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Abstract
The Internet of Things (IoT) has gained wide popularity both in academic and industrial contexts.
As IoT devices become increasingly powerful, they can run more and more complex applications
written in higher-level languages, such as JavaScript. However, by their nature, IoT devices are
subject to resource constraints, which require applications to be dynamically migrated between
devices (and the cloud). Further, IoT applications are also becoming more stateful, and hence
we need to save their state during migration transparently to the programmer.

In this paper, we present ThingsMigrate, a middleware providing VM-independent migration
of stateful JavaScript applications across IoT devices. ThingsMigrate captures and reconstructs
the internal JavaScript program state by instrumenting application code before run time, without
modifying the underlying Virtual Machine (VM), thus providing platform and VM-independence.
We evaluated ThingsMigrate against standard benchmarks, and over two IoT platforms and a
cloud-like environment. We show that it can successfully migrate even highly CPU-intensive
applications, with acceptable overheads (about 30%), and supports multiple migrations.
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1 Introduction

The Internet of Things (IoT) involves multiple devices across many domains that are inter-
connected to provide and exchange data. Over the last few years, the IoT market has
grown considerably with some estimates putting the number of IoT devices in the tens of
billions [28]. IoT devices are becoming more and more powerful, and in many cases they
can run full-fledged real-time operating systems (e.g., the popular Raspberry Pi can run
full Linux distributions). As a result, future IoT devices will be able to execute stateful,
distributed applications written in high-level languages, which provide greater abstraction
and portability than those written using platform-specific APIs.

In this paper, we focus on the use of JavaScript for programming IoT devices. While
JavaScript has enjoyed wide popularity in the web context for a long time, it is now a
mature and rich language in its own right. It has also become more and more prevalent
in the world of IoT due to its portability across a wide range of devices [27, 10], as well
as its large installed base of libraries and developers who know the language. Further, the
language’s asynchronous nature makes it a prime candidate for IoT applications, which are
often event-driven, and hence need to be highly reactive.

At the same time, placing more complex applications and long-running tasks on the
end-devices themselves, close to the physical data (i.e., edge computing [38]) can incur
lower latencies as opposed to running such applications in the cloud. However, as IoT
devices are more resource-constrained, IoT applications have to be migrated between devices,
and between devices and the cloud, for performance and security reasons. Thus, there is
a compelling need to enable automated migration of stateful JavaScript devices between
different IoT devices, and to/from the cloud, without requiring programmers to use platform
specific APIs or runtimes. This is the main focus of this paper.

Migrating JavaScript applications poses several challenges, due to certain features of the
language (i.e., closures) and its event-based nature. Further, due to the heterogeneity of
IoT, we need to come up with a solution that does not involve accessing the internal states
of the JavaScript Virtual Machine (VM), thus allowing portability across different devices.
We tackle these challenges by proposing ThingsMigrate, a comprehensive middleware for
the dynamic migration of IoT-based JavaScript applications across heterogeneous devices.
ThingsMigrate automatically instruments the code at runtime to avoid modification of the
VM while supporting advanced features of JavaScript, serializes its state, and reconstructs it
on the target device after migration without any intervention from the programmer.

Other work has attempted to migrate browser-based JavaScript-based applications; how-
ever, they either do not fully address some important JavaScript features, such as nested
closures ([32]), or they rely on VM-instrumentation [29] – thereby making their approach
dependent on a specific VM/browser implementation. To the best of our knowledge, Things-
Migrate is the first comprehensive high-level framework for migrating stateful JavaScript-based
IoT applications, which addresses the aforementioned challenges, and without requiring any
modifications to the JavaScript VM, thereby allowing platform-independent migrations.
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In summary, this paper provides the following contributions:
A comprehensive JavaScript migration approach (Section 4) that is based on high-level
code instrumentation and reconstruction, and that does not require VM modification,
thereby allowing cross-platform migrations of JavaScript-based IoT applications.
System implementation (Section 5) that handles many advanced features of the language
and environment, such as arbitrarily nested closures, event queues, timers and MQTT-
based communication interfaces, and support for multiple migrations.
Evaluation through the execution of benchmarks across IoT and cloud-based devices
(Section 6). Results indicate that ThingsMigrate can instrument arbitrary JavaScript
programs, serialize their state and reconstruct them in a reasonable amount of time,
while incurring an execution time penalty of 30%. Further, ThingsMigrate was capable
of supporting multiple migrations with minimal memory usage increase.
A case study (Section 7) which describes the experience of applying our approach in
a real-world IoT context (motion detection over a video stream), predominantly using
third-party libraries developed for server applications.

2 Motivation

Use of JavaScript. We assume that the various software components to be executed on
the IoT nodes are written in JavaScript. JavaScript is one of the most popular languages
today (in 2018), and ranks sixth in the TIOBE programming languages index [13]. It has
also been ranked as the top language on both GitHub and Stack Overflow for the last five
years. While the predominant use of JavaScript is for the web, JavaScript also maps well
to the asynchronous, event-based nature of IoT applications [39], which in turn simplifies
the development of asynchronous and concurrent applications. Further, similar to other
high-level languages, JavaScript runs over a VM and is platform-independent, which allows
for run-time code portability. In fact, the use of JavaScript also opens the possibility of
easily sharing code, data and development resources between the different components of
the IoT and web software stacks (e.g., the client-side and server-side portions of end-user
web applications in a Web of Things (WoT) setting could both be written in JavaScript)
[26, 21, 31]. Further, as many IoT devices nowadays provide a browser-based interface, it is
fair to assume that they will integrate a JavaScript VM.

IoT Devices are Resource-Constrained. As mentioned, there have been many attempts
at either adapting existing JavaScript VMs (e.g., Node.js [42] for IoT devices), or developing
new JavaScript VMs [27, 10, 3, 12] for the IoT. However, given the resource-constrained
nature of IoT devices and the fluid nature of the resource constraints, applications running
on such devices might have to be frequently migrated from one device to another. For
example, when a device runs low in memory, then the application running on it should
be migrated to another device with more available memory to avoid the application from
running out of memory and crashing. Similarly, any change to the available bandwidth or
to the computational load of a given IoT device might require network and delay-sensitive
applications to be migrated to a different device. Migration may also be needed when
there are external factors causing device failures (e.g., device gets overheated or physically
damaged), or due to security attacks on IoT devices.

Further, while resource management and code migration is a well understood problem in
classical and cloud-based distributed systems, we believe that these techniques are not directly
applicable to the IoT landscape, as they do not take into account IoT-specific constraints such
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as the wide heterogeneity of hardware and software platforms, the highly resource-limited
nature of the devices which makes it impractical to introduce additional virtualization layers,
and the limited ability to provision resources on demand [41]. In addition, as the compute
capacity of IoT devices is dictated by energy efficiency [30], we believe that a great deal
of flexibility is required in scheduling. Therefore, given these considerations, we believe a
static deployment of IoT applications to devices is insufficient, and that there is a need for
applications to be migratable.

Preserving the State. As IoT devices and applications become more complex, they in-
herently generate more elements of state (i.e., variables, arrays, objects) as part of their
execution. For instance, for an application which detects motion patterns in a video stream
(Section 7), elements of state would include the pixels of the currently processed video frames
(arrays), as well as any intermediate results produced as part of the computation. Considering
that migration may be triggered at any time during the application’s execution in response
to changing resource conditions or external events such as failures, it is important that there
be a transparent mechanism to serialize and deserialize the state of an executing application.
This mechanism should be efficient and support general JavaScript applications for IoT
with only minimal modifications. Otherwise, developers would be required to implement
application-specific serialization and deserialization logic, and for any arbitrary point in the
execution, which would complicate the application logic.

Migration support in the VM. While migration support could ultimately be implemented
in the VM, we believe that this is unlikely in the near future given the vast heterogeneity in
IoT platform ecosystems. Unlike in the web browser space where there are only a handful of
dominant players, the JavaScript IoT landscape is much more fragmented, with the availability
of a wide variety of JavaScript engines (e.g., [27, 10, 3, 12]). Further, migration support
would be required at both ends of the migration process; i.e., at the source device/VM, and
at the target device/VM, which may be different from each other. Some of the VMs may
be closed-source and hence not easily modifiable. That being said, should full or partial
support for migration be provided in the VM or as part of the ECMAScript standard (i.e., by
enabling special APIs to access the state of closures), then our technique could be adapted
accordingly.

Applicability to other Languages. In this paper, we focus on the migration of JavaScript
code for IoT. While our solution is specifically tailored for the challenges raised in migrating
JavaScript applications (closures, objects, timers, events, etc.), we believe that some of the
techniques that we propose could be adapted to support the migration of code written in
other high-level languages. For instance, Python also provides support for closures and hence,
we believe that our closure serialization and reconstruction approach could be adapted to
Python. However, we do not consider applications written using low-level languages such as
C or assembly. We also assume that developers do not use low-level APIs to directly access
hardware state of IoT devices (e.g., by reading the pins of a device in a platform-specific
manner) as such code would be difficult to migrate.

3 System Model

The system architecture of ThingsMigrate is presented in Figure 1. It is derived from the
architecture of ThingsJS, a comprehensive IoT middleware that we presented as a vision
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Figure 1 High-Level Architecture of ThingsMigrate.

paper in [26]1 (more details are given in appendix A). Our system model assumes a set of
IoT devices, which are in charge of executing the various components of a distributed IoT
application. We describe the systems components in this section.

3.1 ThingsMigrate Manager
The central piece of our architecture, namely the ThingsMigrate Manager, manages the
execution of distributed IoT applications across the set of available devices. In our model, all
communications between the components of the system use the topic-based publish-subscribe
(pub/sub) paradigm (also referred to as MQTT) [24], which enjoys widespread usage in the
IoT world [25, 40]. This is because it allows decoupling content producers (publishers) from
content consumers (subscribers), and allows for abstracting network considerations. Overall,
the Manager component has three components:

(1) Scheduler. This component schedules the execution of all IoT components across all
devices. For the Scheduler to operate efficiently, developers are encouraged to modularize
their IoT applications into a set of components, and to follow the best practices of JavaScript
(Section 4.1). Taking into consideration the capabilities of each device, the requirements
of the components, and a set of developer-specified constraints, the scheduler assigns the
execution of each component onto a specific device. Upon the conditions changing, the
scheduler can decide to dynamically move some of the components between devices. The
migration takes place dynamically, and preserves the state of JavaScript IoT applications, so
that the execution can be transparently transferred from one device to another - this is our
main contribution. Note that the details of the Scheduler are outside the scope of this paper.

(2) Instrumentor. This component is in charge of instrumenting the JavaScript source code
of the IoT components, which is the code that is executed by the devices. This is executed
at the beginning before running a component on ThingsMigrate.

1 While ThingsJS proposes migration as part of an integrated system, it does not specifically address
migration challenges.
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1 function CreateCounters (n) {
2 var t o t a l = 0 ;
3 function Counter ( ) {
4 var value = 0 ;
5
6 return function ( ) {
7 value += 1 ;
8 t o t a l += 1 ;
9
10 // Can access parent variables
11 conso l e . l og ( " val = " + val + " value = " + value + " total = " + to t a l ) ;
12 return value ;
13 }
14 } ;
15
16 var counter s = [ ] ;
17 for (var i =0; i<n ; i++)
18 counter s . push ( Counter ( ) ) ;
19 return counter s ;
20 }
21
22 var counter s = CreateCounters (2 ) ;
23 s e t I n t e r v a l ( function ( ) { counter s [ 0 ] } , 1 0 00 ) ;
24 s e t I n t e r v a l ( function ( ) { counter s [ 1 ] } , 5 0 0 ) ;

Figure 2 Counters JavaScript Example.

Figure 3 Counters JavaScript Example Closures and Scopes.

(3) Migrator. The Migrator is in charge of transparently migrating the execution of
each component from the original to the target device. To migrate a given component
(e.g., component regulator1 on device 2), the migrator issues a migrate command to the
ThingsMigrate Runtime running on the target device (Section 3.2), with the name of the
component to migrate. This then triggers the migration.

3.2 ThingsMigrate Runtime

The ThingsMigrate Runtime is a thin JavaScript middleware that executes on each IoT
device and manages the local execution of all the components running on the device. It
receives and executes the instrumented source code of the various components that it needs
to execute from the Instrumentor, and awaits migration commands from the Migrator over
a pub/sub interface. Upon a migrate command being received for a component (e.g., for
component regulator1 on device 2), the Runtime first freezes the execution of the component,
serializes its state (Section 4.6) and sends it to the target device over the pub/sub interface
(e.g., device1 ). When the Runtime on the target device (e.g., device1 ) receives the serialized
state for a component, it restores the serialized state by generating appropriate restoration
code (Section 4.7), which allows the execution to be resumed with the pre-migration state.



J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:7

4 Approach

As mentioned, our code migration approach works entirely at the JavaScript layer through
code instrumentation and does not depend on the underlying VM (unlike prior work by
Kwon et. al. [29]). Thus, to support code migration, we need to instrument the code to
expose the internal states (i.e., closures) that are not directly accessible using the JavaScript
primitives and reflection APIs (Section 4.5). Code migration works in three phases. First,
the component’s code is instrumented to support migration. Second, upon the Migrator
service triggering a migration, a snapshot of the current state is taken (Section 4.6) and
transmitted to the target device. Finally, the target device reconstructs the component state
based on the snapshot, and resumes execution (Section 4.7).

4.1 Assumptions

We assume that the JavaScript code is compliant with strict-mode ES5 (ECMAScript 5)
[5], which has been the de facto standard for many years. Although ES6 ([4]) is gaining
momentum, it mostly adds syntactic sugar over ES5. Support for ES6 can easily be provided
by leveraging transpilers (e.g., Babel.js [1]) to convert to ES5.

Because JavaScript is event-driven and single-threaded, we assume that developers will
avoid blocking the main thread for long periods of time, as this would prevent the migration
from being scheduled. Note that this assumption is not specific to ThingsMigrate – in
fact, a long-running operation that never yields the control would inhibit the dispatching
of any asynchronous event (e.g., timers, messages, I/O). To use ThingsMigrate, developers
should follow the best practices and write their code in an event-driven manner, or break
long-running operations to yield control (e.g., setImmediate) at periodic intervals, so that
event processing can take place.

Finally, we assume that the program uses publish-subscribe (pub/sub) for communication,
and does not perform write operations to the local file system. The former assumption is
common in the IoT world, while the latter assumption requires the programmer to send file
system operations over the network (Section 4.8 has more details).

4.2 Motivating Example

The JavaScript language treats functions as data, and provides support for closures, which
allows for functions to be defined in other functions and to be bound to variables. As such,
like any other object, functions can be passed as parameters and can be returned within
other functions. JavaScript closures can also access the variables defined in parent functions
in addition to their own variables, even if a parent function goes out of scope.

Figure 2 presents a motivating example of using JavaScript closures to implement a
simple counter Counter (lines 3-14) which returns a function (lines 6-13) that increments
the counter’s value by 1 (line 7) and prints it (line 11). In addition, there is a global variable
total that holds the sum of all counters (line 8). Further, we wrap the Counter function
and the total variable in another function, CreateCounters, which allows for creating and
returning an array of n counters. More precisely, n nested closures are returned, which upon
being called, increment the corresponding counter; therefore, the variable counters holds an
array of n = 2 counters (line 20). Note that after line 20, some variables become out of scope
(e.g., total, and all the copies of value for each counter), but they are not garbage-collected
as the nested counter incrementation functions (i.e., counters) still access them.

ECOOP 2018
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Figure 3 visually illustrates the scopes of the various closures and their relationship. As
can be observed, there are two independent copies of variable value each defined in their own
scope, but only one copy of total, which is defined in the parent scope and is hence shared
with the two child scopes. Finally, there are two recurrent timers (set using the setInterval
JavaScript function) which increment the two counters at a regular interval i.e., by invoking
nested functions counters[0] and counter[1] respectively every 1000 ms and 500 ms.

4.3 Challenges
Migrating the execution of a JavaScript program from one VM to another VM on to a
different device poses many challenges when it comes to capturing and reconstructing the
state. We discuss the challenges below in the context of the motivating example. To support
migration, the current state of the application must be serialized. A naive approach to
serialization would be to dump the process space of the application, which comprises the heap
and the stack. However, such an approach would require serializing the entire memory space
of the process, which would be platform-dependent and inefficient. Rather, ThingsMigrate
provides a JavaScript-based approach that exploits the specifics of the language. For instance,
as mentioned, a JavaScript application is made of objects and closures. More specifically,
there is one root object that contains a set of properties, which are in fact objects themselves.
As JavaScript treats functions as data, it allows functions to be bound to and stored within
objects (i.e., closures). However, as shown in the motivating example above, functions can
also contain other objects stored in variables.

(1) Closures. While JavaScript includes APIs to recursively and dynamically walk through
the properties of objects and serialize them, the state of closures is hidden and thus cannot
be accessed by means of user code. Thus, we need mechanisms to dynamically expose these
hidden parts of the state during program execution.

(2) Migrating Events. We also need mechanisms to seamlessly transfer the state of pub/sub
interfaces (i.e., subscribers and publications) during a migration. In addition, IoT systems
often perform delayed executions (i.e., using timers); therefore, we need to support the
seamless migration of timer-based events.

(3) Handling the Call Context. As JavaScript is mostly single-threaded and asynchronous
(i.e., event-driven), there is no easy way to interrupt the current execution to perform a
migration. In addition, as the call stack is not exposed, it is not directly accessible. Therefore,
we need to come up with a mechanism to trigger the migration at certain points in the
execution of the program.

(4) Reconstructing the state. After migrating the state, the execution must be restored
given the serialized state. This is non-trivial, as an equivalent reconstructed program must
be generated from the original code and the serialized state, and the execution must resume
exactly at that state without any side effects (i.e., without re-executing code that can
potentially lead to a different outcome).

(5) Enabling Multiple Migrations. As a given program might be migrated multiple times,
we need to support multiple migrations. To reach that goal, the reconstructed program must
be generated in such a way that it can be migrated again, with low overheads. For example,



J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:9

the reconstructed program should not incur significantly higher memory or performance
overheads than the original program, as such overheads would quickly add up when performing
multiple migrations.

4.4 Problem Statement
As mentioned, in order to capture the state of a JavaScript program, one needs to capture
the hierarchy of scopes, starting from the global scope, as well the data elements (variables
and functions) contained within each scope. In other words, ThingsMigrate captures the
structure and the values of the different state elements. More formally, we denote the state
of a JavaScript application as S = 〈S, F, V, R〉, where S is the set of scopes, F is the set of
functions, V is the set of variables (i.e., a tuple of 〈name, value〉) and R is the set of relations
between scopes and other entities (i.e., a tuple of 〈scope, entity〉).

Taking the code snippet shown in Figure 2 as an example, and assuming that a snap-
shot of the state is taken after 3250ms, then two instances of the Counter function (and
their associated scopes) are defined, due to the timer invocations (i.e., Counter_1 and
Counter_2). Also, there are two instances of the anonymous function defined inside
Counter (i.e., Counter_1_anon and Counter_2_anon). However, there is only one copy
of the CreateCounters function (i.e., CreateCounters_1). Further, there are two copies of
variable value, each within its own scope (Counter_1_value and Counter_2_value), and
one copy of variable total (CreateCounters_1_total). The resulting state of the snapshot
object S = 〈S, F, V, R〉 would respectively contain states S, functions and their definition F

(omitted for brevity), variables and their value V , and the set of relationships R between
each variable/function and its associated scope:

S ={global, CreateCounters_1, Counter_1, Counter_2}
V ={(global_counters[0], Counter_1_anon), (global_counters[1], Counter_2_anon)},

{(CreateCounters_1_total, 9), (CreateCounters_1_counters[0], Counter_1_anon)},

{(CreateCounters_1_counters[1], Counter_2_anon), (Counter_1_value, 3)},

{(Counter_2_value, 6)}
F ={(global_CreateCounters, ...), (CreateCounters_1_Counter, ...), (Counter_1_anon, ...)},

{(Counter_2_anon, ...)}
R ={(global, CreateCounters_1), (global, global_counters), (global, global_CreateCounters)},

{(CreateCounters_1, Counter_1), (CreateCounters_1, Counter_2)},

{(CreateCounters_1, CreateCounters_1_total), (CreateCounters_1, CreateCounters_1_counters)},

{(CreateCounters_1, CreateCounters_1_Counter), (Counter_1, Counter_1_value)},

{(Counter_1, Counter_1_anon), (Counter_2, Counter_2_value), (Counter_2, Counter_2_anon)}

For more details, we refer the reader to Section 4.7 (Phase 3: Code Restoration), which
describes in more detail our algorithmic approach to generating reconstruction code, and
which gives an example of the restored code of the same code sample (Figure 2), migrated
after the same delay (3250ms). As can be observed, the same functions, scopes and variables,
as well as their relationships, are depicted in the restored code sample (Figure 5).

The next sections describe the algorithmic process followed by ThingsMigrate to (1)
instrument the code to expose the hidden states, (2) take a snapshot and (3) reconstruct the
code at the serialized state.

4.5 Phase 1: Code Instrumentation
In the code instrumentation phase, the ThingsMigrate Runtime augments the input JavaScript
source file to allow the state to be dynamically captured (challenge 1), corresponding to
the formal model defined in Section 4.4. Our code instrumentation approach is inspired
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Algorithm 1: Code Instrumentation.
1 function instrumentCode (sourceCode)
2 begin
3 rootNode ← ASTParse(sourceCode)
4 <setupMigrationListener()>
5 <globalScope ← Scope(rootNode.name, null)>
6 instrumentNode(rootNode, null)
7 return ASTGenerate(rootNode)
8 end
9 function instrumentNode (parentNode, parentScope)

10 begin
11 foreach node in parentNode do
12 if node is Function then
13 <scope ← Scope(node.name, parentScope)>
14 instrumentNode(node, scope)
15 <parentScope.addFunction(node)>
16 <scope.checkAndDestroy()>
17 end
18 else if node is VariableDeclaration then
19 <parentScope.addVar(node.name, node.value)>
20 end
21 else if node is VariableAssignment then
22 varScope ← findScope(parentScope, node.name)
23 <varScope.setVar(node.name, node.value)>
24 end
25 end
26 end

by the work in Lo et. al. [32], but differs significantly as Lo et. al. [32] only offers limited
support for capturing and restoring complex closures. In the example shown in Figure 2,
Lo et. al. [32] would be able to capture and restore the scope of the two internal counter
closures, but would not accurately model the relationship between said scopes in the restored
output, so that two instances of the CreateCounters scope would be generated rather than
one, ending with two distinct total variables after restoration. Each nested scope would
then update its own total variable, which would be inaccurate.

The main aspects of our technique are illustrated in Algorithm 1. To fully capture the
state of closures, the Instrumentor Service exposes the scope hierarchy by injecting code at
relevant locations that will mirror the chaining of scopes and their contents (i.e., functions
and variables) in a parallel tree-like data structure, in order to expose and capture the state.

Upon requesting the instrumentation of a given JavaScript source file (lines 1-8), an
Abstract Syntax Tree (AST) representation of the code is first generated. The algorithm
starts at the root node of the AST tree (line 3) and recursively iterates over the child nodes.
Note that as a convention, throughout this algorithm, lines that start with the symbol <
and end with > represent code that is injected in the form of AST nodes at that particular
location in the AST tree processing, to augment the input code.

The general idea of the algorithm is that for each function, a Scope object is instantiated
in the output code, and linked to the parent scope, so that an exposed scope tree can be built
dynamically at the time of execution. Upon the algorithm starting, a Scope referring to the
global scope is generated (line 5), without any parent scope. Processing then starts from that
root node (first invocation of instrumentNode at line 9). Then, for each child node in the
AST tree, if the child node is a function, we generate a new Scope linking back to the parent
scope (line 13), and we recursively invoke instrumentNode again for that node. We also
register the function in its parent scope, which will allow us to dynamically retrieve it at the
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1 var global = new Scope("global");
2 function CreateCounters (n) {
3 var createcounters = new Scope(global, "CreateCounters");
4 var t o t a l = 0 ;
5 createcounters.addVar("total", total);
6 function Counter ( ) {
7 counter. = new Scope(createcounters, "Counter");
8 var value = 0 ;
9 counter.addVar("value", value);

10
11 var anon1 = function ( ) {
12 anon1 = new Scope(createcounters, "anon1");
13 value += 1 ;
14 anon1.setVar("value", value);
15 t o t a l += 1 ;
16 anon1.setVar("total", value);
17
18 // Can access parent local variables
19 conso l e . l og ( " val = " + val + " , value = " + value + " total = " + to t a l ) ;
20
21 return value ;
22 }
23 counter.addFunction("anon1", anon1);
24 return anon1 ;
25 } ;
26 createcounters.addFunction("Counter", Counter);
27
28 var counter s = [ ] ;
29 CreateCounters.addVar("counters", counters);
30 for (var i =0; i<n ; i++) {
31 counter s . push ( Counter ( ) ) ;
32 CreateCounters.setVar("counters", counters);
33 }
34 return counter s ;
35 }
36 global.addFunction("CreateCounters", CreateCounters);
37
38 var counter s = CreateCounters (2 ) ;
39 CreateCounters.setVar("counters", counters);
40 ThingsMigrate . s e t I n t e r v a l ( function ( ) { counter s [ 0 ] } , 1000) ;
41 ThingsMigrate . s e t I n t e r v a l ( function ( ) { counter s [ 1 ] } , 500) ;

Figure 4 Counters JavaScript Example - Instrumented.

serialization phase (Section 4.6), as otherwise, there would be no way to dynamically access
it (as the JavaScript reflection API does not allow access to functions, variables and scopes).

For similar reasons, if the current node being parsed corresponds to the declaration of a
new variable, the corresponding variable must be added to the node’s current scope (line
19). For an operation that would set the contents of a variable (assignment, incrementation,
etc.), we must also refresh the corresponding variable in the scope in which it was declared,
to make sure that its content is mirrored in the tree (lines 22-23). Note that this operation
first requires finding the scope in which the variable was declared, due to the JavaScript
execution model in which a variable defined in any parent scope can be accessed by any child
scope (e.g., variable total in Figure 2). To that end, the findScope function (line 22) walks
the tree upwards until it encounters the most recent declaration of the variable (up to the
global scope). The value of the variable is then updated in that scope.

Figure 4 shows a simplified instrumented version of the original source code shown in
Figure 2 (note that in our implementation, many more details are included, which are omitted
here for the sake of brevity). The lines of code that are added by the code instrumentation
process are shown in grey. As can be observed, all defined scopes (the global scope, then
the scopes corresponding to each function definition) are mirrored through an instance of a
ThingsMigrate Scope object (lines 1, 3, 7 and 12). In addition, each variable definition or
assignment gets mirrored in the tree, in the scope at which it is defined (lines 5, 9, 14, 16,
29, 32 and 39). Similarly, functions are also registered (lines 23, 26 and 36).
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Instrumenting Timers. Following a similar algorithmic approach as in Lo et. al. [32],
ThingsMigrate provides support for saving the state of timer functions, namely setInterval
and setTimeout (challenge 2). This is accomplished in the instrumentation phase by replacing
standard timer calls by invocations of our own functions, which expose the state of the
timers at serialization time. Thus, at restoration time, the timers resume at the state when
serialization took place. For instance, considering our code example, if snapshotting occurs
after 250ms, then the first timer (line 23) will first trigger after 750ms, then every second,
while the second timer (line 24) will first trigger after 250ms, then every 500ms.

Pub/Sub Interfaces. ThingsMigrate provides support for capturing the state of pub/sub
interfaces (challenge 2). Similar to how we handle timers, ThingsMigrate wraps calls to the
pub/sub interface (MQTT library) at the instrumentation phase, so that upon a migration
being requested, the list of each topic previously subscribed by the application gets serialized
as part of the snapshot. Then, at the restoration phase, prior to resuming the execution, a
subscription is transparently reestablished to each of the previously subscribed topics. To
ensure that no publications are lost during the migration, we assume that reliable pub/sub is
provided by the service [44, 20], so that the latter can retransmit any missed publication
sent during the migration.

In addition, as the migration is triggered by a pub/sub publication, the Instrumentor
Service injects code in the header to setup a pub/sub listener for the migration, when the
instrumented program is executed. Upon the specific publication arriving, the framework
starts the state serialization process.

Classes and Prototypes. JavaScript ES5 does not support classes per se unlike object-
oriented languages (e.g., Java). Instead, it provides high-level abstractions that emulate
classes by means of prototypal inheritance [23]. ThingsMigrate provides support for serializing
JavaScript-like ES5 classes by serializing each object’s prototype object, so that upon restoring
the code, the correct prototypal chain can be recreated along with the objects.

Cleaning Orphaned Scopes. During the life cycle of a JavaScript application, scopes are
dynamically created, and can sometimes become orphaned. Orphaned scopes are scopes
for which there are no single remaining reference to them or to one of their child scopes.
In the example shown in Figure 2, at each timer iteration (lines 23-24), the function scope
that is created on the fly (first argument) becomes orphaned and is therefore destroyed,
as its serialization will not be required. Therefore, we need to destroy the scope objects
corresponding to orphaned scopes, as they can lead to memory size increase – this problem
is exacerbated on multiple migrations (challenge 5).

As a novel contribution, ThingsMigrate provides support for automatically destroying
orphaned scopes, to support multiple migrations (challenge 5) on the same application
without increasing the snapshot size and incurring additional overhead in the restored code
(i.e., scope explosion). In the instrumentation phase, prior to any given function ending or
returning, an API call to scope.checkAndDestroy() (line 16 of Algorithm 1) is injected, for
the current scope object. At execution time, this function will check whether any other scope
or variable depend on this scope. If there are no dependencies, then the scope is destroyed,
and therefore it will not be serialized in the snapshotting phase (Section 4.6).
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4.6 Phase 2: Snapshotting and Migrating
To trigger a migration, the component that is being executed receives a migrate pub/sub
command from the Migrator Service. Recall that the code instrumentation phase sets up a
listener, which initiates the migration (Section 4.5).

Serializing the State. The migration process first involves serializing the state to the JSON
format. To do so, the scope tree is recursively walked in a top-down approach, from the
global scope. The serialized output includes, for each scope, the variables and parameters, as
well as nested scopes and functions. In JavaScript, functions cannot be serialized as-is. Thus,
upon encountering a function when walking the scope tree, the function is assigned a unique
ID, and the function’s source code is added to a table of functions, which is appended at the
end of the serialized state. Note that the serialized output also contains the state for special
objects that ThingsMigrate addresses, such as timers and pub/sub interfaces.

Handling the Stack. We address the challenge of handling the stack (challenge 3) by ex-
ploiting the asynchronous, event-driven nature of JavaScript. Because JavaScript applications
are single-threaded and are event-based, the runtime maintains an event queue. We schedule
code migrations as events so that they get pushed at the end of the event queue and get
executed over an empty stack. More precisely, as migration requests are sent through the
form of pub/sub publications, they are treated as events and pushed to the event queue.
Note that we could also accomplish the same behavior by scheduling the migration as a
timer-based event.

Sending the Serialized State. Once the snapshot is generated, it is sent over the pub/sub
interface to the target IoT node, which will regenerate the code considering the state of the
snapshot, and resume execution.

4.7 Phase 3: Code Restoration
Upon a given IoT node receiving a snapshot, it needs to reconstruct the original program at
the exact state where migration took place (challenge 4). The code restoration process must
retain the original program structure, while reassigning the values for constructs holding
state, such as variables, parameters and closures, without directly restoring the memory
regions - this is important for platform independence and portability.

Reconstructing Closures and Scopes. As in the code instrumentation phase, closures pose
unique challenges when it comes to generating restoration code, as they wrap state elements.
Because functions can be return values of functions in JavaScript (e.g., as seen in Figure
2), there can exist multiple copies of a function sharing the same code, but corresponding
to different states (i.e., holding different values). The code restoration process needs to
generate multiple copies of some of the function trees, as state can be held not only in the
functions themselves, but anywhere in parent functions as well, and bind such copies; i.e., to
variables or parameters. For instance, in Figure 3, two counters are defined (i.e., counter[0]
and counter[1]), which both point to a function having the same source code (i.e., the
anonymous function at lines to 13), but holding different states, as the value of value defined
in the parent function (Counter) is different. Thus, in the reconstructed code, two copies
of Counter and its inner function (i.e., the chain of functions) will need to be defined to
expose the different scopes of the two counter closures.
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Algorithm 2: Code Generation.
1 function generateScope (scope, parentScope)
2 begin
3 < (function(){ >
4 <var {scope.name} ← Scope(scope.name, parentScope)>
5 foreach param in scope.params do
6 <var {param.name} ← param.value>
7 end
8 foreach function in scope.functions do
9 <functionTables[scope].code>

10 end
11 foreach variable in scope.variables do
12 if scopeDefinitionExists(variable.value) then
13 <var {variable.name} ← variable.value>
14 end
15 else
16 stage2Variables.add(variable)
17 end
18 end
19 foreach child in scope.children do
20 generateCode(child, scope);
21 end
22 foreach variable in stage2Variables do
23 <var {variable.name} ← variable.value>
24 end
25 < }()) >
26 end

Code Generation Algorithm. A simplified version of the code generation algorithm is shown
in Algorithm 2. In an nutshell, the algorithm starts with the global scope (function), and
recursively reconstructs the scopes in a hierarchical manner. For a given scope, it first injects
the parameters defined in that scope with their values at snapshot time (lines 5-7), then
injects the full source code for the functions defined in that scope, including the function
headers (lines 8-10). Then, the variables defined or redefined in that scope are injected and
set to their value at snapshot time (lines 11-18). In some corner cases involving JavaScript
objects and their prototypes, it might happen that some scopes cannot be resolved for some
of the variables, at the first (i.e., top-down) phase. An example would be a case where
an object instance is constructed, but the constructor function is defined in a child scope
that is not yet generated (i.e., invoked) at the time of assigning the variable. Our approach
addresses these situations by placing such variables in a queue, to process them in a later
stage (i.e., at stage 2, after the generation of the child scopes - lines 22-24). After generating
the variables, the generateScope function is recursively called for all child scopes of the
current scope (lines 19-21).

Each scope definition is wrapped in an enclosed (function() {...} ()) call, which
means the scope definition code (i.e., the output of the algorithm) will be invoked when the
restored code is executed (lines 3, 25). In other words, the nested scope generation portions
of code will be invoked recursively, thereby recreating the scope hierarchy. Note that the
functions themselves corresponding to each scope are not executed upon restoration, as this
could lead to side effects (i.e., non-determinism). It is nevertheless necessary to include their
definitions, as they might be invoked later in the code after restoration.

Code Restoration Example. Assume that a snapshot was taken after executing the code
shown in Figure 2 for 3.25 seconds. Figure 5 illustrates the restored code. Note that while
this example has been derived from the output of a real invocation of the code restoration
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1 /* Original code comes before */
2 function ( ) {
3 function CreateCounters (n) {
4 var n = 2 ;
5 function Counter_1 ( ) {
6 var anon1 = function ( ) { /* ... */ }
7 ThingsMigrate . addFunction ( " Global / C r e a t e C o u n t e r s / Counter_1 / anon1 " ,

anon1 ) ;
8 var value = 3 ;
9 return anon1 ;

10 }() ;
11
12 function Counter_2 ( ) {
13 var anon1 = function ( ) { /* ... */ }
14 ThingsMigrate . addFunction ( " Global / C r e a t e C o u n t e r s / Counter_2 / anon1 " ,

anon1 ) ;
15 var value = 6 ;
16 return anon1 ;
17 }() ;
18
19 var t o t a l = 9 ;
20 var counter s = [ Counter_1 , Counter_2 ] ;
21 }(2) ;
22 }() ;
23
24 ThingsMigrate . s e t I n t e r v a l ( ThingsMigrate . f indFunct ion ( " Global / C r e a t e C o u n t e r s /

Counter_1 / anon1 " , 1000 , 250) ;
25 ThingsMigrate . s e t I n t e r v a l ( ThingsMigrate . f indFunct ion ( " Global / C r e a t e C o u n t e r s /

Counter_2 / anon1 " , 500 , 250) ;

Figure 5 Counters JavaScript Example - Restored Code.

procedure of ThingsMigrate, some simplifications and adjustments were made for clarity.
Also, the names of the various entities within this snippet (i.e., variables, functions, scopes),
as well as their relationships, correspond to the state example shown in Section 4.4.

As can be observed, two copies of the Counter closures have been generated: Counter_1
and Counter_2 (lines 5-10 and 12-17), which both wrap the values for variable value: 3 and
6 (as the timers triggering the closure incrementation functions were invoked respectively
3 and 6 times - the former every second, and the latter every 500 ms). Similarly, there is
only one instance of the CreateCounters closure, which is the parent of the two Counter
functions (line 3). It holds the total variable (total = 3 + 6, line 19). Upon executing the
restored code, the CreateCounters, Counter_1 and Counter_2 functions are re-executed,
thereby recreating the closures as before.

Note that upon restoring a function, we add it to a function table, which will allow us to
refer to it later (not shown in Algorithm 2). As an example, at lines 7 and 14, we add the
restored closures that correspond to the anonymous counter incrementation functions to the
function table, and we then retrieve them from the table when we restore the timers (i.e.,
lines 24-25), as the timers periodically invoke these functions.

Multiple Migrations. ThingsMigrate supports transparent multiple migrations without
introducing additional overhead (challenge 5). This is accomplished at the code restoration
phase by maintaining a unique scope tree structure that is accessed by all the generated
closures and scopes, and by re-injecting scope definitions (i.e., variables, parameters, nested
functions, etc.) across the regenerated code, following an approach derived from Algorithm 1.
Further, relevant pub/sub code is re-injected to support receiving migrate messages again. In
other words, the output of the code restoration phase is an alternate code segment equivalent
to the output of the code instrumentation phase, which can hence support further migrations.
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4.8 Limitations
Handling External Libraries. ThingsMigrate does not yet provide full support for imported
libraries (i.e., the require statement). A simple solution would be to directly import the
code in the main JavaScript module itself prior to instrumentation. This approach may be
inefficient however, if there are multiple levels of nested library imports. Another solution
would be for ThingsMigrate to provide a migration interface, and for module developers to
implement the interface for either a more optimized migration of the nested libraries, or for
supporting libraries exposing native I/O resources, such as file system access. Despite this
limitation, we find that ThingsMigrate can support many third-party libraries as we show
in Section 7.

Scope Explosion. If programs make use of several levels of nested closures, then the resulting
snapshot and restored code can become quite large, due to the phenomenon of scope explosion,
in which multiple scopes might have to be maintained. However, this problem is symptomatic
of bad programming practices and is not specific to ThingsMigrate, as the JavaScript VM
itself will have to retain a large amount of scope structures in-memory.

Redirecting I/O Operations. As mentioned in Section 4.1, ThingsMigrate assumes that
all communications are done over the pub/sub interface. Further, in the current state,
ThingsMigrate does not support file I/O operations, which is non-trivial, as reads and writes
must occur where the corresponding files are located. For instance, assume there is a file on
device A which is read by an application on the same device that gets migrated to device B.
In order to guarantee consistent reads, one has to migrate not only the current position in
the file, which is trivial, but also to guarantee (1) the availability of the file on B, or (2) to
provide some redirection mechanism.

As JavaScript I/O operations are typically handled through streams, we plan on trans-
parently redirecting streams over the pub/sub interface (solution 2 above), by wrapping
the base JavaScript stream API (similar to wrapping timer-based or pub/sub-based APIs).
A stream-level solution can support arbitrary stream-based I/O operations, such as files,
network, and even HTTP requests. Upon device A receiving a migration request to migrate
a given app to device B, the ThingsMigrate Runtime will generate a unique ID for each
currently active stream, and will setup a transparent forwarding mechanism over a pub/sub
bridge (i.e., by creating a topic corresponding to that ID that both devices A and B will
subscribe to). Then, upon a read operation being requested by the app on device B, for
a given stream, the request will be transparently forwarded by the Runtime to device A,
who will perform the read and send back the results to the Runtime on B, who will deliver
them to the stream at the application layer. Likewise, any write operation will simply be
forwarded from the Runtime on B to the Runtime on A, who will complete the write.

Nested Timers. A limitation of ThingsMigrate occurs in the handling of some deeply
nested timer-related calls (i.e., setTimeout, setImmediate). Should a snapshot command
be received while a timer is in a pending state – i.e., before the callback function is invoked –
then the timer gets cleared, the remaining time and the reference to the callback function
are serialized, and migration happens normally. However, should the snapshot command be
received after the callback function is invoked, then a race condition occurs between any
asynchronous calls made inside the body of the callback and the snapshot function. Race
conditions are sometimes problematic in JavaScript, as the ordering of events can’t always be
predicted [16, 33]. For instance, should the JavaScript VM event loop process the snapshot
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function before the asynchronous calls, then the resulting snapshot will not contain the
scopes created by the asynchronous calls, producing an incorrect snapshot. Handling nested
timers would require that the snapshot function be delayed until all callbacks have been
resolved, which is a non-trivial problem. As a potential solution, we propose to inject, at the
instrumentation phase, specific code into the function scope that will signal the function’s
completion, which would allow us to detect the resolution of nested asynchronous calls.

5 Implementation

ThingsMigrate is implemented in the form of a JavaScript library2 that can be included by
the application. Its implementation is built over ThingsJS [26] (more details in appendix A).
It provides APIs that can be invoked to perform code instrumentation, snapshotting and
code restoration. From a higher-level perspective, it also provides an execution environment
that replicates the architecture shown in Figure 1. More specifically, it provides a Runtime
environment that can be run on IoT devices supporting an appropriate VM (e.g., Node.js
on Raspberry PIs Models 3 and 0), as well as a Manager component, which is used to
transparently instrument JavaScript programs, launch them on specific IoT nodes (decided
by a scheduler), monitor them, and trigger a serialization/migration. Internally, our imple-
mentation uses the popular esprima library [7] to parse JavaScript code into an AST, and
the escodegen [6] to convert back an AST into JavaScript code.

We also provide a web dashboard to monitor the execution of the application on different
devices, and trigger the migration at runtime (more details in appendix B).

6 Experimental Validation

We perform three experiments to validate ThingsMigrate. Experiment 1 (Section 6.2)
benchmarks the performance of our code instrumentation algorithm against a set of bench-
marks. Experiment 2 (Section 6.3) measures the performance overhead of ThingsMigrate for
benchmarks running on different devices. Finally, Experiment 3 (Section 6.4) evaluates the
multi-migration capabilities of ThingsMigrate by migrating a benchmark application several
times, across several devices.

6.1 Experimental Setup
ThingsMigrate provides JavaScript migration between IoT devices, and between devices and
the cloud. To emulate different scenarios, we ran our experiments on two IoT platforms,
namely a Raspberry Pi model 3B (quad-core 1.2 Ghz ARM7, 1 GB memory), and a Raspberry
Pi model 0W (single-core 1 Ghz ARM6, 512 MB memory), both running the Raspbian Jessie
operating system (a Debian Linux variant). We also included a cloud server (Xeon E3-1220
v3, quad-core 3.10Ghz, 32 GB memory). All nodes were running the Node.js VM version
6, which is ES-5 compliant. While we did not test other VMs due to stability issues or to
their lack of compliance with the ES-5 standard, the Node.js VMs we used were all compiled
differently for each target platform.

Despite an extensive search, we did not find publicly-available sets of IoT-specific JavaS-
cript benchmarks to evaluate our system. Prior work ([39]) has built their own IoT-specific

2 http://www.github.com/karthikp-ubc/thingsjs
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JavaScript benchmarks3. We followed a similar approach and built two IoT-specific bench-
marks: (1) a factorial application, which computes the factorial of a very large number and
uses closures to store the computed digits (i.e., in a very large expanding array), and (2),
a regulator application, which models an IoT edge component which receives temperature
measurement data from different sensors4 over a pub/sub interface, keeps the previous n

values for m sensors, and periodically computes an optimal power adjustment to be sent to
an actuator. factorial models a CPU and memory-intensive application of a finite duration
(experiment 2), while regulator models a less intensive (i.e., low CPU and memory usage)
application that runs for a long time. We note that the memory usage of the regulator is
similar to the memory usage of the IoT-specific benchmarks described in [39].

In addition, for experiments 1 and 2, we also used some benchmarks from the Chromium
Octane [2] suite, which were originally designed to stress-test the performance of the V8
JavaScript engine in the Chrome web browser. While they are not representative of IoT
applications, we nevertheless use them to assess the universality of our framework, and for
performance testing of ThingsMigrate under extreme conditions.

6.2 Experiment 1: Code Instrumentation
In this experiment, we consider all the benchmark programs from the Chromium Octane
suite that do not depend on a web browser (i.e., accessing the DOM or any other in-browser
object), as ThingsMigrate migrates IoT applications rather than in-browser applications.
We measure the time it takes to instrument the code for these benchmarks5, as well as
for our factorial and regulator applications. In addition, we compare the size of the
uninstrumented (raw) code, and the size of the instrumented code. Results are shown in
Table 1. As one can observe, the instrumentation algorithm executes quickly (in under 1
second), even for the complex benchmark applications with large code sizes. Further, code
instrumentation is a one-time process for any given program.

The increases in the code size due to instrumentation range from 26.9% to 7382.7%, with
an average of 1174.1%. This is because the instrumentor assigns human-readable variable
and function names in the generated code for debugging purposes - this can be reduced by
using a minifier [14]. We do not deploy these techniques. However, the code size has minimal
impact on the runtime performance as JavaScript is compiled just-in-time.

6.3 Experiment 2: Performance Overhead
In this experiment, we analyze the performance impact of ThingsMigrate over a set of highly
resource-intensive benchmarks. The goal of this experiment is to model the execution of
a resource-intensive task of a finite duration (i.e, eventually returns a result) that would
be executed over different IoT devices and the cloud server. We selected benchmarks
navier-stokes and splay from the Octane suite, as they respectively model extreme
conditions, in terms of CPU usage and memory utilization. Further, we were successful in
running these benchmarks on all test devices, unlike most other benchmarks in the suite
(even without our instrumentation, most of the benchmarks in the Octane suite were unable
to run on the Rapsberry Pi 0 due to its limited capabilities). We also used our factorial
application.

3 The source code is not publicly available, and hence we cannot use them.
4 We fed the application with random values, as the computed result itself is not part of the experiment.
5 Measurements were taken on our cloud server.
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Table 1 Code Instrumentation Results (with a confidence interval of 95%).

Benchmark Program Size (kb) Instrumented Size (kb) Instr. Time (ms)
navier-stokes 9.985 122.263 135.67 ± 4.5
splay 6.573 45.984 86.18 ± 2.7
deltablue 1.5452 115.623 120.65 ± 0.6
crypto 39.028 276.763 194.05 ± 1.6
box2d 357.169 2773.027 821.95 ± 3.0
earley-boyer 159.794 574.463 301.9 ± 0.8
raytrace 24.998 31.720 64.2 ± 0.5
richards 8.302 59.922 87.4 ± 0.5
typescript 2.138 10.541 31.75 ± 0.2
factorial 0.952 5.526 28.21 ± 0.2
regulator 1.855 15.594 42.1 ± 0.4
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Figure 6 Execution Time (in seconds). Margins of errors were below 1.5% for most of our results,
and up to 6% for some of our results on the Pi 0, for a confidence interval of 95%.

For each benchmark program, we measure and compare the time to complete its execution.
For each benchmark, and for our 3 target devices (Raspberry Pi 3, Pi 0 and our cloud server),
we run (A) the non-instrumented (raw) code, (B) the instrumented code, and (C) the
code generated after migration6. Further, we measure the average memory usage of each
application for the same three versions of the benchmark (raw, instrumented and generated)
to determine memory overheads. Finally, we report the time taken to serialize and generate
restoration code. We ran each benchmark until 50% of its execution time, took a snapshot,
generated restoration code from the snapshot, and then resumed the execution with the
restored code. Each benchmark was executed multiple times on each platform, and the times
averaged over the executions were reported.

Execution Time. Execution time results are shown in Figure 6. For both navier-stokes
and factorial, we observe an execution time overhead ranging from 5% and up to 40%
compared with the raw code (A), for all devices, which is due to the overhead of our injected
instrumentation code. This is because these applications have a significant amount of state.

6 As results for the restored code (C) were only available after completing a migration (i.e., at a given time
t during execution), results for (A) and (B) were considered also only after time t in their respective
runs, for a fair comparison.
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Figure 7 Memory Usage (mb). Margins of errors are not shown, as the results show the averaged
memory usage for all runs, averaged over the duration of the experiment.

As for the splay benchmark, the performance of the instrumented (B) and the restored
code (C) was significantly degraded. This is due to the extreme amount of memory operations
that the benchmark performs, which significantly slows down the execution. This slowdown
is amplified by the mirroring of the scope tree, which consumes even more memory. Further,
as our Pi devices have much slower memory, compared to our cloud server, the performance
overhead is higher. We stress however that these benchmarks were specifically designed to
model extreme conditions on desktop computers, and are not typical applications to be run
on IoT end nodes, which are much more resource constrained.

We also observe that the performance of the instrumented code (B) and the restored
code (C) is roughly similar across all benchmarks. As the restored code is semantically
equivalent to the original code, but with instrumentation to enable further migrations, we
obtain similar performance as the instrumented non-migrated code. These results indicate
that the performance (i.e., execution time) will not degrade after migration (Section 6.4).

Unfortunately, we cannot perform direct comparisons with prior work in terms of execution
time overhead, as Lo et. al. [32] measured such overheads for web applications on desktop
computers, which do not exhibit the same workload characteristics as our benchmarks, and
Kwon et. al. [29] did not report the execution time overheads of their programs at all.

Memory Usage. Our memory overhead results are depicted in Figure 7. For each benchmark
and device, we averaged the memory usage over time across the duration of each execution,
and we report averaged results for all experimental runs. Overall, our results reveal that
executing the instrumented code (B) significantly increases the memory usage compared to
the non-instrumented code (up to 6 times). This is expected, as we do not rely on JavaScript
VM instrumentation at runtime (unlike Kwon et. al. [29]), therefore many more elements
of state must be captured during execution and mirrored. In addition to maintaining the
scope hierarchy that mirrors the closures, the instrumented code also maintains a copy of
every variable, parameter and function, which increases the memory usage. The results for
factorial exhibit a similar trend across all devices, with the restored code (C) having a
slightly lower memory footprint compared to the instrumented code (B). After restoration
(C), we start with a fresh instrumented copy of the code (at snapshot time), without the
past states that potentially contain portions that were not yet garbage collected.

On the other end, navier-stokes and splay exhibit much higher memory usage for
the restored code (C) compared to the instrumented code (B). As these benchmarks are
more aggressive in stressing the memory (i.e., by allocating and deallocating scopes), the
resulting reconstruction code is very verbose (i.e., due to the explicit definition/duplication
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Figure 8 Serialization / Code Generation Time (in seconds). Margins of errors were between
0.5% and 5% for all results, for a confidence interval of 95%.
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Figure 9 Multi-Hop Migration Analysis (regulator application).

of nested closures as shown in Figure 5). Therefore, despite being semantically equivalent as
the instrumented code at snapshot time, the reconstructed code may be harder to optimize
by the VM. The execution of the JavaScript Garbage Collector (GC) can also be a cause
of the overhead. Experiment 6.4 discusses the effects of the GC on the live execution of
JavaScript applications. We stress again that such benchmarks represent extreme, non-typical
conditions. Nevertheless, they could run even on low-end devices (e.g., the Raspberry Pi 0),
and the average memory footprint remained under 30 MB.

We also note that the memory usage for both Raspberry Pi devices are much lower than
the cloud server. This is attributable to the bitness of the devices; i.e., our cloud server has a
64 bit processor, while the other Pi devices are 32 bits, and a more aggressive GC execution
on the Pi devices, as they are more memory-constrained.

Finally, prior work (i.e., [32, 29]) did not evaluate the runtime memory overhead of their
approach and hence, we cannot compare our results against them.

Serialization and Code Reconstruction Time. Considering the same experimental setup
(i.e., same devices and same benchmarks as above), we measured the time it took to serialize
the state at mid-experiment, and to generate restoration code from the state. Results are
shown in Figure 8. The results exhibit the same trend across all platforms, and vary based on
the size and complexity of the application. Overall, the serialization and snapshot times are
reasonable, albeit slightly higher on the Raspberry Pi 0 and for the two Octane benchmarks.
We stress that the Raspberry Pi 3 device is roughly 7 times slower than our cloud device,
while the Pi 0 device is roughly 90 times slower than our cloud server.
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6.4 Experiment 3: Multiple Migrations

In this experiment, we analyze the global behavior and performance over time of Things-
Migrate, when multiple migrations are performed between the edge and the cloud. More
precisely, we analyze the effects of migrating a long-running task that is not computationally
expensive from one device to another. None of the benchmarks used in Experiment 2 fit
this description, nor could we find publicly available JavaScript-based IoT benchmarks that
satisfy this criteria (Section 6.1). Therefore, we developed and used our own benchmark –
the regulator application that satisfies this criteria (by design). We first deploy the regulator
application on our cloud server, then we migrate it to the edge devices (i.e., the Raspberry Pi
3 device, after one minute, and then to the Pi 0 device, after one minute). The application is
then pushed back to the cloud server. This cycle is repeated 10 times (30 migrations over 30
minutes), and the CPU and memory utilization are measured in each instance.

The memory utilization results are shown in Figure 9, for the duration of the experiment
(30 min). The migration cycles are denoted by a vertical bar (every minute), and an oscillating
variation pattern can be observed during the time periods for which each device was executing
the regulator application. As can be observed, the memory usage fluctuates, for all devices,
but remains overall stable, as each successive code restoration does not consume additional
memory (assuming the memory needs of the application do not increase). The step-like
appearance of the memory curves are explained by the JavaScript garbage collector (GC),
which regularly claims small amounts of memory (i.e., during execution of the regulator –
small pikes), and which periodically runs a more through collection (bigger drops). However,
we also observe that the memory tends to very slowly increase over time, but this is not due
to the multiple migrations – rather, this is an artifact of the experimental data collection
process, which logs memory and CPU usage at a frequent interval (every 200ms) and keeps
the data in memory. This is supported by Figure 10, which plots the snapshot size at each
successive migration, which remains constant at 83kb. Finally, as in Experiment 2 (Section
6.3), the memory usage on the cloud server is higher than on the pi devices.

The CPU usage is shown on the same Figure (9). For simplicity, we show CPU usage
results only for one device (i.e., Pi 0, which is the most resource constrained), but the trend
is similar on the others. As can be observed, the CPU usage peaks at about 4%-5% when the
Pi 0 device is executing the application, and is close to 0% otherwise. The CPU usage during
execution remains constant across the different executions. The short spike before execution
corresponds to the code reconstruction, and the short spike after execution corresponds to
the serialization process, for which a small memory surge can also be observed.
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Figure 11 Case study setup.

6.5 Summary
Overall, our results demonstrate that ThingsMigrate can enable the cross-platform migration
of IoT JavaScript-based applications with acceptable performance overhead (~30% for normal
cases), and without any modifications to the underlying VM. While the memory overheads
are more significant, we believe that this is an acceptable tradeoff given the goal of our
approach to rely purely on code instrumentation. We also believe that memory gains could
be achieved by optimization techniques such as storing references to variables rather than
copying them within the scope tree. However, this is a subject for future exploration. Further,
our results show that ThingsMigrate was able to handle multiple-hops migrations while
keeping the CPU and memory usage almost constant.

7 Case Study: Motion Detector

In this section, we describe our experience with using ThingsMigrate to build a realistic IoT
application for video surveillance by adapting third-party JavaScript components developed
for standalone node.js applications. These components were not designed with ThingsMigrate
in mind, and as a result, we had to make (minor) modifications to make them work with our
system. We also evaluate this application using application-specific metrics that are more
likely to be of interest to end users rather than CPU/memory usage (unlike Section 6).

7.1 Experimental Setup
We set up an IoT network with four devices to build a surveillance system. Figure 11 shows
the setup. The application logic is modularized into two components: a video streamer
component that captures images from a video source such as a webcam, and a motion
detector component that processes the images to detect motion. Unlike the video streamer,
which is bound to a single device by the peripheral from which it needs to capture video, the
motion detector can be run on any device as it performs computations on the image data.
We measured the behavior of the system over a series of migrations of the motion detector
across the three systems (Raspberry Pi 3, Pi 0, and the cloud server from Section 6).

Video-streamer: We used FFmpeg [8], a popular open-source software for handling multi-
media, to capture individual frames from a video stream. For the purpose of the experiment,
the component was configured to stream from a video file instead of a peripheral such as a
webcam, so that we have a deterministic and reproducible sequence of frames. To interface
with the FFmpeg process from the JavaScript layer, we adapted a third-party NPM library
called fluent-ffmpeg [9], that we use to capture individual frames and publish them over
the pub/sub interface. The capture-and-publish routine was written as a single JavaScript
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Figure 12 CPU Usage over time – Motion Detector component.

function captureFrame that was passed into a setInterval call with interval set to 200ms
(i.e., a rate of 5 frames per second). We used the cloud server to serve as a surveillance
camera and run the video streamer component.

Motion Detector: This component was written entirely in JavaScript without having to
interface with any external software. We integrated a third-party NPM module called jimp
[11], which provides an API to read Buffer objects (i.e., received from the pub/sub overlay)
and perform image processing tasks. The component stores binary frame data for the n

latest frames.
The motion detection logic (i.e., function detectMotion) iterates through the array of

images and computes the difference between subsequent frames by calling jimp.diff(). The
binary difference between the frames is published over the pub/sub interface. In addition, if
more than 10% of the pixels are altered, a motion detected message is also published. The
detectMotion function is passed to a setInterval call with the interval set to 500ms - this
is lower than the frame rate of the video streamer (Section 7.2 explains why). Since the
detectMotion works by retrospective inspection of past frames, the array of Buffer objects
containing the image data needs to be migrated. Otherwise, the restored component would
need to wait for the buffer of past frames to be filled again – thereby skipping the motion
detection process for a given time window, and missing potentially important motion.

Although we do not fully support the migration of external libraries (Section 4.8), it
was possible to integrate the third-party NPM libraries as the objects they created were
native JavaScript objects and the API calls were limited to stateless operations. For instance,
since the Buffer objects are native objects, they could be easily serialized and migrated. The
function call to jimp.diff() is a stateless operation, since it does not create any additional
scopes and its execution context is destroyed after it returns. Such stateless operations do
not affect the migration process because we do not need to serialize their scopes.

Finally, we collected performance statistics by subscribing to a pub/sub topic at which
each ThingsMigrate runtime publishes its CPU and memory usage. To monitor and verify
that the motion detection was working correctly, we used our web dashboard, which displays
the images by converting the data into a base64 encoded PNG image.

7.2 Results
To automate our migration test in a controlled fashion, we wrote a Node.js script to send
commands to the IoT devices over the pub/sub interface. We sent a migrate command every
1 minute to the Cloud Server, Pi 3, and Pi 0, and back. We repeated the cycle 3 times.
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Figure 13 FPS over time – Motion Detector component.

Figure 12 shows the CPU usage over time as the application is migrated between the
devices. The collected data for CPU and memory usage across the three devices exhibit a
similar pattern to the regulator component discussed in Section 6.4. The CPU usage on a
device has a spike upon receiving a snapshot and just before sending a snapshot, remains
high while it is running a component, and stays near 0 during the idle state. The memory
consumption stays within a narrow range, with the garbage collector being triggered more
frequently while a device is running a component, and occasionally while it is idle.

However, on the Raspberry Pi 0’s console, we observed error messages showing that the
process failed at regular intervals. This is because the asynchronous call to detectMotion
took much longer than the set interval of 500ms, due to the limited computational capacity
of the Pi0, which led to the event queue accumulating faster than the JavaScript VM could
consume, which eventually led to overflowing and halting of the program.

Figure 13 shows the frame rate measured in Frames Per Second (FPS) on each device over
time. The FPS was calculated using the formula 1

∆t where ∆t is the time taken to execute
the detectMotion function. The figure shows the FPS dropping below the required FPS of 2
over the periods between 120 and 180, 300 and 360, and 480 and 540 seconds, during which
the Pi 0 was running the motion detector component. We can also observe the detectMotion
function blocking the thread at 180 seconds and 360 seconds, preventing the migration from
being triggered. The FPS drops below 2 occasionally during Pi 3’s execution, but for most
frames it is able to process within the time interval, compensating for the delay overall.

In summary, this case study shows that we were able to successfully migrate a third-party
application with minimal modifications between different devices. We also found the frame
rate measured in FPS was acceptable in most cases for the application. However, special
considerations might have to be taken for low-end devices, as migration requests can be
delayed due to delays in running more intensive tasks. These issues should be considered
when designing a system-level solution as discussed in Section 3.1.

8 Related Work

There has been some prior work in the area of migrating the execution of JavaScript code.
However, they focus on migrating web applications between web browsers [18, 32, 36, 29], and
hence have very different constraints from IoT devices. Imagen [32] migrates web applications
across heterogeneous browsers without altering the VM, and address some of the challenges
specific to web applications (e.g., the DOM, HTML5 media elements, timers). However, their
handling of nested closures is limited (Section 4.5). In [29], extending their prior work in [36],
the authors provide deeper support for serializing and reconstructing closures for migrating
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web applications, but they require VM instrumentation to access the internal scope tree,
which makes their approach less portable as it is bound to a specific browser version of an
open-source Webkit browser. In contrast, our approach does not require any modifications
to the JavaScript VM, and is hence platform neutral. Further, we provide explicit support
for multiple migrations, which prior work does not.

As an alternative to capturing and restoring the state of the web application, deterministic
replay techniques can be used to replay an exact sequence of actions leading to the current
state [17, 34, 37, 19, 15]. However, these approaches focus on capturing and replaying web
browser events, and are not directly applicable to IoT environments. Further, they may even
be impractical for IoT environments which have limited resources, as the sequence of events
to be captured and replayed often grows rapidly over time [32].

There have been many attempts at providing low-level code migration techniques that
directly save and restore the process memory space, and are hence programming language
independent [35, 45, 46]. Such techniques could be applied for migrating JavaScript code,
but they would require serializing the state of the JavaScript virtual machine (VM) itself,
which can incur significant overheads on IoT devices. Further, considering as per our model
that one VM might host several components, this would make it difficult to separate the per-
component state. Finally, providing platform independent migration would not be possible,
as even the same version of a given VM might have different cross-platform implementations
and memory layouts due to hardware differences. Note that similar challenges can be found
in migrating virtualized OSes across devices [22, 43].

9 Conclusion and Future Work

In this paper, we presented ThingsMigrate, a middleware layer that provides VM-independent
migration of stateful JavaScript applications across IoT devices. ThingsMigrate uses code
instrumentation to expose the hidden states of a JavaScript application, thereby allowing its
state to be captured and serialized, without requiring VM instrumentation. ThingsMigrate
then generates a reconstructed version of the same application at the serialized state, allowing
its execution to continue on a different device. We built an implementation of ThingsMigrate
and evaluated it on three different devices, and against both standard benchmarks and
custom applications. Our results show that ThingsMigrate can instrument, serialize and
reconstruct JavaScript applications within reasonable time bounds, depending on the state
and complexity of the input application. Further, we find that ThingsMigrate imposes
an average 30% execution time overlay at runtime, which is reasonable given the non-
reliance on VM-dependant low-level techniques (i.e., VM instrumentation). Finally, we show
that ThingsMigrate supports multiple migrations across different devices without incurring
additional overheads.

As future work, we intend on improving support for more complex cases of classes and
prototypes, as well as supporting the features of the newer ECMA standards. We would also
like to accomplish migration without interrupting the execution flow (i.e., seamless migration).
Another interesting area would be to adapt our approach to provide fault tolerance in an IoT
setting. While this could be provided by periodically saving the state to a reliable entity, we
would like to explore the problem of dynamically serializing the state to persistent storage
during execution.
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A ThingsJS and ThingsMigrate

As mentioned previously, the implementation of our system (ThingsMigrate) was realized over
ThingsJS [26], our general-purpose framework for executing high-level edge applications on IoT
devices. In this appendix, we provide a brief summary of ThingsJS below, and its relationship
with ThingsMigrate. We then give some details on our open-source implementation of
ThingsMigrate/ThingsJS.

A.1 Architecture
The high-level architecture of the ThingsJS Framework consists of several distributed com-
ponents and is presented in Figure 14. From a holistic point of view, a ThingsJS environment
comprises a highly-distributed ThingsJS Application, and dynamically manages its execution
over a set of heterogeneous devices through the ThingsJS Framework. More details on
ThingsJS are available in our vision paper [26].

ThingsJS Manager. The ThingsJS Manager is the center-piece of our system architecture,
and manages the execution of all components across all devices. It takes as input a ThingsJS
application, written in JavaScript, and schedules and monitors its distributed execution
across all participating ThingsJS devices. The Manager can decide to trigger the migration
of a given application towards another device – to accomplish this, it uses the ThingsMigrate
APIs.

ThingsJS Runtime. An instance of the ThingsJS Runtime is present on every device and
acts as a thin hypervisor layer. It locally manages the execution of all components on the
device, and gathers detailed statistics during execution (CPU, memory and bandwidth usage)
which are fed to the Manager. Upon the migration of a given application being requested,
ThingsMigrate coordinates the migration through the Runtime components on both devices
involved.
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Figure 14 High-Level Architecture of ThingsJS.

Inter-Component Communications. ThingsJS provides a pub/sub-based communication
substrate (MQTT), and requires that all inter-component communications follow that
model. The choice of this model was primarily motivated by the logical decoupling of content
producers from content consumers that it provides. Like any other component, ThingsMigrate
makes use of the pub/sub communication substrate for all communications (i.e., migration
commands and snapshots are transferred directly between relevant Runtime nodes through
the pub/sub interface).

ThingsMigrate. As a subcomponent of ThingsJS, ThingsMigrate provides support for
dynamically migrating JavaScript IoT applications between devices, and is the focus of
this paper. More details on the architecture on ThingsMigrate and its components are
given in Section 3 and Figure 1 of this paper. In our specific implementation, as scheduling
considerations are outside the scope of our paper, we let the user deploy applications manually,
monitor their state and trigger migrations, through a web dashboard interface (appendix B).

A.2 Implementation as an Open-Source Project
As mentioned, we implemented ThingsMigrate as an open-source project (built over ThingsJS).
The version of ThingsMigrate/ThingsJS that correspond to this paper has been tagged
as ecoop2018 in our GitHub repository and can be accessed at: https://github.com/
karthikp-ubc/ThingsJS/tree/ecoop2018. Given the availability of similar hardware and
software configurations, it can be used to reproduce the results that we obtained.

As ThingsJS provides a IoT-based middleware, it needs be installed and run on every
device. Each device then executes a worker node (corresponding to the ThingsMigrate/Th-
ingsJS Runtime in our architecture) that hosts one or more JavaScript applications. Worker
nodes listen for appropriate start and stop commands over the pub/sub interface to re-
spectively start and stop the execution of applications, as well as migrate commands to
trigger the migration between two nodes.

https://github.com/karthikp-ubc/ThingsJS/tree/ecoop2018
https://github.com/karthikp-ubc/ThingsJS/tree/ecoop2018
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Detailed installation and usage instructions can be found at our project page7 and in our
wiki8. In addition, we also provide a video demo of ThingsMigrate9, as well as a ready-to-use
VirtualBox Virtual Machine image10 that can be used to try ThingsMigrate and our web
dashboard (appendix B).

We encourage the reader to try out our system – using either IoT-like devices (i.e.,
Rapsberry Pi, Beaglebone, etc.), or regular computers (multiple worker instances can be
launched on the same machine to emulate additional devices).

B Web Dashboard

In addition to implementing the ThingsMigrate system over ThingsJS, as well as the code
instrumentation, snapshotting and code generation algorithms as a set of command-line
tools, we also implemented a Web Dashboard as a user-friendly interface to interact with
ThingsMigrate. This appendix highlight the main features of our dashboard.

B.1 Interface Overview
Our web dashboard can be used to view the status of the currently available devices and
applications, and can also launch, migrate and stop the execution of applications across
devices. Given that the scheduling infrastructure is not yet implemented, the dashboard plays
the role of the ThingsMigrate Manager by allowing the the user to control the deployment
and the migration of applications to IoT devices manually.

Screenshots of the dashboard are shown in Figure 15. The dashboard provides three
different views, which can be selected through the menu:
1. Main (default) view (Figure 15a): this view provides a holistic view of all the nodes

(devices – IoT or cloud-based), their detailed status, performance (CPU and memory
usage) and console output. In addition, specific to the video streaming / motion detection
case-study application (Section 7), this view allows one to observe the raw video stream
as well as the detected motion patterns.

2. Codes view (Figure 15b): this view provides a code viewer and editor to view and edit
the source code of the IoT apps to be run on the devices. Developers can write their apps
there directly, or cut-and-paste from their favorite editor / IDE into the code editor.

3. Debug view: this view provides network debugging support by showing the flow of
pub/sub messages across the pub/sub substrate.

B.2 Main Features
In a nutshell, our dashboard provides the following features:

Viewing the state of worker nodes (Main view, similar to Figure 15a): in the top-left
portion of the main view, a list of all registered worker nodes is shown, with their status:

Green: the node is currently available and idle (i.e., not executing any application)11
Grey: the node is currently available, but busy (i.e., executing another application)
Red: the node is currently unavailable

7 https://github.com/karthikp-ubc/ThingsJS
8 https://github.com/karthikp-ubc/ThingsJS/wiki
9 http://ece.ubc.ca/~karthikp/ThingsMigrate/ecoop2018.html
10 Idem.
11Although our framework supports executing several applications on a given worker node, our web

dashboard currently allows for only one application to be mapped to a given worker node.
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(a) Overview.

(b) IoT Apps Source Code.

Figure 15 ThingsMigrate Dashboard.

Viewing detailed worker status (Main view): on the right side, the interface provides
three panes that can be used to show detailed information on a given worker (IoT/cloud)
node. Each status pane provides three different views:

Status: shows the status of the node
Graph: shows a graph of the memory or CPU usage of the node
Console: shows the output of the application that the node is currently executing

Launching applications on devices (Main view): the dashboard can be used to launch
any application defined in the Codes section of the dashboard. The code is instrumented
on-the-fly by ThingsMigrate (Section 4.5) in order to support migration, and is launched
through the Runtime on the target device.

Stopping applications (Main view): the execution dashboard can instruct the Runtime
on any target device to stop the execution of a given application.
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Migrating applications between nodes (Main view): the dashboard can trigger the
migration of an application from one device to another. When doing so, it instructs the
Runtime on the first device to initiate the migration. The Runtime will then pause the
execution, take a snapshot of the current state, send the state to the Runtime of the
second device, and instruct the second device to resume the execution (Figure 1).

ECOOP 2018
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