from B, but we now

relabel the steps from « to §. It is straightforward to check that B” is a decreasing labelling

of A. Hence, A is in DCzy1 C DC,. This is a contradiction. <

» Example 29. Assume that « is a limit ordinal and DCy 3 C DCy44. By Proposition 28
we conclude DC, 1o C DC, 3. By repeated application of Proposition 28 we conclude

DCs € DCy C DCay1 & DCoy2 C DCaqts & DCoys

for every B < a. However, the proposition does not help to conclude that DCg C DCg for
every 8 < ' < a.

» Theorem 30. We have
(i) DC, € DC,,11 for every n € N, and
(ii) Upen PCn € DG,
These inclusions are strict also when the classes are restricted to countable systems.

Proof. By Lemmas 26 and 27 we know that DC,, C DC,,;1 for infinitely many n € N. Then
repeated application of Proposition 28 yields DC;, C DC, 1 for every n € N.

=

Let A be the infinite disjoint union Agw A3 W A2 W---. As a consequence of Lemmas 26
and 27 the ARS A is DC,, but not DC,, for any n € N. <

6 Conclusion

We study how the strength of decreasing diagrams is influenced by the size of the label
set. We find that all abstract reduction systems with the cofinality property (in particular,
all confluent, countable systems) can be proven confluent using the decreasing diagrams
technique with the almost trivial label set I = {0,1}. So for confluence of countable ARSs,
we have the following implications:

CP— DCRy —> DCR— CR
This is in sharp contrast to the situation for commutation for which we prove
DCy C DC, C DCy, C DC5 € -+ C DG,

even for countable systems. So for commutation, for every n < w, there exists a system that
requires n labels. The structure of this hierarchy above level DC,, remains open.

» Open Problem 31. What inclusions DC, C DCg are strict for w < o < %

FSCD 2018

14:14

Decreasing Diagrams: Two Labels Suffice

Decreasing diagrams are complete for confluence of countable systems. However, it is a
long-standing open problem whether the method of decreasing diagrams is also complete
for proving confluence of uncountable systems [17]. Our observations provide new ways for
approaching this problem. In particular, it may be helpful to investigate the following:

» Open Problem 32. [s there a confluent, uncountable system that is CR but not DCRy?

» Open Problem 33. Is there a confluent, uncountable system that needs more than 2 labels
to establish confluence using decreasing diagrams? In other words, is there an uncountable
system that is DCR but not DCRy? Is there an uncountable system that is DCR3 but not
DCRy?

So we have the following situation for uncountable systems:

fails® new open open
V'S N V'S
CP— DCRy, —> DCR—> CR
v\/
new open

For a better understanding of this hierarchy, it would be interesting to investigate whether
Proposition 28 can be generalised as follows.

» Open Problem 34. Assume that DC, C DCp for ordinals a < 8. Does this imply that

none of the lower levels of the hierarchy collapse? That is, does it imply that DCor < DCp
for every o/ < ' < a?

Our findings indicate that the size of the label set in decreasing diagrams is not a suitable
measure for the complexity of a confluence problem. So the complexity arises rather from the
distribution of the labels, and the proof that every peak has suitable joining reductions. The
complexity of the label distribution can be measured in terms of the complexity of machine
required for computing the labels. For this purpose, one can consider Turing machines,
finite automata or finite state transducers. The complexity of Turing machines can be
measured in terms of time or space complexity, Kolmogorov Complexity [11] or degrees of
unsolvability [14]. For finite state transducers the complexity can be classified by degrees of
transducibility [5, 3].

—— References

1 N.G. de Bruijn. A Note on Weak Diamond Properties. Memorandum 78-08, Eindhoven
Uninversity of Technology, 1978.

2 J. Endrullis, H. Geuvers, J.G. Simonsen, and H. Zantema. Levels of Undecidability in
Rewriting. Information and Computation, 209(2):227-245, 2011.

3 J. Endrullis, J. Karhuméki, J.W. Klop, and A. Saarela. Degrees of infinite words, polyno-
mials and atoms. In Proc. Conf. Developments in Language Theory (DLT 2016), LNCS,
pages 164-176. Springer, 2016.

4 J. Endrullis and J.W. Klop. De Bruijn’s weak diamond property revisited. Indagationes
Mathematicae, 24(4):1050-1072, 2013. In memory of N.G. (Dick) de Bruijn (1918-2012).

5 J. Endrullis, J.W. Klop, A. Saarela, and M. Whiteland. Degrees of transducibility. In
Proc. Conf. on Combinatorics on Words (WORDS 2015), volume 9304 of LNCS, pages
1-13. Springer, 2015.

3 Already the implication DCR; = CP fails. To see this, consider the ARS (2%, —) where the steps
are of the form X — X U{y} for X CRand y € R.

J. Endrullis, J. W. Klop and R. Overbeek

10

11

12

13

14
15

16

17

18

19

20

J.R. Hindley. The Church—Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

G.P. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the ACM, 27(4):797-821, 1980.

J. Ketema and J.G. Simonsen. Least upper bounds on the size of confluence and church-
rosser diagrams in term rewriting and A-calculus. ACM Trans. Comput. Log., 14(4):31:1-
31:28, 2013.

J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical centre tracts.
Mathematisch Centrum, 1980.

J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, volume II,
pages 1-116. Oxford University Press, 1992.

M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer, 2nd edition, 2008.

M.H.A. Newman. On Theories with a Combinatorial Definition of “Equivalence”. Annals
of Mathematics, 42(2):223-243, 1942.

B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160-187, 1973.

J.R. Shoenfield. Degrees of Unsolvability. North-Holland, Elsevier, 1971.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

R. Treinen. The first-order theory of one-step rewriting is undecidable. In Proc. Conf.
on Rewriting Techniques and Applications (RTA), volume 1103 of LNCS, pages 276-286.
Springer, 1996.

V. van Oostrom. Confluence by Decreasing Diagrams. Theoretical Computer Science,
126(2):259-280, 1994.

V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije
Universiteit Amsterdam, 1994.

V. van Qostrom. Confluence by Decreasing Diagrams, Converted. In Proc. Conf. on
Rewriting Techniques and Applications (RTA 2008), volume 5117 of LNCS, pages 306-320.
Springer, 2008.

H. Zantema. The Termination Hierarchy for Term Rewriting. Applicable Algebra in Engin-
eering, Communication and Computing, 12(1):3-19, 2001.

14:15

FSCD 2018

Coherence of Gray Categories via Rewriting

Simon Forest
LIX, Ecole Polytechnique, France
simon.forest@lix.polytechnique.fr

Samuel Mimram
LIX, Ecole Polytechnique, France
samuel.mimram@lix.polytechnique.fr

—— Abstract

Over the recent years, the theory of rewriting has been extended in order to provide systematic

techniques to show coherence results for strict higher categories. Here, we investigate a further
generalization to low-dimensional weak categories, and consider in details the first non-trivial
case: presentations of tricategories. By a general result, those are equivalent to the stricter
Gray categories, for which we introduce a notion of rewriting system, as well as associated tools:
critical pairs, termination orders, etc. We show that a finite rewriting system admits a finite
number of critical pairs and, as a variant of Newman’s lemma in our context, that a convergent
rewriting system is coherent, meaning that two parallel 3-cells are necessarily equal. This is
illustrated on rewriting systems corresponding to various well-known structures in the context of
Gray categories (monoids, adjunctions, Frobenius monoids). Finally, we discuss generalizations
in arbitrary dimension.

2012 ACM Subject Classification Theory of computation — Rewrite systems

Keywords and phrases rewriting, coherence, Gray category, polygraph, pseudomonoid, precate-
gory

Digital Object ldentifier 10.4230/LIPIcs.FSCD.2018.15

The rewriting systems which are convergent have a fundamental property, which is a
consequence of Newman’s and other classical lemmas in rewriting theory: the space between
any two rewriting zigzags with the same source and the same target can be filled with tiles
witnessing the confluence of critical branchings. Otherwise said, every diagram commutes
modulo the commutation of diagrams induced by critical branchings, which thus axiomatize
the coherence of the structure.

Over the recent years, there have been many efforts to generalize the techniques of rewriting
from words and terms to morphisms in strict n-categories, starting from the pioneering work
of Burroni and Lafont [3, 15, 16]. Those widen the range of applicability of rewriting, and
also allow a precise formulation of the above remark initially formulated by Squier, and
generalized by Guiraud and Malbos by considering coherent presentations [17, 8, 9]. As a
typical example, starting from the 2-category of planar binary forests, which is generated
by a binary (1) and a nullary corolla (1), one can consider rewriting rules expressing the
fact that p is associative and 7 is both a left and right unit for p. The resulting rewriting
system is convergent, and the technique described above allows to prove a coherence theorem
for pseudomonoids, of which MacLane’s coherence result is a particular case (a monoidal
category is a pseudomonoid in the cartesian 2-category Cat).

It is of course of interest to generalize the coherence theorems for classical algebraic
structures from strict to weak n-categories. For instance, coherence for pseudomonoids
in tricategories is shown in [14]. A rewriting approach in this domain is desirable, but
the way one could handle all the coherence morphisms present in weak categories was not
? Simon Forest and Samuel Mimrar‘q;

5v icensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 15; pp. 15:1-15:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:simon.forest@lix.polytechnique.fr
mailto:samuel.mimram@lix.polytechnique.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

Coherence of Gray Categories via Rewriting

clear. Recently, the use of semistrict weak n-categories was advocated by the creators of the
graphical proof-assistant Globular [1, 2] as a formalism adapted to computer manipulations:
without loss of generality most of the coherence morphisms can be considered to be identities,
excepting the interchangers and their coherences.

In this article, we develop the theory of rewriting for semistrict 3-categories, also called
Gray categories, which is the first dimension in which the strict and weak definitions are
not equivalent [6, 11]. We illustrate that this provides systematic principles for proving
coherence of algebraic structures in Gray categories, allowing us to recover results in this
direction recently proved [14, 4, 20] as well as new ones. Moreover, it turns out that this
weak framework is better behaved than the strict one in some respects: it was observed
that a finite rewriting system on strict 2-morphisms can give rise to an infinite number of
critical branchings [15, 8], which is the source of many difficulties [16], both of theoretical and
practical nature, whereas in the present setting we show that only a finite number of critical
pairs can be generated. Finally, we also hint at generalizations in arbitrary dimension.

1 Coherent presentations of Gray categories

1.1 Sesquicategories

We begin by recalling the notion of 2-category as a variant of sesquicategories, details can be
found in [18]. A sesquicategory, or 2-precategory, C' consists of
a set Cy of 0-cells,
a set Cp(x,y) of 1-cells u : x — y for every O-cells x and y,
a set Cy(u,v) of 2-cells a: u = v : x — y every parallel 1-cells u,v : z — y,
an identity 1-cell 1, : x — x for every O-cell z,
a composition function which to every 1-cells u : * — y and v : y — z associates a 1-cell
U*V T =Y,
an identity 2-cell 1, : u = u for every 1-cell u,
a vertical composition function which to every 2-cell a : v = v’ and 8 : v/ = v" associates
a 2-cell ax 8 :v = 0" (middle of (1)),
a left whiskering composition function which to every 1-cell u : ' — x and 2-cell o : v = v/
associates a 2-cell ux a: uxv = uxv : 2z —y (left of (1)),
a right whiskering composition function which to every 2-cell a : v = v’ and 1-cell

v
w:y — y associates a 2-cell axw:v*xw = v *w:x —y (right of (1)).
v

v /\{ v
, “ — Ja

m*mfc\ua/,y T —o >y x@?/*ﬂ/ (1)
v Qﬁj\ v’

1"
v

such that compositions are associative and admit identities as neutral elements: for suitably
typed O-cells x,y, 1-cells u, v, w and 2-cells «a, 3,7,

(u*v)*w=ux*(v*w) laxu=u uxly =u
(axB)xy=ax*(B8*7) lyxa=« ax*xl, =«
us(axf)=(uxa)*x(uxB) uxly=1uyw (axB8)xw=(a*xw)*x(Bxw) ly*w=1lyww
(uxv)*a=ux*(v*a) loxa=«a ax (vkw) = (a*v)*w axly=a
(uxa)*sw=ux*(a*w) (2)

In a composition, the dimension of the involved cells determines which composition is used,
which allows us to unambiguously denote them by the same symbol. In a more terse way,

S. Forest and S. Mimram

the category of sesquicategories can be defined as the category of categories enriched over
Cat equipped with the “funny tensor product” [5].

A 2-category C' is a sesquicategory such that the interchange law holds: this means that
for every 2-cells a:u=u':x —yand f:v=10":y — z, we have

u v

, , gy W U
(axv)*(u' xB) = (uxpB)*(axv) T—y—— 2z = —— Yy —— 2 (3)

NG o
’U/ U’

Since both of the above compositions are equal, we can define the 0-composition of « and 3
to be either of them. By contrast, in a sesquicategory, the 0-composition of 2-cells does not
make sense: we can only compose 2-cells in codimension 1.

1.2 Signatures

In the following, we will be interested in rewriting morphisms in freely generated sesquicate-
gories. Recall that a graph consists of

a set Py of vertices,

a set Py of edges,

functions sg, tg : P1 — Pg associating to each edge its source and target vertex.
We write P] for the set of paths in the graph, s§,tj : PT — Po the source and target functions
on paths, and uv for the concatenation of composable paths u and v.

A signature P consists of

a graph (P, so, tg, P1) whose vertices and edges are called 0- and 1-generators,

a set Py of 2-generators together with functions s;,t; : Po — P} such that sjos; =sjot;

and tjos; =tjot;.
We write a : © — y to indicate that a is a 1-generator with so(a) = = and to(a) = y, and
similarly for 2-generators « : u = v with s;(a) = v and t;(a) = v.

» Example 1 (Monoids). The signature for monoids is
Po = {x} Py ={l:x— %} Po={p:2=1,n:0=1}

Note that the set P} is isomorphic to N, thus the notation for its elements. The 2-generators
of this signature should respectively be understood as a formal multiplication (x) and unit (),
which we will use below to express the structure of a monoid.

A signature P freely generates a sesquicategory with Py as O-cells, P as 1-cells (composition
being concatenation and identities empty paths), and whose 2-cells are generated by Po. We
write P3 for its set of 2-cells, whose elements can be described explicitly as follows.

» Proposition 2. The 2-cells in P4 can be described as the sequences of the form
(ug * aq x wy) * (ug * Qg kW) * ... %k (Up * Qy * Wy)

with w; : & — x; i Py, oy 1 vy = vt xy = y; in Pa, w; 2 y; — y in PT (the compositions above
are formal ones). The canonical inclusion Po — P35 sends a 2-generator o :u=v:ax —y
to (15 * a * 1), vertical composition is given by concatenation, left whiskering the above
morphism by u amounts to replace each u; by uu;, and similarly for right whiskering.

Proof. The above sequences are the normal forms for a suitable orientation of the relations (2)
as a convergent rewriting system on formal expressions. <

15:3

FSCD 2018

15:4

Coherence of Gray Categories via Rewriting

As customary, such morphisms can be pictured using string diagrams. For instance, in the
signature of monoids (Ex. 1), if we draw u by ¥, we can picture the following morphisms:

(O*M*Q)*(l*u*o)*uzw (2*@*0)*(0*u*1)*;¢:@‘

Note that in these pictures, there can be only one generator at a given height, and the
relative heights matter, so that the two 2-cells are not considered to be equal (contrarily to
2-categories).

1.3 Rewriting systems

’
v

A rewriting system consists of a signature P

together with a set P3 of 3-generators, or o b xe

rewriting rules, equipped with source and ! u— T m Y v—y
’ ~_

target functions sa,ty : P3 — P3. A rewrit- ol xg
ing step o
X—k(ux Axv)xxs xox(uxgxv)kxs = x—*(usxh*xv)xxy

consists of a rewriting rule A: ¢ = ¢ : v_ = vy : x — y together with 1-cells u : 2’ — =z,
v:y —y and 2-cells x_ : v/ = v_, x4 : vy = v/, as on the right above. A rewriting path
is a finite sequence of composable rewriting steps R; : ¢; = 1;, with ¢;11 = ;.

» Example 3. The rewriting system for monoids has, on the signature of Ex. 1, the rules

A (p*1)xp= (Lsp)*p L:(n*x1)*p=p R:(1xn)xp=p

=2 = (9=

There is, for instance, a rewriting step

Brpux)«(IxAx)x((ux1)yxp) %‘ = %

We write P3 for the set of rewriting paths, and s3,t5 : P — P35 for the associated
source and target functions. We can form a 3-precategory, noted P*, with P} as i-cells for
1 =0,1,2,3 (by convention P§ = Py) and expected compositions. The notion of 3-precategory
will be detailed in Sec. 4.1, but we can already say that it is the expected generalization
of 2-precategories (see Sec. 1.1) in dimension 3: a 3-precategory consists of a set C; of
i-cells for ¢ = 0,1, 2,3 together with their source and target in lower dimension (except for
0-cells), identities for 0,1, 2-cells, and compositions between composable i- and j-cells, with
1,7 = 1,2, 3, so that compositions are associative and unital in a suitable way. Note that,
contrarily to 3-categories, there is only one kind of composition between i- and j-cells: those
can only be composed in codimension i A j — 1 (we write i A j for the minimum of 7 and j),
which again allows to unambiguously use the same symbol for all compositions. A morphism
of 3-precategories is called a 3-prefunctor. By generalizing the argument of Prop. 2, one can
show that P* enjoys the following universal property, see Sec. 4.2 for details:

» Proposition 4. The 3-precategory P* is the free 3-precategory whose underlying 2-precate-
gory is the one generated by the underlying signature of P and containing the rewriting rules
as 3-cells.

S. Forest and S. Mimram

Following the terminology of [9], we say that two rewriting paths P and Q are Peiffer-
equivalent when they differ only by successively permuting adjacent rewriting steps at disjoint
positions, what we write P = @ below. For instance, with the notations of Ex. 3, the two
following paths are Peiffer-equivalent:

More generally, we can define the Peiffer-equivalence in a 3-precategory as the smallest
congruence (w.r.t. compositions) such that, with cells as on the left, we have the relation on
the right:

/Z_ll\ ((ug % Ap % wy) * x * (ug * g * wo))
P z1 prd=4vY1 9 *
/u1 \v_'l/ \wl\ ((uq * 91 * wy) * x * (ug * Az * wy))
z Ux Pe = (4)
uz\ /Z_z\ P ((uq * @1 % wy) * x * (ug * Ag * wa))
xo G2 =12 yo *
~_ ((ug * Ay xwy) * x * (ug * g * wo))

!’
Vo

1.4 (3,2)-precategories

A (3,2)-precategory is a 3-precategory in which every 3-cell P : ¢ = 1) is invertible: there
exists a 3-cell Q : 9 = ¢ such that P xQ =14 and Q * P = 1.

Given a rewriting system P, consider the rewriting system Q with Q; = P; for i =0,1,2
and Q3 = P3 UP; where Py = {A7 : ¢ = ¢ | A: ¢ = ¢ € Ps} is the set of formally
reverted rules in P3. We write P3| for the set of 3-cells in Q3 quotiented by the smallest
congruence such that A+ A~ =14 and A~ %« A = 1, for every generator A in P3, and call its
elements rewriting zigzags. We can form a 3-precategory, noted PT, with P: as i-cells for
i=0,1,2, PJ as 3-cells, and expected compositions: it is defined as P* excepting that 3-cells
are rewriting zigzags instead of rewriting paths.

» Proposition 5. The 3-precategory P is the free (3, 2)-precategory on the 3-precategory P*.

According to the above proposition, we generalize the above notation and write P~ for the
inverse of an arbitrary 3-cell P. Note that any 3-cell decomposes as P; * Q1 *...* P % Q,
where P; and Q; are rewriting paths (thus the terminology of rewriting zigzag). In the

following, we will be mostly interested in (3, 2)-precategories (as opposed to 3-precategories).

1.5 Presentations

In order to describe interesting 3-precategories using rewriting systems, we need to be able
to quotient the 3-cells in the freely generated 3-precategory. A presentation consists of a
rewriting system P equipped with a set P4 of relations together with functions s3,t3 : P4y — P4
indicating the source and the target rewriting path of a relation, such that sj os3 =s5 ot

and t} os3 =t} oty (relations are between rewriting paths with same source and same target).
We often write I' : P = @ to indicate that T is a relation with s3(I'") = P and t3(T") = Q.

We denote by =p, (or sometimes even =), the smallest congruence on 3-cells in P4 such that
P =p, Q for every relation I': P = @Q in Py.

The (3, 2)-precategory P presented by a presentation P is the 3-category obtained from P T
by quotienting 3-cells under =p,.

15:5

FSCD 2018

15:6

Coherence of Gray Categories via Rewriting

» Remark. A typical relation that one would like to express in the rewriting system of
monoids (Ex. 3) is the fact that the two ways of multiplying the unit by itself are the same,
as pictured below. However, in order to do so, we need to be able to “exchange” the two
units (the first 3-cell on the right), which there is no way to achieve for now. This motivates
looking at rewriting systems with more structure in next section.

LQéQ = ‘@Qéﬁacp nxR = (Xyyrp)x(nel)

1.6 Presentations of Gray categories

We have seen above that a rewriting system freely generates a 3-precategory. In practice, we
will be interested in describing 3-precategories having some additional structure and axioms.

A Gray category C is a 3-precategory equipped, for every pair of 2-cells ¢ and 1 as on
the left, of an invertible 3-cell Xy 4 as on the right, called interchanger:

Xow s (@x0)x (W 1) = (uxtp)x (¢ x0)

u v Py Py
x@y@z x%y*ﬁzéz%y%z (5)
such that

1. Peiffer-equivalences are identities,
2. interchangers are compatible with compositions and identities in all sensible ways: for
example,

Xopugop = (01 %0) ¥ Xg, 4) % (Xg, 9 % (2 x0)) and X1, 4 = Luwy

3. interchangers are natural: in the situation (5), given a 3-cell P : ¢ = ¢’
((Pxv) s (w5 1)) % Xgr gy = KXo # ((ux9h) % (P x0"))

and symmetrically.

Alternatively, a Gray category can be defined to be category enriched over the category Cats
of 2-categories equipped with a suitable tensor product, called the Gray tensor product [7].
A Gray (3,2)-category is a Gray category in which every 3-cell is invertible. A Gray functor
f: C — D between Gray categories is a 3-prefunctor preserving interchangers (we only
consider the strict flavor of such functors here).

The notion of Gray category generalizes 3-categories by asking for explicit interchange
cells: a 3-category is precisely a Gray category where all interchange 3-cells are identities.
The relevance of Gray categories is that, although they are quite strict (compositions are
strictly associative), they capture the full generality of weak 3-categories, as shown by the
coherence theorem of Gordon, Power and Street [6, 11]:

» Theorem 6. FEvery tricategory is (suitably) equivalent to a Gray category.

In order to present Gray categories, we should ensure that our presentations generate
interchangers and satisfy the required axioms. A Gray presentation P is a presentation such
that
1. for every pair of 3-generators A; and As, as well as morphisms as on the left of (4), there

is a relation as on the right of (4) called a Peiffer generator,

S. Forest and S. Mimram

2. for every 2-generators a and § and 1-cell v as below:

u w

X oa r — 4
Jda, v I8,
’u,/ w/

left, there is a 3-generator X, , g, called interchange generators, as below:

Xawg: (axvsxw)* (U xvx*P) = (uxvxf)* (a*xv*w)
o>, v TR
T — X Y A= T Y — Z

“ LB dax v

and we write Px C Pj3 for the set of interchange generators,
3. for every 3-generator A, 1-cell v and 2-generator « as on the left or on the right below

u w u w

A . " . N R , " . STA N
rol=2lyvs —— ¢y Ja gy r Ja o ———9y ol=lvy (6)

there is respectively a relation, called interchange naturality generator,

(Axvxw) « (U *xv* Q) * Xy pea = Xpura* (uxw*a)*x(Axvsxw'))
(axvxw)x (W xv*A))* Xowwy = Xawve* (uxv*A)* (axvsxw'))

where the interchangers X,.., are suitable composite of interchange generators (see
proposition below).
The above families of 3- and 4-cells are called the structural generators of the presentation.
We will not insist much about it in the following, but the choice of structural cells is implicitly
supposed to be part of a Gray presentation.

» Proposition 7. Given a Gray presentation P, the presented (3,2)-precategory P is canoni-
cally a Gray (3,2)-category.

Proof sketch. The first family of relations of P generates, by congruence, all the Peiffer
equivalences, the second family of 3-cells generates, by composition, all the interchangers,
and the third family of relations generates, by congruence, all the naturality conditions. <«

» Example 8. The Gray presentation of monoids consists of the rewriting system of Ex. 3,
as well as additional interchange generators

VES=2GEY TYEHe=G T kIF=ellY tlle=ollf

Y= gy
M w M \w/ (7)
G=J = v

15:7

FSCD 2018

15:8

Coherence of Gray Categories via Rewriting

as well as Peiffer generators, e.g.

for an arbitrary 2-cell x : n + 1 = n + 3, and interchange naturality generators, e.g.

V%H S%VH E‘@H? TTQSWE‘UJ? .
DH?S%HE‘&H Yor ==Y 1 =]

In the following, when describing a Gray presentation, we will not mention the structural
cells which are always implicitly supposed to be present.

A model of a presentation P in a Gray category C is a Gray functor P — C from the
presented Gray (3, 2)-category to C.

» Example 9. A model of the presentation P of monoids (Ex. 8) in a Gray category C
consists in a 1-cell a : © — = together with 2-cells u: a*xa = a and 1 : 1, = a and invertible
3-cells A, L, R (as in Ex. 3) satisfying suitable relations (as in Ex. 8). This is precisely what
is usually called a pseudomonoid in C.

» Remark. A notion of presented Gray category (as opposed to (3,2)-category) can also be
defined: it is slightly more involved since we still need to formally invert (by a localization)
some morphisms, at least the interchangers. Similarly, we could consider their models which
are functors to Gray categories. However, in practice people consider algebraic structures
with invertible 3-cells (e.g. pseudomonoids), which explains why we are mostly interested in
Gray (3, 2)-categories here for simplicity.

Our goal is to show that some presentations are coherent, meaning that all the diagrams
made of structural morphisms commute in the models. Formally, a Gray category is coherent
when between any pair of parallel 2-cells there is at most one 3-cell and a Gray presentation
is coherent when the associated Gray (3, 2)-category is.

2 Rewriting

2.1 Confluence

Every rewriting system induces an abstract rewriting system (i.e., a graph) with 2-cells in P}
as vertices and rewriting steps as edges (the set of paths thus being P%), from which we
can use the classical notions and properties of rewriting theory, detailed below. We slightly
depart from the tradition by, for confluence properties, asking that diagrams should be closed
and commute modulo the relations in Py.

Given a rewriting path P : ¢ = 1, we say that ¢ rewrites to ¢». A normal form is a
2-cell ¢ such that the only rewriting path with source ¢ is the empty one. A branching is

S. Forest and S. Mimram

a pair of coinitial rewriting paths Py : ¢ = ¢ and P> : ¢ = ¢o; it is local when both Py
and P, are rewriting steps, it is joinable when there exists a pair of cofinal rewriting paths
Q1: 01 = Y and Qs : P2 = 1, it is confluent when there exists a pair of cofinal rewriting
paths Q1 : ¢1 = ¥ and Q2 : ¢2 = ¢ such that P * Q1 =p, Pa * Q2, see left of (9). Similarly,
a rewriting zigzag P : ¢1 = ¢ in P4 is confluent when there exists a pair of cofinal rewriting
paths Q1 : ¢1 = ¥ and Q3 : P2 = @ such that P x Q3 = @, see right of (9)

)

¢
P P
v \X°
6 = b9 o1 ¢2 ()

<

A rewriting system is

terminating when every sequence of composable rewriting steps is finite,

(locally) confluent when every (local) branching is confluent,

Church-Rosser when every rewriting zigzag is confluent,

convergent if both terminating and locally confluent.
In a terminating rewriting system, every 2-cell ¢ rewrites to a normal form ¢. The classical
proof by well-founded induction of Newman’s lemma [19], can be directly adapted (as in [8,
Thm. 3.1.6]) in order to show

» Theorem 10. A convergent rewriting system is confluent.

Finally, for abstract rewriting systems it is well known that confluence implies the Church-
Rosser property. In this setting, this translates as the following theorem, which adapts in
our setting, the proof of Squier’s theorem for coherent presentations of categories, see [17,
Thm. 5.2] and [8, Thm. 4.3.2]:

» Theorem 11. A convergent presentation P is Church-Rosser and coherent.

Proof. Suppose given a rewriting path P : ¢ = . Since P is terminating, there is a rewriting
path Py : ¢ =) (vesp. Py 1) = 12) from ¢ (resp. 1) to a normal form) (resp. 1&) Moreover,
by confluence, we have b= 1/3 and P, = P x Py, see the left of (10). Therefore, we have
equivalences P = Py x P/ and P~ = Py + P, as in the middle and right of (10):

¢ == ¢ ¢ == o L=
P& %’w P«N EA%P— pjR %ﬁ (10)

¢ ¥

< Il
©-

©
<

Finally, as explained above, a 3-cell of P is a zigzag of rewriting paths Pr+Qux...x P xQy,
which is equivalent (modulo relations and axioms for inverses) to Py * P :

Note that the 3-cell Py * PJ only depends on the source ¢ and the target 1. We immediately
deduce that two parallel 3-cells in P are equal. <

15:9

FSCD 2018

15:10

Coherence of Gray Categories via Rewriting

2.2 Termination

Termination of a presentation is usually proved by checking that rules are decreasing according
to some suitable order. A termination order is a well-founded partial order < on parallel
2-cells of a presentation P such that

for every rewriting rule A : ¢ = 1 we have ¢ > 1,

given composable 2-cells ¢, 11 and ¢’ (resp. ¢, ¥ and ¢’) such that ¢ > 1), we have

Pxthr k@ > Pxhyx ¢

given 2-cells ¢ > 1 and composable 1-cells v and w, we have u * ¢ * w > u* 1) * w.
» Proposition 12. A rewriting system equipped with a termination order is terminating.

» Example 13. A termination order for the rewriting system of monoids (Ex. 3) can be
constructed as follows. Firstly, the three non-structural rewriting rules can be shown to be
terminating exactly as for 3-polygraph of monoids [15, Sect. A.2] (roughly L and R decrease
the number of generators and A puts p generators on the right), by a termination order for
which the interchangers are left invariant. Secondly, the interchangers make 2-cells decrease
in the following sense. A 2-cell corresponds to a forest of leveled planar binary trees (where
nodes correspond to 2-generators), i.e., trees equipped with a total “vertical” order refining
the depth order. The interchanger rules decrease the sum, for each generators, of the number
of generators above (w.r.t. to the vertical order) and on the left (which is easily defined for
such forests).

2.3 Critical branchings

Given a local branching (Py, P5), the following situations can occur. The branching is
trivial when P; = Ps,

non-minémal when there is another branching (Q1, Q2) such that P; = ¢ * (ux Q; xv) x ¢
for ¢ = 0,1 for some 1-cells u,v and 2-cells ¢, v, not all identities,

independent, or Peiffer, when there are morphisms of the form (4) such that
Py = ((ug % Ay xwq) x X * (ug * gg xw3)) Py = ((ug * ¢y *wy) * x * (ug * Ag xws))
natural when there are morphisms as on the left of (6) such that
P = ((Axvxw)* (u *v*a))

P, is the first rewriting step of X4 yxq, and similarly for the situation on the right of (6),
critical when it is of none of the above forms.
Since, by definition of Gray presentations, non-critical branchings are necessarily confluent,
we have:

» Theorem 14. A presentation is locally confluent if and only if every critical branching is
confluent.

As usual, critical branchings can be computed by considering the ways two left members ¢
and ¢9 of rules can overlap non-trivially (sharing at least one 2-generator). Graphically, the
following generic situations can happen, where the two regions respectively represent ¢; and
¢2, the square ¥ in the middle being the intersection (overlap) of both, which is supposed

S. Forest and S. Mimram

not to be an identity 2-cell:

NN
N
NN
N
NN
NN

NN

77
77
77
77
77
27
77
27

P1=0 *(ux)) P1=0¢1 *(xv) Pr=¢1 %9 P1=0 * (uxipxv) P1=0" * (uxiprv)* !
Pa=(Pxv)*} po=(ux1p)xd) po=(uxthxv)xpy po=1px¢y p2=1p

(and also the situations obtained by swapping ¢; and ¢s). From this, one deduces that any
pair of rules can give rise to a finite number of critical branchings which can effectively be
computed (the algorithmic aspects will be detailed in future works). Moreover, note that
a non-structural rewriting rule R : ¢ = 1 can only give rise to a finite number of critical
branchings with interchangers: if the two 2-generators involved in an interchanger X, , 3
are too far apart horizontally (i.e., v is a composite of too many 1-cells), the branching is
necessarily an exchange branching, e.g. left of (8). Similarly, that two interchangers never
make a critical branching (all such branchings are natural), e.g. right of (8). From the above
considerations, we deduce:

» Theorem 15. A presentation with a finite number of 2-generators and of non-structural
3-generators, with non-identity 2-cells as sources, has a finite number of critical branchings.

It should be noted that this theorem contrasts with the situation for presentations of
(3,2)-categories (where interchangers are identities), where a finite presentation can give rise
to an infinite number of critical branchings [15, 8]. Our formalization of rewriting systems
avoids this problem, at the cost of having to explicitly handle interchangers.

» Example 16. The presentation for monoids (Ex. 8) has five critical branchings:

LleD=2T vedastly veldlas ¥y Velbav Jgebze

2.4 A coherent completion procedure

The general methodology for constructing confluent presentations is the following one.
Suppose given a presentation P (usually containing no relation in P4 excepting structural
ones).

1. Find a termination order for the rules of P: if none can be found try to reorient some
rules. Conclude that P is terminating by Prop. 12.

2. Compute the critical branchings and check that they are joinable: if a critical branching
is not joinable, add a new rule to make it confluent (this is the Knuth-Bendix completion
procedure [13]).

3. For every critical branching, choose a way to join it and add a corresponding relation
in P4 (if not already present).

4. Conclude that P is locally confluent by Thm. 14, thus confluent by Thm. 10 and thus
coherent by Thm. 11.

5. Optionally, remove some redundant rules and relations in order to achieve a smaller
presentation.

This methodology is illustrated in next section. Note that steps 2 and 3 can be combined,
giving rise to a “homotopical completion procedure” and 5 can be partly automated: this is
detailed in the case of coherent presentations of monoids in [10] and left for future work for
Gray presentations.

15:11

FSCD 2018

15:12

Coherence of Gray Categories via Rewriting

3 Applications

3.1 Pseudomonoids

Consider the presentation P for monoids given in Ex. 8 whose termination was shown in
Ex. 13. There are five critical branchings, given in Ex. 16, which are all joinable. If we add
five corresponding relations in P we obtain a convergent, and thus coherent, presentation.
Note however that the presentation P given in Ex. 8 has only two relations: in fact, three of
the five relations are derivable from the other and can thus be removed (the argument given
n [8] for pseudomonoids in 3-categories can directly be adapted to our setting). This allows
us to recover the coherence theorem of [14].

3.2 Adjunctions

The presentation for adjunctions is given by Py = {z,y}, P1 = {a: 2 — y,b: y — z} and
Py ={n:1; = ab,e : ba = 1,} where n and ¢ are respectively pictured as M and U. The
two rules are shown on the left below and the relations corresponding to the two critical
branchings are on the right:

Nl N =—V n=—nJ] w

= xﬂﬂ% xﬂﬂ%

They are sometimes called the swallowtail relations. A model for this presentation in the 2-
category Cat (seen as a (3, 2)-precategory with only identity 3-cells) is precisely an adjunction.
Termination can be shown by observing that the two non-structural rules decrease the number
of generators and the structural rules decrease the number of generators which are “on the
left and above”, as in the previous case. We deduce that this presentation is coherent, thus
recovering a variant of the coherence theorem shown in [4] (see below).

3.3 Self-dualities

The theory for self-dualities is the following variant of the previous one. We have Py = {x},
Py ={a:x—«}, Pa={n:1, = aa,e: aa = 1,} where 7 and ¢ are respectively pictured
as M and U. The two rules are those on the left of (11). Note that because of the difference
in “typing” of 0- and 1-cells, the rewriting system is not anymore terminating, since we have

the reduction
Op=(o=0nU

Moreover, this endomorphism 3-cell is not an identity, preventing any hope for the presentation
to be coherent. Following [4], we can still aim at showing a partial coherence result by
restricting to 2-cells which are connected, i.e., whose graphical representation is connected
(we do not give the formal definition here). In this case, termination can actually be shown
by using the same arguments as in Sec. 3.2. However, the critical pairs are not joinable either
since, for instance, we have

v e ln = WUN

S. Forest and S. Mimram

(for which there is little hope that a Knuth-Bendix completion will provide a reasonably
small presentation). However, one can obtain a rewriting system which is terminating on
connected 2-cells and confluent by orienting the interchangers as follows

VHU2UHY aHA2NHA NHUSAHY UHA2YHA

The relations generated by critical branchings can be pictured as on the right of (11).

3.4 Frobenius monoids

The presentation for (non-unital) Frobenius monoids is given by Po = {x}, P;1 = {1:x — %}
and Py = {u:2=1,8:1= 2}. If we respectively picture 1 and 6 by ¥ and &, we have the
four rewriting rules on the left below:

AJaX AR ey e 8 (998 &4

(and interchangers are oriented as usual). By Knuth-Bendix completion, we add the two
rules on the right. The resulting rewriting system has 19 joinable critical pairs, to each of
which corresponds a relation. We conjecture that the rewriting system is terminating, which
would give rise to a coherence theorem for Frobenius monoids. A coherence theorem using a
different set of generators and relations is shown in [4].

4 Rewriting systems in higher dimension

4.1 Precategories
Given n € N, an n-globular set C' is a diagram of sets

S0 S1 S2 Sn—1
Cyh 3 C 3 Oy ¢ L8 Cn

to t1 to tn—1

such that §;08i+1 = SiOti_A,_l and ti05i+1 = tioti+1 for 0 <1< n—1. A morphism f :C—D
between n-globular sets is a family of morphisms f; : C; — D,, with 0 < i < n, such that
5; © fix1 = fi o s;. The resulting category is denoted by Glob,,. Given i,j,k € N with k& < i

tgo...ot; 1
C Cj .

S0...08;_1

and k < j, we write G; X, G; for the pullback of the diagram C;

An n-precategory C, see [12], is an n-globular set equipped with

identity functions 1; : G; — G471 for 0 < i < n,

composition functions *; ; : G Xjnj—1 Gj = Giv; for 0 < 4,j < n.
As previously, since the dimension of cells determines the functions to be used, we omit the
indices from s, ¢, 1 and *. For composition, it is sometimes useful to write u *; v to indicate
that kK =4 A j — 1, where ¢ is the dimension of v and j is the dimension of v. We require the
following axioms:

for (’LL,U) e C; Xinj—1 Cj with 0 < 4,5 < n,

uxs(v) ifi<yj uxt(v) ifi<y
s(uxv) =< s(u) ifi=jy tluxv) = ¢ t(v) ifi=jy
s(u)yxv ifi>j t(u)xv ifi>j

for every u € C; with 0 < i < m, s(1,) = u =t(1,)

15:13

FSCD 2018

15:14 Coherence of Gray Categories via Rewriting

for every (u,v) € C; xijpnj—1 C; with 0 < 4,5 <mn,

v ifi <j U ifi>j
1, xv =) . u*l, = . .
lysww ifi>7 lusww ifi<j
such that, for composable cells u, v, w, with k < [,
(u g v) *p W = w*g (V kg W) wxg (Vg w) = (uxgv) * (u*g w)

(u s v) *p w = (u g v) % (uxg, w)

A morphism of n-precategories, called an n-prefunctor, is a morphism between the underlying
globular sets which preserves identities and compositions as expected. We write PCat,, for
the category of n-precategories. This category is locally presentable and thus complete and
cocomplete. Given an n-precategory C, we write Cj for its set of O-cells seen as an n-category
with empty sets of i-cells for 0 < ¢ < n. The “funny tensor product”

C'® D of two n-precategories C and D is defined as the pushout on Co X Do — €' x Do
the right where the arrows are the obvious inclusions. This makes i o
PCat,, into a monoidal category and we have: Cox D »yCRD

» Proposition 17. An n-+1-precategory is the same as a category enriched in PCat,, equipped
with the funny tensor product.

4.2 Prepolygraphs

We now briefly introduce the notion of prepolygraph which generalizes PCati > Glob,, 1
in arbitrary dimension the notion of rewriting system, by a direct _ l
adaptation the definition invented by Burroni for n-categories [3]. We PCat, — Glob,
write PCat, for the pullback on the right where the arrow on the
top is the forgetful functor and the one on the left is the truncation functor (forgetting the set
of n+1-cells in an n+1-globular set). An object in this category consists of an n-precategory
equipped with a set of n+1-cells (for which there is no notion of composition). There is a
forgetful functor PCat,,;; — PCat;’ which amounts to forget about compositions involving
n+1-cells, which admits a right adjoint L,, : PCat;’ — PCat,, 1, generating all the formal
compositions of n+1-cells.

We now define by induction on n € N, the category Pol, Pol,. . Y » PCat
of n-prepolygraphs together with a functor F, : Pol, — PCat, l
associating to each n-prepolygraph the associated freely generated A

. . . Pol, —— PCat,

n-precategory. For n = 0, we set Poly = Set and Fj is the identity Fy,
functor (PCat is isomorphic to Set). The category of n+1-prepolygraphs is defined by
the pullback on the right where the vertical arrow is the expected forgetful functor, and
we define the functor F, 1 = L,1 o F,F. More explicitly, an n-prepolygraph consists in a

Pnfl Pn
Sn—1
J/infl t
n—1
*

n—1

diagram of sets

Po P P
| =2

io i ;

g sgto g Sftl J{Z

o i— PT &——
to t

such that s} os; 11 = sfot;+1 and t]os; 11 =t} ot;11, together with a structure of n-precategory
on the globular set on the bottom row: P; is the set of i-generators, s;,t; : Pix1 — P}

S. Forest and S. Mimram

respectively associate to each i+1-generator its source and target, and P} is the set of i-cells,
i.e., formal compositions of i-generators.

The cells in such prepolygraphs are particularly easy to manipulate because of the
following normal form, generalizing Prop. 2 and its proof. We plan to investigate algorithmic
aspects (for computing critical pairs, etc.) based on this representation in future works.

» Theorem 18. A non-identity k-cell P in an n-prepolygraph decomposes uniquely as
P =R'x R?% ... RP with each R’ being a k-rewriting step, i.e., a composite of the form
Rl = %—1 (oo (uh o (uf * AT s wl) xwh) ...) x wj,_, where A" is a k-generator and uj
and v; are j-cells.

Interestingly, this formalization based on prepolygraphs corresponds precisely to the one

proposed by Bar and Vicary [2]: their representation is more economical thanks to the use of
integers in order to encode cells, but somewhat obscures the universal properties it satisfies.

» Proposition 19. The n-signatures of [2] correspond to the n-prepolygraphs defined above.

Their work gives hints at a way to generalize Gray presentations in order to present semistrict
tetracategories, by providing the adapted collections of structural cells. We plan to investigate
this, as well as an adaptation of our techniques in order to provide automation to their tool
Globular [1] in future work.

—— References

1 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant
for higher-dimensional rewriting. In LIPIcs, volume 52, pages 34:1-34:11, 2016. arXiv:
1612.01093.

2 Krzysztof Bar and Jamie Vicary. Data structures for quasistrict higher categories. In
Logic in Computer Science (LICS), 32nd Annual Symposium on, pages 1-12. IEEE, 2017.
arXiv:1610.06908.

3 Albert Burroni. Higher-dimensional word problems with applications to equational logic.
Theoretical computer science, 115(1):43-62, 1993.

4 Lawrence Dunn and Jamie Vicary. Coherence for frobenius pseudomonoids and the geom-
etry of linear proofs. Preprint, 2016. arXiv:1601.05372.

5 Francois Foltz, Christian Lair, and GM Kelly. Algebraic categories with few monoidal
biclosed structures or none. Journal of Pure and Applied Algebra, 17(2):171-177, 1980.

6 Robert Gordon, Anthony John Power, and Ross Street. Coherence for tricategories, volume
558. American Mathematical Soc., 1995.

7 John Walker Gray. Formal category theory: adjointness for 2-categories, volume 391.
Springer, 2006.

8 Yves Guiraud and Philippe Malbos. Higher-dimensional categories with finite derivation
type. Theory and Applications of Categories, 22(18):420-478, 2009.

9 Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Mathematical
Structures in Computer Science, pages 1-47, 2016. arXiv:1402.2587.

10 Yves Guiraud, Philippe Malbos, and Samuel Mimram. A homotopical completion proce-
dure with applications to coherence of monoids. In RTA-2/th International Conference on
Rewriting Techniques and Applications, volume 21, pages 223-238, 2013.

11 Nick Gurski. Coherence in three-dimensional category theory, volume 201. Cambridge Univ.
Press, 2013.

12 Aleks Kissinger and Jamie Vicary. Semistrict n-categories via rewriting. Proceedings of
the first workshop on Higher-Dimensional Rewriting and Applications, 2015.

15:15

FSCD 2018

http://arxiv.org/abs/1612.01093
http://arxiv.org/abs/1612.01093
http://arxiv.org/abs/1610.06908
http://arxiv.org/abs/1601.05372
http://arxiv.org/abs/1402.2587

15:16

Coherence of Gray Categories via Rewriting

13

14

15

16

17

18
19

20

Donald E Knuth and Peter B Bendix. Simple word problems in universal algebras. In
Computational problems in abstract algebra, pages 263-297, 1970.

Stephen Lack. A coherent approach to pseudomonads. Advances in Math., 152(2):179-202,
2000.

Yves Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure and Applied
Algebra, 184(2):257-310, 2003.

Samuel Mimram. Towards 3-Dimensional Rewriting Theory. Logical Methods in Computer
Science, 10(1):1-47, 2014. arXiv:1403.4094.

Craig C Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting
systems. Theoretical Computer Science, 131(2):271-294, 1994.

Ross Street. Categorical structures. Handbook of algebra, 1:529-577, 1996.

Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

Dominic Verdon. Coherence for braided and symmetric pseudomonoids. Preprint, 2017.
arXiv:1705.09354.

http://arxiv.org/abs/1403.4094
http://arxiv.org/abs/1705.09354

Completeness of Tree Automata Completion

Thomas Genet
Univ Rennes/Inria/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
genet@irisa.fr

—— Abstract

We consider rewriting of a regular language with a left-linear term rewriting system. We show
a completeness theorem on equational tree automata completion stating that, if there exists a
regular over-approximation of the set of reachable terms, then equational completion can compute
it (or safely under-approximate it). A nice corollary of this theorem is that, if the set of reachable
terms is regular, then equational completion can also compute it. This was known to be true
for some term rewriting system classes preserving regularity, but was still an open question in
the general case. The proof is not constructive because it depends on the regularity of the set of
reachable terms, which is undecidable. To carry out those proofs we generalize and improve two
results of completion: the Termination and the Upper-Bound theorems. Those theoretical results
provide an algorithmic way to safely explore regular approximations with completion. This has
been implemented in Timbuk and used to verify safety properties, automatically and efficiently,
on first-order and higher-order functional programs.

2012 ACM Subject Classification Theory of computation — Semantics and reasoning, Theory
of computation — Rewrite systems

Keywords and phrases term rewriting systems, regularity preservation, over-approximation,
completeness, tree automata, tree automata completion

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.16

Related Version [11], https://hal.inria.fr/hal-01501744

1 Introduction

Given a term rewriting system (TRS for short) R and a tree automaton .4 recognizing a regular
tree language L£(A), the set of reachable terms is R*(L(A)) = {t | s € L(A) and s =" t}.

In this paper, we show that the equational tree automata completion algorithm [15] is complete
w.r.t. regular approximations. If R is left-linear and there exists a regular language £ over-
approximating R*(L(A)), i.e., R*(L(A)) C .Z then completion can build a tree automaton
A* such that R*(L(A)) C L(A*) C £. We also show that completion is complete w.r.t.
TRSs preserving regularity, i.e., if & = R*(L(.A)) then completion can build a tree automaton
A* such that R*(L(A)) = L(A*) = . On the one hand, automata built by completion-like
algorithms are known to recognize ezxactly the set of reachable terms, for some restricted
classes of TRSs [17, 24, 8, 10]. On the other hand, automata completion is able to build
over-approzimations for any left-linear TRS [9, 23, 15], and even for non-left-linear TRSs [3].
Such approximations are used for program verification [5, 4, 10, 14] as well as to automate
termination proofs [16, 20]. To define approximations, completion uses an additional set of
equations £ and builds a tree automaton A% p such that L(A% p) 2 R*(L(A)). Starting
from R, A, and E Timbuk[12] is an automatic tool to build A% 5. Until now it was an
open question whether completion can build any regular over-approximation or compute
the set of reachable terms if this set is regular. The first contribution of this paper is to
answer these two questions in the positive, for general left-linear TRSs. The proofs are not

37 licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 16; pp. 16:1-16:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:genet@irisa.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.16
https://hal.inria.fr/hal-01501744
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

Completeness of Tree Automata Completion

constructive but, the second contribution is to provide an efficient method to explore regular

approximations for TRSs encoding functional programs.

For the approximated case, the proof of completeness is organized as follows. If there
exists a regular over-approximation £ such that R*(L(A)) C ., we know that there exists
a tree automaton B such that £(B) = £. From B, using the Myhill-Nerode theorem, we
can infer a set of equations E such that the set of E-equivalence classes T (F)/=, is finite.
Then we prove the following theorems:

(a) If T(F)/= is finite, then it is possible to build from E a set of equations E’, equivalent
to E, such that completion of any automaton A by any TRS R with E’ always terminates.
This generalizes the termination theorem of [10];

(b) If T(F)/=, is finite, then it is possible to build from E and A a tree automaton A
recognizing the same language as A such that the completed automaton A% p has the
following precision property: L(A% p) € RE(L(A)), where R} (L(A)) is the set of
reachable terms by rewriting modulo E. It generalizes the Upper Bound theorem of [15].

(c) Then, we show that R (L(A)) C L(B), and we get the main completeness theorem:
L(A% p) € RE(L(A)) € L(B).

Besides, we know from [15] that R*(L(A)) C L(A%). Thus, when using the set of equations
defined from B to run completion, (c¢) implies that we can only get an over-approximation
of R*(L(A)) equivalent or better than .2 = L(B). This result has a practical impact for
program verification. In particular, for TRSs encoding functional programs, the search space
of sets of equations E can be constrained for enumeration to be possible. This has been
implemented in the Timbuk [12] tool. Our experiments show that this makes completion
automatic enough to carry out safety proofs on first-order and higher-order functional
programs. We also get a corollary of (¢) when £ is not an approximation:

(d) If & = L(B) = R*(L(A)), we can use R*(L(A)) C L(A%) to close-up the C-chain
and get that L(A% p) = R*(L(A)). Thus if R*(L(A)) is regular, there exists a set of
equations E s.t. L(A}) = R*(L(A))

Section 2 defines some basic notions in term rewriting and tree automata and Section 3 recalls
the tree automata completion algorithm and the related theorems. Section 4 recalls the
Myhill-Nerode theorem for trees and defines the functions to transform a set of equations into
a tree automaton and vice versa. Section 5 proves Result (a) and Section 6 shows Result (b).
Section 7 assembles (a) and (b) to prove results (c) and (d) using the proof sketched above.
Section 8 shows how to take advantage of those results to program verification and presents
some experiments. Finally, Section 9 concludes.

2 Preliminaries

In this section we introduce some definitions and concepts that will be used throughout the
rest of the paper (see also [2, 6]). Let F be a finite set of symbols, each associated with an
arity function. For brevity, we write f : n if f is a symbol of arity n and F™ = {f € F | f : n}.
Let X be a countable set of variables, T (F,X) denotes the set of terms and T (F) denotes
the set of ground terms (terms without variables). The set of variables of a term ¢ is denoted
by ¥ar(t). A substitution is a function o from X into T (F,X), which can be uniquely
extended to an endomorphism of T (F, X). A position p in a term t is a finite word over
N, the set of natural numbers. The empty sequence A denotes the top-most position. The
set Pos(t) of positions of a term ¢ is inductively defined by Pos(t) = {A\} if t € X or t is
a constant and Pos(f(t1,...,tn)) ={A}U{i.p|1<i<nandpe Hos(t;)} otherwise. If
p € Pos(t), then t(p) denotes the symbol at position p in ¢, ¢|, denotes the subterm of ¢ at

T. Genet

position p, and ¢[s], denotes the term obtained by replacing the subterm ¢|, at position p by
the term s. A ground context C[] is a term in 7 (F U {0O}) containing exactly one occurrence
of the symbol O. If t € T (F) then CJt] denotes the term obtained by the replacement of O
by t in C[]. A context is empty if it is equal to O.

A term rewriting system (TRS) R is a set of rewrite rules | — r, where l,r € T (F,X),
I ¢ X, and Yar(l) 2 Yar(r). A rewrite rule I — r is left-linear if each variable occurs
only once in [. A TRS R is left-linear if every rewrite rule I — r of R is left-linear. The
TRS R induces a rewriting relation —5 on terms as follows. Let s,t € T(F,X) and
I - reR,s g tdenotes that there exists a position p € Pos(s) and a substitution
o such that s|, = lo and t = s[ro],. The set of ground terms irreducible by a TRS R
is denoted by IRR(R). A set £ C T(F) is R-closed if for all s € .£ and s —x t then

t € Z. The reflexive transitive closure of = is denoted by —%, and s —>!R t denotes
that s =% t and t is irreducible by R. The set of R-descendants of a set of ground terms
I is defined as R*(I) = {t € T(F) | 3s € I s.t. s =5 t}, i.e., the smallest R-closed set
containing I. Let E be a set of equations | = r, where I,r € T (F,X). The relation =g is
the smallest congruence such that for all equations [= r of E¥ and for all substitutions o
we have lo =g ro. The set of equivalence classes defined by =g on 7 (F) is denoted by
T(F)/=5. Given a TRS R and a set of equations F, a term s € T (F) is rewritten modulo
E into t € T(F), denoted s =g, t, if there exists an s" € T(F) and a t' € T(F) such
that s =g s’ =g t' =g t. The reflexive transitive closure —7 /E of =r,E is defined as usual
except that reflexivity is extended to terms equal modulo E, i.e., for all s,t € T(F),if s =g t
then s —7 /et The set of R-descendants modulo F of a set of ground terms I is defined as
Re)={teT(F)|Iselst. s—5 pt}

Let Q be a countably infinite set of symbols with arity 0, called states, such that QNF = ().
Terms in T (F U Q) are called configurations. A transition is a rewrite rule ¢ — ¢, where c is
a configuration and ¢ is a state. A transition is normalized when ¢ = f(q1,...,qn), f € F
is of arity n, and q1,...,q, € Q. An e-transition is a transition of the form ¢ — ¢’ where
g and ¢ are states. A bottom-up non-deterministic finite tree automaton (tree automaton
for short) over the alphabet F is a tuple A = (F, Q, Qy,A), where Q; C Q is the set of
final states, A is a finite set of normalized transitions and e-transitions. An automaton is
epsilon-free if it is free of e-transitions. The transitive and reflexive rewriting relation on
T(F U Q) induced by the set of transitions A (resp. all transitions except e-transitions) is
denoted by —% (resp. —>i*) When A is attached to a tree automaton A we also denote
those two relations by —4* and —>§4*, respectively. A tree automaton A is complete if for all
s € T(F) there exists a state g of A such that s —4* ¢. The language recognized by A in
a state ¢ is defined by L(A,q) = {t € T(F) [t =7 ¢}. We define L(A) =,cq, L(A,q).
A state ¢ of an automaton A is reachable if L(A,q) # 0. An automaton is reduced if all
its states are reachable. An automaton A is ¥-reduced if for all states ¢ of A there exists a
ground term ¢t € 7 (F) such that ¢ —>>f4* ¢. An automaton A is deterministic if for all ground
terms s € T (F) and all states ¢,q" of A, if s 4™ gand s —4" ¢’ then ¢ = ¢’. An automaton

A is R-closed if for all terms s,¢ and all states g € Q, s —4* ¢ and s — ¢ implies t —4* q.

3 Equational Tree Automata Completion

From a tree automaton Ay = (F, Q, Qr, A¢) and a left-linear TRS R, the completion algo-
rithm computes an automaton A* such that £(A*) = R*(L(Ag)) or L(A*) D R*(L(Ap))-

16:3

FSCD 2018

16:4

Completeness of Tree Automata Completion

3.1 Completion General Principles

From A% = Ay, tree automata completion successively computes tree automata A%z, .,4722, oo
such that for all i > 0: L(A%) C L(AS") and if s € L(A%), and s —g ¢ then t € L(AG™).

For k € N, if L(A%) = L(A%™) then A% is a fixpoint and we denote it by A%. To construct
A”l from A%, we perform a completion step (denoted by Cg) which consists in finding
critical pairs between —x and = A For a substitution o : X — Q and arulel - r € R, a
critical pair is an instance lo of [such that there exists a state ¢ € Q satisfying lo —* i 4

and ro A* i, ¢ For ro to be recognized by the same state and thus model the rewriting

of lo into ro, it is enough to add the necessary transitions to A% in order to obtain A%
such that ro %Aqﬂ q. The result of the completion step CR(AR) is thus A% ", In [24, 15]

critical pairs are Jomed as in Figure 1.

lo ——=r0

—to 5(s(q0)) = s(qo)

A;zl lA;‘;l A,:J:T* P J{Avk A’kl* *J/A,g

/
q=<—74
'Ak+1 Ga b q2 q1

Figure 1 Completion step Figure 2 Simplification step Figure 3 Simplification example

From an algorithmic point of view, there remain two problems to solve: find all the critical
pairs (I — r,0,q) and find the transitions to add to A% to have ro _>A‘“ q. The first

problem, called matching, can be efficiently solved using a specific algorithm [8] The second

problem is solved using a normalization algorithm [10]. To have ro —* A q" we need a

transition of the form ro — ¢’ in A;Q‘l. However, this transition may not be normalized.
In this case, it is necessary to introduce new states and new transitions. For instance,
to normalize a transition f(g(a),h(q1)) = ¢’ w.r.t. a tree automaton A% with transitions
a—q1, b= q1, g(q1) — q1, we first rewrite f(g(a), h(q1)) with transitions of A% as far
as possible. We obtain f(q1,h(q1)). Then we introduce the new state ¢ and the new
transition h(q1) — g2 to recognize the term h(g;). The new transitions to add to A% are
thus: h(q1) = g2, f(q1,92) — ¢, and ¢’ — ¢q.

3.2 Simplification of Tree Automata by Equations

Since completion creates new transitions and new states to join critical pairs, it may diverge.
Divergence is avoided by simplifying the tree automaton with a set of equations E. This
operation permits the over-approximation of languages that cannot be recognized exactly
using tree automata completion, e.g., non-regular languages. Simplification consists in finding
E-equivalent terms recognized in A by different states and then by merging those states.

» Definition 1 (Simplification relation). Let A = (F, Q, Qs, A) be a tree automaton and E
be a set of equations. For s=t€ FE, 0 : X — Q, qq,q € Q such that so —>§4* Qa, to —>)j4* qb
(See Figure 2) and q, # qp then A is simplified into A’, denoted by A ~»g A’, where A’ is
A where g is replaced by ¢, in Q, Qf and A. o

» Example 2. Let E = {s(s(z)) = s(z)} and A be the tree automaton with Q; = {g2}
and set of transitions A = {a — qo, s(q0) = @1, (1) = ¢2}. Hence L(A) = {s(s(a))}. We
can perform a simplification step using the equation s(s(x)) = s(z) because we found a
substitution o = {z — qo} such that s(s(qo)) —>}f4* q2, s(qo) —>)§4* q1 (see Figure 3). Hence,

T. Genet

A~>p A’ where A’ is A where g, is replaced by g i.e., A’ is the automaton with Q' = {q:},
A ={a— qo,5(q0) = q1,5(q1) = ¢1}. Note that L(A") = {s*(s(a))}.

The simplification relation ~» g is terminating and confluent (modulo state renaming) [15].

In the following, by Sg(A) we denote the unique automaton (modulo renaming) A’ such
that A ~7%, A’ and A’ is irreducible (it cannot be simplified further).

3.3 The full Completion Algorithm

» Definition 3 (Automaton completion). Let A be a tree automaton, R a left-linear TRS
and F a set of equations.
A g =A,
A%erl = Sp(Cr(A% p)), for n > 0 where Cr (A% ;) is the tree automaton such that all
critical pairs of .A%y g are joined.
If there exists k € N such that A%,E = A%Té, then we write A% for A%E.

» Example 4. Let R = {f(z,y) — f(s(z),s(y))}, E = {s(s(x)) = s(x)} and A° be
the tree automaton with set of transitions A = {f(qu, %) — ¢o,a@ — ¢u,b = @}, ie.,
L(A%) = {f(a,b)}. The completion ends after two completion steps on A%, p which is a
fixpoint A}% - Completion steps are summed up in the following table. To simplify the
presentation, we do not repeat the common transitions: A% 5 and Cr(A’) columns are

supposed to contain all transitions of A, ... ,.A;;}E.
A° Cr(A°) Ak.i Cr(Ak,5) 2e
F(Ga, @) = qo0 || flar,q2) = g3 | flar,q2) = g5 || flaa,05) = a6 | f(q1,42) = go
a— ga 5(¢a) = @1 5(ga) = @1 s(q1) = qu s(q) = @
b= aq s(qp) — 2 s(gp) = g2 s(g2) = g5 s(g2) = @2
q3 — qo g3 — qo g6 — g3

On A%, there is one critical pair f(qa, q») =%, 90 and f(qa,qp) —r f(s(¢a),s(qp)). The

automaton Cr(A%) contains all the transitions of A with the new transitions (and the
new states) necessary to join the critical pair, i.e., to have f(s(qa),s(qp)) _>ZR(A0) qo- The
automaton A%& 5 is exactly Cr(A°) because simplification by E does not apply. Then,
CR(A%Q7) contains all the transitions of -’4%{, 5 and A plus those obtained by the resolution
of the critical pair f(q1,¢2) —>f471zE gs and f(q1,92) —r f(s(q1),s(g2)). On CR(A%Q7E)
simplification using the equation s(s(z)) = s(x) can be applied on the following instances:
5(5(da)) = 5(¢a) and s(s(@)) = @. Since s(s(da)) —¢ (ar) 94 a0d 5(da) =5 (ay,) W5
simplification merges g4 with ¢;. Similarly, simplification on s(s(gs)) = ¢ merges g5 with
g2. Thus, A% = CR(A%a) where ¢4 is replaced by ¢1 and g5 is replaced by g2. This
automaton is a fixed point because it has no other critical pairs (they are all joined).

3.4 Lower Bound, Upper Bound and Termination of Completion

» Theorem 5 (Lower Bound [15]). Let R be a left-linear TRS, A be a tree automaton and
E be a set of equations. If completion terminates on A% g then L(A% p) 2 R*(L(A)).

To state the upper bound theorem, we need the notion of R/E-coherence we now define.

16:5

FSCD 2018

16:6

Completeness of Tree Automata Completion

» Definition 6 (Coherent automaton). Let A = (F, Q, Qf, A) be a tree automaton, R a
TRS and E a set of equations. The automaton A is said to be R/E-coherent if Vg € Q :
dse T(F):

S%A*qA[VtET(f):(tﬁil*q = s=pt)A(t—=4"q = s =% /pt)

Here is the intuition behind R/E-coherence. An R /E-coherent automaton is ¥-reduced, its
e-transitions represent rewriting steps and normalized (¥-transitions) transitions recognize
E-equivalence classes. More precisely, in an R/E-coherent tree automaton, if two terms s, ¢
are recognized in the same state ¢ using only normalized transitions then they belong to the
same E-equivalence class. Otherwise, if at least one e-transition is necessary to recognize,
say, t in ¢ then at least one step of rewriting with R was necessary to obtain ¢ from s.

» Example 7. Let R = {a — b}, E = {c =d} and A = (F,Q, Qs A) with A = {a —
q0,b = q1,¢ = q2,d = q2,q1 — qo}. The automaton A is R/E-coherent because it is
¥-reduced and the state g» recognizes with —} two terms ¢ and d but they satisfy ¢ =g d.

Finally, a =4 go and b =4 qo but a —>i qo, b —>i q1 — qo and a —g b.

» Theorem 8 (Upper Bound [15]). Let R be a left-linear TRS, E a set of equations and
A an R/E-coherent automaton. For any i € N: L(A% p) € Ry(L(A)) and Ay 5 is
R/E-coherent.

Finally, we state the termination theorem which relies on E-compatibility. Roughly speaking,
E-compatibility is the symmetric of E-coherence. An automaton A is E-compatible if for all
states q1,q2 € A and all terms s,¢ € T (F) such that s —>§4* qi, t —>)§4* g2 and s =g t then
we have ¢ = ¢s.

» Theorem 9 (Termination of completion [10]). Let A be a X-reduced tree automaton, R a
left-linear TRS, and E a set of equations such that T (F)/=, is finite. If for alli € N, A%’E
is E-compatible then there exists a natural number k € N such that A%’E is a fixpoint.

To prove our final result, we first have to generalize Theorems 8 and 9 to discard the technical
R /E-coherence and E-compatibility assumptions. This is the objective of the next sections.

4 From automata to equations and vice versa

Theorem 9 uses the assumption that the automata A;Z g are all E-compatible. This is not
true in general. Unlike R/FE-coherence, E-compatibility is not preserved by tree automaton
completion: A%‘}E may not be E-compatible even if .A%z g is. Proofs can be found in [11].

» Example 10. Let F ={f:1,a:0,b:0,c¢: 0}, R ={f(z) = f(f(z)), f(f(x)) = a}, A be
the automaton such that A = {a = ¢1,¢ = q1, f(¢1) — ¢5} and E = {f(a) = f(b), f(b) =
b, f(c) = f(b)}. Note that T (F)/=, has 3 equivalence classes: the class of {a}, the class of
{b, f(a), f(b), f(c),...} and the class of {c}. However, completion does not terminate on this
example. Automaton A is E-compatible (f(a) =g f(c) and both terms are recognized with

—>§4 by the same state: gy) but ./4713’ g 1s not: it has one new state ¢o and contains additional
transitions {f(qs) — ¢2,¢92 — ¢y }. We thus have f(f(a)) —>§f{ ¢2 and f(a) —>}j4”{ gy and
R,E R,E

F(f(a)) =p f(f(b)) =& £(b) =g f(a) but g2 # qs. Since b is not recognized by Az 4, for any
n, the equation f(b) = b never applies and completion diverges.

T. Genet

E-compatibility can be ensured for particular cases of R and E, e.g., for typed functional
programs [10]. Here, we show how to transform the set F into a set Eg for which completed
automata are Ep-compatible, and completion is thus terminating. We also build Fp so
that its precision is similar to E, i.e., =g = =g,. This transformation is based on the
Myhill-Nerode theorem for trees [18, 6]. We first produce a tree automaton 5 whose states
recognize the equivalence classes of E. Then, from B, we perform the inverse operation and
obtain a set Ep whose set of equivalence classes is similar to the classes of E, but whose
equations avoid the problem shown in Example 10. In this paper, we mainly consider sets E
of ground equations because they are sufficient to prove our completeness results and for the
practical applications of Section 7. However, this can be extended to general equations if F
can be oriented into a weakly terminating TRS R s.t. IRR(R) is finite [11].

4.1 From equations to automata

If T(F)/=, is finite, the Myhill-Nerode theorem for trees [18, 6] relates T (F)/=, with tree
automata. This theorem is constructive and provides an algorithm to switch from one form
to the other, provided that =g is decidable. In the following we denote by MIN the function
that builds a tree automaton from a set of equations E [18].

» Definition 11 (Function MN). Let E be a set of equations such that 7 (F)/=, is finite
and =g is decidable. Let Q be a set of states and state : T(F)/=, — Q be an injective
function. MN(FE) = (F, Q, Q,A) where A = {f(state(uy), ..., state(uy)) — state(u) | f €
Four,.oyup,u € T(F)/=p, and f(uq,...,u,) =g u}

» Theorem 12 (Myhill-Nerode theorem for trees [18]). If T (F)/=, is finite and =g decidable,
B = MN(E) is a reduced, deterministic, epsilon-free and complete tree automaton such that
forall s,t € T(F), s=pt < (3¢:{s,t} C L(B,q)).

When all equations of E are ground, E can be oriented into a complete TRS (confluent and
terminating) E, using for instance [22]. Then = is decidable using E and finiteness of
T(F)/=, is equivalent to finiteness of IRR(E)7 which is decidable [6].

» Example 13. Consider the set F of Example 10. We can orient F into a complete TRS
E = {f(a) = f(b), f(b) — b, f(¢) — f(B)}. The set IRR(E) is {a,b,c}. The automaton
MN(E) has 3 states qo, q1, g2 such that state(a) = qo, state(b) = g1 and state(c) = ¢a. It
has six transitions a — ¢o (because a %’TE) a), b — q1 (because b %!E b), ¢ — g2 (because

c _>!§? ¢), f(qo) — q1 (because f(a) —>’E> b), f(q1) = q1 (because f(b) —>!E> b), flg2) = @1
(because f(c) —>!E> b).

4.2 From automata to equations

In the other direction, starting from a tree automaton B it is possible to build a set of
equations Ejp such that languages recognized by states of B and equivalence classes of
T(F)/=g, coincide [18]. We reformulate the original algorithm into a function called A2E
because we need some additional properties on the generated set of equations for completion
to terminate. For simplicity we assume that B is Reduced and epsilon-Free. Some properties
of Eg will hold only if B is also Complete and Deterministic. In the following, we use the
RF and RDFC short-hands for automata having the related properties. Recall that for any
tree automaton, there exists an equivalent RF or RDFC automaton [6].

For an RF automaton B, the construction of Eg = A2E(B) is straightforward and
follows [18]: for all states g we identify a ground term recognized by ¢, a representative,

16:7

FSCD 2018

16:8

Completeness of Tree Automata Completion

and for all transitions f(¢1,...,¢,) — ¢ we generate an equation f(t1,...,t,) =t where t;,
1 < i < n are representatives for ¢; and t is a representative for q. However, for this set of
equations to guarantee termination of completion it needs some redundancy: for each state
we generate a set of state representatives and the equations are defined for each representative
of the set. As shown in Example 10, the equation f(b) = b cannot be applied during
completion because b does not occur in the tree automaton. However, a logical consequence
of this equation is that f(f(a)) =g f(a) and terms f(f(a)) and f(a) that occur in the tree
automaton could be merged. In our setting the term f(a) will be a state representative
and the equation f(f(a)) = f(a) will appear in the set of generated equations. Roughly
speaking, every constant symbol a appearing in a transition a — ¢ is a state representative
for q. Every term of the form f(uq,...,u,) is a state representative for ¢ if (1) u;’s are not
state representatives of ¢, (2) f(q1,...,q,) — ¢ is a transition of B and (3) w;’s are state
representatives for the ¢;’s. The property (1) ensures finiteness of the set of representatives.

» Definition 14 (State representatives). Let B = (F, Q, @, A) be an RF tree automaton
and g € Q. The set of state representatives of ¢ of height lesser or equal to k € N, denoted
by [q], is inductively defined by:

lals ={a]a—qeA)

lal = lalg ' U {f(ur,eun) | flar,- o qn) > g€ Aand 1 <i<n,u € [qlg ",

and Vp € Pos(u;) : uilp € [q]f '}

In the above definition, the fact that B is reduced and epsilon-free ensures that there exists
at least one (non-epsilon) transition for every state and that each state has at least one state
representative.

» Example 15. Let B be the RF automaton that we obtained in Example 13 and whose set
of transitions is a — qo, b = q1, ¢ — ¢2, f(q0) = @1, f(q1) = q1, f(g2) = q1.
Lol = {a}, axlh = {b}, and [ga]} = {c}.
[90]% = [l 0] = {b, f(a), f()}, and [go]F = [g]5- The term f(b) of height 2 and
recognized by ¢ is not added to [¢1]% because its subterm b belongs to [¢1]-
The fixpoint is reached because terms f(f(a)) and f(f(c)) recognized by ¢; are not added
to [¢1]3 because f(a) and f(c) belong to [q1]%.
We denote by [¢]s the set of all state representatives for the state ¢ i.e., the fixpoint of the
above equations. We know that such a fixpoint exists and is always a finite set. Omitted
proofs can be found in [11].

» Lemma 16 (The set of state representatives is finite). For all RF tree automata B, for all
states q € B there exists a natural number k € N for which the set [[q]]’g s a fixpoint.

» Definition 17 (Function A2E: set of equations Ep from a tree automaton B). Let B =
(F,Q,Q9s,A) be an RF tree automaton. The set of equations Ep inferred from B is
A2E(B) = {f(u1,...,un) =u| f(q1,---,qn) = q € B, u € [g]p and u; € [q;]g for 1 <i <

» Example 18. Starting from the automaton B and the state representatives of Example 15,
the set A2E(B) contains the following equations: a = a (because of transition a — ¢qq),
¢ = ¢ (because of transition ¢ — ¢2), b="0, b = f(a), b = f(c) (because of transition b — ¢1),
fla) = f(a), f(a) = b, f(a) = f(c) (because of transition f(qo) — q1), f(f(a)) = f(a),
f(f(a)) =b, f(f(a)) = f(c), f(b) = f(a), f(b) =0, f(b) = f(c), f(f(c)) = fla), f(f(c)) =D
f(f(e)) = f(c) (because of transition f(q1) = q1), f(c) = f(a), f(c) =b, and f(c) = f(c

(because of transition f(g2) — ¢1).

)

T. Genet

Since B is finite and the set of state representatives is finite then so is Fg. Note that many
equations of Ep are useless w.r.t. the underlying equational theory. This is the case, in
the above example, for equations of the form a = a as well as the equation f(a) = f(c)
which is redundant w.r.t. b = f(a) and b = f(c). However, as shown in Example 10 those
equations are necessary for equational simplification to produce Ez-compatible automata and
completion to terminate. With the above Ep, completion of Example 10 terminates. Below,
Theorem 23 shows that, if B is RDFC then completion with A2E(B) always terminates.
Unsurprisingly, if B is deterministic then equivalence classes of Eg coincide with languages
recognized by states of B. This is the purpose of the next two lemmas.

» Lemma 19. Let B = (F,Q, 9, A) be an RDFC tree automaton and Ep = A2E(B).
For all s € T(F), there exists a unique state ¢ € Q such that s —% q and for all state
representatives u € [q]B, s =g, u.

Now we can relate equivalence classes of Eg and languages recognized by states of B.

» Lemma 20 (Equivalence classes of Ep coincide with languages recognized by states of B). Let
B=(F,Q,Q9¢ A) be an RDFC tree automaton and Eg = A2E(B). For all s,t € T(F),
s=pgyt <= (q:{s,t} C L(B,q)).

» Corollary 21 (7 (F)/=,, is finite). Let B = (F,Q,Qf, A) be an RDFC tree automaton.
If Eg is the set of equations inferred from B then T(F)/:EB is finite.

5 Generalizing the termination theorem

Now, we prove that using E built from an RDFC tree automaton B, completion terminates.

5.1 Proving termination of completion with Ej

In the following, the automaton A* is the limit of the (possibly) infinite completion of an
initial ¥-reduced tree automaton A with R and Ep. If the initial automaton is not ¥-reduced
then completion may diverge. For instance, completion of the automaton whose set of
transitions is {f(q) — @1}, with R = {f(z) — f(f(z))} and E = {f(a) = a} diverges
(simplification never happens because ¢y does not recognize any term). Now we show that
all state representatives are recognized by epsilon-free derivations in A*.

» Lemma 22 (All states of A* recognize at least one state representative). Let R be a TRS,
A ax-reduced tree automaton, B an RDFC tree automaton and Eg = A2E(B). Let A* be
the limit of the completion of A by R and Eg. For all states g € A*, for all terms s € T (F)

such that s —>§(§ q, there exists a state qz € B, a term u € [qg]s such that v =g, s and
U Hi{i q.

Now, we can state the termination theorem with Ejg.

» Theorem 23 (Completion with Ep terminates). Let R be a TRS, A a X-reduced tree
automaton, B be an RDFC tree automaton and Eg = A2E(B). Let n be the number of all
states representatives of B. The automaton A*, limit of the completion of A with R and
Epg, has n states or less.

16:9

FSCD 2018

16:10

Completeness of Tree Automata Completion

5.2 Building E3 from any set of equations E

Now, we combine the transformations A2E and MN to produce a set of equations Ep that
ensures termination of completion. Unsurprisingly, Eg is equivalent to E.

» Lemma 24. Let E be a set of equations. If T(F)/=, is finite and =g is decidable then
Ep = A2E(MN(E)) and =g = =p,.

3

» Theorem 25 (Generalized termination theorem for completion). Let E be a set of ground
equations such that T (F)/=, is finite. For all x-reduced tree automata A and TRSs R,
completion of A with R and A2E(MN(E)) terminates.

Proof. As mentioned in Section 4.1, since E is ground =g is decidable. By Theorem 12,
we know that B = MN(E) exists and is RDFC. Let Ep be the set of equations A2E(B).
Using Theorem 23, we know that completion of A with R and Ejp is terminating. |

The above theorem shows how to tune a set of equations E into Ez to guarantee termination
of completion. Note that tuning F into Eg does not jeopardize the precision of the completion
since Lemma 24 guarantees that =g = =p,. Combining this lemma with Theorem 8 (the
Upper Bound Theorem) yields that completion of R with Ej is upper-bounded by R},.

6 Improving the Precision of Equational completion

Looking at our overall goal, we are half way there. If £ is regular and ¥ 2 R*(L(A)) (or
£ = R*(L(A))) then it can be recognized by an automaton 5. Using the results of the
last section, we can build a set of equations Ez guaranteeing termination of completion.
What remains to be proved is that completion with Ez ends on a tree automaton under-
approximating . (or recognizing exactly £ = R*(L(A))). As it is, Theorem 8 (the Upper
Bound Theorem) fails to tackle this goal because it needs R /E-coherence of A. However, if
A is not R/E-coherent the full precision, granted by this theorem, may not be obtained.

» Example 26. Starting from Example 10, together with the set of equations Ep of Exam-
ple 18, the initial tree automaton is not R /Ep-coherent (nor R/E-coherent): a —%* ¢1 and

c =Y q1 though a#psc. As a consequence, if we complete A with R and Ep, we obtain
an automaton that roughly approximates R*(L£(.A)). This can be done using the Timbuk
tool [12]:

States q0 g1 Final States q0 Transitions c->q1 a->ql c->q0 £(q0)->q0 £(ql1)->q0 a->q0

This automaton recognizes the term ¢ that is not reachable by rewriting the initial language
L(A) ={f(a), f(c)} with R (nor by rewriting with R/Ep). We propose to transform A so
that it becomes R /E-coherent: we build the product between A and MIN(FE). We recall the
definition of a product automaton and we show that the product is R /E-coherent.

» Definition 27 (Product automaton [6]). Let A= (F,Q,Qr,A4) and B = (F, P, P, AR)
be automata. The product of A and Bis Ax B = (F,Q x P,Qr x Pp,A) where A =

{f(((I17p1)a7(Qk>pk)) — (ql7pl) | f(qla"'7Qk?) — ql S A.A and f(p177pk) _>p/ € AB}

» Theorem 28 (Generalized Upper Bound). Let R be a left-linear TRS, A an epsilon-free
automaton, and E a set of ground equations such that T (F)/=, is finite. If B = MN(FE)
and A = A x B then for any i € N: E(A%aE) CR5(L(A)).

T. Genet

Figure 4 The Generalized Upper Bound theorem (precision of completion)

Proof. Since £(A) = L(AxB) = L(A)NL(B) and L(B) = T(F), we get that £(A) = L(A).

Since both A and B are epsilon-free, so is B. Thus, to prove R/E-coherence of A, we only
have to prove that for all states ¢ of A and for all two terms s, ¢ € T (F) such that (1) s %X* q
and (2) ¢ —>X* q then s =g t. Since A is a product automaton, ¢ is a pair of the form (g1, ¢2)

where ¢; € A and g3 € B. From (1) and (2) we can deduce that s —>§3* g2 and t —>§3* qo.

Then, using Lemma 12, we get s =g t. Thus A is R/E-coherent and from Theorem 8, we
get that L(A%) € Rp(L(A)) and L(A) = L(A) ends the proof. <

» Example 29. Starting from Example 26, we can build the product between A and the
automaton B found in Example 13. In A x B, a and ¢ are recognized by two different states,
avoiding the R/FE-coherence problem of Example 26. The ¥-reduced product A = A x B
(where product states are renamed) is the automaton with Q; = {¢2} and A = {¢ — ¢g9,a —
a1, f(90) — a2, f(q1) — g2}. Running Timbuk on A, R, and Ep, we obtain A% p whose
precision is now bounded by R, (£(A)) and does not recognize ¢ in a final state:

States q0 q1 g2 Final States q0 Transitions a->ql £(q0)->q0 £(q1)->q0 £(q2)->q0
a->q0 c->qg2

This provides hints to define equations for completion: we can start from an automaton B
defining a rough approximation of the target language and build £ = A2E(B). Then, we
complete A = A x B with R and E and obtain a tree automaton A% g whose precision is
better or equal to B. The set R (L(A)) acts as a safeguard for completion (see Figure 4). In
particular, terms of Ry (L(A)) may not belong to L(A%). This is the case in Example 29,
where the term b belongs to Ry, (L£(A)) but not to L(A%). In practice, we still need to
know if E always exists (Section 7) and to generate a satisfactory E (Section 8).

7 Completeness Theorems

In this section, we prove two completeness theorems on completion. The first theorem states
that if the set of reachable terms can be over-approximated by a regular language ., then we
can find a language containing reachable terms and under-approximating . using equational
completion. The second theorem states that if the set of reachable terms is regular then
completion can build it. Since the upper-bound of completion depends on R, we first need
a lemma showing that if £ is built from £ then R}, is upper-bounded by .Z.

» Lemma 30. Let R be a TRS over F, S C T(F), and B an RDFC automaton such that
L(B) 2 R*(S) and L(B) is R-closed. If Eg = A2E(B) then Ry, (S) C L(B).

Example 31 shows that the R-closed assumption on .Z is necessary for the lemma to hold.

16:11

FSCD 2018

16:12

Completeness of Tree Automata Completion

» Example 31. Let F = {a : 0,b: 0,c: 0,d : 0}, S = {a}, R = {a = b,c — d}, and
% ={a,b,c} where £ D R*(S) but .£ is not R-closed. A possible RDFC automaton B,
st. L(B) = £, has a unique final state ¢ and transitions {a — ¢,b — ¢,¢ — ¢}. Thus
Ep = A2E(B) includes the equation b = c. Finally R, (S) = {a,b,¢,d} £ Z.

» Theorem 32 (Completeness). Let A be a reduced epsilon-free tree automaton and R a
left-linear TRS. Let T(F) 2 % D R*(L(A)). If £ is regular and R-closed then there exists
a set of ground equations E such that A = A x MN(E), A g exists and R*(L(A)) C
LA) C 2.

Proof. Since .Z is regular, we know that there exists an RDFC tree automaton, say B,
recognizing .%. From B we can infer Eg = A2E(B) and then use completion to compute
reachable terms. From Theorem 23, we know that completion of the automaton A with
R and the set of equations Ep always terminates on a tree automaton A;‘Z’ gy From
Theorem 8, we know that L(A% 5.) € R, (L(A)) provided that A is R/Ep-coherent. To
enforce R /Epg-coherence of A, we apply the transformation presented in Section 6. Let A =
A x MN(Eg). Note that since Eg is obtained by using the A2E transformation, 7 (F)/=,
is finite (Corollary 21) and since equations of Ep are ground, =g, is decidable. The resulting
automaton A is R/Ep-coherent. Besides, Theorem 23 also applies to A. Thus, completion
of A with R and E always ends on an automaton A% 5 . The automaton A% g satisfies
R*(L(A)) € L(Ag g,) (by Theorem 5) and L(A% p.) € Ry, (L(A)) (by Theorem 28).
Since L(A) = L(A), we have R*(L(A)) C L(A% g,) and L(AL g,) € Ry, (L(A)). With
Lemma 30, we get that Ry, (L(A)) € L(B) = 2. <

In general we do not have L(A% ;) 2 & because L(A},) can be more precise than £ (See
Example 29). However, this is true when . = R*(L(.A)), as we show in the next theorem.

» Theorem 33 (Completeness for regularity preserving TRSs). Let A be a reduced epsilon-free
tree automaton and R a left-linear TRS. If R*(L(A)) is reqular then it is possible to compute
a tree automaton recognizing R*(L(A)) by equational tree automata completion.

Proof. Let .2 = R*(L(A)). Tt is R-closed. By assumption, it is also regular. Thus, we can
apply Theorem 32 to get that there exists a set of equations E and a tree automaton A =
A x MN(E) such that A% exists and R*(L(A)) C L(A}) € Z. Since £ = R*(L(A)),
we get L(A% 5) = R*(L(A)). <

Thus, completion is complete w.r.t. all left-linear TRS classes preserving regularity.

8 Application of the Completeness Theorem

Let us show how to take advantage of Theorem 32 to automatically verify safety properties
on programs. Given an initial regular language S and a program represented by a TRS R,
we can prove that the program never reaches terms in a set Bad by checking that there exists
a regular over-approximation . O R*(S) such that .Z N Bad =). This technique has been
used to verify cryptographic protocols [1], Java programs [4] and Functional Programs [10, 14].
Theorem 32 ensures that, if there exists an R-closed regular approximation .# such that
% N Bad =), then we can build it (or under-approximate it) using completion and an

appropriate set of ground equations E. To explore all the possible F, it is enough to explore
Gr(k) with k € N*.

» Definition 34 (Generated Equations for F and k € N*). Let B(k) be the set of all possible
RDFC tree automata on F with exactly k states. The set of generated equations of size k is
Gr(k)={F | B eB(k) and E = A2E(B)}.

T. Genet

The semi-algorithm to prove that R*(L(A)) N Bad = () works as follows: (a) We start
from k = 1, (b) we generate G (k), (¢) we try completion with A, R and all E € Gz(k)
(completion terminates with all those E, Theorem 23). If L(A} ;) N Bad =) for one
E, we are done. Otherwise if L(A% ;) N Bad # 0 for all E € Gz(k), we increase k and
go back to step (b). If there exists a regular over-approximation £ 2 R*(S) such that
#NBad = 0, then this algorithm eventually reaches a tree automaton B such that L(B) = &,
E = A2E(B), and by Theorem 32, we know that L(A% ;) C Z. Finally, since £ N Bad = 0,
we have L(A%) N Bad = 0.

For general TRSs, we can enumerate all equation sets of Gz(k) but the search space is
huge. When the TRS R encodes a functional program, we can restrict the search space to
equation sets of the form E = Exr U E,. U E¢ [10], where Ex and E, are fixed and E¢ only
ranges over IRR(R). If program’s functions are complete and terminating, IRR(R) is the set
of constructor terms, i.e., terms containing no function call. The set F can be separated into
a set of defined symbols D = {f | A — r € R s.t. Zoot(l) = f} and constructor symbols
C=F\D.

» Definition 35 (E,). For an alphabet F, E,. = {f(z1,...,2n) = f(z1,...,2,) | [€
F, and arity of f is n}, where z; ...z, are pairwise distinct variables.

» Definition 36 (ER). Let R be a TRS, the set of R-equationsis Ex = {l=7r |l —r e R}.

» Definition 37 (E¢ contracting equations for 7(C)). A set of equations is contracting for
T (C), denoted by Eg, if all equations of Egare of the form u = u|, with u E_’}T(C)7 D #E A,
—

Ec={u—ul, | u=u|, € E¢}, and IRR(E¢) (terms of T (C) irreducible by E¢) is finite.

Completion is terminating if £ = Exr U E,. U E¢ and R encodes a functional program which
is terminating, complete, and is either first order [10] or higher-order [14]. Now, our objective
is to define a completeness theorem for TRSs encoding those programs. Since E contains
Eg, all completed automata A;"Q,E will be R-closed because s %j% L0 s oR t, t %Z% . q
implies that s =g, ¢t and ¢ = ¢ (.A%E is simplified w.r.t. £ D ER).YThuS7 the completéness
theorem says that if there exists an R-closed automaton B s.t. £(B) D R*(L(A)) then there
exists E¢ such that F = Egr U E, U E¢ and L(%E) C L(B). To prove such a theorem, we
need to explain how to construct a satisfying F¢ from B. We propose to project B on C
(denoted by B/C), produce equations from B/C with A2E, and finally filter out all equations
that are not of the form u = u|, (this is function ct).

» Definition 38 (Automaton projection on C). Let B = (F,Q, Q;,A) be an epsilon free
tree automaton. The automaton B/C is the tree automaton (C, Q¢c, Qr N Q¢, A¢) where
Ac={s—>q|s—qge AANRoot(s) € C} and Q¢ is the set of states occurring in the
right-hand side of transitions of A¢.

Note that £(B/C) = L(B) N T(C) and if B is RDFC so is B/C. In particular, if B is
complete for F, B/C is complete for C.

» Definition 39. Given a set of equations E, ct(E) ={l=r € E|r =1, and p # A}.

In the following, we show that E = ct(A2E(B)) is a contracting set of equations, provided
that B is RDFC. In particular, we show that IRR(B) is finite.

» Lemma 40. If B is an RDFC automaton on C and E = ct(A2E(B)), then IRR(E) is
finite and E is contracting for T (C).

16:13

FSCD 2018

16:14

Completeness of Tree Automata Completion

The above lemma states that ct(A2E(B)) is contracting for 7(C). To have a finite set of
equivalence classes on 7 (F) (and a terminating completion) we use E = Exr U E,. U E¢ where
Ec = ct(A2E(B/C)). Now we prove that, w.r.t. approximations, E is as precise as Ep.

» Lemma 41. For a TRS R and an automaton B on F, if B is RDFC and R-closed and
Ep=A2E(B), Ec = ct(A2E(B/C)), and E = Er UE, U E¢ then =g C =p,.

» Theorem 42 (Er U E, U E¢ covers all R-closed approximation automata). Let R be
a left-linear TRS and A a reduced and epsilon-free tree automaton on F. Let B be an
R-closed RDFC tree automaton such that L(B) 2 R*(L(A)). Let E¢c = ct(A2E(B/C)),
E = EcUERUE,, and A = Ax MN(E). If Ay exists then R*(L(A)) C L(AR) € L(B).

Proof. The fact that R*(L(A)) C L(A% p) is ensured by Theorem 5. Using the Generalized
Upper Bound theorem (Theorem 28), we deduce that (1) L(A% p) € RE(L(A)). From
Lemma 41, we know that =g C =g, and thus that (2) R;(L(A)) € RE,(L(A)). Besides,
since B is R-closed, L£(B) is R-closed and we can use Lemma 30 to get that (3) R (L(A)) C
L(B). Finally, using transitivity of C on (1), (2) and (3) we get L(A%) C L(B). <

Note that, for functional programs classes of [10] and [14], since E¢ = ct(A2E(B/C)) is
contracting (Lemma 40), A% p always exists. Thus, if there exists an R-closed tree automaton
B such that £(B) 2 R*(L(A)) and L(B) N Bad = 0, it is enough to enumerate all possible
E = Exr UE, U E¢ to find it. Since Exr and E, are fixed, it is enough to enumerate all
possible E¢ on C using Definition 37 and the algorithm of Definition 34 (generating on C).

» Example 43. Let C = {0:0,s: 1}. For k = 1, there is only one RDFC automaton with
1 state. Its transitions are {s(qo) = go,0 — qo}. Thus, G¢(1) = {{s(0) = 0}}. For k = 2
there are 2 RDFC automata : one with transitions {0 — qo, s(q0) — q1,8(q1) — ¢1} and
the other with transitions {0 — qo,s(q0) — ¢1,8(¢1) = go}. Thus, Ge(2) = {{s(s(0)) =

s(0)}, {s(s(0)) = 0,5(s(5(0))) = 5(0)}}.

We implemented this in Timbuk and used it to verify more than 20 safety properties of several
first-order and higher-order functions on lists, ordered lists, trees and ordered trees. Higher-
order properties include state-of-the-art examples from [21, 19, 14]. In [14], contracting
equations of E¢ contain variables and are generated from test sets. Here, we generate ground
contracting equations E¢ as shown above and use E = Fr U E,. U E¢ for completion. We
transform the initial automaton A into A as in Theorem 28. The approximation is, thus,
upper-bounded by R}, and we can benefit from the coverage guarantee of Theorem 42. On
examples taken from [21, 19], we managed to do the same proofs with comparable execution
times. On all the examples of [14], we do the same proofs (or find the counter-examples,
see [14]), but in a much faster way. Appendix A presents a summary of those experiments and
full details are here: http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/.
For each example, we provide the specifications, Timbuk output, and the full result with
completed automaton and generated equations in a Coq checkable file comp.res.

9 Conclusion and perspectives

Tree automata completion is known to cover many TRS classes preserving regularity [8, 10].
For some other classes, the question was still open. We established that, for all those classes
(including those not known yet), given A and R, there exists a set of equations E such that
A% p recognizes R*(L(A)). We proved a similar theorem for the approximated case. The
proofs are not constructive but give hints to enumerate sets of equations E. Finally, we
showed that if a regular approximation satisfying a given property exists, we can find it by

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/

T. Genet

enumerating the sets F and running completion. From an algorithmic point of view and in
the general case (where T (F)/=g is finite), since we enumerate tree automata B on T (F)
to generate sets of equations F, we could directly take advantage of B to perform automata
simplification and thus replace equations.

However, equations are strictly more powerful than tree automata to define approximations.
This can be observed on functional programs (Section 8) where 7 (C)/=g, is finite (and E¢ is
generated using a tree automaton) but 7 (F)/—g is not [14] and E cannot be defined with an
automaton. On functional programs, Theorem 42 shows that enumeration can be restricted to
sets of ground contracting equations on constructor symbols. This makes enumeration efficient
enough to automatically verify properties on first-order and higher programs. Experiments
shows that this approach tackles state-of-the-art automatic verification problems for first-order
and higher-order programs. The completeness Theorem for functional programs ranges over
R-closed RDFC approximation automata. However, there exist R-closed approximations
that are not recognized by R-closed RDFC tree automata.

» Example 44. Let F = {f : 1,a: 0,b: 0}, R = {a — b} and £ = {f(b),a,b}. The
language .Z is R-closed and regular. There exists no R-closed RDFC tree automaton
recognizing .Z. In any R-closed RDFC tree automaton, a and b need to be recognized by
the same state, say ¢, and thus f(b) needs to be recognized using a transition f(q) — g
where ¢y is final. Thus, this automaton recognizes f(a) which does not belong to .Z.

Such approximations are thus out of the scope of Theorem 42, and cannot be found by
enumerating E¢, because F contains Er and the completed automata are R-closed. However,
the above approximation is in the scope of Theorem 32. We think that it is possible to
explore the set of all possible equation sets using F = E,. U Er where Er is contracting on
T (F) and to prune the search space using Counter Example Guided Abstraction Refinement
like [19]. This would permit to have an efficient equation generation for general TRSs and
widen its applicability to non-terminating functional programs, cryptographic protocols, etc.

A last perspective is to extend those results to non-left-linear TRSs. Dealing with regular
languages and non-left-linear rules is known to be more challenging than the left-linear
case [24, 3, 7]. Nevertheless, there could be a nice surprise here. For non-left-linear TRSs,
completion is known to be sound and precise as long as the completed tree automaton is
kept deterministic [8]. Completion itself does not preserve determinism but, in Section 8, all
the completed automata of the experiments are deterministic. This is a consequence of the
fact that E contains E, (makes the automaton ¥-deterministic) and Fr (merges all states
related by an e-transition). Thus, when using E = FEg U E,. U E¢, completion may build
precise over-approximations for non-left-linear TRSs as it does for left-linear ones.

—— References

1 A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Médersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Vigano, and L. Vigneron. The
AVISPA Tool for the automated validation of internet security protocols and applications.
In CAV’2005, volume 3576 of LNCS, pages 281-285. Springer, 2005.

2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

3 Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Handling non left-linear rules
when completing tree automata. IJFCS, 20(5), 2009.

16:15

FSCD 2018

16:16

Completeness of Tree Automata Completion

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approximations for Fast
Prototyping of Static Analyzers. In RTA 07, volume 4533 of LNCS, pages 48-62. Springer,
2007.

Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Approximation for the Veri-
fication of Cryptographic Protocols. In Proc. AVIS’2004, joint to ETAPS’04, Barcelona
(Spain), 2004.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Léding, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr,
2008.

B. Felgenhauer and R. Thiemann. Reachability Analysis with State-Compatible Automata.
In LATA’14, volume 8370 of LNCS, pages 347-359. Springer, 2014.

G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewriting
Systems. Journal of Automated Reasonning, 33 (3-4):341-383, 2004. URL: http://people.
irisa.fr/Thomas.Genet/publications.html.

T. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms. In
RTA’98, volume 1379 of LNCS, pages 151-165. Springer, 1998.

T. Genet. Termination Criteria for Tree Automata Completion. Journal of Logical and
Algebraic Methods in Programming, 85, Issue 1, Part 1:3-33, 2016.

T. Genet. Automata Completion and Regularity Preservation. Technical report, INRIA,
2017. URL: https://hal.inria.fr/hal-01501744.

T. Genet, Y. Boichut, B. Boyer, T. Gillard, T. Haudebourg, and S. Lé Cong. Timbuk
3.2 — a Tree Automata Library. IRISA / Université de Rennes 1, 2017. URL: http:
//people.irisa.fr/Thomas.Genet/timbuk/.

T. Genet, T. Gillard, T. Haudebourg, and S. Lé Cong. Extending timbuk to Verify Func-
tional Programs. In WRLA’18, LNCS. Springer, 2018. To be published.

T. Genet, T. Haudebourg, and T. Jensen. Verifying higher-order functions with tree au-
tomata. In FoSSaCS’18, LNCS. Springer, 2018. To be published.

T. Genet and R. Rusu. Equational tree automata completion. Journal of Symbolic Com-
putation, 45:574-597, 2010.

A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. In RTA’05, volume 3467 of LNCS, pages
353-367. Springer, 2005.

F. Jacquemard. Decidable approximations of term rewriting systems. In H. Ganzinger,
editor, Proc. of RTA’96, volume 1103 of LNCS, pages 362-376. Springer, 1996.

Dexter Kozen. On the Myhill-Nerode theorem for trees. Bull. Furop. Assoc. Theor. Comput.
Sci., 47:170-173, June 1992.

Y. Matsumoto, N. Kobayashi, and H. Unno. Automata-Based Abstraction for Automated
Verification of Higher-Order Tree-Processing Programs. In APLAS’15, volume 9458 of
LNCS, pages 295-312. Springer, 2015.

A. Middeldorp. Approximations for strategies and termination. ENTCS, 70(6):1-20, 2002.
L. Ong and S. Ramsay. Verifying higher-order functional programs with pattern-matching
algebraic data types. In POPL’11. ACM, 2011.

W. Snyder. Efficient Ground Completion: An O(n log n) Algorithm for Generating Reduced
Sets of Ground Rewrite Rules Equivalent to a Set of Ground Equations E. In RTA’89,
volume 355 of LNCS, pages 419-433. Springer, 1989.

T. Takai. A Verification Technique Using Term Rewriting Systems and Abstract Interpre-
tation. In RTA’04, volume 3091 of LNCS, pages 119-133. Springer, 2004.

T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting systems
effectively preserve recognizability. In RTA 11, volume 1833 of LNCS. Springer, 2000.

http://people.irisa.fr/Thomas.Genet/publications.html
http://people.irisa.fr/Thomas.Genet/publications.html
https://hal.inria.fr/hal-01501744
http://people.irisa.fr/Thomas.Genet/timbuk/
http://people.irisa.fr/Thomas.Genet/timbuk/

T. Genet

A Experiments

Timbuk Spec. Description P/C | Comp. Eq. Gen.
Time Time

delete not (member A (delete A P 0.01s 0.01s
A_and_B_ list))

delete2 (member B (delete A P 0.01s 0.01s
A_and_B_list))

deleteBasic (delete A A_and_B_ list) removes P 0.01s 0.01s
all occurrences of A

reverseFirstOrder reverse [A,...A,B,...,B] does not pro- P 0.01s 0.03s
duce lists with a A before a B

reverseFirstOrder2 invsorted (reverse [A,...A,B,...,B]) P 0.02s 0.13s

incTree not (member 0 (increment P 0.08s 1.05s
nat__tree))

replaceTree not (member A (replace A C P 0.44s 6.13s
A_and_B_ tree))

orderedTree ordered ordered A and_B_ tree P 0.16s 6.73s

insertTree ordered (insert A_and_ B_ list emp- - - Timeout
tyTree)

orderedTreeTraversal sorted (infix-traversal or- P 0.13s 1.71s
dered_A__and_ B_ tree)

orderTreeTraversalBug | sorted (prefix-traversal or- C 0.2s -
dered_A_and_B_ tree)

mapPlus no 0 in (map (plus 1) nat_ list) P 0.02s 0.08s

filterEven not (exists even (filter odd P 0.12s 1.16s
nat__list))

filterEvenBug not (exists odd (filter odd nat_ list)) C 0.09s -

insertionSort (sorted leq (sort leq P 0.04s 0.11s
A_and_B_list))

insertionSortBug (sorted geq (sort leq C 0.59s -
A_and_B_list))

filterNz (forAll nz (filter nz nat_list)) P 0.01s 0.11s

mapTree no 0 in (map (plus 1) nat_ tree) P 0.03s 16.15s

mapTree2 not (member 0 (map (plus 1) - - Timeout
nat_ tree)

reverse (sorted geq (reverse or-| P 0.04s 0.47s
dered_A_B_ list))

mapSquare (filter (eq 2) (map square nat_ list)) P 0.31s 4.25s
is empty

foldRightMult (foldRight mult nonzero_nat_list 1) P 0.01s 0.01s
is not 0

foldRightMult2 (foldRight mult nonzero_ nat_ list 3) P 0.05s 0.29s
is not 2

foldLeftPlus even (foldLeft plus 0 even_ nat_ list) P 0.01s 0.21s

The above table gives a summary of the experiments carried out with Timbuk. The source
can be found here: http://
people.irisa.fr/Thomas.Genet/timbuk/funExperiments/. The 'Timbuk Spec. column

of the programs, trace of execution, Coq certificates, etc.

gives the name of the Timbuk specification file that was used (it is also available in Timbuk’s
distribution). The first 11 examples are first order programs and the 13 remaining are
higher-order programs. The 'Description’ column gives a short description of the property
we want to prove. In the corresponding Timbuk specification this is the initial language
and encoded by either a tree automaton or a simplified reqular expression [13]. The 'P/C’

16:17

FSCD 2018

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/

16:18

Completeness of Tree Automata Completion

column says if Timbuk has done a (P)roof of the property or found a (C)ounter example.
‘Comp. Time’ stands for completion time and 'Eq. Gen. Time’ for equation generation time.
On some examples, the equation generation algorithm times out and completion cannot be
performed.

B Additional proofs

This section contains some the proofs of [11].

» Lemma (16). For all RF tree automata B, for all states q € B there exists a natural
number k € N for which the set [q]§ is a fizpoint.

Proof. We make a proof by contradiction. Assume that one set of state representatives
[g]s is infinite. Let Q be the set of states of B and ¢ € [¢]g be a term s.t. |t| > Card(Q).
Assume that we label each subterm of ¢ by the state recognizing it in 5. Since height of ¢ is
greater than Card(Q), by the pigeonhole principle we know that there exists ¢’ € B and a
path in the tree ¢ such that ¢’ appears at least two times. Let p,r € Zos(t) be the positions
of the two subterms recognized by ¢'. By definition of state representatives, we know that
tlp € [¢']s and t|, € [¢']5. Since p and r are on the same path, we know that ¢|, is a strict
subterm of ¢, (or the opposite). This contradicts Definition 14 that forbids a term and a
strict subterm to belong to the same set of representatives. |

» Lemma (19). Let B = (F,Q, Q¢,A) be an RDFC tree automaton and Egp = A2E(B).
For all s € T(F), there exists a unique state ¢ € Q such that s =% q and for all state
representatives u € [q]B, s =g, .

Proof. We make a proof by induction on the height of s. If s is a constant, since B is
complete and deterministic there exists a unique transition s — ¢ € A. By construction of
FEp, we know that there are equations with s on the left-hand side and all state representatives
of [¢q]p on the right-hand side. For all equations s = u with u € [¢] g we thus trivially have
s =g, w. This concludes the base case.

Now, we assume that the property is true for terms of height lesser or equal to n. Let
s= f(t1,...,t,) where t1,...,t, are terms of height lesser or equal to n. Since B is complete,
we know that there exists a state ¢ such that f(t1,...,t,) =% ¢, i.e., there exists states
q1s---,qn such that f(qi,...,¢,) = ¢ € A and t; =5 ¢; for 1 <i < n. Using the induction
hypothesis we get that there exist states ¢; in B and terms [¢;]s such that t; =% ¢; and
ti =gy u; for u; € [¢i]p and for 1 < i < n. Since B is deterministic, from ¢; —% ¢; and
ti =5 q; we get that ¢; = ¢; and thus t; =g, u; for u; € [¢;]p, with 1 < i < n. Besides,
since f(q1,...,qn) — q¢ € A, we know that Ep contains the equations f(uq,...,u,) = u for
all u; € [q:]B, for all 1 <i < n and for all u € [¢] . Thus ¢ is the unique state such that
f(t1, ..., tn) =% q. Furthermore, f(t1,...,tn) =gz f(u1,...,un) =g, v for all u; € [¢]s,
for all 1 <7 < n and for all u € [q]3. <

» Lemma (20). Let B = (F,Q, Q¢,A) be an RDFC tree automaton and Egp = A2E(B).
For all s,t € T(F), s=g, t < (3q: {s,t} C L(B,q)).

Proof. For s and ¢, using Lemma 19, we know that there exist unique states ¢,q' € Q
such that s =% ¢, t =% ¢ and for all state representatives v € [¢]p and v € [¢']g, we
have s =g, u and t =g, v. We first prove the left to right implication. From s =g, t we
obtain that u =g, v, where u and v are state representatives. By construction of term
representatives, for all states ¢ we know that [¢]s only contains terms recognized by ¢ in

T. Genet

B. Since B is deterministic, if ¢ # ¢’ then we can conclude that [¢]z N [¢']z = 0. Thus,
the only possibility to have u =g, v is to have an equation v = v in Eg. This entails that

u and v belong to the same set of representatives: [¢]z = [¢'] 3, which entails that ¢ = ¢'.

Then s =5 ¢ and t —% ¢ entails that {s,t} C L(B,q). To prove the right to left implication,
it is enough to point out that because of the determinism of B having t —% ¢’ (the initial
assumption) and having ¢t —% ¢ (the fact that t € £(B,q)) is possible only if ¢ = ¢’. This
entails that v and v have a common set of representatives and thus for all representatives u
of this set s =g, u =g, t. <

» Lemma (21). Let B= (F,Q,Qy,A) be an RDFC tree automaton. If Eg is the set of
equations inferred from B then T (F)/=, is finite.

Proof. Using Lemma 19, we know that for all terms ¢ € T (F) there exists a state ¢ € Q
and a state representative u € [q]s such that t =5 ¢ and t =g, u. Since the number of
states of B is finite, and since the set of state representatives u is finite for all states of B
(Lemma 16), so is the number of equivalence classes of T (F)/=,. <

» Lemma (22). Let R be a TRS, A aX-reduced tree automaton, B an RDFC tree automaton
and Ep = A2E(B). Let A* be the limit of the completion of A by R and Eg. For all states

q € A*, for all terms s € T(F) such that s %)ﬁt q, there exists a state qg € B, a term
u € [qglB such that u =g, s and u —>)§4’i q.

Proof. Note that if A is ¥-reduced, then so is A* (cf. Lemma 44 of [10]). This is easy to
figure out since all states added during completion recognize at least one term with —%", and
this is trivially preserved by simplification. By induction on the height of s we show that the
representative u exists and is recognized by ¢. If s is of height 1 (it is a constant) then, by
construction of state representatives, we know that s is a representative. Thus s = u —>§4i q.

For the inductive case, assume that the property is true for all terms of height lesser or
equal to n. Let s = f(s1,...,8,) be a term of height n 4+ 1. By assumption, we know that

f(s1,...,80) =% ¢ From f(s1,...,5,) =Y. ¢, we obtain that there exists states qi,...,¢n
of A* such that s; =Y. ¢; for i =1,...,n and a transition f(qi,...,q,) = ¢ in A*. Using
the induction hypothesis on ¢;, ¢ = 1,...,n we get that there exist state representatives
u; such that s; =g, u; and u; =Y. ¢ for i = 1,...,n. Then, since f(qi,...,qn) — ¢
in A* we know that f(u1,...,u,) =%: ¢ If f(u1,...,u,) is a state representative we
are done since f(s1,...,8n) =g, f(ur,...,un) and f(ug,...,up) —>§4t q. Otherwise, by
definition of state representatives, for u = f(u1,...,u,) not to belong to the representatives

there is a position p in u, different from the root position such that the subterm ul, is
itself a state representative and it belongs to the same class as u, i.e., v =g, ul,. Since
u1, ..., Uy are state representatives and f(u1,...,u,) is in the same equivalence class as u/,
which is a state representative, we know that the equation f(uq,...,u,) = ul, necessarily

belongs to Ep. Besides, for u %}it q to hold, we know that there exists a state ¢’ such

that ulul,], =% u[¢']l, =%- ¢. Thus, f(ui,...,u,) =Y%> ¢ and u|, =% ¢’. Then, since Ej
contains the equation f(uq,...,u,) = ul,, and since A* is simplified w.r.t. Eg, we necessarily
have ¢ = ¢’ in A*. Finally, we have f(s1,...,5,) =g; f(u1,...,un) =g ul, and ul, =Y q
where u, is a state representative. <

» Theorem (23). Let R be a TRS, A a X-reduced tree automaton, B be an RDFC tree
automaton and Eg = A2E(B). Let n be the number of all states representatives of B. The
automaton A*, limit of the completion of A with R and Eg, has n states or less.

16:19

FSCD 2018

16:20

Completeness of Tree Automata Completion

Proof. Recall that the number n of state representatives is finite (cf. Lemma 16). Assume
that A* has m distinct states with m > n. From Lemma 22 we know that for all states
q € A*, there exists a state representative u such that u —>§41i q. Since there are only n
state representatives, by pigeon hole principle, we know that there is necessarily one state
representative u recognized by two distinct states ¢; and go of A*. Thus, u —>>j4>§ ¢q1 and
U %i’i q2. Besides, by construction of Ep, we know that the equation v = u is part of Ej.
This contradicts the fact that A* is simplified w.r.t. Ej. |

» Lemma (30). Let R be a TRS over F, S C T(F), and B an RDFC automaton such
that L(B) 2 R*(S) and L(B) is R-closed. If Eg = AZE(B) then Ry (S) € L(B).

Proof. We prove that for all natural number k£ >= 0, if s € S and s %%/Es t then t € L(B)
where _>§/€/Es denotes k steps of rewriting by R modulo Eg. By induction on k. If £k =0
then s =g, t. Using Lemma 20 on s =g, ¢, we get that there exists a state ¢ of B such
that s =% ¢ and t =% ¢. Since s € S and S C L(B) there exists a final state q¢ of B
such that s =% gy. Since B is deterministic we obtain that ¢ = gy. Thus ¢ is recognized
by B. For the inductive case, we assume that the property is true for a given k and we
show that it is true for k + 1. Let s —>’7€J}E t, i.e., we have terms s’,s”, and ¢’ such that
S %%/E s’ =g, s —r t' =g, t. Using the induction hypothesis, we get that s’ is recognized
by B. Since L£(B) is R-closed, we know that ¢’ is also recognized by B. Thus, there exists
a final state ¢ such that t" —% q¢. Finally, as above, applying Lemma 20 on the fact that
t' =% qy and t’ =g, t gives us that t =% ¢y. <

A Diagrammatic Axiomatisation of Fermionic
Quantum Circuits

Amar Hadzihasanovic
RIMS, Kyoto University, Japan
ahadziha@kurims.kyoto-u.ac.jp

Giovanni de Felice
Department of Computer Science, University of Oxford, United Kingdom
giovanni.defelice@cs.ox.ac.uk

Kang Feng Ng
Department of Computer Science, University of Oxford, United Kingdom
kangfeng.ng@cs.ox.ac.uk

—— Abstract

We introduce the fermionic ZW calculus, a string-diagrammatic language for fermionic quantum
computing (FQC). After defining a fermionic circuit model, we present the basic components
of the calculus, together with their interpretation, and show how the main physical gates of
interest in FQC can be represented in the language. We then list our axioms, and derive some
additional equations. We prove that the axioms provide a complete equational axiomatisation
of the monoidal category whose objects are quantum systems of finitely many local fermionic
modes, with operations that preserve or reverse the parity (number of particles mod 2) of states,
and the tensor product, corresponding to the composition of two systems, as monoidal product.
We achieve this through a procedure that rewrites any diagram in a normal form. We conclude
by showing, as an example, how the statistics of a fermionic Mach-Zehnder interferometer can
be calculated in the diagrammatic language.

2012 ACM Subject Classification Theory of computation — Quantum computation theory

Keywords and phrases Fermionic Quantum Computing, String Diagrams, Categorical Quantum
Mechanics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.17
Related Version An extended version is available at https://arxiv.org/abs/1801.01231.

Funding The first author is supported by a JSPS Postdoctoral Research Fellowship and
KAKENHI Grant Number 17F17810

1 Introduction

The ZW calculus is a string-diagrammatic language for qubit quantum computing, introduced
by the first author in [16]. Developing ideas of Coecke and Kissinger [6], it refined and
extended the earlier ZX calculus [4, 1], while keeping some of its most convenient properties,
such as the ability to handle diagrams as undirected labelled multigraphs. In the version
of [17, Chapter 5], it provided the first complete equational axiomatisation of the monoidal
category of qubits and linear maps, with the tensor product as monoidal product. Soon after
its publication, the third author and Q. Wang derived from it a universal completion of the
ZX calculus [28, 18].

? Amar Hadzihasangvic, Giovanni dfe Felice, and Kang Feng Ng;

5v icensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 17; pp.17:1-17:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ahadziha@kurims.kyoto-u.ac.jp
mailto:giovanni.defelice@cs.ox.ac.uk
mailto:kangfeng.ng@cs.ox.ac.uk
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
https://arxiv.org/abs/1801.01231
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

Since its early versions, the ZX calculus has had the advantage of including familiar gates
from the circuit model of quantum computing [29, Chapter 4], such as the Hadamard gate
and the CNOT gate, either as basic components of the language, or as simple composite
diagrams. This facilitates the transition between formalisms and the application to known
algorithms and protocols, and is related to the presence of a simple, well-behaved “core”
of the ZX calculus, modelling the interaction of two strongly complementary observables
[5], in the guise of special commutative Frobenius algebras [9]. Access to complementary
observables is fundamental in quantum computing schemes such as the one-way quantum
computer, to which the ZX calculus was applied in [11].

The ZW calculus only includes one special commutative Frobenius algebra, corresponding
to the computational basis, as a basic component. On the other hand, as noted already in
[16], the ZW calculus has a fundamentally different “core”, which is obtained by removing a
single component that does not interact as naturally with the rest. This core has the property
of only representing maps that have a definite parity with respect to the computational basis:
the subspaces spanned by basis states with an even or odd number of 1s are either preserved,
or interchanged by a map. This happens to be compatible with an interpretation of the basis
states of a single qubit as the empty and occupied states of a local fermionic mode, the unit
of information of the fermionic quantum computing (FQC) model.

Fermionic quantum computing is computationally equivalent to qubit computing [3]. The
connection with the ZW calculus suggested that an independent fermionic version of the
calculus could be developed, combining the best of both worlds with respect to FQC rather
than qubit computing: the superior structural properties of the ZW calculus, including an
intuitive normalisation procedure for diagrams, together with the superior hands-on features
of the ZX calculus.

In this paper, we present such an axiomatisation, to which we refer as the fermionic ZW
calculus. We start by defining our model in Section 2: the monoidal category LFM of local
fermionic modes and maps that either preserve or reverse the parity of a state, with the
tensor product of Zs-graded Hilbert spaces as the monoidal product. We introduce a number
of physical gates from which one may build fermionic quantum circuits: the beam splitter,
the phase gates, the fermionic swap gate, and the empty and occupied state preparations.
Finally, we describe our diagrammatic language with its interpretation in LEM, and show
that all the physical gates have simple diagrammatic representations.

In Section 3, we list the axioms of the fermionic ZW calculus, and state several derived
equations, whose proofs are appended at the end of the paper. We introduce short-hand
notation for certain composite diagrams (sometimes called the “spider” notation in categorical
quantum mechanics [7, Section 8.2]), and prove inductive generalisations of the axioms. Then,
in Section 4, we prove our main theorem, that the fermionic ZW calculus is an axiomatisation
of LEM. We achieve this by defining a normal form for diagrams, from which one can easily
read the interpretation in LEFM, and showing that any diagram can be rewritten in normal
form using the axioms.

Finally, in Section 5, as a first practical example, we calculate in the diagrammatic
language the statistics of a simple circuit, the fermionic Mach-Zehnder interferometer.

2 The model and the components

The basic systems in FQC are local fermionic modes (LFMs), physical sites that are either
empty or occupied by a single spinless fermionic particle [3]. We indicate the empty and
occupied states of a LFM as |0) and | 1), respectively, in bra-ket notation.

A. Hadzihasanovic, G. de Felice, and K. F. Ng

Much like the computational basis states of a qubit, we can see these as an orthonormal
basis for the two-dimensional complex Hilbert space B. We note that the “naive” translation
from LFMs to qubits does not preserve entanglement and locality properties [15, 10]; see
however [13].

States of a composite system of n LEMs correspond to states of the n-fold tensor product
B®" However, not all physical states or operations on qubits are accessible as physical states
or operations on LFMs. The Hilbert space of a system of n LFMs splits as Hy & Hy, where
Hj is spanned by states where an even number of LFMs is occupied, and H; by states where
an odd number of LFMs is occupied. Then, any physical operation f: Hy & Hy — Ko ® K3
must either preserve, or invert the parity, that is, either map Hy to Ky and H; to Kj, or
map Hy to Ky and H; to Ky. This is called the parity superselection rule; see [2, 10] for a
discussion.

These operations assemble into a category, as follows.

» Definition 1. A Zy-graded Hilbert space is a complex Hilbert space H decomposed as a
direct sum Hy @ Hy. A pure map f: H — K of Zy-graded Hilbert spaces is a bounded linear
map f : H — K such that f(Hy) C Ko and f(H;) C K; (even map), or f(Hy) C K; and
f(H1) € Ko (odd map).

Given two Zso-graded Hilbert spaces H, K, the tensor product H ® K can be decomposed
as (H@K)O = (HO ®K0) @ (Hl ®K1), and (H@K)l = (HO ®K1) EB (Hl ®K0) Then, the
tensor product (as maps of Hilbert spaces) of a pair of pure maps f: H - K, f': H — K’
isapuremap f® f : H® H — K ® K’ of Zs-graded Hilbert spaces. The Zy-graded Hilbert
space C & 0 acts as a unit for the tensor product.

We write Hilb%? for the symmetric monoidal category of Zs-graded Hilbert spaces and
pure maps, with the tensor product as monoidal product.

» Remark 2. The zero maps 0 : H — K are the only pure maps between two Zs-graded
Hilbert spaces H, K that are both even and odd.

» Definition 3. We write LFM for the full monoidal subcategory of Hilb%? whose objects
are n-fold tensor products of B := C & C, for all n € N.

Here, By is the span of |0), and By is the span of |1). As customary, we write | by ...by,)
for the basis state |b1) ® ... ® | b,) of B®™, where b; € {0,1}, fori=1,...,n.

The category LFM admits, in fact, the structure of a dagger compact closed category in
the sense of [31]: each object B®™ is self-dual, and the dagger of a pure map f : B®" — B®k
is its adjoint fT: B®% — B®n,

Operationally, we are interested in representing circuits built from the following logical
components, shown here in diagrammatic form (read from bottom to top), next to their
interpretation as maps in LFM.

1. The beam splitter with parameters 7,¢ € C, such that |r|? + |¢t|? = 1:
|00) — |00}, [10) — 7] 10) 4+ ¢|01),
ot [01) — —¢]10) +7]01), |11)— |11).
2. The phase gate with parameter 9 € [0, 27):

e’ [0) =]0), [1)~—e™|1).

3. The fermionic swap gate:
[00) —|00), |10)+— |01},
[01) — [10), [11)+ —|11).

17:3

FSCD 2018

17:4

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

4. Empty state and occupied state preparation:

l 1 10), L [1).

All of these are isometries, which makes them, at least in principle, physically implement-
able gates; see for example [19] for the description of an electron beam splitter.

Apart from the fermionic swap gate, which exploits the antisymmetry of fermionic particles
under exchange, these operations are structurally the same as those used in implementations
of linear optical quantum computing (LOQC), such as the Knill-Laflamme-Milburn scheme
[25], which employ photons, that is, bosonic particles as resources. The two models seem
closely related; given the way that the fermionic swap ties the other components together in
our axiomatisation, and that the impossibility for two particles to occupy the same mode — a
constraint for the bosons in LOQC - is simply a consequence of Pauli exclusion for fermions,
it seems possible to us that the logical features of the optical model are a consequence of the
features of the fermionic model.

In addition to the logical components, we need the following structural components —
the dualities and the swap — which allow us to treat all our diagrams as components of a
circuit diagram, which can be connected together in an undirected fashion, permuting and
transposing their inputs and outputs:

U 17 b1:b27
1—[00)+4|11), b1bg) b1ba) > | baby).
|00) +|11) m|12> {0, by + by, ><12> | baby)

While the swap, dualities, fermionic swap, and phase gates will be basic components
of our diagrammatic calculus, we are going to further decompose beam splitters and state
preparations. The components so obtained may not correspond to physical operations by
themselves, but they have the property that the result of transposing or swapping any of
their inputs or outputs only depends on the final number of inputs and outputs. This allows
us to treat their diagrammatic representations as vertices of an undirected vertex-labelled
multigraph: only the overall arity matters. In addition to making calculations simpler, this
enables one to implement the calculus in graph rewriting software, such as Quantomatic [24].

The additional components, given here in “all-output form” together with their interpret-
ation in LFM, are the following.

1. The binary and ternary black vertex:

U 1+ [10) +]01), w 1+5]100)+4]010)+|001).

2. The binary white vertex with parameter z € C:

\oj 1—1]00)+ 2|11).
z

» Remark 4. Up to a normalising factor, the interpretations of the binary and ternary vertex
are known as EPR state and W state, respectively, in qubit theory [12].

When we draw black and white vertices with a different partition of inputs and outputs, we
assume that a particular partial transposition has been fixed, for example to the left:

YV |

Now, a phase gate with parameter 1 is simply a binary white vertex with parameter e*”.
The beam splitter with parameters r,t, and the state preparations can be decomposed as
follows:

A. Hadzihasanovic, G. de Felice, and K. F. Ng

We also introduce a simplified notation for a composite diagram that plays an important
role in our calculus, whose interpretation is the projector on the even subspace of two LFMs:
1/2

100) 5 [00), [11)es|11),
|01),]10) 0.

1/2
As the notation suggests, this corresponds to the quaternary white vertex of the original ZW
calculus. Similarly to the black and white vertices already introduced, its interpretation is
symmetric under transposition and swapping of inputs and outputs, so we can freely draw
quaternary white vertices with a different partition of inputs and outputs.

» Remark 5. Our calculus does not include measurements, probabilistic mixing, or any kind of
classical control as internal operations. In future work, we hope to extend our axiomatisation
to a mixed quantum-classical calculus, in the style of [8] (see [7, Chapter 8] for a more recent
version), incorporating all these elements.

For now, we can calculate the probability of detecting particles at the output ends of a
circuit by closing the circuit with occupied and empty state diagrams; a closed circuit is
then interpreted as a map C — C, that is, a scalar. This will be the probability amplitude of
detecting a particle where we have closed with an occupied state, and not detecting it where
we have closed with an empty state.

To reason rigorously about our diagrammatic calculus, we rely on the theory of PROs
(PROduct categories) [26], strict monoidal categories that have N as set of objects, and
monoidal product given, on objects, by the sum of natural numbers. Morphisms n — m in a
PRO represent operations with n inputs and m outputs. Given a monoidal signature, that
is, a set of operations with arities T := {f; : n; = m; };cs, one can generate the free PRO
F[T] on T, whose operations are free sequential and parallel compositions of the f;, modulo
the axioms of monoidal categories. By a classic result of Street and Joyal [20, Theorem 1.2],
this is equivalent to the PRO whose morphisms are obtained by horizontally juxtaposing
and vertically plugging string diagrams with the correct arity, one for each generator, then
quotienting by planar isotopy of diagrams. Thus, in the remainder, we will not distinguish
between the two, identifying diagrams and operations.

» Definition 6. Let T be the monoidal signature with operations swap : 2 — 2, dual : 0 — 2,
dualf : 2 — 0, fswap : 2 — 2, blacks : 0 — 2, blacks : 0 — 3, and white, : 0 — 2, for all z € C.
The language of the fermionic ZW calculus is the free PRO F[T].

The correspondence with the diagrammatic components we listed earlier should be self-
explanatory, and their interpretation induces a monoidal functor f: F[T] — LFM.

Given a set E of equations between diagrams with the same arity in F[T], we can quotient
F[T] by the smallest equivalence relation including E and compatible with composition and
monoidal product, to obtain a PRO F[T/E], together with a quotient functor pg : F[T] —

» Definition 7. The interpretation f : F[T] — LFM is universal if it is a full functor.
A set E of equations is sound for f : F[T] — LFM if f factors as fg o pg for a functor
fe : F|[T/E] — LFM. A sound set of equations is complete for LFM if fg is an equivalence
of monoidal categories.

17:5

FSCD 2018

17:6

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

In the next section, we introduce the axioms of the fermionic ZW calculus, in the form
of equations between diagrams of F[T]; it can be checked that they are all sound for the
interpretation. We will later show that they are also complete. This means that whenever
two diagrams of the fermionic ZW calculus are “extensionally equal”, that is, they have
the same interpretation in LFM, one can be rewritten into the other by applying a finite
sequence of equations.

3 Axioms and derived equations

We divide the set E of axioms into four groups, based on the generators to which they mainly

pertain.
) \ \ %) < 0 |
;M ;
z)
Together, these axioms imply that the swap and dualities make F[T/E] a compact closed

category on a self-dual object. The Kelly-Laplaza coherence theorem [22, Theorem 8.2] then
allows us to extend our topological reasoning to the swapping and transposition of wires.

&
KoM Yl
= = z
These axioms say that the fermionic swap behaves hke a symmetric braiding in F[T/FE],

except for the fact that sliding the black vertices (that is, the only odd generators) through
a wire induces a fermionic “self-crossing” on it.

» Axioms 8. Structural azioms.

)

C

A
N

b

€

» Axioms 9. Axioms for the fermionic swap.

.) kﬁ

—
=
—
@
N

—~
=
—
-
S
N
—~
=

ﬁﬁ:&f

Moreover, the axioms on the interplay between the structural and fermionic swaps imply
that only the number of fermionic swaps between two wires matters, and not their direction;
which, as we will see, also implies that a sequence of two fermionic self-crossings on either
side of a wire can be straightened.

Altogether, the result of the other axioms is that any diagram containing an even number
of black vertices can slide past a wire through fermionic swaps with no other effect, while
any diagram containing an odd number of black vertices can do the same by introducing a
fermionic self-crossing on the wire. As with the structural axioms, we will make use of this
fact implicitly most of the time.

» Axioms 10. Azioms for black vertices.

A. Hadzihasanovic, G. de Felice, and K. F. Ng

6@U7®wwm®@®’.w‘7
ARV TP 3
i o§3v g

@)

) .

These axioms say that the black vertices are symmetric under permutation of wires (which
justifies, a posteriori, their arbitrary transposition), and that they can be assembled to form
a (co)commutative (co)monoid. This (co)monoid has the property of forming a bialgebra (in
fact, a Hopf algebra) with its own transpose.

In the interpretation, this is the Hopf algebra known as fermionic line in the theory
of quantum groups [27, Example 14.6], whose comultiplication is given by [0) — |00),
[1)—]10) +|01). As discussed in [17, Section 5.3], the fermionic line has “anyonic” and
“bosonic” analogues in every countable dimension, with the same self-duality property.

The final axiom says that 0 times 0 is 0; it will serve to ensure that there is a unique zero
map between any two systems, rather than an “even” and an “odd” zero map.

» Axioms 11. Axioms for white vertices.

SRV

: i ¥
$ z (E ;) w
w () @j g%)
= zZw = =
z
These axioms say that the binary white vertices are endomorphisms for the fermionic line
algebra, and that composition and convolution by the algebra correspond to product and
sum, respectively, of their complex parameters. Finally, the projector is symmetric under

cyclic permutation of its wires, and it determines a kind of mixed action/coaction of the
algebra on itself.

A f\
|
& &
o
&

—~
>
N

» Remark 12. Because LFM is a subcategory of the category Qubit of [18], all the axioms
of the fermionic ZW calculus are sound for the original ZW calculus. Moreover, adding either
the ternary or the unary white vertex from the original ZW calculus to our language would
make it universal for Qubit. We have not yet investigated, however, what axioms would
need to be added to F in the extended signature to make it complete.

We state some useful derived equations, leaving the proofs to the Appendix.

» Proposition 13. The following equations hold in F[T/E)
(

@Q% g(_b) o
IR @@5 o |

N

17:7

FSCD 2018

17:8

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

II:’

A
=

R
SN
50U ek g

» Proposition 14. The followmg equations hold in F|[T/E):
ok
Together with its invariance under cyclic permutation of wires, the first two equations
justify the arbitrary transposition of inputs and outputs of the quaternary white vertex.
Our axioms form a sound and complete set of equations for LFM, so in principle any
equation of diagrams whose interpretations are equal can be derived from them. In practice,
however, it is convenient to introduce further short-hand notation, including black vertices

with n wires and white vertices with 2n wires for all n € N, and derive inductive equation
schemes to use directly in proofs.

1. Black vertices. The nullary and unary black vertices are defined as follows:

5 B B

) .
We already have binary and ternary black vertices. For n > 3, the n-ary black vertex is

defined inductively, together with its interpretation in LFM, by

n—1 n
:U 1= Y 10...010...0).

k=1 k—1 n—k
Here, and in what follows, lighter wires and vertices indicate the repetition of a pattern
for a number of times, which may or may not be specified. This is similar to the the
way that “...” is often used, and can be formalised using !-boxes in pattern graphs, as
developed in [23].
2. White vertices. The nullary white vertex with parameter z € C is defined by

o == 0

z z
We already have binary white vertices with parameters. For n > 1, the 2n-ary white

vertex with parameter z € C is defined inductively, together with its interpretation in
LFM, by

2n 2n—2
1 1...1).
PO 5 S SN[IR RO

2n 2n

We state some basic properties of black and white vertices. Both are symmetric under
permutation of wires, which allows us to write vertices with different numbers of inputs and
outputs, transposing some of them with no ambiguity. Most importantly, they satisfy certain
“fusion” equations, as shown on the first two lines. All black vertices correspond to odd maps,
while white vertices correspond to even maps, as reflected in their sliding through fermionic
swaps, on the fourth line; finally, black vertices are unaffected by fermionic swaps of their
wires, whereas the sign of the white vertex parameter is flipped.

» Proposition 15. The following equations hold in F[T/E] for black and white vertices of
any arity:

A. Hadzihasanovic, G. de Felice, and K. F. Ng

—~
S
=

T €6
A € €

A
I8,
=

o
1=

g5 oo
Kb N
o \WV
o Y

Several other equations, both axioms and derived, admit inductive generalisations; we

list them in the following Proposition.

» Proposition 16. The following equations hold in F[T/E] for black and white vertices of
any compatibile arities:

I
g
I
g

X
(<

-0
-0

» Remark 17. Some of these inductive schemes subsume several axioms at once: for example,
Proposition 16.(a) has Axioms 10.(g), 10.(h), and 10.(¢) as special cases, and Proposition
16.(b) has Axioms 11.(b), 11.(c), and 11.(4) as special cases.

4

Normal form and completeness

We prove completeness in three stages:

1.

First, we associate to any state v : C — B®" of LFM a diagram g(v) : 0 — n in F[T]
such that f(g(v)) = v. Because both categories are compact closed, and the dualities
of LFM are in the image of f, this assignment can be extended to any map of LFM,
proving universality of our interpretation. We say that a diagram is in normal form if it
is of the form g(v) for some v.

Then, we show that any composite of diagrams in normal form can be rewritten in normal
form using the equations in E, proving that g determines a monoidal functor from LFM
to F[T/E].

Finally, we show that all the generators of F[T] can be rewritten in normal form using
the equations in E, proving that g and fg : F[T/E] — LFM are two sides of a monoidal
equivalence between F[T/E] and LFM.

» Theorem 18 (Universality). The functor f : F[T] — LFM s full.

Proof. Write an arbitrary state v : C — B®" in the form 1 +— > 2| b;1 ... by,), where
z; # 0 for all 4, and no pair of n-tuples (b;1, ..., b;n) is equal; we can fix an ordering (for

17:9

FSCD 2018

17:10

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

example, lexicographic) on n-tuples of bits to make this unique. Then, define

if v is odd, if v is even, (1)

Zm Zm

where, for i = 1,...,m and j = 1,...,n, the dotted wire connecting the i-th white vertex to
the j-th output is present if and only if b;; = 1. The definition is only ambiguous if v = 0, in
which case we arbitrarily pick one of the two forms; they will be equal in F'[T/E] by Axiom
10.(4).

Because for all summands of an odd (respectively, even) state v, we have b;; = 1 for an
odd (respectively, even) number of bits, the white vertices in g(v) have an odd (respectively,
even) number of outputs. The two distinct forms of g(v) for odd and even states ensure that
only white vertices with an even arity appear.

It can then be checked that f(g(v)) = v, which, by our earlier remark, suffices to prove
the statement. <

» Definition 19. A string diagram of F[T] is in normal form if it is g(v) for some state v of
LFM. It is in pre-normal form if it has one of the two forms in (1), where the following are
also allowed:

the white vertices can be in an arbitrary order;

two or more white vertices may be connected to the exact same outputs;

z; may be 0 for some 1.

The completeness proof closely follows that of the qubit ZW calculus [17, Section 5.2].
The one proof that is significantly different is the following. We take the liberty of “zooming
in” on a certain portion of a diagram, which may require some reshuffling of vertices, using
swapping or transposition of wires, with the implicit understanding that this can always be
reversed later.

» Lemma 20 (Negation). The composition of one output of a diagram in pre-normal form
with a binary black vertex can be rewritten in pre-normal form, and that has the effect of
“complementing” the connections of the output to white vertices: that is, locally,

» Remark. In the picture, the dotted wires can stand for a multitude of wires. The version
where the original diagram is odd, rather than even, is obtained by composing again both
sides with a binary black vertex and using Axiom 10.(d).

Proof. Using the “fusion equations” Proposition 15.(b) and ('), we rewrite the left-hand
side as

A. Hadzihasanovic, G. de Felice, and K. F. Ng

By definition of the quaternary white vertex, this is equal to

where we made implicit use of some symmetry properties of vertices. Now, fusing black
vertices, and using Proposition 15.(d) and (d’) to move the closed loop to the outside of the
main diagram, we see that this is equal to

and we can conclude by Proposition 13.(b) and 14.(d). <

)

In the following, and later statements, “plugging one output of a diagram into another’
means a post-composition with dual™ : 2 — 0, possibly after some swapping of wires.

» Lemma 21 (Trace). The plugging of two outputs of a diagram in pre-normal form into
each other can be rewritten in pre-normal form.

Proof. Essentially the same as [17, Lemma 5.24]. <

The nullary black vertex is interpreted as the scalar 0; the following lemma shows that it
acts as an “absorbing element” for diagrams in pre-normal form.

» Lemma 22 (Absorption). For all diagrams in pre-normal form, the following equation
holds in F[T/E]:

Proof. If the diagram is even, expanding the nullary black vertex, we can treat it as an
additional output of the diagram, with no connections to the white vertices, composed with
a unary black vertex; then the proof is the same as [17, Lemma 5.25].

Suppose the diagram is odd. If it has at least one output wire, we can freely introduce
two binary black vertices on it; applying the negation lemma once, we obtain a negated even
diagram, to which the first part of the proof can be applied. Another application of the
negation lemma, followed by Axiom 10.(j), produces the desired equation. If the diagram
has no outputs, it necessarily consists of a single nullary black vertex, and the statement
follows immediately from Axiom 10.(j). <

» Lemma 23 (Functoriality of the normal form). Any composition of two diagrams in pre-
normal form can be rewritten in pre-normal form.

17:11

FSCD 2018

17:12

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

Proof. We can factorise any composition of diagrams in pre-normal form as a tensor product
followed by a sequence of “self-pluggings”; thus, by the trace lemma, it suffices to prove that
a tensor product — diagrammatically, the juxtaposition of two diagrams in pre-normal form —
can be rewritten in pre-normal form.

Suppose first that the two diagrams are both even. We can create a pair of unary black
vertices connected by a wire by Axiom 10.(7), and treat them as additional outputs, one for
each diagram. In that case, the proof proceeds exactly as [17, Theorem 5.26].

Now, suppose one diagram is odd, or they both are odd. If the odd diagrams have at
least one output wire, we can introduce a pair of black vertices on it, and apply the negation
lemma to produce negated even diagrams. We can then apply the first part of the proof
to obtain a diagram in pre-normal form negated once or twice, then apply the negation
lemma again to conclude. If one of the odd diagrams has no outputs, it necessarily consists
of a single nullary black vertex, and we can conclude with an application of the absorption
lemma. <

» Lemma 24. Any diagram in pre-normal form can be rewritten in normal form.

Proof. If the diagram is odd, the proof of [17, Lemma 5.22] goes through. If the diagram
is even, and has at least one output wire, we can introduce a pair of binary black vertices,
apply the negation lemma once to produce a negated odd diagram, reduce that to normal
form, and apply the negation lemma again; it is easy to see that negation turns diagrams in
normal form into diagrams in normal form, modulo a reshuffling of white vertices.

If the diagram has no output wires, then it is of the form

izl) ;)Zm 16_(5) [O\ZZI Zi

)

where the right-hand side is in normal form. This concludes the proof. |

» Theorem 25 (Completeness). The functor fg : F|[T/E] — LFM induced by the soundness
of E for the interpretation f : F[T| — LFM is a monoidal equivalence.

Proof. By the combination of the previous two lemmas, it suffices to show that all the
generators (with all wires transposed to output wires) can be rewritten in pre-normal form.
For the ternary and binary black vertices,

W 10éd), 10101 v 10.(d), U

11.(d) 11.(d)

For the binary white vertex with parameter z € C,

\o/ 10.(d), 2 1L3d) 4
o 14.(e)

By Axiom 11.(d), the rewriting of dualities in normal form follows as a special case of the
binary white vertex with parameter 1.

For the fermionic swap, we use the fact that we know how to rewrite the tensor product
of two dualities in normal form:

The case of the structural swap is similar, and easier. This concludes the proof. <

A. Hadzihasanovic, G. de Felice, and K. F. Ng

» Remark 26. We can make this an equivalence of dagger compact closed categories, by
defining the dagger of a morphism in F[T/E], represented by a diagram in F[T], to be the
vertical reflection of that diagram, with parameters z € C of white vertices turned into their
complex conjugates z. For example,

Yo z
>
Z ——
w .

» Remark 27. The only properties of complex numbers that are used in the proof are that
they form a commutative ring, and that they contain an element z such that z + 2z = 1
(namely, 1/2). Thus, we can replace C with any commutative ring R that has the latter
property (for example, Zsg, 11, for each n € N), and obtain a similar completeness result for
“LFMs with coefficients in R”.

Moreover, for any such ring, instead of introducing binary white vertices with arbitrary
parameters r € R, we can introduce one binary white vertex for each element of a family
of generators of R, together with one axiom for each relation that they satisfy. Then, in
the normal form, instead of having a white vertex labelled r € R at each end of the bottom
black vertex or vertices, we will need to have some expression of by sums and products of
generators, encoded by composition and convolution by the fermionic line algebra.

The completeness proof still goes through: we work with diagrams in pre-normal form,
where terms in a sum of products of generators are decomposed into different legs of the
bottom vertex or vertices, until the very end; then Lemma 24 can be adapted to combine white
vertices with the same connections into a fixed expression of the sum of their parameters.

For example, in the complex case, it may be convenient to have separate phase gates,

that is, white vertices with parameter €', for ¥ € [0,27), and “resistor” gates, with real
parameter r > 0.
» Remark 28. It is customary to describe the fermionic behaviour of a multi-particle system
in terms of a pair of operators al (creation) and @ (annihilation) that satisfy the anti-
commutation relation aa’ = 1 —a'a; see for example [32, Chapter 27]. In our language, these
operators can be defined as

GT = a =

)

We can see the anti-commutation relation as subsumed by the axioms in the following way:
pulling back the linear structure of LFM to F[T/E] through the equivalence, we have

t !
- - 3)
; I

from which we obtain

10.:<g)<>% _ <:3@ ® _

which can be read as the equation aa’ =1 — a'a.

5 An application: the Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a classic quantum optical setup (see for example [30,
Chapter 4]), which, despite its simplicity, can demonstrate interesting features of quantum
mechanics, as in the Elitzur-Vaidman bomb tester experiment [14]. The theoretical setup can

17:13

FSCD 2018

17:14

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

be straightforwardly imported into FQC, with the same statistics as long as single-particle
experiments are concerned; an electronic analogue of the Mach-Zehnder interferometer has
also been realised in practice [19].

With the graphical notation introduced in Section 2, the ex-

perimental setup is represented by the diagram on the left,
0 .ﬁ where r,¢,7/,¢ € C and ¥ € [0,27) are parameters subject to

7|2+ |t|> = |r'|* + |[t'|> = 1. In practice, it would also include
“mirrors”, or beam splitters with |r| = 1, which we omit in the
picture, instead taking the liberty of bending wires at will.

As a first application of the fermionic ZW calculus, we show how this circuit diagram can
be simplified in just a few steps using our axioms, in such a way that its statistics become
immediately readable from the diagram.

In our language, the diagram becomes

which, sliding the leftmost empty state past the fermionic swap, and using Axiom 10.(f)
twice, becomes

Finally, using the fermionic swap symmetry of black vertices (Proposition 15.(e)), together
with Proposition 16.(c), this simplifies to

riret — 't

r'te’ + 7

If we input one particle, after fusing the bottom black vertices, we obtain a diagram in
normal form, whose interpretation in LFM we can read off as 1 +— (r're?” — t'£)|10) +
(r'te’” +'F)|01).

So, the probability of detecting the particle at the left-hand output is |r're!” — /|2, and
the probability of detecting the particle at the right-hand output is |r'te?” +¢'7|2. If the beam

splitters are symmetric, that is, r = 7’ = %, and t =t = %, the probability amplitudes

A. Hadzihasanovic, G. de Felice, and K. F. Ng

™

—(eW—1) = ("= sin I,

7

5 (e +1)=) cos 9,

leading to probabilities sin? ¢ of detecting the particle at the left-hand output, and cos? ¥ of
detecting it at the right-hand output.

Arguably, given that this particular example involves at most binary gates, a matrix
calculation would not have been considerably harder. On the other hand, the result appears
here as the outcome of a short sequence of intuitive, algebraically motivated local steps, rather
than the unexplained product of a large matrix multiplication. We expect the advantage to
become clearer when implementations of rewrite strategies in graph rewriting software are
used to simplify larger circuits.

6 Conclusions and outlook

In this paper, we introduced a string-diagrammatic language for circuits of local fermionic
modes, together with equations that axiomatise their theory of extensional equality: that
is, two diagrams represent the same linear map of local fermionic modes if and only if they
are equal modulo the equations. We believe that these fermionic circuits are to the ZW
calculus what Clifford circuits [1] are to the ZX calculus: not the largest family of circuits
that can technically be represented, but the one whose basic gates have simple, natural
representations in terms of the language’s components.

There are still several open questions and directions on the “syntactic” side. We do not
know whether all our axioms are independent, nor we have looked at rewrite strategies, or
ways of orienting the equations, beyond the goal of proving completeness. There is, then, the
question of variants and extensions: we have mentioned a potential extension to mixed-state
processes, via a mixed quantum-classical calculus in the style of [7, Chapter 8]; moreover,
both universality and completeness are open problems for anyonic and bosonic generalisations
of the fermionic ZW calculus, in the style of [17, Section 5.3].

The greatest challenge, however, is finding “real-world” applications for the calculus.
With the Mach-Zehnder interferometer, we have only given a toy example, perhaps useful for
pedagogical purposes, but we have not even attempted to link our work to current research
on algorithms or complexity in FQC. The first version of a ZW calculus was introduced in
order to tackle open problems in the classification of multipartite entanglement [6]: as a first
step, the fermionic ZW calculus, with its strong topological flavour, involving braidings and
a single type of ternary vertices, may be a better testing ground for this approach.

—— References

1 M. Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New Journal
of Physics, 16(9):093021, 2014. doi:10.1088/1367-2630/16/9/093021.

2 M.-C. Banuls, J.I. Cirac, and M.M. Wolf. Entanglement in fermionic systems. Physical
Review A, 76(2), 2007. doi:10.1103/physreva.76.022311.

3 S.B. Bravyi and A. Yu. Kitaev. Fermionic quantum computation. Annals of Physics,
298(1):210-226, 2002. doi:10.1006/aphy.2002.6254.

4 B. Coecke and R. Duncan. Interacting quantum observables. In Automata, Languages and
Programming, pages 298-310. Springer, 2008. doi:10.1007/978-3-540-70583-3_25.

5 B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and non-
locality in categorical quantum mechanics. In 2012 27th Annual IEEE Symposium on
Logic in Computer Science. IEEE, 2012. doi:10.1109/1ics.2012.35.

17:15

FSCD 2018

http://dx.doi.org/10.1088/1367-2630/16/9/093021
http://dx.doi.org/10.1103/physreva.76.022311
http://dx.doi.org/10.1006/aphy.2002.6254
http://dx.doi.org/10.1007/978-3-540-70583-3_25
http://dx.doi.org/10.1109/lics.2012.35

17:16

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

B. Coecke and A. Kissinger. The compositional structure of multipartite quantum en-
tanglement. In Automata, Languages and Programming, pages 297-308. Springer Berlin
Heidelberg, 2010. doi:10.1007/978-3-642-14162-1_25.

B. Coecke and A. Kissinger. Picturing Quantum Processes. Cambridge University Press
(CUP), 2017. doi:10.1017/9781316219317.

B. Coecke and D. Pavlovic. Quantum measurements without sums. In Chapman
& Hall/CRC Applied Mathematics & Nonlinear Science, pages 559-596. Chapman and
Hall/CRC, 2007. doi:10.1201/9781584889007 .ch16.

B. Coecke, D. Pavlovic, and J. Vicary. A new description of orthogonal bases. Mathematical
Structures in Computer Science, 23(03):555-567, 2012. doi:10.1017/s0960129512000047.
G.M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini. The Feynman problem and fermi-
onic entanglement: Fermionic theory versus qubit theory. International Journal of Modern
Physics A, 29(17):1430025, 2014. doi:10.1142/s0217751x14300257.

R. Duncan and S. Perdrix. Rewriting measurement-based quantum computations with
generalised flow. In Automata, Languages and Programming, pages 285-296. Springer Berlin
Heidelberg, 2010. doi:10.1007/978-3-642-14162-1_24.

W. Diir, G. Vidal, and J.I. Cirac. Three qubits can be entangled in two inequivalent ways.
Physical Review A, 62(6), 2000. doi:10.1103/physreva.62.062314.

V. Eisler and Z. Zimboras. On the partial transpose of fermionic gaussian states. New
Journal of Physics, 17(5):053048, 2015. doi:10.1088/1367-2630/17/5/053048.

A.C. Elitzur and L. Vaidman. Quantum mechanical interaction-free measurements. Found-
ations of Physics, 23(7):987-997, 1993. doi:10.1007/bf00736012.

N. Friis, A.R. Lee, and D.E. Bruschi. Fermionic-mode entanglement in quantum informa-
tion. Physical Review A, 87(2), 2013. doi:10.1103/physreva.87.022338.

A. Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In Proceedings
of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’15, pages
573-584. IEEE, 2015. doi:10.1109/LICS.2015.59.

A. Hadzihasanovic. The algebra of entanglement and the geometry of composition. PhD
thesis, University of Oxford, 2017. Available at https://arxiv.org/abs/1709.08086.

A. Hadzihasanovic, K.F. Ng, and Q. Wang. Two complete axiomatisations of pure-state
qubit quantum computing, 2018. Accepted at the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS) 2018.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman. An elec-
tronic Mach—Zehnder interferometer. Nature, 422(6930):415-418, 2003. doi:10.1038/
nature01503.

A. Joyal and R. Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55-112, 1991. doi:10.1016/0001-8708(91)90003-p.

L.H. Kauffman. Knots and Physics. World Scientific Publishing Co. Pte. Ltd., 2001. doi:
10.1142/9789812384836.

G.M. Kelly and M.L. Laplaza. Coherence for compact closed categories. Journal of Pure
and Applied Algebra, 19:193-213, 1980. doi:10.1016/0022-4049(80)90101-2.

A. Kissinger, A. Merry, and M. Soloviev. Pattern graph rewrite systems. FElectronic Pro-
ceedings in Theoretical Computer Science, 143:54—66, 2014. doi:10.4204/eptcs.143.5.
A. Kissinger and V. Zamdzhiev. Quantomatic: A proof assistant for diagrammatic reason-
ing. In Automated Deduction - CADE-25, pages 326-336. Springer International Publishing,
2015. doi:10.1007/978-3-319-21401-6_22.

E. Knill, R. Laflamme, and G.J. Milburn. A scheme for efficient quantum computation
with linear optics. Nature, 409(6816):46-52, 2001.

S. Lack. Composing PROPs. Theory and Applications of Categories, 13(9):147-163, 2004.

http://dx.doi.org/10.1007/978-3-642-14162-1_25
http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.1201/9781584889007.ch16
http://dx.doi.org/10.1017/s0960129512000047
http://dx.doi.org/10.1142/s0217751x14300257
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.1103/physreva.62.062314
http://dx.doi.org/10.1088/1367-2630/17/5/053048
http://dx.doi.org/10.1007/bf00736012
http://dx.doi.org/10.1103/physreva.87.022338
http://dx.doi.org/10.1109/LICS.2015.59
https://arxiv.org/abs/1709.08086
http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1016/0001-8708(91)90003-p
http://dx.doi.org/10.1142/9789812384836
http://dx.doi.org/10.1142/9789812384836
http://dx.doi.org/10.1016/0022-4049(80)90101-2
http://dx.doi.org/10.4204/eptcs.143.5
http://dx.doi.org/10.1007/978-3-319-21401-6_22

A. Hadzihasanovic, G. de Felice, and K. F. Ng

27 S. Majid. A Quantum Groups Primer. Cambridge University Press, 2002. doi:10.1017/
cbo9780511549892.

28 K.F. Ng and Q. Wang. A universal completion of the ZX-calculus. arXiv preprint
arXiv:1706.09877, 2017.

29 M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2009. doi:10.1017/cbo9780511976667.

30 M.O. Scully and M.S. Zubairy. Quantum optics. Cambridge University Press, 1997. doi:
10.1017/cbo9780511813993.

31 P. Selinger. Finite dimensional Hilbert spaces are complete for dagger compact closed
categories. Electronic Notes in Theoretical Computer Science, 270(1):113-119, 2011. doi:
10.1016/j.entcs.2011.01.010.

32 P. Woit. Quantum Theory, Groups and Representations. Springer International Publishing,
2017. doi:10.1007/978-3-319-64612-1.

A Proofs of derived equations

Proposition 13. Equation (a) comes from the following manipulation:
(e

e- P p K o

Equation (b) then follows from (a), combined with the equation

which is a Consequence of the fermionic swap axioms by the Whitney trick [21, p. 484].
Equation (c) is proved by the following argument:

=B HH

whereas (d) comes from

Sl - T

finally using the symmetry of the black vertex under the structural swap.
Equation (e) is proved by the following argument:

¢() 10.(f) 10.(9) 10.(h) éI 10.(4) é
:: § } v

where we tacitly used Axiom 10.(d) to introduce or eliminate pairs of binary black vertices
in several occasions.
Finally, for equation (f

%{) 10éf)

by Axioms 10.(e) and 11.(d), this is equal to

&

~

, start by considering that

11.(e) 11.(f)

%}

10.(f)

{}

17:17

FSCD 2018

http://dx.doi.org/10.1017/cbo9780511549892
http://dx.doi.org/10.1017/cbo9780511549892
http://dx.doi.org/10.1017/cbo9780511976667
http://dx.doi.org/10.1017/cbo9780511813993
http://dx.doi.org/10.1017/cbo9780511813993
http://dx.doi.org/10.1016/j.entcs.2011.01.010
http://dx.doi.org/10.1016/j.entcs.2011.01.010
http://dx.doi.org/10.1007/978-3-319-64612-1

17:18

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

This completes the proof. |

Proof of Proposition 14. Substituting the definition of the projector, Axiom 11.(h) becomes
the following equation:

1/2
= 1/2 1/2 (4)
1/2

Equations (a) and (a’) are then immediate consequences of Proposition 13.(¢) and its
transposes, applied to the right-hand side of (4).

Equation (b) is also immediate from the definition: because swaps slide through fermionic
swaps and vice versa, we can slide one “circle” past another to get

£ T

l

For equations (¢), (¢/), and (¢”)

), we use either of the forms in equation (4) and slide the
binary white VerteX through a fermionic swap using Axiom 9.(7), to move it to a different
wire.

Equation (d) comes from

. . (d
o s L o e O s

finally applying Axiom 10.(¢). Then, equation (e) follows from it by

1/2
In order to prove equation (f), consider first that
1/
Xé @ % é{ 3
1/2 1/2 = 1/2 1/2 (5)
1/ ? 7
and we can eliminate the circle by equation (d). Then,

. “%)@ f< H
1/2

Finally, for equation (g), observe that the projector contams an even number of black vertices,
hence it can slide past fermionic swaps with no other effect. Therefore,

% ;

This concludes the proof. |

Proof of Proposition 15. All the equations are proved by induction on the arity of the
vertices involved.

A. Hadzihasanovic, G. de Felice, and K. F. Ng

For equation (a), let n be the number of outputs of the black vertex. For n = 0,1 there
is nothing to prove, and for n = 2,3 these are Axioms 10.(a), (b), and (b’). For n > 3, if the
two swapped wires are the rightmost ones, the equation follows immediately from the ternary
case; otherwise, use Axiom 10.(e) on the three rightmost wires, and apply the inductive
hypothesis.

For equation (a’), let 2n be the number of outputs of the white vertex. For n = 0 there
is nothing to prove, and n = 1 is Axiom 11.(a). For n > 1, observe that by Proposition
14.(c), (¢') and ("), we can always move the binary vertex with parameter z to a wire which
is not swapped. The case n = 2 then follows from the combination of Axiom 11.(h) with
Proposition 14.(a) and (a’). For n > 2, if the swapped wires are among the three rightmost
ones, the equation follows from the case n = 2; otherwise, use Proposition 14.(b) (with some
wires transposed) on the two rightmost quaternary white vertices, and apply the inductive
hypothesis.

Equations (a) and (a’) justify the unambiguous writing of n-ary vertices with inputs as

well as outputs in equations (b) and ('), and the latter will follow from the all-output case.
In equation (b), let n,m > 0 be the arities of the leftmost and rightmost vertex, respectively.

If n = 1, the equation follows from Axiom 10.(f), and if n = 2 from Axiom 10.(d). Suppose
n > 2. Then, if m = 1, the equation follows from Axiom 10.(f), and if m = 2 from Axiom
10.(d). All other cases are just immediate from the definition. Equation (') also follows from
the definition, together with Proposition 14.(c), (¢) and (¢”) in order to move the vertex
with parameter w to the wire where the vertex with parameter z is, and Axiom 11.(g) to
multiply the two.

In equation (c), let n > 1 be the arity of the black vertex in the left-hand side. If n = 2,3
the equation is true by definition. If n > 3, by equation (a), we can assume the two wires
plugged into each other are the two rightmost ones; the equation then follows from Axiom

10.(f). For equation (¢’), let 2n > 1 be the arity of the white vertex in the left-hand side.

If n = 1, the equation is true by definition, and if n = 2 it follows from Proposition 14.(d),
together with Proposition 14.(c), (¢) and (¢”) to move the vertex with parameter z out of
the way. For n > 2, by equation (a’), we can assume the two wires plugged into each other
are the two rightmost ones, and the equation follows from the case n = 2.

Equation (d) is a consequence of Axioms 9.(g) and (h), together with Proposition 13.(b)
to eliminate pairs of self-crossings. Equation (d’) is a consequence of Axiom 9.(7) together
with the definition of the quaternary white vertex.

Equation (e) follows from equation (a) by Axiom 10.(¢) and Proposition 13.(d). For
equation (e), let 2n > 1 be the arity of the white vertex. The case n = 1 is a consequence of
Proposition 13.(f), and n = 2 follows from the following argument:

é 0.(/) Pﬁ 13.(f) M 9.(c) ?1

applied to the definition of the quaternary white vertex, as in the right-hand side of (4). All
other cases follow from this one, by symmetry. |

Proof of Proposition 16. In equation (a), let n be the number of inputs, and m the number
of outputs of the diagrams. The case n = m = 0 is Axiom 10.(¢), and when either n or
m = 1, the equation follows from Axiom 10.(d). The cases n =0,m > 1 and m =0,n > 1
are simple inductive generalisations of Axiom 10.(h). Finally, the case n = m = 2 is Axiom
10.(g), and from there we can proceed by double induction on n and m, using Proposition
15.(b).

In equation (b), let n be the number of inputs, and 2m — 1, for m > 0, the number of
outputs. Suppose first that m = 1. The case n = 0 is Axiom 11.(¢), the case n = 1 follows

17:19

FSCD 2018

17:20

A Diagrammatic Axiomatisation of Fermionic Quantum Circuits

from Axiom 10.(d), and the case n = 2 is Axiom 11.(b); then, for n > 2, it is a simple
induction starting for the latter. In the case n = 0 and m = 2,

Py W

by Proposition 15.(0') and (¢’), the latter is equal to

@ w0 m o b
o

The cases n = 0, m > 2 are simple inductive generalisations of this one. All cases with n =1
follow from Axiom 10.(d), and the case n = m = 2 is Axiom 11.(¢). For n,m > 2, proceed by
double induction, using Proposition 15.(b) and ().

For equation (c¢), by Proposition 15.(b) it suffices to prove

n
Q o = E Z;
z1 Zn i—1

which for n = 0 is Axiom 11.(e), for n = 1 follows from Axiom 10.(d), for n = 2 is Axiom
10.(f), and for n > 2 is a simple inductive generalisation of the latter.
Similarly, for equation (d), it suffices, by Proposition 15.(b) and (b'), to prove

$im 3
when m = 0,1,2. If m = 2, and n = 2, this is Proposition 14.(f), and for n > 2 we can
proceed by induction, as follows:

$
15.(b"), i.h. 10.(f),
/ 15.(c) o 10.(4)
=3 LI

The case m = 0, for arbitrary n > 1, follows from this one, by

¢ _ s
15.(c") o 10.()
z
2 s

and similarly for the case m = 1, where necessarily n > 2, by

Q- Q-

Finally, equation (e) is an immediate generahsatlon of Proposition 14.(g), using Proposition
15.(b) and (b'). <

)

On Repetitive Right Application of B-Terms

Mirai Ikebuchi

Massachusetts Institute of Technology, Cambridge, MA, USA
https://mir-ikbch.github.io/

ikebuchi@mit.edu

Keisuke Nakano!

Tohoku University, Sendai, Miyagi, Japan
http://www.riec.tohoku.ac.jp/~ksk/
k.nakano@acm.org

—— Abstract

B-terms are built from the B combinator alone defined by B = Af.Ag.Az.f (g x), which is well-
known as a function composition operator. This paper investigates an interesting property of
B-terms, that is, whether repetitive right applications of a B-term cycles or not. We discuss
conditions for B-terms to have and not to have the property through a sound and complete

equational axiomatization. Specifically, we give examples of B-terms which have the property
and show that there are infinitely many B-terms which do not have the property. Also, we
introduce a canonical representation of B-terms that is useful to detect cycles, or equivalently,
to prove the property, with an efficient algorithm.

2012 ACM Subject Classification Theory of computation — Rewrite systems
Keywords and phrases Combinatory logic, B combinator, Lambda calculus

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.18

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable
comments that improved the manuscript.

1 Introduction

The ‘bluebird’ combinator B = Af.Ag.Az.f (g x) is well-known [10] as a bracketing combinator
or composition operator, which has a principal type (a = 8) = (y > a) > v = 8. A
function B f g (also written as f o g) takes a single argument x and returns the term f (g x).

In the general case that g takes n arguments, the composition of f and g, defined by
Azy.- - Aep.f (g x1 ... @), can be expressed as B™ f g where e” is the n-fold composition
eo---oe of the function e, or equivalently given by €™ z =e (... (e «)) [1, Definition 2.1.9].
~—— ———

n n
We call n-argument composition for the generalized composition represented by B™.

Now we consider the 2-argument composition expressed as B = Af. g \z.\y. f (9 = y).
From the definition, we have B2 = Bo B = B B B. Note that function application is
considered left-associative, that is, f a b= (f a) b. Thus B? is expressed as a term in which
all applications nest to the left, never to the right. We call such terms flat [9]. We write Xy,
for the flat term defined by X X X ... X = (...((X X) X)...) X. Using this notation,

k k

we can write B? = B(g).

1 This work was partially supported by JSPS KAKENHI Grant Number JP25730002 and JP17K00007.

© Mirai Ikebuchi and Keisuke Nakano;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 18; pp. 18:1-18:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://mir-ikbch.github.io/
mailto:ikebuchi@mit.edu
http://www.riec.tohoku.ac.jp/~ksk/
mailto:k.nakano@acm.org
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2

On Repetitive Right Application of B-Terms

B)-B2)=B(3)—Ba)—B5)-Bs) B
‘2: B(IO) = B(14) = ..) ‘E: B(ll) = B(15) = ..)

B%‘g) Bég)

= Bus) = Ban =...) (= Buz) = Bae =)

Figure 1 p-property of the B combinator.

Okasaki [9] investigated facts about flatness. For example, he shows that there is no
universal combinator X that can represent any combinator by X) with some k. We shall
delve into the case of X = B. Consider the n-argument composition operator B™. We have
already seen that B? can be written by the flat term B3). For n = 3, we can also check B? =
B B B B B B B B = B by repeating $-reduction for By f g vy 2= f (g v y 2). How
about the 4-argument composition B*? In fact, there is no integer k such that B* = B,
with respect to fn-equality. Moreover, for any n > 3, there does not exist k such that
B™ = B). This surprising fact is proved by a quite simple method; listing all B(;ys for
k =1,2,... and checking that none of them is equivalent to B™. An easy computation
gives By = B(10) = A\ Ay Az \w. . z (y z) (w v), and hence B(;y = B(;4) for every
i > 6. Then, by computing B)s only for k € {1,2,...,6}, we can check that B is not
Bn-equivalent to B™ with n > 3 for k € {1,2,...}. Thus we conclude that there is no integer
k such that B" = B,.

This is the starting point of our research. We call p-property for this “periodicity” on
combinatory terms. More precisely, we say that a combinator X has p-property if there exist
two distinct integers ¢ and j such that X(;) = X(;). In this case, we have X11) = X(j41)
for any k > 0 (& la finite monogenic semigroup [7]). Fig.1 shows a computation graph of
B(x). The p-property is named after the shape of the graph.

This paper discusses the p-property of combinatory terms, particularly terms built from B
alone. We call such terms B-terms and CL(B) denotes the set of all B-terms. For example,
the B-term B B enjoys the p-property with (B B)(52) = (B B)(32) and so does B (B B) with
(B (B B))(204) = (B (B B))(258) as reported in [8]. Several combinators other than B-terms
can be found to enjoy the p-property, for example, K = Ax.A\y.x and C' = Ax. \y.\z. x z y
because of K(3) = K(1) and C(4) = C(3). They are less interesting in the sense that the cycle
starts immediately and its size is very small, comparing with B-terms like B B and B (B B).
As we will see later, B (B (B (B (B (B B)))))(= B® B) has the p-property with the cycle of
the size more than 3 x 10!! which starts after more than 2 x 10'2 repetitive right applications.
This is why the p-property of B-terms is intensively discussed in the present paper.

The contributions of the paper are two-fold. One is to give a characterization of CL(B)
(Section 3) and another is to provide a sufficient condition for the p-property and anti-p-
property of B-terms (Section 4). In the former, we introduce a canonical representation
of B-terms and establish a sound and complete equational axiomatization for CL(B). In
the latter, the p-property of B™B with n < 6 is shown with an efficient algorithm and the
anti-p-property for B-terms of particular forms is proved.

2 p-property of terms

The p-property of combinator X is that X(; = X(;) holds for some i > j > 1. We adopt
Bn-equality of corresponding A-terms for the equality of combinatory terms in this paper. We
could use other equality, for example, induced by the axioms of combinatory logic. The choice
of equality is not essential here, e.g., B(g) and B(13) are equal even up to the combinatory
axiom of B, as well as fn-equality. Furthermore, for simplicity, we only deal with the case

M. lkebuchi and K. Nakano

p(B°B) = (6,4) p(B*B) = (191206, 431453)

p(B'B) = (32,20) p(B®B) = (766241307, 234444571)
p(B?B) = (258, 36) p(BSB) = (2641033883877, 339020201163)
p(B3B) = (4240 5796)

Figure 2 p-property of B-terms in a particular form.

where X,y is normalizable for all n. If X, is not normalizable, it is much more difficult to
check equivalence with the other terms. This restriction does not affect results of the paper
because all B-terms are normalizing.

Let us write p(X) = (4,) if a combinator X has the p-property due to Xy = X(; 4

with minimum positive integers ¢ and j. For example, we have p(B) = (6,4), p(C) = (3,1),

p(K) = (1,2) and p(I) = (1,1). Besides them, several combinators introduced in Smullyan’s
book [10] have the p-property:

p(D) = (32,20) where D = Az \y Az w.z y (z w)
p(F) = (3,1) where F' = Az \y.\z.z y x

p(R) = (3,1) where R = Az \y A2y z

p(T) =(2,1) where T'= Az \y.y
p(V)=(3,1) where V = Az Ay \z.z ¢ y.

Except the B and D (= B B) combinators, the property is ‘trivial’ in the sense that the
loop starts early and the size of cycle is very small.

On the other hand, the combinators S = Az.Ay.Az.x z (y z) and O = Az A\y.y (z y) in
the book do not have the p-property for reason (A), which is illustrated by

Sentny =AMy zy (zy (.. (zy N2z z(y2))...)),

Oty =Az.x (z (... (x (A\yy (zy)).

n

The definition of the p-property is naturally extended from single combinators to terms

obtained by combining several combinators. We found by computation that several B-terms,

built from the B combinator alone, have a nontrivial p-property as shown in Fig.2. The
detail will be shown in Section 4.

3 Checking equivalence of B-terms

The set of all B-terms, CL(B), is closed under application by definition, that is, the repetitive
right application of a B-term always generates a sequence of B-terms. Hence, the p-property
can be decided by checking ‘equivalence’ among generated B-terms, where the equivalence
should be checked through Sn-equivalence of their corresponding A-terms in accordance with
the definition of the p-property. It would be useful if we have a fast algorithm for deciding
equivalence over B-terms.

In this section, we give a characterization of the B-terms to efficiently decide their
equivalence. We introduce a method for deciding equivalence of B-terms without calculating
the corresponding A-terms. To this end, we first investigate equivalence over B-terms with

18:3

FSCD 2018

18:4 On Repetitive Right Application of B-Terms

Brzyz=uz(y2) (B1)
B (Bxy)=B(Buz)(By) (B2)
BB (Bz)=B (B (Buz)B (B3)

Figure 3 Equational axiomatization for B-terms

examples and then present an equation system as a characterization of B-terms so as to
decide equivalence between two B-terms. Based on the equation system, we introduce a
canonical representation of B-terms. The representation makes it easy to observe the growth
caused by repetitive right application of B-terms, which will be later used for proving the
anti-p-property of B2. We believe that this representation will be helpful to prove the
p-property or the anti-p-property for the other B-terms.

3.1 Equivalence over B-terms

Two B-terms are said equivalent if their corresponding A-terms are fn-equivalent. For
instance, B B (B B) and B (B B) B B are equivalent. This can be easily shown by
the definition B = y z = = (y z). For another (non-trivial) instance, B B (B B) and
B (B (B B)) B are equivalent. This is illustrated by the fact that they are equivalent to
Az Ay Az w. .z (y z) (w v) where B is replaced with Az Ay.Az. © (y z) or the other way
around at the =g equation. Similarly, we cannot show equivalence between two B-terms,
B (B B) (B B) and B (B B B), without long calculation. This kind of equality makes it
hard to investigate the p-property of B-terms. To solve this annoying issue, we will later
introduce a canonical representation of B-terms.

3.2 Equational axiomatization for B-terms

Equality between two B-terms can be effectively decided by an equation system. Figure 3
shows a sound and complete equation system as described in the following theorem.

» Theorem 1. Two B-terms are n-equivalent if and only if their equality is derived by
equations (B1), (B2), and (B3).

The proof of the “if” part, which corresponds to the soundness of the equation system
(B1), (B2), and (B3), is given here. We will later prove the “only if” part with the uniqueness
of the canonical representation of B-terms.

Proof. Equation (B1) is immediate from the definition of B. Equations (B2) and (B3) are

shown by
B (Beye)=Ax)y. B(Beie)zy B B (Bei)=X. BB (Bei)z
=Az.\y. Beiex (zy) =Xz. B(B e x)
= Az)y. e1 (e2 (z y)) = Az A\y.Az. B ei z(y z)
=Xz)\y. e1 (Bexxy) = Az Ay Az e1 (z (y 2))
=Xz. Bei (Besx) =z yAz.e1 (Bzyz)
=B (Bei1) (B e2) =Xz)\y. Bei (Bzxy)

=Xz. B (B ey) (B x)
=B (B (Be)) B

where the a-renaming is implicitly used. |

M. lkebuchi and K. Nakano

Equation (B2) has been employed by Statman [12] to show that no Bw-term can be a
fixed-point combinator where w = Azx.z x. This equation exposes an interesting feature of
the B combinator. Write equation (B2) as

B (e10e3) = (Bey)o(B es) (B2%)

by replacing every B combinator with o infix operator if it has exactly two arguments.
The equation is a distributive law of B over o, which will be used to obtain the canonical
representation of B-terms. Equation (B3) is also used for the same purpose as the form of

Bo(Bey)= (B (Be))oB. (B3")

We also have a natural equation B e; (B ez e3) = B (B e; e3) e3 which represents
associativity of function composition, i.e., e; o (ez 0 e3) = (e1 0 e3) o e3. This is shown with
equations (B1) and (B2) by

B (&3] (B €9 63) =B (B 61) (B 62) €3 = B (B €1 62) €3.

3.3 Canonical representation of B-terms

To decide equality between two B-terms, it does not suffice to compute their normal forms
under the definition of B, B x y z — = (y z). This is because two distinct normal forms
may be equal up to fSn-equivalence, e.g., B B (B B) and B (B (B B)) B. We introduce a
canonical representation of B-terms, which makes it easy to check equivalence of B-terms.
We will eventually find that for any B-term e there exists a unique finite non-empty weakly-
decreasing sequence of non-negative integers ny; > ny > -+ > ny such that e is equivalent
to (B™B)o (B™B)o---0o(B"™B). Ignoring the inequality condition gives polynomials
introduced by Statman [12]. We will use these decreasing polynomials for our canonical
representation as presented later. A similar result is found in [4].

First, we explain how this canonical form is obtained from a B-term. We only need to
consider B-terms in which every B has at most two arguments. One can easily reduce the
arguments of B to less than three by repeatedly rewriting occurrences of B ey es ez e4 ... e,
into e; (e2 e3) e4 ... e,. The rewriting procedure always terminates because it reduces the
number of B. Thus, every B-term in CL(B) is equivalent to a B-term built by the syntax

ex=B | Be| eoe (1)

where e; o es denotes B ey es. We prefer to use the infix operator o instead of B that
has two arguments because associativity of B, that is, B e; (B ez e3) = B (B e1 e2) e3
can be implicitly assumed. This simplifies the further discussion on B-terms. We will deal
with only B-terms in syntax (1) from now on. The o operator has a lower precedence than
application in this paper, e.g., terms B Bo B and Bo B B represent (B B)o B and Bo (B B),
respectively.

The syntactic restriction by (1) does not suffice to proffer a canonical representation of
B-terms. For example, both of the two B-terms Bo B B and B (B B) o B are given in the
form of (1), but we can see they are equivalent using (B3’).

A polynomial form of B-terms is obtained by putting a restriction on the syntax so that
no B combinator occurs outside of the o operator while syntax (1) allows the B combinators
and the o operators to occur in an arbitrary position. The restricted syntax is given as

ex=ep | eoce eg =B |Bep

18:5

FSCD 2018

18:6

On Repetitive Right Application of B-Terms

where terms in ep have a form of B(...(B(B B))...), that is B"B with some n, called
monomial. The syntax can be simply rewritten into e ::= B"B | e o e, which is called
polynomial.

» Definition 2. A B-term B"B is called monomial. A polynomial is a B-term given in the
form of

(B"B)o (B™B)o--o(B"DB)

where £ > 0 and nq,...,n; > 0 are integers. In particular, a polynomial is called decreasing
when ny > no > --- > ng. The length of a polynomial P is a number of monomials in P, i.e.,
the length of the polynomial above is k. The numbers ni,ns,...,n; are called degrees.

In the rest of this subsection, we prove that for any B-term e there exists a unique
decreasing polynomial equivalent to e. First, we show that e has an equivalent polynomial.

» Lemma 3 ([12]). For any B-term e, there exists a polynomial equivalent to e.

Proof. We prove the statement by induction on the structure of e. In the case of e = B, the
term itself is polynomial. In the case of e = B e, assume that e; has equivalent polynomial
(B™B)o (B™B)o---o(B™B). Repeatedly applying equation (B2’) to B e, we obtain
a polynomial equivalent to B e; as (B T'B) o (B"™!B)o ... o (B™*1B). In the case of
e = e o eg, assume that e; and ey have equivalent polynomials P, and P», respectively. A
polynomial equivalent to e is given by P; o Ps. |

Next, we show that for any polynomial P there exists a decreasing polynomial equivalent
to P. A key equation of the proof is

(B"B)o (B"B) = (B""™'B) o (B™B) whenm < n, (2)
which is shown by

(B™B)o (B"B) = B™(Bo (B""™B))
=B™(Bo (B (B""""'B)))
= B™((B(B(B""™7'B))) o B)
= (B""'B) o (B™B)

using equations (B2’) and (B3’).

» Lemma 4. Any polynomial P has an equivalent decreasing polynomial P’ such that
the length of P and P’ are equal, and
the lowest degrees of P and P’ are equal.

Proof. We prove the statement by induction on the length of P. When the length is 1, that
is, P is a monomial, P itself is decreasing and the statement holds. When the length & of
P is greater than 1, take P; such that P = Py o (B"B). From the induction hypothesis,
there exists a decreasing polynomial P; = (B™ B) o (B™B)o---o (B"-1B) equivalent to
Py, and the lowest degree of Py is ng—1. If ng_1 > n, then P’ = P/ o (B™ B) is decreasing
and equivalent to P. Since the lowest degrees of P and P’ are n, the statement holds. If
ng_1 < n, P is equivalent to

(Bru B)O-~-O(Bnk_1B)O(BnB) — (BnlB)O"'O(BnJrlB)o(B”’“—lB)

M. lkebuchi and K. Nakano

due to equation (2). Putting the last term as Py o (B™—1B), the length of P, is k — 1 and
the lowest degree of P, is greater than or equal to ng_;. From the induction hypothesis,
P, has an equivalent decreasing polynomial Pj of length k£ — 1 and the lowest degree of P
greater than or equal to ny_1. Thereby we obtain a decreasing polynomial P; o (B™ -1 B)
equivalent to P and the statement holds. <

» Example 5. Consider a B-term e = B (B B B) (B B) B. First, applying equation (B1),
e=B(BBB)(BB)(BB)=BBB(BB(BB))=B (B (BB (BB)))

so that every B has at most two arguments. Then replace each B to the infix o operator if it
has two arguments and obtain B (B (B o (B B))) Applying equation (B2’), we have

B (B (Bo (B B))) =B ((BB)e(B (B B)))
=(B (B B))o(B (B (B B)))
= (B*B) o (B*B).

Applying equation (2), we obtain the decreasing polynomial (B*B) o (B?B) equivalent to e.

Every B-term has at least one equivalent decreasing polynomial as shown so far. To
conclude this subsection, we show the uniqueness of decreasing polynomial equivalent to any
B-term, that is, every B-term e has no two distinct decreasing polynomials equivalent to e.

The proof is based on the idea that B-terms correspond to unlabeled binary trees. Let
M be a term which is constructed from variables z1, ...,z and their applications. Then
we can show that if the A-term Azp....Axg. M is in CL(B), then M is obtained by putting
parentheses to some positions in the sequence x; ... xg. More precisely, we have the following
lemma.

» Lemma 6. Every A-term in CL(B) is 8n-equivalent to a A-term of the form Axy. ... Axg. M
with some k > 2 where M satisfies the following two conditions: (1) M consists of only the
variables x1, ...,z and their applications, and (2) for every subterm of M which is in the
form of My My, if My has a variable x;, then My does not have any variable x; with j < i.

Proof. By the structural induction of B-terms. |

From this lemma, we see that we do not need to specify variables in M and we can simply
write like x x (x x) = x1 x2 (z3 z4). Formally speaking, every A-term in CL(B) uniquely
corresponds to a term built from * alone by the map (Axy. ... \zg. M) — M[x/x1,...,x/xg].
We say an unlabeled binary tree (or simply, binary tree) for a term built from * alone
since every term built from x alone can be seen as an unlabeled binary tree. (A term x
corresponds to a leaf and ¢ t5 corresponds to the tree with left subtree ¢; and right subtree
t2.) To specify the applications in binary trees, we write (¢, t3) for the application ¢; t5. For
example, B-terms B = Ax.Ay.\z. x (y z) and B B = Ax.Ay.Az.\w. 2 y (z w) are represented
by (%, (%, %)) and ((x,), (x, %)), respectively.

We will present an algorithm for constructing the corresponding decreasing polynomial
from a given binary tree. First let us define a function £; with integer ¢« which maps binary
trees to lists of integers:

Li(x) =] Li((t1,t2)) = Ly, (t2) H Li(t) + [d]

where H concatenates two lists and |t| denotes a number of leaves. For example,
Lo (G %), (£,%))) = [2,0,0] and Ly ({(x, (x,%)), (x, (x,%)))) = [4,4,2,1,1]. Informally, the

18:7

FSCD 2018

18:8

On Repetitive Right Application of B-Terms

L; function returns a list of integers which is obtained by labeling both leaves and nodes
in the following steps. First each leaf of a given tree is labeled by 4,7 + 1,7 4+ 2,... in
left-to-right order. Then each binary node of the tree is labeled by the same label as its
leftmost descendant leaf. The £; functions return a list of only node labels in decreasing
order. The length of the list equals the number of nodes, that is, smaller by one than the
number of variables in the \-term.

We define a function £ which takes a binary tree t and returns a list of non-negative
integers in £_1(t), that is, the list obtained by excluding trailing all —1’s in £_(¢). Note
that by excluding the label —1’s it may happen to be L(t) = L(¢') for two distinct binary
trees t and ¢’ even though the £; function is injective. However, those binary trees ¢ and ¢’
must be ‘n-equivalent’ in terms of the corresponding A\-terms.

The following lemma claims that the £ function computes a list of degrees of a decreasing
polynomial corresponding to a given A-term.

» Lemma 7. A decreasing polynomial (B™ B) o (B™B)o---o(B™ B) is fn-equivalent to a
A-term e € CL(B) corresponding a binary tree t such that L(t) = [n1,na, ..., nk.

Proof. We prove the statement by induction on the length of the polynomial P.
When P = B"B with n > 0, it is found to be equivalent to the A-term

)\%1.)\%2.)\%3 A$n+1.)\$n+2.A1’n+3. L1 T2 T3 ... Tpt1 (Zn+2 ZCn+3)
by induction on n. This A-term corresponds to a binary tree t = ((... ((*, %), %), ..., %), (*,%)).
—_———
n leaves
Then we have L(t) = [n] holds from £_;(t) = [n,—1,-1,...,—1].
—_———

n+1
When P = P’ o (B"B) with P’ = (B™B)o---0(B"™B), k>1and ny > - > ng >

n > 0, there exists a A-term fn-equivalent to P’ corresponding a binary tree ¢’ such that

L(t") = [n1,...,ni] from the induction hypothesis. The binary tree ' must have the form
of (({...((*x,%), %), ..oy x),t1), .o b)) with m > 1 and some trees tq,...,t,, otherwise L(t')
—_——
ny leaves
would contain an integer smaller than ny. From the definition of £ and £;, we have
L) =Ly, (tm) + -+ Ly, (t1) 3)

where s; =nj + 1+ Zz;ll |t;]. Additionally, the structure of ¢’ implies P’ = Azy..... Az
X1 T2 ... Tpyt1 €1--.6€m Where e; corresponds to a binary tree ¢; for i = 1,...,m. From
B" B=MAy;..... AUnt3 Y1 Y2 - Ynt+1 (Ynt2 Yn+3), we compute a A-term [Sn-equivalent to
P =P o(B"B) by
P =\z. P(B"B)
=Az. (Azq..... AZ]. X1 To .. . Tpyq1 €1 «-- Em)
(AY2- - AYnts- T Y2 Ynt1 (Ynt2 Yn+3))
= Az \To..... Az (Aya. AUnt3- T Y2+ Ynt1 (Ynt2 YUnt3)) 2. Tyt €1 ... 6m

(AYn41-AYnt2-AYn+3- T T2 Tp Ynt1 Ynt2 Ynt3)) Tntl - Tngt1 €1---Em

where ny, > n is taken into account. We split into four cases: (i) ny = n and m = 1, (ii)
n,g =n and m > 1, (iii) nxy =n+ 1, and (iv) ny > n+ 1. In the case (i) where ny = n and
m = 1, we have

P =)\:EA.TQ)\xl./\yn+3. L Xy...Ty Tpt1 (61 yn+3)~

M. lkebuchi and K. Nakano 18:9

whose corresponding binary tree t is ((...{((%,*),*),..., %), (t1,*)). From equation (3),
—_——

n leaves

L(t) = Lpy1(t1) H [n+1] = L) # [n+ 1] = [n1, ..., nk,n + 1], thus the statement holds.
In the case (ii) where ny =n and m > 1, we have

P =Xz xo..... AL T T .. Ty Ty (€1 €2) €3 ... €.
whose corresponding binary tree ¢ is (((... {({x,%),%),..., %), (t1,%2),t3),...,tm). Hence,
—_———

n leaves
L(t) = L(¥') # [n + 1] holds again from equation (3). In the case (iii) where ny =n + 1, we
have

P =Xz)zsy..... AL T XTo... Ty Tpt1 (Tnto €1) €2... €y, OF
whose corresponding binary tree ¢ is (({... ((k,*), %), ..., %), (x,t1),t2), ..., tmm). Hence, L(t) =
| ——

n leaves

L(t") + [n + 1] holds from equation (3). In the case (iv) where ny > n + 2, we have

P =Xz)zy..... AL T To ... Ty Tptl (Tnto Tnas) -« €1...Cm,
whose corresponding binary tree t is ({({... ({(*x,%), %), ..., %), (*,%), ..., t1),...,tm). Hence,
—_————
n leaves
L(t) = L(t') # [n + 1] holds from equation (3). <

» Example 8. A A-term A\xj. Ao Ax3 Axg x5 06 A7 M85 21 (22 x3) (24 x5 w6 (7 T3))
is Bn-equivalent to (B® B) o (B% B) o (B? B) o (B? B) o (BY B) because its corresponding
binary tree t = ((%, (%, %)), ({{x, %), %), {(x,%))) satisfies L(t) = [5,2,2,2,0].

The previous lemmas immediately conclude the uniqueness of decreasing polynomials for
B-terms shown in the following theorem.

» Theorem 9. Fvery B-term e has a unique decreasing polynomial.

Proof. For any given B-term e, we can find a decreasing polynomial for e from Lemma 3 and
Lemma 4. Since every decreasing polynomial corresponds to only one binary tree (and since
every B-term also corresponds to only one binary tree up to n-equivalence) from Lemma 7,
the present statement holds. <

This theorem implies that the decreasing polynomial of B-terms can be used as their
canonical representation, which is effectively derived as shown in Lemma 3 and Lemma 4.

As a corollary of the theorem, we can show the “only if” statement of Theorem 1, which
corresponds to the completeness of the equation system.

Proof. Let e; and es be equivalent B-terms, that is, their A-terms are fn-equivalent. From
Theorem 9, their decreasing polynomials are the same. Since the decreasing polynomial is
derived from e; and e by equations (B1), (B2), and (B3) according to the proofs of Lemma 3
and Lemma 4, equivalence between e; and es is also derived from these equations. |

4 Results on the p-property of B-terms

We investigate the p-property of concrete B-terms, some of which have the property and
others do not. For B-terms having the p-property, we introduce an efficient implementation
to compute the entry point and the size of the cycle. For B-terms not having the p-property,
we give a proof why they do not have.

FSCD 2018

18:10

On Repetitive Right Application of B-Terms

4.1 B-terms having the p-property

As shown in Section 2, we can check that B-terms equivalent to B"B with n < 6 have
the p-property by computing (B"B);) for each i. However, it is not easy to check it by
computer without an efficient implementation because we should compute all (B°B);
with i < 2980054085040 (= 2641033883877 + 339020201163) to know that p(B°B) =
(2641033883877, 339020201163). A naive implementation which computes terms of (B°B) ;)
for all ¢ and stores all of them has no hope to detect the p-property.

We introduce an efficient procedure to find the p-property of B-terms which can success-
fully compute p(B°B). The procedure is based on two orthogonal ideas, Floyd’s cycle-finding
algorithm [6] and an efficient right application algorithm over decreasing polynomials pre-
sented in Section 3.3.

The first idea, Floyd’s cycle-finding algorithm (also called the tortoise and the hare
algorithm), enables us to detect the cycle with a constant memory usage, that is, the history
of all terms X ;) does not need to be stored to check the p-property of the X combinator. The
key of this algorithm is the fact that there are two distinct integers 7 and j with X;) = X,
if and only if there is an integer m with X(,,) = X(a,,), where the latter requires to compare
X5y and X (g;) from smaller ¢ and store only these two terms for the next comparison between
Xy = XX and X(9i40) = X(25)XX when X(;) # X(;. The following procedure
computes the entry point and the size of the cycle if X has the p-property.

1. Find the smallest m such that X(,,) = Xap).

2. Find the smallest k such that X,y = X(pnqp)-

3. Find the smallest 0 < ¢ < k such that X(,,) = X(;4). If not found, put ¢ = m.

After this procedure, we find p(X) = (k,c¢). The third step can be run in parallel during
the second one. See [6, exercise 3.1.6] for the detail. One could use slightly more (possibly)
efficient algorithms by Brent [3] and Gosper [2, item 132] for cycle detection.

Efficient cycle-finding algorithms do not suffice to compute p(B°B). Only with the idea
above running on a laptop (1.7 GHz Intel Core i7 / 8GB of memory), it takes about 2 hours
even for p(B®B) and fails to compute p(B%B) with an out-of-memory error.

The second idea enables us to efficiently compute X(; 1) from X;) for B-terms X. The
key of this algorithm is to use the canonical representation of X(;), that is a decreasing
polynomial, and directly compute the canonical representation of X(; 1) from that of X;.
Additionally, the canonical representation enables us to quickly decide equivalence which is
required many times to find the cycle. It takes time just proportional to their lengths. If
A-terms are used for finding the cycle, both application and deciding equivalence require much
more complicated computation. Our implementation based on these two ideas computes
p(B5B) and p(B°B) in 10 minutes and 59 days (!), respectively.

For two given decreasing polynomials P; and P», we show how a decreasing polynomial
P equivalent to (P; P) can be obtained. The method is based on the following lemma about
application of one B-term to another B-term.

» Lemma 10. For B-terms e; and es, there exists k > 0 such that e;o(B es) = B (ey e3)oB*.

Proof. Let P; be a decreasing polynomial equivalent to e;. We prove the statement by case

analysis on the maximum degree in P;. When the maximum degree is 0, we can take k' > 1
such that P, = Bo---0 B = B¥. Then,
—_—
k/

e10(Bey)=Bo---0Bo(Bey)=(B"*tley)oBo---0B=B (e e3) 0 B¥
k/ k/

M. lkebuchi and K. Nakano

where equation (B3’) is used k' times in the second equation. Therefore the statement holds
by taking k¥ = k’. When the maximum degree is greater than 0, we can take a decreasing
polynomial P’ for a B-term and k’ > 0 such that P, = (B P')oBo---0 B = (B P')o B¥
—_—
kl
due to equation (B2’). Then,
e1o(Bey)= (B P)oBo---0Bo(B es)
k/
(B P')o(B¥*ley)oBo---0B
| —
k/

Therefore, the statement holds by taking k = k. |

This lemma indicates that, from two decreasing polynomials P; and Ps, a decreasing
polynomial P equivalent to (P; P,) can be obtained in the following steps where Ly and Lo
are lists of non-negative numbers as shown in Section 3.3 corresponding to P; and Ps.

1. Build Pj by incrementing each degree of P, by 1, i.e., when P, = (B™ B)o---0 (B™B),
P, = (Bm*'B)o...0(B™T1B). In terms of the list representation, a list L} is built
from Lo by incrementing each value by 1.

2. Find a decreasing polynomial Pj5 corresponding to P; o Pj by equation (2). In terms of
the list representation, a list Lo is constructed by appending L; and L} and repeatedly
applying (2).

3. Obtain P by decrementing each degree of Py after eliminating the trailing 0-degree units,
i.e., when Pjp = (B"B)o---0(B"B)o(BB)o---0(BB) with ny > --- >n; >0,
P=(B"1B)o---0(B" 1B). In terms of the list representation, a list L is obtained
from L12 by decrementing each value by 1 after removing trailing 0’s.

In the first step, a decreasing polynomial Pj equivalent to B P, is obtained. The second

step yields a decreasing polynomial Py for Py o Py = P; o (B P,). Since P; and P, are

decreasing, it is easy to find Pjo by repetitive application of equation (2) for each unit of

P}, a la insertion operation in insertion sort. In the final step, a polynomial P that satisfies

(B P)o B* = P15 with some k is obtained. From Lemma 10 and the uniqueness of decreasing

polynomials, P is equivalent to (P P»).

» Example 11. Let P, and P, be decreasing polynomials represented by lists L1 = [4, 1, 0]
and Ly = [2,0]. Then a decreasing polynomial P equivalent to (P, P») is obtained as a list
L in three steps:

1. Alist L}, = [3,1] is obtained from L by incrementing each value by 1.

2. A decreasing list L5 is obtained from L; and L)} by

L1z =14,1,0,3,1] = [4,1,4,0,1] = [4,5,1,0,1] = [6,4,1,0,1] = [6,4,1,2,0] = [6,4,3,1,0]

where equation (2) is applied in each underlined pair.
3. Alist L =[5,3,2,0] is obtained from L5 as the result of the application by decrementing
each value by 1 after removing trailing 0’s.

18:11

FSCD 2018

18:12

On Repetitive Right Application of B-Terms

The implementation based on the right application over decreasing polynomials is avail-
able at https://github.com/ksk/Rho. Note that the program does not terminate for the
combinator which does not have the p-property. It will not help to decide if a combinator
has the p-property. One might observe how the terms grow by repetitive right applications
through running the program, though.

4.2 B-terms not having the p-property

We prove that the B-terms (B*B)*+2" (k. >0, n > 0) do not have the p-property. For
example, B-term B2 = B B B, which is the case of £ = 0 and n = 1, does not have the
p-property. To this end, we show that the number of variables in the Sn-normal form of
((BkB)(k“)”)(i) is monotonically non-decreasing and that it implies the anti-p-property.
Additionally, after proving that, we consider a sufficient condition not to have the p-property
through the monotonicity.

First, we introduce some notations. Suppose that the Sn-normal form of a B-term X
is given by Azy....Ax,. 1 e1 -+ e for some terms eq,...,ex. Then we define [(X) =n
(the number of variables), a(X) = k (the number of arguments of z1), and N;(X) = ¢;
for i = 1,...,k. For convinience, we define functions I, a, and N; also for terms of form
Y = z e;...e; in the same mannar. That is, {(Y) is the number of variables in Y,
a(Y) = k, and N;(Y) = ¢;. Let X’ be another B-term and suppose its Sn-normal form
is given by Azj....Az),. € where ¢/ does not have A-abstractions. We can see X X’ =
(Axy.... zp. 21 €1 -+ eg) X' =Axo.... Az, X' €1 -+ e and from Lemma 6, its Sn-normal
form is

AT AT AT - AT e /2, e /ay] (B <)
AZa. ... ATy €ler/xl, .. en fal,] engr -+ e (otherwise).
Here €'[e1 /2], ..., ex/x}] is the term which is obtained by substituting eq,..., e, to the

variables o/, ...,z in €’ .
By simple computation with this fact, we get the following lemma:

» Lemma 12. Let X and X' be B-terms. Then

l(X X’) = (X) — 1+ max{l(X") — a(X), 0}
= a(X") + a(N1(X)) + max{a(X) — (X'), 0}
{N1 (X N2 X)/ay, ..., No(X) /2!] (if N1(X) is a variable)
Ny ((otherwise)
where m = min{l(N1(X")), a(X)}.

The Bn-normal form of (BkB)(k“)” is given by

Ary. ... /\Ik+(l~c+2)n+2- Ty T2 *+° Tk41 (Ik+2 LTk+3 " ‘rk+(k+2)n+2)-

This is deduced from Lemma 7 since the binary tree corresponding to the above A-term
ist = ((...((kx), %)y ooy x), (o (R, %), %), ...y x)) and L(t) = [k,. .., k]. Especially, we get
—_—— ——— ——
k+1 (k+2)n (k+2)n

I(B*B)#+2)7) = | + (k + 2)n + 2. In this section, we write (x,%,%,...,%) for
(oo ({*,%),%),...,%) and identify B-terms with their corresponding binary trees.

To describe properties of (B’“B)(’“‘Q)"7 we introduce a set T} , which is closed under right
application of (B*B)*+2n that is, T}, satisfies that “if X € Ty, then X (BFB)(F+2)n ¢
Tk, holds” First we inductively define a set of terms 7}, as follows:

https://github.com/ksk/Rho

M. lkebuchi and K. Nakano

L xeTy,

2. (%, 81, -oy S(hy2)n) € Tlg,n if s; = % for each multiple 7 of k + 2 and s; € T,;yn for the
others.

Then we define T, ,, by Tk = {(tm t1, «eny tht1) | toy t1see,thpl € T,én} It is obvious

that (BkB)(k+2)” € T}, Now we shall prove that T}, ,, is closed under right application of
(BkB)(k+2)n.

» Lemma 13. If X € Ty, then X (B*B) 2 ¢ T}, ..

Proof. From the definition of T} ,, if X € T}, then X can be written in the form

(to, t1, ..., tgy1) for some tg,...,tg41 € T,;n. In the case where t5 = %, we have
X (BFB)FH2n = (t), ... tgy1, (%, ..., %)) € Thn. In the case where ¢, has the form of 2
———
(k+2)n
in the definition of Tlg,n’ then we have X = (x, s1, ..., S(k42)n, 1, -+ -, thy1) With s; =%

for each multiple ¢ of kK + 2 and s; € T}Q,n for the others, hence

X (BEBY*F2 = (51, o0, Spgts (Ska2s oy S(haoyms By <oy tigds %))
We can easily see s1, ..., Ski1, and (Sk42, - -y S(ht2)n, t1, -+, thi1, x) arein Ty . <
From the definition of T} ,,, we can compute that a(X) equals k+1or (k+2)n+k+1if
X €Ty, . Particularly, we get the following:
» Lemma 14. For any X € Ty, a(X) < (k+2)n+k+ 1 =1((B*B)*+2n) — 1,

This lemma is crucial to show that the number of variables in ((BkB)(k“)”)(i) is mono-
tonically non-decreasing. Put Z = (B*B)®**2" for short. Since Z € T}, we have
{Zuy | i > 1} C Ty, by Lemma 13. Using Lemma 14, we can simplify Lemma 12 in the case
where X = Z;) and X' = Z as follows:

(Zivy) =1 Z@w) + (k+2n+k+1—a(Zu) (4)

a(Ziy1)) = a(N1(Z@)) +k+1 (5)
Na(Ziy) (if N1(Z(;) is a variable)

Ny (Z(i1 6

(Zisn) = { Ni(Ny(Zs)) (otherwise). (6)

By (4) and Lemma 14, we get I[(Z(;11)) > I(Z(;y).
To prove that Z does not have the p-property, it suffices to show the following:

» Lemma 15. For any i > 1, there exists j > i that satisfies [(Z(;)) > U(Z(;)).

Proof. Suppose that there exists i > 1 that satisfies I(Z(;)) = I(Z(;)) for any j > i. We
get a(Z;)) = (k+2)n +k + 1 by (4) and then a(N1(Z(;))) = (k + 2)n by (5). Therefore
N1(Zjy) is not a variable for any j > 4 and from (6), we obtain Ni(Z;)) = N1(N1(Zj-1))) =
= Ny(---N1(Z())---) for any j > i. However, this implies that Z(;) has infinitely many
—_——
j—it1
variables and it yields contradiction. |

Now, we get the desired result:
» Theorem 16. For any k > 0 and n > 0, (B*B)*+2" does not have the p-property.

The key fact which enables us to show the anti-p-property of (B¥B)#+2)" is the existence
of the set T} », D {((BkB)(k‘*‘Q)")(i) | i > 1} which satisfies Lemma 14. In a similar way, we
can show the anti-p-property of a B-term which has such a “good” set. That is,

18:13

FSCD 2018

18:14

On Repetitive Right Application of B-Terms

» Theorem 17. Let X be a B-term and T be a set of B-terms. If {X(i) ’ 1> 1} CT and
I(X)>a(X')+1 for any X' € T, then X does not have the p-property.

Here is an example of the B-terms which satisfy the condition in Theorem 17 with some
set T. Consider X = (B%2B)? o (BB)? 0 B% = (x, (%, (%, {x, %, x), %), %)). We inductively
define T” as follows:

1. xeT’

2. Forany t € T/, (x, t, x) € T’

3. For any t1,t2 € T', (x, t1, *, {(, ta, %), x) €T’

Then T = {(t1, (, ta, *)) | t1,t2 € T'} satisfies the condition in Theorem 17. It can be
checked simply by case analysis. Thus

» Theorem 18. (B?B)? o (BB)? o B% does not have the p-property.

Theorem 17 gives a possible technique to prove the monotonicity with respect to {(X;), or,
the anti-p-property of X, for some B-term X. Moreover, we can consider another problem on
B-terms: “Give a necessary and sufficient condition to have the monotonicity for B-terms.”

5 Concluding remark

We have investigated the p-properties of B-terms in particular forms so far. While the
B-terms equivalent to B”B with n < 6 have the p-property, the B-terms (B*B)(*+2)" with
k> 0and n > 0and (B?B)%?0(BB)?0 B? do not. In this section, remaining problems related
to these results are introduced and possible approaches to illustrate them are discussed.

5.1 Remaining problems

The p-property is defined for any combinatory terms (and closed A-terms). We investigated
it only for B-terms as a simple but interesting instance in the present paper. From his
observation on repetitive right applications for several B-terms, Nakano [8] has conjectured
as follows.

» Conjecture 19. A B-term e has the p-property if and only if e is a monomial, i.e., e is
equivalent to B" B with n > 0.

The “if” part for n < 6 has been shown by computation and the “only if” part for (B* B)(*+2)"
(k> 0,n > 0) and (B2B)? o (BB)? o B? has been shown by Theorem 16. This conjecture
implies that the p-property of B-terms is decidable. We conjecture that the p-property of
even BCK- and BCI-terms is decidable. The decidability for the p-property of S-terms
and L-terms can also be considered. Waldmann’s work on a rational representation of
normalizable S-terms may be helpful to solve it. We expect that none of S-terms have the
p-property as S itself does not, though. Regarding L-terms, Statman’s work [11] may be
helpful where equivalence of L-terms is shown decidable up to a congruence relation induced
by L e; e — e (e2 ea). It would be interesting to investigate the p-property of L-terms in
this setting.

5.2 Possible approaches

The present paper introduces a canonical representation to make equivalence check of B-terms
easier. The idea of the representation is based on that we can lift all o’s (2-argument B) to the
outside of B (l-argument B) by equation (B2’). One may consider it the other way around.
Using the equation, we can lift all B’s (1-argument B) to the outside of o (2-argument B).

M. lkebuchi and K. Nakano

Then one of the arguments of o becomes B. By equation (B3’), we can move all B’s right.
Thereby we find another canonical representation for B-terms given by

e:=B|Bel|leoB

whose uniqueness could be easily proved in a way similar to Theorem 9.
Waldmann [13] suggests that the p-property of B™B may be checked even without
converting B-terms into canonical forms. He simply defines B-terms by

ex=B|ee

and regards B* as a constant which has a rewrite rule B* e; ey ... epio — €1 (€2 ... exia).
He implemented a check program in Haskell to confirm the p-property. Even in the re-
striction on rewriting rules, he found that (BOB)(Q) = (BOB)(lg), (BlB)(36) = (B'B)(56),
(BzB)(274) = (BQB)(310) and (B3B)(4267) = (B3B)(10063), in which it requires a few more
right applications to find the p-property than the case of canonical representation. If the
p-property of B™B for any n > 0 is shown under the restricted equivalence given by rewriting
rules, then we can conclude the “if” part of Conjecture 19.

Another possible approach is to observe the change of (principal) types by right repetitive
application. Although there are many distinct A-terms of the same type, we can consider
a desirable subset of typed A-terms. As shown by Hirokawa [5], each BC K-term can be
characterized by its type, that is, any two A-terms in CL(BCK) of the same principal type
are identical up to -equivalence. This approach may require observing unification between
types in a clever way.

—— References

1 Hendrik P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1984.
2 Michael Beeler, Ralph W. Gosper, and Richard C. Schroeppel. HAKMEM. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1972.
3 Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20(2):176-184,
1980.
4 Haskell B. Curry. Grundlagen der Kombinatorischen Logik (Teil IT). American Journal of
Mathematics, 52(4):789-834, 1930.
5 Sachio Hirokawa. Principal types of BCK-lambda-terms. Theoretical Computer Science,
107(2):253-276, Jan 1993.
6 Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.
7 Evgeny S. Ljapin. Semigroups. Translations of Mathematical Monographs. American Math-
ematical Society, 1968.
8 Keisuke Nakano. p-property of combinators. 29th TRS Meeting in Tokyo, 2008. URL:
http://www.jaist.ac.jp/~hirokawa/trs-meeting/original/29.html.
9 Chris Okasaki. Flattening combinators: surviving without parentheses. Journal of Func-
tional Programming, 13(4):815-822, July 2003.
10 Raymond M. Smullyan. To Mock a Mockingbird. Knopf Doubleday Publishing Group,
2012.
11 Rick Statman. The Word Problem for Smullyan’s Lark Combinator is Decidable. Journal
of Symbolic Computation, 7(2):103-112, 1989.
12 Rick Statman. To Type A Mockingbird. Draft paper available from http://tlca.di.
unito.it/PAPER/TypeMock.pdf, December 2011.
13 Johannes Waldmann. Personal communication, March 2013.

18:15

FSCD 2018

http://www.jaist.ac.jp/~hirokawa/trs-meeting/original/29.html
http://tlca.di.unito.it/PAPER/TypeMock.pdf
http://tlca.di.unito.it/PAPER/TypeMock.pdf

Index-Stratified Types

Rohan Jacob-Rao

Digital Asset, Sydney, Australia
rohanjr@digitalasset.com

Brigitte Pientka
McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

David Thibodeau
McGill University, Montreal, Canada
david.thibodeau@mail.mcgill.ca

—— Abstract

We present TORES, a core language for encoding metatheoretic proofs. The novel features we
introduce are well-founded Mendler-style (co)recursion over indexed data types and a form of
recursion over objects in the index language to build new types. The latter, which we call indez-
stratified types, are analogue to the concept of large elimination in dependently typed languages.
These features combined allow us to encode sophisticated case studies such as normalization
for lambda calculi and normalization by evaluation. We prove the soundness of TORES as a
programming and proof language via the key theorems of subject reduction and termination.

2012 ACM Subject Classification Theory of computation — Type theory, Theory of computa-
tion — Logic and verification

Keywords and phrases Indexed types, (co)recursive types, logical relations
Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.19

Related Version A long version of this paper with the full technical appendix is available at
https://arxiv.org/abs/1805.00401.

Funding This research was funded by the Natural Science and Engineering Research Council
Canada (NSERC).

Acknowledgements We thank Andrew Cave for the idea of stratified types and for guiding the
initial development.

1 Introduction

Recursion is a fundamental tool for writing useful programs in functional languages. When
viewed from a logical perspective via the Curry-Howard correspondence, well-founded recur-
sion corresponds to inductive reasoning. Dually, well-founded corecursion corresponds to
coinductive reasoning. However, concentrating only on well-founded (co)recursive definitions
is not sufficient to support the encoding of meta-theoretic proofs. There are two missing
ingredients: 1) To express fine-grained properties we often rely on first-order logic which is
analogous to indezed types in programming languages. 2) Many common notions cannot
be directly characterized by well-founded (co)recursive definitions. An example is Girard’s
notion of reducibility for functions: a term M is reducible at type A — B if, for all terms N
that are reducible at type A, we have that M N is reducible at type B. This definition is

© Rohan Jacob-Rao, Brigitte Pientka, and David Thibodeau;

oY licensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 19; pp. 19:1-19:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rohanjr@digitalasset.com
mailto:bpientka@cs.mcgill.ca
mailto:david.thibodeau@mail.mcgill.ca
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.19
https://arxiv.org/abs/1805.00401
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2

Index-Stratified Types

well-founded because it is by structural recursion on the type indices (A and B), so we want
to admit such definitions.

Our contribution in this paper is a core language called TORES that features indexed types
and (co)inductive reasoning via well-founded (co)recursion. The primary forms of types are
indezxed (co)recursive types, over which we support reasoning via Mendler-style (co)recursion.
Additionally, TORES features indez-stratified types, which allow further definitions of types
via well-founded recursion over indices. The main difference between the two forms is that
(co)recursive types are more flexible, allowing (co)induction, while stratified types only
support unfolding based on their indices. The combination of the two features is especially
powerful for formalizing metatheory involving logical relations. This is partly because type
definitions in TORES do not require positivity, a condition used in other systems to ensure
termination and in turn logical consistency. Despite this, we are able to prove termination of
TORES programs using a semantic interpretation of types.

How to justify definitions that are recursively defined on a given index in addition to
well-founded (co)recursive definitions has been explored in proof theory (for example [22, 3]).
While this line of work is more general, it is also more complex and further from standard
programming practice. In dependent type theories, large eliminations achieve the same. Our
approach, grounded in the Curry-Howard isomorphism, provides a complementary perspective
on this problem where we balance expressiveness and ease of programming with a compact
metatheory. We believe this may be an advantage when considering more sophisticated index
languages and reasoning techniques.

The combination of indexed (co)recursive types and stratified types is already used
in the programming and proof environment BELUGA, where the index language is an
extension of the logical framework LF together with first-class contexts and substitutions
[15, 16, 4]. This allows elegant implementations of proofs using logical relations [5, 6] and
normalization by evaluation [4]. TORES can be seen as small kernel into which we elaborate
total BELUGA programs, thereby providing post-hoc justification of viewing BELUGA programs
as (co)inductive proofs.

2 Index Language for Tores

The design of TORES is parametric over an index language. Following Thibodeau et al.
[21] we stay as abstract as possible and state the general conditions the index language
must satisfy. Whenever we require inspection of the particular index language, namely the
structure of stratified types and induction terms, we will draw attention to it.

To illustrate the required structure for a concrete index language, we use natural numbers.
In practice, however, we can consider other index languages such as those of strings, types
[7, 24], or (contextual) LF [16, 4]. It is important to note that, for most of our design, we
accommodate a general index language up to the complexity of Contextual LF. Thus we
treat index types and TORES kinds as dependently typed.

2.1 General Structure

We refer to a term in the index language as an index term M, which may have an index type
U. In the case of natural numbers, there is a single index type nat, and index terms are built
from 0, suc, and variables u which must be declared in an index context A.

Index types U :=nat Index contexts A = AuwU
Index terms M :=0] sucM |u Index substitutions © :=-|0,M/u

R. Jacob-Rao, B. Pientka, and D. Thibodeau

Index context A is well-formed AR U itype| Index type U is well-kinded

FAictx AFU itype

F - ictx F A u:U ictx A F nat itype
AFM:U| Index term M has index type U in index context A
wlU € A A+ M :nat

AFu:U AFO0:nat AFsucM :nat

At M = N| Index term M is equal to N

AFM=M

A’'F O :A| Index substitution ©® maps index variables from A to A’

AFO:A A'FM:U[O]
A A'FO, M/u: A wU

Figure 1 Index language structure.

TORES relies on typing for index terms which we give for natural numbers in Fig. 1. The
equality judgment for natural numbers is given simply by reflexivity (syntactic equality). We
also give typing for index substitutions, which supply an index term for each index variable
in the domain A and describe well-formed contexts. These definitions are generic.

We require that both typing and equality of index terms be decidable in order for type
checking of TORES programs to be decidable.

» Requirement 1. Index type checking is decidable.
» Requirement 2. Index equality is decidable.

We can lift the kinding, typing, equality and matching rules to spines of index terms and
types generically. We write - and (-) for the empty spines of terms and types respectively.
If My is an index term and M is a spine, then My, M is a spine. Similarly if ug:Uy is an
index type assignment and (u:U) is a type spine, then (ug:Up,w:U) is a type spine. Spines
are convenient for setting up the types and terms of TORES. Unlike index substitutions ©
which are built from right to left, spines are built from left to right.

Throughout our development we use both a single index substitution operation M[N/u]
and a simultaneous substitution operation M[©]. For composition of simultaneous substitu-
tions we write ©1[O3].

» Requirement 3 (Index substitution principles).

3.1 If Ay, wU' Ao b M : U and Ay B N : U’ then Ay, Ax[N/ul b M[N/u] : UN/u).
32. IfANFO:Aand AF MU then A'+ M[O] : U[O].

33. fA’FO:A and A+ M = N then A’ F M[6] = N[O].

34 IfA FM:U and Al [@1 A and AQ = @2 . Al then M[@l][@ﬂ = M[@l[eg]]

2.2 Unification and Matching

Type checking of TORES relies on a unification procedure to generate a most general unifier
(MGU). A unifier for index terms M and N in a context A is a substitution © which transforms

19:3

FSCD 2018

19:4

Index-Stratified Types

M and N into syntactically equal terms in another context A’. That is, A’ © : A and
A"+ M[O] = N[O]. © is “most general” if it does not make more commitments to variables
than absolutely necessary. A unifying substitution © only makes sense together with its
range A’, so we usually write them as a pair (A’ | ©). In general, there may be more than
one MGU for a particular unification problem, or none at all. However, we require here
that each problem has at most one MGU up to a-equivalence. We write the generation of
an MGU using the judgment A+ M = N N\, P, where P is either the MGU (A’ | ©) if it
exists or # representing that unification failed. To illustrate, we show the unification rules
for natural numbers. We write id; for the identity substitution that maps index variables
from A; to themselves.

|AF M =N, P| Index terms M and N have MGU P

AFM=N\/P
AFO0=0N(A|id) AFsucM =sucN\ P Atu=u\,(A]id)

u¢FV(M) A:Al,UZU,AQ A/:Al,AQ[M/’LL]
AFu=MN (A"]idy, M/u,ids) (same for M = u)

weFV(M) M #u
AFO=sucM \# AblsucM =0\ # AFu=M\ # (same for M = u)

» Requirement 4 (Decidable unification). Given index terms M and N in a context A, the
Jjudgment A+ M = N N\, P is decidable. Either P is (A" | ©), the unique MGU up to
a-equivalence, or P is # and there is no unifier.

Finally, our operational semantics relies on index matching. This is an asymmetric form
of unification: given terms M in A and N in A’, matching identifies a substitution © such
that A’ - M[O] = N. We describe it using the judgment A - M = N N\, (A’ | ©). The
notion of matching also lifts to the level of index substitutions. We omit the full specifications
here and instead state the required properties.

» Requirement 5 (Soundness of index matching).

51. If AFM:U and AFM =N\, (A" |©O) then A’ FO: A and A’ M[©] = N.
52. If A1FO1:Aand Ay F O =05 N\ (A | O) then Ao F O : Ay and Ay - 0,[0] = Os.

» Requirement 6 (Completeness of index matching). Suppose -6 : A and = M[f] = NI6]
and AFM =N\, (A"]|0O). Then 'O =0 ,(-]6).

3 Specification of Tores

We now describe TORES, a programming language designed to express (co)inductive proofs
and programs using Mendler-style (co)recursion. It also features indez-stratified types, which
allow definitions of types via well-founded recursion over indices.

3.1 Types and Kinds

Besides unit, products and sums, TORES includes a nonstandard function type (17(7); Ty — To,
which combines a dependent function type and a simple function type. It binds a number of
index variables w:U which may appear in both 77 and T5. If the spine of type declarations

R. Jacob-Rao, B. Pientka, and D. Thibodeau

is empty then (-); T3 — T» degenerates to the simple function space. We can also quantify
existentially over an index using the type Xu:U.T, and have a type for index equality
M = N. These two types are useful for expressing equality constraints on indices. We model
(co)recursive and stratified types as type constructors of kind Iu:U. *. These introduce type
variables X, which we track in the type variable context =. There is no positivity condition
on recursive types, as the typing rules for Mendler-recursion enforce termination without it.

A stratified type is defined by primitive recursion on an index term. For the index
type nat, the two branches correspond to the two constructors 0 and suc. Intuitively, Tge. O
will behave like Ty and Tgec (suc M) will behave like T5[M/u, Trec M/ X]. For richer index
languages such as Contextual LF we can generate an appropriate recursion scheme following
Pientka and Abel [17].

Kinds K =% |lIuwUK

Types T =1\ xT | i+ T | (@) Ti = To | SwU.T | M=N
| TM | Aw.T | X | pX:K.T | vX:K.T | Tree

Stratified Types Trec = Recg (00— Tp | sucu, X — Ty)

Index Contexts A = AwU

Type Var. Contexts = u=-|Z, X:K

Typing Contexts r «u=-|T,aT

» Example 1. We illustrate indexed recursive types and stratified types using vectors, i.e.
lists indexed by their length, with elements of type A. Vectors are of kind IIn: nat.x. We
omit the kind annotation for better readability in the subsequent type definitions. One way
to define vectors is with an indexed recursive type, an explicit equality and an existential
type: Vec, = pV.An.n =0+ Em:nat.n =sucm x (A x Vm).

Alternatively, they can be defined as a stratified type: Vecs =Rec (0+— 1| sucm, V
A x V). In this case equality reasoning is implicit. While we have a choice how to define
vectors, some types are only possible to encode using one form or the other.

» Example 2. A type that must be stratified is the encoding of reducibility for simply typed
lambda terms. This example is explored in detail by Cave and Pientka [5]; our work gives it
theoretical justification.

Here the index objects are the simple types, unit and arr A B of index type tp, as well
as lambda terms (), lam .M and app M N of index type tm. We can define reducibility
as a stratified type of kind Ila:tp.IIm:tm.x. This relies on an indexed recursive type Halt
(omitted here) that describes when a term m steps to a value.

Red = Rec (unit — Am.Halt m
| arr a b, Ry, Ry — Am.Halt m x (n:tm); R, n — Ry, (app m n))

» Example 3. To illustrate a corecursive type, we define an indexed stream of bits following
Thibodeau et al. [21]. The index here guarantees that we are reading exactly m bits. Once
m = 0, we read a new message consisting of the length of the message n together with a
stream indexed by m. In contrast to the recursive type definition for vectors, here the equality
constraints guard the observations we can make about a stream.

Stream = vStr. Am. ();m=0 — Yn:nat.Strn
X (n:nat); m = sucn — Strn
X (n:nat); m = sucn — Bit

19:5

FSCD 2018

19:6

Index-Stratified Types

3.2 Terms

TORES contains many common constructs found in functional programming languages, such
as unit, pairs and case expressions. We focus on the less standard constructs: indexed
functions, equality witnesses, well-founded recursion and index induction.

Terms t,s = | () | N, @.t |t M s | (t1,t2) | split sas (1, x2) int
| in;t | (casetof iny @1 — t1 | ing a9 — t9)
| pack (M, t) | unpacktas (u,z) in s
| refl | eqswith (A.© — t) | eq_aborts
| in, t | rec f.t | corec f.t | out, ¢t | in;t | out; ¢ | ind it (u, f.ts) | t:T

Since we combine the dependent and simple function types in (1TU}); Ty — T3, we similarly
combine abstraction over index variables # and a term variable x in our function term A, x. t.
The corresponding application form is t M s. The term ¢ of function type (ﬁ), T, — 1T,
receives first a spine M of index objects followed by a term s. Each equality type M = N
has at most one inhabitant refl witnessing the equality. There are two elimination forms for
equality: the term eqswith (A.© — t) uses an equality proof s for M = N together with a
unifier © to refine the body ¢ in a new index context A. It may also be the case that the
equality witness s is false, in which case we have reached a contradiction and abort using the
term eq_abort s. Both forms are necessary to make use of equality constraints that arise
from indexed type definitions and to show that some cases are impossible.

Recursive types are introduced by the “fold” syntax in, , and stratified types are intro-
duced by in; terms. Here [ranges over constructors in the index language such as 0 and
suc. The important difference is how we eliminate recursive and stratified types. We can
analyze data defined by a recursive type using Mendler-style recursion rec f.¢. This gives a
powerful means of recursion while still ensuring termination. Stratified types can only be
unfolded using out; according to the index. To take full advantage of stratified types, we also
allow programmers to use well-founded recursion over index objects, writing ind tg (u, f.ts).
Intuitively, if the index object is 0, then we pick the first branch and execute to; if the index
object is suc M then we pick the second branch instantiating v with M and allowing recursive
calls f inside ts. While this induction principle is specific to natural numbers, it can also be
derived for other index domains, in particular contextual LF (see Pientka and Abel [17]).

» Example 4. Recall that vectors can be defined using the indexed recursive type Vec, or
the stratified type Vecg. Which definition we choose impacts how we write programs that
analyze vectors. We show the difference using a recursive function that copies a vector.

copy : (n:nat); Vec, n — Vec, n = rec f. \n,v. case v of
|in; z — in, (in; 2)
| inps + unpacksas(m,p)in
splitpas{e,p’)in
splitp’as (h,t)in
in, (in2 (pack (m7 <65 <h7 fmt>>)))

To analyze the recursively defined vector, we use recursion and case analysis of the input
vector to reconstruct the output vector. If we receive a non-empty list, we take it apart and
expose the equality proofs, before reassembling the list. The recursion is valid according to
the Mendler typing rule since the recursive call to f is made on the tail of the input vector.

To contrast we show the program using induction on natural numbers and unfolding the
stratified type definition of Vecg. Note that the first argument is the natural number index
n paired with a unit term argument, since index abstraction is always combined with term

R. Jacob-Rao, B. Pientka, and D. Thibodeau

abstraction. The program analyzes n and in the suc case unfolds the input vector before
reconstructing it using the result of the recursive call. In this version of copy the equality
constraints are handled silently by the type checker.

copy : (n:nat); 1 — (+); Vecsn — Vecgn =
ind (0 — Aw.ing ()
| sucm, f, — Av.split (outgcv)as (h,t)in ing (h, fm t))

» Example 5. Note that TORES does not have an explicit notion of falsehood. This is
because it is definable using existing constructs: we can define the empty type as a recursive

type L = puX:x.X, and a contradiction term abort =recf.f: L — C, for any type C.

Our termination result with the logical relation in Section 4.3 shows that the L type contains
no values and hence no closed terms, which implies logical consistency of TORES (not all
propositions can be proven).

3.3 Typing Rules

We define a bidirectional type system in Fig. 2. We focus here on equality, recursive and
stratified types.

The introduction for an index equality type is simply refl, which is checked via equality
in the index domain. Both equality elimination forms rely on unification in the index domain
(see Section 2.2). Specifically, the eq_abort s term checks against any type because the
unification must fail, establishing a contradiction. For the term eqswith (A’.© — t),
unification must result in the MGU which by Req. 4 is a-equivalent to the supplied unifier
(A" | ©). We then check the body ¢ using the new index context A’ and © applied to the
contexts = and I' and the goal type T.

This treatment of equality elimination is similar to the use of refinement substitutions
for dependent pattern matching [18, 4], and is inspired by equality elimination in proof
theory [23, 12, 19]. In the latter line of work, type checking involves trying all unifiers from

a complete set of unifiers (which may be infinite!), instead of a single most general unifier.

We believe our requirement for a unique MGU is a practical choice for type checking.

Indexed recursive and stratified types are both introduced by injections (in, and in;),
though their elimination forms are different. Stratified types are eliminated (unfolded) in
reverse to the corresponding fold rules. For recursive types on the other hand, the naive unfold
rules lead to nontermination, so we use a Mendler-style recursion form rec f.t, generalizing
the original formulation [13] to an indexed type system. The idea is to constrain the type
of the function variable f so that it can only be applied to structurally smaller data. This
is achieved by declaring f of type (w:U); X @ — T in the premise of the rule. Here X
represents types exactly one constructor smaller than the recursive type, so the use of f is
guaranteed to be well-founded.

» Theorem 6. Type checking of terms is decidable.
Proof. Since the typing rules are syntax directed, it is straight-forward to extract a type

checking algorithm. Note that the algorithm relies on decidability of judgments in the index
language, namely index type checking (Req. 1), equality (Req. 2) and unification (Req. 4). <«

19:7

FSCD 2018

19:8

Index-Stratified Types

AETRHEtE=T Term ¢ checks against input type T

AESTFEH <T AEDTHto =Ty AETEp=>T xTy AE D T,z Tobt<=T

AE T E (t,t2) < T x T A;E; T+ splitpas (z1,z2)int < T
AETHEET; A;ETHt=T1+Ty AE D zihbti<S AZE D zeTabta < S
A ETFint <= Ty + T A;E;Fl—(casetofinlzrln—nfl|in2x2»—>t2)<:5
AFM:U ANETHt<=TM/u AETHt=YwUT AwlU;EloTkHs< S
A;E; T pack (M, t) < Xw:U. T A;E; T - unpacktas (u,z) ins < S
A-M=N AETEs=M=N AFM=N\#
A;Es'Frefl<=M=N A;E;T'Feq_aborts < T

A;

ETFs=M=N AFM=N\,(A'|0) A;Z[O];T[0]Ft < T[O]
A;E;THeqswith(A'© — t) « T

AET k-t T[MJus pX:KAGT/X] AE XKD, f((wl); Xit — T) -t < (ul); Slujo) — T

A E; T Fin,t < (uX:K.Aﬁ.T)]\Z AE T'Frecfit< (qﬁ}), (uX:K.A?.S)ﬁ%T
—
A;E,X:K;F,f:((m); S — X4) Ftﬁ(ﬁ); S — Tlu/v] A,ﬁ;E;F,x:SFtﬁT

A;Z;T F corec f.t < (17}), S — WX:KAV.T)@ A ET NGzt <= (1?)7 S—T
AE T Fto<=T[0/u] Ayuinat; T, f:T F ts < Tlsucu/u]
A;E; T Findto (u, f.ts) < (unat); 1 > T NETHE() <=1

—

ANE Tt <=ToM ASE Tt < T[N/ (Thee N)/XIM A =Tt =T
AEiTHingt < Thee OM A;E;TF inect <= Thee (sSUcN)M — AJETHt<=T

ANETHE=T Term ¢ synthesizes output type T'

A;E;FFtﬁ(m);S%T AFM:(W) A ET s < S[M/u)

T el
ANETRe=T AN E Tt M s = T[M/u
AE T Ft = Treo O M A;E;T F t = Tree (suc N) M AETHt<T

AEiTFoutot = ToM A;E;TF outeet = Ts[N/u; (Thee N)/X] M AETHET = T

AETHt= (WX:K.AG.T)M
—
A E T Fout,t = T[M/uvX:K.A4.T/X]

Figure 2 Typing rules for TORES.

3.4 Operational Semantics

We define a big-step operational semantics using environments, which provide closed values
for the free variables that may occur in a term.

Term environments o :=-|o,v/x

Function values g :=Aud,x.t|recf.t]|corecf.t|indty (u, f.ts)

Closures ¢ :=(g)[0;0]] (corec f.t)[f;0]- N v

Values v =cl| ()| (v1,ve) | in;v | pack (M,v) | refl | in, v | injv

Values consist of unit, pairs, injections, reflexivity, and closures. Typing for values and
environments, which is used to state the subject reduction theorem, are given in the appendix.

The main evaluation judgment, t[0; 0] | v, describes the evaluation of a term ¢ under
environments 0; o to a value v. Here, ¢ stands for a term in an index context A and term

R. Jacob-Rao, B. Pientka, and D. Thibodeau

t[0;0] § v| Term ¢ under environments 6 and o evaluates to v

olz)=v ti[0;0] b v1 t2[f;0] Y va t[0;0] 4 (vi,v2) s[O;0,v1 /21,02 /2] YU
zffsoldv (0] 4 () (t1,22)[0;0] 4 (v, v2) (splittas (z1,22) ins)[0;0] | v
t[o;o] v t[0; 0] | in;v" [0;0,0" /2] Yo t[o;o] v
(in; t)[0;0] | injv (casetof ini @1+ t1 | ing 2 — t2)[0;0] v (&:T)[0;0] Y v
t[f; 0] I v t[0; 0] | pack (N,v') s[0, N/u;o,v"/z] |} v
(pack (M, t))[0; o] | pack (M[6],v) (unpacktas (u,z) ins)[0; 0] | v
sl0;0) brefl AFO=0N\,(-|6¢) t[¢;0] v t[0;0] v
refl[f; o] | refl (eqswith (A.© — t))[f;0] v (in t)[0;0] ¥ inyv
t0;0] U injv

M\, z.t)[0;0] 4 (\T,z.t)[0;0] (rec f.t)[0;0]) (xrec f.t)[0;0] (out t)[b;0] v
to;o]l e ¢ ou, Jw
(corec f.t)[0; 0] | (corec f.t)[0; 0] (out, t)[0; 0] J w
tl0;o] ¢ slb;0] v uﬁ[@vl}w
(indto (u, f.t5))[0;0] U (indto (u, f.ts))[0; 0] (t M s)[0;0] |} w

Closure ¢ applied to values N and v evaluates to w

10, Njuso,v/a) bw 10;0, (vec f.H)[0;0)/f] be c-Nvlw

(A, z.t)[0;0] - Nv | w (rec f.t)[0;0] - N (in,v) J w

(corec f.1)[0;0] - Nv | (corec f.1)[0;0] - N v
to[0; 0] J w (indto (u, f.ts))[0;0) - N) Jv ts[0, N/u;o,v/f] § w
(indto (u, f.t5))[0;0]-0() J w (indto (u, f.ts))[0;0] - (sucN) () § w

Closure ¢ applied to observation out, evaluates to w

t[0; o, (corec f.1)[0;0]/f] b ¢ ¢-Novlw
((corec f.1)[0;0] - N v) our, b w

Figure 3 Big-step evaluation rules.

variable context I'. The index environment # provides closed index objects for all the index
variables in A, while o provides closed values for all the variables declared in T', i.e. 6 : A
and o : T'[f]. For convenience, we factor out the application of a closure ¢ to values N and v
resulting in a value w, using a second judgment written c - Nwv |l w. This allows us to treat
application of functions (lambdas, recursion and induction) uniformly. Similarly, we factor
out the application of out, to a closure ¢ in an additional judgment written ¢ -out, { w. This
simplifies the type interpretation used to prove termination.

We only explain the evaluation rule for equality elimination eqswith (A.© — t). We
first evaluate the equality witness s under environments ;o to the value refl. This ensures
that 6 respects the index equality M = N witnessed by s. From type checking we know
that A F M[©] = N[O]: the key is how we extend © at run-time to produce a new index
environment ¢’ that is consistent with 6. This relies on sound and complete index substitution

19:9

FSCD 2018

19:10

Index-Stratified Types

matching (see Section 2.2) to generate 6’ such that - - 6" : A and - - ©[0'] = 6. We can then
evaluate the body ¢ under the new index environment ¢’ and the same term environment o
to produce a value v.

Notably absent is an evaluation rule for eq_abort¢. This term is used in a branch of a
case split that we know statically to be impossible. Such branches are never reached at run
time, so there is no need for an evaluation rule. For example, consider a type-safe “head”
function, which receives a nonempty vector as input. As we write each branch of a case split
explicitly, the empty list case must use eq_abortt, but is never executed. We now state
subject reduction for TORES.

» Theorem 7 (Subject Reduction).

1. If t[0;0] § v where A;sTHt < T or A;sTHt =T, andt 0 : A and o : T[], then
v:T[d].

2. Ifg[@;a]-]_fv I w where A; T F g < (ﬁ), S—=TandkF 6 : A and o : T[0] and
FN: (ﬁ)[&] and v : S[G,m], then w : T[H,N—/zz}.

3. If ¢ -our, w where ¢ : (vX:K.A@.T) M then w : T[M/u; (vX:K.N@.T)/X].

4 Termination Proof

We now describe our main technical result: termination of evaluation. Our proof uses the
logical predicate technique of Tait [20] and Girard [10]. We interpret each language construct
(index types, kinds, types, etc.) into a semantic model of sets and functions.

4.1 Interpretation of Index Language

We start with the interpretations for index types and spines. In general, our index language
may be dependently typed, as it is if we choose Contextual LF. Hence our interpretation for
index types U must take into account an environment 6 containing instantiations for index
variables u. Such an index environment 6 is simply a grounding substitution - 6 : A.

» Definition 8 (Interpretation of index types [U] and index spines [[17]}]])
[U1(6) = {M[-+M:U[0}
[()1(®) = {r)
[(wo:Uo, wO))O) = {Mo, 5 | My € [Ual(0), 5 € [(wU)](0, Mo/uo)}

The interpretation of an index type U under environment 6 is the set of closed terms
of type U[f]. The interpretation lifts to index spines (ﬁ). With these definitions, the
following lemma follows from the substitution principles of index terms (Req. 3).

» Lemma 9 (Interpretation of index substitution).

0.1. IfAFM:U and+0: A then M[6] € [U](6)
9.2. If A M : (wl) andk&:Athen%%e[[(qTﬁ

4.2 Lattice Interpretation of Kinds

We now describe the lattice structure that underlies the interpretation of kinds in our language.
The idea is that types are interpreted as sets of term-level values and type constructors as
functions taking indices to sets of values. We call the set of all term-level values 2 and write
its power set as P(€2). The interpretation is defined inductively on the structure of kinds.

R. Jacob-Rao, B. Pientka, and D. Thibodeau

» Definition 10 (Interpretation of kinds [K]).

[« () = P()
[Mu:U.K]() = {C|VM € [U](0). (M) e [K](0, M/u)}

A key observation in our metatheory is that each [K](6) forms a complete lattice. In the
base case, [*](0) = P(f) is a complete lattice under the subset ordering, with meet and join
given by intersection and union respectively. For a kind K = Iw:U. K’, we induce a lattice
structure on [K(0) by lifting the lattice operations pointwise. Precisely, we define

A <ixye B iff VM € [U](0). AM) <gxrqo.m/m) B(M).

The meet and join operations can similarly be lifted pointwise.
This structure is important because it allows us to define pre-fixed points for operators
on the lattice, which is central to our interpretation of recursive types. Here we rely on the

existence of arbitrary meets, as we take the meet over an impredicatively defined subset of L.

» Definition 11 (Mendler-style pre-fixed and post-fixed points). Suppose £ is a complete
lattice and F : L — L. Define p, : (L — L) — L by

peF=N{CeL|VXeL X <, C = F(X)<,C}
andvg : (L — L) = L by
veF=\[{CEL|VX €L C<, X = C<, F(X)}

We will mostly omit the subscript denoting the underlying lattice £ of the order < and
pre-fixed and post-fixed points, g and v.

Note that a usual treatment of recursive types would define the least pre-fixed point
of a monotone operator as A{C € L | F(C) < C} and the greatest post-fixed point of a
monotone operator as \/{C € L | C < F(C)}, using the Knaster-Tarski theorem. However, our
unconventional definition (following Jacob-Rao et al. [11]) more closely models Mendler-style
(co)recursion and does not require F to be monotone (thereby avoiding a positivity restriction
on recursive types).

4.3 Interpretation of Types

In order to interpret the types of our language, it is helpful to define semantic versions of
some syntactic constructs. We first define a semantic form of our indexed function type
(u:U); Ty — T, which helps us formulate the interaction of function types with fixed points
and recursion.

» Definition 12 (Semantic function space). For a spine interpretation U and functions
A B:U— PQ), defineldy A— B={c|VM elUU.Yve AM).c-Mv | we B(M)}.

It will also be convenient to lift term-level in tags to the level of sets and functions

in the lattice [K](6). We define the lifted tags in* : [K](0) — [K](#) inductively on K.

If Vv e [¥](0) = P(2) then in*V = inV = {inv | v € V}. If C € [w:U. K'](d) then
(in*C)(M) = in* (C(M)) for all M € [U](0). Essentially, the in* function attaches a tag to
every element in the set produced after the index arguments are received.

Dually we define out} : [K](0) — [K](9). If V € [«](8) = P(Q) then outrV =
out, V ={c| ¢ ou, $ weV} IfC e [llu:U. K'](0) then (out} C)(M) = out}, (C(M)) for all
M e [U](6).

19:11

FSCD 2018

19:12 Index-Stratified Types

Finally, we define the interpretation of type variable contexts =. These describe semantic
environments 1 mapping each type variable to an object in its respective kind interpretation.
Such environments are necessary to interpret type expressions with free type variables.

» Definition 13 (Interpretation of type variable contexts [Z]).

[-1(0) = {J
[, X:K1(0) = {nX/X[ne[=])0),x < [K]0)}

We are now able to define the interpretation of types 7" under environments 6 and 7.
This is done inductively on the structure of T

» Definition 14 (Interpretation of types and constructors).

[11(6;m) = {0}
ETI x TQHEZW% = {<v1[E UQ]]>(|9U1)€U [[Tlﬂ([[&;?(,gvz)6 [72](0;m)}
T, + 71>] = im [Th] ins [T]
[(wl): 71 = T2)(0:m) — (@O0, T T
where T3 (M) = [T3](0, M /u; n) for i € {1,2}
[Zu:U. T](6;m) = {pack(M,v) | M € [U](9),v € [T](0, M/u;n)}
[T M1 (05 n) = [T1(O;n)(M][0])
[M = NJ(6;n) = {refl| F M[0] = N[0]}
[X](0;m) = n(X)
[Aw. T](0;m) = (M~ [T](0,M/u;n))

[nX:K.T[(0;n)
[vX:K.T](0;n)
[Reck (0 — T | sucu, X — T5)](6;n)

Bixye) (X — ing ([T](0;n, X/ X))
vik)o) (X — out] ([T](6;n, X/X)))
Recqxye) (ing [T=](8;1))

(N = X — ind [Ts](0, N/u;n, X /X))

where
Recy: L— N—->L—>L)— N - L
Rec, C va 0 = C
Rec, C F (sucN) = F N (Recgz CFN)

The interpretation of the indexed function type [[(17&2); Ty — T»](0;) contains closures
which, when applied to values in the appropriate input sets, evaluate to values in the
appropriate output set. The interpretation of the equality type [M = NJ](6;n) is the set
{refl} if - M[0] = N[0] and the empty set otherwise. The interpretation of a recursive type
is the pre-fixed point of the function obtained from the underlying type expression. Finally,
interpretation of a stratified type built from Rec relies on an analogous semantic operator
Rec. It is defined by primitive recursion on the index argument, returning the first argument
in the base case and calling itself recursively in the step case. Note that the definition of
Rec is specific to the index type it recurses over. We only use the index language of natural
numbers here, so the appropriate set of index values is [nat] = N.

Last, we give the interpretation for typing contexts I', describing well-formed term-level
environments o.

» Definition 15 (Interpretation of typing contexts).

[-18;m) ={-}
[T, x:T)(0;m) = {o,v/x | o € [[](O;n),v € [T](O;n)}

R. Jacob-Rao, B. Pientka, and D. Thibodeau

4.4 Proof

We now sketch our proof using some key lemmas. The following two lemmas concern the
fixed point operators p and v, and are key for reasoning about (co)recursive types and
Mendler-style (co)recursion. These lemmas generalize those of Jacob-Rao et al. [11] from
the simply typed setting.

» Lemma 16 (Soundness of pre-fixed point). Suppose L is a complete lattice, F : L — L and
W is as in Def. 11. Then F(uF) < puF.

» Lemma 17 (Function space from pre-fixed and post-fixed points). Let £ = U — P(Q) and
BeLland F:L— L.

1. fVXeL.ceU,X B = ceclU, FX — B, then c € U, pF — B.
2. fVXeLl.ceUyB—>X = cclU,B— FX, thencel, B— vF.

Another key result we rely on is that type-level substitutions associate with our semantic
interpretations. Note that single index (and spine) substitutions on types are handled as
special cases of the result for simultaneous index substitutions. We omit the definitions of
type substitutions for brevity.

» Lemma 18 (Type-level