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Abstract
Reference immutability type systems such as Javari and ReIm ensure that a given reference
cannot be used to mutate the referenced object. These systems are conservative in the sense that
a mutable reference may be mutable due to approximation.

In this paper, we present ReM (for definite Re[ference] M[utability]). It separates mutable
references into (1) definitely mutable, and (2) maybe mutable, i.e., references whose mutability is
due to inherent approximation. In addition, we propose a CFL-reachability system for reference
immutability, and prove that it is equivalent to ReIm/ReM, thus building a novel framework for
reasoning about correctness of reference immutability type systems. We have implemented ReM
and applied it on a large benchmark suite. Our results show that approximately 86.5% of all
mutable references are definitely mutable.
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1 Introduction

Reference immutability ensures that a readonly reference cannot be used to modify the state
of the object, including its transitively reachable state. For example, in the code below

1 Date md = new Date();
2 readonly Date rd = md;
3 rd.setTime(1);
4 md.setTime(1);

the Date object cannot be modified through the readonly reference rd, however, the same
object can be be modified through the mutable reference md.

Reference immutability has a wide variety of applications. It can enrich method specifica-
tions. It can help prevent errors due to unwanted aliasing and unwanted object mutation, as
well as errors due to concurrency. It can enable compiler and runtime optimizations as well
as reasoning about more complex properties such as method purity and object immutability.
One application that has not received attention (to the best of our knowledge), is the impact

1 This work was partially supported by NSF grant 1319384.
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25:2 Definite Reference Mutability

of reference immutability on “flow systems”. Flow systems track and prevent flow from
positive references to negative ones:

1 a = b;
2 positive X x = ... ;
3 a.f = x;
4 negative X y = b.f;

Many interesting analyses fall into this category, most notably approximate computing
systems (e.g., EnerJ [28]), which prevent flow of approximate values into precise ones, and
taint systems, which prevent flow from sensitive sources to untrusted sinks (e.g., [29, 17]).
Unfortunately, the natural subtyping negative <: positive is unsound in the presence of
mutable references [3]. (In the above example, had we allowed for such subtyping, reference
a could have been positive, b could have been negative, and the program would have type
checked.) Therefore, flow systems disallow subtyping for reference types [29, 28, 12], forcing
equality constraints at reference type assignments instead of the more precise subtyping
constraints. Reference immutability can alleviate the imprecision arising from equality
constraints – if the left-hand-side of the assignment is readonly, then subtyping is safe
– allowing for more correct programs to type check. In summary, because of its many
applications, reference immutability has been studied extensively [34, 39, 2, 40, 18, 13, 22],
and it remains important to continue research in the area.

Javari [34] is the state-of-the art in reference immutability. ReIm [18] has similar
core semantics but is less expressive and therefore simpler. In this paper we focus on
ReIm because of its simplicity and clarity; we believe that our treatment extends to other
reference immutability systems. Standard reference immutability systems, like Javari and
ReIm capture what we call definite immutability – a readonly reference is truly immutable.
However, a mutable reference may be truly mutable, or it may be mutable because of inherent
approximation. ReIm (and Javari) approximate in the handling of structure-transmitted
dependences [25] (i.e., flow through heap objects). For example, in the code below

x.f = y; ... w = z.f; w.g = ...

reference y is mutable. However, it is not necessarily mutable: if x and z refer to the same
object o, then y is indeed mutable; if they refer to different objects, then it is not mutable (at
least not because of the update to w). The system does not reason about aliasing, and errs on
the safe side marking y mutable. ReIm (and Javari) handle call-transmitted dependences [25]
precisely. In the code below, id is the standard “identity” function that returns its argument.

x = id(y); // x is readonly
z = id(w); // z is mutable

Reference y is readonly, and w is mutable. The system properly transmits mutability without
mixing the two call sites.

The key contribution of our paper is reasoning about approximation. We propose a new
type system ReM (for definite Re[ference] M[utability]). ReM captures definite immutability,
and in addition it captures definite mutability – a mutable reference is now definitely mutable.
We note that our use of “definitely mutable” is somewhat inaccurate. Of course, whether
a given reference is ever mutated is undecidable for various reasons, e.g., it is undecidable
whether a given statement is executed, or whether a given path is executed. We use it
in the sense of definitely mutable according to CFL-reachability, which is a highly precise
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model of data dependence [25] and analyses are unlikely to improve upon it. ReM captures
approximation explicitly by introducing the maybe qualifier. In the earlier example

x.f = y; ... w = z.f; w.g = ...

y is now maybe mutable. A key result is that empirically, approximation has limited impact
– only about 13% of all ReIm-mutable references (about 6% of all references) are maybe
mutable, leading to a conclusion that ReIm and ReM are precise, and therefore can be used
to power client analyses.

Another contribution of our paper is the interpretation of reference immutability in terms
of Context Free Language reachability, commonly referred to as CFL-reachability [27, 26, 25].
We propose a CFL-reachability system for inference of reference immutability, and prove that
it is equivalent to the ReIm/ReM inference system, thus building a framework for reasoning
about correctness, and proving ReIm and ReM correct. To the best of our knowledge, ReIm
has not been proven correct, even though it has been used to power client analyses [17, 32].
We plan to extend our system for reasoning about approximation and correctness to flow
systems [29, 28, 18, 17]. A CFL-reachability interpretation is beneficial for several reasons:
(1) it defines the semantics of reference immutability type systems in terms of intuitive
and well-known concepts, which may lead to wider applicability of reference immutability
type systems in software engineering, and (2) it provides a framework for reasoning about
approximation and correctness, not only for reference immutability type systems, but for the
larger class of flow type systems as well.

This paper makes the following contributions.
We present ReM, a novel type system for reference immutability. ReM captures explicitly
definite mutability (in the CFL-reachability sense), and approximation.
We interpret reference immutability in terms of CFL-reachability, and prove ReIm and
ReM correct.
We present an implementation and evaluation. We show that ReIm and ReM are
precise – only 13% of mutable references (6% of all references) are maybe mutable. The
implementation is publicly available online and has been evaluated and accepted by the
ECOOP Artifact Evaluation committee.

The rest of the paper is organized as follows. Sect. 2 presents the mutability semantics
based on CFL-reachability. Sect. 3 interprets ReIm in terms of the mutability semantics,
and presents the novel system ReM. Sect. 4 establishes equivalence between the systems
in Sects. 2 and 3. Sect. 5 presents the empirical evaluation, Sect. 6 discusses related work,
and Sect. 7 concludes.

2 Mutability Semantics

2.1 Flow Graph
The mutability semantics builds a flow graph G that represents flow (data) dependences
between variables. The nodes in the graph are program variables, e.g., x, y, this, and field
access expressions, e.g., x.f, y.f, this.f. The edges capture flow from one variable/field access
expression, to another. The goal is to capture deep reference (im)mutability with data
dependence paths in G. For example, in

x = y; z = x; z.f = w

ECOOP 2018
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cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t | x = y | x.f = y | y = x.f | x = y.m(z) statement
t ::= q C qualified type

Figure 1 Syntax. C and D are class names, f is a field name, m is a method name, and x, y, and
z are names of local variables, formal parameters, or parameter this. As in the code examples, this is
explicit. Qualifiers q range over ReIm/ReM qualifiers (defined in Sect. 3).

y is mutable, because there is a path in G from y to z, which is the receiver of the update at
field write z.f = w. Throughout the paper we refer to receivers at field writes as updates.

We restrict our core language to a “named form” in the style of Vaziri et al. [35, 10].
The language models Java with the syntax in Fig. 1, where the results of instantiations,
field accesses, and method calls, are immediately stored in a variable. Without loss of
generality, we assume that methods have parameter this, and exactly one other formal
parameter. Features not strictly necessary are omitted from the formalism, but they are
handled correctly in the implementation.

An assignment statement contributes a direct (i.e., intraprocedural) edge as follows:

x = y ⇒ y d−→ x

It represents flow from variable y to variable x. Therefore, if x is an update, i.e., there is field
write x.g = z, the direct edge propagates mutability to reference y.

A field write statement x.f = y contributes a direct edge from y to the field access node
x.f, and an approximate edge from x.f to every x′.f ∈ G, where x′.f is the right-hand-side of a
field read y′ = x′.f. (Without loss of generality we may assume x′ 6= x.)

x.f = y ⇒ y d−→ x.f a
99K x′.f

We elaborate upon approximate edges shortly. A field read statement y′ = x′.f contributes
direct edges as follows:

y′ = x′.f ⇒ x′ d−→ x′.f d−→ y′

Edge x′ d−→ x′.f accounts for deep (im)mutability. It links x′ to y′, propagating mutability
back to x′ when y′ is update.

Therefore, together a pair of field write x.f = y and field read y′ = x′.f contribute a triple

x.f = y, y′ = x′.f ⇒ y d−→ x.f a
99K x′.f d−→ y′

creating a path from y to y′. It models flow through heap objects while completely avoiding
heap objects. In terms of Reps’ terminology [25], our mutability semantics, like ReIm, models
structure (i.e., heap)-transmitted dependences approximately.

The approximate edge makes approximation explicit. The approximate path from y to y′
propagates mutability from y′ back to y, but “with an asterisk”. This is maybe mutability –
if x.f and x′.f are aliases because x and x′ point to the same object, then y is truly mutable,
however, if they are not aliases, y is not mutable due to this path. ReIm (and other reference
immutability systems) overapproximate, and mark y mutable. A key insight of our work is
that the impact of approximate paths is quite muted. Generally, when there is an approximate
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1 class DateCell {
2 Date date;
3

4 DateCell(DateCell this, Date p) {
5 this.date = p;
6 }
7 Date getDate(DateCell this) {
8 return this.date;
9 }

10 void cellSetHours(DateCell this) {
11 Date md = this.getDate();
12 md.setHours(1);
13 }
14 int cellGetHours(DateCell this) {
15 Date rd = this.getDate();
16 int hour = rd.getHours();
17 return hour;
18 }
19

20 public static void main(String[] args) {
21 Date d = new Date();
22 DateCell dc = new DateCell(d);
23 ...
24 }
25 }

d pDateCell thisDateCell.date 

thisgetDate.date thisgetDate 

thisSetHours 

thisGetHours 

retgetDate 

md 

rd 

(11 

(15 

)11 

)15 

(22 

d d 

d 

a 

Figure 2 Running example. Code (adapted from Huang et al. [18]) and corresponding graph.

path from a reference y to an update, there is also a direct path from y to an update, and y
would have become mutable regardless of the approximate path.

A method call (method entry) creates the expected call edges from actual arguments to
formal parameters:

i : x = y.m(z) ⇒ y (i−→ this z (i−→ p

Here this and p are the parameters of the compile-time target of the call. The standard
CFL-reachability annotation (i marks call entry at call site i. A method return (method
exit) creates a return edge from the return value to the left-hand-side of the call assignment:

i : x = y.m(z) ⇒ ret )i−→ x

The standard CFL-reachability annotation )i marks a return at site i. In terms of Reps’
terminology, the semantics models call-transmitted dependences precisely.

ECOOP 2018
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E ::= R′ | R | C | M

R′ ::= R C

R ::= )i | )i M | )i R | M R

C ::= (i | (i M | (i C | M C

M ::= d | (i M )i | M M

Figure 3 A context-free grammar for exact paths, i.e., paths that account (solely) for call-
transmitted dependences. M captures matched-parentheses strings, e.g., (i d )i, C captures strings
with one or more outstanding calls, e.g., (i d (j d )j , and R and R′ capture strings with one or more
outstanding returns, e.g., d )j .

Since the goal is to capture dependences between variables, the semantics eschews objects
and object creation. Fig. 2 shows an example including all kinds of statements and their
corresponding edges.

2.2 Paths in Flow Graph

We classify paths in G into two categories: (1) exact paths, which do not contain approximate
edges, and (2) approximate paths, which contain approximate edges. In our running example
in Fig. 2, thisgetDate  rd is an exact path, while d md is an approximate path. (We use
squiggle arrows  to denote multi-edge paths.) Not all paths in G are well-formed, and
different well-formed paths have different meaning.

2.2.1 Exact Paths

Fig. 3 defines a context-free grammar that classifies exact paths into 3 categories. This
grammar is standard in CFL-reachability theory. There is an M -path from node n to node
u if and only if the edge annotations on the path form a string in the language described
by M . M -paths are paths with matched parentheses. For example, path thisGetHours  rd is
an M -path. However, thisGetHours  md is not a well-formed path because call edge (15 and
return edge )11 do not match.

There is a C-path from n to u if and only if the edges from n to u form a string in the
language described by C. More intuitively, these are paths with outstanding call edges. For
example, thisGetHours  retgetDate is a C-path. With respect to reference immutability, if there
is an M -path or a C-path from x (or from x.f) to an update, then x (or x.f) is definitely
mutable, in the sense that analysis generally cannot improve from mutable. Because M -paths
and C-paths have the same effect, from now on we refer to them as M |C-paths.

The third category is R-paths. There is an R-path from n to u if and only if the edges
form a string in R or R′. That is, the path starts with outgoing return edges, and it may
or may not descend into a call path before reaching u. For example, thisgetDate  md is
an R-path. With respect to reference immutability, if there is an R-path from x (or x.f)
to an update, then x (or x.f) is polymorphic. It is mutable in some contexts of invocation
of the enclosing method, and readonly in other. For example, thisgetDate and retgetDate are
polymorphic. They are interpreted as mutable when getDate is called from cellSetHours, and
they are interpreted as readonly when getDate is called from cellGetHours.
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2.2.2 Approximate Paths
The following grammar rules capture approximate paths:

A ::= a | a E | a A | E A

There is an A-path from n to u if and only if the edges form a string in A. Pictorially, an
A-path consists of exact paths and approximate edges. For example,

n
E
 · a
99K · E

 · a
99K · E

 u

is an A-path, and so is

n
a
99K · E

 · a
99K u

The only mandatory component of the A-path is the one approximate edge.
A-paths fall into two categories, (M |C)A-paths, and RA-paths determined by the leading

exact path:
(1) if the leading exact path is an M |C-path, then there is a (M |C)A-path. For example,

d (20−→ pDateCell
d−→ thisDateCell.date a

99K thisDateCell.date d−→ retgetDate
)9−→ md

is a (M |C)A-path.
(2) if the leading exact path is an R-path, then there is an RA-path. For the rest of the

paper we use the term R-path to denote both the exact R-path and the RA-path as they
have the same effect for our purposes.

Standard reference immutability type systems (e.g., ReIm), conservatively mark mutable
every reference x, such that there is a (M |C)A-path from x to an update. As we mentioned
earlier, an approximate path introduces uncertainty rather than definite mutability. The
key observation of our work is the following. The majority of references x that exhibit an
A-path from x to an update, also exhibit a “parallel” M -path or C-path to a (potentially
different) update. Therefore, x is indeed definitely mutable and the A-path has no ill impact;
an analysis that attempts to handle A-paths, i.e., structure-transmitted dependences, more
precisely would not do better regarding x. Roughly speaking, our analysis separates the
A-paths that do exhibit a “parallel” path to an update, from the A-paths that do not, thus
separating references that are definitely mutable, from ones that are maybe mutable. If an
analysis that treats structure-transmitted dependences more precisely is to realize precision
improvement, the improvement is bounded by the number of maybe mutable references.

3 Type Systems

This section presents two reference immutability type systems, Huang et al.’s [18] ReIm, and
our novel proposal ReM. ReIm captures definite reference immutability, that is, readonly
references in ReIm are guaranteed immutable, however, mutable references are not necessarily
mutable. ReM captures definite immutability and definite mutability – in ReM readonly
references are still guaranteed immutable, and in addition, mutable references are guaranteed
mutable (in the CFL-reachability sense).

The reader may wonder why one needs type-based reference immutability like ReIm and
Javari, when one has a clear semantics expressed in terms of standard CFL-reachability.
First, type-based reference immutability is studied extensively in the literature [34, 39, 40,

ECOOP 2018



25:8 Definite Reference Mutability

18, 13, 22]; its connection to CFL-reachability brings new insights. Second, type-based
reference immutability allows programmers to specify immutability requirements with type
qualifiers, e.g., readonly x, and take advantage of systems such as JSR 308 and the Checker
Framework (https://checkerframework.org/) to check these immutability requirements;
such requirements cannot be easily expressed or checked using CFL-reachability. Third, type
systems promote modularity, while CFL-based systems are typically whole-program analyses.
Yet another advantage comes when reasoning about complexity. While CFL-reachability is
O(N3), ReIm/ReM inference is O(N2), where N is the program size.

Sect. 3.1 outlines ReIm, largely following Huang et al. [18]. We add a new interpretation
in terms of our mutability semantics. Sect. 3.2 builds ReM upon the discussion in Sect. 3.1.
Sect. 3.3 discusses type inference for ReIm and ReM.

3.1 ReIm

3.1.1 ReIm Qualifiers

The ReIm type system has three immutability qualifiers: mutable, readonly, and poly. We
explain the qualifiers in terms of the mutability semantics defined in Sect. 2.

mutable: A mutable reference x can be used to mutate the referenced object. This is the
implicit and only option in standard object-oriented languages. In terms of our mutability
semantics, a mutable reference denotes an M |C-path, or a (M |C)A-path from x to an
update.
readonly: readonly captures “deep” immutability. A readonly reference x cannot be used to
mutate the referenced object nor anything it references. All of the following are forbidden:

x.f = y
x.set(z) where set sets a field of its receiver x
z = id(x); z.f = w
y = x.f; y.g = z

In terms of the mutability semantics, a readonly reference means that there does not exist
either an exact or an approximate path to an update.
poly: This qualifier expresses polymorphism over immutability. poly denotes that a
reference is interpreted as mutable in some contexts, and it is interpreted as immutable in
other contexts. The enclosing method does not mutate the reference, however, mutation
to the reference or one of its components may happen after return. In terms of the
mutability semantics, a poly reference denotes that there is an R-path from x to an update
– the reference “flows” out of its enclosing method where it is mutated in some caller
context.

The subtyping relation between the qualifiers is

mutable <: poly <: readonly

where q1 <: q2 denotes q1 is a subtype of q2. For example, it is allowed to assign a mutable
reference to a poly or readonly one, but it is not allowed to assign a readonly reference to a
poly or mutable one.
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(tassign)
Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)
Γ(x) = qx qx = mutable Γ(y) = qy

typeof (f) = qf qy <: qx B qf

Γ ` x.f = y

(tread)
Γ(x) = qx Γ(y) = qy

typeof (f) = qf qx B qf <: qy

Γ ` y = x.f

(tcall)
Γ(x) = qx Γ(y) = qy Γ(z) = qz

typeof (m) = qthis, qp → qret

qy <: qx B qthis qz <: qx B qp

qx B qret <: qx

Γ ` x = y.m(z)

Figure 4 Typing rules. Function typeof retrieves the qualifiers of fields and methods. Γ is a type
environment that maps variables to their immutability qualifiers.

3.1.2 Typing Rules

ReIm is independent of the Java type system, which allows us to specify typing rules solely
over type qualifiers q. The typing rules, following [18] are presented in Fig. 4. Rule (TASSIGN)

is straightforward. It requires that the left-hand-side is a supertype of the right-hand-side.
The system does not enforce object immutability and only mutable objects are created. The
object creation rule becomes redundant and we omit it, just as we did in Sect. 2.

Rules (TREAD), (TWRITE) and (TCALL) make use of viewpoint adaptation, a concept from
Universe Types [8, 9, 7]. Viewpoint adaptation of a type q′ from the point of view of another
type q, results in the adapted type q′′. This is written as q B q′ = q′′.

Below, we explain viewpoint adaptation in terms of the mutability semantics. At field
accesses (TREAD) and (TWRITE) B adapts the field f from the viewpoint of (context of) the
receiver. Viewpoint adaptation at field access handles structure-transmitted dependences,
approximately. At method calls B adapts formal parameters and the return value from the
point of view of the variable at the left-hand-side of the call assignment. This variable captures
the calling context i. Viewpoint adaptation at calls handles call-transmitted dependences,
precisely.

Notably, ReIm restricts fields to readonly or poly. Javari [34] does allow for mutable fields,
increasing expressiveness and allowing Javari to express common idioms such as caching.
However, mutable fields complicates the system. Declaring a field mutable in Javari excludes
it from the state of the enclosing object, and adaptation of a mutable field requires special

ECOOP 2018



25:10 Definite Reference Mutability

treatment, as discussed in [34, 18]. One can similarly allow mutable fields in ReIm/ReM.
However, we are interested in type inference, and allowing mutable fields would create
ambiguity: if a field access expression x.f is inferred mutable, do we infer that field f is
mutable and is excluded from the state of a readonly x, or do we infer that f is just a “regular”
field and a mutable x.f signals deep mutation of x and x must be mutable? Restricting
fields to {readonly, poly} chooses the latter, as there is no way to know, without programmer
annotations, which fields are caches and thus excluded from the object state. Javarifier [23],
Javari’s inference tool, makes the same choice. Javari is more expressive than ReIm, but its
“inferable” semantics appears to be the same as ReIm’s: Huang et al. [18] report essentially
identical inference result for Javarifier and ReIm.

Following [18], we define B as follows:

_ B mutable = mutable
_ B readonly = readonly
q B poly = q

The underscore denotes a “don’t care” value. Qualifiers mutable and readonly do not depend
on the viewpoint. Qualifier poly depends on the viewpoint (context), and is substituted by
that viewpoint (context).

Let us take a closer look at rules (TWRITE) and (TREAD). For a pair of field write x.f = y
and field read y′ = x′.f, the rules entail the following constraints:

qy <: qx B qf qx′ B qf <: qy′

Suppose y′ is an update, i.e., there is statement y′.f = z, and qy′ is thus mutable. Therefore,
qf must be poly. First, recall that qf ∈ {readonly, poly}. Since readonly adapts to readonly,
qx′ B qf <: mutable does not type check, locking qf = poly. (TWRITE) sets qx, the type of the
receiver to mutable. This serves two purposes in ReIm, (1) to account for the update of x,
and (2) to account for the structure-transmitted dependence, i.e, the approximate path from
y to the (eventual) update y′. Thus, qx B qf evaluates to mutable, forcing qy to be mutable as
well. As mentioned earlier, ReIm handles approximate paths conservatively. If there is an
(M |C)A-path from a reference y to an update, then ReIm’s rules force y to be mutable, as is
the case above, even though x and x′ may refer to different runtime objects.

Now, consider rule (TCALL). Function typeof retrieves the type of compile-time target
m. qthis is the type of parameter this, qp is the type of the formal parameter, and qret is
the type of the return. Rule (TCALL) requires qx B qret <: qx, which accounts for R-paths.
The constraint disallows the return value of m from being readonly when there is a call
to m, x = y.m(z), where left-hand-side x is mutable. Only if the left-hand-sides of all call
assignments to m are readonly, can the return type of m be readonly; otherwise, it is poly. A
programmer can annotate the return type of m as mutable. However, this typing is pointless,
as it unnecessarily forces local variables and parameters in m to become mutable when they
may remain less restrictively poly. In Fig. 2, md = this.getDate(); entails constraint

qmd B qretgetDate <: qmd ≡ mutableB qretgetDate <: mutable

leading to qretgetDate = poly. This accounts for the R-path from ret to the update through md.
Continuing with the example, the field read in DateCell.getDate (line 8) entails constraint

qthisgetDate B qdate <: qretgetDate

leading to qthisgetDate = poly, which accounts for the R-path from thisgetDate to the update md.
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Additionally, rule (TCALL) requires qy <: qx B qthis. When qthis is readonly or mutable, its
adapted value is the same. Thus, when qthis is mutable (e.g., due to this.f = 0 in m),

qy <: qx B qthis becomes qy <: mutable

which disallows qy from being anything but mutable, as expected. This accounts for C-
and CA-paths. The interesting case is when qthis is poly. A poly parameter this reflects a
dependence between this and ret of m, such as the one in Fig. 2:

Date getDate(Date this) { ret = this.date; }

It allows the this object (or some part of it, in our example the date part of it), to be
modified in caller context, after m’s return. The type system entails that whenever there is
intraprocedural dependence between this and ret, we have

qthis <: qret.

Recall that when there exists a context where the left-hand-side variable x is mutated, qret
must be poly. Therefore, constraint qthis <: qret forces qthis to be poly (assuming that this is
not mutated in the context of its enclosing method). Rule (TCALL) adds the 2 constraints
“around” qthis <: qret to capture call-transmitted dependences:

qy <: qx B qthis qthis <: qret qx B qret <: qx

When m is called in a mutable context, i.e., qx is mutable, qy becomes mutable, as expected.
Conversely, when m is called in a readonly context, i.e., qx is readonly, qx B qthis evaluates to
readonly, leaving qy unchanged. In terms of our mutability semantics, this behavior captures
M - and MA-paths.

3.2 ReM
We now present the ReM type system, which builds upon ReIm.

3.2.1 ReM Qualifiers
The ReM type system adds to the set of ReIm qualifiers, and changes the meaning of some
of the ReIm qualifiers. There are 5 qualifiers in ReM: ReIm’s mutable, readonly and poly, and
two new, maybe and polymaybe. Again, we interpret the qualifiers in terms of the mutability
semantics defined in Sect. 2.

mutable: A mutable reference x is now definitely mutable. It denotes that there is an
(M |C)-path from x to an update.
readonly: A readonly reference x has the same meaning as in ReIm, i.e., there is neither
an exact nor an approximate path to an update.
maybe: A maybe reference denotes that there is a (M |C)A-path to an update, but there
is no R-path to an update.
poly: A poly reference now denotes that there is an R-path to an update, but there is no
(M |C)A-path.
polymaybe: A polymaybe reference denotes that there is an R-path to update, and a
(M |C)A-path to update.

The subtyping hierarchy is as follows:

maybe
mutable <: polymaybe <: <: readonly

poly
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3.2.2 Typing Rules
ReM rules extend ReIm. There are two extensions: (1) viewpoint adaptation must account
for new qualifiers maybe and polymaybe, and (2) rule (TWRITE) must account for approximate
paths.

Viewpoint adaptation rules from Sect. 3.1 remain in effect. We add two new rules:

_ B maybe = maybe
q B polymaybe = (q B poly) ∧maybe

Notation ∧ stands for the standard meet operation: the result of q1 ∧ q2 is the greatest lower
bound of q1 and q2 in the lattice of ReM types above.

Since field and return types are restricted to {readonly, poly}, adaptation of maybe or
polymaybe happens only when adapting parameters at method calls.

Recall that a maybe parameter p denotes a (M |C)A-path from p. Thus, call x = y.m(z)
creates an (M |C)A path from z (a CA-path to be precise). Rule (TCALL) requires

qz <: qx B qp ≡ qz <: maybe

which accounts for the (M |C)A-path from z.
Now recall that a polymaybe parameter p denotes an R-path to update, and an (M |C)A-

path to a (possibly different) update. These paths entail paths from z: one through ret,
depending on the left-hand-side of the call assignment, and an (M |C)A path. Rule (TCALL)

applies viewpoint adaptation of qp, essentially recording the more conservative choice at the
caller. Consider (TCALL) constraint

qz <: qx B qp.

Suppose that x is readonly, and there is no path from the left-hand-side of the call assignment
x to update (that is, the R-path from p is due to a different call site). Then there is no new
path from z to update through p ret )i−→ x. However, there is an (M |C)A-path from z to
update. Viewpoint adaptation accounts for it:

qz <: (readonly B poly) ∧ maybe ≡ qz <: maybe

Conversely, suppose x is mutable, and there is an M |C-path from x to update. Then the
R-path leads to an M |C-path from z to update. Viewpoint adaptation accounts for this:

qz <: (mutableB poly) ∧ maybe ≡ qz <: mutable

Consider the more detailed example:

1 class A {
2 ...
3 C m(A this, B p) {
4 C c = this.f;
5 p.g = c;
6 return c;
7 }
8
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9 public static void main(String[] args) {
10 ...
11 C c1 = a1.m(b);
12 c1.setField();
13 ...
14 C c2 = a2.m(b);
15 int i = c2.getField();
16 ....
17 }
18 }

thism.f thism 

a1 

a2 

retm 

c1  // is mutable 

c2  // is readonly 

(11 

(14 

)11 

)14 

d d 

d 

c 
d 

p.g q.g  // is mutable 
a 

The R-path from thism to c1, entails qthis <: poly, while the (M |C)A-path through p.g
entails qthism <: maybe. Thus, qthism = polymaybe. At call 11 we have

qa1 <: qc1 B qthism ≡ qa1 <: qc1 B polymaybe.

Since qc1 is mutable, polymaybe adapts to mutable, setting qa1 to mutable. On the other hand,
at call 14 we have

qa2 <: qc2 B qthism ≡ qa2 <: qc2 B polymaybe ≡ qa2 <: maybe.

Thus, since qc2 is readonly, the meet is maybe, and qa2 is precisely maybe.
We now change rule (TWRITE) to account for approximate paths:

(twrite)
Γ(x) = qx qx = mutable Γ(y) = qy

typeof (f) = qf qy <: maybeB qf

Γ ` x.f = y

qx remains mutable to account for the direct update on x. However, instead of adapting
by mutable context as in ReIm, we adapt by maybe. This reflects the approximate path,
which ReIm conservatively made mutable. If qf is readonly, then the maybe-mutability of
x does not affect y. If qf is poly, that reflects an update to some f, and qy <: maybeB poly
propagates the “maybe” update to y.

3.3 Type Inference
Type inference for both ReIm and ReM proceeds as outlined in [16, 18] and earlier in [19, 33].
We present novel treatment in terms of dataflow frameworks, and include necessary extensions
for ReM.

The inference operates on mappings from keys to values S. The keys in the mapping are
(1) local variables and parameters, (2) fields, and (3) method returns. The values in the
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mapping are sets of type qualifiers. For instance, S(x) = {poly, mutable} in ReIm means the
type of reference x can be poly or mutable.

S is initialized as follows. S(ret) = S(f) = {readonly, poly} for all return values ret and
fields f. The rest of the variables are initialized to the universal set of qualifiers U , which
is {readonly, poly, mutable} in ReIm, and {readonly, maybe, poly, polymaybe, mutable} in ReM.
For the rest of this paper we use U to refer to either ReIm or ReM. We denote the initial
mapping by S0.

The inference iterates over all statements s in the program and removes qualifiers
inconsistent with the typing rule for s from S. More precisely, let s consist of variables
v1, v2, ...vk and let s entail transfer function c(s). Applying c(s) removes each q1 from
S(v1) when there are no qualifiers q2 ∈ S(v2), ... qk ∈ S(vk), such that q1, q2, ...qk make s

type check; then it removes all q2 from S(v2), etc. For example, consider s: y = x.f and
corresponding rule (TREAD) triggering constraint qx B qf <: qy. Let S(x), S(f) and S(y) be as
follows:

S(x) S(f) S(y)
{maybe, polymaybe, mutable} {readonly, poly} {poly, polymaybe, mutable}

c(s) removes maybe from S(x) because there does not exist qf ∈ S(f) and qy ∈ S(y) that
satisfy maybeB qf <: qy. Similarly, it removes readonly from S(f). After application of c(s):

S′(x) S′(f) S′(y)
{polymaybe, mutable} {poly} {poly, polymaybe, mutable}

One can easily prove that, given S0 as shown, c(s) only need look at the left-hand-side of
the constraint, i.e., the right-hand-side always remains unchanged.

The inference analysis iterates over the statements in the program and removes qualifiers
from the sets until it reaches a fixpoint. The problem fits into the standard monotone
dataflow framework [1, 20]. The lattice Lv for variables v is

{maybe, polymaybe, mutable}
{mutable} > {polymaybe, mutable} > > U

{poly, polymaybe, mutable}

and the dataflow lattice L is the product lattice of all Lv lattices, which is standard. Initializing
all variables to U corresponds to initializing with the 0 of the lattice. The function space is
L→ L and is monotone. This is a theorem that one can easily show by case-by-case analysis
of each c(s). Therefore, the result of fixpoint iteration is the maximal fixpoint solution. Call
this solution SFix . Yet the fixpoint solution is a mapping from references to sets. The actual
mapping from references to types is derived as follows: for each reference x we pick the
maximal element of SFix(x) according to the following ranking, which mirrors the subtyping
lattice:

maybe
readonly > > polymaybe > mutable

poly

Importantly, the maximal element exists because each SFix(x) is an element of Lv. We
denote this typing by max(SFix), and call it the maximal typing.

The following propositions state that (1) the maximal typing type checks, and (2) the
maximal typing is the “best typing”. (Note that setting all references to mutable also type
checks, but makes up a useless typing.)
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I Proposition 1. ReIm’s max(SFix) and ReM’s max(SFix) always type check.

Proof Sketch. The proof for ReIm is given in [18]. The proof for ReM proceeds by
case-by-case analysis. The most difficult case arises at qz <: qx B qp. Let SFix(p) =
{poly, polymaybe, mutable} and SFix(z) = {maybe, polymaybe, mutable}. SFix(x) must be
either {maybe, polymaybe, mutable} or {readonly, maybe, poly, polymaybe, mutable}. If it were
any other set, then maybe would have been removed from S(z) during fixpoint iteration.
Combinations qz = maybe, qx = maybe, qp = poly, and qz = maybe, qx = readonly, qp = poly,
maximal typings under the two cases, both typecheck.

A more general statement is true. For every S that satisfies the equations of the dataflow
frameowork, typing max(S) type checks. J

Previous work in [16] formalized the notion of “best typing” for ownership type systems,
specifically Ownership types [5] and Universe Types [8], by using a heuristic ranking over
typings. This formalization applies to ReIm/ReM, as well as other ownership-like type
systems, e.g., AJ [35] and EnerJ [28]. Below we extend the treatment of [16] to ReM.

We say that T is a valid typing if T type checks. Objective function o ranks valid typings.
o takes a valid typing T and returns a tuple of numbers. For ReIm, o is as follows:

oReIm(T ) = (|T−1(readonly)|, |T−1(poly)|, |T−1(mutable)|)

The tuples are ordered lexicographically. We have T1 > T2 iff T1 has more readonly references
than T2, or T1 and T2 have the same number of readonly references, but T1 has more poly
references than T2. The preference ranking over typings is based on ranking over qualifiers:
naturally, we prefer readonly over poly and mutable, and poly over mutable.

ReM’s objective function is the following:

oReM (T ) = (|T−1(readonly)|, |T−1(poly)|+ |T−1(maybe)|, |T−1(polymaybe)|, |T−1(mutable)|)

Again the tuples are ordered based on the natural ranking over qualifiers: readonly is the
most preferred, followed by poly and maybe, which are equally preferred, and so on. The
following proposition establishes that the maximal typing is the best typing.

I Proposition 2. Let o be the objective function over valid typings (either oReIm over ReIm,
or oReM over ReM). o(max(SFix)) > o(T ) holds for every valid typing T 6= max(SFix).

Proof Sketch. The fact that the maximal typing is the “best typing”, follows from the
properties of monotone dataflow frameworks. Let S be another solution of the dataflow
framework. (It is easy to see that if T is valid typing, it must be contained into a solution of the
dataflow framework.) Since S > SFix by virtue of SFix being the maximal fixpoint solution,
for every variable x S(x) ≥ SFix(x), and there exist variables y such that S(y) > SFix(y).
Thus, oReM (max(SFix)) > oReM (max(S)). J

4 Equivalence

This section formally links the mutability semantics and the maximal typing. Specifically,
we establish equivalence between CFL-reachability, as outlined in Sect. 2, and the maximal
typing as outlined in Sect. 3.3 and previous work [16, 18, 19, 33].

Fig. 5 states the algorithms for CFL-reachability and type inference explicitly. Cfl
initializes graph G to ∅, then iterates over the program statements adding paths to updates,
until no more paths can be added. Types initializes S to the 0 of the lattice, then iterates
over the statements, removing qualifiers from S until no more qualifiers can be removed. To
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1: procedure Cfl
2: G = ∅
3: Add u

M
 u to G for all updates u

4: while G changes do
5: for each s in Program do
6: Edge(e(s))
7: end for
8: end while
9: end procedure

1: procedure Edge(n t−→ n′)
2: for each n′

N
 u ∈ G do

3: Add n
t⊕N
 u to G

4: end for
5: end procedure

1: procedure Types
2: S(n) = U

3: S(n) = {mutable} for all updates n

4: while S changes do
5: for each s in Program do
6: Constraint(c(s))
7: end for
8: end while
9: end procedure

1: procedure Constraint(l <: r)
2: Remove each ql from S(l)
3: if @ qr ∈ S(r) s.t. ql <: qr

4: end procedure

Figure 5 Algorithm Cfl initializes G, then iterates over program statements s adding edges
as specified in Sect. 2.1. Algorithm Types initializes S, then iterates over program statements s

removing qualifies from S as specified in Sect. 3.3. The algorithms elide details to highlight the
“parallel” structure of the two systems.

emphasize the parallel structure, Fig. 5 simplifies the presentation. Most notably, recall that
according to Sect. 2 field read y′ = x′.f accounts for two edges:

y′ = x′.f ⇒ x′ d−→ x′.f d−→ y′

Even though Fig. 5 shows a single invocation of Edge, in fact Cfl processes two edges, first
x′.f d−→ y′, followed by x′ d−→ x′.f. Similarly, Cfl processes multiple edges at field writes
x.f = y: for each field read y′ = x′.f, such that x′.f ∈ G, it processes x.f a

99K x′.f, followed by
y d−→ x.f.

Another detail elided from Fig. 5 is the meaning of t, N and concatenation operator
⊕. t ranges over the terminals: (i, )i, d, and a. N ranges over the kinds of paths: M |C,
(M |C)A, and R. Concatenation t⊕N applies the grammar rules, and in all but one case, is
straightforward:

(i ⊕M |C = M |C
(i ⊕ (M |C)A = (M |C)A
)i ⊕_ = R

d⊕N = N

a⊕_ = (M |C)A

(i ⊕ R is the difficult case, because it applies rule M ::= (i M )i. Edge applies concatenation
(i ⊕ R when processing call edge z (i−→ p and p R

 u ∈ G. (Here p is the parameter of the
compile-time target method of the call.) p R

 u ∈ G entails

p M
 ret )j−→ x N

 u

where ret is the return value of the target method, and x is some left-hand-side of a call
assignment. Note that p M

 ret )j−→ x are not explicitly in G, but x N
 u is in G. There are

two cases. If there is no edge )j such that j = i, then (i ⊕ R adds no new paths; the R-path
from p is due to a different call site. Otherwise, that is, when j = i, concatenation adds
z N
 u to G.
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Let us illustrate Cfl and Edge, and Types and Constraint in parallel. Consider

y = x; z = y; z.f = w

Calling Edge on y d−→ z, which corresponds to statement z = y, leads to path y M
 z in

G. Subsequently calling Edge on edge x d−→ y leads to concatenation of d and M and
path x M

 z. There are two M -paths, x to z and y to z, as expected. Analogously, calling
Constraint on qy <: qz, which corresponds to statement z = y, removes all qualifiers but
mutable from S(y). Subsequently calling Constraint on qx <: qy removes all qualifiers but
mutable from S(x). S(x) = {mutable}, and S(y) = {mutable} mirror the two M -paths that
Cfl finds.

The most interesting case arises (as it has been the case throughout the paper), when
adding a call edge. Consider code

y = id(x); y = z; z.f = w

and assume y M
 z and p R

 z are already in G. Concatenation breaks the R-path p R
 z

into p M
 ret )i−→ y M

 z. Since (i and )i match, it adds path x M
 z. Analogously, for Types

assume S(p) = {poly, polymaybe, mutable} and S(y) = {mutable}. Calling Constraint on
qx <: qy B qp removes all qualifiers but mutable from S(x), which directly corresponds to the
M -path from x to z that Cfl finds.

To formally establish equivalence we use the bisumulation methodology for proving
equivalence between two systems A and B [36, 6]. The methodology requires that we
establish a relation that relates states in A to those in B. In our case, A is constructed
by CFL-reachability inference (Algorithm Cfl), and B is constructed by type inference
(Algorithm Types). Our approach defines an explicit equivalence relation between the states
in A, captured by G, and those in B, captured by S. Intuitively, assume algorithms Cfl
and Types run in “parallel”. To show equivalence we must show that processing s in each
system maintains equivalence.

We state two definitions that form the basis of equivalence. Informally, Def. 3 states that
for every path from n to update u in G, n is correspondingly typed in S. In Def. 3 n stands
for either a variable node x, or field access node x.f.

I Definition 3. (Soundness) G⇒ S if and only if

1. n
M |C
 u ∈ G ⇒ max(S(n)) <: mutable

2. n
R
 u ∈ G ⇒ max(S(n)) <: poly

3. n
(M |C)A
 u ∈ G ⇒ max(S(n)) <: maybe

Def. 4 states that n’s maximal type in S implies a corresponding path in G. For example,
maximal typing polymaybe must imply that there are both an R-path and a (M |C)A-path
in G, but there is no M |C-path.

I Definition 4. (Precision) S ⇒ G if and only if

1. max(S(x)) = mutable ⇒ ∃ x M |C
 u ∈ G

2. max(S(x)) = polymaybe ⇒ ∃ x R
 u ∈ G ∧ ∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

3. max(S(x)) = poly ⇒ ∃ x R
 u ∈ G ∧ ¬∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

4. max(S(x)) = maybe ⇒ ¬∃ x R
 u ∈ G ∧ ∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

5. max(S(x)) = readonly ⇒ no path from x in G

6. max(S(x.f)) = readonly ⇒ no path from x.f in G
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I Definition 5. (Equivalence) G ' S if and only if G⇒ S and S ⇒ G.

Let the following Hoare triple denote parallel execution of Edge and Constraint on
statement s:

{G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′}

Our key result is the following theorem:

I Theorem 6. If G ' S and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
G′ ' S′.

Proof Sketch. As expected, the proof is by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

Clearly, the statement holds after initialization, lines 2-3 in Cfl and lines 2-3 in Types. The
inductive step requires case-by-case analysis of each s.

To prove correctness, we must show that given G⇒ S, after the execution of Edge(e(s))
and Constraint(c(s)), G′ ⇒ S′ still holds. We outline the most difficult case, Edge(z (i−→ p)
|| Constraint(qz <: qx B qp) (method call naturally brakes into three steps). Consider
z (i−→ p ⊕ p R

 u. Let x be the left-hand-side at call assignment i. If there does not exist
a path x N

 u ∈ G, then no new paths are added to G′ and G′ ⇒ S′ holds. If there exists
x N
 u ∈ G, then a new path z N

 u is added to G′. We must show that S′(z) reflects
N according to Def. 3 (e.g., if N is an M |C-path, then z is mutable). By the inductive
hypothesis p R

 u ∈ G⇒ max(S(p)) <: poly. Similarly, the N -path entails appropriate S(x):
if N is an M |C path, then S(x) = {mutable}, if N is an R path then max(S(x)) <: poly,
and if N is a (M |C)A-path, then max(S(x)) <: maybe. Constraint qz <: qx B qp removes
qualifiers from S(z). For example, if N is M |C, then S(x) = {mutable}, and it is easy to
see that max(S(x))Bmax(S(p)) <: mutable. Thus max(S′(z)) <: mutable, as needed. We
enumerate all cases in Sect. A (Proofs).

In the other direction, we must show that if S ⇒ G holds, after the execution of Edge
and Constraint on s, S′ ⇒ G′ still holds. Consider the analogous case, Edge(z (i−→ p)
|| Constraint(qz <: qx B qp), and the following values of S(x), S(p) and S(z) (only the
maximal element shown):

S(x) S(p) S(z)
{ readonly, ... { maybe, ... { readonly, ...

Constraint qz <: qx B qp “lowers” S(z) into S′(z) = {maybe, ...}. By the inductive hypothesis,
S(x) and S(p) entail that there are no paths from x in G, no paths from z in G, and only a
(M |C)A-path from p. Therefore, Edge(z (i−→ p) adds an (M |C)A-path from z in G′, and no
other kind of path. Thus, max(S′(z)) = maybe ⇒ z (M |C)A

 u, as expected. We enumerate
all cases in Sect. A (Proofs). J

For clarity, we omitted method overriding. It is handled in both the mutability semantics
and type inference, and equivalence still holds. Concretely, if m′ overrides m we add

qthism
d−→ qthism′ qpm

d−→ qpm′ qretm′
d−→ qretm

to G. Analogously, we require

typeof (m′) <: typeof (m)
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which entails

(qthism′ , qpm′ → qretm′ ) <: (qthism , qpm → qretm)

which leads to the standard function subtyping constraints:

qthism <: qthism′ qpm <: qpm′ qretm′ <: qretm

Our implementation handles function subtyping.

5 Empirical Results

We implemented ReM on top of ReIm. (ReIm is publicly available.) Soot is the underlying
platform, and Jimple is the underlying intermediate representation. We evaluate ReM on
DaCapo, plus the benchmarks used in Javarifier [23] and ReIm [18]. There are 13 whole
programs, and 8 libraries:

DaCapo suite DaCapo-2006-10MR.
JOlden is a classical suite of 10 small whole programs (Javarifier and ReIm).
ejc-3.2.0 is the Java Compiler for the Eclipse IDE (Javarifier and ReIm).
javad is a Java disassembler program (ReIm).
tinySQL-1.1 is a database engine (Javarifier and ReIm).
htmlparser-1.4 is an HTML parser library (Javarifier and ReIm).
commons-pool-1.2 is an object pooling library (ReIm).
jtds-1.0 is a JDBC driver (ReIm).
jdbm-1.0 is a transactional engine (ReIm).
jdbf-0.0.1 is an object-oriented mapping system (ReIm).
java.lang and java.util are the packages from JDK 1.7.0_75.

All benchmarks are analyzed with JDK 1.7. On whole programs, our analysis relies
on the standard Class Hierarchy Analysis (CHA)-based reachability in Soot, which pulls
in all relevant packages according to CHA. ReIm/ReM analyzes all these packages. All
experiments are done on a MacBook Pro 2.8 GHz Intel Core i7 and 16GB of RAM using
default VM settings for everything, including maximal heap size.

Tab. 1 presents the results of running ReM inference on the benchmarks. On average, only
6.4% of all references are inferred as maybe or polymaybe. They make up only about 13.6%
of all ReIm-mutable references while the remaining 86.4% are definitely mutable. To assess
the impact of the intermediate representation, Soot’s Jimple, which creates a significant
number of temporary local variables, we computed statistics on parameter and returns (no
local variables). The results show that 5.8% of all references are maybe or polymaybe, and
approximately 84% of all ReIm-mutable parameters and returns are definitely mutable. These
result is very similar, suggesting that the intermediate representation does not lead to an
overestimation of the number of definitely mutable references. (In fact, our investigation
suggests that it may lead to an underestimation, as we explain shortly.) Running times
do not exceed 90 seconds, with most benchmarks completing in under 60 seconds on the
commodity laptop described earlier.

In addition to the benchmarks from Tab. 1 we ran our analysis on Avrora, Batik and
Sunflow from DaCapo-9.12-MR1-bach; these are whole-program benchmarks were added to
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Table 1 Inference results for ReM. Annotatable References includes all variables of reference
type, including locals, parameters, returns, and fields. It does not include variables of primitive
type. Column #Readonly shows the number of references inferred as readonly, #Poly shows the
number of variables inferred as poly, and #Maybe/#polymaybe shows the number of maybe and
polymaybe references, respectively. Column #Mutable shows the number of mutable references,
which are now definitely mutable. In parentheses is the percentage of definitely mutable references
over of all potentially mutable ones: #Mutable/(#Maybe+#Polymaybe+#Mutable).

Annotatable References
Benchmark #Readonly #Poly #Maybe/ #Mutable Time

#Polymaybe (sec.)

antlr 15751 1029 1198/2 12552 (91.3%) 64.3
bloat 12567 2299 3880/56 18844 (82.7%) 36.1
chart 31640 4973 7570/139 32063 (80.6%) 79.3
eclipse 16945 4117 2613/36 12807 (82.9%) 39.1
fop 47411 5563 5578/66 35564 (86.3%) 89.0
hsqldb 29907 4282 3673/31 26054 (87.6%) 66.8
luindex 5465 686 750/11 4604 (85.8%) 30.1
lusearch 6296 945 1019/16 5344 (83.8%) 30.2
pmd 37758 4605 5248/96 34096 (86.5%) 78.4
xalan 21254 3337 2853/63 19771 (87.1%) 75.4

jolden 1208 281 206/0 1069 (83.8%) 29.0
javad 796 45 15/0 417 (96.5%) 26.5
ejc 29062 8202 3612/174 24768 (86.7%) 49.3
tinySQL 6115 665 638/7 3585 (84.8%) 28.1
htmlparser 7787 1215 1049/12 4904 (82.2%) 29.2
commons-pool 847 25 222/0 640 (74.2%) 27.1
jdbm 1134 317 322/9 1584 (82.7%) 28.8
jdbf 4017 312 289/2 2379 (89.1%) 58.6
jtds 8628 825 587/25 5738 (90.4%) 32.5
java.lang 3336 350 249/1 4721 (95.0%) 29.5
java.util 3216 376 309/0 4758 (93.9%) 30.9
Average 86.4%

DaCapo 2006 for the 2009 suite. Our analysis reports that on average 84.5% of ReIm-mutable
references are definitely mutable, which is in line with Tab. 1.2

The results demonstrate that ReM and ReIm are precise and scalable. They can be
used to power inference for approximate computing (e.g. EnerJ [28] and Rely [4]), taint
analysis (e.g., DroidInfer [17]), and method purity [18], as well as other client analyses. Even
if one designed a more complex system that handled structure-transmitted dependences more
precisely, by employing a powerful alias analysis for example, improvement would be at most
5-6% of all references being promoted from mutable (12-13% of ReIm’s mutable references).
ReM/ReIm’s complexity is O(N2), which leads to fast running times.

Finally, to better understand the results, we examined all 15 maybe references from javad,
and 15 randomly selected maybe references from ejc. We looked to identify definite paths to
mutation, or more precisely, we examined y d−→ x.f a

99K x′.f d−→ y′ and attempted to prove

2 We omitted Tomcat, H2 and the Treadsoap benchmarks from DaCapo-9.12-MR1-bach as these are
complex client-server programs and we were unable to set the analysis in time for the publication
deadline. Recent work in this space [14] omits these program as well. Also due to timing, DaCapo 2009
was not included in Artifact Evaluation.
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that there exist a runtime object o such that x points to o, x′ points to o, and the value of
x.f indeed flows to x′.f. We immediately identified such definite paths in 16 out of 30 cases.
The remaining 14 cases exhibited difficult data and control flow, and we could not identify
definite paths. A typical case of obvious definite paths was the following. Consider this
typical code for initializing an array field f:

1 f = new X[10];
2 for (int i=0; i<cnt; i++)
3 f[i] = new X();
4 ...

This code snippet is translated into the following Jimple:

1 r1 = newarray (X)[10];
2 this.f = r1;
3 ...
4 r2 = this.f;
5 x = new X();
6 r2[i] = x;

Mutation of the array is captured by the approximate path, and the maybe typing of r1. This
case leads to an overestimation of the number of maybe variables and the following simple
optimization reduces the number of maybe/polymaybe references. Specifically, at each field
write this.f = r1 we add constraint qr1 <: qm.this.f where m is the enclosing method and m.this.f
is a dummy variable. Similarly, at each field read r2 = this.f we add constraint qm.this.f <: qr2.
Thus, when r2 is mutable or poly/polymaybe, mutable or poly/polymaybe propagates through
qm.this.f , and the analysis demotes r1 to mutable or polymaybe. Tab. 2 shows the results of this
optimization – on average 87.3% of mutable references are now definitely mutable. As with
DaCapo 2009 the optimization was added for the final version and was not part of Artifact
Evaluation.

Another source of maybe mutability is containers. E.g., in

1 class Container {
2 Data data;
3 void set(Container this, Data p) {
4 this.data = p;
5 }
6 Data get(Container this) {
7 return this.data;
8 }
9 }

parameter p of set is rightfully maybe mutable. p and the data object will be mutable in
some clients of Container and readonly in others.

6 Related Work

The most closely related work is Huang et al.’s ReIm and ReImInfer [18]. Our work builds
upon ReIm and ReImInfer but extends them in two directions. First, we build a theoretical
framework that interprets ReIm and ReM in terms of CFL-reachability, and we prove them
correct within this simple framework. To the best of our knowledge, ReIm has not been
proven correct even though it has been used to power client analyses [17, 32]. Second, we
propose ReM and definite mutability, which extends the expressive power of ReIm, and also,

ECOOP 2018
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Table 2 Results after optimization. 87.3% of ReIm-mutable references are definitely mutable.

Annotatable References
Benchmark #Readonly #Poly #Maybe/ #Mutable Time

#PolyOrMaybe (sec.)

antlr 15751 1029 1093/6 12653 (92.0%) 128.2
bloat 12567 2299 3683/68 19029 (83.5%) 38.1
chart 31640 4973 7329/154 32289 (81.2%) 86.5
eclipse 16945 4118 2473/46 12937 (83.7%) 38.3
fop 47411 5563 5235/93 35880 (87.1%) 93.2
hsqldb 29907 4282 3303/37 26418 (88.8%) 86.8
luindex 5465 686 677/13 4675(87.1%) 31.6
lusearch 6296 945 932/17 5430 (85.1%) 35.9
pmd 37758 4605 4989/106 34345 (87.1%) 83.3
xalan 21254 3337 2634/71 19982 (88.1%) 79.8

jolden 1208 281 187/9 1080 (84.6%) 29.0
javad 796 45 3/0 429 (99.3%) 28.4
ejc 29062 8202 3146/194 25214 (88.3%) 51.7
tinySQL 6115 665 608/7 3615 (85.5%) 118.7
htmlparser 7787 1215 1023/12 4930(82.6%) 114.1
commons-pool 847 25 222/0 642 (74.5%) 25.6
jdbm 1134 317 293/9 1613(84.2%) 28.4
jdbf 4017 312 281/2 2387 (89.4%) 116.3
jtds 8628 825 552/25 5773(90.1%) 36.7
java.lang 3336 350 217/1 4753(95.6%) 34.1
java.util 3216 376 276/0 4791 (94.6%) 37.1
Average 87.3%

establishes a bound on (im)precision. Our empirical results show that ReIm/ReM are highly
precise and highly scalable.

Reference immutability has been an active area of research for many years. Tschantz et
al. propose Javari [34] and Javari’s inference tool Javarifier [23]. Javari is more expressive
and more complex than ReIm, but the inferable features are essentially the same. (Huang
et al. report that Javarifier and ReImInfer produce essentially the same result.) Zibin et
al’s IGJ [39] and OIGJ [40] are type systems that support reference immutability and object
immutability. Haack and Poll [15] propose a type system for object immutability as well.
Gordon et al. [13] propose a reference immutability system for safe parallelism. Potanin
et al. [22] survey work on reference and object immutability, and method purity. As it is
standard, these systems support definite immutability (like ReIm). They do not attempt to
estimate precision (imprecision), or connect reference immutability and CFL-reachability.

Artzi et al. [2] propose a hybrid static and dynamic analysis for inference of parameter
reference immutability. In contrast, our work focuses on static analysis.

Salcianu and Rinard’s JPPA [31] and Pearce’s JPure [21] infer method purity for Java.
ReIm/ReM is more general, in the sense that it enables reasoning about method purity, as
well as other client analyses (e.g., EnerJ [28] and DroidInfer [17]). The fact that ReIm/ReM
is precise, suggests that client analyses would be precise as well.

CFL-reachability is a standard program analysis framework [25]. Rehof and Fahndrich [24]
connect type-based flow analysis and CFL-reachability. This is similar to our interpretation
of type-based reference immutability in terms of CFL-reachability. However, Rehof and
Fahndrich do not discuss mutable references and it is unclear how they handle such references
or structure-transmitted dependences. Fahndrich et al. [11] apply the theory of [24] to build
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a context-sensitive Steensgard-style points-to analysis for C, thus using equality constraints
instead of subtyping constraints. (Equality constraints is the standard approach to the
handling of mutable references [29, 28, 12], as we mention earlier.) Our work focuses
specifically on reference immutability and reasoning about its precision. The result that
ReIm/ReM is precise, indicates that they can be incorporated into flow analyses [29, 28, 12,
17].

Sridharan and Bodik [30] present refinement-based points-to analysis for Java using
CFL-reachability. Xu et al. [37] improve the scalability of CFL-reachability-based points-to
analysis. These works focus on points-to analysis and require heap abstraction. Therefore,
they inherit known issues with reflection. Type-based reference immutability and the parallel
CFL-reachability analysis avoid heap abstraction and thus, they completely avoid issues due
to reflective object creation (x = Class.forName("className").newInstance()), for free. We
still face issues with reflective method invocation (getMethod). However, reflective object
creation is by far most common, and has been studied extensively in the points-to analysis
community. Recent work by Zhang and Su [38] propose new approximation algorithms
based on CFL-reachability that can handle both structure-transmitted and call transmitted
dependences precisely. Our work focuses on type-based reference immutability, for which
handling of structure-transmitted dependences approximately appears sufficient.

7 Conclusion

We presented ReM, a novel reference immutability type system. ReM separated potentially
mutable references into definitely mutable, and maybe mutable, i.e., references that may be
mutable due to inherent approximation. In addition, we proposed a CFL-reachability system
for reference immutability, thus building a novel framework for reasoning about correctness
of reference immutability type systems. We implemented ReM and showed that about 86.5%
of all potentially mutable references were definitely mutable.
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A Proofs

Our main theorem follows from the following two lemmas.

I Lemma 7. If G ⇒ S and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
G′ ⇒ S′.

Proof. The proof relies on the fact that viewpoint adaptation preserves subtyping. That is,
for each x, x′ and p, x <: x′ ⇒ xBp <: x′Bp. Also, for each x, p and p′, p <: p′ ⇒ xBp <: xBp′.
Therefore, for each x, x′, p, and p′, x <: x′ ∧ p <: p′ ⇒ x B p <: x′ B p′.

We proceed by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

and case by case analysis.
Consider the most difficult case, case 1: s is x = y.m(z). Naturally, it breaks into 3 smaller

cases, (1) z (i−→ p, (2) y (i−→ this and (3) ret )i−→ x. (2) is analogous to (1).
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For (1), suppose Edge adds z (i⊕M |C
 u to G′. By the inductive hypothesis, p M |C

 u implies
max(S(p)) <: mutable. The corresponding constraint qz <: qxBqp sets max(S′(z)) = mutable.
Similarly, p (M |C)A

 u ⇒ max(S(p)) <: maybe and constraint qz <: qx B qp leads to
qz <: qx Bmaybe <: maybe by the above theorem. Thus, max(S′(z)) <: maybe, as needed.
Now, suppose that (1) adds z (i⊕R

 u to G′. This entails max(S(ret)) <: poly. If x M |C
 u ∈ G

then max(S(x)) <: mutable, leading to max(S′(z)) <: mutable. If x (M |C)A
 u ∈ G then

max(S(x)) <: maybe, leading to max(S′(z)) = maybe, as needed. If x R
 u ∈ G then

max(S(x)) <: poly; constraint qz <: qx B qp ≡ qz <: poly B poly leads to max(S′(z)) <: poly,
as needed.

For (3), suppose Edge adds ret )i⊕N
 u to G′. This happens only if there is x N

 u ∈ G.
Therefore by the inductive hypothesis max(S(x)) 6= readonly, and therefore, constraint
qx B ret <: qx entails that max(S′(ret)) <: poly, as needed.

Case 2: s is x = y is straightforward.
Case 3: s is x.f = y. Suppose Edge processes approximate edge x.f a

99K x′.f followed by
direct edge y d−→ x.f. Edge adds to G′ only if x′.f in G, which by the inductive hypothesis
entails S(f) = {poly}. Thus, max(S(x.f)) evaluates to mutable, and the desired subtyping
is preserved (even though this typing is not precise). Furthermore, field write constraint
qy <: qx B qf evaluates to qy <: maybeB poly, meaning that max(S(y)) <: maybe as needed
to account for the (M |C)A-path from y in G′.

Finally, consider case 4: s is y = x.f. There is new path in G′ only if there is a path in G

from y. If there is a path from y, then max(S(y)) 6= readonly. The constraint for field write
qx B qf <: qy entails max(S(f)) = poly and max(S(x)) <: max(S(y)). Therefore, max(S(x.f))
and max(S(x)) reflect the new paths through y. J

I Lemma 8. If S ⇒ G and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
S′ ⇒ G′.

Proof. The proof is by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

We begin with the most difficult case, case 1: s is x = y.m(z).
The tables below examine all cases for parameter constraint qz <: qx B qp. Constraint

qy <: qx B qthis is completely analogous. For brevity, sets S show only the maximal element.
For example, when

S(x) = {readonly, ... S(p) = {maybe, ... S(z) = {readonly, ...

the constraint qz <: qx B qp removes readonly and poly from S(z) resulting in:

S′(z) = {maybe, ...

To preserve precision, we must show that after execution of the parallel Edge operation, there
exist only an (M |C)A-path from z to an update. The last column of the table enumerates
the paths from z: added by Edge(z (i−→ p) given S(x) and S(p), and existing ones in G.
Continuing with the example, (M |C)A[p] + none[ret] + none[z] reads as follows: (1) an
(M |C)A-path is added through p (the inductive hypothesis S ⇒ G entails that the maybe
typing of p implies an (M |C)A-path from p), and no paths are added through ret and x
(again, the maybe typing implies that there is no path through ret and x), and (2) there are
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no existing paths from z (due to the readonly typing of z in S). Therefore, there is only an
(M |C)A-path from z, and this case preserves precision.

The cases of S(z) = {mutable} and S(p) = {readonly, ...} are not shown because neither
of these cases triggers change to S, and it is trivial to argue S′ ⇒ G′.

The following table enumerates the cases for S(x) = {readonly, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ readonly, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ readonly, { poly, none[p] + none[x]
{ readonly, NO CHANGE +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, NO CHANGE +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ readonly, { polymaybe, (M |C)A[p]+none[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

The table below enumerates the cases for S(x) = {maybe, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ maybe, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ maybe, { poly, none[p]+(M |C)A[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ maybe, { polymaybe, (M |C)A[p]+(M |C)A[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]
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The table below enumerates the cases for S(x) = {poly, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ poly, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ poly, { poly, none[p]+R[x]
{ readonly, { poly, +none[z]
{ maybe, { polymaybe +(M |C)A[z]
{ poly, NO CHANGE +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ poly, { polymaybe, (M |C)A[p]+R[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

The table below enumerates the cases for S(x) = {polymaybe, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ polymaybe, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ polymaybe, { poly, none[p]+R[x]+(M |C)A[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ polymaybe, { polymaybe, (M |C)A[p]+(M |C)A[x]+R[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

Consider constraint qx B qret <: qx. If S(x) is {readonly, ...} then there is no change to S

and no change to G, and the statement holds. If S(ret) is {poly}, then, there is no change to
S and Edge “adds” a path already in G, resulting in no change in G as well. Let S(x) be
any other value but {readonly, ...} and let S(ret) be {readonly, ...}. S′(ret) becomes {poly}
implying an R-path. Since S(x) is of any other value but {readonly, ...}, this means that a
path from x to update, x N

 u does exist in G, and Edge(ret )i−→ x) results in R path from
ret in G′. Therefore, the theorem holds.

Consider case 2, s is x = y. We enumerate all possibilities analogously. Again we omit
the cases when S(x) = {mutable, ...} as well as the case when S(y) = {readonly, ...}, as they
are trivial.
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S(x) S(y) S′(y) G, Edge(y d−→ x)
{ maybe, { readonly, { maybe, (M |C)A[x]+none[y]

{ maybe, NO CHANGE (M |C)A[x]+(M |C)A[y]
{ poly, { polymaybe, (M |C)A[x]+R[y]
{ polymaybe, NO CHANGE (M |C)A[x]+(M |C)A[y]+R[y]

{ poly, { readonly, { poly, R[x]+none[y]
{ maybe, { polymaybe, R[x]+(M |C)A[y]
{ poly, NO CHANGE R[x]+R[y]
{ polymaybe, NO CHANGE R[x]+(M |C)A[y]+R[y]

{ polymaybe, { readonly, { polymaybe, (M |C)A[x]+R[x]+none[y]
{ maybe, { polymaybe, (M |C)A[x]+R[x]+(M |C)A[y]
{ poly, { polymaybe, (M |C)A[x]+R[x]+R[y]
{ polymaybe, NO CHANGE (M |C)A[x]+R[x]+(M |C)A[y]+R[y]

Now consider case 3, s is x.f = y, and corresponding constraints qy <: maybe B qf . If
f is readonly, then maybe B qf is readonly, and there is no change in S. By the inductive
hypothesis, x′.f being readonly implies that there does not exist a read x′.f such that there is
a path from x′.f to update in G. Thus, no path is added to G′ through x.f thus preserving
the paths from y and the theorem. If f is poly, then y becomes maybe, or lower in S′, thus
properly accounting for the (M |C)A-path from y through x.f that appears in G′.

Finally, consider case 4. s is y′ = x′.f. If f is readonly, then there does not exist a path
from x′.f in G. If y′ is not readonly, then there exists a path form y′. Thus, f becomes poly in
S′, and x′ <: y′ in S′. In G′, there are new paths from x′.f and x reflecting S′. J
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