
32nd European Conference on
Object-Oriented Programming

ECOOP 2018, July 16–21, 2018, Amsterdam, The Netherlands

Edited by

Todd Millstein

LIPIcs – Vo l . 109 – ECOOP 2018 www.dagstuh l .de/ l ip i c s

Editor
Todd Millstein
Computer Science Department
University of California, Los Angeles
todd@cs.ucla.edu

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-079-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-079-8.

Publication date
July, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2018.0

ISBN 978-3-95977-079-8 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-079-8
http://www.dagstuhl.de/dagpub/978-3-95977-079-8
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-079-8
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ECOOP 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Message from the Chairs
Frank Tip and Todd Millstein . 0:vii–0:viii

Message from the President of AITO
Eric Jul . 0:ix

ECOOP 2018 Conference Organization
. 0:xi–0:xiii

External Reviewers
. 0:xv

List of Authors
. 0:xvii-0:xx

Regular Papers

Fault-tolerant Distributed Reactive Programming
Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and
Mira Mezini . 1:1–1:26

ContextWorkflow: A Monadic DSL for Compensable and Interruptible Executions
Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi . 2:1–2:33

Theory and Practice of Coroutines with Snapshots
Aleksandar Prokopec and Fengyun Liu . 3:1–3:32

A Concurrent Specification of POSIX File Systems
Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner 4:1–4:28

A Characteristic Study of Parameterized Unit Tests in .NET Open Source Projects
Wing Lam, Siwakorn Srisakaokul, Blake Bassett, Peyman Mahdian, Tao Xie,
Pratap Lakshman, and Jonathan de Halleux . 5:1–5:27

Learning to Accelerate Symbolic Execution via Code Transformation
Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and
Lu Zhang . 6:1–6:27

Type Regression Testing to Detect Breaking Changes in Node.js Libraries
Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp . 7:1–7:24

Targeted Test Generation for Actor Systems
Sihan Li, Farah Hariri, and Gul Agha . 8:1–8:31

Typed First-Class Traits
Xuan Bi and Bruno C. d. S. Oliveira . 9:1–9:28

CrySL: An Extensible Approach to Validating the Correct Usage of
Cryptographic APIs

Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini 10:1–10:27
32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Safe Transferable Regions
Gowtham Kaki and G. Ramalingam . 11:1–11:31

KafKa: Gradual Typing for Objects
Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek 12:1–12:25

Dependent Types for Class-based Mutable Objects
Joana Campos and Vasco T. Vasconcelos . 13:1–13:28

Static Typing of Complex Presence Constraints in Interfaces
Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter 14:1–14:27

Mailbox Types for Unordered Interactions
Ugo de’Liguoro and Luca Padovani . 15:1–15:28

Accelerating Dynamically-Typed Languages on Heterogeneous Platforms Using
Guards Optimization

Mohaned Qunaibit, Stefan Brunthaler, Yeoul Na, Stijn Volckaert, and
Michael Franz . 16:1–16:29

CROCHET: Checkpoint and Rollback via Lightweight Heap Traversal on Stock
JVMs

Jonathan Bell and Luís Pina . 17:1–17:31

ThingsMigrate: Platform-Independent Migration of Stateful JavaScript IoT
Applications

Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel, and
Karthik Pattabiraman . 18:1–18:33

Automating Object Transformations for Dynamic Software Updating via Online
Execution Synthesis

Tianxiao Gu, Xiaoxing Ma, Chang Xu, Yanyan Jiang, Chun Cao, and Jian Lu . . 19:1–19:28

FHJ: A Formal Model for Hierarchical Dispatching and Overriding
Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto 20:1–20:30

Modeling Infinite Behaviour by Corules
Davide Ancona, Francesco Dagnino, and Elena Zucca . 21:1–21:31

The Essence of Nested Composition
Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers . 22:1–22:33

Defensive Points-To Analysis: Effective Soundness via Laziness
Yannis Smaragdakis and George Kastrinis . 23:1–23:28

Legato: An At-Most-Once Analysis with Applications to Dynamic Configuration
Updates

John Toman and Dan Grossman . 24:1–24:32

Definite Reference Mutability
Ana Milanova . 25:1–25:30

Efficient Reflection String Analysis via Graph Coloring
Neville Grech, George Kastrinis, and Yannis Smaragdakis . 26:1–26:25

Message from the Chairs

It is our great pleasure to welcome you to Amsterdam for ECOOP 2018, the 32nd European
Conference on Object-Oriented Programming, to be held on July 16-21. ECOOP is the
European forum for bringing together researchers, practitioners, and students to share their
ideas and experiences in all topics related to programming languages, software development,
object-oriented technologies, systems and applications.

This year, ECOOP is co-located with the International Symposium on Software Testing
and Analysis (ISSTA 2018), and with CurryOn, a conference that is focused on the intersection
of emerging languages and emerging challenges in industry. The ECOOP 2018 program
includes technical papers and keynotes. Furthermore, ECOOP 2018 features workshops, a
doctoral symposium, a posters session, and a summer school that are jointly organized with
ISSTA 2018.

ECOOP 2018 received 66 submissions of research papers. Each submission was evaluated
by at least three members of the Program Committee (PC). Similar to ECOOP 2017, a
light-weight double-blind reviewing process was adopted in which authors did not reveal
their name, identity, or affiliation in their submissions. Author identities were revealed to a
reviewer only once his/her review was submitted. Authors were also given an opportunity to
provide a response to the reviews before decisions were made.

The Program Committee met in Amsterdam, The Netherlands on April 5 and 6 to discuss
the submissions and accepted 26 papers (39.4% acceptance rate). One paper, “Defensive
Points-To Analysis: Effective Soundness via Laziness,” by Yannis Smaragdakis and George
Kastrinis, was selected to receive an AITO Distinguished Paper Award. We thank our 24 PC
members for their thorough reviewing and for attending the two-day physical PC meeting.

Authors of accepted papers were also invited to submit artifacts, which were evaluated by
a separate Artifact Evaluation Committee (AEC). The committee received 13 artifacts and
accepted 10 of them. We thank our Artifact Evaluation Chairs Maria Christakis, Philipp
Haller, and Marianna Rapoport.

The ECOOP 2018 program includes three keynote talks. Harry Xu (University of
California, Los Angeles) will present “Object-Orientation Meets Big Data: Performance
Impact, Restoration, and Thoughts on Language Design” as part of winning the AITO
Dahl-Nygaard Junior Prize in 2018. (The AITO Dahl-Nygaard Senior Prize was awarded to
Lars Bak, who unfortunately is unable to attend ECOOP 2018.) The other two keynote talks
are “Program Analysis for Everyone” by Oege de Moore (Semmle) and “Parser-Directed Test
Generation” by Andreas Zeller (Saarland University).

The following workshops are colocated with ECOOP 2018 and ISSTA 2018:
COP: 10th International Workshop on Context-Oriented Programming
BenchWork: First Workshop on Reproducible Experiments and Benchmarking
DPA: First Workshop on Declarative Program Analysis
FTfJP: 20th Workshop on Formal Techniques for Java-like Programs
ICOOOLPS: 13th Implementation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems Workshop
INTUITESTBEDS: 4th Workshop on UI Test Automation & 8th Workshop on TESting
Techniques for event BasED Software
ISAGT: Introspective Systems for Automatically Generating Tests
ML4PL: 2nd International Workshop on Machine Learning for Programming Languages
Panathon: Program analysis hackathon

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:viii Message from the Chairs

SALAD: First International Workshop on SoftwAre debLoating And Delayering
SOAP: 7th International Workshop on the State Of the Art in Program Analysis
TAV-CPS/IoT: Testing, Analysis, and Verification of Cyber-Physical Systems and Internet
of Things
VORTEX: Runtime verification Workshop
WoSSCA: First International Workshop on Speculative Side Channel Analysis

We thank our Workshop Chairs Julian Dolby and William G.J. Halfond for putting together
this comprehensive workshops program.

Bringing ECOOP 2018 into existence involved a great effort from the members of our
community, and we would like to extend our most heartfelt thanks to everyone who worked
hard to make this possible. We thank the authors and the keynote speakers, who provided
the content of our program and are presenting their contributions at the conference. We
cannot thank enough the Program Committee members, who reviewed many papers, wrote
detailed reviews, travelled at their own expense to the Program Committee meeting, and
helped us select the great program for the conference.

Many other people contributed to various aspects of the program: the Doctoral Symposium
was chaired by Julia Belyakova, Cristian Cadar, and Jasper Schulz; Sarah Mount served
as Diversity Chair; Annabel Satin served as Finance Chair; Jan Vitek and Andreas Zeller
co-organized the Summer School; Alisa Maas and Ming-Ho Yee served as Student Volunteer
Co-Chairs; Karim Ali managed the ECOOP web site; Nicolás Rosner served as Publicity
Chair; Laurence Tratt served as Sponsorship Chair; Lisa Nguyen served as Posters Chair;
and last but not least, Tijs van der Storm and Jurgen Vinju served as Local Organizing
Chairs for ECOOP/ISSTA 2018.

We gratefully acknowledge our sponsor AITO as well as our financial supporters —
Amazon, Facebook, Google, IBM Research, JetBrains, Mozilla, the National Science Founda-
tion, the Office of Naval Research, Oracle, Semmle, Uber, and VMWare — for their generous
contributions. Finally, we want to thank all of the conference attendees for contributing to
making the conference a success. We hope that you will find the ECOOP 2018 program
interesting, thought-provoking, and inspiring, and that the conference will give you valuable
opportunities to share ideas with researchers and practitioners from our vibrant community.

Frank Tip Todd Millstein
ECOOP 2018 General Chair ECOOP 2018 Program Chair
Northeastern University University of California, Los Angeles

Message from the President of AITO

This year ECOOP is held in Amsterdam, co-located with ISSTA and Curry On. Object-
oriented programming has moved from an esoteric, academic endeavor to be so mainstream
that most undergraduate introductory programming courses in the world use some kind of
object-oriented language. The number of different and specialized conferences has meant
that there are many other events that attract the traditional ECOOP audience. So AITO
believes that co-location with other events can provide cross-feed between different areas
and different environments; specifically, Curry-On’s mix of industry and academia is great —
even fantastic at times.

This year, the Dahl-Nygaard prizes go to practitioners of object-oriented languages having
contributed to efficient OO programs. The Senior prize goes to Lars Bak, who has spent
decades as a practitioner trying — successfully — to build efficient implementations of
object-oriented languages. Unfortunately, he will not be able to accept the prize at ECOOP
2018 — we will, hopefully, be able to invite him to ECOOP 2019 for a talk. The Junior Prize
goes to Guoqing Harry Xu who has made significant contributions to different aspects of
object orientation due to a unique combination of technical strength and ambition to deliver
effective object-oriented programming technologies for big data systems.

On behalf of AITO, I would like to thank the people, including you, who contribute to
making ECOOP 2018 a successful conference; we hope that you will find it inspiring and, we
hope, even fun.

Eric Jul
AITO President
University of Oslo

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

ECOOP 2018 Conference Organization

General Chair
Frank Tip (Northeastern University, USA)

Program Chair
Todd Millstein (University of California, Los Angeles, USA)

Artifact Evaluation Co-Chairs
Maria Christakis (MPI-SWS, Germany)
Philipp Haller (KTH Royal Institute of Technology, Sweden)
Marianna Rapoport (University of Waterloo, Canada)

Workshop Co-Chairs
Julian Dolby (IBM T.J. Watson Research Center, USA)
William G.J. Halfond (University of Southern California, USA)

Webmaster
Karim Ali (University of Alberta, Canada)

Publicity Chair
Nicolás Rosner (University of California, Santa Barbara, USA)

Diversity Chair
Sarah Mount (King’s College London, UK)

Finance Chair
Annabel Satin (Petit Canard Kitchen, UK)

Posters Chair
Lisa Nguyen (Paderborn University, Germany)

Summer School Co-Chairs
Jan Vitek (Northeastern University, USA)
Andreas Zeller (Saarland University, Germany)

Doctoral Symposium Co-Chairs
Julia Belyakova (Czech Technical University, Czech Republic)
Cristian Cadar (Imperial College London, UK)
Jasper Schulz (King’s College London, UK)

Student Volunteer Co-Chairs
Alisa Maas (University of Wisconsin-Madison, USA)
Ming-Ho Yee (Northeastern University, USA)

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii ECOOP 2018 Conference Organization

Local Organizing Co-Chairs
Jurgen Vinju (CWI, The Netherlands)
Tijs van der Storm (CWI, The Netherlands)

Program Committee
Karim Ali (University of Alberta, Canada)
Nada Amin (University of Cambridge, UK)
Earl Barr (University College London, UK)
Michael Carbin (MIT, USA)
Sophia Drossopoulou (Imperial College London, UK)
Christian Hammer (University of Potsdam, Germany)
Robert Hirschfeld (HPI at the University of Potsdam, Germany)
Atsushi Igarashi (Kyoto University, Japan)
Mohsen Lesani (University of California, Riverside, USA)
Yu David Liu (State University of New York at Binghamton, USA)
Magnus Madsen (University of Waterloo, Canada)
Nate Nystrom (Università della Svizzera italiana, Switzerland)
Michael Pradel (TU Darmstadt, Germany)
Murali Ramanathan (Uber, USA)
Jennifer Sartor (Vrije Universiteit Brussel, Belgium)
Ina Schaefer (TU Braunschweig, Germany)
Max Schaefer (Semmle, UK)
Xipeng Shen (North Carolina State University, USA)
Jeremy Siek (Indiana University Bloomington, USA)
Scott Smith (The Johns Hopkins University, USA)
Tijs van der Storm (CWI / University of Groningen, Holland)
Gang Tan (The Pennsylvania State University, USA)
Peter Thiemann (Freiburg University, Germany)
Mandana Vaziri Tardieu (IBM T. J. Watson Research Center, USA)

Artifact Evaluation Committee
Ambrose Bonnaire-Sergeant (Indiana University, USA)
Elias Castegren (Uppsala University, Sweden)
Ezgi Cicek (MPI-SWS, Germany)
Ankush Desai (UC Berkeley, USA)
Jonathan Eyolfson (University of Waterloo, Canada)
Yu Feng (UT Austin, USA)
Hugo Feree (University of Kent, UK)
Thomas Gilray (University of Maryland, USA)
Stefan Heule (Stanford University, USA)
Ravichandhran Madhavan (EPFL, Switzerland)
Guillaume Martres (EPFL, Switzerland)
Gianluca Mezzetti (Aarhus University, Denmark)
Fabian Muehlboeck (Cornell University, USA)
Filip Niksic (MPI-SWS, Germany)
Alceste Scalas (Imperial College London, UK)
Emma Tosch (UMass Amherst, USA)
Ming-Ho Yee (Northeastern University, USA)

ECOOP 2018 Conference Organization 0:xiii

Doctoral Symposium Committee
Abdulmajeed Alameer (University of Southern California, USA)
Mateus Borges (Imperial College London, UK)
Benjamin Chung (Northeastern University, USA)
Raimil Cruz (University of Chile, Chile)
Alex Gyori (Facebook, USA)
Darya Melicher (Carnegie Mellon University, USA)
Manuel Rigger (Johannes Kepler University Linz, Austria)
Christopher Schuster (University of California, Santa Cruz, USA)
Justin Smith (North Carolina State University, USA)
Tyler Sorensen (Imperial College London, UK)
Wei Sun (University of Nebraska-Lincoln, USA)
Vanya Yaneva (University of Edinburgh, UK)

Posters Committee
Michael Carbin (MIT, USA)
William G.J. Halfond (University of Southern California, USA)
Kathryn Stolee (North Carolina State University, USA)
Chao Wang (University of Southern California, USA)
Francesco Zappa Nardelli (Inria, France)

ECOOP 2018

External Reviewers

Robert Bocchino
Cristian Cadar
Adam Chlipala
Wolfgang De Meuter
Matthew Hammer
Ben Hardekopf
Naoki Kobayashi
Doug Lea
Anders Moeller
Soo-Mook Moon
Ilya Sergey
Jerome Simeon
Tom Van Cutsem
Panagiotis Vekris
Christian Wimmer
Hongwei Xi

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

List of Authors

Gul Agha (8)
Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana,
USA
agha@illinois.edu

Karim Ali (10)
University of Alberta, Canada
karim.ali@ualberta.ca

Davide Ancona (21)
DIBRIS, University of Genova, Italy
davide.ancona@unige.it
https://orcid.org/0000-0002-6297-2011

Tomoyuki Aotani (2)
School of Computing, Tokyo Institute of
Technology, Tokyo, Japan
aotani@c.titech.ac.jp

Blake Bassett (5)
University of Illinois at Urbana-Champaign,
USA
rbasset2@illinois.edu

Lars Baumgärtner (1)
Philipps-Universität Marburg, Germany

Jonathan Bell (17)
George Mason University, Fairfax, VA, USA
bellj@gmu.edu
https://orcid.org/0000-0002-1187-9298

Xuan Bi (9, 22)
The University of Hong Kong, Hong Kong,
China
xbi@cs.hku.hk

Eric Bodden (10)
Paderborn University& Fraunhofer IEM,
Germany
eric.bodden@uni-paderborn.de

Stefan Brunthaler (16)
National Cyber Defense Research Institute
CODE, Munich, and SBA Research
brunthaler@unibw.de

Joana Campos (13)
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal
jcampos@lasige.di.fc.ul.pt
https://orcid.org/0000-0002-2185-8175

Chun Cao (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
caochun@nju.edu.cn

Junjie Chen (6)
Key Laboratory of High Confidence Software
Technologies (Peking University), MoE,
Institute of Software, EECS, Peking
University, Beijing, 100871, China
chenjunjie@pku.edu.cn

Benjamin Chung (12)
Northeastern University, Boston, MA, USA

Francesco Dagnino (21)
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535

Jonathan de Halleux (5)
Microsoft Research, USA
jhalleux@microsoft.com

Ugo de’Liguoro (15)
Università di Torino, Dipartimento di
Informatica, Torino, Italy
deligu@di.unito.it
https://orcid.org/0000-0003-4609-2783

Michael Franz (16)
University of California, Irvine
franz@uci.edu

Bernd Freisleben (1)
Philipps-Universität Marburg, Germany

Philippa Gardner (4)
Imperial College London, UK
pg@doc.ic.ac.uk

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
agha@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
karim.ali@ualberta.ca
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.21
davide.ancona@unige.it
https://orcid.org/0000-0002-6297-2011
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.2
aotani@c.titech.ac.jp
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
rbasset2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.17
bellj@gmu.edu
https://orcid.org/0000-0002-1187-9298
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.22
xbi@cs.hku.hk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
eric.bodden@uni-paderborn.de
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16
brunthaler@unibw.de
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.13
jcampos@lasige.di.fc.ul.pt
https://orcid.org/0000-0002-2185-8175
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
caochun@nju.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
chenjunjie@pku.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.21
francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
jhalleux@microsoft.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.15
deligu@di.unito.it
https://orcid.org/0000-0003-4609-2783
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16
franz@uci.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
pg@doc.ic.ac.uk
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xviii Authors

Julien Gascon-Samson (18)
Electrical and Computer Engineering
Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada,
V6T 1Z4
julien.gascon-samson@ece.ubc.ca

Shivanshu Goyal (18)
Electrical and Computer Engineering
Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada,
V6T 1Z4
shivanshu3@gmail.com

Neville Grech (26)
Dept. of Informatics and
Telecommunications, University of Athens,
Greece and Dept. of Computer Science,
University of Malta, Malta
me@nevillegrech.com

Dan Grossman (24)
Paul G. Allen School of Computer Science &
Engineering, University of Washington, USA
djg@cs.washington.edu

Tianxiao Gu (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
tianxiao.gu@gmail.com

Dan Hao (6)
Key Laboratory of High Confidence Software
Technologies (Peking University), MoE,
Institute of Software, EECS, Peking
University, Beijing, 100871, China
haodan@pku.edu.cn

Farah Hariri (8)
Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana,
USA
hariri2@illinois.edu

Wenxiang Hu (6)
Key Laboratory of High Confidence Software
Technologies (Peking University), MoE,
Institute of Software, EECS, Peking
University, Beijing, 100871, China
huwx@pku.edu.cn

Atsushi Igarashi (2)
Graduate School of Informatics, Kyoto
University, Kyoto, Japan
igarashi@kuis.kyoto-u.ac.jp

Hiroaki Inoue (2)
Graduate School of Informatics, Kyoto
University, Kyoto, Japan
hinoue@fos.kuis.kyoto-u.ac.jp

Yanyan Jiang (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
jyy@nju.edu.cn

Kumseok Jung (18)
Electrical and Computer Engineering
Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada,
V6T 1Z4
kumseok@ece.ubc.ca

Gowtham Kaki (11)
Purdue University, USA
gkaki@purdue.edu

George Kastrinis (23, 26)
Dept. of Informatics and
Telecommunications, University of Athens,
Greece
gkastrinis@di.uoa.gr

Sarfraz Khurshid (6)
Department of Electrical and Computer
Engineering, University of Texas at Austin,
78712, USA
khurshid@ece.utexas.edu

Joeri De Koster (14)
Vrije Universiteit Brussel, Brussels, Belgium
jdekoste@vub.ac.be

Stefan Krüger (10)
Paderborn University, Germany
stefan.krueger@uni-paderborn.de

Pratap Lakshman (5)
Microsoft, India
pratapl@microsoft.com

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
julien.gascon-samson@ece.ubc.ca
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
shivanshu3@gmail.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.26
me@nevillegrech.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.24
djg@cs.washington.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
tianxiao.gu@gmail.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
haodan@pku.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
hariri2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
huwx@pku.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.2
igarashi@kuis.kyoto-u.ac.jp
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.2
hinoue@fos.kuis.kyoto-u.ac.jp
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
jyy@nju.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
kumseok@ece.ubc.ca
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.11
gkaki@purdue.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.26
gkastrinis@di.uoa.gr
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
khurshid@ece.utexas.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.14
jdekoste@vub.ac.be
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
stefan.krueger@uni-paderborn.de
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
pratapl@microsoft.com

Authors 0:xix

Wing Lam (5)
University of Illinois at Urbana-Champaign,
USA
winglam2@illinois.edu

Paley Li (12)
Czech Technical University, Prague, Czech
Republic, and Northeastern University,
Boston, MA, USA

Sihan Li (8)
Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana,
USA
sihanli2@illinois.edu

Fengyun Liu (3)
École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
fengyun.liu@epfl.ch
https://orcid.org/0000-0001-7949-4303

Jian Lu (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
lj@nju.edu.cn

Xiaoxing Ma (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
xxm@nju.edu.cn

Peyman Mahdian (5)
University of Illinois at Urbana-Champaign,
USA
mahdian2@illinois.edu

Wolfgang De Meuter (14)
Vrije Universiteit Brussel, Brussels, Belgium
wdmeuter@vub.ac.be

Mira Mezini (1, 10)
Technische Universität Darmstadt, Germany
mezini@cs.tu-darmstadt.de

Gianluca Mezzetti (7)
Aarhus University, Denmark
mezzetti@gmail.com

Ana Milanova (25)
Dept. of Computer Science, Rensselaer
Polytechnic Institute, 110 8th Street, Troy
NY, USA
milanova@cs.rpi.edu

Ragnar Mogk (1)
Technische Universität Darmstadt, Germany

Anders Møller (7)
Aarhus University, Denmark
amoeller@cs.au.dk

Yeoul Na (16)
University of California, Irvine
yeouln@uci.edu

Francesco Zappa Nardelli (12)
Inria, Paris, France, and Northeastern
University, Boston, MA, USA

Gian Ntzik (4)
Imperial College London & Amadeus, UK
gian.ntzik@amadeus.com

Bruno C. d. S. Oliveira (9, 20, 22)
The University of Hong Kong, Hong Kong,
China
bruno@cs.hku.hk

Nathalie Oostvogels (14)
Vrije Universiteit Brussel, Brussels, Belgium
noostvog@vub.ac.be

Luca Padovani (15)
Università di Torino, Dipartimento di
Informatica, Torino, Italy
luca.padovani@unito.it
https://orcid.org/0000-0001-9097-1297

Karthik Pattabiraman (18)
Electrical and Computer Engineering
Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada,
V6T 1Z4
karthikp@ece.ubc.ca

Luís Pina (17)
George Mason University, Fairfax, VA, USA
lpina2@gmu.edu
https://orcid.org/0000-0003-4585-5259

Pedro da Rocha Pinto (4)
Imperial College London, UK
pmd09@doc.ic.ac.uk

Aleksandar Prokopec (3)
Oracle Labs, Zürich, Switzerland
aleksandar.prokopec@gmail.com
https://orcid.org/0000-0003-0260-2729

ECOOP 2018

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
winglam2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
sihanli2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.3
fengyun.liu@epfl.ch
https://orcid.org/0000-0001-7949-4303
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
lj@nju.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
xxm@nju.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
mahdian2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.14
wdmeuter@vub.ac.be
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
mezini@cs.tu-darmstadt.de
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.7
mezzetti@gmail.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.25
milanova@cs.rpi.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.7
amoeller@cs.au.dk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16
yeouln@uci.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
gian.ntzik@amadeus.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.22
bruno@cs.hku.hk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.14
noostvog@vub.ac.be
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.15
luca.padovani@unito.it
https://orcid.org/0000-0001-9097-1297
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
karthikp@ece.ubc.ca
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.17
lpina2@gmu.edu
https://orcid.org/0000-0003-4585-5259
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
pmd09@doc.ic.ac.uk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.3
aleksandar.prokopec@gmail.com
https://orcid.org/0000-0003-0260-2729

0:xx Authors

Mohaned Qunaibit (16)
University of California, Irvine
m.qunaibit@uci.edu
https://orcid.org/0000-0001-6759-7890

G. Ramalingam (11)
Microsoft Research, India
grama@microsoft.com

Armin Rezaiean-Asel (18)
Electrical and Computer Engineering
Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada,
V6T 1Z4
armin.rezaiean.asel@gmail.com

Guido Salvaneschi (1)
Technische Universität Darmstadt, Germany

Tom Schrijvers (22)
KU Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Marco Servetto (20)
Victoria University of Wellington, New
Zealand
marco.servetto@ecs.vuw.ac.nz

Yannis Smaragdakis (23, 26)
Dept. of Informatics and
Telecommunications, University of Athens,
Greece
yannis@smaragd.org

Johannes Späth (10)
Fraunhofer IEM
johannes.spaeth@iem.fraunhofer.de

Siwakorn Srisakaokul (5)
University of Illinois at Urbana-Champaign,
USA
srisaka2@illinois.edu

Julian Sutherland (4)
Imperial College London, UK
jhs110@doc.ic.ac.uk

John Toman (24)
Paul G. Allen School of Computer Science &
Engineering, University of Washington, USA
jtoman@cs.washington.edu

Martin Toldam Torp (7)
Aarhus University, Denmark
torp@cs.au.dk

Vasco T. Vasconcelos (13)
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal
vv@di.fc.ul.pt
https://orcid.org/0000-0002-9539-8861

Jan Vitek (12)
Czech Technical University, Prague, Czech
Republic, and Northeastern University,
Boston, MA, USA

Stijn Volckaert (16)
University of California, Irvine
stijnv@uci.edu

Yanlin Wang (20)
The University of Hong Kong, China
ylwang@cs.hku.hk

Tao Xie (5)
University of Illinois at Urbana-Champaign,
USA
taoxie@illinois.edu

Chang Xu (19)
State Key Laboratory of Novel Software
Technology, Nanjing University, Nanjing,
China
changxu@nju.edu.cn

Haoyuan Zhang (20)
The University of Hong Kong, China
hyzhang@cs.hku.hk

Lingming Zhang (6)
Department of Computer Science, University
of Texas at Dallas, 75080, USA
lingming.zhang@utdallas.edu

Lu Zhang (6)
Key Laboratory of High Confidence Software
Technologies (Peking University), MoE,
Institute of Software, EECS, Peking
University, Beijing, 100871, China
zhanglucs@pku.edu.cn

Elena Zucca (21)
DIBRIS, University of Genova, Italy
elena.zucca@unige.it
https://orcid.org/0000-0002-6833-6470

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16
m.qunaibit@uci.edu
https://orcid.org/0000-0001-6759-7890
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.11
grama@microsoft.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
armin.rezaiean.asel@gmail.com
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.22
tom.schrijvers@cs.kuleuven.be
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.20
marco.servetto@ecs.vuw.ac.nz
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.26
yannis@smaragd.org
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
johannes.spaeth@iem.fraunhofer.de
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
srisaka2@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
jhs110@doc.ic.ac.uk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.24
jtoman@cs.washington.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.7
torp@cs.au.dk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.13
vv@di.fc.ul.pt
https://orcid.org/0000-0002-9539-8861
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16
stijnv@uci.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.20
ylwang@cs.hku.hk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5
taoxie@illinois.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
changxu@nju.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.20
hyzhang@cs.hku.hk
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
lingming.zhang@utdallas.edu
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6
zhanglucs@pku.edu.cn
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.21
elena.zucca@unige.it
https://orcid.org/0000-0002-6833-6470

Fault-tolerant Distributed Reactive Programming
Ragnar Mogk
Technische Universität Darmstadt, Germany

Lars Baumgärtner
Philipps-Universität Marburg, Germany

Guido Salvaneschi
Technische Universität Darmstadt, Germany

Bernd Freisleben
Philipps-Universität Marburg, Germany

Mira Mezini
Technische Universität Darmstadt, Germany

Abstract
In this paper, we present a holistic approach to provide fault tolerance for distributed reactive
programming. Our solution automatically stores and recovers program state to handle crashes,
automatically updates and shares distributed parts of the state to provide eventual consistency,
and handles errors in a fine-grained manner to allow precise manual control when necessary.
By making use of the reactive programming paradigm, we provide these mechanisms without
changing the behavior of existing programs and with reasonable performance, as indicated by
our experimental evaluation.

2012 ACM Subject Classification Software and its engineering → Software fault tolerance, Soft-
ware and its engineering → Data flow languages

Keywords and phrases reactive programming, distributed systems, CRDTs, snapshots, restora-
tion, error handling, fault tolerance

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.1

Funding This work is supported by the European Research Council (ERC, Advanced Grant No.
321217), by the German Research Foundation (DFG, SFB 1053 and SA 2918/2-1), and by the
LOEWE initiative in Hessen, Germany (HMWK, NICER).

Acknowledgements We thank all contributers of REScala and related projects, Julian Haas for
his contributions on CRDTs, and all reviewers of this paper for their comments and suggestions.

1 Introduction

Ubiquitous connectivity together with web, mobile, and Internet of Things (IoT) computing
platforms require software developers to consider distributed execution as an integral part
of reactive applications. In a distributed reactive application, multiple connected devices
update their state and behavior in response to the flow of events and data. Examples include
notifications and messaging (instant messengers, chats), activity streams (social networks),
data visualization applications (e.g., Jupyter), multi-user collaborative applications (e.g.,
Google Docs, Microsoft Office), and multi-player online games.

© Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 1; pp. 1:1–1:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Fault-tolerant Distributed Reactive Programming

Developing such applications is challenging. Their inverted control flow is typically
modeled in some form of continuation-passing style, resulting in the so-called callback
hell [17]. Designs using continuation-passing style are fragile, hard to maintain, and hard to
reason about. In particular, callback-based communication makes handling of exceptional
conditions during the execution of an application challenging [39]. These issues become
even more apparent in a distributed setting, where the control flow is spread across several
networked nodes and faults occur due to lost connections or shutdowns of remote devices.
For example, a mobile device may get disconnected during a network request (e.g., due to
a weak cellular link or mobility) and may have to eventually shut down due to excessive
battery consumption while trying to reconnect.

State of the art frameworks offering automated fault tolerance (e.g., Spark [49], Flink [6])
are designed for applications that process data without user interaction and that are deployed
on cluster architectures, which are easier to control than mobile wireless systems with
intermittent connectivity. Approaches for building reactive distributed applications (e.g.,
actors [24]) cannot provide restoration or synchronization automatically, because they do
not have knowledge of the overall dataflow in the application. Finally, reactive programming
languages [13, 14, 18, 8], for designing reactive applications in a declarative, modular,
and composable manner [43, 42], do not support (automated) handling of networking or
application faults.

In this paper, we extend REScala [44] to create a fault-tolerant reactive programming
language for developing distributed reactive applications. Our extensions retain the syntax
and functionality of REScala for local devices. REScala has first-class abstractions for events
and signals, collectively called reactives. Events produce distinct occurrences of values, e.g.,
an event corresponding to an input field produces the text a user submits. Events can be
derived from each other using operations such as filters or transformations, and they can be
aggregated into signals. Signals represent time-changing values, such as the latest text a user
submitted. Signals resemble spreadsheet cells where the value of a cell is derived from the
values of other cells and a change causes updates of all derived values. These abstractions
enable developers to program reactive applications without inversion of control. Reactives
and their derivations form a dynamic dataflow graph with nodes corresponding to reactives
and edges corresponding to the dataflow between reactives. The dataflow graph has been
used to automate coordination of message propagation between multiple devices [15, 28, 47].
However, none of the existing approaches provide fault tolerance.

REScala enhances the traditional dataflow graph to support recovery after crashes and
adds a distribution mechanism to cope with unreliable network connections, thus simplifying
the development of fault-tolerant distributed reactive applications. By combining the
declarative dataflow style of reactive programming with structured techniques for eventually
consistent replication [10, 45, 22] and snapshots [6], REScala provides application-wide
fault tolerance with little overhead in terms of both performance and syntactic clutter.
Furthermore, REScala provides language abstractions for propagating and handling errors
at the application level to enable developers to handle faults when the default behavior of
REScala is undesirable and to seamlessly integrate application-level fault handling into the
dataflow graph.

Contributions. We make two high-level contributions. First, we use features of reactive
programming to generalize existing techniques for automated fault handling to work for
distributed reactive applications. Second, we extend distributed reactive programming to
enable declarative fault handling. In detail, we make the following contributions:

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:3

We extend the update propagation mechanism of reactive programming to support
recovery of managed application state by consistently restarting an application after a
crash as if the crash never occurred (Section 3). The extension is transparent to the
application and produces little overhead in the common case (without crashes).
We integrate eventually consistent data types with reactive programming to cope with
distributed state management across devices in the presence of faults (Section 4). Our
approach maintains strict consistency on a single device, but uses eventual consistency
for every distributed path in the dataflow graph to guarantee availability [21].
We design language abstractions for error propagation and adapt the runtime seman-
tics correspondingly (Section 5), thus enabling developers to programmatically handle
faults when the default behavior of REScala is undesirable, and to seamlessly integrate
application-level fault handling into the dataflow graph.
We provide an implementation of the fault-tolerant runtime and its error propagation
abstractions (Section 6).
We provide empirical evidence that REScala guarantees eventual and crash consistency in
an efficient and transparent way (Section 7). To this end, we evaluate REScala using case
studies to analyze the programming interface, and using microbenchmarks to evaluate
the performance behavior.

The core sections mentioned above are complemented by a high-level presentation of REScala
in Section 2, including an overview of the addressed kinds of faults, and a discussion of
related work in Section 8. Section 9 concludes the paper and outlines areas for future work.

2 REScala from the User Perspective

In this section, we introduce REScala from the point of view of a programmer developing a
simplified shared calendar application. The application tolerates disconnects and crashes, and
users can update their calendar even when they are disconnected. We first discuss the fault
model in detail, and then we introduce REScala by implementing the calendar application.

2.1 Faults
We use the term fault to refer to the origin of a failure and error to refer to the representation
of a fault in the language [25]. REScala tolerates crashes and disconnects. REScala does not
address data corruption (malicious or accidental).

Crashes happen when a device hosting part of the application runs out of battery, reboots
after a crash or update, or runs out of memory, resulting in the OS to terminate the
application. In these cases, the state of the application must be restored – on the same device
– after a crash. Permanent faults are not addressed, because there are no spare devices or
connections in the scenario we consider, i.e., we cannot equip users with new mobile phones.

Disconnects between devices are due to crashes of remote devices or due to broken network
links. Disconnects cause messages to get lost, resulting in an inconsistent state across devices.
REScala addresses the case where faulty devices recover after a crash and broken links are
eventually restored – otherwise, state on the disconnected device is lost.

Current reactive programming approaches [15, 28, 47, 27, 31, 14] do not provide mech-
anisms for any kind of fault tolerance and delegate the responsibility for handling errors
to the language into which the reactive framework is embedded – sidestepping the issue.
In contrast, REScala provides tolerance of the above faults in the reactive programming
paradigm in an automated manner.

ECOOP 2018

1:4 Fault-tolerant Distributed Reactive Programming

1 val newEntry = Evt[Entry]()
2 val automaticEntries: Event[Entry] = App.nationalHolidays()
3 val allEntries = newEntry || automaticEntries

5 val selectedDay: Var[Date] = Var(Date.today)
6 val selectedWeek = Signal { Week.of(selectedDay.value) }

8 val entrySet: Signal[Set[Entry]] =
9 if (distribute) ReplicatedSet("SharedEntries").collect(allEntries)

10 else allEntries.fold(Set.empty) { (entries, entry) => entries + entry}

12 case class Entry(title: Signal[String], date: Signal[Date])

14 val selectedEntries = Signal {
15 entrySet.value.filter { entry =>
16 try selectedWeek.value == Week.of(entry.date.value)
17 catch { case DisconnectedSignal => false }
18 }
19 }

21 allEntries.observe(Log.appendEntry)
22 selectedEntries.observe(
23 onValue = Ui.displayEntryList,
24 onError = Ui.displayError)

Figure 1 Excerpt of REScala source code for the shared calendar application.

2.2 Shared Calendar Application in REScala
A user of the shared calendar application can create new calendar entries and select the
displayed week. The calendar will be synchronized with other users when a connection is
available.

Figure 1 shows our implementation. We refer to it as we introduce REScala’s events,
signals, conversions between events and signals, and how they are relevant for fault tolerance.
The dataflow graph of the application is depicted in Figure 2, where the node labels correspond
to identifiers used for reactives in the code example and edges represent the dataflow between
those. The highlighted part shows all reactives reachable from automaticEntries and to
which changes are automatically propagated. The rest of this section describes how this
graph is created and how it behaves.

Events. Distinct occurrences of values are produced by events in REScala. There are
input events and derived events. Input events are denoted by the keyword Evt (cf. Line 1)
and allow to emit values using evt.fire(value). The imperative firing of events typically
happens as part of an integration with some external event source, such as an imperative UI
library where a button press triggers a callback that fires the event, and is thus not shown
in the code example. Derived events are defined by filtering or aggregating other events on
which they depend. For example, the || operator combines two events into a new event
that emits all values emitted by either of its dependencies, e.g., allEntries (Line 3) emits
entries whenever generated by the user or from some external data source, such as a stream
of national holidays.

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:5

Figure 2 Dataflow graph for the calendar application. Nodes reachable from automaticEntries
are highlighted.

Signals. Values that change over time are represented as signals in REScala. There are input
signals and derived signals. Input signals are denoted by Var. In Line 5, an input signal is used
to represent the currently selected day. The value of a Var can be changed by imperative code,
e.g., selectedDay.set(Date.tomorrow). The Signal keyword uses a user-defined computation
– the signal expression – to express a derived signal. The signal expression can access other
signals, called its dependencies. Accessing dependencies is explicit – using the value method
to syntactically mark accessed dependencies. In Line 6 of our example, the selectedWeek
signal is derived from selectedDay.value. The current value of a derived signal is updated
automatically by executing the given computation whenever its dependencies change, similar
to a formula in spreadsheets. Changes of a signal are automatically propagated to derived
signals that use the signal in their definitions.

Crash-tolerant signals. Signals hold state and are restored after a crash (c.f., Section 3),
either by loading the value from a snapshot, or by recomputation. For example, a user may
have selected a different day than today, thus the selected day has to be stored in persistent
storage. On the other hand, the selected week is recomputed from the selected day. REScala
uses the Scala type system to statically ensure that the values of signals that are included
in snapshots are serializable. For example, the Var[Date] in Line 5 requires that Date is
serializable. Explicit annotations by the programmer are not required due to type inference
and implicit parameters.

Folds and replication. Signals are convertible to events by aggregating individual event
occurrences into an updating signal value – similar to folding over (infinite) lists. We refer
to such signals as fold signals or simply folds. A fold, such as in Line 10, creates a signal
with an initial value and updates it according to the parameter function every time the
event fires. Lines 8 to 10 define a list of all calendar entries as the signal entrySet by folding
over emitted calendar entry events. When the flag distribute is false, in Line 10, the fold
operator aggregates the calendar entries emitted by the allEntries event into a list of all
calendar entries. Line 9 demonstrates a distributed aggregation that has the same behavior
as the local fold, aggregating all entries into a set. However, a ReplicatedSet has a name,
SharedEntries in this case, and elements of the replicated set are shared with other devices
that also use a ReplicatedSet with the same name.

Fault-tolerant folds. Fold signals are particularly interesting for fault tolerance, since they
aggregate state that (a) must be included in a snapshot for restoration after a crash, and
(b) is reliably replicated to other devices. Additionally, a distributed aggregation such as a
ReplicatedSet is also synchronized after a crash to ensure that all devices eventually see the
same set of entries. REScala uses built-in data types based on CRDTs [45] to ensure that

ECOOP 2018

1:6 Fault-tolerant Distributed Reactive Programming

changes to all replicas eventually become consistent in the presence of crashes and message
losses. The order in which entries are added, however, may be different on every device, and
the intermediate values are visible.

Dynamic dependencies. Until now, all dependencies have been static, i.e., the dataflow
does not change during runtime. However, signals may have a dynamic set of dependencies
to support higher-order signals, i.e., signals whose values contain inner signals. For example,
the entries (Line 12) we have been using in the calendar have a title and a date, both of
which are signals and may change their value. The selectedEntries (Line 14) is derived
by filtering the entrySet (Line 15). The filter function dynamically accesses the inner date
signal of each entry (Line 16).

Interactions with the environment. In addition to firing and setting inputs, events and
signals can be observed to produce side effects. Observing an event executes the side-effecting
handler function every time the event emits a value, e.g., each entry is appended to a log file
in Line 21. Observing a signal bridges between time-changing values and ordinary imperative
state. For example, in (Line 22) the current state of the UI is overwritten when it becomes
inconsistent with the signal after a signal change. REScala guarantees that the handler
function of a signal observer is always called with the most recent value of the signal after
an update, which allows the application to extend its invariants from the dataflow graph
to external imperative libraries (in this case, the invariant is that the UI always displays
the values held by the selectedEntries signal). Both event and signal observers can take an
additional parameter to observe errors (Line 24), as explained next.

Explicit error handling. Reactives in REScala propagate errors along the dataflow graph.
Errors can be handled as exceptions in signal expressions. For example, in Line 16, if the
network connection fails before an inner date signal is transferred for the first time, then
the access to the unavailable entry date signal throws a DisconnectedSignal exception. The
default error handler postpones further evaluation of the selectedEntries until the signal
is available. Instead of the default behavior, Line 17 explicitly catches the exception and
returns false, causing the filter to drop the entry. Explicit error handling enables the use of
application specific knowledge for more precise control of application behavior.

3 Fault-tolerant Application State

As illustrated in Section 2, crashes of individual devices during the execution of a distributed
reactive application may result in a loss of the state of the reactive subgraph hosted on these
devices. Loss of local device data is problematic since such data often contain important
private or unsynchronized information of the current user. To address this issue, REScala
provides automatic snapshots and recovery.

Snapshot anatomy. Conceptually, a snapshot of an application is a function that maps
unique keys, denoting reactives, to their current values. The REScala runtime performs
an analysis of the dataflow graph to minimize the number of key-value pairs that need to
be stored. Applications often store redundant derived state in memory for efficiency. For
example, a histogram displayed to the user can be recomputed from database entries, but it
would be expensive to repeat this process for every frame the application displays. Local
REScala applications typically consist of many small derived parts of the state (i.e., single

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:7

reactives) to take advantage of incremental updates. In such a setting, REScala detects
derived state and excludes it from snapshots. Precisely, in REScala, the only reactives that
cannot be derived are vars and fold signals (signals that aggregate event occurrences), since
their state depends on past user interactions. All other reactives are either stateless events
or derived signals that can re-execute their user-defined expression to recompute their state.
We say that vars and fold signals constitute the essential state, and REScala recovers the
state of the dataflow graph from the essential state.

Creating snapshots. Snapshots are created between semantically related changes, such
that ongoing control flow does not interfere. REScala can detect related changes, because
the dataflow graph makes semantic relations in applications explicit as (transitive) edges
between reactives. For example, in Section 2, creating a new entry (a) updates the list of
entries, (b) updates the list of selected entries, and (c) causes the UI to refresh. Explicit
relations are used to determine when the transitive changes caused by an input event are
fully applied to all reachable reactives and a snapshot is created after one such update to the
dataflow graph. As a result, each snapshot corresponds to a single user perceived update,
e.g., all changes of the state triggered by a new calendar entry belong to the same snapshot.

Incremental snapshots. Storing a full snapshot of all the essential state after each update
is wasteful, since an update only affects parts of the application. REScala knows all updated
reactives – they constitute the transitive closure of changed inputs, e.g., the highlighted
reactives in Figure 2, starting with automaticEntries. REScala stores snapshots incrementally,
by only changing the values in the snapshot that correspond to updated reactives. As a
result, the cost of creating snapshots only grows linearly with the size of updates, instead of
linearly with the size of the application. This scaling behavior supports efficiently composing
large applications out of multiple parts, such as network, UI, and background services, in
case the added parts do not increase the size of updates.

Recovering state. For recovery, REScala re-executes the application to restore the dataflow
graph. During this recovery process, the value of each reactive is restored to the state
before the crash. Events do not have state, so no value is restored. Fold signals and vars
recover their values directly from the snapshot. Derived signals recompute their values from
their inputs. The acyclic dataflow graph ensures that inputs are restored before derived
signals, hence they can be used to recompute the derived signals. Like snapshot creation,
the recovery process is incremental as reactives are restored as soon as they are created
during the re-execution of the application. Thus, REScala allows the restored parts of the
application to already handle new interactions, while other parts are still recovering.

Observers. REScala only restores state that is part of the dataflow graph. To ease inte-
gration with external libraries, REScala executes observers on signals during restoration.
For example, when the list of selected entries of the calendar is restored, the observer that
informs the UI about updates is executed. Observers allow the application to implement an
invariant between the state in the dataflow graph and external state. Executing the observers
during recovery allows the application to uphold its invariants, i.e., that the imperative state
that is modified by the handler corresponds to the latest value of the signal. However, it
is ultimately the responsibility of the application to use correct handlers. Events have no
state to be restored (because snapshots are only stored between updates), so the handlers on
event observers are not executed during restoration.

ECOOP 2018

1:8 Fault-tolerant Distributed Reactive Programming

Figure 3 Full dataflow graph of a distributed application (left) and abstract dataflow (right).

Recomputation versus full snapshots. We make two arguments why recomputation is
preferable over storing more values in the snapshot. First, a snapshot is created every time
an update occurs, while restoration only happens when a device fails. Hence, storing only
necessary state has performance benefits if the latter is only a small portion of the overall
state (cf. Section 7.2 for an empirical evaluation). In a previous study [44], we reported
that in a typical reactive application only 14% of the dataflow graph contains essential state.
Second, only the essential parts of the state need to be serializable, thus allowing the use
of data types that cannot be (efficiently) serialized for the rest of the application. REScala
uses the type system together with type inference and implicit parameters to ensure that the
static type of each reactive containing essential state is serializable.

4 Managing Distributed State

This section presents how REScala keeps the application responsive when network connections
are not reliable. The key idea is to make the dataflow graph fault-tolerant and eventually
consistent, instead of handling fault tolerance at the level of individual messages.

Replicated signals. Fault-tolerant dataflow graphs use replicated signals to model shared
state among multiple devices. For illustration, consider Figure 3, which shows a dataflow
graph spanning four devices (left), and the dataflow without distribution that is represented
by this graph (right). Reactives A, B, C are replicated signals representing data shared
across the devices (C is replicated in Dev 2 and Dev 4, A in Dev 1 and Dev 2, and B in Dev
1, Dev 2, Dev 3).

Replicated signals behave as normal signals with regard to device-local dataflow, e.g.,
their state is stored in the local snapshot. However, unlike directed dataflow connections
between reactives on the same device, connections between replicas work in any direction, i.e.,
each device can change the state of its replica independently, even while being disconnected
from the rest. As a result, the state of the replicas of a replicated signal can diverge in
the presence of disconnects. Replicated signals use eventually consistent synchronization
to support fault tolerance, i.e., the state of replicas diverges when disconnected to remain
responsive and eventually converges when connections are available. Replicated signals are
implemented using state-based conflict-free replicated data types (CRDTs) [45]. CRDTs
provide automatic conflict-free merging of diverged state for a wide range of common data
types [45]. For instance, the example in Figure 1 illustrates the usage of a replicated reactive
of type ReplicatedSet:

9 ReplicatedSet("SharedEntries").collect(allEntries)

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:9

The underlying CRDT of ReplicatedSet is a set with a single commutative, associative, and
idempotent operation, which adds to the set each value associated with an occurrence of the
collected event. The set of entries is synchronized between all devices that use a replicated
signal with the same name and type. Due to the properties above, the state of replicas can
always be synchronized, and eventually all devices will converge to the same set containing
all added elements. In addition to ReplicatedSet, REScala currently supports replicated
counters, last-writer-wins registers, ordered lists, and replicated data types that allow adding
and removing elements from sets and lists. By using conflict-free data types – an existing
technique already known to programmers – we provide simple and intuitive semantics for
sharing state across devices.

Integration with the overall dataflow graph. The well-defined set of operations on CRDTs
enables their integration into the update propagation and enables state restoration, because
operations of each CRDT, and how it changes based on local and remote events, are visible to
REScala. As a result, changes to the state of a replicated signal are immediately propagated
to local derived signals in the same manner as local changes update the whole reachable part
of the dataflow graph at the same time, i.e., each update either is visible by all reactives of
the local device or not visible at all. In contrast, the state of reactives on different devices
can temporarily diverge. For example, consider the graph in Figure 3. An update that affects
reactive A on Dev 2 will immediately affect reactive B on Dev 2 because they are connected
by the local dataflow graph. However, if A is updated on Dev 1, B is only indirectly affected
and synchronization with Dev 2 is required to complete the update. Such an inconsistency,
where an update is applied to A but not yet to a connected reactive B, is called a glitch.
To prohibit distributed glitches, Dev 1 would have to wait for the update on B to arrive,
whenever A is changed. REScala allows distributed glitches in favor of availability.

Replicated signals are stored and restored when a device fails. Replicated signals have
unique names shared between devices, which are used as keys in the snapshot, allowing
multiple devices to include their replica in their snapshot and to synchronize changes after
restoration. Thus, snapshots combined with conflict-free replication allow a device to
disconnect, store and restore local modifications that survive crashes, and merge the local
snapshot with the current state in the replicas on reconnect.

Publishing signals. Using CRDTs to implement replicated signals allows bidirectional
communication, but the changes that one can perform on a signal are limited to the
operations implemented by the CRDT. Alternatively, REScala allows to publish any signal
– not only those based on CRDTs – but the published signal may only be changed by the
publishing device. To prevent conflicting changes, other devices can only read the published
signal. For example, each individual calendar entry (title and date) in the shared calendar
is published by the device that puts the entry into the calendar, thus only the creator of
an entry can change it. Publishing is a special case of eventually consistent replication. To
publish a signal, REScala creates a replicated signal with a last-writer-wins CRDT, a data
type where the merge function always selects the most recent value. Since only one device is
allowed to write, there are no races between writes.

Distributed event propagation. Events are not distributed directly, but have to be con-
verted to signals. However, we leave the responsibility to decide about the concrete conversion
to the programmer, because of the trade-off between reliability and communication overhead
involved in the conversion. For example, the latest(n) operator can be used to create a

ECOOP 2018

1:10 Fault-tolerant Distributed Reactive Programming

signal containing the latest n occurrences of the event. As a result, the connection can be
lost for the duration of n event occurrences without loss of data. If more than n events occur
when the device is disconnected, the oldest events will be lost. Similar operators can be
used to define time or priority based policies, allowing the application developer to tune the
software behavior as necessary.

5 Error Propagation

REScala uses CRDTs to achieve fault-tolerant replicated state in an automatic way. However,
by default, a disconnect of a CRDT does not trigger any action. The application eventually
receives new updates after the reconnection and the inconsistency is resolved. In some
scenarios, the application cannot simply wait for an eventual update, but has to act sooner.
For this reason, developers should be able to program application-specific behavior in case of
faults. For example, if a connection fails, a different replica may be selected manually, or the
missing values are approximated, e.g., using a default value, if the application can continue
the execution tolerating the inaccuracy. To support custom fault handling, we introduce
errors as a programming abstraction in REScala. Errors are pushed into the dataflow graph
when a device becomes disconnected (such a condition is established using timeouts). Errors
are propagated along the same path as values in the dataflow graph, similar to how exceptions
propagate along the path of the values returned by function calls.

In the following, we describe the API of our error propagation and handling mechanism
from a user’s point of view, and show how to handle errors that occur due to faults in
the underlying distributed system as well as local errors due to faults like missing files or
exceptions in external libraries. The new error-aware semantics of the reactives is a superset
of their original semantics, thus existing code carries over unchanged.

Injecting errors into the dataflow graph. We extend the API of Evt and Var with operations
for firing errors. Evt.admit(error) behaves similar to the existing Evt.fire(value) (similar
for Var.set), but it starts the propagation with an error instead of a value. The main use
of this API is to support the integration of existing frameworks, e.g., converting an error
of a networking library to an error in the dataflow graph. Consider an existing networking
library with a callback-based API. When a timeout occurs in the network, the imperative
library callback is converted into a reactive propagation:

val fromNetwork = Evt[NetworkMessages]()
Network.onTimeout { error => fromNetwork.admit(error) }

Observe and recover. We extend the observer’s API to accept an additional handler
parameter called onError, which is used to observe propagated errors. This handler has the
same purpose as catch blocks, and, similar to the standard observe call, has the goal of
producing a side effect, e.g., displaying an error message. The error handler on observers
can be missing: any unhandled error terminates the program in the same way as traditional
uncaught exceptions. In the calendar example in Figure 1, any error is displayed to the user
by the error handler defined on the signal in Line 22 using the extended observer API:

22 selectedEntries.observe(
23 onValue = Ui.displayEntryList,
24 onError = Ui.displayError)

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:11

Instead of simply observing errors, the application developer can recover the error inside
the dataflow graph using the recover operator for signals and events, which is parameterized
with a recovery function that converts an error to a normal value. The value is then
propagated as the output of the recover operator. Any normal value that flows through the
recover operator in the dataflow graph is propagated without change. The recover operator
handles errors while they are propagated through the dataflow graph and before they reach
an observer. Recovering from an error is most useful, when errors can be locally converted
back into normal values. This case is relevant in several applications. For example, values
can have local fallbacks, such as an unavailable location service that can be replaced by using
more expensive or inaccurate local data. Another example is a signal holding an UI widget,
where an error can be handled by displaying it to the user.

Signal expressions. A user-defined computation in a signal expression may access any
number of dependencies. When any of the dependencies propagates an error, the error
is raised as a Scala exception by the .value call performing the access. The exception
may be handled by the application using the default Scala exception handling mechanisms.
Unhandled exceptions in a user-defined computation are propagated along the dataflow
graph. The use of Scala exceptions enables our error handling scheme to integrate well with
most libraries in the JVM. For example, the shared calendar in Figure 1 filters the list of
all calendar entries to only include entries of the current week in Line 14, and all entries
containing an error are removed using a Scala try/catch block:

14 val selectedEntries = Signal {
15 entrySet.value.filter { entry =>
16 try selectedWeek.value == Week.of(entry.date.value)
17 catch { case e: NetworkError => false }
18 }
19 }

When the entry.date() in Line 17 contains an error, the error is thrown as a Scala exception
and handled in the catch by returning false, causing the filter to drop the entry.

Folds. Recall that the fold operation supports converting events into signals. Given an
event e, an initial value init and a function f, which are passed to it as parameters, fold
returns a signal that is initialized with init und gets updated every time e fires by applying f
to the current value of the signal. Thus, unlike other derived reactives, a fold signal accesses
its own current value, i.e., the fold (indirectly) depends on the complete history of the event.
In our example, the signal allEntries (Line 10) is constructed by reading the list of all entries
and appending each read entry to create a value that accumulates all event occurrences:

10 allEntries.fold(Set.empty) { (entries, entry) => entries + entry}

The current accumulated value of the fold is treated like any ordinary dependency. If it
is accessed and it holds an error, the error is thrown as a Scala exception. If the exception
is not handled inside the user-defined computation (i.e., the function body of fold), then
an error is propagated by the fold reactive to other reactives that depend on it. On the
other hand, by handling the exception a developer can resume the computation of the fold
reactive after an error. We present an example for fold with custom error handling next.

ECOOP 2018

1:12 Fault-tolerant Distributed Reactive Programming

Example: Fold with custom error handling. To illustrate the use of the error handling
API in fault-tolerant REScala, in the following we present and discuss the implementation of
a user-defined operator on events. The operator, called count, is defined in terms of fold.
It counts the number of non-error event occurrences and forwards error event occurrences
without increasing the count. The implementation of count is shown below:

1 def count() = fold(0) { (state, occurrence) =>
2 occurrence // access the (unused) value to propagate potential errors
3 try state + 1 // increase count in non-error case
4 catch { case (value, error) => value + 1 } // continue counting after errors
5 }

The count signal starts with its initial state initialized to zero (Line 1). The folding
function takes the current state of the fold and the incoming event, called occurrence, as
parameters. When occurrence is accessed in Line 2, there are two possibilities: the access
raises an error or a normal value. (a) in case of an error, the execution of the user-defined
computation is aborted (because the access is not enclosed in a try/catch block), the state
of the fold is not increased and the error is stored in the fold for future processing. (b) If the
access of occurrence returns a normal value, the latter is ignored (we only count the number
of non-error occurrences) and the execution attempts to access state in Line 3. If the current
state is a normal value, it is incremented, and the increased count is returned (Line 3). If
the current state is an error, the latter is thrown when state is accessed and immediately
caught in Line 4. The pattern match in the catch block binds the last non-error value stored
in the fold and the current error. Our example handler ignores the error and continues by
incrementing the last non-error state, thus implementing a counter that resumes counting
when a new occurrence arrives after an error.

6 Implementation

Our fault tolerance mechanisms are an extension of REScala, which in turn is implemented as
a Scala library. We added efficient support for fault tolerance while preserving compatibility
with existing applications.

Distribution. REScala uses a custom message passing mechanism for distribution based
on TCP and Websockets (for Web clients); it does not provide any specific mechanism for
peer discovery – the latter has to be implemented by the application. The synchronization
mechanism of REScala supports any topology, e.g., client-server or peer to peer.

The mechanism for detecting changes of replicated signals is the same as the one used
for local propagation of updates, i.e., a change is detected when the value of a signal is
replaced by a new one. Change detection relies on immutability of values in signals, i.e.,
changes via side effects are not detected. When a change is detected, the new value of the
replicated signal is serialized and sent over the network. Values are serialized using Circe1,
which supports type-safe serialization for most built in immutable Scala data types. Custom
serializers can be provided using typeclasses. The serializer for signals is special and causes
the signal to be published as described in Section 4.

1 http://circe.io/

http://circe.io/

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:13

Snapshots. Our snapshot and restoration mechanism supports storing snapshots in arbitrary
key-value stores. We have two implementations for in-memory stores: one that writes directly
to disk (for JVM and Android) and another one that uses HTML5 localStorage [3] for web
browsers.

Using fault-tolerant reactives is thread-safe, but care must be taken when reactives are
created in a multi-threaded environment. Snapshots in REScala require unique IDs to identify
reactives, and our current implementation uses thread-local counters to generate IDs, e.g.,
the IDs UI-0 and UI-1 are associated to the first and to the seconds reactive created in the
context of the UI thread. This ID generation strategy is well suited for applications with a
fixed set of threads, but it cannot cope with the case in which threads are created and used
dynamically in a thread pool, because the IDs generated for those threads do not remain the
same between restarts of the application. REScala requires the developer to explicitly handle
the assignment of IDs to reactives if the automatic mechanism is insufficient. In practice, it
is in most cases sufficient to ensure that dynamically scheduled tasks (e.g., those in thread
pools) are assigned deterministic names to enable correct automatic generation of unique
IDs.

Errors. The error propagation mechanism in integrated into the implementation of the
dataflow graph through the following extensions. First, we extend the types of the values
held by reactives. The REScala implementation (without support for errors) distinguishes
between Changed[T] and Unchanged[T] for the data type of the values held by reactives –
these two different types of values are propagated differently. To support error propagation,
we introduce a third type, Error, and update the case distinctions in the propagation logic,
whenever any of the types is accessed. Second, we modify the reevaluation function such that
any exception thrown during the execution of user-defined computations, is propagated as an
Error. Overall, our implementation strategy for errors induces little performance overhead
when no faults are present, as shown in the empirical evaluation in Section 7.2.

7 Evaluation

Our integration of fault tolerance mechanisms into the reactive language runtime comes with
synergetic effects between the two. On the one hand, snapshots and restoration maintain
the consistency guarantees of reactive programming on individual devices in the presence of
faults, distributed signals bridge dataflow graph across devices, and our error propagation
mechanism enables principled handling of exceptional cases. On the other hand, the dataflow
graph is instrumental in enabling fault tolerance in distributed applications at little cost in
terms of both the burden on the programmer and the performance overhead. Specifically,
the language runtime ensures that (a) the graph is consistent between updates, providing
a point in the execution where snapshots can be taken efficiently, (b) derived values are
automatically and consistently recomputed during restoration and remote updates, and (c)
the application cannot change the state arbitrarily, so snapshots always remain consistent
with the current state and changes are detected and distributed.

In the following, we empirically evaluate the claim that our fault tolerance features come
at little cost in terms of both the burden on the programmer and the performance overhead.

ECOOP 2018

1:14 Fault-tolerant Distributed Reactive Programming

Case study observe fire change Total Description
ok nok ok nok ok nok ok nok

CRDTs 9 9 CRDT integration
Datastructures 5 5 Reactive collections

Dividi 1 3 4 P2P distributed ledger
Editor 42 10 1 52 1 Swing text editor

Examples 39 2 9 19 48 21 Swing/console examples
Mill game 14 7 1 21 1 Turn based swing UI
Pong game 3 15 5 4 5 22 10 Multiplayer swing game

Reactive streams 1 1 Interface integration
Scalafx 3 1 4 JavaFX integration

Scalatags 2 1 3 HTML DOM integration
Swing 2 2 2 2 Swing integration
RSS 15 4 19 Swing RSS reader

Shapes 1 17 4 1 22 1 Swing drawing app
Todolist 11 11 TodoMVC app
Universe 1 8 2 9 10 10 Console simulation

Total 9 1 180 7 44 38 233 46

Figure 4 Possibly problematic operators in case studies and extensions.

7.1 Non-invasive Fault Tolerance
Our extensions for fault tolerance are non-invasive, meaning that existing applications
implemented with REScala are made fault tolerant with minimal effort. To validate this
claim, we answer the following research questions:

(RQ1) To what extent do snapshots and restoration affect the application semantics?
(RQ2) To what extent does the integration of replicated signals into the dataflow graph
affect the application semantics?
(RQ3) How many changes to a reactive application are necessary to support error
propagation and handling?

To answer these questions, we analyze a set of case studies, consisting of ten applications
(including games, simulations, and GUI applications) and five integrations with external
libraries (e.g., an API to access the HTML DOM, bindings for JavaFX and for Java Flow),
comprising a total of 13.000 LoC2. The case studies are listed in Figure 4 and their code is
publicly available3.

(RQ1) Effects of state snapshotting/restoration on application semantics. Snapshotting
is invisible to an application, since snapshots are automatically created at the end of an
update propagation. Restoration, on the other hand, is visible to the application, since
restoration re-executes the application to restore the dataflow graph (cf. Section 3). The
value of signals may differ between its first (normal) start and a restoration, causing different
application behavior. Furthermore, certain inputs to the dataflow graph may be duplicated
while restoring. For example, if a new calendar entry is added to the shared calendar via
newEntry.fire(startedEntry) during startup of the application, then the startedEntry would

2 Lines are counted with CLOC (cloc.sourceforge.net) excluding comments and blank lines
3 Repository available at www.rescala-lang.com.

cloc.sourceforge.net
www.rescala-lang.com

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:15

be added every time the application is restored, resulting in multiple such entries in the
list of allEntries, which is obviously not the desired behavior. We refer to problems with
different behavior during restoration as restoration inconsistency.

To quantify the extent of restoration inconsistencies, we inspect all input and output
interactions of imperative code with the dataflow graph in our case studies. These interactions
are easy to localize, since they occur via a well-defined interface of the dataflow graph,
consisting of the operations fire, set, and observe. The columns for fire (input interactions,
also containing set) and observe (output interactions) of Figure 4 summarize our findings.

Firing events on some occurrence in the external world via the fire and set operations
serves the purpose of entering new values into the dataflow graph, e.g., a user clicking a
button, time passing, or receiving a network message. In our case studies, 180 out of 187
fire calls serve such a purpose and are not affected by state restoration. The 7 remaining
calls that do exhibit the restoration inconsistency problem are instances of the same event
usage anti-pattern: they incrementally build state during application startup. For example,
the Pong game initializes the UI elements, and adds them one by one to a list of all UI
elements, as shown below. As a result, this list would grow after each restoration.

val addElement = Evt[UIElement]
val allUIelements: Signal[List[UIElement]] = addElement.list()
addElement.fire(ball); addElement.fire(player1); addElement.fire ...

Firing of events must not be misused for initializing reactives. Manual inspection of usages
of the fire method is required to find such misuses.

We also analyzed if observe calls on signals cause inconsistencies during restoration.
We found a total of 10 usages of signal observers in the case studies (event observers are
more common with 150 usages). Out of those 10 signal observers, 9 are not affected by
restoration inconsistencies. 7 of them are in bindings for external libraries and are used to set
properties of UI toolkits, e.g., the window title as in titleText.observe(UI.window.setTitle).
Triggering these observers during restoration correctly causes the UI to display the restored
state. Two observers execute cleanup code, which is not affected by restoration either. The
only observer that is affected by restoration inconsistency is in a simulation application
(Universe row in Figure 4). The simulation uses mutable state outside of REScala, and if a
fault occurs during a simulation step, this state is not restored.

We conclude that the state snapshotting/restoration feature of our approach operates
mostly transparently. This means: (a) most of the potentially problematic interactions
(181 out of 189, roughly 96%) are unproblematic in our fault-tolerant runtime, (b) the few
problematic cases can be avoided, if application developers use the correct APIs of the
dataflow graph, and ensure that mutable state outside of REScala is also able to tolerate
faults.

(RQ2) The effect of introducing eventually consistent updates. Eventually consistent
updates may affect the behavior of existing applications in two ways. First, they break the
invariant that each occurrence of an input Evt is handled individually. Instead, after devices
were disconnected for a while, all changes are replicated as a single large change to other
devices. These combined changes cause problems when the application expects each change
individually, e.g., if our shared calendar were to display a notification each time an entry is
added, the notification may be triggered for a group of entries, instead of each individual
entry, and as a result, the notification system has to be able to handle multiple entries at
once.

ECOOP 2018

1:16 Fault-tolerant Distributed Reactive Programming

Second, they break assumptions that usages of the change operator on signals may make
about its behavior. The change operator is used to reify and handle each individual change of
a signal, and usages of change may assume that every intermediate change of the signal will
occur individually. However, with eventual consistency intermediate changes may be grouped
as described above, hence assumption changes become invalid. For illustration, consider a
simple clock implemented as below. The computation of minutes relies on seconds change
to 0. However, with eventually consistent propagation seconds could change from 59 to 2
skipping the intermediate step, because an aggregated update is received over the network,
resulting in a missed minute.

val tick: Event[Unit] = ... // fires once per second
val seconds = Signal { tick.count() % 60 }
val minutes = Signal { seconds.change.filter(_ == 0).count() % 60 }

To quantify to which extent the introduction of replicated signals affects the application
semantics due to the existence of change operations on signals, we investigate whether the
semantics of our case studies relies on each individual signal change being visible, as opposed
to relying on a notification about its latest change. The results of this analysis are shown in
the change column of Figure 4. Roughly 46% of change operators (38 out of 82 in 7 out of 15
case studies) have different behavior when individual changes are grouped or skipped due to
eventual consistency. The results indicate that replicated signals with eventual consistent
semantics cannot be introduced transparently, which, in fact, is not surprising. One way to
mitigate the problem is to keep computations that require strong consistency on a single
device, and only distribute their results via replicated signals. As discussed in Section 9,
manual handling of network errors has the potential to enforce consistency at the cost of
availability, but this is not currently supported.

(RQ3) Changes to application code needed to propagate and handle errors. The inte-
gration of error propagation into the normal change propagation allows to propagate errors
mostly transparently – additional code is required only at specific places where the developer
wants to handle errors. The key point is that intermediate reactives do not have to be
updated to propagate the error, minimizing the total amount of application code that requires
modification. To demonstrate that error propagation does not “pollute” application code, in
the following, we discuss how we refactored one of the existing case studies – a simple two
player Pong game – to add support for handling application-level errors.

The case study consists of two application windows, one for each player. Without handling
faults, if one player dropped, the game would get stuck or simply terminate. Figure 5 shows
an abstract representation of the dataflow graph of the case study. Altogether, we update
the game at three locations out of the 250 total LoCs.

To evaluate error handling in REScala, we added functionality to allow players to leave
and join the game. When a player disconnects, an error gets inserted into the position signal
of the racket of that player:

UI.onClose{ Racket.pos.admit(PlayerDisconnected) } // set position to error

Following the dataflow of Racket.pos through the dataflow graph of the application, one
can identify the places where the error needs to be handled. There are two such locations:
when displaying the players on the screen and inside the game logic handling cleanup of data
structures for disconnected players.

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:17

Figure 5 Recovering from errors in Pong.

 0

 25

 50

 75

 0 0.2 0.4 0.6 0.8 1

O
ps

/m
s

Snapshots
No snapshots

Figure 6 The cost of snapshots.

For handling the error when displaying the players, we reused an existing try/catch
block that handled missing game objects and added a handler for the PlayerDisconnected
exception.

case _: NoSuchElementException | _ : PlayerDisconnected =>
// remaining handler unchanged

As a final modification to the code, failed connections are observed and the corresponding
player is removed from the game. To remove the player, a list of disconnected players is
derived from the the list of players, by filtering on the player connection:

val disconnectedPlayers = Signal{ players.value.filter { p =>
Try(p.connection.value).isFailure} }

disconnectedPlayers.observe(Game.removePlayers)

If accessing the connection raises an error (checked with Try(...).isFailure), then the
player is considered disconnected. The resulting list of failed players is observed and these
players are removed from the game (closing the connection and updating the list of players).

7.2 Performance Evaluation
We use microbenchmarks to evaluate the performance of different features of REScala. We
evaluate each feature individually, since they do not influence each other and can be disabled
by applications as required. Specifically, we answer the following questions:4

(RQ4) What is the performance overhead introduced by our snapshotting mechanism?
(RQ5) What is the performance tradeoff between restoring state from the snapshot versus
recomputing the state?
(RQ6) How does the performance of our recovery mechanism compare to the performance
of the recovery mechanism of an industrial-strength data streaming system?
(RQ7) How does language-integrated error propagation affect application performance?

Experimental setup. We use existing microbenchmarks of the base reactive language,
which are available from the Github repository5 in version v0.21.1. The benchmarks are
implemented using the OpenJDK benchmarking framework Java Microbenchmark Harness [4]
version 1.19. We perform 25 iterations of each benchmark and report the average. To reduce
the influence of non-deterministic optimizations, we fork the JVM 5 times, each doing
5 iterations with proper warm-up. Each iteration runs for about 1 second. We run the

4 We do not evaluate the efficiency of our CRDT as we do not contribute performance improvements over
existing work [5, 45].

5 See www.rescala-lang.com.

ECOOP 2018

www.rescala-lang.com

1:18 Fault-tolerant Distributed Reactive Programming

None Fresh Restore
0

1

2

3
O

p
s/

m
s

2.55
2.36

2.04

Figure 7 Cost of restoration.

 0

 75

 150

 225

 300

 1 10 100 1000 10000

O
ps

/m
s

Restore
Derive

Figure 8 Restoring vs. recomputing lists
of various sizes.

benchmarks on an Intel Xeon CPU E5-2670 @ 2.60GHz, using one core only, since the
benchmarks are not multi-threaded, and we use the OpenJDK 1.8.0_141 Server VM with
default parameters on CentOS Linux (Kernel 3.10).

(RQ4) Overhead of snapshots. Snapshots happen after every update to the dataflow graph
and affect the overall application performance. Snapshot overhead consists of the internal
overhead for determining all the updated state and of the overhead for serializing that state.
The snapshot is stored in an in-memory database, because we do not want to measure time
spent writing to disk, since this overhead is not specific to our solution. We quantify the
snapshot overhead as a function of the number of folds in an application, since only the state
of fold signals is included in a snapshot. For this purpose, we parameterize our benchmarks
with the number of fold signals in the graph.

Figure 6 shows the throughput for a dataflow graph consisting of a single input event
with 100 reactives derived from it, on the x-axis is the percentage of folds out of these
derived reactives, the other reactives are stateless. We selected this topology since it allows
us to create a full snapshot of all fold reactives with a single input change. To factor out
the influence of computations not involved in snapshotting, user-defined computations of
both folds and stateless derived reactives only do simple integer arithmetics with negligible
overhead. We executed the benchmark twice, with and without snapshots enabled. The
relative throughput is on the y-axis of Figure 6 (higher is better).

We observe that the throughput of the benchmark with snapshotting is overall lower
than without and further decreases when the number of fold signals is higher. In the best
case, i.e., there are no fold signals, the overhead is minimal; our solution incurs performance
overhead only when state is actually stored, i.e., there is no overhead for an active but unused
feature. In the worst case, i.e., when every reactive is a fold, the throughput of the run with
snapshots is still about 58% of that with no snapshot. For typical reactive programs, however,
which contain roughly 14% fold signals [44], the relative throughput is 85%. Moreover, the
numbers reported so far are rather conservative and the real average throughput is higher,
because typically only part of the graph, i.e., only a subset of the folds in each benchmark
configuration, changes its state during an update. To recap, we consider the overhead of our
snapshot mechanism reasonable.

(RQ5) Restoring from snapshots versus recomputing. We first quantify the overall cost
that recovery adds when restarting the application (1). We also quantify the tradeoff between
taking minimal snapshots versus taking bigger snapshots (2).

Regarding (1), Figure 7 shows the results of measuring the cost of recovery for the graph
from (RQ4). Each bar on the x-axis shows the throughput of creating a graph (a) without

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:19

none 1000ms 100ms 10ms none 30% 100%
0.00

0.25

0.50

0.75

1.00

T
h

ro
u

gh
p

u
t

1.00 0.98
0.86 0.86

1.00

0.80

0.58

Flink

RP

Figure 9 Flink vs. REScala snapshot performance.

Wrapped Internal
0

1

2

3

O
p

s/
m

s

2.03
2.36

Figure 10 Integrated error propaga-
tion versus Try-based solution.

any support for fault tolerance, (b) with support for fault tolerance but when restoring from
an empty (fresh) snapshot, as is the case when an application is started for the first time,
and (c) when restoring the graph from an existing fully populated snapshot. The overhead
we observe in the last case is the result of creating the initial snapshot and restoring the
(serialized) values from the snapshot. We conclude from Figure 7 that while restoration
has a certain overhead, the cost is comparable to normal application startup times, since
REScala restores the graph of 100 reactives twice per millisecond, compared to starting the
application, which is performed 2.5 times per millisecond.

Regarding (2), as already mentioned, our approach minimizes the amount of state that
is stored in snapshots, hence we tradeoff restoring derived state against recomputing it.
Intuitively, one would assume that our restoration has higher overhead compared to one that
starts from a maximal snapshot, as it has to recompute more. However, a small experiment
indicates that this does not necessarily have to be the case. In the experiment, we run two
versions (labeled Restore and Derive) of a benchmark with a dataflow graph that stores
a list containing integers 1 to N . In the Restore version the list is part of the snapshot,
while in the Derive version the snapshot only contains the size of the list and the list itself
is recomputed during restoration. The graphs in Figure 8 show the results, with N in the
x-axis and throughput in the y-axis. We observe that (a) both restoring and recomputing
derived state get linearly more expensive with the size of N and (b) recomputing the list
given its size is faster than restoring from a complete snapshot of it. This indicates that our
approach of deriving as much state as possible from minimal snapshots during recovery does
not only make snapshotting efficient, but can also be beneficial to restoration performance.

(RQ6) Comparison to an industrial-strength data streaming system. Our objective in
this experiment is to compare the performance of our prototype implementation for snapshots
and recovery to a functionally similar industrial-strength system. The objective is to measure
an upper bound for the performance of our system. We chose Flink [6], a state-of-the-art,
industrial strength, big data processing engine for real-time analytics used, among the others,
in the Alibaba real-time search ranking, in Zalando’s business process monitoring and in
Netflix’s complex event processing system [2]. Flink is suitable as a reference due to the
following reasons: (a) it is functionally similar to reactive applications in that it also manages
state inside of a dataflow graph (a property it shares with other streaming systems), (b) it is
implemented in Scala, hence the runtime environment is similar to ours, (c) it is well known
for its focus on fault tolerance, (d) it is also possible to enable/disable snapshots, and (e)
both Flink and REScala serialize snapshots to memory.

We implemented a similar graph structure as in (RQ4) for Flink. However, Flink and
REScala target different usage scenarios, where REScala immediately reacts to individual
occurrences of input events, such as button clicks, Flink processes and aggregates complete

ECOOP 2018

1:20 Fault-tolerant Distributed Reactive Programming

input streams of data. Hence, we do not compare the absolute performance of Flink and
REScala, but only measure the relative overhead of creating snapshots.

In Figure 9, we show the throughput relative to execution without snapshots (checkpoints
in Flink terminology). Snapshots in Flink are created periodically instead of after each
update (we have created them every 10 ms, 100 ms, and 1000 ms, respectively), and always
include the complete state of the system. While the overhead of REScala is higher when a
full snapshot is created, in the case when only 30% of the dataflow graph is stored in the
snapshot – which is the realistic case – the relative overheads of both systems are similar.

We conclude that the performance of our snapshot algorithm is comparable to Flink. Yet
our prototype is a proof-of-concept, and has not been extensively optimized. This observation
is an indication of the benefits of exploiting features of the reactive programming paradigm,
specifically automatically managed state, in the design of REScala.

(RQ7) Performance effects of language-integrated error propagation. In Section 5, we
motivated the need for language-integrated error propagation for the quality of application
design. By answering RQ3, we empirically provided evidence that our approach to error
propagation indeed barely pollutes the application code. The experiments presented below
analyze the potential performance effects of this non-invasive error handling. Specifically, we
analyze (a) the potential performance tradeoffs of the language-integrated error propagation
compared to programmatic error handling, and (b) the overhead of the error propagation
system in the absence of errors.

These experiments show that there is no additional cost. As discussed in Section 6, this is
due to the tight integration of errors into the existing runtime. Moreover, language-integrated
error propagation exhibits better application performance compared to programmatic error
handling.

For (a), we implemented a reactive program with programmatic error handling by using
Scala’s Try to propagate errors, so every Signal[A] becomes a Signal[Try[A]]. Using Try is
the idiomatic way to represent errors as values in Scala, similar to the Maybe data type in
Haskell. As shown in Figure 10, our solution outperforms the solution that uses Try-wrappers.
This improvement is due to the fact that language integration merges error propagation into
the internal data structures of the language runtime, while Try-wrappers require an additional
layer of indirection; in addition, the solution that uses wrappers requires unwrapping code at
every signal expression6. The first line of code below just adds two values, compared to the
second line of code where adding two values becomes unwieldy when nested Try expressions
need to be unwrapped, even when using Scala’s special for syntax:

Signal { a.value + b.value } // without wrapper
Signal { for (av <- a.value; bv <- b.value) yield av + bv } // wrapped in Try

For (b), we use the REScala benchmark natural graph, a graph with 25 reactives that are
connected in a way to mimic real applications [44], to show how the performance of an average
application is affected. All user-defined computations only perform arithmetic additions to
minimize the amount of work that is spent on actual computation and maximize the relative
overhead of the error propagation. We did not measure any performance degradation when
error propagation is enabled but the application does not use it, thus developers only have
to pay for what they use.

6 Other representations of errors are possible, but they all have to share the same pattern of Try, both
values and errors need to be represented in a single data type, and the application developer has to
manually differentiate the two cases in signal expressions.

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:21

7.3 Threats to Validity
There are both internal and external threats to the validity of our results. Internal threats
are due to the inspection of case studies for analyzing the non-invasiveness of our approach,
as what is non-invasive is subjective and depends on our experience in developing REScala
applications. Also, the results are not confirmed by subjects without experience with REScala.

An external threat is that the benchmarks may be too small and not sufficiently diverse
to be representative of reactive programming applications for the results to be generalizable.
Unfortunately, at the time being there are no standard benchmarks for reactive programming
languages. Given the lack of any widely accepted benchmark suite (to the best of our
knowledge), our selection of the benchmarks is strongly based on our experience with
REScala applications. Extending the benchmark suite with more, diverse and larger-scale
case studies will be addressed in future work.

8 Related Work

Languages for reactive applications. Non-distributed languages for traditional desktop
applications are usually concerned with I/O errors during execution, but typically do not
provide facilities to snapshot or restore program state. In the object-oriented paradigm,
reactive software is often developed using the Observer design pattern. This approach,
extensively discussed in the literature [17, 27, 31, 13], leads to the inversion of the control
flow, which complicates code analysis and induces highly error-prone broadly scoped side-
effecting operations: since observers do not return a value, computational results need to be
passed through imperative state changes, prohibiting all of the techniques for fault tolerance
discussed in this paper.

Functional reactive programming (FRP) [18] models time-changing values, whose denota-
tions are functions focusing on the problem of formally modelling continuous time. FRP has
been used in a number of areas, including robotics [23], network switch programming [20, 48],
wireless sensor networks [36], and reliable software for spacecraft [37]. In general, FRP seems
to be a natural fit for distributed applications [29, 40, 41, 15, 11], with events representing
messages from the network or user input. However, many functional reactive languages
and frameworks do not provide support for unreliable networks. Typically, reactive lan-
guages [27, 31, 14] simply delegate the responsibility for error handling to the host language,
and ultimately to the programmer. In distributed reactive programming [15, 28, 47], reactives
on different devices are connected to each other and update messages are sent over the
network whenever a remote dependency changes. In the presence of faulty devices and
unreliable connections, such update messages may get lost causing several problems, such
as (a) glitches, (b) changes that are visible on one host but not on another host, or (c)
application unresponsiveness when new changes cannot be processed while messages are
being resent to a device that failed and is restored.

Unreliability has been partially investigated in the context of some FRP derivates.
Timeouts have been introduced to a distributed runtime and dataflow [35]. ReactiveExten-
sions (Rx) [26] integrate and propagate errors into the dataflow. However, to the best of
our knowledge, no solution exists to automatically restore and reconnect a dataflow graph
after a crash. DREAM [28, 29] is a middleware for distributed reactive programming, which
lets the programmer choose among different levels of consistency guarantees in distributed
reactive systems, including FIFO consistency, causal consistency, glitch freedom and atomic
consistency. However, none of these approaches provides the consistency guarantees of
REScala automatically. Ur/Web [12] is a multitier programming language that uses reactive

ECOOP 2018

1:22 Fault-tolerant Distributed Reactive Programming

programming to update the client UI. However, to the best of our knowledge, there is no
integration of RPC errors and the reactive part, hindering application-wide reasoning and
lacking common abstractions for distribution and reactivity.

Actor and cloud languages. Actors [1, 7, 9, 33, 46, 24] are well-known abstractions to model
concurrent and distributed systems. Actors do not share mutable state and communicate
only via message passing. The result is a loose application structure that makes automatic
reasoning about overall system consistency very hard. Furthermore, we consider message-
passing to be rather an implementation mechanism for enabling communication, which is
by no means a proper substitute for providing first-class composable and programmable
abstractions in the language, as it is the case with REScala.

Languages such as Erlang and Akka support restarts of crashed actors, possibly on a
different device, but it is the responsibility of the application logic to be robust against such
crashes. Otherwise, state on restarted actors is lost, and application properties are violated.
Orleans [9] and extensions to Akka [1] can automatically restore the state of single actors
after a crash. However, state is stored without consistency guarantees between multiple
actors, and it is still difficult to reason about application properties. Akka additionally
requires manual changes to each actor that requires fault-tolerant state, making it impossible
to reuse existing actors developed without support for fault tolerance.

AmbientTalk [46] is an actor language specifically designed for mobile ad hoc networks,
and Direst [34] builds on top of AmbientTalk and adds reactive abstractions and automatic
eventually consistent state distribution. However, Direst uses a centralized replica to provide
eventual consistency, hindering any communication between devices when the centralized
replica is unavailable. Furthermore, applications in Direst cannot dynamically reconfigure
their dependencies – a necessary concept for existing dynamic applications. Hence, Direst
cannot support common reactive patterns, such as dynamically selecting the current view of
an application at runtime, thus limiting reusability of components.

MBrace [16] extends F# with expressions for cloud computations. The use of immutable
global references allows the distributed runtime to automatically re-execute tasks on failed
devices without causing inconsistencies. Errors that are raised during the evaluation of cloud
expressions, e.g., because a remote resource is unavailable, are transparently propagated along
the dataflow path of the expression, even across the distribution boundaries, allowing non-
localized error handling. However, since the distributed state is immutable, the abstractions
are not well suited to reactive applications where the program state changes dynamically in
response to input from the user or the execution environment/context.

Batch and stream processing languages. Frameworks for big data processing, such as
Spark [49] and Flink [6], handle crashes of worker machines to minimize lost work when
machines fail. They have recently also adapted syntax similar to FRP, but are not suited for
reactive applications. Running in cluster environments with full control of communication and
distribution of work among machines, Spark and Flink can offer abstractions for distribution
and fault tolerance with suitable correctness guarantees. However, to provide these guarantees,
applications are written in specific DSLs, and the execution runtime is not connected to
the embedding application. The use of a DSL limits the capability to integrate with other
libraries, and the DSL is not designed for reactive applications.

Building blocks for distributed applications. Several approaches provide building blocks
to develop applications in distributed systems.

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:23

The counterpart of observers in non-distributed software are pub-sub systems in dis-
tributed software, with similar problems [19, 38, 30].

Eventual consistent data types such as CRDTs [45] or CloudTypes [10] are important
building blocks providing well-understood tradeoffs between consistency and responsiveness.
In case of connection failures, eventual consistent data types become out of sync with other
replicas, but when the failures are only temporary, a consistent state can be automatically
restored. However, on their own these data types cannot provide any application-wide
correctness guarantees.

Function passing [32] is a style of distributed programming that defines a graph of
immutable values and operations over these values. The result is a graph similar to Spark
RDDs, but using arbitrary Scala functions instead RDD transformations, combining an
abstraction for distributed systems with reusability of most Scala functions. However, since
fault tolerance and reactivity are not part of the language, the language cannot enforce or
check any properties.

9 Conclusion

In this paper, we presented REScala, a reactive programming language to support the
development of fault-tolerant distributed reactive applications. REScala automatically
handles crashes and disconnects between devices, supporting application specific recovery
strategies. The fault tolerance mechanism provided by REScala is mostly transparent to the
programmer, it preserves strong consistency on local devices in the presence of faults, and
it ensures eventual consistency across distributed devices. It has no performance overhead
when no faults occur and acceptable overhead otherwise. Our evaluation shows that creating
snapshots and recovering from them has comparable overhead to similar existing solutions.

There are several areas for future work. We have discussed distributed glitch freedom
in Section 4. In future work, we plan to adapt the propagation algorithm of Drechsler
et al. [15] to detect such glitches and to use the error propagation mechanism to enable
developers to compromise between availability and correctness. Finally, we plan to formalize
our programming model to provide rigorous guarantees about application correctness in the
presence of crashes and disconnects.

References
1 Akka documentation, 2017. URL: http://akka.io/docs.
2 Flink success stories, 2017. URL: https://cwiki.apache.org/confluence/display/

FLINK/Powered+by+Flink.
3 HTML5 localStorage, 2017. URL: https://www.w3schools.com/html/html5_

webstorage.asp.
4 Java microbenchmark harness, 2017. URL: http://openjdk.java.net/projects/

code-tools/jmh/.
5 Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal

Urso. Evaluating CRDTs for Real-time Document Editing. In Proceedings of the 11th ACM
Symposium on Document Engineering, DocEng ’11, 2011. doi:10.1145/2034691.2034717.

6 Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian
Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger,
Kostas Tzoumas, and Daniel Warneke. The Stratosphere Platform for Big Data Analytics.
The VLDB Journal, 23, 2014. doi:10.1007/s00778-014-0357-y.

ECOOP 2018

http://akka.io/docs
https://cwiki.apache.org/confluence/display/FLINK/Powered+by+Flink
https://cwiki.apache.org/confluence/display/FLINK/Powered+by+Flink
https://www.w3schools.com/html/html5_webstorage.asp
https://www.w3schools.com/html/html5_webstorage.asp
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://dx.doi.org/10.1145/2034691.2034717
http://dx.doi.org/10.1007/s00778-014-0357-y

1:24 Fault-tolerant Distributed Reactive Programming

7 Joe Armstrong. Erlang. Communications of the ACM, 53, 2010. doi:10.1145/1810891.
1810910.

8 Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx,
and Wolfgang de Meuter. A Survey on Reactive Programming. ACM Computing Survey,
45(4), 2013. doi:10.1145/2501654.2501666.

9 P. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Orleans: Dis-
tributed Virtual Actors for Programmability and Scalability. Technical report, (MSR-TR-
2014-41, 24), 2014. URL: http://aka.ms/Ykyqft.

10 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. Cloud
Types for Eventual Consistency. In European Conference on Object-Oriented Programming
(ECOOP), 2012.

11 Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter.
Loosely-coupled Distributed Reactive Programming in Mobile Ad Hoc Networks. In Pro-
ceedings of the 48th International Conference on Objects, Models, Components, Patterns,
TOOLS’10, 2010. URL: http://dl.acm.org/citation.cfm?id=1894386.1894389.

12 Adam Chlipala. Ur/Web: A Simple Model for Programming the Web. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, 2015. doi:10.1145/2676726.2677004.

13 Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow in a Call-
by-value Language. In Proceedings of the 15th European Conference on Programming Lan-
guages and Systems, ESOP, 2006. doi:10.1007/11693024_20.

14 Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive Programming for
GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, 2013. doi:10.1145/2491956.2462161.

15 Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. Distributed REScala:
An Update Algorithm for Distributed Reactive Programming. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA, 2014. doi:10.1145/2660193.2660240.

16 Jan Dzik, Nick Palladinos, Konstantinos Rontogiannis, Eirik Tsarpalis, and Nikolaos Vathis.
MBrace: Cloud Computing with Monads. Proceedings of the Seventh Workshop on Pro-
gramming Languages and Operating Systems, 2013. doi:10.1145/2525528.2525531.

17 Jonathan Edwards. Coherent Reaction. In Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and Applications,
OOPSLA, 2009. doi:10.1145/1639950.1640058.

18 Conal Elliott and Paul Hudak. Functional Reactive Animation. In Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, ICFP, 1997.
doi:10.1145/258948.258973.

19 Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2), 2003. doi:10.1145/
857076.857078.

20 Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford,
Alec Story, and David Walker. Frenetic: A Network Programming Language. In Proceedings
of the 16th ACM SIGPLAN international conference on Functional programming, ICFP,
2011. doi:10.1145/2034773.2034812.

21 Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. ACM SIGACT News, 33(2), 2002. doi:10.
1145/564585.564601.

22 Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental Consis-
tency Guarantees for Replicated Objects. USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2016. arXiv:1609.02434.

http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/2501654.2501666
http://aka.ms/Ykyqft
http://dl.acm.org/citation.cfm?id=1894386.1894389
http://dx.doi.org/10.1145/2676726.2677004
http://dx.doi.org/10.1007/11693024_20
http://dx.doi.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/2660193.2660240
http://dx.doi.org/10.1145/2525528.2525531
http://dx.doi.org/10.1145/1639950.1640058
http://dx.doi.org/10.1145/258948.258973
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://arxiv.org/abs/1609.02434

R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini 1:25

23 Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots, and
Functional Reactive Programming. In Lecture Notes in Computer Science, volume 2638,
2003.

24 Rajesh K. Karmani and Gul Agha. Actors. In Encyclopedia of Parallel Computing. Springer,
2011. doi:10.1007/978-0-387-09766-4_125.

25 Jean-Claude Laprie. Dependable Computing: Concepts, Challenges, Directions. Interna-
tional Symposium on Fault-Tolerant Computing, FTCS, 1995.

26 Jesse Liberty and Paul Betts. Programming Reactive Extensions and LINQ. Apress, 2011.
27 Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with Scala.react. Tech-

nical report, EPFL, 2012.
28 Alessandro Margara and Guido Salvaneschi. We Have a DREAM: Distributed Reactive

Programming with Consistency Guarantees. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, DEBS, 2014. doi:10.1145/2611286.
2611290.

29 Alessandro Margara and Guido Salvaneschi. On the Semantics of Distributed Reactive
Programming: The Cost of Consistency. IEEE Transactions on Software Engineering,
2018.

30 R. Meier and V. Cahill. Taxonomy of Distributed Event-based Programming Systems. In
22nd International Conference on Distributed Computing Systems Workshops, 2002. doi:
10.1109/ICDCSW.2002.1030833.

31 Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: A Programming Lan-
guage for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA, 2009.
doi:10.1145/1640089.1640091.

32 Heather Miller, Philipp Haller, Normen Müller, and Jocelyn Boullier. Function Passing:
A Model for Typed, Distributed Functional Programming. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward!, 2016. doi:10.1145/2986012.2986014.

33 Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concurrency Among Strangers.
In Proc. Int. Symp. on Trustworthy Global Computing. Springer, 2005. doi:10.1007/
11580850_12.

34 Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang De Meuter. I Now
Pronounce You Reactive and Consistent: Handling Distributed and Replicated State in
Reactive Programming. In Proceedings of the 3rd International Workshop on Reactive and
Event-Based Languages and Systems, REBLS, 2016. doi:10.1145/3001929.3001930.

35 Florian Myter, Christophe Scholliers, andWolfgang De Meuter. Handling Partial Failures in
Distributed Reactive Programming. 4th Workshop on Reactive and Event-based Languages
& Systems, 2017.

36 Ryan Newton, Greg Morrisett, and Matt Welsh. The Regiment Macroprogramming System.
In 2007 6th International Symposium on Information Processing in Sensor Networks, 2007.
doi:10.1109/IPSN.2007.4379709.

37 Ivan Perez. Fault Tolerant Functional Reactive Programming. International Conference
on Functional Programming (ICFP), 2018.

38 Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-based Middleware
Architecture. In Proceedings. 22nd International Conference on Distributed Computing
Systems Workshops, 2002. doi:10.1109/ICDCSW.2002.1030837.

39 J. Ploski and W. Hasselbring. Exception Handling in an Event-Driven System. In Avail-
ability, Reliability and Security. ARES., 2007. doi:10.1109/ARES.2007.85.

ECOOP 2018

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1145/2611286.2611290
http://dx.doi.org/10.1145/2611286.2611290
http://dx.doi.org/10.1109/ICDCSW.2002.1030833
http://dx.doi.org/10.1109/ICDCSW.2002.1030833
http://dx.doi.org/10.1145/1640089.1640091
http://dx.doi.org/10.1145/2986012.2986014
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1145/3001929.3001930
http://dx.doi.org/10.1109/IPSN.2007.4379709
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1109/ARES.2007.85

1:26 Fault-tolerant Distributed Reactive Programming

40 José Proença and Carlos Baquero. Quality-Aware Reactive Programming for the Internet
of Things. In Fundamentals of Software Engineering - 7th International Conference, FSEN,
2017.

41 Bob Reynders, Dominique Devriese, and Frank Piessens. Multi-Tier Functional Reactive
Programming for the Web. In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software, Onward!, 2014.
doi:10.1145/2661136.2661140.

42 G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. On the Positive Effect of Re-
active Programming on Software Comprehension: An Empirical Study. IEEE Transactions
on Software Engineering, 43(12), Dec 2017. doi:10.1109/TSE.2017.2655524.

43 Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini. An Empirical Study
on Program Comprehension with Reactive Programming. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE, 2014.
doi:10.1145/2635868.2635895.

44 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging Between Object-
oriented and Functional Style in Reactive Applications. In Proceedings of the 13th Interna-
tional Conference on Modularity, MODULARITY, 2014. doi:10.1145/2577080.2577083.

45 Marc Shapiro, Nuno Pregui, Carlos Baquero, and Marek Zawirski. A Comprehensive Study
of Convergent and Commutative Replicated Data Types. Technical report, INRIA, 2011.

46 Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: Programming Re-
sponsive Mobile Peer-to-peer Applications with Actors. Computer Languages, Systems &
Structures, 40(3-4), 2014. doi:10.1016/j.cl.2014.05.002.

47 Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and Wolfgang
De Meuter. AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad Hoc
Networks. Proceedings - International Conference of the Chilean Computer Science Society,
SCCC, 2007. doi:10.1109/SCCC.2007.4396972.

48 Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A Language for High-level
Reactive Network Control. In Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN, 2012. doi:10.1145/2342441.2342451.

49 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, NSDI, 2012. URL:
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf.

http://dx.doi.org/10.1145/2661136.2661140
http://dx.doi.org/10.1109/TSE.2017.2655524
http://dx.doi.org/10.1145/2635868.2635895
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1109/SCCC.2007.4396972
http://dx.doi.org/10.1145/2342441.2342451
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

ContextWorkflow: A Monadic DSL for
Compensable and Interruptible Executions
Hiroaki Inoue1

Graduate School of Informatics, Kyoto University, Kyoto, Japan
hinoue@fos.kuis.kyoto-u.ac.jp

Tomoyuki Aotani
School of Computing, Tokyo Institute of Technology, Tokyo, Japan
aotani@c.titech.ac.jp

Atsushi Igarashi
Graduate School of Informatics, Kyoto University, Kyoto, Japan
igarashi@kuis.kyoto-u.ac.jp

Abstract
Context-aware applications, whose behavior reactively depends on the time-varying status of the
surrounding environment – such as network connection, battery level, and sensors – are getting
more and more pervasive and important. The term “context-awareness” usually suggests prompt
reactions to context changes: as the context change signals that the current execution cannot
be continued, the application should immediately abort its execution, possibly does some clean-
up tasks, and suspend until the context allows it to restart. Interruptions, or asynchronous
exceptions, are useful to achieve context-awareness. It is, however, difficult to program with
interruptions in a compositional way in most programming languages because their support is
too primitive, relying on synchronous exception handling mechanism such as try–catch.

We propose a new domain-specific language ContextWorkflow for interruptible programs as
a solution to the problem. A basic unit of an interruptible program is a workflow, i.e., a se-
quence of atomic computations accompanied with compensation actions. The uniqueness of
ContextWorkflow is that, during its execution, a workflow keeps watching the context between
atomic actions and decides if the computation should be continued, aborted, or suspended. Our
contribution of this paper is as follows; (1) the design of a workflow-like language with asyn-
chronous interruption, checkpointing, sub-workflows and suspension; (2) a formal semantics of
the core language; (3) a monadic interpreter corresponding to the semantics; and (4) its concrete
implementation as an embedded domain-specific language in Scala.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases workflow, asynchronous exception, checkpoint, monad, embedded do-
main specific language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.2

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.4

Funding This work was supported in part by Kyoto University Design School (Inoue).

Acknowledgements We thank Hidehiko Masuhara and anonymous reviewers for valuable com-
ments.

1 The current affiliation is Mitsubishi Electric Corporation.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 2; pp. 2:1–2:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hinoue@fos.kuis.kyoto-u.ac.jp
mailto:aotani@c.titech.ac.jp
mailto:igarashi@kuis.kyoto-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.2
http://dx.doi.org/10.4230/DARTS.4.3.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 ContextWorkflow

1 Introduction

As mobile computing devices have spread, recent applications tend to depend on external
information (called context) that is time-varying, such as battery level, heat, human input,
network connection, and availability of external modules; these applications are so-called
context-aware applications [3, 7]. Context-aware applications are usually required to promptly
react to context changes; hence, they have to be interruptible or support asynchronous
interruption.

An example is a package manager application that updates packages in an operating
system or a software development environment. It tends to be running for a long time
because, even if only one package is selected by the user for the update, it is necessary to
resolve package dependency, download archive files, unpack them, and more: the whole task
takes a considerable amount of time. Examples of the interruptions are network disconnection
and a press of the “cancel” button. Another example is a battery-powered robot that moves
around to do some task such as cleaning rooms. Examples of the interruptions are a low
battery level and sensor malfunction.

Reactions to interruptions cannot be simple. In the package manager, for example, it is
not desirable just to abort the package manager promptly in response to a press of the “cancel”
button because the package dependency may be broken, i.e., packages may be partially
updated/installed. A desirable package manager must ensure the consistency of packages by
performing some recovery actions, e.g., reverting the update by re-installing the previous
versions of the packages. It may also be preferable in the case of network disconnection to
suspend the execution until the connection comes back. In the robot example, a desirable
reaction to a low battery level is stopping the task and returning to a base for charge.

The two examples show that, if an interruption occurs, it is necessary for context-aware
applications to be able to promptly (1) abort with reverting the “effects” that comes from
uncompleted tasks (file replacement in the first example and robot movement in the second
example) or (2) suspend the program until we can run the continuations or reversions.

Developing context-aware applications in existing mainstream languages is difficult because
of the following two problems. First, as Bainomugisha et al. indicated [7], the languages
lack constructs for promptly reacting to context changes. Inserting the code for the context
checks manually is not desirable from a modularity perspective. Asynchronous exceptions [40],
which enable us to throw exceptions to other threads, could be a solution to the point. It
is, however, still weak for context-aware applications because the context usually depends
on multiple time-varying data and asynchronous exceptions themselves are not helpful for
tidying them up.

Second, support for recovery from asynchronous interruption in the existing languages
is weak. Although today’s standard approach to handling interruptions is to use the
exception handling constructs such as try-catch-finally, they are not useful for reversion
and suspension; in particular, reversion is similar to resource handling with exceptions,
which is hard with the constructs [60]. A more complicated and difficult reaction is partial
abort [25], which is a combination of reversion and suspension and is realized by using
checkpoints [48, 62, 17]. Checkpoints are useful to make applications robust [41] and avoid
wasteful recomputation [14].

Our solution to the problems is based on the ideas of Flute [7] and workflow [22, 12]. Flute
is a programming language originally proposed to solve the first problem. To represent the
context depending on multiple time-varying data, Flute uses functional reactive programming
(FRP) [19, 6] that represents time-varying values as streams and provides operations over
them, which are useful to unify multiple sensory data into one stream. Flute also supports
suspending the program execution.

H. Inoue, T. Aotani, and A. Igarashi 2:3

Workflow [22, 12] represents a long-running interruptible transaction that consists of
several atomic transactions. The typical applications are web applications and business process
management, and recently workflow is adapted to context-aware applications [44, 4, 54].
One import idea of workflow for us is compensation [60], where each action of a program is
accompanied by a compensation action, meaning a recovery action; and program execution
takes account of its progress and automatically constructs its recovery action.

1.1 Contributions
In this paper, we propose a language ContextWorkflow as a solution to the two problems.
ContextWorkflow is a workflow-based language that supports compensation, asynchronous
interruption, suspension, and checkpoints. It also provides sub-workflows and programmable
compensations [9, 12] that ignore and replace the compensations of completed portions of
workflow, respectively.

Our approach to implementing ContextWorkflow is to embed it in other “host” lan-
guages [31]. The benefit of the approach is that the language itself remains small but can be
powerful because any features of the host language are still available.

Our technical contributions are (1) a design of the workflow-based programming language
with asynchronous interruption, (2) a formalization of the language, including the big-step
operational semantics, (3) monadic interpreters corresponding to the semantics, and (4) an
implementation of ContextWorkflow by embedding into Scala. The details are as follows.

Asynchronous Interruption in Workflow. Our approach to asynchronous interruption uses
signals of FRP [19, 6] and polling [20], and our novel finding is that the idea of workflow and
compensation fit with the approach. A workflow in ContextWorkflow is executed under some
context, which changes over time asynchronously and indicates how the execution of workflow
proceeds. An asynchronous interruption is detected by checking the context. We suppose
that each atomic transactions should not be interrupted asynchronously; and we regard
atomic transactions as a primitive construct of our language. The context is checked at the
beginning of each atomic transaction similarly to transactions in database [24] and software
transactional memory [53]. The difference between our workflow and the transactions is with
regard to the time when a check runs. In the transactions, a check runs at the end. We also
introduce constructs for blocking interruptions as in Concurrent Haskell [40] for avoiding
unnecessary context checks.

Formalizing ContextWorkflow. We develop a big-step operational semantics that models
the essential constructs of ContextWorkflow, that is, workflow, compensation, asynchronous
interruption, sub-workflows, programmable compensations, checkpoints, and suspension. The
semantics is inspired by Bruni et al.’s formalization [9] of Sagas [22], which is a foundation
of workflow. Our main contribution is to add checkpoints and suspension to the existing
semantics, especially considering sub-workflows. We also provide and prove basic properties
of the new calculus and describe small extensions. In addition, we discuss whether the polling
code should be inserted before or after an atomic transaction using the core calculus.

Monadic Interpreter. We develop two monadic interpreters in lazy and eager languages
that closely correspond with the big-step operational semantics. We define two CW monads
using the reader, exception monads and free monad transformers that represent the abstract
syntax trees of ContextWorkflow programs. One could define the CW monad based on the free
monad [5] over the compensation functor [47] that consists of the exception and continuation

ECOOP 2018

2:4 ContextWorkflow

monads. Such a definition is, however, not desirable because it is hard to support sub-
workflows, programmable compensations, and checkpoints while keeping correspondence
with the big-step operational semantics straightforward. We instead use the free monad
transformers to define the CW monads. Note that the functions that collapse, or fold, free
monad transformers are different between eager and lazy languages due to efficiency and
stack safety [56]. Two monads and monadic interpreters are therefore necessary.

Embedding in Scala. We carefully embed ContextWorkflow in Scala based on the monadic
interpreter. In our embedding, one can throw Scala exceptions using throw in atomic actions
and handle them using Scala’s standard exception handling mechanism. We use the macro
system in Scala to make the ContextWorkflow program syntax look more natural.

The rest of this paper is organized as follows. In Section 2, we informally introduce
ContextWorkflow with a running example of a maze search robot. Section 3 provides a formal
calculus of the core ContextWorkflow. In Section 4, we construct a monadic interpreter and
show further implementation techniques in Scala. Section 5 presents related work, followed
by future work and conclusion.

2 ContextWorkflow Constructs.

In this section, we look at the basic constructs of ContextWorkflow using a maze search
program as a running example. Here, the notation is based on our implementation, which is
an EDSL in Scala.

A program in ContextWorkflow is a workflow that is a sequence of primitive workflows
(similar to atomic transactions). When an interruption takes place – it can only occur
between primitive workflows – the whole workflow is aborted after running the compensations
of the already completed primitive workflows in the reverse order, or is suspended (and the
rest of the computation is returned).

2.1 Example: Explorer Robot
As a running example, we consider a battery-powered robot that explores a (physical) maze.
Our goal is to program the following context-dependent behavior:
1. The robot must get back to the start or a special point equipped with a battery charger, at

which the robot can recharge its battery. (We call such a special point simply a charger.)
2. When it starts to rain, the robot should suspend its exploration.

Our basic exploration strategy is to visit every place in the maze in the depth-first
search (DFS) manner. We assume that the maze is represented by a graph; the graph is
represented as a set of nodes, which consist of two-dimensional coordinates of integers. A
node is connected to another node if and only if the distance between the two nodes is one,
e.g., (1,0) and (1,1) are connected, but (1,0) and (1,2) are not. This means that if a pair of
coordinates is not in the node set, there is a wall at that position. We define the class Node
for nodes and functions as follows.

case class Node(loc:(Int,Int), var visited:Boolean)
def neighbors(n: Node, maze: Set[Node]): List[Node] = // getting the neighbors of n
def visited(n: Node): Unit = {n.visited = true} // setting the visited flag of n on
def unknown(n: Node): Unit = {n.visited = false} // setting the visited flag off
def move(n: Node): Unit = /* actually moving the robot to n */
def visit(n: Node, maze: Set[Node]): Unit = { // main search program

H. Inoue, T. Aotani, and A. Igarashi 2:5

visited(n);
neighbors(n, maze).foldLeft(()){(_, neighbor) =>
if(!neighbor.visited){ move(neighbor); visit(neighbor, maze); move(n); }
} }

A Node has coordinate information loc and a flag visited that is used to remember whether
the node has been visited or not. The function neighbors returns the neighboring nodes
of a given node n. The functions visited and unknown mark the given node n as visited
and unvisited, respectively. The function move takes a node as an argument and moves the
robot to the position it represents. It works only if the robot is currently at its neighbor
or the node itself. The function visit is the main function that must be refined as our
development proceeds; it takes a node n and a graph maze, and just visits every node in
maze from n recursively in a DFS manner without allowing any interruptions.

In the rest of this section, we revise visit using the features of ContextWorkflow. We
use compensations to move the robot back; suspension to stop the robot when it starts
to rain; nested workflow to skip some compensation actions; blocking constructs atomic
and nonatomic to avoid redundant/unnecessary context checks; and checkpoints to stop the
robot at a charger while it is getting back.

2.2 Interruptible and Compensable Workflow
To make visit interruptible and compensable, we change it to a sequence of primitive
workflows. We write a primitive workflow, which consists of a normal action n and a
compensation action c, as n /+ c in ContextWorkflow. Normal and compensation actions
can be any Scala code (of certain types).

Each function call to visited, move, and visit should be lifted to a primitive workflow
because it changes the “state,” i.e., the flags of nodes and the position of the robot. If an
interruption occurs, the changes have to be reverted by compensations. The compensation
action of each function call is basically its inverse in our example.2 For example, we define a
primitive workflow moveFromTo for move with its reverse as follows:
def moveFromTo(from: Node, to: Node): CW[Unit] = move(to) /+ (_ => move(from))

The normal action move(to) is of the type Unit, and the compensation _ => move(from)
is of the type Unit => Unit; a compensation action takes the result of the corresponding
normal action – which has been finished – as an argument. The whole primitive workflow is
of the type CW[Unit] where CW is the class representing a workflow and means the workflow
returns a value of Unit after its successful execution. A workflow, which is an instance of
CW[T], can be run by invoking exec, which will be explained shortly.

ContextWorkflow provides the workflow block and the operator !! to combine two or
more (primitive) workflows. The workflow block is used to build a long workflow, and the
!! operator is used to sequence workflows in the workflow block.
def workflow[T](body: T): CW[T]
def !![T](m: CW[T]): T

For example, we write like workflow{ val x = !!(m); !!(f(x)); ...}, where x becomes
the result of the workflow m. If unnecessary, val * = can be omitted. This notation is

2 The compensation action is not necessarily the inverse of the normal action in general. The purpose of
the compensation action is to ensure the “state” is acceptable even if an interruption occurs and the
program stops or rolls back.

ECOOP 2018

2:6 ContextWorkflow

almost the syntactic sugar of for-comprehension in Scala; e.g., the foregoing code is equal to
m.flatMap(x => f(x).flatMap(_ => ...)). We can also use ordinary if for branching
and fold (called foldCW) for iteration in ContextWorkflow.

def foldCW[A,B](l: List[A])(z: B)(f: (B,A) => CW[B]): CW[B] // fold for CW

Then, the interruptible version of visit is as follows.

def visit(n: Node, maze: Set[Node]): CW[Unit] = workflow {
!!(visited(n) /+ (_ => unknown(n))) // reversible visited
!!{foldCW(neighbors(n, maze))(()){(_, neighbor) =>
if(!neighbor.visited) workflow{
!!(moveFromTo(n, neighbor)) // the robot moves to the neighbor
!!(visit(neighbor, maze))
!!(moveFromTo(neighbor, n)) // the robot gets back to the original node n
}
else () /+ () } } }

Note that compensation actions are inverses of their corresponding normal actions.
To execute a workflow, we invoke the method exec of CW class:

def exec(...): \/[Option[CW[A]], A]

where \/ introduces disjunctions of two types whose constructors are -\/(l) (meaning the left
value) and \/-(r) (meaning the right value); Option is the type of optional values consisting
of Some(a) and None. The type \/[Option[CW[A]], A] represents that the result may be
abort -\/(None), suspended workflow -\/(Some(cw)) or successful execution \/-(a). The
argument of exec is optional and will be explained in detail later.

2.3 Interruption and Context
We need contexts to interrupt execution of the workflow in ContextWorkflow. A context
signals how the execution of a workflow proceeds and changes over time asynchronously.

The context is represented by a stream of values of type Context, which can be any of
Continue, Abort, PAbort, or Suspend. Their meanings are as follows:

Continue continues the execution; normal actions are executed with their compensations
recorded.
Abort aborts the execution after executing the recorded compensations.
PAbort means partial abort, which is similar to Abort but sensitive to checkpoints: it
rolls back by executing the recorded compensations until the checkpoint most recently
passed and returns the continuation at the checkpoint.
Suspend suspends the execution and returns the rest of the workflow.

The current context is checked periodically (similarly to polling). More concretely, this
periodic checking, called context checking, takes place before the execution of the normal
action of each primitive workflow; if the current context is not equal to Continue, it is
interrupted immediately.

To create a stream of Contexts, we use a signal in the FRP library REScala [51]. For
example, we can represent an interruption due to a low battery level as a signal of Context
as follows, assuming that there is another signal battery indicating the battery level.

val battery: Signal[Int] = /* a signal indicating the battery level */
val lowbattery: Signal[Context] = Signal{ if(battery() < 20) Abort else Continue }

H. Inoue, T. Aotani, and A. Igarashi 2:7

compensation

normal

Abort

🤖

Charger

Visited

compensation

normal🤖

Charger

Visited🤖

Figure 1 Maze search simulation: Abort (left) and Suspend (right).

The signal lowbattery is of the type Signal[Context], whose value is Continue while the
battery level is higher than 20% and Abort otherwise.

The context may depend on multiple sensory data. Such a context is easy to represent,
owing to the expressiveness of REScala. For example, to suspend the robot when the rain
starts, we need another sensory data that reflects the weather condition. It is achieved by
creating another signal that relates to both the battery level and the weather.

val weather: Signal[Context] = Signal{ if(/* badWeather */) Suspend else Continue }
val mazectx: Signal[Context] = Signal { (lowbattery(), weather()) match {
case (Continue, Continue) => Continue
case (Abort, _) => Abort
case _ => Suspend } }

The signal mazectx depends on not only lowbattery but also weather, which is another
context related to the weather. Notice that we also give precedence between the two contexts
here: Abort from lowbattery supersedes Suspend from weather.

To make our workflow depend on mazectx, we need to give it as the argument to exec:

visit(...).exec(mazectx)

Fig. 1 illustrates an execution of visit, where it is aborted (left) or suspended (right)
halfway. Currently, a partial abort at the same place results in the same trace as the aborted
case, since chargers (checkpoints) are not set yet.

A suspended workflow is also a workflow and we can start it by writing as follows:

val r = visit(...).exec(...)
sleep(/*until it is ready to resume the program*/);
r match { case -\/(Some(s)) => s.exec(...) } // restart if suspended

Here, s is the suspended workflow and its type is CW[Unit].

2.4 Nested Workflow and Programmable Compensations
Sometimes we would like to skip some compensation actions. In our example, the behavior of
the aborted case is not desirable because the robot follows exactly the path in which it came
to the aborted point and does not come back straight to the start. A better compensation
would be to take a shortcut to the start node as shown in Fig. 2.

This can be achieved by delimiting a part of a workflow and ignoring the compensation
actions of the delimited part if the part is completed successfully. We call such a part
sub-workflow and provide a construct sub that makes a part of workflow a sub-workflow:

ECOOP 2018

2:8 ContextWorkflow

compensation

normal

Abort

🤖

Charger

Visited

Figure 2 Maze search simulation: Abort (refined).

def sub[A](cw: CW[A]): CW[A]

We revise visit by using sub to skip undesirable compensation actions as follows:

1 def visit(n: Node, maze: Set[Node]):CW[Unit] = workflow {
2 ...
3 if(!neighbor.visited)
4 sub{ workflow{
5 !!(moveFromTo(n, neighbor))
6 !!(visit(neighbor, maze))
7 !!(moveFromTo(neighbor, n))
8 } } ... }

If a partial search from the neighbor is complete, compensations for it will be skipped.
It is possible to perform another compensation action instead of just skipping the

compensation actions within sub-workflows by writing something like sub(...)/+ comp,
which is the so-called programmable compensation [9, 12]. For example, we can add a log:

sub{ ... } /+ (_ => println("skipping compensations"))

2.5 Checkpoint
Using the above constructs, we still cannot realize the behavior of the robot so that it gets
back to a charger. What we have to do is to let the robot partially roll back its move
and suspend at the charger. For this purpose, we use checkpoints. A checkpoint saves the
current execution state when it is passed. If a workflow is partially aborted, it executes only
compensations until the checkpoint most recently passed and then suspends.

Let Node have another flag hasCharger that represents whether the node has a charger
or not. We just add a checkpoint, which is a construct provided by ContextWorkflow, into
the method visit as follows:

class Node(..., hasCharger:Boolean)
def visit(n: Node, maze: Set[Node]):CW[Unit] = workflow {
!!(visited(n) /+ (_ => unknown(n)))
if(n.hasCharger) !!(checkpoint) // checkpoint setting
!!{foldCW(...)(...){...} }

}

H. Inoue, T. Aotani, and A. Igarashi 2:9

compensation

normal

Partial	Abort

🤖

Charger

Visited🤖

compensation

normal

Partial	Abort

🤖
Charger

Visited

S

Figure 3 Maze search simulation: Partial abort (left) and its restart (right).

The left side of Fig. 3 illustrates a search being partially aborted and suspended at the
checkpoint (charger). If exec on the suspended workflow, returned by the partial abort, is
invoked, then the robot moves again from the charger (the right side of Fig. 3).

2.6 Blocking Context Checking
We would like to avoid redundant/unnecessary context checks from an efficiency perspective.
In our example, it is not necessary to check the context at the beginning of (1) marking the
node as visited and (2) skipping (i.e., ()/+()) because they take little time. ContextWorkflow
provides atomic and nonatomic blocks to activate and deactivate context checks.
def atomic[A](cw: CW[A]): CW[A]
def nonatomic[A](cw: CW[A]): CW[A]

An atomic block restrains context checking inside it, and a nonatomic block enforces context
checking inside it. If they are nested inside each other, the innermost block takes effect.

Then, we refine the method visit as follows:
1 def visit(n: Node, maze: Set[Node]):CW[Unit] =
2 atomic{ workflow {
3 !!(visited(n) /+ (_ => unknown(n))); ...
4 !!{foldCW(neighbors(n, maze))(()){(_, neighbor) =>
5 if(!neighbor.visited)
6 nonatomic{ sub{ workflow{ ... visit(...); ... } } }
7 else () /+ () } } } }

By enclosing the whole workflow (except the sub-workflow) by atomic, context checks will
not be performed on lines 3 and 7.

The purpose of atomic and nonatomic blocks is not only to improve the efficiency but
also to control the atomicity of interruption. Such constructs are also very common in the
languages supporting asynchronous exceptions and/or transactions; for example, Concurrent
Haskell [40] has blocking constructs of asynchronous exceptions block and unblock.

3 Operational Semantics of Core ContextWorkflow

In this section, we describe the operational semantics of ContextWorkflow by formalizing
a core calculus, which models compensation, checkpoints, sub-workflow, programmable
compensations, and context-checking. Our calculus is inspired by Bruni et.al’s formalization
of Sagas [9]. Our main contribution is how to treat suspension and checkpointing considering
sub-workflows, in the context of workflow languages.

ECOOP 2018

2:10 ContextWorkflow

t ::= A/C | check | cp | cp#E | sub(t)/C | t;t (workflows)
A, C ::= ε | ... (atomic actions)
c ::= C | sub | ccp#E (compensations)
E ::= [] | E[[];t] (evaluation context)

Figure 4 Syntax of core ContextWorkflow.

3.1 Syntax
We show the syntax of our calculus in Fig. 4. Meta-variable t ranges over context workflows;
s ranges over contexts; c ranges over compensations; A and C range over atomic actions,
which are commands from the underlying programming language and so not specified. (We
assume only that the empty atomic action ε is included.) We use A for normal and C for
compensation actions.

A/C is a primitive workflow consisting of a pair of a normal action A and a compensation
action C. sub(t)/C is a sub-workflow with a programmable compensation; if /C is omitted,
the empty action will be assumed. check is the context checking code that asks the current
execution status. The reason why check is explicit in the syntax is to point out where
context checking occurs; actually, whether check appears before or after a primitive workflow
is significant – see Section 3.4 for discussions. cp is a checkpoint declaration and cp#E, which
does not appear in the source program, is an automatically created checkpoint declaration
that records an evaluation context E, and cp is replaced by cp#E at run time.

In compensations, sub is the marker that indicates the start point of a sub-workflow;
ccp#E is a checkpoint automatically installed into a compensation sequence, where E is the
evaluation context that is going to be executed when this checkpoint is executed.

3.2 Big-Step Semantics
In this section, we present a big-step semantics. We use overlines to denote sequences (with
appropriate delimiters). For example, c stands for a possibly empty sequence c1; · · · ;cn.
We also use c \ c to represent the sequence obtained by removing c from c, and similarly for
other metavariables. Moreover, we use #»A for a sequence of atomic actions excluding ε, e.g.,
A1, · · · , An, Cn, · · · , C1.

The following relations give our semantics of core ContextWorkflow:

〈t, E, c〉 ⇓
#»A 〈c′〉 workflow success

〈t, E, c〉 ⇑
#»A
A|P |S 〈c

′, Es〉 workflow interruption
〈c〉 ⇓

#»A 〈c′, Es〉 compensations success
〈t, c〉 ⇓

#»A 〈〉 program commit
〈t, c〉 ⇓

#»A
A 〈〉 program abort

〈t, c〉 ⇓
#»A
P 〈c′, Es〉 program partial abort

〈t, c〉 ⇓
#»A
S 〈c′, Es〉 program suspend

where “A|P |S” means that one of these symbols (A for abort, P for partial abort, and
S for suspend) comes at this position and Es is an evaluation context. These judgments
basically mean that, if the left side of ⇓

#»A
_ or ⇑

#»A
_ is executed, it terminates after executing #»A

and returns the right side, which is a sequence of compensation actions c′ possibly with a
suspended computation Es. The first two relations are for the execution of t under evaluation

H. Inoue, T. Aotani, and A. Igarashi 2:11

context E with compensation actions c recorded by past commands; the first relation is for
successful execution and the second relation is for interrupted execution, where Es is empty
([]) in the case of abort A or partial abort P . The third relation is for the execution of
compensation actions that are returned when a workflow is aborted or partially aborted.
The last four relations are the main relations for execution of a program, which is t and
compensation actions c, which are in many cases empty. If the program is committed or
aborted, it returns nothing; if the program is partially aborted or suspended, then it returns
compensations c′ and the evaluation context Es. The reason why a compensation sequence
is also returned is that it is used when the suspended workflow restarts; in other words, if
〈c, Es〉 is returned by suspension, a restart of the suspended computation can be expressed by
running a program 〈Es[check], c〉 – check means that the restart should check the context
first to check if the context allows the restart.

The semantics is defined by the rules in Fig. 5; the auxiliary function rmsub1 to forget
compensations in the nearest sub-workflow is defined as follows.

rmsub1 (•) = •
rmsub1 (c;c) = if c = sub, then c else rmsub1 (c)

The rule CW-PW is for the primitive workflow that performs normal action A and adds
compensation C. The rules CW-Check-* are for check and one of them is chosen non-
deterministically. The rule CW-Checkpoint is for a checkpoint, which records the cur-
rent continuation E (with symbol ccp) to the list of compensation actions. The hole
in the evaluation context is filled with []; cp#E, which means that, when the recorded
continuation is executed under a different context, the original continuation is recorded
(CW-Checkpoint-Revisit). The rule CW-Sub is for a successful sub-workflow execution,
which replaces compensations in the sub-workflow with c; CW-Sub-Int is for interrupted
sub-workflow execution. Both rules also add (sub [])/C onto the stack of frames (that is,
the evaluation context) before executing t. The rules CW-Seq-* are for sequences, which
push t2 on the stack of frames. The rules CW-Program-* are for program execution,
where CW-Program-Abort is to run compensations except ccp (represented by c′ \ ccp),
meaning that checkpoints are simply ignored. CW-Program-PAbort performs compensa-
tions – if they include ccp, compensation will stop at the first ccp and return the evaluation
context recorded there (see CW-Comp-CCP). The rules CW-Comp* are for the execution
of compensations.

An example of workflow execution is shown as follows. The derivation tree for this relation
is given in Appendix A.2.

〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4, •〉 ⇓A1,A2,Ca

P

〈C1;sub;sub, sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4〉
where tk = Ak/Ck (1 ≤ k ≤ 4) and E1 = sub(sub([];sub(t2)/Ca;check)/Cb;t3);t4.

This is an example of partial abort at the check; hence, an evaluation context and compens-
ations are returned. If we would like to restart the suspended workflow, we give check (or
ε/ε, if the initial check can be omitted) to the evaluation context. Then, restarting it may
perform normal actions A2, A3, and A4 and terminate. In other words, the relation below can
be derived.

〈sub(sub(check;cp#E1;sub(t2)/Ca;check)/Cb;t3);t4, C1;sub;sub〉 ⇓A2,A3,A4 〈〉

ECOOP 2018

2:12 ContextWorkflow

〈A/C,E,c〉 ⇓A 〈C;c〉
(CW-PW)

〈check,E,c〉 ⇓ε 〈c〉
(CW-Check-Cont)

〈check,E,c〉 ⇑εS 〈c,E〉
(CW-Check-Suspend)

〈check,E,c〉 ⇑εA 〈c,[]〉
(CW-Check-Abort)

〈check,E,c〉 ⇑εP 〈c,[]〉
(CW-Check-PAbort)

〈cp,E,c〉 ⇓ε 〈ccp#E[[];cp#E];c〉
(CW-Checkpoint)

〈cp#E0,E,c〉 ⇓ε 〈ccp#E0[[];cp#E0];c〉
(CW-Checkpoint-Revisit)

〈t,E[(sub [])/C],sub;c〉 ⇓
#»A 〈c′〉

〈sub(t)/C,E,c〉 ⇓
#»A 〈C;rmsub1 (c′)〉

(CW-Sub)

〈t,E[(sub [])/C],sub;c〉 ⇑
#»A
∗ 〈c′,Es〉

〈sub(t)/C,E,c〉 ⇑
#»A
∗ 〈c′,Es〉

(CW-Sub-Int)

〈t1,E[[];t2],c〉 ⇓
#»A1 〈c′〉 〈t2,E,c′〉 ⇓

#»A2 〈c′′〉

〈t1;t2,E,c〉 ⇓
#»A1; #»A2 〈c′′〉

(CW-Seq)

〈t1,E[[];t2],c〉 ⇑
#»A
∗ 〈c′,Es〉

〈t1;t2,E,c〉 ⇑
#»A
∗ 〈c′,Es〉

(CW-Seq-Int1)

〈t1,E[[];t2],c〉 ⇓
#»A1 〈c′〉 〈t2,E,c′〉 ⇑

#»A2
∗ 〈c′′,Es〉

〈t1;t2,E,c〉 ⇑
#»A1; #»A2
∗ 〈c′′,Es〉

(CW-Seq-Int2)

〈t,[],c〉 ⇓
#»A 〈•〉

〈t,c〉 ⇓
#»A 〈〉

(CW-Program-Commit)

〈t,[],c〉 ⇑
#»A
A 〈c′,[]〉 〈c′ \ ccp〉 ⇓

#»C 〈•,[]〉

〈t,c〉 ⇓
#»A ; #»C
A 〈〉

(CW-Program-Abort)

〈t,[],c〉 ⇑
#»A
P 〈c′,[]〉 〈c′〉 ⇓

#»C 〈c′′,Es〉

〈t,c〉 ⇓
#»A ; #»C
P 〈c′′,Es〉

(CW-Program-PAbort)

〈t,[],c〉 ⇑
#»A
S 〈c′,Es〉

〈t,c〉 ⇓
#»A
S 〈c′,Es〉

(CW-Program-Suspend)

compensation

〈C〉 ⇓C 〈•,[]〉
(CW-Comp-Action)

〈sub〉 ⇓ε 〈•,[]〉
(CW-Comp-Sub)

〈c〉 ⇓
#»C 〈•,[]〉 〈c〉 ⇓

#»

C′
〈•,[]〉

〈c;c〉 ⇓
#»C ;

#»

C′
〈•,[]〉

(CW-Comp-Seq)

〈ccp#E〉 ⇓ε 〈•,E〉
(CW-Comp-Ccp)

Es 6= [] 〈c〉 ⇓
#»C 〈•,Es〉

〈c;c〉 ⇓
#»C 〈c,Es〉

(CW-Comp-Seq-PAbort1)

Es 6= [] 〈c〉 ⇓
#»C1 〈•,[]〉 〈c〉 ⇓

#»C2 〈c′,Es〉

〈c;c〉 ⇓
#»C1; #»C2 〈c′,Es〉

(CW-Comp-Seq-PAbort2)

Figure 5 Big step semantics of core ContextWorkflow.

H. Inoue, T. Aotani, and A. Igarashi 2:13

3.3 Properties
Here, we state some properties that hold of the semantics. The main aim of this section
is to rigorously give the specification to the language. In particular, giving specifications
about suspension and partial aborts (checkpoints) is important since these are unusual in
the context of workflow languages.

In the following theorems, let pk = Ak/Ck for some k, and we define a function [(t) and
predicates includes and nosub as follows.

Let [(t) be a workflow obtained from t by removing sub, check, cp and cp#E from t.
includes(t,m, n) iff [(t) = pm; · · · ;pn and m ≤ n; or t has no primitive workflows and
m 6≤ n.
includes(E,m, n) = includes(E[check],m, n).
includes(c,m, n) iff c\{sub, ccp#E} = Cm;...;Cn and m ≥ n; or c has no atomic actions
C∗ and m 6≤ n.
nosub(t,m, n) iff includes(t,m, n) and t has no sub-workflow.

Theorems 1 and 2 state about the behaviors under contexts Continue and Abort. These
are the basic properties of Sagas [9].

I Theorem 1 (Workflow commits). If includes(t,m, n) and 〈t, •〉 ⇓
#»A 〈〉 and m ≤ n, then

#»A = Am, · · · An.

I Theorem 2 (Workflow aborts (Successful Compensation)). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
A 〈〉

and m ≤ n, then #»A = Am, · · · Ai, Ci, · · · , Cm for some i (m ≤ i ≤ n), or #»A = ε.

Theorem 3 states that, even though a workflow is suspended in the middle by Suspend,
the resulting normal actions after its final commit are always the same. Therefore, it ensures
that a suspended workflow actually continues from the suspension point.

I Theorem 3 (Restarted suspended workflow commits). If 〈t, •〉 ⇓
#»A 〈〉 and 〈t, •〉 ⇓

#»

A′

S 〈c, E〉
and 〈E[check], c〉 ⇓

»

A′′ 〈〉, then #»A =
#»

A′,
»

A′′.

Theorem 4 states that if a workflow suspends at a checkpoint by PAbort, it surely did
compensations corresponding to completed normal actions successive to the checkpoint;
moreover, the suspended workflow actually points to the continuation from the checkpoint.

I Theorem 4 (Workflow partially aborts). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
P 〈c, E〉 and m ≤ n,

then either of the followings hold.
#»A = Am, · · · , Ai, Ci, Ci−1, · · · , Cj and includes(E, j, n) and includes(c, j − 1,m) for some i
and j (m ≤ j ≤ i ≤ n).
#»A = Am, · · · , An and includes(E, 1, 0) and includes(c, n,m).

Moreover, the following conditions hold.
1. (Suspended workflow commits) If 〈E[check], c〉 ⇓

#»

A′ 〈〉, then
#»

A′ = Aj , · · · , An, or
#»

A′ = ε (if
includes(E, 1, 0)).

2. (Suspended workflow aborts) If 〈E[check], c〉 ⇓
#»

A′

A 〈〉, then
#»

A′ = Aj , · · · Ak, Ck, · · · , Cm for
some k (j ≤ k ≤ n) or

#»

A′ = Cj−1, · · · , Cm.

Theorem 5 provides the properties about a complex workflow including a sub-workflow,
checkpoints and PAbort; it describes that a completed sub-workflow is skipped at the
compensation time and a suspended workflow remembers the original program structure
including checkpoints and the sub-workflow.

ECOOP 2018

2:14 ContextWorkflow

I Theorem 5 (Partial abort, checkpoint and nested workflow). Suppose that includes(t,1,n)
and t without check is
p1;...;cp;pk;...;pm;sub(pm+1;...;cp;pj;...;pl)/Ca;pl+1;...;pn and 〈t, •〉 ⇓

#»A
P 〈c,E〉.

1. (Partial abort skips compensations of complete sub-workflows) If Al+1 ∈ {
#»A }, then

#»A = A1, · · · , Ai, Ci, · · · , Cl+1, Ca, Cm, · · · , Ck for some i > l.
2. (A suspended workflow remembers checkpoints in complete sub-workflows) If Al+1 ∈ {

#»A }
and 〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 and Aj ∈ {
#»

A′} ∧ Al 6∈ {
#»

A′}, then
#»

A′ = Ak, · · · , Ai, Ci, · · · , Cj
for some i such that (j ≤ i ≤ l).

3. (A suspended workflow remembers checkpoints before a sub-workflow) If Cj ∈ { #»A} and
〈E[check],c〉 ⇓

#»

A′

P 〈c′′,E′〉 and Al+1 ∈ {
#»

A′}, then
#»

A′ = Aj , · · · ,Ai,Ci, · · · ,Cl+1,Ca,Cm, · · · ,Ck
for some i > l.

For the robot example, the first and the third items of Theorem 5 are significant;
otherwise, the robot would move back to the whole path at the compensation time, and
forget checkpoints. The second item is important in an example that needs re-calculation of
a complete sub-workflow.

3.4 Discussion
Design Choice of Primitive Workflow with Context Checking. Although A/C is the prim-
itive workflow in the calculus, it does not appear explicitly in the DSL. We regard A/C
preceded by check as a primitive workflow and give another notation A /+ C in the DSL,
representing asynchronous interruption. Actually, another interpretation of A /+ C would be
to put check after A/C. The difference between these interpretations becomes clear when
executing a sub-workflow. Let tk = Ak/+Ck for k = 1, 2. Then, when we execute sub(t1;t2),
is it possible that the resulting action sequence A1,A2,C2,C1 appears? In the former choice
(where A/+C is check; A/C), such a result never occurs – possible sequences of actions are
only •, “A1,C1”, or “A1,A2” – while it may in the latter.

The former choice is looser than the latter in the sense that the whole execution may
commit after the execution though context checking actually occurs during the execution
of an atomic action. Such a behavior is critical in cases where an atomic action must be
performed in the Continue context. For example, suppose that a workflow contains an
atomic action to download something and the context relates to network availability; then
the atomic action must commit only at the time when it is executed in the Continue context;
otherwise, the downloaded file would be incomplete. Therefore, we can regard the latter
choice as transactions.

Since we suppose that many context-aware applications such as robots are not strict,
in our implementation, we adopt the former choice by default. Fortunately, we can switch
between both semantics easily.

Atomic and nonatomic blocks. It is easy to extend with atomic and nonatomic. Their
semantics is similar to sub-workflows and they basically control non-determinism in check.

Abnormal termination. We can consider abnormal termination [9], a stronger notion of
abort that occurs when an atomic action (or a compensation action) fails without even
performing any compensation. Though we do not include abnormal termination here,
it is not difficult to add it; it is enough to add nondeterminism to rules CW-PW and
CW-Comp-Action and the other relation for the abnormal signal. Later, we implement
abnormal termination in the E-DSL, by using exceptions in Scala.

H. Inoue, T. Aotani, and A. Igarashi 2:15

Differences with respect to the calculus [9]. Here, we describe the differences with respect
to the existing calculus [9], by which ours are inspired.

Ours adds the notions of checkpoint, partial abort, and suspension. Technically, our
semantics introduces evaluation contexts in order to capture continuations of workflow
executions.
Ours omits abnormal termination and does not model parallelism.
In ours, an abort inside a nested workflow results in an abort of the parent workflow.
Although this design choice is not usual [12] (where our choice is referred to as upward
abortion propagation), we intend that an abort signal means it is signaled to the whole
workflow, because the workflow is executed on a single thread.

4 Monadic embedding to Scala

Our approach to implementing ContextWorkflow is to embed the language into another
language. We use a free monad transformer for representing and building the abstract syntax
trees and define a monadic interpreter that follows the semantics in Section 3.

There are two differences between the core calculus and the embedding, though they
closely correspond with each other. First, the sub-block is represented by two marks in
the embedding, to indicate the beginning and the end of a block. Second, the semantics of
check is deterministic in the embedding while it is nondeterministic in the core calculus. Our
interpreter checks the context when evaluating check and chooses one branch. We represent
the context by a stream of Context, which is essentially the same as the signal of Context
in Section 2.

The underlying monad of our free monad transformer is a combination of an exception
monad and a reader monad. The exception monad represents aborts, partial aborts, and
suspensions. The reader monad keeps the context that is checked when check is evaluated.
In other words, we develop ContextWorkflow on top of a monadic language that supports
exceptions and readable environments. The monadic interpreter translates ContextWorkflow
programs to monadic programs.

The main contribution of this section is (1) a simple implementation, i.e., clear corres-
pondence between the semantics and implementation, and (2) efficiency in eager languages.
A naive approach would be to extend the compensation monad [47], but it is hard to make
such an extension simple. See Section 5 for a detailed discussion.

We use Scala as the language for demonstration and explanation. Although our imple-
mentation in Scala heavily relies on scalaz [1], we here show language/library-independent
definitions for comprehensibility and generality.

4.1 Free monad transformers
This section gives a brief introduction to the free monad transformers along with the basic
definitions and notations for monadic programming in Scala. Readers who would like to
learn about monads and monadic programming are referred to other papers [43, 58]. Most
of the definitions are simplified; although scalaz uses implicit conversions to use objects as
functors and monads, here we define functors and monads using simple inheritance.

A free monad transformer FreeT[F,M,_] is a monad that is freely constructed from the
given functor F and underlying monad M. One can understand free monad transformers as
abstract syntax trees and therefore the functor F defines the “commands” of the language.
The difference from free monads is that the nodes are some computations of which semantics
is given by the underlying monad.

ECOOP 2018

2:16 ContextWorkflow

Functors and monads are defined by the traits Functor and Monad, respectively. Free
monad transformers are defined by the abstract class FreeT. Functor provides map (fmap in
Haskell) and Monad provides flatMap (»= in Haskell) and point (return in Haskell).

trait Functor[F[_]]{ def map[A,B](f: A => B): F[B] }
trait Monad[M[_]] extends Functor[M]{
def flatMap[A,B](f: A => M[B]): M[B]
def point[A](a: => A): M[A] }

Because Monad provides flatMap, we can use the for-comprehension in Scala, similarly to
the do-notation in Haskell. For example, for values m1 and m2 of the type monad M, the code

for{ a <- m1 ; b <- m2 } yield a + b

is equivalent to the following code.

m1.flatMap(a => m2.map(b => a + b))

FreeT is defined using the auxiliary trait FreeF and provides the two functions iterT
and interpretS.3 Intuitively, FreeT is a list-like structure and iterT works as foldr over
lists. interpretS replaces the “commands” of the language with other “commands.”

class FreeT[F[_],M[_],A](run: M[FreeF[F,A,FreeT[F,M,A]]])
extends Monad[FreeT[F,M,?]]{
def iterT(interp: F[M[A]] => M[A]): M[A]
def interpretS[G[_]](st: ~>[F,G]): FreeT[G,M,A]

}

iterT takes an interpretation of “commands” and translates a “program” of type
FreeT[F,M,A] to that of M[A]. interpretS takes a natural transformation from the func-
tor F to another functor G and translates a “program” of type FreeT[F,M,A] into that of
type FreeT[G,M,A]. The question mark ? in a type parameter means that a surrounding
expression is a type-level anonymous function, e.g., M[A,?] takes one type parameter and
M[A,?,?] takes two.4

The trait FreeF takes three types F, A, and B and has two constructions Pure and
Free. F is the functor that defines “commands.” Pure lifts a pure value of type A to the
“program” represented by the free monad transformer. Free lifts a “command” followed by a
computation of type B to the “program.”

trait FreeF[F[_],A,B]
case class Pure[F[_],A,B](a:A) extends FreeF[F,A,B]
case class Free[F[_],A,B](fb: F[B]) extends FreeF[F,A,B]

4.2 ContextWorkflow Monad

The ContextWorkflow monad CW is a free monad transformer defined as:5

3 Here we borrow iterT from the free package of Haskell. Although iterT can be defined in Scala, it is
not good in practice. We will visit the problem in Sec 4.6.

4 This feature is enabled by kind-projector (https://github.com/non/kind-projector).
5 Again, the definition is simplified from the actual definition just for avoiding unnecessary complexity of
implicit conversions.

https://github.com/non/kind-projector

H. Inoue, T. Aotani, and A. Igarashi 2:17

case class CW[E,M[_],S,A](
run: FreeT[CWT[M,S,?], EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]],?], A])

extends Monad[CW[E,M,S,?]] { /* map, point and flatMap */ }

The type parameter E is for the exception type; M is for the monad that represents effects in the
atomic actions; S is for the suspended workflow type (explained later); and A is for the success-
ful result value type. Sig is the type of the context, which is just an alias of Stream[Context].
A Context is either Continue, Abort, PAbort or Suspend, which are objects that extend
Context. EV is the type of exceptional values that consists of the compensation actions to be
executed and the suspended workflow. InSubL keeps track of the depth of the sub-block to skip
compensation actions. We call EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]], ?] the
underlying monad of CW[E,M,S,A] in the rest of the paper.

CWT represents the “commands” of ContextWorkflow. Concrete commands and CWT are
defined as follows.

trait CWT[M[_],S,A] extends Functor[CWT[M,S,?]] { /* map */ }
case class Comp[M[_],S,A](comp:M[Unit], a:A) extends CWT[M,S,A]
case class SubB[M[_],S,A](a:A) extends CWT[M,S,A]
case class SubE[M[_],S,A](a:A) extends CWT[M,S,A]
case class Cp[M[_],S,A](a:A) extends CWT[M,S,A]
case class Cpn[M[_],S,A](s:S,a:A) extends CWT[M,S,A]
case class Check[M[_],S,A](a:A) extends CWT[M,S,A]

M is a monad for atomic actions; S is the type of a suspended workflow that corresponds
to the evaluation contexts in the calculus. Comp is for specifying compensation action.
SubB and SubE are the beginning and end marks of a sub-block, respectively. Cp and Cpn
are checkpoints that correspond to cp and cp#E in the calculus, respectively. Cpn has a
suspended workflow, which corresponds to the fact that cp#E has an evaluation context E.
Check corresponds to check in the calculus.

One may wonder why we do not have a command for normal actions while we have one
for compensation actions. This is because the normal actions of type M[A] are handled by
the underlying monad EitherT[ReaderT[M,...],...] of the free monad transformer.

The exception type EV consists of three constructors as follows:

sealed trait EV[ME,S]
case class Aborting[ME,S](e:ME) extends EV[ME,S]
case class Suspending[ME,S](s:S) extends EV[ME,S]
case class PAborting[ME,S](s:Option[S],e:ME) extends EV[ME,S]

The type parameter ME is for the type of compensation actions. Aborting represents that
the workflow is aborted. The field e keeps the compensations to be executed. Suspending
represents that the workflow is suspended. The field s keeps the suspended workflow of type
S. PAborting represents that the workflow is partially aborted. The suspended workflow
s is optional because a workflow may not have a checkpoint and in that case, there is no
suspended workflow.

InSubL represents whether the workflow execution is in the sub-block or not.

sealed trait InSubL[A]
case class InSub[A](n:InSubL[A]) extends InSubL[A]
case class NonSub[A](a:A) extends InSubL[A]

ECOOP 2018

2:18 ContextWorkflow

InSub and NonSub represent that the workflow execution is in a sub-workflow and not,
respectively. Notice that only executions of compensation actions are changed by sub-
workflows and programmable compensations. It is therefore sufficient to wrap only the
exceptional values propagated backwards with InSubL.

Readers may wonder what CW[A] that appeared in Section 2 is. This abbreviates
CW[Unit,IO,Nothing,A]; see Appendix A.1 for further details.

4.3 Auxiliary Definitions
This section gives the auxiliary functions and macros that correspond to the syntax for the
users of ContextWorkflow. For readability and simplicity, we omit the type and implicit
arguments of method invocations necessary to compile if they are clear from the context.

The functions check and checkpoint correspond to check and cp in the calculus,
respectively.

def check[E,M[_],S]: CW[E,M,S,Unit] = CW(liftF(Check(())))
def checkpoint[E,M[_],S]: CW[E,M,S,Unit] = CW(liftF(Cp(())))

liftF lifts the objects of type F[A] for any functor F and type A to a free monad transformer
FreeT[F,M,A] for any monad M.

The primitive workflow A/C in the calculus is written as compL(A,C) where compL is an
auxiliary function defined as follows:

def compL[E,M[_],S,A](na:M[A])(ca:A => M[Unit]): CW[E,M,S,A] = CW{
na.liftM.liftM.liftM.flatMap(x => liftF(Comp(ca(x),x))) }

liftM lifts the monadic values of type G[A] to another monadic value of type H[G,A] where
G and H are a monad and a monad transformer, respectively. We also define another auxiliary
function /+ that corresponds to check;A/C 6.

def /+[E,M[_],S,A](na:M[A])(ca:A => M[Unit]): CW[E,M,S,A] =
check.flatMap(_ => compL(na)(ca))

For the programmable compensations and sub-workflows, we define the two auxiliary
functions subC and sub, respectively. subC takes a workflow and a compensation and sub
takes only a workflow. sub concatenates the beginning mark of the block, the given workflow,
and the end mark of the block. subC additionally concatenates the sub-workflow created
from the given workflow and the given compensation action.

def sub[E,M[_],S,A](cw :CW[E,M,S,A]): CW[E,M,S,A] = CW{ for{
_ <- liftF(SubB(()))
r <- cw.run
_ <- liftF(SubE(()))
} yield r }

def subC[E,M[_],S,A](cw :CW[E,M,S,A])(ca :A => M[Unit]): CW[E,M,S,A] = CW{
sub(cw).flatMap(r => liftF(Comp(ca(r),r))) }

We also define two macros !! and workflow using the Monadless [2] library. The macro
!! takes a workflow and escapes it from the program transformation. The macro workflow
works as a block that specifies the target area of the program transformation. Assignments

6 Though omitted here, to regard /+ as an infix operator, we have to define it using implicit conversions
in Scala.

H. Inoue, T. Aotani, and A. Igarashi 2:19

and sequential compositions in workflow are transformed into a chain of monadic binds. For
example,

workflow { val x = !!(w1); val y = !!(w2); x + y }

is transformed into

w1.flatMap(x => w2.map(y => x + y))

4.4 Types of Suspended Workflows
Before showing the monadic interpreter for the CW monad, we need to fix the type of the
suspended workflows. Clearly, it must be equal to the type of the workflow to be executed,
i.e., S in CW[E,M,S,A] must be again CW[E,M,S,A]. This means that S is a fixpoint of the
functor CW[E,M,?,A] [23, 45]. The data type Fix is parameterized over functors

case class Fix[F[_]](out: F[Fix[F]])

and the type of suspended workflows is represented as Fix[CW[E,M,?,A]].

4.5 Monadic interpreter
Our monadic interpreter of the CW language is the function runCWT from, for any monad M and
type A, CW[Unit,M,Fix[CW[Unit,M,?,A]],A], which is equal to Fix[CW[Unit,M,?,A]], to
MM[A] where MM is the underlying monad defined as follows.

def runCWT[M[_],A](s: Fix[CW[Unit,M,?,A]])
: EitherT[ReaderT[M,Sig,?],InSubL[EV[M[Unit],Fix[CW[Unit,M,?,A]]]],A] = {
type S = Fix[CW[Unit, M, ?, A]] // the type of suspended workflows
type R = EV[M[Unit], S] // the type of exceptional results
type F[X] = CWT[M, S, X] // the term functor
type MM[X] = EitherT[ReaderT[M, Sig, ?], InSubL[R], X] // the underlying monad

def runCWT0(cl: F[MM[A]]): MM[A] = cl match{
case Comp(c, k) => ...
...
}
s.out.run.iterT(runCWT0)

}

The function runCWT0 translates each command of the CW language defined by CWT to the
program of the language given by the underlying monad MM. Because the translation proceeds
from the last terms to the first terms by iterT, each command object has the subsequent
translated program. In other words, the result of the rest of the workflow is always available.

The interpretation of Check follows CW-Check-*. It installs a context check to the
resulting program. If the context is Continue, it returns the result of the subsequent
program. It otherwise throws exceptions. Note that the exceptions are just the values of
type EitherT[...], that is the underlying monad, and we do not use the exception handling
mechanism of Scala.

case Check(k) => { // k: EitherT[ReaderT[M, Sig, ?], InSubL[R], A]
ask.liftM.flatMap{ sig =>
sig.head match {
case Abort => raiseException(InSubL.point(Aborting(M.point(()))))

ECOOP 2018

2:20 ContextWorkflow

case PAbort => raiseException(InSubL.point(PAborting(None, M.point(()))))
case Suspend => raiseException(InSubL.point(Suspending(
Fix(CW(FreeT.roll(Check(k.liftM))))))) // creates the suspended workflow
case Continue => local(_.tail)(k)
}}}

k is the interpretation of the subsequent workflow. The method ask gets a value from the
environment. In our case, they are the context that is represented by the streams of type
Stream[Context]. The variable sig is bound to a stream. If the head, which represents the
current context, is Abort, Aborting of point of the unit value is thrown. This is because
there is no compensation to be executed at this point. If the current context is PAbort,
PAborting of None and point of the unit value is thrown. If the current context is Suspend,
we throw the translated program k as the suspended workflow. If the current context is
Continue, we drop the head of the stream and continue interpreting the workflow.

The interpretation of Comp corresponds to CW-Seq-Int-*, CW-Program-*, CW-
Comp-Action and CW-Comp-Seq-*. The parameters comp and k are the compensation
action and the interpretation of the rest of the workflow, respectively.

case Comp(comp, k) => EitherT {
k.run.map{ ev => ev match {
case \/-(_) => ev // successful execution
case -\/(err) =>
extendSuspending(liftF(Comp(c, ())))(err) match { // at compensation
case NonSub(p) => p match { // binding compensation
case Aborting(cp) => \/.left(NonSub(Aborting(cp.flatMap(res => comp.flatMap(_ => M

.point(res))))))
case PAborting(None, cp) => \/.left(NonSub(PAborting(None, cp.flatMap(res => comp.

flatMap(_ => M.point(res))))))
case Suspending(sp) => \/.left(NonSub(Suspending(sp)))
}
case x => \/.left(x) // skipping compensation of a complete sub-workflow
}}}}

If the result of the subsequent workflow is an exception, the interpreter adds the compensation
command Comp(c, ()) at the head of the suspended workflow in err by extendSuspending.
Following the operational semantics, we skip the compensation actions that (1) are in
sub-workflows and (2) are followed by a checkpoint that is not in any sub-workflow and
the execution is partially aborted after executing the checkpoint. The first condition is
represented by InSubL. The last condition is represented by Option.

Following CW-Checkpoint and CW-Comp-Ccp, the interpretation of Cp (1) puts
the command represented by Cpn at the head of the suspended workflow and (2) puts a
suspended workflow to the exception if it is of type PAborting. The suspended workflow
that corresponds to E of cp#E and ccp#E is just the argument of Cp.

case Cp(k) => EitherT {
k.run.map{r => r match {
case \/-(_) => r
case -\/(err) => {
val s = Fix(CW(k.liftM))
val kp = liftF(Cpn(s, ())) // creates Cpn that is substituted for the Cp
\/.left(setPAbort(s)(extendSuspending(kp)(err))) // set pabort with suspension
}}}}

H. Inoue, T. Aotani, and A. Igarashi 2:21

s is the suspended workflow. The function setPAbort merely replaces the first parameter of
PAborting with s if it is None. The interpretation of Cpn is similar.

The interpretations of SubB and SubE just remove and add InSub layers in the exceptional
values, respectively.

4.6 Stack Safety
Implementations of free monad transformers in eager languages usually need some care to
avoid stack overflow (so-called stack safety) and do not provide iterT. Instead, they provide
a “foldl variant” of iterT [21], namely runFreeT in Purescript and runM in scalaz, which
takes a function from F[FreeT[F,M,A]] to M[FreeT[F,M,A]] and returns a value of type
M[A] for any functor F, monad M and type A.

It is necessary to know whether the subsequent workflow is interrupted or not to perform
compensation actions. We use continuation monads to achieve this as the compensation
monad [47]. We wrap the underlying monad of CW with a continuation monad transformer
ContT.7

case class CW[E,M[_],S,R,A](
run: FreeT[CWT[M,S,?],
ContT[EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]],?], R, ?],
A])

extends Monad[CW[E,M,S,R,?]] { /* map, point and flatMap */ }

The function runCWT0 for runM takes a command followed by an uninterpreted workflow
and returns a continuation monad transformer followed by the workflow left uninterpreted.

def runCWT[M[_],R,A](s: Fix[CW[Unit,M,?,R,A]]) = {
type S = Fix[CW[Unit, M, ?, R, A]]
type F[X] = CWT[M, S, X]
type MM[X] = ContT[EitherT[ReaderT[M, Sig, ?], InSubL[EV[M[Unit], S]], X], R, X]
def runCWT0[M[_],R,A](cl: F[FreeT[F, MM, A]]): MM[FreeT[F, MM, A]]
= ...

}

The change on the definition of runCWT0 is straightforward. All we need to do is just wrap
the exception monad transformer with the continuation monad transformer. For example,
the interpretation of the command CompL is defined as follows.

case Comp(comp, k) = ContT{knt =>
EitherT{
knt(k).run.map{ev => ev match {
... /* the same to the previous definition */
}}}}

4.7 Atomicity
In this section, we extend CWT and the CW monad to support the atomic and nonatomic
blocks.

7 The continuation monad transformer must be stack safe. Unfortunately, neither scalaz nor cats (another
library similar to scalaz) provides it. Our Scala implementation employs a workaround that relies on
Trampoline [8] in the IO monad. In other words, we always use the IO monad as the underlying user
monad of the CW monad.

ECOOP 2018

2:22 ContextWorkflow

We add a command CheckA for active context checking and CheckI for inactive context
checking, whose definitions are similar to that of Check.

case class CheckA[M[_],S,A](a:A) extends CWT[M,S,A]
case class CheckI[M[_],S,A](a:A) extends CWT[M,S,A]

The interpretation of CheckA is similar to that of Check and that of CheckI is just continuing
the evaluation of the subsequent workflow without checking the context.

The two blocks are implemented as two functions, similarly to how sub sub-workflows are
implemented. The functions atomic and nonatomic replace Check with CheckI and CheckA,
respectively, as follows.

def atomic[E, M[_], S, A](cw: CW[E, M, S, A]) : CW[E, M, S, A] = CW {
cw.run.interpretS[CWT[M,S,?]](new (~>[CWT[M,S,?], CWT[M,S,?]]) {
def apply[A](c: CWT[M,S,A]): CWT[M,S,A] = c match {
case Check(a) => CheckI(a)
case _ => c
}})}

4.8 Abnormal Termination and Exceptions in Scala
We have already mentioned abnormal termination in Section 3. In our implementation
in Scala, abnormal termination is realized by exceptions of the language. Basically, if an
exception is thrown in an atomic action, the whole execution stops. However, we sometimes
want to convert an exception in normal action to context, and it can be done using a new
form of primitive workflow (normal /~ compensation). This is mostly the same as /+, but
absorbs some particular exceptions AbortE and PAbortE in the normal action, and raises
the interruption Abort or PAbort. For example:

trait CWException extends Exception
class AbortE extends CWException
class PAbortE extends CWException
val cw0 = {if(...) "success" else throw e} /~ comp

When running cw0, if the exception e is AbortE or PAbortE, it will abort or partially abort;
otherwise, the exception is raised as usual. In both cases, it does not do the corresponding
compensation comp.

/~ is defined as follows.

def /~[E,M[_],S,A](na:M[Try[A]])(comp:A => M[Unit]): CW[E,M,S,A] = for {
tried <- compL(na)(_ match {
case Success(a) => comp(a) // same as /+
case Failure(e) => M.point(()) // skip the compensation comp
})
a <- tried match {
case Failure(AbortE) => throwCWException(Abort) // raise abort
case Failure(RestartE) => throwCWException(PAbort) // raise pabort
case Success(a) => compL(M.point(a))(_ => M.point(())) // same as /+
case Failure(e) => compL(M.point[A]{throw e})(_ => M.point(())) // rethrowing e
}} yield a

The argument na is of the type M[Try[A]]. Try[T] is a Scala’s class that represents a
computation that may either result in an exception (Failure[T]) or return a successfully
computed value (Success[T]). What /~ does is first binding the result of compL to tried of

H. Inoue, T. Aotani, and A. Igarashi 2:23

the type Try[A] and then carry out one of the following: (1) raising Abort or PAbort inside
ContextWorkflow, (2) successfully committing na, or (3) throwing the exception e of Scala.

Readers may wonder that the type of /~ (and also /+) is different from that of actual
use in examples so far. To omit the explicit type constructors of M and Try, we use implicit
conversions. For further details, see Appendix A.1.

5 Related Work

This work is the direct descendant of our previous work [32]. The main differences between
the two are the monadic interpreter, a formalization of semantics, the realization of suspension
and checkpoint, and advanced implementation.

Context-Oriented Programming. The literature on context-oriented programming [30],
which advocates the use of layers to modularize context-dependent behavior, includes several
reports on behavioral change in response to asynchronous context changes [33, 57, 7]. Among
them, the closest to the present work is Flute [7] in that it supports interruptible context-
dependent execution. Interruptions occur when the context changes, and the context is
represented as a reactive value. If the execution of the program is interrupted, it is suspended
and another execution that reflects the new context starts. The main difference from Context-
Workflow is that ContextWorkflow provides a wider variety of reactions to interruptions,
using compensations, sub-workflows, and checkpoints, while Flute emphasizes changing
program behavior according to context change.

Termination and Suspension. Rudys and Wallach [50] argue that in language run-time
systems such as JVM that execute mobile code, it is important to be able to terminate
such code for security reasons. For example, it can be critical to stop executing potentially
buggy or untrusted mobile code. They propose a concept called soft termination to ensure
that mobile code is properly terminated. For example, it makes a program with potentially
infinite loops interruptible. Unlike our approach, theirs automatically transforms mobile
code using code rewriting.

Several languages provide features to easily realize suspensions, such as first-class con-
tinuations [29, 15], which are supported in languages such as Scheme [55] and Scala [49],
and coroutines [13]. Coroutines are a generalization of subroutines in the sense that they do
not exit but call another coroutine as the caller coroutine suspends, and are supported in
languages such as Lua [16]. We expect that these facilities are also useful for implementing
ContextWorkflow.

Asynchronous Exception. Asynchronous exception, found in, e.g., Haskell [40], Ruby and
OCaml [18], is also used to realize interruption. Java and Scala threads take a so-called
semi-asynchronous approach [40], where asynchronous exceptions are thrown in the thread if
the thread is blocked by sleep(), wait(), or join(); otherwise, an interrupted flag is turned
on and the thread has to manually check the flag. The design of ContextWorkflow is closer
to the former languages in the sense that such a flag to denote interruption is completely
implicit.

Workflow. Workflow is a broadly used notion [22, 12] and is provided in several lan-
guages such as Windows Workflow Foundation [42] in .NET and Windows PowerShell [41].
PowerShell also supports checkpointing for fault tolerance. There are many studies for the

ECOOP 2018

2:24 ContextWorkflow

formalization of workflow [9, 10, 38]. Among them, our core ContextWorkflow is based on
Bruni et al.’s formalization [9].

In a scientific workflow [39], which is an adaptation of the workflow to scientific computa-
tions, a series of heavy computations are executed. In a scientific workflow, checkpoints are
also useful to avoid wasteful recomputation [14]. We suppose that ContextWorkflow can be
used to develop these applications.

Software Transactional Memory. The software transactional memory (STM) [53], provided,
e.g., by Scala [52] and Haskell [26], is a language-level approach to concurrency control, which
is similar to a database transaction. STM provides the atomic block for atomic execution of
all of the loads and stores of a critical section. If multiple atomic blocks are executed on
multiple threads and inconsistency is found by interleaving execution, all the atomic blocks
will be automatically rolled back. Checkpoints and continuations are also introduced in STM
to realize partial aborts without using nested atomic block and gain efficiency [37]. STM is
similar to our ContextWorkflow in the sense that they are automatically rolled back when
some inconsistency occurs, although inconsistency is caused by rather different events (racy
access to memory and context change).

Interruption in Functional Reactive Programming. The ideas of interruption and roll-back
are also found in the context of FRP, such as P-FRP [34]. P-FRP is an FRP language for
real-time systems, based on E-FRP [59]. In E-FRP, discrete events trigger executions of
event handlers, which update reactive values. While E-FRP requires that each event handler
execute atomically, P-FRP introduces priorities between events and allows event handlers to
be interrupted when an urgent event occurs. To realize such an interruption, P-FRP adopts
roll-back mechanisms like STM.

A difference from ours appears in what is rolled back and what kind of effect is removed.
While P-FRP rolls back each event handlers and prevents reactive values from being up-
dated incorrectly, ours rolls back the entire execution of a workflow and may remove any
computational effects.

Compensation and Asynchronous Exception Monads. Ramalingam et al. showed that
workflows with compensating actions can be represented by the compensation monad [47].
Besides the compensation monad, we also got the idea that computations with asynchronous
exceptions can be represented by using the resumption monads [27, 28], which are structurally
equal to the free monad [46].

Modular Exception Handling. Modularization of exception-handling code has been a signi-
ficant concern in aspect-oriented programming [35, 11] because the separation of exception-
handling code from normal code enhances the re-usability of each module. The compensation
approach [60], which we adopt here, regards a pair of a normal code and a compensation as
a unit of reuse instead, and also is modular.

Reversible Programming. Compensation actions can be seen as weak manual inversions
of normal actions. In reversible programming languages [61], programs run forward and
backward, and it is ensured that each direction is the exact inverse of the other. In other words,
if programmers write a normal action in reversible programming languages, its compensation
action is automatically defined. Therefore, integrating reversible programming to Context-
Workflow will be interesting because it can release programmers from the burden of manually

H. Inoue, T. Aotani, and A. Igarashi 2:25

specifying compensation actions. Programming compensations is often cumbersome, but
has an advantage that we may be able to avoid redundant compensation – such as visiting
unnecessary nodes to go back to the start node as we saw in the maze search example in
Section 2.

6 Conclusions

In this work, we have proposed ContextWorkflow for developing interruptible context-aware
applications. ContextWorkflow basically combines the ideas of workflow and FRP and
supports compensations, asynchronous interruption, checkpointing, nested-workflow and
suspension. We also formalized the core idea of our language by developing a big-step
operational semantics. Further, we proposed a method to embed our ContextWorkflow in
existing languages such as Scala and Haskell, mainly using free monads; and the embedded
DSL empowers host languages to treat the above features.

One important direction of future work is to support parallelism as many other workflow
languages do, that is, atomic actions are executed in parallel on several threads. With
parallelism, we expect the semantics of suspension, checkpoints, and sub-workflows to
be changed drastically. A question is, for example, if only one sub-workflow of several
concurrently running sub-workflows has a checkpoint, how does the whole workflow partially
abort? In addition, in a parallel setting, an abort of a sub-workflow need not result in the
abort of the parent workflow.

Another direction of future work is efficient implementation. Currently, since we use
monad transformers naively, our implementation is not efficient; at least, we should unroll
the monad transformer stack as is the standard practice in Haskell programming. It would
also be valuable to develop ContextWorkflow with other implementation techniques such as
first-class continuations and extensible effects [36], which are also introduced in Scala, and
compare different implementations.

One tediousness in ContextWorkflow is that we have to write compensations manually,
while we do not need to do so in database transaction and STM. Therefore, it would be
interesting to develop a method to construct compensation actions from normal actions.
Existing studies such as reversible computing would be helpful to achieve this.

In the current design, programmers can write as long atomic actions as they wish. Since we
suppose that one application of ContextWorkflow is battery-aware software, it is interesting
to automatically estimate how much execution time an atomic action will consume; then
we can perform a kind of verification, e.g., by estimating that 10% of battery level would
be enough to complete any compensations of the workflow. We expect that we can rely on
existing studies about complexity estimation such as Gulwani et al. [25].

References

1 scalaz. URL: https://github.com/scalaz/scalaz.
2 Monadless. URL: http://monadless.io/.
3 Gregory Abowd, Anind Dey, Peter Brown, Nigel Davies, Mark Smith, and Pete Steggles.

Towards a better understanding of context and context-awareness. In Handheld and ubi-
quitous computing, volume 1707 of Springer LNCS, pages 304–307, 1999.

4 Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino Segnan.
Context-aware workflow management. In International Conference on Web Engineering,
volume 4607 of Springer LNCS, pages 47–52, 2007.

5 Steve Awodey. Category Theory. Oxford University Press, Inc., 2nd edition, 2010.

ECOOP 2018

https://github.com/scalaz/scalaz
http://monadless.io/

2:26 ContextWorkflow

6 Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx,
and Wolfgang De Meuter. A survey on reactive programming. ACM Computing Surveys
(CSUR), 45(4):52, 2013.

7 Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lombide Carreton, and
Wolfgang De Meuter. Interruptible context-dependent executions: a fresh look at program-
ming context-aware applications. In Proc. of ACM Onward! 2012, pages 67–84. ACM,
2012.

8 Rúnar Óli Bjarnarson. Stackless scala with free monads. Scala Days, 2012.
9 Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical foundations for com-

pensations in flow composition languages. In Proc. of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages Pages (POPL 2005), pages 209–220.
ACM, 2005.

10 Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for long-running transac-
tions. In Communicating Sequential Processes. The First 25 Years, volume 3525 of Springer
LNCS, pages 133–150. Springer, 2005.

11 Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo Figueiredo. EJFlow:
Taming exceptional control flows in aspect-oriented programming. In Proc. of AOSD’08,
pages 72–83, New York, NY, USA, 2008. ACM.

12 Christian Colombo and Gordon J. Pace. Recovery within long-running transactions. ACM
Comput. Surv., 45(3):28:1–28:35, 2013.

13 Melvin E Conway. Design of a separable transition-diagram compiler. Communications of
the ACM, 6(7):396–408, 1963.

14 Daniel Crawl and Ilkay Altintas. A provenance-based fault tolerance mechanism for sci-
entific workflows. In Proc. of Provenance and Annotation of Data and Processes, volume
5272 of Springer LNCS, pages 152–159, 2008.

15 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proc. of Lisp and Functional
Programming, pages 151–160, 1990.

16 Ana Lúcia de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Coroutines in Lua.
Journal of Universal Computer Science, 10(7):910–925, 2004.

17 William R. Dieter and James E. Lumpp. A user-level checkpointing library for POSIX
threads programs. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, pages 224–227. IEEE, 1999.

18 Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivara-
makrishnan, and Leo White. Concurrent system programming with effect handlers. In
Proceedings of the Symposium on Trends in Functional Programming, TFP, 2017.

19 Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, pages 263–
273. ACM, 1997.

20 Marc Feeley. Polling efficiently on stock hardware. In Proceedings of the conference on
Functional programming languages and computer architecture, pages 179–187. ACM, 1993.

21 Phil Freeman. Stack safety for free. URL: http://functorial.com/
stack-safety-for-free/index.pdf.

22 Hector Garcia-Molina and Kenneth Salem. Sagas. In Proc. of ACM SIGMOD, pages
249–259, New York, NY, USA, 1987. ACM.

23 Jeremy Gibbons. Datatype-generic programming. InDatatype-Generic Programming, pages
1–71. Springer, 2007.

24 Jim Gray. The transaction concept: Virtues and limitations. In Proceedings of the Seventh
International Conference on Very Large Data Bases, pages 144–154, 1981.

http://functorial.com/stack-safety-for-free/index.pdf
http://functorial.com/stack-safety-for-free/index.pdf

H. Inoue, T. Aotani, and A. Igarashi 2:27

25 Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: Precise and efficient static
estimation of program computational complexity. In Proc. of ACM POPL, pages 127–139,
New York, NY, USA, 2009. ACM.

26 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 48–60. ACM, 2005.

27 William L. Harrison. The essence of multitasking. In International Conference on Algeb-
raic Methodology and Software Technology, volume 4019 of Springer LNCS, pages 158–172.
Springer, 2006.

28 William L. Harrison, Gerard Allwein, Andy Gill, and Adam Procter. Asynchronous ex-
ceptions as an effect. In Proceedings of the 9th international conference on Mathematics
of Program Construction, volume 5133 of Springer LNCS, pages 153–176. Springer-Verlag,
2008.

29 Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and
coroutines. In Proceedings of the 1984 ACM Symposium on LISP and functional pro-
gramming, pages 293–298. ACM, 1984.

30 Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3):125–151, 2008.

31 Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys
(CSUR), 28(4es):196, 1996.

32 Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. A DSL for compensable and inter-
ruptible executions. In Proceedings of the 4th ACM SIGPLAN International Workshop on
Reactive and Event-Based Languages and Systems, REBLS 2017, pages 8–14, New York,
NY, USA, 2017. ACM.

33 Hiroaki Inoue and Atsushi Igarashi. A library-based approach to context-dependent com-
putation with reactive values: Suppressing reactions of context-dependent functions using
dynamic binding. In Companion Proc. of the 15th Intl. Conf. on Modularity, pages 50–54,
New York, NY, USA, 2016. ACM.

34 Roumen Kaiabachev, Walid Taha, and Angela Zhu. E-FRP with priorities. In Proceedings
of the 7th ACM & IEEE international conference on Embedded software, pages 221–230.
ACM, 2007.

35 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, Proc. of ECOOP, volume 1241 of Springer LNCS, pages 220–
242. Springer, 1997.

36 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: An alternative to
monad transformers. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Haskell ’13, pages 59–70, New York, NY, USA, 2013. ACM.

37 Eric Koskinen and Maurice Herlihy. Checkpoints and continuations instead of nested trans-
actions. In Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, pages 160–168. ACM, 2008.

38 Jing Li, Huibiao Zhu, Geguang Pu, and Jifeng He. Looking into compensable transactions.
In Software Engineering Workshop, 2007. SEW 2007. 31st IEEE, pages 154–166. IEEE,
2007.

39 Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Experience, 18(10):1039–1065,
2006.

ECOOP 2018

2:28 ContextWorkflow

40 Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous
exceptions in Haskell. In Proc. of ACM PLDI, pages 274–285, New York, NY, USA, 2001.
ACM.

41 Microsoft. Powershell documentation. URL: https://docs.microsoft.com/powershell/.
42 Microsoft. Windows workflow foundation. URL: https://docs.microsoft.com/en-us/

dotnet/framework/windows-workflow-foundation/.
43 Eugenio Moggi. Computational lambda-calculus and monads. In Logic in Computer Sci-

ence, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 14–23. IEEE, 1989.
44 N.C. Narendra and S Gundugola. Automated context-aware adaptation of web service

executions. In Proceedings of the IEEE International Conference on Computer Systems
and Applications, pages 179–187. IEEE Computer Society, 2006.

45 Bruno C. d. S. Oliveira and Jeremy Gibbons. Scala for generic programmers: comparing
Haskell and Scala support for generic programming. Journal of functional programming,
20(3-4):303–352, 2010.

46 Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad. In Mathematical
Foundations of Programming Semantics Thirtieth Annual Conference, page 273, 2014.

47 Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence. In Proc. of
ACM POPL, POPL ’13, pages 249–262, New York, NY, USA, 2013. ACM.

48 Brian Randell, Peter Lee, and Philip C. Treleaven. Reliability issues in computing system
design. ACM Computing Surveys (CSUR), 10(2):123–165, 1978.

49 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delim-
ited continuations by a type-directed selective CPS-transform. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’09, pages
317–328. ACM, 2009.

50 Algis Rudys and Dan S. Wallach. Termination in language-based systems. ACM Transac-
tions on Information and System Security (TISSEC), 5(2):138–168, 2002.

51 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging between object-
oriented and functional style in reactive applications. In Proc. of Intl. Conf. on Modularity,
pages 25–36. ACM, 2014.

52 STM Scala. Expert group. scalastm. web, 2011. URL: https://nbronson.github.io/
scala-stm/.

53 Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

54 Sucha Smanchat, Sea Ling, and Maria Indrawan. A survey on context-aware workflow
adaptations. In Proceedings of the 6th International Conference on Advances in Mobile
Computing and Multimedia, pages 414–417. ACM, 2008.

55 Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,
and Jacob Matthews. Revised6 report on the algorithmic language Scheme. Journal of
Functional Programming, 19(S1):1–301, 2009.

56 Janis Voigtländer. Asymptotic improvement of computations over free monads. In Proceed-
ings of the 9th International Conference on Mathematics of Program Construction, pages
388–403. Springer-Verlag, 2008.

57 Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented programming:
Beyond layers. In Proc. of Intl. Conf. on Dynamic Languages, pages 143–156, New York,
NY, USA, 2007. ACM.

58 Philip Wadler. Monads for functional programming. In International School on Advanced
Functional Programming, pages 24–52. Springer, 1995.

59 Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In International Sym-
posium on Practical Aspects of Declarative Languages, pages 155–172. Springer, 2002.

https://docs.microsoft.com/powershell/
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/
https://nbronson.github.io/scala-stm/
https://nbronson.github.io/scala-stm/

H. Inoue, T. Aotani, and A. Igarashi 2:29

60 Westley Weimer. Exception-handling bugs in Java and a language extension to avoid them.
In Advanced Topics in Exception Handling Techniques, volume 4119 of Springer LNCS,
pages 22–41, 2006.

61 Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible
self-interpreter. In Proc. ACM PEPM, pages 144–153, New York, NY, USA, 2007. ACM.

62 Lukasz Ziarek and Suresh Jagannathan. Lightweight checkpointing for concurrent ML.
Journal of Functional Programming, 20(2):137–173, 2010.

A Appendix

A.1 Hiding Type Parameters for Simplicity
The type CW[A] in Section 2 is in fact an abbreviation of CW[Unit,IO,Nothing,A]. The
important point is to fix M to IO and S to Nothing. In Scala, Nothing is a subtype of every
other type.

The monad IO is the standard way to treat effectful code in monadic programming, but
explicit use of the IO monad constructor is redundant and not kind to many programmers.
Therefore, we hide the explicit appearance of IO using implicit conversions of Scala. For
example, the way a /+ c is converted to the corresponding monadic value is that (1) a of
the type A is converted to a special object of the type CWOps that contains a field of the type
IO[A] by implicit conversions, and then (2) the method /+ of the special object is invoked.
It takes an argument of the type A => Unit and returns a value of the type CW[A]. Here is
the definition of the implicit conversion and the class CWOps:

implicit def toCWOps[A](proc: => A): CWOps[A] = new CWOps[A](IO(proc))
class CWOps[A](t: IO[A]) {
def /+ (comp: => A => Unit): CW[A] = /+(t)(a => IO(comp(a)))

}

toCWOps is the definition for the implicit conversion. IO(a) is the IO monad constructor.
We define the method /+ in class CWOps using the function /+ that appeared in Section 4.

The reason for using Nothing as the suspended workflow type is that, to treat CW as a
monad, type parameters except for A must be fixed or parameterized. Although the latter
approach appears good, it would become redundant in Scala. For example, let CWS[S,A] be
CW[Unit,IO,S,A], and let us combine two CWS:

def testU[S]: CWS[S,Unit] = ...; def testI[S]: CWS[S,Int] = ...
def testUI[S]: CWS[S,Int] = testU[S].flatMap(_ => testI[S])

We would have to use def and then type parameter S would appear everywhere, since Scala’s
value is not polymorphic. While such definitions can be treated well in Haskell, we would
have to manually parameterize it one by one in Scala. Instead, we fix S to Nothing and cast
Nothing to a proper suspended workflow type Fix[CW[Unit,IO,?,A]] at run time.

ECOOP 2018

2:30 ContextWorkflow

A.2 Derivation Example

Let tk = Ak/Ck for k = a, b, 1, 2, ...

subgoal 1: 〈sub {sub {t1;cp;sub(t2)/Ca;check}/cb;t3};t4, [], •〉 ⇑A1,A2
P 〈ca;ccp0;c1;sub;sub, []〉

PW
〈A1/C1, E0[[];cp;sub(t2)/Ca;check], sub;sub〉 ⇓A1 〈C1;sub;〉

CP
〈cp, E1, C1;sub;sub〉 ⇓ε 〈ccp0;C1;sub;sub〉 (subgoal2)

Seq-Int2
〈cp;sub(t2)/Ca;check, E0, C1;sub;sub〉 ⇑A2

P 〈c0, []〉 Seq-Int2
〈t1;cp;sub(t2)/Ca;check, E0, sub;sub〉 ⇑A1,A2

P 〈c0, []〉 Sub-Int
〈sub(t1;cp;sub(t2)/Ca;check)/Cb, sub([];t3);t4, sub〉 ⇑A1,A2

P 〈c0, []〉 Seq-Int1
〈sub(t1;cp;sub(t2)/Ca;check)/Cb;t3, sub([]);t4, sub〉 ⇑A1,A2

P 〈c0, []〉 Sub-Int
〈sub(sub(t1;cp;sub(t2)/Ca;check)/Cb;t3), [];t4, •〉 ⇑A1,A2

P 〈c0, []〉 Seq-Int1
〈sub(sub(t1;cp;sub(t2)/Ca;check)/Cb;t3);t4, [], •〉 ⇑A1,A2

P 〈c0, []〉

subgoal 2: 〈sub(t2)/Ca;check, E0, ccp0;C1;sub;sub〉 ⇑A2
P 〈Ca;ccp0;C1;sub;sub, []〉

PW
〈A2/C2, E2, sub;ccp0;C1;sub;sub〉 ⇓A2 〈C2;sub;ccp0;C1;sub;sub〉 Sub

〈sub(t2)/Ca, E0[[];check], ccp0;C1;sub;sub〉 ⇓A2 〈c0〉
Check-PAbort

〈check, E0, Ca;ccp0;C1;sub;sub〉 ⇑εP 〈c0, []〉 Seq-Int2
〈sub(t2)/Ca;check, E0, ccp0;C1;sub;sub〉 ⇑A2

P 〈Ca;ccp0;C1;sub;sub, []〉

goal: 〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4〉 ⇓A1,A2,Ca

P 〈C1;sub;sub, sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4〉

(subgoal1)

Comp-Action
〈Ca〉 ⇓Ca 〈•, []〉

Comp-Ccp
〈ccp#E1}[[];cp#E1}]〉 ⇓ε 〈•, E1[[];cp#E1]〉 Comp-Seq-PAbort1

〈ccp0;C1;sub;sub〉 ⇓ε 〈C1;sub;sub, E1[[];cp#E1]〉 Comp-Seq-PAbort2
〈c0〉 ⇓Ca 〈C1;sub;sub, E1[[];cp#E1]]〉 Program-PAbort

〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4〉 ⇓A1,A2,Ca

P 〈C1;sub;sub, E〉

where

E0 = sub(sub([])/Cb;t3);t4
E1 = E0[[];sub(t2)/Ca;check] = sub(sub([];sub(t2)/Ca;check)/Cb;t3);t4
E2 = E0[(sub [])/Ca;check] = sub(sub((sub [])/Ca;check)/Cb;t3);t4
ccp0 = ccp#E1[[];cp#E1]
c0 = Ca;ccp0;C1;sub;sub
E = E1[[];cp#E1] = sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4

Figure 6 A derivation of an execution of sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4

with pabort at check.

A.3 Proofs of Properties
In the following theorems, let pk = Ak/Ck for some k, and we define the functions as follows.

[(t) be a workflow that is obtained by removing sub, check, cp and cp#E from t.
includes(t,m, n) iff [(t) = pm; · · · ;pn and m ≤ n; or t has no primitive workflows.
includes(E,m, n) iff includes(E[check],m, n).
includes(c,m, n) iff c\{sub, ccp#E} = Cm;...;Cn and m ≥ n; or c has no atomic actions
C∗.
nosub(t,m, n) iff includes(t,m, n) and t has no sub-workflows.

I Lemma 1 (Commit). If includes(t,m, n) and 〈t, E, c〉 ⇓
#»A 〈c′〉, then #»A = Am, · · · , An (if

m ≤ n) or #»A = ε (otherwise).

Proof. By straightforward induction on the derivation. J

I Lemma 2 (Abort). If nosub(t,m, n) and 〈t, E, c〉 ⇑
#»A
A|P 〈c

′, []〉, then #»A = Am, · · · , Ai and
includes(c′, i,m) for some i such that m ≤ i ≤ n (when m ≤ n), or #»A = ε ∧ includes(c′, 0, 1)
(otherwise).

H. Inoue, T. Aotani, and A. Igarashi 2:31

Proof. By straightforward induction on the derivation. J

I Lemma 3 (Compensation). If c = Cm, · · · , Cn and 〈c〉 ⇓
#»C 〈•, []〉, then #»C = Cm, · · · , Cn.

Proof. By straightforward induction on the derivation. J

I Lemma 4 (Checkpoint). Suppose nosub(t,m, k) and t has no cp#E∗ and 〈t, E, c〉 ⇓
#»A

〈c′, []〉 and includes(E, k + 1, n) and includes(c,m − 1, l) and l ≤ m and ccp#Es 6∈ c and
ccp#Es ∈ c′ and ccp#Es comes just after Cj (or just before Cj+1, so c′ usually becomes
Ck,...,Cj+1,...,ccp#Es,...,Cj...,Cm) and m− 1 ≤ j ≤ k.
1. If m− 1 ≤ k ≤ n ∧m ≤ n, then includes(Es, j + 1, n).
2. If n ≤ k < m, then includes(Es,m, k).

Proof. Proof by induction on the derivation of 〈t, E, c〉 ⇓
#»A 〈c′, []〉. We show only main

cases for the first item.
Case CW-Checkpoint: Es = E[[];cp#E] j = m− 1
It is the case that k = m− 1, and so includes(E,m, n). Clearly, includes(Es,m, n), finishing
the case.
Case CW-Seq: t = t1;t2 〈t1, E[[];t2], c〉 ⇓

#»A1 〈c′′〉
〈t2, E, c′′〉 ⇓

#»A2 〈c′〉
We get includes(t1,m, i) and includes(t2, i+1, k) for some i s.t.m−1 ≤ i ≤ k. The induction
hypothesis finishes the case. J

I Lemma 5 (Partial Abort). Suppose nosub(t,m, n0) and t has no cp#E∗ and 〈t, [], •〉 ⇑
#»A
P

〈c′, []〉 and #»A = Am, · · · , An and includes(c′, n,m) and 〈c′〉 ⇓
#»C 〈c′′, Es〉.

If m ≤ n, then #»C = ε and includes(Es,m, n) and includes(c′′, n,m), or #»C = Cn, · · · , Ck+1
and includes(Es, k + 1, n) and includes(c′′, k,m) for some k s.t. m− 1 ≤ k < n.
If m > n, then #»C = ε and includes(Es,m, n) and includes(c′′, n,m).

Proof. Proof by induction on the derivation of 〈c〉 ⇓
#»C 〈c′, Es〉, using Lemma 4. J

I Lemma 6 (Suspend). Suppose includes(t,m, k) and 〈t, E, c〉 ⇑
#»A
S 〈c′, Es〉 and includes(E, k+

1, n).
1. If m − 1 ≤ k ≤ n ∧m ≤ n, then #»A = Am, · · · , Ai for some i such that m ≤ i ≤ k and

includes(Es, i+ 1, n), or #»A = ε and includes(Es,m, n).
2. If n ≤ k < m, then includes(Es,m, k).

Proof. Proof by induction on the derivation. We show only main cases for the first item.
Case CW-Check-Suspend:
It is the case that k = m− 1, and so includes(E,m, n), finishing the case.
Case CW-Sub-Int: t = sub(t′)/c

We can get includes(t′,m, k) and includes(E[(sub [])/c], k + 1, n). Then, the induction
hypothesis finishes the case.
Case CW-Seq-Int1: t = t1;t2

We get includes(t1,m, j) for some j s.t., m− 1 ≤ j ≤ k. We also get includes(E[[];t2], j +
1, n). Then, the induction hypothesis finishes the case.

ECOOP 2018

2:32 ContextWorkflow

Case CW-Seq-Int2: t = t1;t2 〈t1, E[[];t2], c〉 ⇓
#»A1 〈c′′〉

〈t2, E, c′′〉 ⇑
#»A2
S 〈c′, Es〉

We get includes(t1,m, j) for some j s.t., m− 1 ≤ j ≤ k. By Lemma 1, #»A1 = Am, · · · , Aj−1
(when m ≤ j), or #»A1 = ε (when j = m − 1). We also get includes(t2, j + 1, k) from
includes(t,m, k) and includes(t1,m, j). We still have includes(E, k, n).

Then, by the induction hypothesis, #»A2 = Aj , · · · , Ai for some i such that j ≤ i ≤ k and
includes(Es, i+ 1, n), or #»A2 = ε and includes(Es,m, n).

Finally, we can finishes the case concatenating #»A1 and #»A2. J

I Theorem 1 (Workflow commits). If includes(t,m, n) and 〈t, c〉 ⇓
#»A 〈〉 and m ≤ n, then

#»A = Am, · · · An.

Proof. By Lemma 1 and CW-Program-Commit. J

I Theorem 2 (Workflow aborts (Successful Compensation)). If nosub(t,m, n) and 〈t, c〉 ⇓
#»A
A 〈〉

and m ≤ n and c = Ck,...,Cl, then
#»A = Am, · · · Ai, Ci, · · · , Cm, Ck, · · · , Cl for some i s.t.

m ≤ i ≤ n.

Proof. By Lemmas 2 and 3 and CW-Program-Abort. J

I Theorem 3 (Restarted suspended workflow commits). If 〈t, •〉 ⇓
#»A 〈〉 and 〈t, •〉 ⇓

#»C
S 〈c, E〉

and 〈E[check], c〉 ⇓
#»

C′ 〈〉, then #»A = #»C ,
#»

C′.

Proof. By Theorem 1, Lemma 6 and CW-Program-Suspend. J

I Theorem 4 (Workflow partially aborts). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
P 〈c, E〉 and m ≤ n,

then either of the followings hold.
#»A = Am, · · · , Ai, Ci, Ci−1, · · · , Cj and includes(E, j, n) and includes(c, j − 1,m) for some i
and j (m ≤ j ≤ i ≤ n).
#»A = Am, · · · , An and includes(E, 1, 0) and includes(c, n,m).

Moreover, the followings hold.
1. (Suspended workflow commits) If 〈E[check], c〉 ⇓

#»

A′ 〈〉, then
#»

A′ = Aj , · · · , An, or
#»

A′ = ε (if
includes(E, 1, 0)).

2. (Suspended workflow aborts) If 〈E[check], c〉 ⇓
#»

A′

A 〈〉, then
#»

A′ = ε (if j = m), or
#»

A′ =
Cj−1, · · · , Cm.

Proof. By Lemma 2, Lemma 5 and CW-Program-PAbort.
1. By Theorem 1.
2. By Theorem 2. J

I Theorem 5 (Partial abort, checkpoint and nested workflow). Suppose that includes(t,1,n)
and t\check =
p1;...;cp;pk;...;pm;sub(pm+1;...;cp;pj;...;pl)/Ca;pl+1;...;pn and 〈t, •〉 ⇓

#»A
P 〈c,E〉.

1. (Partial abort skips compensations of complete sub-workflow) If Al+1 ∈ {
#»A }, then #»A =

A1, · · · , Ai, Ci, · · · , Cl+1, Ca, Cm, · · · , Ck for some i > l.
2. (A suspended workflow remembers checkpoints in a sub-workflow) If Al+1 ∈ {

#»A } and
〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 and Aj ∈ {
#»

A′} ∧ Al 6∈ {
#»

A′}, then
#»

A′ = Ak, · · · , Ai, Ci, · · · , Cj for
some i s.t. j ≤ i ≤ l.

3. (A suspended workflow remembers checkpoints before a sub-workflow) If Cj ∈ { #»A} and
〈E[check],c〉 ⇓

#»

A′

P 〈c′′,E′〉 and Al+1 ∈ {
#»

A′}, then
#»

A′ = Aj , · · · ,Ai,Ci, · · · ,Cl+1,Ca,Cm, · · · ,Ck
for some i > l.

H. Inoue, T. Aotani, and A. Igarashi 2:33

Proof. Let E0 = [];cp#E0;pk;...;sub(...;cp;...)/Ca;...;pn and
E1 = cp#E0;sub([];cp#E1;...)/Ca;...;pn.

1. Straightforwardly from the derivation, using Lemma 1 and Lemma 2. Notice that the
CW-Sub deletes the cp inside the sub and installs the other compensation Ca.

2. We can get E = E0 from the derivation tree. Then, the conclusion follows straightforwardly
from the derivation of 〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 using Lemma 1 and Lemma 2.
3. We can get E = E1 from the derivation tree. Then, the conclusion follows straightforwardly

from the derivation of 〈E[check], c〉 ⇓
#»

A′

P 〈c′′, E′〉 using Lemma 1 and Lemma 2. J

ECOOP 2018

Theory and Practice of Coroutines with Snapshots
Aleksandar Prokopec
Oracle Labs, Zürich, Switzerland
aleksandar.prokopec@gmail.com

https://orcid.org/0000-0003-0260-2729

Fengyun Liu
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
fengyun.liu@epfl.ch

https://orcid.org/0000-0001-7949-4303

Abstract
While event-driven programming is a widespread model for asynchronous computing, its inherent
control flow fragmentation makes event-driven programs notoriously difficult to understand and
maintain. Coroutines are a general control flow construct that can eliminate control flow frag-
mentation. However, coroutines are still missing in many popular languages. This gap is partly
caused by the difficulties of supporting suspendable computations in the language runtime.

We introduce first-class, type-safe, stackful coroutines with snapshots, which unify many vari-
ants of suspendable computing. Our design relies solely on the static metaprogramming support
of the host language, without modifying the language implementation or the runtime. We also
develop a formal model for type-safe, stackful and delimited coroutines, and we prove the respect-
ive safety properties. We show that the model is sufficiently general to express iterators, single-
assignment variables, async-await, actors, event streams, backtracking, symmetric coroutines
and continuations. Performance evaluations reveal that the proposed metaprogramming-based
approach has a decent performance, with workload-dependent overheads of 1.03 − 2.11× com-
pared to equivalent manually written code, and improvements of up to 6× compared to other
approaches.

2012 ACM Subject Classification Software and its engineering → Coroutines, Software and its
engineering → Control structures

Keywords and phrases coroutines, continuations, coroutine snapshots, asynchronous program-
ming, inversion of control, event-driven programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.3

Related Version https://arxiv.org/abs/1806.01405

1 Introduction

Asynchronous programming is becoming increasingly important, with applications ranging
from actor systems [1, 21], futures and network programming [10, 22], user interfaces [30], to
functional stream processing [32]. Traditionally, these programming models were realized
either by blocking execution threads (which can be detrimental to performance [4]), or
callback-style APIs [10, 22, 26], or with monads [67]. However, these approaches often feel
unnatural, and the resulting programs can be hard to understand and maintain. Coroutines
[11] overcome the need for blocking threads, callbacks and monads by allowing parts of the
execution to pause at arbitrary points, and resuming that execution later.

There are generally two approaches to implement control flow constructs like coroutines:
call stack manipulation and program transformation. In the first approach, the runtime is

© Aleksandar Prokopec and Fengyun Liu;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 3; pp. 3:1–3:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksandar.prokopec@gmail.com
https://orcid.org/0000-0003-0260-2729
mailto:fengyun.liu@epfl.ch
https://orcid.org/0000-0001-7949-4303
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.3
https://arxiv.org/abs/1806.01405
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Theory and Practice of Coroutines with Snapshots

augmented with call stack introspection or the ability to swap call stacks during the execution
of the program. We are aware of several such attempts in the context of the JVM runtime
[14, 62], which did not become official due to the considerable changes required by the
language runtime. In the second approach, the compiler transforms the program that uses
coroutines into an equivalent program without coroutines. In Scheme, a similar control flow
construct call/cc was supported by transforming the program into the continuation-passing
style (CPS) [64]. The CPS transform can also be selectively applied to delimited parts of the
program [3, 16, 17, 35, 56]. Mainstream languages like Python, C#, JavaScript, Dart and
Scala offer suspension primitives such as generators, enumerators and async-await, which
often target specific domains.

Coroutines based on metaprogramming. We explore a new transformation approach for
coroutines that relies on the static metaprogramming support of the host language (in our
case Scala), and assumes no call stack introspection or call stack manipulation support in
the runtime (in our case JVM). The metaprogramming-based solution has several benefits:
(1) The language runtime and the compiler do not need to be modified. This puts less

pressure on the language and the runtime maintainers.
(2) Since the metaprogramming API is typically standardized, the coroutine implementation

is unaffected by the changes in the runtime or in the compiler.
(3) The implementation does not need to be replicated for each supported backend. Our own

implementation works with both the JVM runtime, and the Scala.JS browser backend.
(4) Coroutines can be encapsulated as a standalone library. Our implementation in Scala is

distributed independently from the standard Scala distribution.

We note that our approach is not strictly limited to metaprogramming – it can also be
implemented inside the compiler. However, to the best of our knowledge, we are the first
ones to implement and evaluate coroutines using a metaprogramming API.

Summary. Our coroutine model is statically typed, stackful, and delimited. Static typing
improves program safety, stackfulness allows better composition, and delimitedness allows
applying coroutines to selected parts of the program (this is explained further in Section
2). Regions of the program can be selectively marked as suspendable, without modifying
or recompiling existing libraries. These regions represent first-class coroutines that behave
similar to first-class function values. We show that the model generalizes many existing
suspendable and asynchronous programming models. We extend this model with snapshots,
and show that the extension allows expressing backtracking and continuations. Finally,
we show that the metaprogramming approach has a reasonable performance (at most
2.11× overheads compared to equivalent manually optimized code) by comparing it against
alternative frameworks. We also formalize coroutines with snapshots and prove standard
safety properties.

Contributions. The main novelties in this work are as follows:
We show that AST-level static metaprogramming support of the host language is sufficient
to implement first-class, typed, stackful, delimited coroutines that are reasonably efficient.
We propose a new form of coroutines, namely coroutine with snapshots, which increases
the power of coroutines. For example, it allows emulating backtracking and continuations.
We formalize stackful coroutines with snapshots in λ by extending the simply typed
lambda calculus, and we prove soundness of the calculus.

A. Prokopec and F. Liu 3:3

Some of the features of the proposed model, such as the typed coroutines and first-class
composability, have been explored before in various forms [57, 34, 17, 16]. We build on earlier
work, and we do not claim novelty for those features. However, to the best of our knowledge,
the precise model that we describe is new, as we argue in Section 7 on related work.

Structure and organization. This paper is organized as follows:
Section 2 describes the core primitives of the proposed programming model – coroutine
definitions, coroutine instances, yielding, resuming, coroutine calls, and snapshots.
Section 3 presents use-cases such as Erlang-style actors [66], async-await [23], Oz-style
variables [65], event streams [20, 32], backtracking [36], and delimited continuations [56].
In Section 4, we formalize coroutines with snapshots in λ and prove its soundness.
In Section 5, we describe the AST-level coroutine transformation implemented in Scala.
In Section 6, we experimentally compare the performance of our implementation against
Scala Delimited Continuations, Scala Async, iterators, and lazy streams.

Syntax. Our examples throughout this paper are in the Scala programming language [37].
We took care to make the paper accessible to a wide audience by using a minimal set of
Scala features. The def keyword declares a method, while var and val declare mutable and
final variables, respectively. Lambdas are declared with the right-arrow symbol =>. Type
annotations go after the variable name, colon-delimited (:). Type parameters are put into
square brackets []. Parenthesis can be omitted from nullary and unary method calls.

2 Programming Model

In this section, we describe the proposed programming model through a series of examples.

Coroutine definitions. A subroutine is a sequence of statements that carry out a task.
The same subroutine may execute many times during execution. When a program calls a
subroutine, execution suspends at that callsite and continues in the subroutine. Execution
at the callsite resumes only after the subroutine completes. For example, the program in
Listing 1 declares a subroutine that doubles an integer, and then calls it with the argument 7.

Listing 1 Subroutine example.
1 val dup = (x:Int) => { x + x }
2 dup (7)

Listing 2 Coroutine example.
1 val dup =
2 coroutine { (x:Int) => x + x }

Upon calling dup, the subroutine does an addition, returns the result and terminates.
When the execution resumes from the callsite, the subroutine invocation no longer exists.

Coroutines generalize subroutines by being able to suspend during their execution, so
that their execution can be resumed later. In our implementation, a coroutine is defined
inside the coroutine block. We show the coroutine equivalent of dup in Listing 2.

Yielding and resuming. Once started, the dup coroutine from Listing 2 runs to completion
without suspending. However, a typical coroutine will suspend at least once. When it does,
it is useful that it yields a value to the caller, explaining why it is suspended.

Consider the coroutine rep in Listing 3, which takes one argument x. The rep coroutine
invokes the yieldval primitive to yield the argument x back to its caller, twice in a row.

ECOOP 2018

3:4 Theory and Practice of Coroutines with Snapshots

Listing 3 Yielding example.
1 val rep = coroutine { (x:Int) =>
2 yieldval (x)
3 yieldval (x)
4 }

Listing 4 Execution states.
1 { ↑ yieldval (7); yieldval (7) } ⇒
2 { yieldval (7); ↑ yieldval (7) } ⇒
3 { yieldval (7); yieldval (7)↑ } ⇒
4 { yieldval (7); yieldval (7) }

Listing 4 show the states that the coroutine undergoes during its execution for x=7. The
upward arrow (↑) denotes the program counter. After getting invoked, the coroutine is
paused in line 1 before the first yieldval. The caller resumes the coroutine (resuming is
explained shortly), which then executes the next yieldval and yields the value 7 in line 2.
The caller resumes the coroutine again, and the coroutine executes the last yieldval in
line 3. The caller then resumes the coroutine the last time, and the coroutine terminates in
line 4. The termination of a coroutine is similar to a termination of a subroutine – once the
control flow reaches the end, the invocation of the corresponding coroutine no longer exists.

Delimited coroutines. As stated in the introduction, the proposed coroutine model is
delimited. This means that the yieldval keyword can only occur inside a scope that is
lexically enclosed with the coroutine keyword – a free yieldval results in a compiler error.

By itself, this restriction could hinder composability. Consider a hash table with closed
addressing, which consists of an array whose entries are lists of elements (buckets). We
would like a coroutine that traverses the elements of the hash table. Given a separately
implemented bucket coroutine from Listing 5 that yields from a list, it is handy if a hash
table coroutine can reuse this existing functionality by passing buckets from which to yield.

Listing 5 List coroutine.
1 val bucket = coroutine {
2 (b: List[Int]) =>
3 while (b != Nil) {
4 yieldval (b.head)
5 b = b.tail
6 }
7 }

Listing 6 Hash table coroutine.
1 val hashtable = coroutine {
2 (t: Array[List[Int]]) =>
3 var i = 0
4 while (i < t. length) {
5 bucket (t(i)); i += 1
6 }
7 }

Stackful coroutines. To allow composing separately written coroutines, it must be possible
for one coroutine to call into another coroutine, but retain the same yielding context. The
hashtable coroutine in Listing 6 traverses the array entries, and calls bucket for each entry.
The two coroutines yield values together, as if they were a single coroutine.

h
b

caller
12 coroutine

direct
call

yieldval

Similar to ordinary subroutine calls, when the hashtable coroutine calls bucket, it must
store its local variables and state. One way to achieve this is to use a call stack. When the
program resumes the hashtable coroutine, it switches from the normal program call stack
to a separate call stack that belongs to the resumed coroutine instance. The hashtable
coroutine then pushes its state to the stack, and passes the control flow to the bucket
coroutine (1 in the figure below). The bucket coroutine stores its state to the stack and
yields to the same caller that originally resumed the hashtable coroutine (2).

A. Prokopec and F. Liu 3:5

By saying that our coroutine model is stackful, we mean that coroutines are able to
call each other, and yield back to the same resume-site [34]. In our implementation, this is
enabled with an artifical call stack, as explained in Section 5.

Importantly, a coroutine call can only occur in a scope that is lexically enclosed with the
coroutine keyword (akin to yieldval). Only a coroutine body can call another coroutine
– a free call is a compiler error. A natural questions follows: how does a normal program
create a new coroutine instance?

Coroutine instances. Similar to how invoking a subroutine creates a running instance
of that subroutine, starting a coroutine creates a new coroutine instance. A subroutine’s
execution is not a program value – it cannot be observed or controlled. However, after
creating a coroutine instance, the caller must interact with it by reading the yielded values
and resuming. Therefore, it is necessary to treat the coroutine instance as a program value.

To distinguish between normal coroutine calls and creating a coroutine instance, we
introduce a separate start keyword, as a design choice. The instance encapsulates a new
call stack. After start returns a new coroutine instance, the caller can invoke resume and
value on the instance. By returning true, the resume indicates that the instance yielded,
and did not yet terminate. In this case, invoking value returns the last yielded value.

Listing 7 Starting and resuming.
1 val i = hashtable .start(array)
2 var sum: Int = 0
3 while (i. resume) sum += i.value h

b

caller

1 2

3
4

5 instance

start resume

direct
callyieldval

resume

Listing 7 shows how to use the hash table coroutine to compute the sum of the hash table
values. A new coroutine instance is started in line 1 using the hashtable coroutine. In the
while loop in line 3, the values are extracted from the instance until resume returns false
(subsequent calls to resume result in a runtime error in our implementation). The figure on
the right shows the creation of the instance, followed by two resume calls.

Typed coroutines. In the example in Listing 7, the sum variable in line 2 is integer-typed.
Therefore, the right hand of the assignment in line 3 must also have the integer type. This
illustrates that it is useful to reason about the type of the yielded values.

A coroutine type encodes the types Pi of its parameters, the return type R, and the
yield type Y of the yielded values, also called the output type [57]. Its general form is
(P1, . . . ,PN)~>(Y,R) 1. In the following, we annotate the dup coroutine from Listing 2:

val dup: Int ~>(Nothing ,Int) = coroutine { (x:Int) => x + x }

Since this coroutine does not yield any values, its yield type is Nothing, the bottom type
in Scala. A coroutine once, which yields its argument once, has the yield type Int:

val once: Int ~>(Int ,Unit) = coroutine { (x:Int) => yieldval (x) }

The bucket and hashtable coroutines from Listings 5 and 6 have the following types:
val bucket : List[Int]~>(Int ,Unit) = ...
val hashtable : Array[List[Int]]~ >(Int ,Unit) = ...

Coroutine instances have a separate type Y<~>R, where Y is the yield type, and R is the
return type. For example, starting once produces an instance with the type Int<~>Unit:

val i: Int <~> Unit = once. start (7)

Instances of the bucket and hashtable coroutines also have the type Int<~>Unit.

1 We note that Scala allows operator syntax, such as ~>, when declaring custom data types.

ECOOP 2018

3:6 Theory and Practice of Coroutines with Snapshots

Snapshots. We extend standard coroutines with the snapshot operation, which takes a
coroutine instance and returns a duplicated instance with exactly the same execution state.

val i1: Int <~> Unit = once.start (7)
val i2: Int <~> Unit = i1. snapshot

In the previous example, the coroutine instance i1 is duplicated to i2. Subsequent
coroutine operations can be called independently on the two coroutine instances.

3 Use Cases

Having explained what type-safe, delimited and stackful means, we motivate our design
choices with observations and concrete examples. The goal of this section is to show how
specific primitives help express other kinds of suspendable computations.

I Observation 1. Stackful coroutines allow composing suspendable software modules.

The hash table example from Listings 5 and 6 demonstrated why composing different
modules is useful, and the remaining examples in this section reinforce this.

I Observation 2. Stackful coroutines simplify the interaction with recursive data types.

Iterators. Data structure iterators are one of the earliest applications of coroutines [29].
We can implement an iterator coroutine it for binary trees as shown in Listing 8:

Listing 8 Tree iterator implementation.
1 val it = coroutine { (t:Tree) =>
2 if (t.fst != null) it(t.fst)
3 yieldval (t. element)
4 if (t.snd != null) it(t.snd) }

Listing 9 Symmetric coroutine.
1 type Sym[R] = Sym[R] <~> R
2 def run(i: Sym[R]): R =
3 if (i. resume) run(i.value)
4 else i. result

I Observation 3. Asymmetric coroutines can be used to express symmetric coroutines.

Symmetric coroutines. In a programming model with symmetric coroutines, there is no
resume primitive. Instead, a symmetric coroutine always yields the next coroutine instance
from which to continue. As shown in Listing 9, a symmetric coroutine instance can be
expressed with the recursive type Sym[R]. This was observed before [34].

I Observation 4. Coroutine calls and coroutine return values, together with the yieldval
primitive, allow encoding alternative forms of suspension primitives.

The core idea is to express a suspension primitive as a special coroutine. This coroutine
yields a value that allows the resume-site to communicate back. Once resumed, the coroutine
returns another value to its caller coroutine. We show several examples of this pattern.

Async-await. A future is an entity that initially does not hold a value, but may asyn-
chronously attain it at a later point. Future APIs are usually callback-based – the code
that handles the future value is provided as a function. In Scala, type Future exposes the
onSuccess method, which takes a callback and calls it once the value is available, and value,
which can be used to access the future value if available. Promise is the future’s writing end,
and it exposes success, which sets the value of the corresponding future at most once [22].

A. Prokopec and F. Liu 3:7

Listing 10 Callback-style API.
1 val token: Future [Token] =
2 authenticate ()
3 token. onSuccess { t =>
4 val session : Future [Session] =
5 sessionFor (t)
6 session . onSuccess (useSession)
7 }

Listing 11 Async-await-style API.
1 async {
2 val token: Token =
3 await { authenticate () }
4 val session : Session =
5 await { sessionFor (token) }
6 useSession (session)
7 }

In Listing 10, the authenticate method returns a future with a Token value. Once the
token arrives, the callback function (passed to the onSuccess method) calls sessionFor to
obtain a session future. The program continues in the useSession callback. The direct-
style async-await version, shown in Listing 11, relies on the async statement, which starts
asynchronous computations, and the await, which suspends until a value is available.

We use coroutines to replicate Scala’s Async framework [23]. The await method emulates
the suspension primitive – it creates a coroutine that yields a future and returns its value. It
assumes that the resume-site invokes resume only after the future is completed.

Listing 12 The await primitive.
1 def await[T]: Future [T] ~> (Future [T], T) =
2 coroutine { (f: Future [T]) => yieldval (f); f.value }

The async method interacts with await from the resume-site. For a given computation b,
it starts an instance, and executes it asynchronously in a Future. Whenever the computation
b yields a future, a callback is recursively installed. If resume returns false, the resulting
future is completed with the evaluation result of b (async itself must return a future).

Listing 13 The async primitive.
1 def async[R](b: () ~> (Future [Any], R)): Future [R] = {
2 val i = b.start ()
3 val p = new Promise [R]
4 @ tailrec def loop (): Unit =
5 if (i. resume) i.value. onSuccess (loop) else p. success (i. result)
6 Future { loop () }
7 p. future
8 }

Erlang-style actors. Actor frameworks for the JVM are unable to implement exact Erlang-
style semantics, in which the receive statement can be called anywhere in the actor [21].
For example, Akka exposes a top-level receive method [1], which returns a partial function
used to handle messages. This function can be swapped with the become statement.

Listing 14 shows a minimal Akka actor example that implements a server. The server
starts its execution in the receive method, which awaits a password from the user. If the
password is correct, the top-level event-handling loop becomes the loggedIn method, which
accepts GET requests. When the Logout message arrives, the actor stops. Listing 15 shows
an equivalent Erlang-style actor, in which the control flow is more apparent. The receive
method has the role of a suspension primitive – it pauses the actor until a message arrives.

Listing 14 Akka-style actor.
1 class Server extends Actor {
2 def receive = {
3 case Login(pass) =>
4 assert (isCorrect (pass))

5 become (loggedIn) }
6 def loggedIn = {
7 case Get(url) => serve(url)
8 case Logout () => stop () } }

ECOOP 2018

3:8 Theory and Practice of Coroutines with Snapshots

Listing 15 Erlang-style actor.
1 def server () = {
2 val Login(pass) = receive ()
3 assert (isCorrect (pass))
4 while (true) receive () match {

5 case Get(url) => serve(url)
6 case Logout () => stop ()
7 }
8 }

As shown in the appendix, the receive coroutine follows a similar pattern as async-await
– receive yields an object into which the top-level loop can insert the message.

Event streams. First-class Rx-style event streams [32] expose a set of declarative trans-
formation combinators. As an example, consider how to collect a sequence of points when
dragging the mouse. The mouse events are represented as an event stream value. Dragging
starts when the mouse is pressed down, and ends when released. In Listing 16, the after
combinator removes a prefix of events, and until removes a suffix. The first drag event’s
onEvent callback creates a Curve object, and the last event saves the curve.

Listing 16 Rx-style streams.
1 val drag = mouse.after(_. isDown)
2 .until(_.isUp)
3 drag.first. onEvent { e =>
4 val c = new Curve(e.x, e.y)
5 drag. onEvent (
6 e => c.add(e.x, e.y))
7 drag.last. onEvent (
8 e => saveCurve (c)) }

Listing 17 Direct-style streams.
1 var e = mouse.get
2 while (!e. isDown) e = mouse.get
3 val c = new Curve(e.x, e.y)
4 while (e. isDown) {
5 e = mouse.get
6 c.add(e.x, e.y)
7 }
8 saveCurve (c)

The equivalent direct-style program in Listing 17 uses the get coroutine to suspend the
program until an event arrives. We show the implementation of get in the appendix.

Oz-style single-assignment variables. A variable in the Oz language [65] can be assigned
only once. Reading a single-assignment variable suspends execution until some other thread
assigns a value. Assigning a value to the variable more than once is an error.

Listing 18 Oz-style variable read.
1 @ volatile var state: AnyRef =
2 List.empty ()
3
4 val get = coroutine { () =>
5 if (READ(state).is[List])
6 yieldval (this)
7 READ(state).as[ElemType]
8 }

Listing 19 Oz-style variable write.
1 @ tailrec def set(y: ElemType) {
2 val x = READ(state)
3 if (x.is[List]) {
4 if (CAS(state , x, y))
5 for (i <- x.as[List])
6 schedule (i)
7 else set(y)
8 } else throw Reassigned }

Internally, a single-assignment variable has some state, which is either the list of
suspended threads or a value. When get from the Listing 18 is called, state is atomically
read in line 6. If the state is a list, coroutine is yielded to the scheduler, which atomically
adds the new suspended thread to the list (not shown). The coroutine is resumed when the
value becomes available – method set in Listing 19 tries to atomically replace the list with
the value of type ElemType. If successful, it schedules the suspended threads for execution.

I Observation 5. Snapshots enable backtracking and allow emulating full continuations.

A. Prokopec and F. Liu 3:9

Backtracking. Testing frameworks such as ScalaCheck [36] rely on backtracking to system-
atically explore the test parameter space. ScalaCheck uses a monadic-style API to compose
the parameter generators. Listing 20 shows a ScalaCheck-style test that first creates a
generator for number pairs in a Scala for-comprehension, and then uses the generator in a
commutativity test. The pairs generator is created from the intrinsic ints generator.

In the direct-style variant in Listing 21, the ints generator is a coroutine that yields and
captures the execution snapshot. Therefore, it can be called from anywhere inside the test.

Listing 20 Monadic ScalaCheck test.
1 val pairs =
2 for {
3 x <- ints (0 until MAX_INT)
4 y <- ints (0 until MAX_INT)
5 } yield (x, y)
6
7 forAll (pairs) { pair =>
8 val (a, b) = pair
9 assert (a * b == b * a)

10 }
11

Listing 21 Direct-style ScalaCheck test.
1 test {
2 val a = ints (0 until MAX_INT)
3 val b = ints (0 until MAX_INT)
4 assert (a * b == b * a)
5 }

Listing 22 Positive-definite matrix test.
1 val pd = coroutine { (m:Mat) =>
2 val x = nonZeroVector (m.size)
3 assert (x.t * m * x > 0)
4 }

Moreover, generator late-binding allows modularizing the properties. Listing 22 shows a
modular positive-definite matrix property pd: given a matrix M , value xTMx is positive for
any non-zero vector x. The pd coroutine can be called from within other tests. Importantly,
note that the vector x is generated from within the test. This is hard to achieve in the
standard ScalaCheck tests, since their generators require prior knowledge about the vector x.

Consider implementing the test and the ints primitives from Listing 21. The key idea
is as follows: each time a test calls a generator, it suspends and yields a list of environment
setters. Each environment setter is a function that prepares a value to return from the
generator. The resume-site runs each environment setter, creates a snapshot and resumes it.

Listing 23 Direct-style ScalaCheck.
1 type Test =
2 () ~> (List [() => Unit], Unit)
3
4 type Instance =
5 List [() => Unit] <~> Unit
6
7 def backtrack (i: Instance) = {
8 if (i. resume)
9 for (setEnv <- i.value) {

10 setEnv ()
11 backtrack (i. snapshot)
12 }
13 }

Listing 24 Direct-style ScalaCheck, cont.
1 val ints = coroutine {
2 (xs: List[Int]) =>
3 var env: Int = _
4 val setEnvs =
5 xs.map(x => () => env = x)
6 yieldval (setEnvs)
7 env
8 }
9

10 def test(t: Test) = {
11 val instance = t.start ()
12 backtrack (instance)
13 }

In Listing 23, we first declare two type aliases Test and Instance, which represent a
test coroutine and a running test instance. Their yield type is a list of environment setters
List[() => Unit]. The backtrack subroutine takes a running test instance, and resumes
it. If the instance yields, then the test must have called a generator, so backtrack traverses
the environment setters and recursively resumes a snapshot for each of them. Thus, each
recursive call to backtrack represents a node in the respective backtracking tree.

The ints generator in Listing 24 is a coroutine that takes a list of integers xs to choose
from. It starts by creating a local variable env, and a list of functions that set env (one for
each integer in xs). The generator then yields this list. Each time ints gets resumed, the
env variable is set to a proper value, so it is returned to the test that called it.

ECOOP 2018

3:10 Theory and Practice of Coroutines with Snapshots

t ::= terms:
(x:T) => t abstraction
t(t) application
x variable
() unit value
(x:T) T

 t coroutine
yield(t) yielding
start(t, t) starting
resume(t, t, t, t) resuming
snapshot(t) snapshot
fix(t) recursion
i instance
〈t, v, v, v〉i resumption
JtKv suspension
∅ empty term

T ::= types:
T => T function type
T T
 T coroutine type

T! T instance type
Unit unit type
⊥ bottom type

r ::= runtime terms:
i instance
〈t, v, v, v〉i resumption
JtKv suspension
∅ empty term

v ::= values:
(x:T) => t abstraction
() unit value
(x:T) T

 t coroutine
i instance
∅ empty term

Figure 1 Syntax and types of the λ calculus.

Continuations. Shift-reset-style delimited continuations use the reset operator to delimit
program regions for the CPS-transform [12]. The shift operator, which takes a func-
tion whose input is the continuation, can be used inside these regions. We sketch the
implementation of shift and reset similar to those in Scala delimited continuations [56].

1 type Shift = (() => Unit) => Unit
2 def reset(b: () ~> (Shift , Unit)): Unit = {
3 def continue (i: Shift <~> Unit) =
4 if (i. resume) i.value (() => continue (i. snapshot))
5 continue (b.start ())
6 }
7 def shift: Shift ~> (Shift , Unit) =
8 coroutine { (b: Shift) => yieldval (b) }

The type alias Shift represents continuation handlers – functions that take continuations
of the current program. The reset operator takes a coroutine that can yield a Shift
value. It starts a new coroutine instance and resumes it. If this instance calls shift with
a continuation handler, the handler is yielded back to reset, which creates an instance
snapshot and uses it to create a continuation. The continuation is passed to the continuation
handler. The use of snapshot is required, as the continuation can be invoked multiple times.

4 Formal Semantics

This section presents the λ (pron. lambda-squiggly) calculus that captures the core of
the programming model from Section 2. This calculus is an extension of the simply-typed
lambda-calculus. The complete formalization, along with the proofs of the progress and
preservation theorems, is given in the corresponding tech report [51].

Syntax. Figure 1 shows the syntax. The abstraction, application and variable terms are
standard. The coroutine term represents coroutine declarations. The yield term corresponds

A. Prokopec and F. Liu 3:11

Σ|Γ, x:T1 ` t2:T2|⊥
Σ|Γ ` (x:T1)=>t2 : T1=>T2|⊥

(T-Abs)

Σ|Γ ` t1:T2=>T1|Ty

Σ|Γ ` t2:T2|Ty

Σ|Γ ` t1(t2) : T1|Ty

(T-App)

x:T ∈ Γ
Σ|Γ ` x:T|⊥

(T-Var)

Σ|Γ ` t:T|⊥
Σ|Γ ` t:T|Ty

(T-Ctx)

Σ|Γ ` ():Unit|⊥
(T-Unit)

Σ|Γ, x:T1 ` t2:T2|Ty

Σ|Γ ` (x:T1)
Ty
 t2:T1

Ty
 T2|⊥

(T-Coroutine)

Σ|Γ ` t1:T1
Ty
 T2|Tw

Σ|Γ ` t2:T1|Tw

Σ|Γ ` start(t1,t2):Ty ! T2|Tw

(T-Start)
Σ|Γ ` t:T|T

Σ|Γ ` yield(t):Unit|T
(T-Yield)

Σ|Γ ` t:Ty ! T2|Tw

Σ|Γ ` snapshot(t):Ty ! T2|Tw

(T-Snapshot)

Σ|Γ ` t:T=>T|⊥
Σ|Γ ` fix(t):T|⊥

(T-Fix)
Σ|Γ ` t1:Ty ! T2|Tw Σ|Γ ` t2:T2

Tw TR|Tw

Σ|Γ ` t3:Ty
Tw TR|Tw Σ|Γ ` t4:Unit

Tw TR|Tw

Σ|Γ ` resume(t1,t2,t3,t4):TR|Tw

(T-Resume)

Σ|Γ ` t1:T2
Ty
 T1|Ty Σ|Γ ` t2:T2|Ty

Σ|Γ ` t1(t2):T1|Ty

(T-AppCor)
Σ|Γ ` t:T|Ty Σ|Γ ` v:Ty|⊥

Σ|Γ ` JtKv:T|Ty

(T-Suspension)
Σ(i) = Ty ! T2

Σ|Γ ` i:Ty ! T2|⊥
(T-Instance)

Σ(i) = Ty ! T2

Σ|Γ ` t1:T2|Ty Σ|Γ ` v2:T2
Tw TR|⊥

Σ|Γ ` v3:Ty
Tw TR|⊥ Σ|Γ ` v4:Unit

Tw TR|⊥
Σ|Γ ` 〈t1,v2,v3,v4〉i:TR|Tw

(T-Resumption)
Σ|Γ ` ∅:T|⊥ (T-Empty)

Figure 2 Typing rules for the λ calculus.

to the yieldval statement shown earlier. The start term is as before, but uses prefix syntax.
The resume term encodes both the resume and the value from Section 2. This is because
resuming an instance can complete that instance (in our implementation, resume returns
false), it can result in a yield (previously, true), or fail because an instance had already
completed earlier (in our implementation, an exception is thrown). In λ , the resume term
therefore accepts four arguments: the coroutine instance, the result handler, the yield handler,
and the handler for the already-completed case. The fix term supports recursion [39].

The calculus differentiates between user terms, which appear in user programs, and
runtime terms, which only appear during the program evaluation. A label i is used to
represent a coroutine instance. Each coroutine instance has an evaluation state, which
changes over the lifetime of the instance. A resumed instance i is represented by the
resumption term 〈t,v,v,v〉i. A term that yielded a value v, and is about to be suspended,
is represented by the suspension term JtKv. Finally, the empty term ∅ is used in the store µ
(shown shortly) when encoding terminated coroutines. The abstraction term (x:T)=>t, the
unit term (), the coroutine definition (x:T)

Ty
 t, the instance label i and the empty term ∅

are considered values.
Note that the calculus distinguishes between standard function types T1=>T2 and coroutine

types of the form T1
Ty
 T2, where Ty is the type of values that the coroutine may yield.

Coroutine instances have the Ty ! T2 type, and a unit value has the type Unit. The bottom
type ⊥ is used to represent the fact that a term does not yield.

Example. Recall the rep coroutine from Listing 3. We can encode it in λ as follows:

(x:Int) Int
 ((u:Unit) Int

 yield(x))(yield(x))

ECOOP 2018

3:12 Theory and Practice of Coroutines with Snapshots

The encoding uses a standard trick to sequence two statements [39], but instead of a
regular lambda, relies on a coroutine to ignore the result of the first statement. Starting this
coroutine creates a instance i, whose current term is saved in the store:

start((x:Int) Int
 ((u:Unit) Int

 yield(x))(yield(x)), 7)→ i

Assume that we now resume this instance once. We provide three handlers to resume.
We show the complete yield handler (here, identity), and name the other two c2 and c4:

resume(i, c2, (x:Int)
⊥
 x, c4) →

〈((u:Unit)
Int
 yield(7))(yield(7)), c2, (x:Int)

⊥
 x, c4〉 →

〈((u:Unit)
Int
 yield(7))(J()K7), c2, (x:Int)

⊥
 x, c4〉 →

〈J((u:Unit)
Int
 yield(7))(())K7, c2, (x:Int)

⊥
 x, c4〉 → ((x:Int)

⊥
 x)(7) → 7

Typing. Before showing the typing rules, we introduce the instance typing Σ, which tracks
coroutine instance types, and is used alongside the standard typing context Γ.
I Definition 6 (Instance typing). The instance typing Σ is a sequence of coroutine instance
labels and their types i:T, where comma (,) extends a typing with a new binding.
I Definition 7 (Typing relation). The typing relation Σ|Γ ` t:T|Ty in Fig. 2 is a relation
between the instance typing Σ, the typing context Γ, the term t, its type T, and the yield
type Ty, where Ty is the type of values that may be yielded when evaluating t.

We inspect the most important rules here, and refer the reader to the tech report [51] for
a complete discussion. The T-Abs rule is the modification of the standard abstraction typing
rule. Note that the yield type of the function body must be ⊥. This is because λ models
delimited coroutines – if a yield expression occurs, it must instead be lexically enclosed
within a coroutine term (which corresponds to the coroutine statement). We emphasize
that λ nevertheless models stackfulness – a yield can still cross coroutine boundaries at
runtime if a coroutine calls another coroutine, as illustrated in Section 3, and explained
shortly.

Note further, that the T-App rule permits a non-⊥ type on the subterms, since the
reduction of the function and its arguments is itself allowed to yield. A non-yielding term
can be assumed to yield any type by the T-Ctx rule. Given a term whose type is T and yield
type is also T, the T-Yield rule types a yield expression as Unit with the yield type T.

The T-Coroutine rule allows the body to yield a value of the type Ty, which must
correspond to the yield type of the coroutine. The coroutine itself gets a ⊥ yield type (the
coroutine definition effectively swallows the yield type). Consider now the T-AppCor rule,
which is similar to the standard T-App rule for functions. To directly call another coroutine
t1, its yield type Ty must correspond to the yield type at the callsite.

Last, we examine the runtime term typing rules. The T-Suspension rule requires that
the yielded value v has the type Ty, and that the suspension has the same type and yield
type as the underlying suspended term t. The T-Instance rule requires that the instance
typing Σ contains a corresponding type for i. Finally, the T-Resumption term has the
type TR that corresponds to the return types of the handler coroutines t2, t3 and t4. The
corresponding yield type is Tw, which is generally different from the yield type Ty that the
coroutine instance evaluation t1 can yield. The empty term can be assigned any type.
I Definition 8 (Well-typed program). A term t is well-typed if and only if ∃T, Ty,Σ such that
Σ|∅ ` t:T|Ty. A term t is a well-typed user program if t is well-typed and Ty = ⊥.

A. Prokopec and F. Liu 3:13

i 6∈ dom(µ)

start((x:T1)
Ty
 t,v)|µ → i|µ, i . [x 7→ v]t

(E-Start)

i2 6∈ dom(µ) i1 6= i2

snapshot(i1)|µ, i1 . t → i2|µ, i1 . t, i2 . t
(E-Snapshot)

yield(v)|µ → J()Kv|µ
(E-Yield)

〈Jt1Kv,v2,v3,v4〉i|µ, i . Jt0Kv′ → v3(v)|µ, i . t1

(E-Capture)
t 6= Jt0K∅

resume(i,v2,v3,v4)|µ, i . t → 〈t,v2,v3,v4〉i|µ, i . JtK∅
(E-Resume1)

resume(i,v2,v3,v4)|µ, i . Jt0K∅ → v4(())|µ, i . Jt0K∅ (E-Resume2)

〈v,v2,v3,v4〉i|µ, i . Jt0Kv′ → v2(v)|µ, i . JvK∅ (E-Terminate)

Figure 3 A subset of evaluation rules in the λ calculus.

Semantics. Before showing the operational semantics, we introduce the concept of a
coroutine store µ, which is used to track the evaluation state of the coroutine instances.

I Definition 9 (Coroutine store). A coroutine store µ is a sequence of coroutine instance
labels i and their respective evaluation terms t, where the comma operator (,) extends the
coroutine store with a new binding i . t.

We only show a subset with the most important evaluation rules in Fig. 3, and present
the complete set of rules in the tech report [51]. The E-Start rule takes a coroutine value
and an argument, and uses them to create a new coroutine instance i, where i is a fresh
label. The coroutine store µ is modified to include a binding from i to the coroutine body
t after substitution. Such a coroutine instance i can then be resumed by the E-Resume1
rule, which reduces a resume expression into an resumption term 〈t,v2,v3,v4〉i. Note the
convention that an executing or a terminated coroutine has a suspension term Jt0K∅ in the
coroutine store µ. The E-Resume1 rule applies if and only if t 6= Jt0K∅. If the instance
is terminated, the E-Resume2 rule applies instead, which just invokes the ‘callback’ v4 to
handle that case.

Consider now what happens when a resumption term yields. By E-Yield, the expression
yield(v) reduces to a suspended unit value that is yielding the value v. A suspension term
then spreads across the surrounding terms. The following two example reductions spread the
suspension across an application. There is one such rule for each non-value syntax form.

Jt1Kv(t2)|µ→ Jt1(t2)Kv|µ

v1(Jt2Kv)|µ→ Jv1(t2)Kv|µ

Once the suspension reaches the coroutine resumption term, the E-Capture reduces it
to a call to the yield handler v3, and puts the term in the suspension into the store µ.

Safety. We now state the safety properties of λ . Complete proofs are given in the
corresponding tech report article [51].

I Definition 10 (Well-typed coroutine store). A coroutine store µ is well-typed with respect
to the instance typing Σ, denoted Σ ` µ, if and only if it is true that ∀i ∈ dom(µ),
Σ(i) = Ty ! T2 ⇔ Σ|∅ ` µ(i):T2|Ty, and dom(Σ) = dom(µ).

ECOOP 2018

3:14 Theory and Practice of Coroutines with Snapshots

I Theorem 11 (Progress). Suppose that t is a closed, well-typed term for some T and Σ.
Then, either t is a value, or t is a suspension term JtKv, or, for any store µ such that Σ ` µ,
there is some term t′ and store µ′ such that t|µ→ t′|µ′.

I Theorem 12 (Preservation). If a term and the coroutine store are well-typed, that is,
Σ|Γ ` t:T|Ty, and Σ|Γ ` µ, and if t|µ → t′|µ′, then there exists Σ′ ⊇ Σ such that
Σ′|Γ ` t′:T|Ty and Σ′|Γ ` µ′.

I Corollary 1 (Yield safety). If a user program tu is well-typed, then it does not evaluate to a
suspension term of the form JtKv.

5 Implementation

This section describes our metaprogramming-based coroutine implementation in Scala, which
consists of a runtime library and an AST-level transformation.

5.1 Preliminaries
Our implementation relies on Scala Macros [9], the metaprogramming API in Scala2. The
following are the key metaprogramming features of Scala Macros that our transformation
scheme relies on. First, it must be possible to declare macro definitions that take ASTs as
input arguments and return transformed ASTs. Second, it must be possible to invoke such
macro definitions from user programs, which makes the compiler execute the macro with its
argument expressions and replace the macro invocation with the resulting ASTs. Third, it
must be possible to decompose and compose ASTs inside the macro definition. Finally, it
must be possible to inspect the types of the expressions passed to the macro, and reason
about symbol identity. The following is an example of a macro definition:

1 def log(msg: String): Unit = macro log_impl
2 def log_impl (c: Context)(msg: c.Tree): c.Tree =
3 q""" if (loggingEnabled) info(currentTime () + ": " + $msg)"""

In the above, we declared a log macro with the macro implementation log_impl, which
takes the corresponding Tree of msg as argument. The log_impl method uses the quasiquote
notation q"" to build an AST [61], which in turn checks if logging is enabled before con-
structing the command line output from the msg string. Values are interpolated into the
AST using the $ notation, as is the case with the expression $msg above.

Scala macro definitions can be packaged into libraries. Our coroutine implementation
is therefore a macro library, which the user program can depend on. User coroutines
implemented with our coroutine library can be similarly packaged into third party libraries.

5.2 Runtime Model
When yielding, the coroutine instance must store the state of the local variables. When
resuming, that state must be retrieved into the local variables. Since coroutines are stackful,
i.e. they support nested coroutine calls, it is necessary to store the entire coroutine call stack.

2 We have an ongoing second implementation that relies on a newer Scala Macros API, but we are using
the original Scala Macros for the evaluation purposes in this paper.

A. Prokopec and F. Liu 3:15

Call stacks. Our implementation uses arrays to represent coroutine call stacks. A call stack
is divided into a sequence of coroutine frames, which are similar to method invocation frames.
Each frame stores the following:
(1) pointer to the coroutine object (i.e. coroutine block),
(2) the position in the coroutine where the last yield occurred,
(3) the local variables and the return values.
A coroutine call stack can be implemented as a single contiguous memory area. Scala
is constrained by the JVM platform, on which arrays contain either object references or
primitive values, but not both. Hence, our implementation separates coroutine descriptors,
program counters and local variables into reference and value stacks.

It would be costly to create a large call stack whenever a coroutine instance starts. Many
coroutines only need a single or several frames, so we set the initial stack size to 4 entries.
When pushing, a stack overflow check potentially reallocates the stack, doubling its size. In
the worst case, the reallocation overhead is 2× compared to an optimally sized stack.

Coroutine instance class. A coroutine instance is represented by the Instance class shown
in Listing 25. A new instance is created by the start method. In addition to the call stack,
a coroutine instance tracks if the instance is live (i.e. non-terminated), if a nested call is in
progress, what the last yield value was, the result value (if the instance terminated), and
the exception that was thrown (if any). The coroutine instance exposes the value, result
and exception user-facing methods, which either return the value of the respective field, or
throw an error if the field is not set. The instance also exposes the resume method, which is
described shortly.

Listing 25 Coroutine instance class.
1 class Instance [Y, R] {
2 var _live = true
3 var _call = false
4 var _value : Y = null
5 var _result : R = null
6 var _exception :
7 Exception = null
8 /* Call stack arrays */
9 }

Coroutine class. For each coroutine declaration in the program, the transformation macro
generates a new anonymous subclass of the Coroutine class shown in Listing 26. Each
concrete Coroutine subclass defines several entry point methods, and implements the _enter
method of the Coroutine base class. An entry point method is a replica of the coroutine
block such that it starts from either:
(1) the beginning of the method, or
(2) a yieldval statement, or
(3) a call to another coroutine.
The _enter method is called when a coroutine instance resumes. It reads the current position
from the coroutine instance, and dispatches to the proper entry point method with a switch
statement. A goto primitive is unavailable in Scala, so the _enter method emulates the
goto semantics.

Listing 26 Coroutine definition base classes.
1 class Coroutine [Y, R] {
2 def _enter (i: Instance [Y, R]): Unit

ECOOP 2018

3:16 Theory and Practice of Coroutines with Snapshots

3 }
4 class Coroutine1 [T0 , Y, R]
5 extends Coroutine [Y, R] {
6 def _call(
7 i: Instance [Y, R], a0: T0): Unit
8 }
9 /* One class for each arity */

Listing 26 also shows the abstract Coroutine1 subclass. The Coroutine1 subclass
declares the _call method which stores the resume-site or callsite arguments into the proper
locations in the call stack. This method is invoked by start and by coroutine calls. Neither
JVM nor Scala support variadic templates, so we include 4 different arity classes (the same
approach is used for Function classes in Scala, and functional interface classes in Java).

Trampolining. An entry point method ends at a position at which the original coroutine
block has a yieldval, a coroutine call, or a return. Therefore, each entry point method in
the Coroutine class is tail-recursive. Consequently, nested coroutine calls can be invoked
from a trampoline-style loop.

The resume method in Listing 27 implements a trampoline in lines 8-10. After resetting
the yield-related fields, resume repetitively reads the topmost coroutine from the coroutine
stack _cstack, and invokes _enter. If an entry point calls another coroutine, or returns
from a coroutine call, the _call field is set to true. Otherwise, if the instance yields or
terminates, the _call field is set to false, and the loop ends.

Listing 27 The resume trampoline.
1 def resume [Y, R]
2 (i: Instance [Y, R]) = {
3 if (!i._live)
4 throw sys.error ()
5 i. _hasValue = false
6 i. _value = null
7 do {
8 i. _cstack (i._ctop)
9 . _enter (i)

10 } while (i._call)
11 i._live }

5.3 Transformation

The transformation is performed by the following coroutine macro, which takes a Scala
AST, typed c.Tree. The coroutine macro checks that the AST is statically a function type,
and reports a compiler error otherwise. The macro returns an AST that holds a definition of
an anonymous CoroutineN subclass (for a specific arity N), and a new instance of that class.

1 def coroutine [T, R](f: Any): Any = macro coroutine_impl [T, R]
2 def coroutine_impl [T, R](c: Context)(f: c.Tree): c.Tree = ...

The transformation consists of four compilation phases. First, the input AST is converted
into a normal form. Second, the normalized AST is converted into a control flow graph.
Third, the control flow graph is cut into segments at the points where the coroutine yields
or calls other coroutines. Finally, control flow graph segments are converted back to ASTs,
which represent the coroutine’s entry points and are used to generate the anonymous class.

A. Prokopec and F. Liu 3:17

AST normalization. This phase converts the input AST with arbitrary phrases into a
normalized AST. The phrases in the normalized AST are restricted to:
(1) single operator expressions on constants and identifiers,
(2) assignments and declarations whose right-hand side is a constant or an identifier3,
(3) method calls on constants and identifiers,
(4) if-statements and while-loops whose condition is a constant or an identifier and whose

body is normalized,
(5) basic blocks whose statements are normalized.
The benefit of normalization is that the subsequent phases have fewer cases to consider.

Listing 28 Canonicalized list coroutine.
1 val bucket = coroutine {
2 (b: List[Int]) =>
3 var x_0 = b != Nil
4 var x_1 = x_0
5 while (x_1) {
6 var x_2 = b.head
7 var x_3 = yieldval (x_2)
8 var x_4 = b.tail
9 b = x_4

10 var x_0 = b != Nil
11 x_1 = x_0 }
12 () }

Example. Recall the bucket coroutine from Listing 5, which yields the elements of a list.
After normalization, this coroutine is transformed into the coroutine in Listing 28.

var x=t →
var x=t

head last

Control flow graph conversion. A normalized AST is converted to a control flow graph.
The transformation is implemented as a set of mappings between the input AST and the
output CFG nodes. An example rule for a variable declaration is informally shown above,
where a declaration is replaced by a single node that records the AST.

The rule for while-loops, informally shown on the right, relies on the recursive transform-
ation of the body tb of the loop. Given that tb transforms to a CFG that starts with a node
1 and ends with a node 2, a while-loop transforms to a pair of Ws and We nodes, which are
connected with successor links (solid lines) as shown in the figure.

t = while (tc) tb tb → 1 2

t →
Ws

tc

head
We

∅
last

1 2

Example. Recall once more the bucket coroutine from Listing 5. The resulting control flow
graph is shown below. Nodes that do not represent structured control flow or yielding are
annotated with the line number from Listing 28, and the Y node represents the yield-site.

3 We sometimes slightly deviate from this in the examples, for better readability.

ECOOP 2018

3:18 Theory and Practice of Coroutines with Snapshots

entry 3 4 Ws 6 Y 8 9 10 11 We 12 return

Control flow graph splitting Resuming a coroutine effectively jumps to the middle of its
body. Such a jump is not possible if the target language that supports only structured
programming constructs. As explained in Section 5.2, the transformation outputs multiple
entry point subroutines, each containing only structured control flow. Therefore, the CFG
from the previous phase is split into multiple segments, each corresponding to an entry point.

The splitting starts at the node that corresponds to the coroutine method entry, and
traverses the nodes of the graph until reaching a previously unseen yield-site or coroutine
call. The search is repeated from each split, taking care not to repeat the search twice. If
the graph traversal encounters a control flow node (such as We) whose corresponding Ws
node was not seen as part of the same segment (which can happen if there is a yield inside a
while-loop), such a node is converted into a Be (block exit) node, followed by a loop again.

entry 3 4 Ws 6 Y We 12 return

entry Bs 8 9 10 11 Be Ws 6 Y We 12 return

Example. The control flow graph of the bucket coroutine from Listing 5, produced in the
previous phase, is split into the following pair of segments. Note that the second segment
starts from the yield-site inside the loop, and that one loop iteration is effectively unrolled.

Listing 29 Entry points of bucket.
1 def _enter (
2 i: Instance [Int , Unit]
3): Unit =
4 i. _pstack (i._ptop) match {
5 case 0 => _ep0(i)
6 case 1 => _ep1(i)
7 }
8
9 def _ep0(

10 i: Instance [Int , Unit]
11): Unit = {
12 var b = i. _rstack (i._rtop + 0)
13 var x_0 = b != Nil
14 var x_1 = x_0
15 while (x_1) {
16 var x_2 = b.head
17 i.value = x_2
18 i. _pstack (i._ptop + 0) = 1
19 return
20 }
21 i. _result = ()
22 i. _cstack (i._ctop) = null
23 i._ctop -= 1
24 i._ptop -= 1 }

Listing 30 Entry points of bucket, cont.
1 def _ep1(
2 i: Instance [Int , Unit]
3): Unit = {
4 var b = i. _rstack (i._rtop + 0)
5 var x_1 = false
6 {
7 var x_3 = ()
8 var x_4 = b.tail
9 b = x_4

10 var x_0 = b != Nil
11 x_1 = x_0
12 }
13
14 while (x_1) {
15 var x_2 = b.head
16 i.value = x_2
17 i. _rstack (i._rtop + 0) = b
18 i. _pstack (i._ptop + 0) = 1
19 return
20 }
21 i. _result = ()
22 i. _cstack (i._ctop) = null
23 i._ctop -= 1
24 i._ptop -= 1 }

AST generation. This phase transforms the CFG segments back into the ASTs for the
entry point methods. Each entry point starts by restoring the local variables from the call
stack. At each yield-site and each coroutine call (commonly, the exit), the entry point method
stores the local variables back to the stack. It then either stores the yield value into the

A. Prokopec and F. Liu 3:19

coroutine, or stores the result value. The entry point methods are placed into a Coroutine
subclass, and the _enter method dispatches to the proper entry points.

Example. Listings 29 and 30 show the implementation of the entry points of the bucket
coroutine. Note that each method starts by restoring the local variable b from the reference
stack of the coroutine instance i. Each entry point ends by either storing the yield value
into the value field of the coroutine instance, or the result value into the result field. Local
variables are then stored onto the stack (there are two stacks – _vstack for primitive values
and _rstack for references), and the program counter is stored to the _pstack.

Listing 31 Error-handling coroutines.
1 val fail =
2 coroutine { (e: Error) =>
3 throw e
4 }
5 val forward =
6 coroutine { () =>
7 fail(new Error)
8 }
9 val main =

10 coroutine { () =>
11 try forward ()
12 catch {
13 case e: Error =>
14 println (" Failed .")
15 }
16 }

Listing 32 Normalized main coroutine.
1 /* main */
2 var x_0: Exception = null
3 try forward ()
4 catch {
5 case e => x_0 = e
6 }
7 var x_1 = x_0 != null
8 if (x_1) {
9 var x_2 =

10 x_0. isInstanceOf [Error]
11 if (x_2) {
12 println (" Failed .")
13 } else {
14 throw x_0
15 }
16 }

5.4 Exception handling
Code inside the coroutine block can throw an exception. In this case, standard exception
handling semantics apply – the control flow must continue from the nearest dynamically
enclosing catch block that handles the respective exception type. To ensure this, the
transformation does three things:
(1) it normalizes the try-catch and throw ASTs,
(2) it treats each throw statement as a suspension point that writes to the instance’s

_exception field,
(3) it places an exception handler at the beginning of each entry point.

To explain these steps, we use the example in Listing 31. The fail coroutine takes an
Error argument and throws it. The forward coroutine creates an Error object, and calls
the fail coroutine without handling its exceptions. The main coroutine calls the forward
coroutine inside a try block, and catches the subset of exceptions with the Error type.

Normalization. The normalized coroutine main is shown in Listing 32. The catch handler
is transformed so that, once caught, the exception is immediately stored into x_0. The
variable x_0 is matched against the Error type in the subsequent if-statements.

Exception throws. The transformation of the throw statement from the fail coroutine is
in Listing 33. The parameter is loaded into the variable e, and immediately stored into the
exception field. The coroutine stack _cstack is then popped, and the coroutine returns.

ECOOP 2018

3:20 Theory and Practice of Coroutines with Snapshots

Listing 33 1st entry point of fail.
1 /* fail , _ep0 */
2 var e = i. _rstack (i._rtop)
3 i. _exception = e
4 i. _rstack (i._rtop) = null
5 i._rtop -= 1
6 return

Listing 34 2nd entry point of main.
1 /* main , _ep1 */
2 try {
3 try {
4 var x_0 = i. _exception
5 if (x_0 != null) throw x_0
6 } catch { case e => x_0 = e }
7 var x_1 = x_0 != null
8 if (x_1) {
9 var x_2 =

10 x_0. isInstanceOf [Error]
11 if (x_2) println (" Failed .")
12 else throw x_0
13 }
14 /* Normal exit */
15 } catch { case x_1 =>
16 /* Exceptional exit */
17 }

Listing 35 Entry points of forward.
1 /* forward , _ep0 */
2 var x_0 = new Error
3 fail._call(i, x_0)
4 i._ctop += 1
5 i. _cstack (i._ctop) = null
6 i._ptop += 1
7 i. _pstack (i._ptop) = 0
8 i._call = true
9 return

10
11 /* forward , _ep1 */
12 try {
13 var x_0 = i. _exception
14 if (x_0 != null) throw x_0
15 i. _cstack (i._ctop) = null
16 i._ctop -= 1
17 i._ptop -= 1
18 return
19 } catch { case x_1 =>
20 i. _exception = x_1
21 i. _cstack (i._ctop) = null
22 i._ctop -= 1
23 i._ptop -= 1
24 return
25 }
26

Stack unwinding. The final rule is to wrap every entry point that starts at a return from a
coroutine call into an unwinding exception handler. In addition, if the previous entry point
ended inside a user exception handler, then a replica of that handler is added.

The forward coroutine does not have an exception handler, so its second entry point
_ep1 contains only the unwinding handler, as shown in Listing 35. On the other hand, main’s
first entry point _ep0 ends with a coroutine call. Listing 34 shows that the second entry point
_ep1 therefore has both the unwinding handler and the user handler. If the user handler
cannot handle the exception, then the exception is rethrown.

5.5 Optimizations
An entry point method does not need to load all the local variables at the beginning, nor
store all of them to the stack. For example, the entry points of the bucket coroutine in
Listings 29 and 30 only store a subset of all the variables in the scope. In particular, _ep0
does not store the variables b, x_0, x_1 and x_2, while _ep1 only stores b. In this section,
we explain the optimization rules used to avoid the unnecessary loads and stores.

Scope rule. A variable does not need to be loaded or stored if it is not in scope after the
exit point. This rule applies to, for example, the variables x_3 and x_4 from Listing 30.

I Definition 13. A control flow graph node d dominates a node n if every control flow path
from the begin node to n must go through d.

Must-load rule. A local variable v must be loaded from the stack if the respective entry
point contains at least one read of v that is not dominated by a write of v.

A. Prokopec and F. Liu 3:21

entry Bs 8 9 10 . . .Example. Consider the variable b of the entry point
_ep1 of the bucket coroutine in Listing 30. In the cor-
responding control flow graph, the read in the node 8 precedes the write in the node 9.
Consequently, there exists a read that is not dominated by any write, and b must be loaded.

I Definition 14. A control flow path is a connected sequence of CFG nodes. A control flow
path is v-live if the variable v is in scope in all the nodes of that control flow path.

Was-changed rule. A local variable v must not be stored to the stack if there is no v-live
control flow path that starts with a write to v and ends at the respective exit node.

entry 3 4 Ws 6 Y

Example. Consider the variable b of the entry point
_ep0 of the bucket coroutine in Listing 29. In the
corresponding CFG, the variable b is read in nodes 3

and 6. However, there is no write to v that connects to the exit node Y . Therefore, at Y , b
did not change its value since the begin node, so it does not have to be stored.

I Definition 15. We say that an exit node x resumes at an entry point e, if the exit node
corresponds to the begin node of e in the original control flow graph.

I Definition 16. Relation needed(x, v, e) between an exit node x, the variable v and an
entry point method e holds if and only if either:
(1) x resumes at e, and the must-load rule applies to v and e, or
(2) x resumes at e′, and there is a v-live control flow path between the begin node of e′ and

some exit node x′ of e′, such that needed(x′, v, e).

Is-needed rule. A local variable v must not be stored to the stack at an exit node x if there
is no entry point method e such that needed(x, v, e).

Example. Intuitively, this rule applies when it becomes impossible to reach (without v
going out of scope) an entry point that would need to load v. This rule applies to the variable
x_2 in the entry point _ep1 in Listing 30. Variable x_2 is in scope at the exit point, however,
it does not need to be loaded when _ep1 is reentered, and it goes out of scope before it is
needed again.

6 Performance Evaluation

The goal of the evaluation is to assess coroutine performance on a range of different use cases,
most notably those from Section 3. The source code of the benchmarks is available online
[44]. Evaluation was done in accordance with established JVM benchmarking methodologies
[19]. We used the ScalaMeter framework [42] to repeat each benchmark 30 times, across 6
different JVM process instances, and we report the average values. We used a quad-core 2.8
GHz Intel i7-4900MQ processor with 32 GB of RAM, and results are shown in Figure 4.

Iterators. We test tree iterators from Listing 8 against a manually implemented tree iterator.
The first benchmark, TreeFindMax, traverses a single tree and finds the largest integer, while
TreeToArray copies the integers to an array. TreeSameFringe compares the corresponding
integers in two trees with a different layout [18]. These benchmarks heavily modify the stack,
so a coroutine is 1.9− 2.1× slower than an iterator. A CPS-based iterator, built using Scala

ECOOP 2018

3:22 Theory and Practice of Coroutines with Snapshots

1.0× 1.0×

1.0×2.11× 1.93×

1.91×

2.90× 2.48×

2.41×

14.49× 12.62× 16.82×

TreeFindMax TreeToArray TreeSameFringe
0

10

20

30

time/ms

iterator coroutine continuations streams

1.0×

1.0×

1.26×

1.05×6.22×

2.11×

HashLongest HashZip
0

20

40

60

time/ms

iterator coroutine continuations

1.0×

1.0×
1.0×

1.0×

1.34×

1.09× 1.17×

1.03×

1.90× 1.12× 1.28×

1.07×

DFS DenseDFS BFS DenseBFS
0

20

40

time/ms

iterator coroutine continuations

1.0×

1.0×

1.15× 8.37×

Fibonacci Taylor
0

5

10

time/ms

coroutine
stream

1.0×

1.0×

1.07×

1.41×

TestListTestFract
0

10

20

30

40

time/ms

monad
coroutine

1.0×

1.0×

1.17×

1.0×

245×

1.25×

FastReq NetReq
0

10

20

30

time/ms

async coroutine threads

1.35×

1.09×

1.0×

1.0×
1.52×

1.46×

PC BoundedPC
0

20

40

60

time/ms

LTQ coroutine future

1.0× 1.21×1.03× 1.36×
1.44×

1.0×

1.48×

1.06×

PingPong ThreadRing
0

20

40

60

time/ms

reactor coroutine
Akka Akka coroutine

Figure 4 Performance of coroutines and alternative frameworks (lower is better).

delimited continuations [56], is 2.4− 2.9× slower. For comparison, a lazy functional stream
is 12− 17× slower.

The HashLongest benchmark traverses a hash table to find the longest string (strings
contain size information, so checks are cheap). Since most of the time is spent in the
loop and not in coroutine calls, performance overhead compared to iterators is only 26%.
This benchmark reveals a downside of CPS-based continuations4. The relative overhead of
allocating continuation closures is considerable for hash table iterators, so a continuation-
based iterator is 6.22× slower. HashZip simultaneously traverses two hash tables, picks
an element from each pair, and inserts it into a third hash table, effectively implementing
a zip operation on the hash tables. Since zipping does additional work of implementing
the resulting hash table, coroutines have only a 5% overhead compared to a manually
implemented iterator, while continuations are 2.1× slower.

DFS and BFS benchmarks traverse a sparse graph (degree 3) in depth-first and breadth-
first order. Coroutines have an overhead of 34% and 17% compared to manually implemented
iterators, and continuations 90% and 28%, respectively. Making the graphs denser (degree 16)
amortizes the overhead of suspensions, resulting in overheads of 9% and 3% for coroutines.

Lazy streams. Functional lazy streams, or lazy lists, are a neat abstraction for recursively
defining number series. Coroutines are also a good fit for this use-case, but are considerably
faster, since a stream needs to create a node object for each number in the series.

The Fibonacci benchmarks generates Fibonacci numbers, and uses big integer arithmetic
to do so. The overhead of a lazy-stream-based solution compared to a coroutine-based one is
only 15%. The Taylor benchmark generates a Taylor series, using floating-point arithmetic.
The work involved in a floating-point computation is much lower compared to big-integer
arithmetic. Since the relative overhead of lazy streams is much more pronounced in this case,
the stream-based solution is 8.4× slower.

4 In some cases, the Scala compiler can eliminate tail-calls, but typically not when invoking lambda
objects that encode the continuations produced by Scala’s delimited continutations plugin.

A. Prokopec and F. Liu 3:23

1
.0× 1.0×

1.0× 1.0×

1
.0×

1.0×

1
.0×

1.0×

1.43×

1
.21×

1.12× 1.09×

1.04×

1.09×

1
.12×

1.03×

1.68×

1.30×

1
.31×

1
.19×

1.18×

1.08×

1.18×

1
.05×

1.95×

1
.49×

1.39×

1.29×

1.21×

1.08×

1
.28×

1.05×

TreeSameFringe HashLongest DFS Fibonacci TestFract PCFastReq PingPong
0

20

40

60
time/ms

all-opts no-is-needed no-must-load-no-is-needed no-opts

Figure 5 Impact of optimizations on performance (lower is better).

ScalaCheck. The TestList and TestFract benchmarks compare regular ScalaCheck generator-
based testing [36] with backtracking from Section 3. The TestList benchmark checks properties
of list objects, and is computation-heavy – relative backtracking overhead due to creating
snapshots is only 7%. The TestFract benchmark checks properties of fractions and does only
simple arithmetic – in this case, backtracking overhead is 41%.

Async-Await. Here, network communication is the primary use-case. FastReq creates an
immediately completed request, and awaits it. In this case, coroutine-based implementation
from Section 3 has a 17% overhead. Just for comparison, starting a new thread for each
request is 245× slower. In practice, the network introduces a delay between requests and
responses. NetReq uses a 1 ms delay, in which case coroutines have no observable overhead.

Single-assignment variables. In this benchmark, Oz-style single-assignment variables from
Listing 18 are used to implement dataflow streams – a variant of cons-lists with single-
assignment tails. This allows a straightforward encoding of the producer-consumer pattern
[65]. The PC benchmark compares dataflow streams based on Scala Futures [22] with
coroutine-based streams. The direct-style coroutine API has an interesting performance
impact. Futures are 52% slower because every tail-read must allocate a closure and install a
callback even if the value is already present, whereas a coroutine can be directly resumed
when a value is available. The LinkedTransferQueue from the JDK blocks the thread when
waiting for a value, and is 35% slower. Bounded PC adds an additional backpressure dataflow
stream between the producer and the consumer, and has similar performance ratios.

Actors and event streams. We compare callback-style and direct-style Akka actors [1] and
reactors [54, 47, 43, 45] on two benchmarks from the Savina actor benchmark suite [24].
Direct-style programs are encoded by hot-swapping the event loop, as explained in Section 3.
The callback allocation in receive and get calls causes a 3% slowdown for reactors and 2.8%
for actors in PingPong. In ThreadRing, slowdown is 12% for reactors and 6% for actors.

Optimization Breakdown. We show a breakdown of different optimizations from Section 5.5.
We pick eight benchmarks from Figure 4 and run them after disabling different optimization
combinations. We observe the highest impact on TreeSameFringe, HashLongest, DFS and
PC. In Figure 5, all-opts shows performance with all optimizations enabled, no-is-needed
disables the is-needed rule, no-must-load-no-is-needed additionally disables the must-load
rule, and no-opts disables all optimizations. Results show that optimizations have the highest
impact on TreeSameFringe, where disabling them causes a total slowdown of almost 2×.
Here, 50% of the performance comes from the is-needed rule. In other benchmarks shown in
Figure 5, total improvement from optimizations ranges from 5% to 50%.

ECOOP 2018

3:24 Theory and Practice of Coroutines with Snapshots

Table 1 Comparison of Suspension Primitives in Different Languages.

Name Type-safe First-class Stackful Allocation-free Scope Snapshots

Enumerators (C#) 3 7 7 ∅ delimited 7

Generators (Python) 7 3 3 7 delimited 7

Async (Scala, C#) 3 3 3 7 delimited 7

Spawn-sync (Cilk) 3 7 3 3 whole program 7

Boost (C++) 3 3 3 3 delimited 7

CO2 (C++) 3 3 7 ∅ delimited 7

Coroutines (Lua) 7 3 3 3 just-in-time 7

Coroutines (Kotlin) 3 3 3 7 delimited 7

Coroutines (Scala) 3 3 3 3 delimited 3

7 Related Work

We organize the related work on coroutines into several categories. We start with the origins
and previous formalization approaches, we then contrast coroutines to similar domain-specific
primitives, and conclude with the related work on continuations. Where appropriate, we
contrast our model with alternatives. As stated in the introduction, many features of our
model have been studied already. However, our main novelty is that our delimited coroutines
rely only on metaprogramming, as well as augmenting coroutines with snapshots.

Coroutine in programming languages. Table 1 is a brief comparative summary of suspen-
sion primitives in different languages. We compare type-safety, whether suspendable code
blocks are first-class objects, whether coroutines are stackful, and if suspendable blocks can
call each other without dynamic allocation. The scope column denotes the scope in which
the primitive can be used.

The Kotlin language exposes coroutines with its suspend and yield keywords [7]. Kotlin’s
implementation is delimited and CPS-based, and it translates every call to a coroutine c to
an allocation of a coroutine class specific to c. This coroutine-specific class holds the state of
the local variables. Instances of this class are chained and form linked-list-based callstack.
Our translation approach is different in that a coroutine call modifies an array-based call
stack, and does not require an object allocation. Currently, Kotlin coroutines do not allow
snapshots, which makes them equivalent to one-shot continuations [34].

In the C++ community, there are two popular coroutine libraries: Boost coroutines [27]
and CO2 [25]. Boost coroutines are stackful, and they expose two separate asymmetric
coroutine types: push-based coroutines, where resuming takes an input value, and pull-based
coroutines, where resuming returns an output value. They do not support snapshots due to
problems with memory safety in copying the stack. CO2 aims to implement fast coroutines,
and reports better performance than Boost, but it supports only stackless coroutines.

Origins and formalizations. The idea of coroutines dates back to Erdwinn and Conway’s
work on a tape-based Cobol compiler and its separability into modules [11]. Although the
original use-case is no longer relevant, other use-cases emerged. Coroutines were investigated
on numerous occasions, and initially appeared in languages such as Modula-2 [68], Simula [6],
and BCPL [33]. A detailed classification of coroutines is given by Moura and Ierusalimschy
[34], along with a formalization of asymmetric coroutines through an operational semantics.
Moura and Ierusalimschy observed that asymmetric first-class stackful coroutines have an
equal expressive power as one-shot continuations, but did not investigate snapshots, which

A. Prokopec and F. Liu 3:25

make coroutines equivalent to full continuations. Anton and Thiemann showed that it is
possible to automatically derive type systems for symmetric and asymmetric coroutines
by converting their reduction semantics into equivalent functional implementations, and
then applying existing type systems for programs with continuations [2]. James and Sabry
identified the input and output types of coroutines [57], where the output type corresponds
to the yield type described in this paper. The input type ascribes the value passed to the
coroutine when it is resumed. As a design tradeoff, we chose not to have explicit input values
in our model. First, the input type increases the verbosity of the coroutine type, which may
have practical consequences. Second, as shown in examples from Section 3, the input type
can be simulated with the return type of another coroutine, which yields a writable location,
and returns its value when resumed (e.g. the await coroutine from Section 3). Fischer et al.
proposed a coroutine-based programming model for the Java programming language, along
with the respective formal extension of Featherweight Java [17].

Domain-specific approaches. The need for simpler control flow prompted the introduction
of coroutine-inspired primitives that target specific domains. One of the early applications
was data structure traversal. Push-style traversal with foreach is easy, but the caller must
relinquish control, and many applications cannot do this (e.g. the same-fringe benchmark
from Section 6). Java-style iterators with next and hasNext are harder to implement than a
foreach method, and coroutines bridge this gap.

Iterators in CLU [29] are essentially coroutines – program sections with yield statements
that are converted into traversal objects. C# inherited this approach – its iterator type
IEnumerator exposes Current and MoveNext methods. Since enumerator methods are not
first class entities, it is somewhat harder to abstract suspendable code, as in the backtracking
example from Section 3. C# enumerators are not stackful, so the closed addressing hash
table example from the Listing 6 must be implemented inside a single method. Enumerators
can be used for asynchronous programming, but they require exposing yield in user code.
Therefore, separately from enumerators, C# exposes async-await primitives. Some newer
languages such as Dart similarly expose an async-await pair of primitives.

Async-Await in Scala [23] is implemented using Scala’s metaprogramming facilities. Async-
await programs can compose by expressing asynchronous components as first-class Future
objects. The Async-Await model does not need to be stackful, since separate modules can
be expressed as separate futures. However, reliance on futures and concurrency makes it
hard to use Async-Await generically. For example, iterators implemented using futures have
considerable performance overheads due to synchronization involved in creating future values.

There exist other domain-specific suspension models. For example, Erlang’s receive
statement effectively captures the program continuation when awaiting for the inbound
message [66]. A model similar to Scala Async was devised to generate Rx’s Observable
values [20, 32], and the event stream composition in the reactor model [46, 49], as well
as callbacks usages in asynchronous programming models based on futures and flow-pools
[22, 53, 52, 41, 59] can be similarly simplified. Cilk’s spawn-sync model [28] is similar to
async-await, and it is implemented as a full program transformation. The Esterel language
defines a pause statement that pauses the execution, and continues it in the next event
propagation cycle [5]. Behaviour trees [31] are AI algorithms used to simulate agents – they
essentially behave as AST interpreters with yield statements.

Generators. Dynamic languages often support generators, which are essentially untyped
asymmetric coroutines. A Python generator instance [58] exposes only the next method (an

ECOOP 2018

3:26 Theory and Practice of Coroutines with Snapshots

equivalent of resume), which throws a StopIteration error when it completes. In practice,
Python generators are mostly used for list comprehensions, as programmers find it verbose
to handle StopIteration errors. Newer Python versions allow stackful generators [15] with
the yield from statement, which is implemented as syntactic sugar around basic generators
that chains the resume points instead of using call stacks. ECMAScript 6 generators are
similar to Python’s generators. Lua coroutines bear the most similarity with the coroutine
formulation in this paper [13], with several differences. First, Lua coroutines are not statically
typed. While this is less safe, it has the advantage of reduced syntactic burden. Second, Lua
coroutines are created from function values dynamically. This is convenient, but requires
additional JIT optimizations to be efficient.

Transformation-based continuations. Continuations are closely related to coroutines, and
with the addition of snapshot the two can express the same programs. Scheme supports
programming with continuations via the call/cc operator, which has a similar role as shift
in shift-reset delimited continuations [12, 3]. In several different contexts, it was shown that
continuations subsume other control constructs such as exception handling, backtracking,
and coroutines. Nonetheless, most programming languages do not support continuations
today. It is somewhat difficult to provide an efficient implementation of continuations, since
the captured continuations must be callable more than once. One approach to continuations
is to transform the program to continuation-passing style [64]. Scala’s continuations [56]
implement delimited shift-reset continuations with a CPS transform. One downside of the
continuation-passing style transformation is the risk of stack overflows when the tail-call
optimization is absent from the runtime, as is the case of JVM.

Optimizing compilers tend to be tailored to the workloads that appear in practice. For
example, it was shown that optimizations such as inlining, escape analysis, loop unrolling
and devirtualization make most collection programs run nearly optimally [50, 40, 55, 63, 48].
However, abstraction overheads associated with coroutines are somewhat new, and are not
addressed by most compilers. For this reason, compile-time transformations of coroutine-heavy
workloads typically produce slower programs compared to their runtime-based counterparts.
We postulate that targeted high-level JIT optimizations could significantly narrow this gap.

Runtime-based continuations. There were several attempts to provide runtime continu-
ation support for the JVM, ranging from Ovm implementations [14] based on call/cc, to
JVM extensions [62], based on the capture and resume primitives. While runtime continu-
ations are not delimited and can be made very efficient, maintenance pressure and portability
requirements prevented these implementations from becoming a part of official JVM releases.
An alternative, less demanding approach relies only on stack introspection facilities of the
host runtime [38]. There exists a program transformation that relies on exception-handling
to capture the stack [60]. Here, before calling the continuation, the saved state is used in
method calls to rebuild the stack. This works well for continuations, where the stack must be
copied anyway, but may be too costly for coroutine resume. Bruggeman et al. observed that
many use cases call the continuation only once and can avoid the copying overhead, which
lead to one-shot continuations [8]. One-shot continuations are akin to coroutines without
snapshots.

Other related constructs. Coroutines are sometimes confused with goroutines, which are
lightweight threads in the Go language. While coroutines can be used to encode goroutines,
the converse encoding is not as efficient, as goroutines involve message passing.

A. Prokopec and F. Liu 3:27

8 Conclusion

We described a programming model for first-class typed stackful coroutines with snapshots,
along with a formalization. Our implementation relies on metaprogramming facilities of
the host language. We identified the critical optimizations that need to accompany the
implementation, and showed their performance impact. We identified a range of use cases
such as iterators, Async-Await, Oz-style dataflow variables, Erlang-style actors, backtracking,
and direct-style event streams, and we showed that they can be expressed in our model.
Experimental evaluation shows that our coroutine implementation is almost as efficient as
these other primitives, and in some cases has an even better performance.

Our implementation is available online [44], as an independent module that relies on
metaprogramming capabilities in Scala, and works with the official language releases. This
work may indicate a wider need for metaprogramming support in general purpose languages,
which may be easier to provide than continuation support in the runtime. Moreover, runtime
support and JIT optimizations [50] could improve the performance of our implementation
even further, and we plan to investigate this in the future.

References

1 Akka. Akka documentation, 2011. http://akka.io/docs/.
2 Konrad Anton and Peter Thiemann. Towards Deriving Type Systems and Implementations

for Coroutines, pages 63–79. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. doi:
10.1007/978-3-642-17164-2_6.

3 Kenichi Asai and Chihiro Uehara. Selective cps transformation for shift and reset. In
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipu-
lation, PEPM ’18, pages 40–52, New York, NY, USA, 2018. ACM. doi:10.1145/3162069.

4 V. Beltran, D. Carrera, J. Torres, and E. Ayguade. Evaluating the scalability of java event-
driven web servers. In International Conference on Parallel Processing, 2004. ICPP 2004.,
pages 134–142 vol.1, Aug 2004. doi:10.1109/ICPP.2004.1327913.

5 Gérard Berry and Georges Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Sci. Comput. Program., 19(2):87–152, 1992. doi:
10.1016/0167-6423(92)90005-V.

6 G.M. Birtwhistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Chartwell-Bratt
Ltd, 1979.

7 Andrey Breslav. Coroutines for kotlin (revision 3.2), 2017.
https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md.

8 Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in the presence
of one-shot continuations. In Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation, PLDI ’96, pages 99–107, New York,
NY, USA, 1996. ACM. doi:10.1145/231379.231395.

9 Eugene Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax and
Static Types Work with Metaprogramming. In Proceedings of the 4th Workshop on Scala,
SCALA ’13, pages 3:1–3:10, New York, NY, USA, 2013. ACM. doi:10.1145/2489837.
2489840.

10 Mike Cantelon, Marc Harter, TJ Holowaychuk, and Nathan Rajlich. Node.Js in Action.
Manning Publications Co., Greenwich, CT, USA, 1st edition, 2013.

11 Melvin E. Conway. Design of a Separable Transition-Diagram Compiler. Commun. ACM,
6(7):396–408, 1963. doi:10.1145/366663.366704.

ECOOP 2018

http://dx.doi.org/10.1007/978-3-642-17164-2_6
http://dx.doi.org/10.1007/978-3-642-17164-2_6
http://dx.doi.org/10.1145/3162069
http://dx.doi.org/10.1109/ICPP.2004.1327913
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1145/231379.231395
http://dx.doi.org/10.1145/2489837.2489840
http://dx.doi.org/10.1145/2489837.2489840
http://dx.doi.org/10.1145/366663.366704

3:28 Theory and Practice of Coroutines with Snapshots

12 Olivier Danvy and Andrzej Filinski. Abstracting Control. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP ’90, pages 151–160, New York, NY,
USA, 1990. ACM. doi:10.1145/91556.91622.

13 A. Lúcia de Moura, N. Rodriguez, and R. Ierusalimschy. Coroutines in Lua. Journal of
Universal Computer Science, 10(7):910–925, July 2004.

14 Iulian Dragos, Antonio Cunei, and Jan Vitek. Continuations in the Java Virtual Machine.
In Second ECOOP Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (ICOOOLPS’2007), Berlin, 2007. Technische
Universität Berlin.

15 Gregory Ewing. PEP 380 - Syntax for Delegating to a Subgenerator, 2009.
https://www.python.org/dev/peps/pep-0380/.

16 Mattias Felleisen. The theory and practice of first-class prompts. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 180–190, New York, NY, USA, 1988. ACM. doi:10.1145/73560.73576.

17 Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: Language support for event-
driven programming. In Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’07, pages 134–143, New
York, NY, USA, 2007. ACM. doi:10.1145/1244381.1244403.

18 Richard P. Gabriel. The Design of Parallel Programming Languages. In Vladimir Lif-
schitz, editor, Artificial Intelligence and Mathematical Theory of Computation, pages
91–108. Academic Press Professional, Inc., San Diego, CA, USA, 1991. URL: http:
//dl.acm.org/citation.cfm?id=132218.132225.

19 Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java perform-
ance evaluation. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOPSLA ’07, pages 57–76, New York,
NY, USA, 2007. ACM. doi:10.1145/1297027.1297033.

20 Philipp Haller and Heather Miller. RAY: Integrating Rx and Async for Direct-Style React-
ive Streams. In Workshop on Reactivity, Events and Modularity, 2013.

21 Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220, feb 2009. doi:10.1016/j.tcs.2008.
09.019.

22 Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn, and
Vojin Jovanovic. Scala improvement proposal: Futures and promises. In SIP-14, 2012.
URL: http://docs.scala-lang.org/sips/pending/futures-promises.html.

23 Philipp Haller and Jason Zaugg. Scala Async Repository, 2013. ht-
tps://github.com/scala/async.

24 Shams M. Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite: Enabling Em-
pirical Evaluation of Actor Libraries. In Proceedings of the 4th International Workshop on
Programming Based on Actors Agents & Decentralized Control, AGERE! ’14, pages 67–80,
New York, NY, USA, 2014. ACM. doi:10.1145/2687357.2687368.

25 Jamboree. Co2: A c++ await/yield emulation library for stackless coroutine, 2017. URL:
https://github.com/jamboree/co2.

26 Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June/July 1988. URL: http://www.laputan.org/drc.html.

27 Oliver Kowalke. Coroutine2, 2017. URL: http://www.boost.org/doc/libs/1_66_0/
libs/coroutine2.

28 Charles E. Leiserson. Programming irregular parallel applications in Cilk, pages 61–71.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. doi:10.1007/3-540-63138-0_6.

29 Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction Mechan-
isms in CLU. Commun. ACM, 20(8):564–576, aug 1977. doi:10.1145/359763.359789.

http://dx.doi.org/10.1145/91556.91622
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.1145/1244381.1244403
http://dl.acm.org/citation.cfm?id=132218.132225
http://dl.acm.org/citation.cfm?id=132218.132225
http://dx.doi.org/10.1145/1297027.1297033
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://docs.scala-lang.org/sips/ pending/futures-promises.html
http://dx.doi.org/10.1145/2687357.2687368
https://github.com/jamboree/co2
http://www.laputan.org/drc.html
http://www.boost.org/doc/libs/1_66_0/libs/coroutine2
http://www.boost.org/doc/libs/1_66_0/libs/coroutine2
http://dx.doi.org/10.1007/3-540-63138-0_6
http://dx.doi.org/10.1145/359763.359789

A. Prokopec and F. Liu 3:29

30 Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with Scala.react. Tech-
nical report, EPFL, 2012.

31 A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren. Towards a Unified Behavior
Trees Framework for Robot Control. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 5420–5427, May 2014. doi:10.1109/ICRA.2014.6907656.

32 Erik Meijer. Your Mouse is a Database. Commun. ACM, 55(5):66–73, may 2012. doi:
10.1145/2160718.2160735.

33 Ken Moody and Martin Richards. A coroutine mechanism for bcpl. Softw., Pract. Exper.,
10(10):765–771, 1980. doi:10.1002/spe.4380101002.

34 Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting Coroutines. ACM Trans.
Program. Lang. Syst., 31(2):6:1–6:31, 2009. doi:10.1145/1462166.1462167.

35 Lasse R. Nielsen and BRICS. A selective cps transformation. Electronic Notes in Theoretical
Computer Science, 45:311–331, 2001. MFPS 2001,Seventeenth Conference on the Mathem-
atical Foundations of Programming Semantics. doi:10.1016/S1571-0661(04)80969-1.

36 Rickard Nilsson. ScalaCheck Website, 2010. https://www.scalacheck.org/.
37 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An Overview of the Scala Programming Language. Technical report, EPFL, 2004.

38 Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Matthias Fel-
leisen. Continuations from Generalized Stack Inspection. SIGPLAN Not., 40(9):216–227,
sep 2005. doi:10.1145/1090189.1086393.

39 Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002.

40 A. Prokopec, D. Petrashko, and M. Odersky. Efficient lock-free work-stealing iterators for
data-parallel collections. In 2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 248–252, March 2015. doi:10.1109/
PDP.2015.65.

41 Aleksandar Prokopec. Data Structures and Algorithms for Data-Parallel Computing in a
Managed Runtime. PhD thesis, IC, Lausanne, 2014. doi:10.5075/epfl-thesis-6264.

42 Aleksandar Prokopec. Scalameter website, 2014. URL: http://scalameter.github.io.
43 Aleksandar Prokopec. Pluggable scheduling for the reactor programming model. In Pro-

ceedings of the 6th International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE 2016, pages 41–50, New York, NY, USA, 2016. ACM.
doi:10.1145/3001886.3001891.

44 Aleksandar Prokopec. Scala Coroutines Website, 2016. https://storm-enroute/coroutines.
45 Aleksandar Prokopec. Accelerating by idling: How speculative delays improve performance

of message-oriented systems. In Francisco F. Rivera, Tomás F. Pena, and José C. Cabaleiro,
editors, Euro-Par 2017: Parallel Processing, pages 177–191, Cham, 2017. Springer Interna-
tional Publishing.

46 Aleksandar Prokopec. Encoding the building blocks of communication. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2017, pages 104–118, New York, NY,
USA, 2017. ACM. doi:10.1145/3133850.3133865.

47 Aleksandar Prokopec. Reactors.io website, 2018. URL: http://reactors.io.
48 Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. A generic parallel

collection framework. In Proceedings of the 17th international conference on Parallel pro-
cessing - Volume Part II, Euro-Par’11, pages 136–147, Berlin, Heidelberg, 2011. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=2033408.2033425.

49 Aleksandar Prokopec, Philipp Haller, and Martin Odersky. Containers and aggregates,
mutators and isolates for reactive programming. In Proceedings of the Fifth Annual Scala

ECOOP 2018

http://dx.doi.org/10.1109/ICRA.2014.6907656
http://dx.doi.org/10.1145/2160718.2160735
http://dx.doi.org/10.1145/2160718.2160735
http://dx.doi.org/10.1002/spe.4380101002
http://dx.doi.org/10.1145/1462166.1462167
http://dx.doi.org/10.1016/S1571-0661(04)80969-1
http://dx.doi.org/10.1145/1090189.1086393
http://dx.doi.org/10.1109/PDP.2015.65
http://dx.doi.org/10.1109/PDP.2015.65
http://dx.doi.org/10.5075/epfl-thesis-6264
http://scalameter.github.io
http://dx.doi.org/10.1145/3001886.3001891
http://dx.doi.org/10.1145/3133850.3133865
http://reactors.io
http://dl.acm.org/citation.cfm?id=2033408.2033425

3:30 Theory and Practice of Coroutines with Snapshots

Workshop, SCALA ’14, pages 51–61, New York, NY, USA, 2014. ACM. doi:10.1145/
2637647.2637656.

50 Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. Mak-
ing collection operations optimal with aggressive JIT compilation. In Proceedings of the
8th ACM SIGPLAN International Symposium on Scala, SCALA 2017, pages 29–40, New
York, NY, USA, 2017. ACM. doi:10.1145/3136000.3136002.

51 Aleksandar Prokopec and Fengyun Liu. On the soundness of coroutines with snapshots.
CoRR, abs/1806.01405, 2018. arXiv:1806.01405.

52 Aleksandar Prokopec, Heather Miller, Philipp Haller, Tobias Schlatter, and Martin Odersky.
FlowPools: A Lock-Free Deterministic Concurrent Dataflow Abstraction, Proofs. Technical
report, EPFL, 2012.

53 Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller, and Martin Odersky.
Flowpools: A lock-free deterministic concurrent dataflow abstraction. In LCPC, pages 158–
173, 2012. doi:10.1007/978-3-642-37658-0_11.

54 Aleksandar Prokopec and Martin Odersky. Isolates, Channels, and Event Streams for
Composable Distributed Programming. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!), Onward!
2015, pages 171–182, New York, NY, USA, 2015. ACM. doi:10.1145/2814228.2814245.

55 Aleksandar Prokopec, Dmitry Petrashko, and Martin Odersky. On lock-free work-stealing
iterators for parallel data structures. Technical report, EPFL, 2014.

56 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing First-Class Polymorphic
Delimited Continuations by a Type-Directed Selective CPS-Transform. SIGPLAN Not.,
44(9):317–328, 2009. doi:10.1145/1631687.1596596.

57 P. James Roshan and Amr Sabry. Yield: Mainstream delimited continuations, 2011.
58 Neil Schemenauer, Tim Peters, and Magnus Hetland. PEP 255 - Simple Generators, 2001.

https://www.python.org/dev/peps/pep-0255/.
59 Tobias Schlatter, Aleksandar Prokopec, Heather Miller, Philipp Haller, and Martin Odersky.

Multi-lane flowpools: A detailed look. Tech Report, 2012.
60 Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. Portable implementation

of continuation operators in imperative languages by exception handling. In Advances in
Exception Handling Techniques (the Book Grow out of a ECOOP 2000 Workshop), pages
217–233, London, UK, UK, 2001. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=647332.722736.

61 Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes for Scala. Technical
report, EPFL, 2013.

62 Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck, and John
Rose. Lazy continuations for java virtual machines. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, PPPJ ’09, pages 143–152,
New York, NY, USA, 2009. ACM. doi:10.1145/1596655.1596679.

63 Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victoria
Popic, Michael Wu, Aleksandar Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle
Olukotun. Composition and reuse with compiled domain-specific languages. In Proceedings
of the 27th European Conference on Object-Oriented Programming, ECOOP’13, pages 52–
78, Berlin, Heidelberg, 2013. Springer-Verlag. doi:10.1007/978-3-642-39038-8_3.

64 Gerald Jay Sussman and Guy L. Steele, Jr. Scheme: A interpreter for extended
lambda calculus. Higher Order Symbol. Comput., 11(4):405–439, 1998. doi:10.1023/A:
1010035624696.

65 Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Program-
ming. The MIT Press, 1st edition, 2004.

http://dx.doi.org/10.1145/2637647.2637656
http://dx.doi.org/10.1145/2637647.2637656
http://dx.doi.org/10.1145/3136000.3136002
http://arxiv.org/abs/1806.01405
http://dx.doi.org/10.1007/978-3-642-37658-0_11
http://dx.doi.org/10.1145/2814228.2814245
http://dx.doi.org/10.1145/1631687.1596596
http://dl.acm.org/citation.cfm?id=647332.722736
http://dl.acm.org/citation.cfm?id=647332.722736
http://dx.doi.org/10.1145/1596655.1596679
http://dx.doi.org/10.1007/978-3-642-39038-8_3
http://dx.doi.org/10.1023/A:1010035624696
http://dx.doi.org/10.1023/A:1010035624696

A. Prokopec and F. Liu 3:31

66 Robert Virding, Claes Wikström, and Mike Williams. Concurrent Programming in ER-
LANG (2nd Ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

67 Philip Wadler. Monads for Functional Programming. In Advanced Functional Program-
ming, First International Spring School on Advanced Functional Programming Techniques-
Tutorial Text, pages 24–52, London, UK, UK, 1995. Springer-Verlag. URL: http://dl.acm.
org/citation.cfm?id=647698.734146.

68 N. Wirth. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer-Verlag, 1985. URL: https://books.google.ch/books?id=ZVaRXPrD1AoC.

A Additional coroutine-based implementations

In Section 3, we showed how coroutines simplify actors and Rx streams. In this section, we
show the coroutine-based implementations for these use-cases.

Actors. Since JVM does not have continuations, actor frameworks are unable to implement
exact Erlang-style semantics, in which the receive statement can be called anywhere in the
actor. Instead, frameworks like Akka expose a top-level receive method [1], which returns
a partial function used to handle messages. This function can be swapped during the actor
lifetime with the become statement. In the example from Listing 15, we used a receive
statement that suspends in the middle of the actor and awaits a message. We now show its
implementation using coroutines.

The core idea is to implement a recv coroutine (we call it recv to disambiguate from
Akka’s receive function), which yields a partial function that represents the continuation
of the actor. The resume-site can then call become to hot-swap Akka’s top-level receive
handler with the yielded partial function.

In Listing 36, we first define an auxiliary type Rec, which describes a partial function
that can take Any message objects. The method act declares an Erlang-style actor – it
takes a coroutine that may yield partial functions of the Rec type, which describe how to
process the next message. The act method starts an instance of the input coroutine, and
resumes it inside a recursive loop function. The instance potentially calls the recv method,
which yields. When this happens, act extends the yielded partial function with the andThen
combinator which recursively resumes the coroutine instance. This chained partial function
is passed to become, which tells Akka to run the chained function when a message arrives.

The recv is a coroutine that yields the Rec function and returns a message of type Any
– the actor definition must then match this value. The implementation of recv declares a
local variable res in which the incoming message is stored by the yielded partial function.
After recv gets resumed, act will have already called the yielded function, which will have
written the message to res, so that it can be returned to the actor that invoked recv.

Listing 36 Erlang-style actor implementation.
1 type Rec = PartialFunction [Any , Unit]
2 def act(c: () ~> (Rec , Unit)) = Actor { self =>
3 val i = c.start ()
4 def loop () =
5 if (i. resume) self. become (i.value. andThen (loop))
6 else self.stop ()
7 loop ()
8 }
9 val recv: () ~> (Rec , Any) = coroutine { () =>

10 var res: Any = _
11 yieldval ({ case x => res = x })
12 res
13 }

ECOOP 2018

http://dl.acm.org/citation.cfm?id=647698.734146
http://dl.acm.org/citation.cfm?id=647698.734146
https://books.google.ch/books?id=ZVaRXPrD1AoC

3:32 Theory and Practice of Coroutines with Snapshots

Event streams. Event streams expose the onEvent method, similar to onSuccess on futures.
The onEvent method takes a callback that is invoked when the next event arrives. As shown
in Listing 17, it is much more convenient to extract an event in the direct-style by invoking
a get statement, instead of installing a callback.

In Listing 37, we implement the method get on the event stream of type Events[T]. We
declare a type alias Install that represents a function that installs a callback to the event
stream. When an Install function is invoked with a function f, the function f is passed as
a callback to some event stream.

The react method is similar to the act method for actors – it delimits the suspendable
part of the event-driven program. The react method starts and resumes the coroutine.
When the coroutine yields an Install function, the react method uses the Install function
to install a callback that recursively resumes the coroutine.

The get method is called by the users to extract the next event out of a reactor’s event
stream. Its implementation yields an Install function that installs the callback on the event
stream by calling onEvent. The event stream callback sets the result variable and invokes
the continuation function f. This technique is similar to the actor use-case, but the difference
is that it abstracts over what become is.

Listing 37 Direct-style event streams.
1 type Install = (() => Unit) => Unit
2 def react(c: () ~> (Install , Unit)) = {
3 val i = c.start ()
4 def loop (): Unit = if (i. resume) i.value(loop)
5 loop ()
6 }
7 def get[T](e: Events [T]): () ~> (Install , T) = coroutine { () =>
8 var res: T = _
9 val install = (f: () => Unit) => e. onEvent (x => {

10 res = x
11 f()
12 })
13 yieldval (install)
14 res
15 }

We note that, in this example, it might have been more natural to yield an event stream
directly, instead of yielding Install functions. However, the event stream is parametric in
the type of events, and the coroutine would always have to yield event streams of the same
event type. The Install function hides the event type inside the get function, and allows a
more flexible event stream API.

A Concurrent Specification of POSIX File Systems
Gian Ntzik
Imperial College London & Amadeus, UK
gian.ntzik@amadeus.com

Pedro da Rocha Pinto
Imperial College London, UK
pmd09@doc.ic.ac.uk

Julian Sutherland
Imperial College London, UK
jhs110@doc.ic.ac.uk

Philippa Gardner
Imperial College London, UK
pg@doc.ic.ac.uk

Abstract
POSIX is a standard for operating systems, with a substantial part devoted to specifying file-
system operations. File-system operations exhibit complex concurrent behaviour, comprising
multiple actions affecting different parts of the state: typically, multiple atomic reads followed by
an atomic update. However, the standard’s description of concurrent behaviour is unsatisfactory:
it is fragmented; contains ambiguities; and is generally under-specified. We provide a formal
concurrent specification of POSIX file systems and demonstrate scalable reasoning for clients.
Our specification is based on a concurrent specification language, which uses a modern concurrent
separation logic for reasoning about abstract atomic operations, and an associated refinement
calculus. Our reasoning about clients highlights an important difference between reasoning about
modules built over a heap, where the interference on the shared state is restricted to the operations
of the module, and modules built over a file system, where the interference cannot be restricted
as the file system is a public namespace. We introduce specifications conditional on context
invariants used to restrict the interference, and apply our reasoning to the example of lock files.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases POSIX, concurrency, file systems, refinement, separation logic, atomicity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.4

Funding EPSRC Grants EP/H008373/1, EP/K008528/1 and EP/L016796/1

1 Introduction

POSIX [2] is a standard for operating systems, with a substantial part devoted to specifying
file-system operations. File-system operations exhibit complex fine-grained concurrent
behaviour, in the sense that they comprise multiple actions affecting different parts of the state:
typically, multiple atomic1 reads followed by an atomic update. The standard’s description of
this complex concurrent behaviour is unsatisfactory: it is fragmented; contains ambiguities;
and is generally under-specified. There has been much work on formal, mathematical

1 Atomic in the sense of linearisability [18], where operations appear to take effect at a single discrete
point in time.

© Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 4; pp. 4:1–4:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gian.ntzik@amadeus.com
mailto:pmd09@doc.ic.ac.uk
mailto:jhs110@doc.ic.ac.uk
mailto:pg@doc.ic.ac.uk
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 A Concurrent Specification of POSIX File Systems

specifications of POSIX file systems, but no formal description of its concurrent behaviour:
the work either restricts to sequential fragments (for example [3, 19, 24, 15, 16, 17, 7, 30]); or
takes a coarse-grained view of concurrency that does not capture the POSIX behaviour [33].

Although poorly described, there is a consensus between major file-system implementations
on what the concurrent behaviour of POSIX file systems should be. File-system operations
(such as unlinking files) typically traverse paths to identify the files or directories on which
they will act. Path traversal comprises a sequence of multiple atomic reads, each looking
up a component of the path within a directory. Other operations (such as renaming files)
exhibit the more complex behaviour of resolving multiple paths. Since POSIX does not
specify the order in which multiple paths are resolved, the atomic reads of multiple path
traversals can be arbitrarily interleaved. After the path resolution, other atomic actions
perform the intended update of the file-system operation. In summary, file-system operations
are sequential and parallel combinations of atomic actions.

We provide the first formal concurrent specification of POSIX file systems using a
specification language based on concurrent separation logic. Such separation logics provide
compositional reasoning about fine-grained concurrency and atomic operations: for example,
the TaDA program logic [9, 8] uses a first-order approach to atomicity; the Iris framework [23]
encodes the TaDA atomicity, using a higher-order approach initially introduced by Jacobs [20];
and the FCSL logic [26] uses histories. With TaDA, we are able to reason directly about
atomic operations by introducing abstract atomic triples. However, such an atomic triple
only specifies one atomic action for a given program statement. We cannot specify POSIX
file-system operations which perform multiple atomic actions using TaDA. With Iris, it is
possible to give a higher-order encoding of the TaDA atomic triples, yielding multiple atomic
operations for free. We spent a considerable amount of time trying to use Iris to specify
POSIX file-system operations, but found that the Hoare-style specifications were getting
too complex. The issue is that the multiple atomic actions in POSIX are not simple linear
sequences of atomic steps, but exhibit patterns of control flow which are better associated
with program statements than logical assertions. The same issue also arises with FCSL [26].

We introduce TaDA-Refine, a specification language for specifying multiple atomic actions
using TaDA assertions in the basic atomic statements, and an associated refinement calculus [4]
for verifying clients. Our approach is inspired by the work of Turon and Wand [36], which
was the first to combine such a specification language with separation-logic reasoning [32].
They introduced a refinement calculus for reasoning about atomicity abstraction, where a
specification program appears to perform an operation in one atomic step even though its
implementation takes many steps. They can verify that operations on simple data structures,
such as incrementing a non-blocking counter, can be abstracted to atomic specification
statements. They introduce an ownership discipline, formally captured by the notion of
fenced refinement, to verify operations on more complex data structures such as a non-
blocking stack. In contrast, we are able to reason about complex data structures using
assertions and laws inspired form modern concurrent separation logics.

Our specifications of POSIX file-system operations take the form of simple programs
from the TaDA-Refine specification language, built from atomic specification statements. An
atomic specification statement has the form ∀~x. 〈P,Q〉, where P and Q are TaDA assertions
for describing shared state. It provides an abstract description of operations that, for arbitrary
~x, atomically updates states satisfying precondition P to states satisfying postcondition
Q. The associated refinement calculus gives subtle behaviour to these atomic statements.
For example, using the stuttering law of refinement, an equivalent specification program is
∀~x. 〈P, P 〉;∀~x. 〈P,Q〉. In fact, the combination of stuttering and mumbling laws with the

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:3

0 Root

1

5

3

2

4

7 7→ 0 · 24 · 42 · 256 . . .

6 7→ ε

usrtmp bin

git

.X0-lock bin lib

git

Figure 1 Example snapshot of a file-system graph.

universal quantification means that the atomic statements are robust to the environment
changing the values of the ~x over time. In §5 and the technical report [29], we demonstrate
that the presence of these laws means that the TaDA-Refine laws, model and soundness
proof are significantly simpler than those of TaDA.

We use TaDA-Refine to verify clients of POSIX file systems, often using derived hybrid
specification statements to reason about both atomic and non-atomic behaviour within one
specification. Our client reasoning is different from the usual reasoning about concurrent heap
modules using concurrent separation logics. A heap is a private namespace in the sense that
a thread can safely access only what its been given through allocation or ownership transfer.
Concurrent modules built over a heap restrict the interference on the shared resource they
encapsulate, by only allowing access to the resource via the module operations. In contrast,
a file system is a public namespace in the sense that a process or thread by default has access
to any part of the file system. File access permissions can only enforce restrictions to sets of
processes. It is not possible for a thread to keep part of a file system hidden from the rest of
the system to restrict interference. Instead, the interference must be explicitly restricted by
the reasoning. We do this by introducing context invariants to our specifications. We study
lock files which provide a simple example to introduce context invariants. A lock file is a
regular file under a path. If the lock file exists, the lock it represents is locked. Otherwise,
the lock is unlocked. Our context invariant ensures that the path must remain fixed, and
the lock file can only be added and removed using the lock operations, not the file-system
operations. Other examples of our client reasoning include named pipes which build on
lock files, and an email server to demonstrate the importance of reasoning about the full
concurrent behaviour of POSIX file systems.

2 POSIX File-system Primer

Most readers will have a basic understanding of POSIX file systems. They will perhaps
have less of an understanding of the concurrent behaviour of the file-system operations.
We describe the fragment of POSIX used in this paper, and illustrate why the concurrent
behaviour is poorly specified in the standard.

2.1 POSIX File-systems
A file system is an abstraction used to organise data, typically stored in some storage medium
such as a disk. In POSIX, this abstraction takes the form of a directed graph. In figure 1,
we give an example of an instance of such a file-system graph. The nodes in the graph

ECOOP 2018

4:4 A Concurrent Specification of POSIX File Systems

Basic types:
ι0, ι, j, . . . ∈ Inodes : countable set of inode numbers, ι0 is the root
a, b, . . . ∈ FNames : countable set of filenames

Bytes ,
{
n ∈ N | 0 ≤ n < 28} Errs , {ENOENT, ENOTDIR, ENOTEMPTY, . . .}

Paths’ 3 p ::= a | a/p Paths , Paths’ ∪ {∅p}
File-system structure:
FS ∈ FS , Inodes fin

⇀ Links] FileData Links , FNames fin
⇀ Inodes

FileData , Bytes∗; ({∅}∗ ; Bytes?)∗ where ∅ denotes a file gap
Notation:

isfile(o) , o ∈ FileData isdir(o) , o ∈ Links iserr(o) , o ∈ Errs
ι ∈ FS , ι ∈ dom(FS) a ∈ FS(ι) , a ∈ dom(FS(ι))

Figure 2 File-system structure, basic types and some notation.

are files. There are different types of files. For this paper, we are primarily interested in
directories which are denoted as circles in figure 1, and regular files which are denoted as
curved rectangles. Each file is uniquely identified by an inode number, or henceforth simply
an inode. In figure 1, the inodes are integers with 0 denoting the root directory.

Directories store links2 to other files. Each link has an associated name which is unique
to the directory and, thus, the links give the files their names. In figure 1, the links are given
by the labelled edges. Regular files contain file data which are sequences of bytes which need
not necessarily be contiguous. In figure 1, the notation 7 7→ 0 · 24 · 42 · 256 describes a regular
file with inode 7 and the sequence of bytes 0 · 24 · 42 · 256. Regular files can be linked more
than once, as is the case with the file with inode 7 in figure 1.

In figure 2, we give the basic mathematical definitions for the file-system structure that
we use throughout the paper. We give a simplified view of the file-system structure which is
enough to introduce our reasoning. In particular, we omit features such as symbolic links, the
special filenames “.” and “..”, and file-access permissions. These features are orthogonal to
reasoning about the concurrent behaviour of file-system operation and are discussed further
in Ntzik’s thesis [27].

The basic types, given by the sets Inodes with a distinguished inode ι0 for the root
directory, FNames and Bytes, are self-explanatory. The error types, given by the set Errs,
consists of the errors used by POSIX. We describe them as we use them in examples. The
paths describe absolute paths starting from the root directory; a model in [27] also uses
relative paths which start from a particular inode. The paths, given by the set Paths, is
either the empty path ∅p or a finite sequence of file names written as a1/.../an

A file-system structure is a finite map from inodes to their contents, given by the set
Links]FileData. For a directory which stores links to other files, the content is described
formally as a finite partial function from filenames to inodes, given by the set Links. A
directory is empty if its link function has the empty domain. For a regular file, the context is
a sequence of bytes of a regular language, given by the set FileData, where ∅ denotes a gap
in the sequence and ε denotes the empty sequence. A file-system structure is well formed if
there are no dangling links.

2 In POSIX, the terms link, hard link, directory entry, and entry mean the same thing.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:5

A file-system structure is shared across all processes and is inherently concurrent. We
have given concurrent specifications for operations of a core fragment of POSIX file systems.
The fragment comprises the operations mkdir, rmdir,link, unlink, rename, stat, open,
close, read, write, lseek, opendir, closedir, readdir, pread and pwrite. The fragment
is significant, in that it includes most of the primitive structural commands that manipulate
the file-system directory structure and the primitive input-output operations that change
the contents of regular files. For this paper, we motivate our specifications by focusing in the
structural operations unlink and link, and the input-output operations read and write.
We also use a number of other operations in our client examples. The full specification of
the fragment is available in Ntzik’s thesis [27].

2.2 Concurrent Behaviour: the unlink operation
The POSIX file-system standard is a mature English standard with a comparatively clear
description of the sequential behaviour of file-system operations. The description of the
concurrent behaviour of file-system operations is much less clear. It is fragmented, contains
ambiguities and is generally under-specified.

A particular difficulty lies with the POSIX atomicity guarantees for file-system operations.
To illustrate this point, let us consider the unlink operation. Its sequential behaviour is
straightforward. According to the POSIX standard (volume XSH, section 3), unlink(path)
removes the link identified by the path argument. For example, using the file-system graph
of figure 1, unlink(/usr/bin/git) first resolves the path /usr/bin, starting from the root
directory, following the links usr and bin to yield the directory 2. It then removes the link
named git to the regular file with inode 7 from this directory. If unlink is unable to resolve
the path because, for example, one of the names in the path does not exist in the appropriate
directory, it returns an error. Furthermore, POSIX allows some flexibility with the behaviour,
in that it allows implementations to return an error if the path identifies a link to a directory
rather than a regular file. In other words, unlink is permitted to exhibit non-determinism
due to different implementation decisions.

In a different section of the standard (volume XSH, section 2.9.7), unlink is specified as
atomic, which suggests that the whole process of resolving the path and removing the link to
the identified file is logically indivisible. However, this is a common misconception. Hidden
in the fine print of a section describing the specification rationale for unlink, we find the
statement:

“. . . Any part of the path of a file could be changed in parallel to a call to unlink,
resulting in unspecified behavior . . . ”.

Here, unspecified behaviour means that we cannot predict whether the operation is going to
succeed or error, even if we know the file-system’s state when unlink is invoked. When the
POSIX standard describes unlink as atomic (volume XSH, section 2.9.7), it means that the
removal of the link that the path identifies is atomic. The path resolution itself comprises a
sequence of atomic lookups that traverse the file-system graph by following the path. This
fragmentation and ambiguity of the description of the unlink operation in the standard
applies to all the POSIX operations that resolve paths. Such operations are sequences of
atomic read operations followed by an atomic update which removes, adds, moves (renames)
and looks up individual links in a directory. This behaviour is demonstrated by virtually all
major file-system implementations. It has two interesting implications. First, because the
file system can be changed arbitrarily by the concurrent environment between the individual
atomic steps comprising an operation, it is impossible to determine whether the operation

ECOOP 2018

4:6 A Concurrent Specification of POSIX File Systems

is going to succeed or error just by examining the file-system state at the invocation point.
The result depends on the concurrent environment and the scheduler interleavings. Thus,
POSIX operations exhibit non-determinism due to concurrent interleavings. Second, if an
operation succeeds, it does not necessarily mean that the path given as argument exists, or
even existed at any single point in time. It merely means that the operation was able to
resolve the path.

POSIX exhibits this ambiguity only for the operations that resolve paths. It is important
to understand what the intentions of the standard are with respect to their behaviour. We
suspect that POSIX does intend for these operations to have an atomic effect, but with
consideration to implementation performance. A truly atomic implementation, where both
the path resolution and the effect at the end of the path takes place in a single observable step,
would require synchronisation over the entire file-system graph. For most implementations,
the performance impact of this coarse-grained behaviour would be unacceptable. Therefore,
the wording of the standard allows path resolution to be implemented non-atomically, as a
sequence of atomic steps, where each looks up where the next name in the path leads to.
The specification of path resolution (volume XBD, section 4.13), is silent on this matter.

Our interpretation of the standard’s intentions is verified in the Austin Group mailing
list [1].3 Path resolution itself consists of a sequence of atomic lookups that traverse the
file-system graph by following the path. In the case of unlink, the effect of removing the
resolved link from the file-system graph is atomic. In fact, this is part of a common tenet
followed by virtually all major file-system implementations: removing (unlink), adding (open,
creat, link), moving (rename) and looking up individual links in a directory (path resolution
steps) are implemented atomically. In other words, when accounting for concurrency, POSIX
operations that resolve paths are sequences of atomic operations.

3 TaDA-Refine Specification Examples

We first introduce our TaDA-Refine specifications of file-system operations by example. In
particular, we specify operations on links and I/O operations on regular files. To account for
the fact that file-system operations perform sequences of atomic operations, our specifications
take the form of “programs” in a simple specification programming language.

3.1 Operations on links
In §2.2, we have informally described the behaviour of the unlink(path) operation: it
performs a sequence of atomic steps, first to resolve the argument path and then to remove
the link to the file identified by the path. We define the specification of unlink using the
following TaDA-Refine specification program:

let unlinkSpec(path) , let p = dirname(path);
let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

return link_delete(r , a) t link_delete_notdir(r , a)
else return r fi

The specification program initially splits the path argument to the path prefix p and last
name a, using dirname and basename respectively. If path is only one name, then dirname

3 Thread: “Atomicity of path resolution”, Date: 21 Apr 2015.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:7

returns null. The path prefix p is then resolved by calling the function resolve(p, ι0).
The second argument to resolve is the inode number of the directory from which to start
the path resolution. In figure 1, this would be the directory with inode 0. To simplify
the presentation, we define the specifications in this paper in terms of absolute paths, and
therefore we start the resolution from the root directory, which has the known fixed inode ι0.
If the resolution fails with an error code, we return it. If the resolution succeeds, the return
value is the inode of the directory containing the link we want to remove. POSIX allows
implementations to return an error if the link we want to remove is a link to a directory.
This freedom of choice given to implementations introduces angelic non-determinism. An
implementation is allowed to choose which behaviour to implement. On the other hand,
clients must be robust with respect to both behaviours if they wish to be portable. To
account for this, we use the non-deterministic angelic choice operator (t) to join the atomic
operations link_delete and link_delete_notdir.

resolve is defined as a function that recursively follows path, starting from the initial
directory with inode ι:

letrec resolve(path, ι) , if path = null then return ι else
let a = head(path);
let p = tail(path);
let r = link_lookup(ι, a);
if iserr(r) then return relse return resolve(p, r) fi

fi

The head and tail operations return the first name and the path postfix of the path
argument. Note that if path is a single name, then tail returns null. In each step, resolve
calls the atomic operation link_lookup(ι, a), to get the inode of the file pointed to by the
link named a, if that link exists in the directory with inode ι. If the link a does not exist in
the ι directory, or if the ι file is not a directory, link_lookup returns an error, the resolution
stops and the error is immediately returned. The procedure returns the resolved inode when
there is no more path to resolve, i.e. the postfix p of the path argument is null.

Any implementation of the unlink operation must exhibit behaviour given by the
specification program unlinkSpec. In other words, a correct implementation must be a
refinement of our specification program: unlink(path) v unlinkSpec(path).

In §5 and the technical report [29], we formally define our specification language and an
associated refinement calculus. The resulting refinement relation, v, is contextual meaning
that, in any context, unlink can be replaced by unlinkSpec to achieve the same behaviour.
Therefore, to reason about a client (a particular context), we can replace an implementation
with its specification.

To complete our unlink specification, we need to define the primitive atomic operations
link_lookup, link_delete and link_delete_notdir that do the actual lookup and
deletion of a link. Note that these are not POSIX operations, but abstract operations
corresponding to the basic atomic actions that POSIX operations perform. We use atomic
specification statements, ∀~x. 〈P,Q〉, to denote any program that atomically updates a state
satisfying the precondition P to a state satisfying the postcondition Q, inspired by Morgan’s
specification statements [25]. The universal quantifier binds ~x to both the precondition and
postcondition, and declares that the operation is atomic for all values of ~x.

We define the atomic operations link_lookup, link_delete and link_delete_notdir
as the atomic specification statements given in figure 3. Consider link_delete used in the
definition of unlinkSpec earlier. There are three cases composed with u, which we will

ECOOP 2018

4:8 A Concurrent Specification of POSIX File Systems

explain shortly. Consider the first case:

∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉

In the precondition fs(FS) ∧ isdir(FS(ι)), the abstract predicate fs(FS) states that the
file-system structure is given by the file-system graph FS, and the pure predicate isdir(FS(ι))
states that a directory with inode ι must exist in that file-system graph. In the postcondition,
we use the notation f [x 7→ v] to denote the function that maps x to v and all other elements
of the domain of f to f(x), and f \ S to denote the restriction of f to dom(f) \ S. The
postcondition states that if, at the point the atomic update takes effect, the link named a
exists in the directory with inode ι, then the link is removed and the return variable ret is
bound to 0. As a convention, we use ret within a function to bind its return value.

The other two cases specify erroneous behaviour. The first error case, defined by enoent,
specifies that if a link named a does not exist in the directory with inode ι then the return
variable is bound to the POSIX error code ENOENT. The second error case specifies that if
the inode ι does not identify a directory then the error code ENOTDIR is returned. Note that
the error cases do not modify the file system.

The three specification cases are composed with the non-deterministic demonic choice
operator u. We use demonic choice to account for the non-determinism of a specification due
to scheduling behaviour. In the case of link_delete, which of the three possible behaviours
we observe in a particular execution depends not only on the environment, but also on which
of the possible interleavings the scheduler decides to execute. Thus we consider the scheduler
to act as a demon and we call such specifications demonic. For example, link_delete
handles errors by returning the error code to the client. When reasoning about a particular
client, if we have information that restricts the environment, for example by requiring some
path to always exist, we can elide the cases that are no longer applicable. On the other hand,
an implementation of a demonic specification must implement all the cases. For example, an
implementation of link_delete must implement all three atomic specification statements.

The definition of link_delete_notdir is similar, except that it succeeds only when the
link being removed does not link a directory, and an extra error case is added for when it
does. link_lookup has the same error cases as link_delete, but does not modify the file
system, simply returning the target inode of the link named a, if it exists in the directory
with inode ι.

Now, let us consider the link(source, target) operation. Informally, it creates a new link
identified by the path target to the file identified by source, if it does not already exist.
Formally, we give the following refinement specification:

link(source, target)
v let ps = dirname(source); let a = basename(source);

let pt = dirname(target); let b = basename(target);
let rs, rt = resolve(ps, ι0) ‖ resolve(pt , ι0);
if ¬iserr(rs) ∧ ¬iserr(rt) then

return link_insert(rs, a, rt , b) t link_insert_notdir(rs, a, rt , b)
else if iserr(rs) ∧ ¬iserr(rt) then return rs
else if ¬iserr(rs) ∧ iserr(rt) then return rt
else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

Note that the operation has to resolve two paths before the actual linking is attempted.
POSIX does not specify the order in which multiple paths are resolved. Therefore, we
compose the two resolve invocations in parallel, with ‖. This allows implementations to

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:9

let link_lookup(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS) ∗ ret = FS(ι)(a)〉
u return enoent(ι, a) u return enotdir(ι)

let link_delete(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a) u return enotdir(ι)

let link_delete_notdir(ι, a) ,
∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS[ι 7→ FS(ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a) u return enotdir(ι) u return err_nodir_links(ι, a)

let link_insert(ι, a, j, b) ,

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) ∧ isdir(FS(j)) ,
a ∈ FS(ι) ∧ b 6∈ FS(j)⇒ fs(FS[j 7→ FS(j)[b 7→ FS(ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a) u return eexist(j, b) u return enotdir(ι) u enotdir(j)

let link_insert_notdir(ι, a, j, b) ,

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) ∧ isdir(FS(j)) ,
isfile(FS(ι)(a)) ∧ b 6∈ FS(j)⇒ fs(FS[j 7→ FS(j)[b 7→ FS(ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a) u return eexist(j, b)
u return enotdir(ι) u return enotdir(j) u return err_nodir_links(ι, a)

let enotdir(ι) , ∀FS. 〈fs(FS) ∧ ¬isdir(FS(ι)) , fs(FS) ∗ ret = ENOTDIR〉

let enoent(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a 6∈ FS(ι)⇒ fs(FS) ∗ ret = ENOENT〉

let eexist(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , a ∈ FS(ι)⇒ fs(FS) ∗ ret = EEXIST〉

let err_nodir_links(ι, a) , ∀FS. 〈fs(FS) ∧ isdir(FS(ι)) , isdir(FS(ι)(a))⇒ fs(FS) ∗ ret = EPERM〉

Figure 3 Specifications of atomic operations for links and associated error cases.

not only resolve the paths in any order, but also to interleave the two resolutions. The link
insertion is attempted when both resolutions succeed. In that case, analogously to unlink, we
use angelic choice between link_insert and link_insert_notdir. The former allows the
link to be created for any link, even to a directory, whereas the latter considers this erroneous.
The atomic specification statements for both are defined in figure 3. Error handling must be
robust against errors from both resolutions. Note that if both resolutions error, either error
code is returned. In general, a client is unable to determine which path resolution triggered
the error.

3.2 I/O operations on regular files

POSIX defines read and write as the primitive operations for reading and writing data to
regular files. The read operation reads a sequence of bytes from a regular file to a buffer in
the heap, whereas the write operation writes a sequence of bytes stored in the buffer to a
regular file. These operations do not identify the file they update with a path, but with a
file descriptor which acts as a reference to a file. To create a file descriptor for a file, a client
must first open the file for I/O using the operator open(path,fl), where path describes the
file to be opened and fl controls the behaviour of open on subsequent I/O operations such as
read and write.

ECOOP 2018

4:10 A Concurrent Specification of POSIX File Systems

let write_off(fd, ptr , sz) ,

∀FS, o ∈ N.

〈
fs(FS) ∧ isfile(FS(ι)) ∗ fd(fd, ι, o,fl) ∧ iswrfd(fl) ∗ buf

(
ptr , b

)
∧ len

(
b
)

= sz,
fs
(
FS[ι 7→ FS(ι)[o ← b]]

)
∗ fd(fd, ι, o + sz,fl) ∗ buf

(
ptr , b

)
∗ ret = sz

〉

let write_badf(fd) , ∀o ∈ N. 〈fd(fd, ι, o,fl) ∧ O_RDONLY ∈ fl, fd(fd, ι, o,fl) ∗ ret = EBADF〉

let read_norm(fd, ptr , sz) ,

∀FS, o ∈ N.

〈
fs(FS) ∧ isfile(FS(ι)) ∗ fd(fd, ι, o,fl) ∗ buf

(
ptr , bs

)
∧ len

(
bs
)

= sz,
∃bt . fs(FS) ∗ fd(fd, ι, o + ret,fl) ∗ buf

(
ptr , bs � bt

)
∧ bt = FS(ι)[o, sz] ∗ ret = len

(
bt
)〉

let read_badf(fd) , ∀o ∈ N. 〈fd(fd, ι, o,fl) ∧ O_WRONLY ∈ fl, fd(fd, ι, o,fl) ∗ ret = EBADF〉

where we write ∀~x, x ∈ X. 〈P,Q〉 to mean ∀~x, x. 〈P ∧ x ∈ X,Q ∧ x ∈ X〉.

Figure 4 Specification of atomic read and write abstract operations.

POSIX mandates that implementations of read and write must behave atomically when
used on regular files [2]. We give the following refinement specifications to read and write,
defined using the demonic choice of abstract operations given in figure 4:

read(fd, ptr , sz) v return read_norm(fd, ptr , sz) u read_badf(fd)

write(fd, ptr , sz) v return write_off(fd, ptr , sz) u write_badf(fd)

where fd identifies the appropriate file descriptor and ptr references the buffer storing a
sequence of bytes with size sz.

In figure 4, consider the atomic specification statement of write_off. The precondition
requires fd to be a file descriptor for the file with inode ι, with current file offset o and
flags fl. Note that the current file offset is bound by the universal quantifier, meaning
that until write_off takes effect, the environment can concurrently modify it, with the
proviso it remains a valid offset (a natural number). The predicate iswrfd(fl) , O_WRONLY ∈
fl ∨ O_RDWR ∈ fl states that file descriptor must have been opened for writing. Furthermore,
the predicate buf

(
prt, b

)
states that ptr points to a heap-based buffer storing the byte

sequence b. The postcondition states that the byte sequence b stored in the ptr buffer is
written to the file, offset from the start of the file (offset 0) by o. Any existing bytes from
offset o onward, up to the length of b, are overwritten. The current file offset associated with
the file descriptor is incremented by the number of bytes written, which the operation also
returns. The write_badf abstract operation returns the EBADF error, if the file descriptor
has not been opened for writing, and does not modify the file.

Note that we have specified both operations as happening atomically, as is mandated by
POSIX. However, not all implementations follow the POSIX specification. For example, in the
ext2 file system, the reads and writes are only atomic up to page-size number of bytes. Reads
and writes of larger size are split into multiple atomic steps. It is straightforward to specify
this kind of implementation-specific behaviour in our specification language. In addition,
reading and writing to the heap buffer is not atomic in some modern implementations. In
such implementations, the I/O operations behave atomically on the file contents and the file
descriptor, but non-atomically on the heap buffer. To account for such behaviour, we require
specification statements that combine atomic and non-atomic effects.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:11

In TaDA-Refine, it is possible to derive the hybrid specification statement:

∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}

We discuss this statement in detail in §5.3. Intuitively, this statement combines the atomic
update from P (~x) to Q(~x, ~y) with a non-atomic update from P ′ to Q′(~x, ~y). Its purpose
is twofold. First, it allows us to specify complex operations that have both atomic and
non-atomic effects on different parts of the state, such as the I/O operations of some file-
system implementations discussed earlier. Second, it is useful during atomicity proofs of
implementations that also sequentially update privately owned resources.

4 TaDA-Refine Client Reasoning I: Lock Files

Ntzik’s thesis [27] provides several examples of client reasoning based on the formal specific-
ations of POSIX file-system operations, such as those discussed in §3. Examples of client
reasoning include real-world lock files, an implementation of named pipes using regular file
I/O and lock files, and a concurrent interaction between an email client and email server
that is highly sensitive to the multi-atomic nature of path resolution. In this paper, we
concentrate on lock files.

The lock-file module is a widely-used module for implementing locks over the file system.
We describe the lock-file module and provide verified specifications for its operations to
demonstrate our reasoning with TaDA-Refine. These specifications are, however, limited.
They are only valid under the assumption that the file system is shared via the lock-module
interface. This assumption is not valid in general as the file system is a public namespace
that can be accessed and modified by concurrently executing applications. In §6, we revisit
this example and introduce context invariants to address this issue.

The lock-file concept is simple. A lock file is a regular file, under a fixed path. If the lock
file exists, the lock it represents is locked. Otherwise, the lock is unlocked. For example,
/tmp/.X0-lock is a typical lock file in contemporary Linux systems and, in figure 1, the lock
it represents is locked.

Consider the following implementation of a lock-file module with two operations, lock(lf)
and unlock(lf), where lf is the path identifying the lock file:

unlock(lf) , unlink(lf)

letrec lock(lf) ,
let fd = open(lf , O_CREAT|O_EXCL);
if iserr(fd) then lock(lf)
else close(fd) fi

The lock operation attempts to create the lock file at path lf by invoking open. This
operation is used to open files for input/output (I/O) and to create new files. The second
argument to open is a composition of the flags O_CREAT and O_EXCL, which causes open to
create a file at the given path if one does not already exist; otherwise, an error is returned.
Thus, if open returns an error we try again, with a recursive call to lock. If it succeeds, we
invoke close to close the file descriptor returned by open. Note that lock files, essentially,
follow the same implementation pattern as spin locks.

The open operation exhibits different behaviour depending on the flags used as the second
argument and we give its full specification in the technical report [29]. For presentation
simplicity we define the specification only in terms of the flags used in lock:

ECOOP 2018

4:12 A Concurrent Specification of POSIX File Systems

open(path, O_CREAT|O_EXCL)
v let p = dirname(path);

let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

return link_new_file(r , a)
u eexist(r , a) u enotdir(r)

else return r fi

where link_new_file(ι, a) is defined as follows:

∀FS.
〈

fs(FS) ∧ isdir(FS(ι)) , a 6∈ FS(ι)⇒ ∃ι′. fs
(
FS[ι 7→ FS(ι)[a 7→ ι′]][ι′ 7→ ε]

)
∗ fd
(
ret, ι′, 0

)〉
This specifies the creation of a new empty, regular file at inode ι′, and the addition of a link
named a to the new file within the directory with inode ι, if the link does not already exist.
The operation allocates and returns a new file descriptor. The predicate fd(ret, ι′, 0) asserts
that the return value is a file descriptor for the file with inode ι′, and the offset from which
reads and writes to the file occur, via this file descriptor, is set to 0.

By contextual refinement, we can replace the open and unlink with their specifications
and thus derive a specification for lock and unlock respectively. However, this would not be
useful for reasoning about locks since it fails to capture the abstract lock behaviour. Instead,
we want aim to establish a general abstract specification, such as the following:

lock(lf) v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

unlock(lf) v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

The abstract predicate Lock(s, lf , v) states the existence of a lock represented by a lock
file at path lf , with state v, the value of which is either 0, if the lock is unlocked, or 1 if
the lock is locked. The parameter, s ∈ T1, is a variable ranging over an abstract type. It
serves to capture invariant information, specific to the implementation of the Lock predicate
and is opaque to the client. The specification states that we can abstract each lock-file
operation to a single atomic step that updates the state of the lock. In particular, the lock
specification states that the environment can arbitrarily lock and unlock the lock, but the
lock is atomically locked only when it is previously unlocked; the operation blocks while the
lock is locked. The unlock specification states that the lock can only be atomically unlocked
when the lock is locked.

The environmental interference allowed by the specification of the lock operation is due
to the stuttering refinement law:

AStutter
∀~x. 〈P, P 〉;∀~x. 〈P,Q〉 v ∀~x. 〈P,Q〉

The environment can interleave between the two sequentially composed atomic specifications,
allowing it to change the state of the lock over time, as long as the state remains in the
set {0, 1}, otherwise, the precondition of the lock specification would be violated when it
executes, leading to undefined behaviour.

In order to justify the two refinements of the module’s specification, we must refine
the abstract Lock predicates to the shared lock-file path lf in the file system according to
the state of the lock. Additionally, we must enforce that the updates to the abstract state

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:13

unlock(lf) ≡ unlink(lf) v

H
St

ut
te

r

let p = dirname(path); let a = basename(path); let r = resolve(p, ι0) v
∀FS ∈ LF(path).

〈
fs(FS) , fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

〉
HStrengthen

v ∀FS ∈ LF(path). {true}〈fs(FS) , fs(FS)〉
{

p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)
}

;

if ¬iserr(r) then
return link_delete(r , a)

t link_delete_notdir(r , a)
≡ return link_delete(r , a)

t (link_delete(r , a) u err_nodir_links(ι, a))
Absorb

≡ return link_delete(r , a)
DChoiceIntro

v ∀FS. 〈fs(FS) ∧ isdir(FS(r)) , a ∈ FS(r)⇒ fs(FS[r 7→ FS(r) \ {a}]) ∗ ret = 0〉
ACons, AFrame

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ ¬iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)

〉
else

return r
v
〈
true, ret = r

〉
ACons

v
〈
true, true

〉
AFrame

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r)

〉
ACons

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)

〉
fi

v ∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)

〉
HStrengthen

v ∀FS ∈ LK(path).

{
p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

}
〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉

{true}
v ∀FS ∈ LK(lf). {true}〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉{true}
≡ ∀FS ∈ LK(lf). 〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉

ACons, AUseAtomic
v 〈Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α〉
v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

Figure 5 unlock() specification proof sketch.

ECOOP 2018

4:14 A Concurrent Specification of POSIX File Systems

of the lock by multiple threads follow a protocol: a thread can lock the lock only if it is
unlocked and, similarly, can unlock the lock only if it is locked. We use shared regions
to describe shared resources that are updated according to a particular protocol, using a
technique first developed with RGSep [37] and now used by many of the concurrent separation
logics [13, 11, 21, 34, 9, 23]. A shared region is an abstract object that encapsulates some
underlying (concrete) state that is shared between multiple threads, with the proviso that it
is only accessed atomically. We use tα(~y, x), to denote a shared region with identifier α from
the set RId, of type t, with parameters ~y and abstract state x. For our current example, we
introduce a region type Lock where regions of this type are parameterised by the lock-file
path and the abstract state of the region corresponds to the state of the lock.

The shared region enforces a protocol on updates to the abstract state via a labelled
transition system. The transitions between abstract region states are labelled by guards.
Guards are abstract resources that can be taken from any user-defined separation algebra [6].
For our current example we only need a simple separation algebra with a single, indivisible
guard G and the empty guard 0. The partial, associative and commutative composition
operator between these guards is defined by the axioms: x • 0 = x = 0 • x for all x ∈ {0,G}.
We define the labelled transition system for the Lock as follows:

G : 0 1 G : 1 0

A thread can only perform a transition between abstract region states if it owns the guard
resource associated with the transition; in our current example that is the guard G.

Having defined the Lock, its transition system and guards we can now define the
interpretation of the abstract Lock predicate and abstract type T1 in terms of the region as
follows:

T1 , RId Lock(α, lf , 0) , Lockα(lf , 0) ∗ [G]α Lock(α, lf , 1) , Lockα(lf , 1) ∗ [G]α

With the above interpretation we can refine the atomic specification statement of lock as
follows:

∀v ∈ {0, 1} . 〈Lockα(lf , v) ∗ [G]α ,Lockα(lf , 1) ∗ [G]α ∗ v = 0〉
v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

and similarly for the atomic specification statement of unlock:

〈Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α〉 v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

To refine the two updates further, we can apply the AUseAtomic refinement law which
allows us to refine an update to the abstract region state to an update on the (concrete) state
the region encapsulates. A slightly simplified version of this refinement law is as follows:

∀x. (x, f(x)) ∈ Tt(G)∗

∀x.
〈
I(tα(y, x)) ∗ P (x) ∗ [G]α , I(tα(y, f(x))) ∗Q(x)

〉
v ∀x.

〈
tα(y, x) ∗ P (x) ∗ [G]α , tα(y, f(x)) ∗Q(x)

〉
The premise of the law requires that an update from the abstract region state x to f(x) must
be in the reflexive, transitive closure of transitions guarded by G denoted by Tt(G)∗. In the
conclusion, an atomic update, satisfying the premise, on the interpretation of a region refines
the same atomic update on the region itself.

However, in order to refine the lock atomic specification statement further according to
AUseAtomic, we must define the interpretation of the Lock region states 0 and 1 to the
underlying file-system states.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:15

In the state 0 the lock file does not exist, whereas in the state 1 it does. In both
states however, the path to the directory containing the lock file must exist. To assert the
aforementioned statements we define the predicate p FS7→ ι to assert that the path p resolves
to the file with inode ι in the file-system graph FS as follows:

∅p
FS7→ ι , ι ∈ dom(FS) p FS7→ ι , (p, ι0) FS7→ ι (a, ι) FS7→ ι′ , FS(ι)(a) = ι′

(a/p, ι) FS7→ ι′ , ∃ι′′. FS(ι)(a) = ι′′ ∧ (p, ι′′) FS7→ ι′

With this predicate we can now define the sets of file systems that correspond to the lock
being unlocked and locked respectively as follows:

ULK(p/a) ,
{
FS

∣∣∣ ∃ι. p FS7→ ι ∧ isdir(FS(ι)) ∧ a 6∈ FS(ι)
}

LK(p/a) ,
{
FS

∣∣∣ ∃ι. p FS7→ ι ∧ isdir(FS(ι)) ∧ a ∈ FS(ι)
}

Additionally, we define the union of the above sets: LF(p/a) , ULK(p/a) ∪ LK(p/a),
and the following predicates that describe the updates from FS to FS′ that create and
remove the lock file in its directory respectively:

lk(FS, FS′, p/a) , ∃ι, ι′. p FS7→ ι ∧ FS′ = FS[ι 7→ FS(ι)[a 7→ ι′]][ι′ 7→ ε]
ulk(FS, FS′, p/a) , ∃ι. p FS7→ ι ∧ FS′ = FS[ι 7→ FS(ι) \ {a}]

Now we define the interpretation to the Lock region as follows:

I(Lockα(lf , 0)) , ∃FS ∈ ULK(lf). fs(FS) I(Lockα(lf , 1)) , ∃FS ∈ LK(lf). fs(FS)

We can now proceed with the refinement by applying the AUseAtomic law. For simplicity,
let us consider the refinement of unlock:

〈∃FS ∈ LK(lf). fs(FS) ∗ [G]α ,∃FS ∈ ULK(lf). fs(FS) ∗ [G]α〉
v 〈Lockα(lf , 1) ∗ [G]α ,Lockα(lf , 0) ∗ [G]α〉

Now we can work to refine this atomic update on the file-system state to the specification
program of unlink that we defined in section 3. A proof sketch can be seen in figure 5.
First we can frame-off the guard resource as it is no longer required by using the AFrame
refinement law which is directly analogous to the frame rule of separation logics:

〈∃FS ∈ LK(lf). fs(FS) ,∃FS ∈ ULK(lf). fs(FS)〉
v 〈∃FS ∈ LK(lf). fs(FS) ∗ [G]α ,∃FS ∈ ULK(lf). fs(FS) ∗ [G]α〉

Next, we strengthen the post-condition and eliminate the existential quantification over
file-system graphs:

∀FS ∈ LK(lf). 〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉
v 〈∃FS ∈ LK(lf). fs(FS) ,∃FS ∈ LK(lf), FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉

v 〈∃FS ∈ LK(lf). fs(FS) ,∃FS ∈ ULK(lf). fs(FS)〉

Our next challenge is that unlinkSpec consists of several steps in sequence. Earlier we
introduced the AStutter refinement law, however, unlinkSpec requires the manipulation
of hidden, intermediary, non-atomic state about the existence of the lock file being manipu-
lated. To deal with this, we introduce a generalisation of the AStutter rule, HStutter,

ECOOP 2018

4:16 A Concurrent Specification of POSIX File Systems

which chains together the non-atomic preconditions and postconditions as in the sequential
composition of Hoare triples:

∀~x. {P ′}〈P (~x), P (~x)〉{P ′′};∀~x. ∃~y. {P ′′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}
v ∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}

We will also need the HStrengthen refinement law which allows us to refine a non-atomic
update to a part of the state to an atomic update:

∀~x. ∃~y. {P ′}〈P ′ ∗ P (~x), Q(~x, ~y) ∗Q′(~x, ~y)〉{Q′(~x, ~y)}
v ∀~x. ∃~y. {P ′ ∗ P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y) ∗Q′(~x, ~y)}

The HStrengthen refinement law will be used to move stable information about the
file system state, i.e. assertions that cannot be invalidated by the environment, into the
non-atomic assertions so that they can be used to reason about the behaviour of subsequent
steps of the program.

To proceed with our refinement to unlinkSpec, we first use the fact that ∀~x. 〈P,Q〉 ≡
∀~x. {true}〈P,Q〉{true} and the HStutter refinement law to further refine the current
specification:

∀FS ∈ LK(lf). {true}〈fs(FS) , fs(FS)〉
{

p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)
}

;

∀FS ∈ LK(lf).
{

p FS7→ r ∧ isdir(FS(r)) ∧
a ∈ FS(r)

}
〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉{true}

v ∀FS ∈ LK(lf). 〈fs(FS) , ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉

Where variables p, a and r correspond to the path prefix, the last name in the path and
the inode corresponding to the directory p respectively. The first of these two specifications
is then refined using the HStrengthen refinement law to move all of the content of the
non-atomic postcondition into the atomic postcondition. This refinement is valid as the
environment is restricted to maintaining the existence of the path lf , the recursive calls to
resolve can be thought of as a single atomic step since the result of the individual atomic
resolution steps will not be invalidated by the environment.

This specification is further refined to the first three lines of code of unlinkSpec. In this
specification, we substitute lf for path due to the function call. For the derivation of the
recursive resolve function we rely on standard fixpoint induction law:

Ind
λx. φ [ψ/A] v λx. ψ
µA. λx. φ v λx. ψ

We omit the full derivation for brevity.

let p = dirname(path); let a = basename(path);
let r = resolve(p, ι0)
v ∀FS ∈ LK(path).

〈
fs(FS) , fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

〉
Next, we must verify that:

if ¬iserr(r) then
return link_delete(r , a)

t link_delete_notdir(r , a)
else return r fi

v

∀FS ∈ LK(path).{
p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r)

}
〈fs(FS) ,∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)〉

{true}

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:17

When verifying that an if statement refines an atomic specification, it suffices to verify that
both branches of the if statement satisfy the atomic specification given that the precondition
is extended with the if statement’s condition and its negation for each branch respectively,
as is done in figure 5.

First however, before applying this rule, figure 5. applies the HStrengthen refinement
law to move the stable information about the file system in the non-atomic precondition
back into the atomic precondition.

We can now check that the false branch of the if refines:

∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)

〉

As iserr(r) ⇒ r ∈ Errs and p FS7→ r ⇒ r ∈ Inodes, and since Inodes ∩ Errs = ∅,
p FS7→ r ∧ iserr(r)⇒ false holds. Since false⇒ ∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf), by using the
atomic consequence rule, figure 5 reaches the goal for this branch of the if statement.

To finish showing that unlinkSpec refines the goal specification, it remains to check the
true branch of the if statement. First we apply the consequence and frame rule, to frame
away p FS7→ r ∧ a ∈ FS(r) ∧ FS ∈ LK(path), on the specification for the true branch of the if
statement:

∀FS. 〈fs(FS) ∧ isdir(FS(r)) , a ∈ FS(r)⇒ fs(FS[r 7→ FS(r) \ {a}]) ∗ ret = 0〉 v

∀FS ∈ LK(path).
〈

fs(FS) ∧ p FS7→ r ∧ isdir(FS(r)) ∧ a ∈ FS(r) ∧ ¬iserr(r) ,
∃FS′. fs(FS′) ∧ ulk(FS, FS′, lf)

〉

Using the specification of link_delete() and the DChoiceIntro refinement law, φuψ v
φ, we can show that the current specification is refined by link_delete().

Finally, the Absorb law, φt(φuψ) ≡ φ ≡ φu(φtψ), asserts that a specification made up
of an angelic choice between a specification, φ, and a second, strictly less permissive one, φuψ,
is equivalent to φ, as in both cases, it must be satisfied. This law can be used in conjunction
with the definition of link_delete_notdir(r , a) to show that return link_delete(r , a) t
link_delete_notdir(r , a) v return link_delete(r , a) 4, which completes the proof.

This proof encapsulates the entirety of the file system within the Lock shared region,
which effectively prohibits sharing of the file system via means other than the lock-file
module’s interface. This assumption is not valid in general as the file system is a public
namespace that can be accessed and modified by concurrently executing applications. In
section 6, we will extend this reasoning to be able to express the necessary restrictions on
the context in which the program executes.

5 TADA-Refine Specification Language and Refinement Calculus

We describe TADA-Refine, our concurrent specification language and associated refinement
calculus, giving just a sketch here and providing full details in the technical report [29].
We discovered that, due to the stuttering and mumbling laws, we have simpler laws and
soundness proof compared with those of TaDA.

4 link_delete_notdir(r , a) can be rewritten as link_delete(r , a) u return err_nodir_links(ι, a).

ECOOP 2018

4:18 A Concurrent Specification of POSIX File Systems

Specifications φ, ψ ::= φ;ψ | φ ‖ ψ | let f = F in φ | Fe
| φ t ψ | φ u ψ | ∃x. φ | ∀~x. 〈P,Q〉k

Functions F ::= f | A | µA. λx. φ | λx. φ

Expressions e ::= . . .

Assertions P,Q,R ::= false | true | P ∗Q | P ∧Q | P ∨Q | ∃x. P | ∀x. P | P ⇒ Q

| tkα(~y, x) | [G]α | . . .

where x denotes a variable, ~x a sequence of variables, A a recursive variable and f a function.

Figure 6 The specification language of TaDA-Refine: specifications and assertions.

5.1 The Specification Language

The syntax of the specification language for TADA-Refine is given in figure 6, using the
grammars of the specifications and assertions. Following Turon and Wand [36], we do not
distinguish between specifications and concrete programs, taking the view that programs are
the most concrete of specifications. The specifications are built from traditional programming
constructs: sequential composition φ;ψ, parallel composition φ ‖ ψ, recursion and first-order
procedures. We use additional constructs to express specification non-determinism: angelic
choice, φ t ψ, behaves either as φ or as ψ; and demonic choice, φ u ψ, behaves as φ and
ψ. Angelic and demonic non-determinism are motivated in the unlink specification of §3.1.
Existential quantification, ∃x. φ, behaves as φ for some choice of x.

The atomic specification statement, ∀~x. 〈P,Q〉k, is motivated in §3.1. It specifies any
operation that atomically updates a state satisfying the precondition P to a state satisfying the
postcondition Q. The universal quantifier binds ~x to both the precondition and postcondition,
declaring that the update is atomic for all possible values of ~x. The statement includes
a region level subscript, k, explained below. The assertions, P and Q, are based on the
intuitionistic assertions of TaDA [9]. They are built from the standard connectives from
first-order logic and intuitionistic separation logic [31], together with shared region assertions
and guard assertions of TaDA and first-order recursive predicates. In addition, we will use a
collection of abstract and pure predicates signified by the . . . and introduced by example in
the other sections. We implicitly require that the pre- and postconditions are stable: they
must account for interference from other threads. The region assertion, tkα(~y, x), asserts the
existence of a region with superscript k with identifier α of type t and parameters ~y and
abstract state x. The guard assertion, [G]α, asserts the ownership of guard G for region α.
As described in §4, associated with a region type is a guard separation algebra, a labelled
transition system and an interpretation function.

A region assertion also has a region-level superscript, k, analogous to the region-level
subscript of a specification statement. The region level is an integer, signifying that only
regions below level k may be replaced by their interpretation (opened) in the refinement of a
specification statement. Their purpose is to ensure that we cannot open the same region twice
during a refinement derivation, as this could unsoundly duplicate resources encapsulated by
the region.

We keep the specification language minimal. For simplicity and to keep specifications
declarative, variables are immutable. Additional programming constructs used in the spe-
cifications given throughout this paper can be easily encoded. For example, the specification

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:19

AEElim
∀~y, x. 〈P,Q〉k v ∀~y. 〈∃x. P,∃x.Q〉k

ACons
∀~x. P 4 P ′ ∀~x.Q′ 4 Q
∀~x.
〈
P ′, Q′

〉
k
v ∀~x. 〈P,Q〉k

AFrame
∀~x. 〈P,Q〉k v ∀~x. 〈P ∗R,Q ∗R〉k

AUseAtomic
∀x. (x, f(x)) ∈ Tt(G)∗

∀x, ~x.
〈
I(tkα(~e, x)) ∗ P (~x) ∗ [G]α , I(tkα(~e, f(x))) ∗Q(~x)

〉
k

v ∀x, ~x.
〈
tkα(~e, x) ∗ P (~x) ∗ [G]α , t

k
α(~e, f(x)) ∗Q(~x)

〉
k+1

ARLevel
k1 ≤ k2

∀~x. 〈P,Q〉k1
v ∀~x. 〈P,Q〉k2

AStutter
∀~x. 〈P, P 〉k;∀~x. 〈P,Q〉k v ∀~x. 〈P,Q〉k

AMumble
∀~x. 〈P,Q〉k v ∀~x.

〈
P, P ′

〉
k
; ∀~x.

〈
P ′, Q

〉
k

Figure 7 Some refinement laws for the atomic specifications.

let x = F (e) in φ can be written as ∃x. F (e, x);φ which binds the return variable ret to x.
Control flow can be encoded with angelic choice. For example, if P then φ else ψ fi can be
written as (〈true, P 〉;φ) t (〈true,¬P 〉;ψ). Encodings for the other syntactic features used in
our specifications are given in the technical report [29]. In §5.3, we discuss the encoding of
hybrid specification statements.

In the technical report [29], we also define the operational semantics for our specification
language as a transition relation, φ, h ⇓ o, from specifications φ and concrete heaps h to
outcomes o ::= h |

 , where denotes a fault.

5.2 The Refinement Calculus
The refinement calculus for TaDA-Refine comprises standard laws of refinement, refinement
laws for atomic specification statements adapted from [36], and laws associated with TaDA’s
program-logic rules. Unlike TaDA, where stuttering and mumbling is hidden in its underlying
semantics, the stuttering and mumbling laws are first-class citizens in TaDA-Refine. This
enables us to simplify significantly the laws associated with the TaDA rules and the proof of
adequacy (Theorem 1). The full calculus is given in the technical report [29].

In figure 7, we provide a selection of refinement laws for atomic specification statements.
The AEElim is analogous to the existential elimination rule of Hoare logics. The ACons
law is a semantic consequence law, originating from the views framework [10]. It generalises
the standard logical consequence relation, using a view-shift relation 4 adapted from TaDA
instead of the usual logical implication. The AFrame law is a frame law for atomic statements,
originating from Turon and Wand’s work [36]. The AUseAtomic and ARLevel laws are
taken from analogous rules of TaDA. AUseAtomic allows us to refine an atomic update
on the state of a shared region into an atomic update on the region’s interpretation given
by the interpretation function I. Note that by doing so the region level associated with the
specification statement is decremented. This prevents the same region to be re-opened again
in subsequent refinements. Unlike TaDA, we do not require other laws for shared regions
due to the presence of the stuttering and mumbling laws as first-class citizens. Stuttering
and mumbling originate from the work on trace semantics by Brookes [5]. AStutter allows
us to refine a single atomic update to a sequence of atomic steps, as long as the state before
the update is maintained. AMumble allows us to refine a sequence of atomic steps into a

ECOOP 2018

4:20 A Concurrent Specification of POSIX File Systems

single atomic update, as long as the environment does not invalidate the intermediate states.
Note that, by combining the two laws, we can derive a stuttering equivalence.

The laws of the refinement calculus are sound with respect to a denotational refinement
relation which is adequate with respect to an operational refinement relation. We define the
denotational refinement relation using a denotational semantics of specifications, denoted
JφKρ with variable context ρ, which is defined as sets of observed traces. This gives us a
denotational refinement relation defined as the subset relation between traces. Our adequacy
proof follows the methodology of Turon and Wand [36], significantly adapted to handle TaDA
assertions [9]; the details of adequacy and soundness are in the technical report [29].

I Definition 1 (Denotational Refinement). φ v ψ ⇐⇒ JφKρ ⊆ JψKρ.

We define the operational refinement relation as a partial-correctness contextual refinement,
using our operational semantics given in the technical report [29]:

φ vop ψ ⇐⇒ ∀C, h.

{
C[φ], h ⇓ ⇒ C[ψ], h ⇓

C[φ], h ⇓ h′ ⇒ C[ψ], h ⇓ h′ ∨ C[ψ], h ⇓

where C is a specification context. If the specification ψ faults, then φ is allowed to do
anything since a fault is treated as unspecified behaviour.

I Theorem 2 (Adequacy). If φ v ψ, then φ vop ψ

5.3 Derived Hybrid Specification Statement
The derived hybrid atomic statement, ∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k, extends the
atomic specification statement with non-atomic components: the atomic specification state-
ment P (~x) is atomically updated to Q(~x, ~y) for all values of ~x; at the same time, the
non-atomic precondition P ′ is updated to Q′(~x, ~y) without any atomicity guarantees. The
quantification extends to the end of the statement and is a little subtle. The non-atomic
precondition is independent of the universally quantified ~x because the environment may be
modifying it before the atomic update takes effect. The two postconditions are linked by the
existentially quantified ~y, non-deterministically chosen by the implementation at the point
the atomic update takes effect.

The hybrid specification statement is a derived construct, defined as a specification
program comprising a sequence of atomic specification statements.

I Definition 3 (Hybrid Specification Statement). The hybrid specification statement is defined
by:

∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k ,
∃p. ∀~x. 〈P ′ ∗ P (~x), P ′ ∧ p ∗ P (~x)〉k;
µA. λp. ∃p′.∀~x. 〈p ∗ P (~x), p′ ∗ P (~x)〉k;Ap′

t ∃~x, ~y.∃p′′. 〈p ∗ P (~x), p′′ ∗Q(~x, ~y)〉k;(
µB. λp′′. ∃p′′′. 〈p′′, p′′′〉k;Bp′′′

t 〈p′′, Q′(~x, ~y)〉k

)
p′′

 p

The first atomic specification statement solely serves to capture the states satisfied by the
non-atomic precondition P ′ into the variable p, so that it can be passed as an argument to
the subsequent recursive function. It is a silent atomic step: since it does not change the
state, the first atomic specification statement is not observable by AStutter. The recursive
function that follows consists of two branches that are non-deterministically chosen using

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:21

HMumble
∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k v

∀~x. ∃~y. {P ′}〈P (~x), P ′(~x)〉{P ′′}k;∀~x. ∃~y. {P ′′}〈P ′(~x), Q(~x, ~y)〉{Q′(~x, ~y)}k

HStutter
∀~x. {P ′}〈P (~x), P (~x)〉{P ′′}k;∀~x. ∃~y. {P ′′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k v

∀~x. ∃~y. {P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y)}k

HStrengthen
∀~x. ∃~y. {P ′}〈P ′ ∗ P (~x), Q(~x, ~y) ∗Q′(~x, ~y)〉{Q′(~x, ~y)}k v
∀~x. ∃~y. {P ′ ∗ P ′}〈P (~x), Q(~x, ~y)〉{Q′(~x, ~y) ∗Q′(~x, ~y)}k

Figure 8 Select hybrid specification statement refinement laws.

angelic choice. Note that these branches operate on both the non-atomically updated state
captured by the logical variables p, p′, . . . and the atomically updated state specified by the
P and Q assertions. The first branch updates the non-atomic state p, while maintaining
the atomic precondition P (~x) for all ~x, and then recursively continues with the resulting
non-atomic state p′. Effectively, this specifies that while P ′ is being modified in multiple steps
the concurrent environment may change ~x as long as it maintains P (~x). The second branch
of the angelic choice terminates the recursion by performing the atomic update from P (~x) to
Q(~x, ~y), for some ~x and ~y (determiend by the the atomic update takes affect). The same
update may also update the non-atomic part of the state. After this point, the non-atomic
part of the state can continue to be updated until we reach a state satisfying Q′(~x, ~y); the
atomic part cannot be further updated by the thread, and the environemnt need not be
constrained, as the atomic step has been done by the thread.

We can derive refinement laws for hybrid specification statements which are analogous
those given for the atomic specification statements. Most are straightforward extensions
accounting for the non-atomic state component. We focus on the most interesting cases
in figure 8. The HStrengthen law allows us to refine part of the non-atomic component
update into an atomic update, essentially making the whole operation “more” atomic. The
HMumble law simply extends AMumble to the hybrid case. However, consider HStutter.
For the atomic component it acts in the same as AStutter, whereas for the non-atomic
component it acts as the sequencing rule of Hoare logics. In fact, a property of these derived
hybrid laws is when the atomic pre- and postconditions are true then the hybrid refinement
laws correspond to standard Hoare rules, and when the non-atomic pre- and postconditions
are true then the hybrid refinement laws correspond to the laws of atomic specification
statements.

6 TaDA-Refine Client Reasoning II: Context Invariants

In section 4, we introduced the key elements of our client reasoning by examining a simple lock
file module and proving a refinement between the abstract specification and implementation
for the unlock operation. However, it encapsulates the entire file system within the Lock
shared region and thus also the abstract predicate Lock. This prevents us from using the
abstract specification to reason about clients that make further use of the file system.

We are unable to abstract the details of how a module’s implementation shares the file
system and maintain compositionality at the same time. This is due to the nature of POSIX
file systems. In POSIX all possible file system paths are usable by everyone at all times,

ECOOP 2018

4:22 A Concurrent Specification of POSIX File Systems

even if they do not exist. The concept of a path being private to an application simply
does not exist 5. In other words the file system is a public namespace. In contrast, the
traditional heap memory is a private namespace. Heap addresses are usable only when
allocated. When an address is first allocated, it is only known to the allocating thread and
thus we can programmatically control how they are shared with other threads. Dereferencing
an unallocated heap address is undefined behaviour, typically resulting in a crash.

Effectively, in POSIX file systems all locations are shared, with everyone. Therefore, in
§4, by fully encapsulating the file system state in the Lock shared region, we restrict all file
system access to the lock-file module. This is too restrictive; we cannot reason about the
module’s use in contexts that also use the file system. The solution is to place restrictions
on the context itself.

In the case of the lock-file module, we require that the context keeps the sub-graph formed
by the path to the lock-file directory unmodified, and that the only way to create or remove
the lock file is via the module’s operations. Otherwise, the context could interfere with the
resolution of the path, rendering it unresolvable or diverting the resolution to a different
location. The lock-file module cannot enforce such restrictions on its own. Instead, these
restrictions form a proof obligation for the context. We express such proof obligations with
context invariants. For our lock-file module, LFCtx denotes the context invariant under which
its specification holds.

In order to define LFCtx, we first encapsulate the file system within the global file-system
shared region of type GFS. There is only a single instance of this region with a known
identifier which we keep implicit. All clients accessing the file system do so via this region.
The region’s state is a file-system graph, FS ∈ FS, with the straightforward interpretation:
I(GFS(FS)) , fs(FS). The guards and labelled transition system of this region, are defined
by the context. However, we define LFCtx to place restrictions on the guards and transition
system.

To aid our definitions, we introduce some notation: Gt denotes the set of guards associated
with the region type t; G • G′ denotes the partial, associative and commutative composition
of guards; G#G′ states that the composition of guards G and G′ is defined; and Tt(G)∗
denotes the transitions for guard G of the region type t, where the superscript ∗ denotes the
reflexive-transitive closure. We also define the following auxiliary predicates:

!G ∈ Gt , G ∈ Gt ∧ G • G undefined
(x, y) †t G , (x, y) ∈Tt(G)∗∧ ∀G′∈ Gt.G′#G⇒ (x, y) 6∈ Tt(G′)∗

The predicate !G ∈ Gt states that there is only one instance of the guard G of the region type
t, and (x, y) †t G states that in regions of type t, the transition from state x to y is defined
only for G. Additionally, we define the expression FS�p to identify the sub-graph of FS that
is formed by the path p as follows:

FS�p , FS�
ι0
p FS�ιa , ι 7→ (a 7→ FS(ι)(a))

FS�ιa/p , ι 7→ (a 7→ FS(ι)(a))] FS�FS(ι)(a)
p

5 File-access permissions restrict access to only the processes with the same privileges.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:23

We can now define the context invariant as follows:

LFCtx(p/a) ,
∃FS ∈ LF(p/a).GFS(FS) ∧ ! [LF(p/a)] ∈ GGFS

∧ ∀FS ∈ ULK(p/a).∃FS′. lk(FS, FS′, p/a) ∧ (FS, FS′) †GFS LF (p/a)
∧ ∀FS ∈ LK(p/a).∃FS′. ulk(FS, FS′, p/a) ∧ (FS, FS′) †GFS LF (p/a)

∧ ∀G ∈ GGFS.∀FS, FS′ ∈ LK(lf). (FS, FS′) ∈ TGFS(G)∗ ⇒ FS�p = FS′�p

The first line of the definition restricts the states of the global file-system region to
those in which the path to the lock-file directory exists and the lock file itself may exist
or not. Additionally, it requires the indivisible guard LF (p/a) to be defined for the global
file-system region. The second and third lines of the definition state that transitions creating
or removing the lock file in its directory are only defined for the guard LF (p/a). Therefore,
only ownership of this guard grants a thread the capability to transition between locked
and unlocked states. Finally, the last line of the definition requires all transitions between
lock-file states to maintain the same file-system sub-graph for the path p. This guarantees
that the context does not concurrently modify the sub-graph such that the path resolution is
diverted to a different location.

Assuming the context satisfies LFCtx(lf), we can now redefine the interpretation of the
Lock region as:

I(Lockα(lf , 0)) , ∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)]

I(Lockα(lf , 1)) , ∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)]

Instead of the Lock fully encapsulating the file system itself in section 4, we now encapsulate
only the possible ways in which the file system is shared with everyone else by means of the
global file system region.

The global file system shared region is an abstraction breaker. All modules accessing the
file system use it. Therefore, all file-system module specifications are effectively parametric
to its definition. Thus we amend the original lock-file specification of section 4 accordingly:

LFCtx(lf) ` lock(lf) v ∀v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉

LFCtx(lf) ` unlock(lf) v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

It remains to prove the refinement between the implementation and our specification. In
figure 9 we give a sketch proof for the lock operation. Throughout the proof we assume
that LFCtx holds. On the other hand, LFCtx is a proof obligation for the context.The main
difference from the proof of unlock in § 4 is that we use AUseAtomic twice; first to refine
the atomic update on the Lock predicate into an update on the global file system region
GFS and then again to refine that update to an atomic update on the underlying file system
in the refinement of close and open. The refinement of open proceeds similarly to unlock
and is given in the technical report [29].

7 Related Work

There has been substantial work on the formal specification of key fragments of POSIX file
systems, even leading to a verification challenge by Joshi and Holzmann [22]. Refinements
from specifications to implementations have been widely studied [3, 19, 15, 16]. Of particular
note are the specifications based on Z notation, and the use of refinement calculus to
construct verified implementations [24, 15, 16]. Recently, specifications based on separation

ECOOP 2018

4:24 A Concurrent Specification of POSIX File Systems

lock(lf) ≡

A
St

ut
te

r,
In

d
let fd = open(lf , O_CREAT|O_EXCL)

AUseAtomic

v
∀FS ∈ LF(lf)〈

GFS(FS) ∗ [LF(lf)] ,(
(GFS(FS) ∗ fd = EEXIST) ∨

(
∃FS′ ∈ LK(lf).GFS(FS′) ∗ fd(fd,−,−)

))
∗ [LF(lf)]

〉
AEElim〈

∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] ,
(∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)]) ∨

(∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] ∗ fd = EEXIST)

〉
if iserr(fd) then

lock(lf)
Ind

v
〈
∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] , ∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)]

〉
AFrame

v
〈∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] ∗ fd = EEXIST,
∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)] ∗ fd = EEXIST

〉
else

close(fd) v
〈

fd(fd,−,−) , true
〉

v
〈
∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] , ∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)]

〉
fi

v
〈
∃FS ∈ ULK(lf).GFS(FS) ∗ [LF(lf)] , ∃FS ∈ LK(lf).GFS(FS) ∗ [LF(lf)]

〉
ACons, AUseAtomic

v ∀v ∈ {0, 1} .
〈
Lockα(lf , v) ∗ [G]α ,Lockα(lf , 1) ∗ [G]α ∗ v = 0

〉
Figure 9 lock() specification proof sketch.

logic [31] have been introduced, focusing on scalable client reasoning [17, 30]. This work [17]
demonstrates that first-order reasoning scales poorly when reasoning about file-system clients,
hence the introduction of a specification based on separation logic. Taking inspiration from
this work, we demonstrate scalable reasoning about clients of POSIX file-systems using TaDA-
Refine. Separation logics have also been used to build a verified fault-tolerant file-system
implementation in the Coq theorem prover [7] and to verify elements of the Linux Virtual
Filesystem Switch (VFS) [12]. All the aforementioned works are on sequential fragments of
POSIX and do not handle concurrency.

Fisher et al. develop Forest [14], a declarative DSL in Haskell for safe manipulation of
file systems. Forest clients use the typing discipline to specify the file-system structures
they need and file-system access preserves the application invariants identified by static
types. This work is an attempt to bridge the gap between the untyped world of sequential
file-systems and the strongly-typed world of programming languages.

Ridge et al. have developed a coarse-grained concurrent specification of a fragment of the
POSIX file system, based an operational semantics [33] with adaptations in the semantics to
capture real-world implementations. The specification is used as a test oracle in a substantial
test suite which they generate for major real-world implementations. However, since their
concurrent specification is coarse-grained, their tests can only expose sequential behaviour.
We can derive such coarse-grained specifications from the specifications we give in this paper,
by a trivial application of the AMumble refinement law. Such coarse-grained specifications
could be used to verify coarse-grained implementations. However, they are not suitable as a
general POSIX specification for client reasoning, as the implicit assumption of additional
synchronisation is too strong.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:25

We have given a specification of the complex concurrent behaviour associated with POSIX
file systems by introducing TaDA-Refine, a concurrent specification language based on TaDA
assertions [9, 8] and an associated refinement calculus. Our approach is inspired by the
work of Turon and Wand [36]. However, we do not adopt their notion of fenced refinement
to reason about fine-grained concurrent data structures as its applicability is more limited
than more recent mechanisms of expressing sharing protocols and capabilities found in
concurrent program logics. More significantly, fenced refinement proofs carry the built-in
assumption that the module’s state can only ever be changed by the module’s operations
which is not appropriate for reasoning about file-system clients. For this purpose we adopt
TaDA’s assertions and introduce context invariants for client reasoning. Furthermore, we
introduce the hybrid specification statement as useful derived construct for reasoning about
combinations of atomic and non-atomic effects.

Recently, various concurrent separation logics have been introduced to support reasoning
about atomic operations [20, 35, 34, 9, 23, 26]. However, the examples have generally been
limited to those using operations comprising single atomic steps. In contrast, our work on
specifying POSIX file systems requires operations comprising multiple atomic steps. With
higher-order logics such as [35, 34, 23], it is possible to encode multi-atomic specifications as
auxiliary code in the style of [20]. With logics based on histories such as [26], it should also
be possible to support multi-atomic specifications, although it is unclear if this method is
applicable to operations that have concurrent path traversals such as link. It is important
to note that, for client reasoning, all these formalisms require additional constraints on the
context analogous to our context invariants.

8 Conclusions & Future Work

We have developed TaDA-Refine, a concurrent specification language and an associated
refinement calculus which is able to specify the complex concurrent behaviour of POSIX
file systems. To the best of our knowledge, this is the first specification of file-system
concurrency that captures the intended POSIX semantics. Here, we have verified the lock-file
client module. In Ntzik’s thesis [27], we have also verified an implementation of named
pipes which regular file I/O and lock file, and the concurrent interaction between and email
client and server that is sensitive to the multi-atomic nature of path resolution. This client
verification is not straightforward due to the file system being a public namespace. We
introduce specifications conditional on context invariants to restrict interference.

Our research on file-system specification and client verification is far from over. We
believe we have formalised the established consensus of the concurrent behaviour of POSIX
file systems. Our methodology is, however, flexible enough to explore other choices, if desired.
We plan to extend the specification to larger fragments, for example, covering symbolic links
and file-access permissions. These are orthogonal to POSIX file-system concurrency and
should not affect our reasoning methodology presented here.

For this paper, we justify our specification by appealing to the standard and the community
consensus regarding the atomicity of operations. In future, we will justify our specification
with respect to implementations. We plan to systematically justify the specification against
real-world implementations by generating tests and using the specification as a test oracle,
similarly to the approach of Ridge et al [33]. Another approach, following our refinement
laws, is to refine the specification to a fine-grained concurrent reference implementation. Both
approaches will require a mechanised version of our POSIX specification. Additionally, we
want to build on the works of Chen et al.[7] and Ntzik et al. [28] to extend our specifications
with fault-tolerance guarantees. We also want to study Network File Systems (NFS), which
exhibit concurrent behaviours that are not sequentially consistent.

ECOOP 2018

4:26 A Concurrent Specification of POSIX File Systems

References
1 The Austin Group Mailing List. https://www.opengroup.org/austin/lists.html. Ac-

cessed: September 30, 2016.
2 POSIX.1-2008, IEEE 1003.1-2008, The Open Group Base Specifications Issue 7. URL:

http://pubs.opengroup.org/onlinepubs/9699919799/.
3 Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying a file

system implementation. In Jim Davies, Wolfram Schulte, and Mike Barnett, editors, Formal
Methods and Software Engineering, volume 3308 of Lecture Notes in Computer Science,
pages 373–390. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-30482-1_32.

4 Ralph-Johan Back and Joakim Wright. Refinement calculus: a systematic introduction.
Springer Science & Business Media, 2012.

5 Stephen Brookes. Full abstraction for a shared-variable parallel language. Information and
Computation, 127(2):145–163, 1996. doi:10.1006/inco.1996.0056.

6 C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages 366–378,
July 2007. doi:10.1109/LICS.2007.30.

7 Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nick-
olai Zeldovich. Using crash hoare logic for certifying the fscq file system. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 18–37, New York,
NY, USA, 2015. ACM. doi:10.1145/2815400.2815402.

8 Pedro da Rocha Pinto. Reasoning with Time and Data Abstractions. PhD thesis, Imperial
College London, 2016.

9 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic
for time and data abstraction. In Richard Jones, editor, ECOOP 2014 – Object-Oriented
Programming, volume 8586 of Lecture Notes in Computer Science, pages 207–231. Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-662-44202-9_9.

10 Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and
Hongseok Yang. Views: Compositional reasoning for concurrent programs. In Pro-
ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’13, pages 287–300, New York, NY, USA, 2013. ACM.
doi:10.1145/2429069.2429104.

11 Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, MatthewJ. Parkinson, and Viktor
Vafeiadis. Concurrent abstract predicates. In Theo D’Hondt, editor, ECOOP 2010 – Object-
Oriented Programming, volume 6183 of Lecture Notes in Computer Science, pages 504–528.
Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-14107-2_24.

12 Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg, Jörg Pfähler, and Wolfgang Reif.
Verification of a virtual filesystem switch. In Ernie Cohen and Andrey Rybalchenko,
editors, Verified Software: Theories, Tools, Experiments, volume 8164 of Lecture Notes
in Computer Science, pages 242–261. Springer Berlin Heidelberg, 2014. doi:10.1007/
978-3-642-54108-7_13.

13 Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09, pages
315–327, New York, NY, USA, 2009. ACM. doi:10.1145/1480881.1480922.

14 Kathleen Fisher, Nate Foster, David Walker, and Kenny Q. Zhu. Forest: A language
and toolkit for programming with filestores. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages 292–306, New York,
NY, USA, 2011. ACM. doi:10.1145/2034773.2034814.

15 L. Freitas, Zheng Fu, and J. Woocock. Posix file store in z/eves: an experiment in the
verified software repository. In Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on, pages 3–14, July 2007. doi:10.1109/ICECCS.2007.36.

https://www.opengroup.org/austin/lists.html
http://pubs.opengroup.org/onlinepubs/9699919799/
http://dx.doi.org/10.1007/978-3-540-30482-1_32
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1109/LICS.2007.30
http://dx.doi.org/10.1145/2815400.2815402
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1145/1480881.1480922
http://dx.doi.org/10.1145/2034773.2034814
http://dx.doi.org/10.1109/ICECCS.2007.36

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner 4:27

16 Leo Freitas, Jim Woodcock, and Andrew Butterfield. Posix and the verification grand
challenge: A roadmap. 2014 19th International Conference on Engineering of Complex
Computer Systems, 0:153–162, 2008. doi:10.1109/ICECCS.2008.35.

17 Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the posix file system.
In Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes
in Computer Science, pages 169–188. Springer Berlin Heidelberg, 2014. doi:10.1007/
978-3-642-54833-8_10.

18 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

19 WimH. Hesselink and MuhammadIkram Lali. Formalizing a hierarchical file system. Formal
Aspects of Computing, 24(1):27–44, 2012. doi:10.1007/s00165-010-0171-2.

20 Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 271–282, New York, NY, USA, 2011. ACM.
doi:10.1145/1926385.1926417.

21 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and
Frank Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and
Java, pages 41–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-642-20398-5_4.

22 Rajeev Joshi and GerardJ. Holzmann. A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing, 19(2):269–272, 2007. doi:10.1007/s00165-006-0022-3.

23 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, pages 637–650, New York, NY, USA,
2015. ACM. doi:10.1145/2676726.2676980.

24 Carroll Morgan and Bernard Sufrin. Specification of the unix filing system. Software
Engineering, IEEE Transactions on, SE-10(2):128–142, March 1984. doi:10.1109/TSE.
1984.5010215.

25 Carroll Morgan and Trevor Vickers. On the refinement calculus. Springer Science & Busi-
ness Media, 2012.

26 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and GermánAndrés Delbianco. Commu-
nicating state transition systems for fine-grained concurrent resources. In Zhong Shao, ed-
itor, Programming Languages and Systems, volume 8410 of Lecture Notes in Computer Sci-
ence, pages 290–310. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-642-54833-8_
16.

27 Gian Ntzik. Reasoning About POSIX File Systems. PhD thesis, Imperial College London,
sep 2016.

28 Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. Programming Languages and
Systems: 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 -
December 2, 2015, Proceedings, chapter Fault-Tolerant Resource Reasoning, pages 169–188.
Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-26529-2_10.

29 Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. A concurrent
specification of POSIX file systems (technical report). Technical Report 2018/3, Depart-
ment of Computing, Imperial College London, 2018. URL: https://www.doc.ic.ac.uk/
research/technicalreports/2018/#3.

30 Gian Ntzik and Philippa Gardner. Reasoning about the posix file system: Local update and
global pathnames. In Proceedings of the 2015 ACM SIGPLAN International Conference

ECOOP 2018

http://dx.doi.org/10.1109/ICECCS.2008.35
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://dx.doi.org/10.1007/978-3-642-54833-8_10
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/s00165-010-0171-2
http://dx.doi.org/10.1145/1926385.1926417
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/s00165-006-0022-3
http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1109/TSE.1984.5010215
http://dx.doi.org/10.1109/TSE.1984.5010215
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-319-26529-2_10
https://www.doc.ic.ac.uk/research/technicalreports/2018/#3
https://www.doc.ic.ac.uk/research/technicalreports/2018/#3

4:28 A Concurrent Specification of POSIX File Systems

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 201–220, New York, NY, USA, 2015. ACM. doi:10.1145/2814270.2814306.

31 J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In Logic in
Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55–74, 2002.
doi:10.1109/LICS.2002.1029817.

32 John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Mil-
lennial Perspectives in Computer Science, pages 303–321. Palgrave, 2000.

33 Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and
Peter Sewell. Sibylfs: Formal specification and oracle-based testing for posix and real-world
file systems. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 38–53, New York, NY, USA, 2015. ACM. doi:10.1145/2815400.2815411.

34 Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In
Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes
in Computer Science, pages 149–168. Springer Berlin Heidelberg, 2014. doi:10.1007/
978-3-642-54833-8_9.

35 Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Modular reasoning about separ-
ation of concurrent data structures. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems, volume 7792 of Lecture Notes in Computer Science,
pages 169–188. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-37036-6_11.

36 Aaron Joseph Turon and Mitchell Wand. A separation logic for refining concurrent objects.
ACM SIGPLAN Notices, 46(1):247–258, 2011.

37 Viktor Vafeiadis and Matthew Parkinson. A Marriage of Rely/Guarantee and Separation
Logic, pages 256–271. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/
978-3-540-74407-8_18.

http://dx.doi.org/10.1145/2814270.2814306
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/2815400.2815411
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://dx.doi.org/10.1007/978-3-540-74407-8_18

A Characteristic Study of Parameterized Unit
Tests in .NET Open Source Projects
Wing Lam
University of Illinois at Urbana-Champaign, USA
winglam2@illinois.edu

Siwakorn Srisakaokul
University of Illinois at Urbana-Champaign, USA
srisaka2@illinois.edu

Blake Bassett
University of Illinois at Urbana-Champaign, USA
rbasset2@illinois.edu

Peyman Mahdian
University of Illinois at Urbana-Champaign, USA
mahdian2@illinois.edu

Tao Xie
University of Illinois at Urbana-Champaign, USA
taoxie@illinois.edu

Pratap Lakshman
Microsoft, India
pratapl@microsoft.com

Jonathan de Halleux
Microsoft Research, USA
jhalleux@microsoft.com

Abstract
In the past decade, parameterized unit testing has emerged as a promising method to specify
program behaviors under test in the form of unit tests. Developers can write parameterized
unit tests (PUTs), unit-test methods with parameters, in contrast to conventional unit tests,
without parameters. The use of PUTs can enable powerful test generation tools such as Pex to
have strong test oracles to check against, beyond just uncaught runtime exceptions. In addition,
PUTs have been popularly supported by various unit testing frameworks for .NET and the JUnit
framework for Java. However, there exists no study to offer insights on how PUTs are written
by developers in either proprietary or open source development practices, posing barriers for
various stakeholders to bring PUTs to widely adopted practices in software industry. To fill this
gap, we first present categorization results of the Microsoft MSDN Pex Forum posts (contributed
primarily by industrial practitioners) related to PUTs. We then use the categorization results
to guide the design of the first characteristic study of PUTs in .NET open source projects. We
study hundreds of PUTs that open source developers wrote for these open source projects. Our
study findings provide valuable insights for various stakeholders such as current or prospective
PUT writers (e.g., developers), PUT framework designers, test-generation tool vendors, testing
researchers, and testing educators.

2012 ACM Subject Classification Software and its engineering → Software testing and debug-
ging

Keywords and phrases Parameterized unit testing, automated test generation, unit testing

© Wing Lam, Siwakorn Srisakaokul, Blake Bassett, Peyman Mahdian, Tao Xie, Pratap Lakshman,
and Jonathan de Halleux;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 5; pp. 5:1–5:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:winglam2@illinois.edu
mailto:srisaka2@illinois.edu
mailto:rbasset2@illinois.edu
mailto:mahdian2@illinois.edu
mailto:taoxie@illinois.edu
mailto:pratapl@microsoft.com
mailto:jhalleux@microsoft.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 A Characteristic Study of Parameterized Unit Tests

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.5

Acknowledgements This work was supported in part by National Science Foundation under
grants no. CCF-1409423, CNS-1513939, and CNS1564274.

1 Introduction

With advances in test generation research such as dynamic symbolic execution [23, 35],
powerful test generation tools are now at the fingertips of software developers. For example,
Pex [37, 39], a state-of-the-art tool based on dynamic symbolic execution, has been shipped as
IntelliTest [32, 26] in Microsoft Visual Studio 2015 and 2017, benefiting numerous developers
in software industry. Such test generation tools allow developers to automatically generate
input values for the code under test, comprehensively covering various program behaviors
and consequently achieving high code coverage. These tools help alleviate the burden of
extensive manual software testing, especially on test generation.

Although such tools provide powerful support for automatic test generation, when they
are applied directly to the code under test, only a predefined limited set of properties can be
checked. These predefined properties serve as test oracles for these automatically generated
input values, and violating these predefined properties leads to various runtime exceptions,
such as null dereferencing or division by zero. Despite being valuable, these predefined
properties are weak test oracles, which do not aim for checking functional correctness but
focus on robustness of the code under test.

To supply strong test oracles for automatically generated input values, developers can
write formal specifications such as code contracts [25, 30, 16] in the form of preconditions,
postconditions, and object invariants in the code under test. However, just like writing
other types of formal specifications, writing code contracts, especially postconditions, can
be challenging. According to a study on code contracts [34], 68% of code contracts are
preconditions while only 26% of them are postconditions (the remaining 6% are object
invariants). Section 2 shows an example of a method under test whose postconditions are
difficult to write.

In the past decade, parameterized unit testing [40, 38] has emerged as a practical
alternative to specify program behaviors under test in the form of unit tests. Developers
can write parameterized unit tests (PUTs), unit-test methods with parameters, in contrast
to conventional unit tests (CUTs), without parameters. Then developers can apply an
automatic test generation tool such as Pex to automatically generate input values for a
PUT’s parameters. Note that algebraic specifications [24] can be naturally written in the
form of PUTs but PUTs are not limited to being used to specify algebraic specifications.

Since parameterized unit testing was first proposed in 2005 [40], PUTs have been popularly
supported by various unit testing frameworks for .NET along with recent versions of the
JUnit framework (as parameterized tests [14] and theories [33, 5]). However, there exists no
study to offer insights on how PUTs are written by developers in development practices of
either proprietary or open source software, posing barriers for various stakeholders to bring
PUTs to widely adopted practices in software industry. Example stakeholders are current or
prospective PUT writers (e.g., developers), PUT framework designers, test-generation tool
vendors, testing researchers, and testing educators.

To address the lack of studies on PUTs, we first conduct a categorization of 93 Microsoft
MSDN Pex Forum posts [31] (contributed primarily by industrial practitioners) related to
parameterized unit tests. We then use the categorization results to guide the design of the

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5

W. Lam et al. 5:3

first characteristic study of PUTs in .NET open source projects (with a focus on PUTs written
using the Pex framework, given that Pex is one of the most widely used test generation tools
in industry [39]). Our findings from the categorization results of the forum posts show the
following top three PUT-related categories that developers are most concerned with:
1. “Assumption/Assertion/Attribute usage” problems, which involve the discussion of using

certain PUT assumptions, assertions, and attributes to address the issues faced by
developers, are the most popular category of posts (occupying 23 of the 93 posts).

2. “Non-primitive parameters/object creation” problems, which involve the discussion of
generating objects for PUTs with parameters of a non-primitive type, are the second
most popular category of posts (occupying 17 of the 93 posts).

3. “PUT concept/guideline” problems, which involve the discussion of the PUT concept and
general guidelines for writing good PUTs, are the third most popular category of posts
(occupying 11 of the 93 posts).

Upon further investigation into these top PUT-related categories, we find that developers
in general are concerned with when and what assumptions, assertions, and attributes they
should use when they are writing PUTs. We find that a significant number of forum posts
are directly related to how developers should replace hard-coded method sequences with
non-primitive parameters of PUTs. We also find that developers often question what patterns
their PUTs should be written in. Using our categorization and investigation results, we
formulate three research questions and answer these questions using 11 open-source projects,
which contain 741 PUTs.

In particular, we investigate the following three research questions and attain correspond-
ing findings:
1. What are the extents and the types of assumptions, assertions, and attributes

being used in PUTs? We present a wide range of assumption, assertion, and attribute
types used by developers as shown in Tables 3a, 3b, and 5, and tool vendors or researchers
can incorporate this data with their tools to better infer assumptions, assertions, and
attributes to assist developers. For example, tool vendors or researchers who care
about the most commonly used assumptions should focus on PexAssumeUnderTest or
PexAssumeNotNull, since these two are the most commonly used assumptions. Lastly,
based on the studied PUTs, we find that increasing the default value of attributes
as suggested by tools such as Pex rarely contributes to increased code coverage. Tool
vendors or researchers should aim to improve the quality of the attribute recommendations
provided by their tools, if any are provided at all.

2. How often can hard-coded method sequences in PUTs be replaced with non-
primitive parameters and how useful is it to do so? There are a significant
number of receiver objects in the PUTs (written by developers) that could be promoted to
non-primitive parameters, and a significant number of existing non-primitive parameters
that lack factory methods (i.e., methods manually written to help the tools generate
desirable object states for non-primitive parameters). It is worthwhile for tool researchers
or vendors to provide effective tool support to assist developers to promote these receiver
objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a
non-primitive parameter promoted from hard-coded method sequences. Additionally,
once hard-coded method sequences are promoted to non-primitive parameters, developers
can also use assistance in writing more factory methods for such parameters.

3. What are common design patterns and bad code smells of PUTs? By under-
standing how developers write PUTs, testing educators can teach developers appropriate
ways to improve PUTs. For example, developers should consider splitting PUTs with

ECOOP 2018

5:4 A Characteristic Study of Parameterized Unit Tests

multiple conditional statements into separate PUTs each covering a case of the conditional
statements. Doing so makes the PUTs easier to understand and eases the effort to
diagnose the reason for test failures. Tool vendors and researchers can also incorporate
this data with their tools to check the style of PUTs for suggesting how the PUTs can
be improved. For example, checking whether a PUT contains conditionals, contains
hard-coded test data, and contains duplicate test code, etc. often accurately identifies a
PUT that can be improved.

In summary, this paper makes the following major contributions:
The categorization of the Microsoft MSDN Pex Forum posts (contributed primarily by
industrial practitioners) related to PUTs.
The first characteristic study of PUTs in open source projects, with a focus on hundreds
of real-world PUTs, producing study findings that provide valuable insights for various
stakeholders.
A collection of real-world open-source projects equipped with developer-written PUTs
and a suite of tools for analyzing PUTs (both are used for our study and are released on
our project website [2]). These PUTs and analysis tools can be used by the community to
conduct future empirical studies or to evaluate enhancements to automated test generation
tools.

The work in this paper is part of the efforts of our industry-academia team (including
university/industrial testing researchers and tool vendors) for bringing parameterized unit
testing to broad industrial practices of software development. To understand how automatic
test generation tools interact with PUTs, we specifically study PUTs written with the Pex
framework. Besides the Pex framework, other .NET frameworks such as NUnit also support
PUTs. In recent years, PUTs are also increasingly adopted among Java developers, partly
due to the inclusion of parameterized test [14] and theories [33, 5] in the JUnit framework.
However, unlike the Pex framework, these other frameworks lack powerful test generation
tools such as Pex to support automatic generation of tests with high code coverage, and part
of our study with PUTs, specifically the part described in Section 5, does investigate the
code coverage of the input values automatically generated from PUTs.

The remainder of this paper is organized as follows. Section 2 presents an example of
parameterized unit testing. Section 3 discusses the categorization of Pex forum posts that
motivates our study. Section 4 discusses the setup of our study. Section 5 presents our study
findings and discusses the implications to stakeholders. Section 6 discusses threats to validity
of our study. Section 7 presents our related work, and Section 8 concludes the paper.

2 Background

Consider the method under test from the open source project of NUnit Console [11] in
Figure 1. One way to supply strong test oracles for automatically generated input values is
to write preconditions and postconditions for this method under test. It is relatively easy
to specify preconditions for the method as (sn != null) && (sv != null) but it is actually
quite challenging to specify comprehensive postconditions to capture this method’s intended
behaviors. The reason is that this method’s intended behaviors depend on the behaviors
of all the method calls inside the SaveSetting method. In order to write postconditions
for SaveSetting, we would need to know the postconditions of the other method calls in
SaveSetting (e.g., GetSetting) as well. In addition, the postconditions can be very long since
there are many conditional statements with complex conditions (e.g., Lines 8-11). If a method

W. Lam et al. 5:5

1 public class SettingsGroup {
2 private Hashtable storage = new Hashtable();
3 public event SettingsEventHandler Changed;
4 public void SaveSetting(string sn, object sv) {
5 object ov = GetSetting(settingName);
6 //Avoid change if there is no real change
7 if(ov != null) {
8 if((ov is string && sv is string && (string)ov == (string)sv) ||
9 (os is int && sv is int && (int)ov == (int)sv) ||

10 (os is bool && sv is bool && (bool)ov == (bool)sv) ||
11 (os is Enum && sv is Enum && ov.Equals(sv)))
12 return;
13 }
14 storage[settingName] = settingValue;
15 if(Changed != null)
16 Changed(this, new SettingsEventArgs(sn));
17 }
18 }

Figure 1 SaveSetting method under test from the SettingsGroup class of NUnit Console [11].

contains loops, its postcondition may be even more difficult to write, since we would need to
know the loop invariants and the postconditions may need to contain quantifiers. Thus, there
is a need for a practical method to specify program behaviors under test in the form of unit
tests. Specifying program behaviors in the form of unit tests can be easier since we do not
need to specify all the intended behaviors of the method under test as a single logical formula.
Instead, we can write test code to specify the intended behaviors of the method under test for
a specific scenario (e.g., interacting with other specific methods). For example, a real-world
conventional unit test (CUT) written by the NUnit developers is shown in Figure 2. The
CUT in this figure checks that after we save a setting by calling the SaveSetting method,
we should be able to retrieve the same setting by calling the GetSetting method. Despite
seemingly comprehensive, the CUT in Figure 2 is insufficient, since it is unable to cover Lines
8-12 of the method in Figure 1. Figure 3 shows an additional CUT that developers can write
to cover Lines 8-12; this additional CUT checks that saving the same setting twice does not
invoke the Changed event handler twice. These two CUTs’ corresponding, and more powerful,
PUT is shown in Figure 4.

The beginning of the PUT (Lines 3-5) include PexAssume statements that serve as as-
sumptions for the three PUT parameters. During test generation, Pex filters out all the
generated input values (for the PUT parameters) that violate the specified assumptions.
These assumptions are needed to specify the state of SettingsGroup that one may want to
test. For example, according to Lines 2-3 in Figure 2, sg initially does not have "X" and
"NAME" set. Thus, we need to add PexAssume.IsNull(st.Getting(sn)) (Line 5) to force Pex
to generate only an object of SettingsGroup that satisfies the same condition as Lines 2-3
in Figure 2. Otherwise, without such assumptions, the input values generated by Pex may
largely be of no interest to the developers. The PexAssert statements in Lines 7 and 10
are used as the assertions to be verified when running the generated input values. More
specifically, the assumption on Line 5 and the assertion on Line 7 in the PUT correspond
to Lines 2-3 and Lines 6-7, respectively, in the CUT from Figure 2. Lines 8-9 in the PUT
then cover the case of calling the SaveSetting method twice with the same parameters as
accomplished in the CUT shown in Figure 3. Note that writing the PUT allows the test to
be more general as variable sn can be any arbitrary string, better than hard-coding it to be
only "X" or "NAME" (as done in the CUTs).

A PUT is annotated with the [PexMethod] attribute, and is sometimes attached with
optional attributes to provide configuration options for automatic test generation tools.
An example attribute is [PexMethod(MaxRuns = 200)] as shown in Figure 4. The MaxRuns

ECOOP 2018

5:6 A Characteristic Study of Parameterized Unit Tests

1 public void SaveAndLoadSettings() {
2 Assert.IsNull(sg.GetSetting("X"));
3 Assert.IsNull(sg.GetSetting("NAME"));
4 sg.SaveSetting("X", 5);
5 sg.SaveSetting("NAME", "Charlie");
6 Assert.AreEqual(5, sg.GetSetting("X"));
7 Assert.AreEqual("Charlie", sg.GetSetting("NAME"));
8 }

Figure 2 A real-world CUT for the method in Figure 1.

1 public void SaveSettingsWhenSettingIsAlreadyInitialized() {
2 Assert.IsNull(sg.GetSetting("X"));
3 sg.SaveSetting("X", 5);
4 sg.SaveSetting("X", 5);
5 // Below assert that Changed only got invoked once in SaveSetting
6 ...
7 }

Figure 3 An additional CUT for the method in Figure 1 to cover the lines that the CUT in
Figure 2 does not cover.

1 [PexMethod(MaxRuns = 200)]
2 public void TestSave1(SettingsGroup sg, string sn, object sv) {
3 PexAssume.IsTrue(sg != null && sg.Changed != null);
4 PexAssume.IsTrue(sn != null && sv != null);
5 PexAssume.IsNull(sg.GetSetting(sn));
6 sg.SaveSetting(sn, sv);
7 PexAssert.AreEqual(sv, sg.GetSetting(sn));
8 sg.SaveSetting(sn, sv);
9 // Below assert that Changed only got invoked once in SaveSetting

10 ...
11 }

Figure 4 The PUT corresponding to the CUTs in Figures 2 and 3.

attribute along with the attribute value of 200 indicates that Pex can take a maximum of
200 runs/iterations during Pex’s path exploration phase for test generation. Since the default
value of MaxRuns is 1000, setting the value of MaxRuns to be just 200 decreases the time that
Pex may take to generate input values. Note that doing so may also cause Pex to generate
fewer input values.

3 Categorization of Forum Posts

This section presents our categorization results of the Microsoft MSDN Pex Forum posts [31]
related to parameterized unit tests. As of January 10th, 2018, the forum includes 1,436 posts
asked by Pex users around the world. These users are primarily industrial practitioners. To
select the forum posts related to parameterized unit tests, we search the forum with each
of the keywords “parameterized”, “PUT”, and “unit test”. Searching the forum with these
three keywords returns 14, 18, and 243 posts, respectively. We manually inspect each of
these returned posts to select only posts that are actually related to parameterized unit tests.
Finally among the returned posts, we identify 93 posts as those related to parameterized
unit tests. Then we categorize these 93 posts into 8 major categories and one miscellaneous
category, as shown in Table 1. The categorization details of the 93 posts can be found on
our project website [2]. We next describe each of these categories and the number of posts
falling into each category.

The posts falling into the top 1 category “assumption/assertion/attribute usage” (25% of
the posts) involve discussion of using certain PUT assumptions, assertions, and attributes
to address the issues faced by PUT users. The posts falling into the second most popular
category “non-primitive parameters/object creation” (18% of the posts) involve discussion

W. Lam et al. 5:7

Table 1 Categorization results of the Microsoft MSDN Pex Forum posts related to parameterized
unit tests.

Category #Posts
Assumption/Assertion/Attribute usage 25% (23/93)
Non-primitive parameters/object creation 18% (17/93)
PUT concept/guideline 12% (11/93)
Test generation 11% (10/93)
PUT/CUT relationship 9% (8/93)
Testing interface/generic class/abstract class 6% (6/93)
Code contracts 5% (5/93)
Mocking 5% (5/93)
Miscellaneous 9% (8/93)
Total 100% (93/93)

of generating objects for PUTs with non-primitive-type parameters, one of the two major
issues [42] for Pex to generate input values for PUTs. The posts falling into category “PUT
concept/guideline” (12% of the posts) involve discussion of the PUT concept and general
guideline for writing good PUTs. The posts falling into category “test generation” (11%
of the posts) involve discussion of Pex’s test generation for PUTs. The posts falling into
category “PUT/CUT relationship” (9% of the posts) involve discussion of co-existence of
both CUTs and PUTs for the code under test. The posts falling into category “testing
interface/generic class/abstract class” (6% of the posts) involve discussion of writing PUTs
for interfaces, generic classes, or abstract classes. The posts falling into category “code
contracts” (5% of the posts) involve discussion of writing PUTs for code under test equipped
with code contracts [25, 30, 16]. The posts falling into category “mocking” (5% of the posts)
involve discussion of writing mock models together with PUTs. The miscellaneous category
(9% of the posts) includes those other posts that cannot be classified into one of the 8 major
categories.

We use the posts from the top 3 major categories to guide our study design described in
the rest of the paper, specifically with research questions RQ1-RQ3 listed in Section 5. In
particular, our study focuses on quantitative aspects of assumption, assertion, and attribute
usage (top 1 category) in RQ1, non-primitive parameters/object creation (top 2 category) in
RQ2, and PUT concept/guideline (top 3 category) in RQ3.

4 Study Setup

This section describes our process for collecting subjects (e.g., open source projects containing
PUTs) and the tools that we develop to collect and process data from the subjects. The
details of these subjects and our tools can be found on our project website [2].

4.1 Subject-collection Procedure
The subject-collection procedure (including subject sanitization) is a multi-stage process. At
a coarse granularity, this process involves (1) comprehensive and extensive subject collection
from searchable online source code repositories, (2) deduplication of subjects obtained multiple
times from different repositories, and (3) verification of developer-written parameterized unit
tests (e.g., filtering out subjects containing only automatically-generated parameterized test
stubs).

ECOOP 2018

5:8 A Characteristic Study of Parameterized Unit Tests

For comprehensive collection of subjects, we query a set of widely known code search
services. The used query is “PexMethod Assert”, requiring both “PexMethod” and “Assert”
to appear in the source file of the search results. The two code search services that return
non-empty results based on our search criteria are GitHub [9] and SearchCode [4]. For each
code search service, we first search with our query, and then we extract the source code
repositories containing the files in the search results. When a particular repository is available
from multiple search services, we extract the version of the repository from the search service
that has the most recent commit. Lastly, we manually verify that each of our source code
repositories has at least one PUT with one or more parameters and one or more assertions.

4.2 Analysis Tools
We develop a set of tools to collect metrics from the subjects. We use Roslyn [10], the
.NET Compiler Platform, to build our tools. These tools parse C# source files to produce
an abstract syntax tree, which is traversed to collect information and statistics of interest.
More specifically, the analysis tools statically analyze the C# source code in the .cs files of
each subject. The outputs of the tools include but are not limited to the following: PUTs,
PUTs with if statements, results in Tables 3 and 6, the number of assumption and assertion
clauses, and attributes of the subjects’ PUTs. In general, the results that we present in the
remainder of the paper are collected either directly with the analysis tools released on our
website [2], manual investigation conducted by the authors, or a combination of the two (e.g.,
using the PUTs with if statements to manually categorize the number of PUTs that have
unnecessary if statements).

4.3 Collected Subjects
In total, we study 77 subjects and retain only the subjects that contain at least 10 PUTs and
are not used for university courses or academic research (e.g., creating PUTs to experiment
with Pex’s capability of achieving high code coverage). This comprehensive list of subjects
that we study can be found on our project website [2].

Table 2 shows the information on the subjects that contain at least 10 PUTs. We count a
test method as a PUT if the test method is annotated with attribute “PexMethod” and has
at least one parameter. Our detailed study for research questions focuses on subjects with
at least 10 PUTs because a subject with fewer PUTs often includes occasional tryouts of
PUTs instead of serious use of them for testing the functionalities of the open source project.
Column 1 shows the name of each subject, and Columns 2-3 shows the number of PUTs
and CUTs in each subject. Columns 4-6 show the number of the lines of production source
code, PUTs and CUTs, respectively, in each subject. Columns 7-8 shows the percentage of
statements covered in the project under test by the PUTs on which Pex is applied and by the
CUTs of the subject. Column 9 shows the version of Pex a subject’s PUTs were written with.
If a subject contains PUTs written with multiple versions of Pex, the most recent version of
Pex used to write the subject’s PUTs is shown. Altogether, we identify 11 subjects with at
least 10 PUTs, and these subjects contain a total of 741 PUTs. When we examine the profiles
of the contributors to the subjects, we find that all but one of the subjects have contributors
who work in industry. The remaining one subject, PurelyFunctionalDataStructures, referred
to as PFDS in our tables, is developed by a graduate student imitating the algorithms in a
data structure textbook. The table shows the percentage of statements covered for only 5 out
of 11 subjects because we have difficulties compiling the other subjects (e.g., a subject misses
some dependencies). Part of our future work is to debug the remaining subjects so that we

W. Lam et al. 5:9

Table 2 Subjects collected for our study.

#Methods #LOC Code Cov. Pex
Subject Name PUT CUT Source PUT CUT PUT CUT Version
Atom 240 297 127916 3570 3983 N/A N/A 0.20.41218.2
BBCode 17 22 1576 188 219 84% 69% 0.94.0.0
ConcurrentList 23 57 315 243 645 51% 75% 0.94.0.0
Functional-dotnet 41 87 14002 355 1666 N/A N/A 0.15.40714.1
Henoch 63 149 4793 142 2816 N/A N/A 0.94.0.0
OpenMheg 45 6 21809 382 100 N/A N/A 0.6.30728.0
PFDS 10 2 1818 120 34 50% 12% 0.93.0.0
QuickGraph 205 123 38530 1478 2186 5% 50% 0.94.0.0
SerialProtocol 34 0 7603 269 0 49% 0% 0.94.0.0
Shweet 12 42 2481 295 703 N/A N/A 0.91.50418.0
Utilities-net 51 0 3224 475 0 26% 0% 0.94.0.0
Total 741 785 223158 7496 12352 - - -
Average 67 71 22174 681 1123 52% 41% -

can compile them. More details about the subjects (e.g., the contributors of the subjects,
the number of public methods in the subjects) can be found on our project website [2].

5 Study Results

Our study is based on forum posts asked by Pex users around the world as detailed in Sec-
tions 5.1 to 5.3. Our study findings aim to benefit various stakeholders such as current
or prospective PUT writers (e.g., developers), PUT framework designers, test-generation
tool vendors, testing researchers, and testing educators. In particular, our study intends to
address the following three main research questions:

RQ1: What are the extents and the types of assumptions, assertions, and attributes
being used in PUTs?

We address RQ1 because addressing it can help understand developers’ current prac-
tice of writing assumptions, assertions, and attributes in PUTs, and better inform
stakeholders future directions on providing effective tool support or training on writing
assumptions, assertions, and attributes in PUTs.

RQ2: How often can hard-coded method sequences in PUTs be replaced with non-
primitive parameters and how useful is it to do so?

We address RQ2 because addressing it can help understand the extent of writing
sufficiently general PUTs (e.g., promoting an object produced by a method sequence
hard-coded in a PUT to a non-primitive parameter of the PUT) to fully leverage
automatic test generation tools.

RQ3: What are common design patterns and bad code smells of PUTs?
We address RQ3 because addressing it can help understand how developers are currently
writing PUTs and identify better ways to write good PUTs.

5.1 RQ1. Assumptions, Assertions, and Attributes
To understand developers’ practices of writing assumptions, assertions, and attributes in
PUTs, we study our subjects’ common types of assumptions, assertions, and attributes. Our
study helps provide relevant insights to the posts from the Assumption/Assertion/Attribute

ECOOP 2018

5:10 A Characteristic Study of Parameterized Unit Tests

Table 3

(a) Different types of assumptions in
subjects.

PexAssume Type # #NC
PexAssumeUnderTest 273 273
PexAssumeNotNull 211 211
IsTrue 158 2
AreNotEqual 73 0
EnumIsDefined 22 0
AreDistinct 13 0
AreDistinctValues 13 0
IsNotNull 10 10
IsFalse 9 0
AreEqual 9 0
TrueForAll 7 2
IsNotNullOrEmpty 4 4
Fail 4 0
InRange 3 0
AreElementsNotNull 1 1
Total 810 503
Null Check Percentage 62% (503/810)

(b) Different types of assertions in
subjects.

PexAssert Type # #NC
AreEqual 355 0
IsTrue 199 2
IsFalse 75 3
Inconclusive 43 0
IsNotNull 26 26
Equal 21 1
TrueForAll 19 0
That 17 0
AreElementsEqual 16 0
IsNull 9 9
AreNotEqual 5 0
Fail 5 0
Throws 5 0
AreBehaviorsEqual 4 0
ImpliesIsTrue 3 0
FALSE 3 0
TRUE 3 0
Empty 2 0
Implies 2 0
Contains 1 0
DoesNotContain 1 0
ReachEventually 1 0
Total 815 41
Null Check Percentage 5% (41/815)

usage category described in Section 3. For example, the original poster of the forum post
titled “New to Unit Testing” questions what type of assertions she/he should use. Another
forum post titled “Do I use NUnit Assert or PexAssert inside my PUTs?” reveals that the
original poster does not understand when and what assumptions to use.

5.1.1 Assumption Usage
As shown in Table 3a, PexAssumeUnderTest is the most common type of assumption, used
273 times in our subjects. PexAssumeUnderTest marks parameters as non-null and to be
that precise type. The second most common type of assumption, PexAssumeNotNull, is
used 211 times. Similar to PexAssumeUnderTest, PexAssumeNotNull marks parameters as non-
null except that it does not require their types to be precise. Both PexAssumeUnderTest
and PexAssumeNotNull are specified as attributes of parameters, but they are essentially a
convenient alternative to specifying assumptions (e.g., the use of attribute PexAssumeNotNull
on a parameter X is the same as PexAssume.IsNotNull(X)). Since PUTs are commonly written
to test the behavior of non-null objects as the class under test or use non-null objects as
arguments to a method under test, it is reasonable that the common assumption types
used by developers are ones that mark parameters as non-null. Figure 5 shows that the

W. Lam et al. 5:11

Figure 5 Assumption-type distribution for each of our subjects.

combination of PexAssumeUnderTest, PexAssumeNotNull, and IsNotNull, which are for nullness
checking, appears the most in all of our subjects. Note that Figure 5 contains only the top
10 commonly used assumption types in our subjects. Furthermore, according to the last row
of Tables 3a and 3b, developers perform null checks much more frequently for assumptions
than assertions. Our findings about the frequency of assumption types and assertion types
that check whether objects are null are similar to the findings of a previous study [34]
on how frequently preconditions and postconditions in code contracts are used to check
whether objects are null. Similar to code contracts, we find that 62% of assumptions perform
null checks while the study on code contracts finds that 77% (1079/1356) of preconditions
perform null checks. Our study also finds that 5% of assertions perform null checks while
the study on code contracts finds that 43% (165/380) of postconditions perform null checks.
Since assertions are validated at the end of a PUT and it is less often that code before the
assertions manipulates or produces a null object, it is reasonable that assumptions check for
null much more frequently than assertions do. For assumption and assertion types such as
TrueForAll, developers’ low number of uses may be due to the unawareness of such types’
existence. TrueForAll checks whether a predicate holds over a collection of elements. In
our subjects, we find cases such as the one in Figure 6 where a collection is iterated over
to check whether a predicate is true for all of its elements; instead, developers could have
used the TrueForAll assumption or assertion. More specifically, the developers of the method
in Figure 6 could have replaced Lines 5-8 with PexAssert.TrueForAll(enumerable.Cast<T>(),
item => matrix.Contains(item)). It is important to note that in versions of Pex after 0.94.0.0,
certain assumption and assertion types were removed (e.g., TrueForAll). However, as shown
in Table 2, none of our subjects used versions of Pex after 0.94.0.0.

ECOOP 2018

5:12 A Characteristic Study of Parameterized Unit Tests

1 [PexMethod]
2 public void GetEnumerator_WhenMatrixConvertedToEnumerable_IteratesOverAllElements<T>(
3 [PexAssumeNotNull]ObjectMatrix<T> matrix) {
4 System.Collections.IEnumerable enumerable = matrix;
5 foreach(var item in enumerable.Cast<T>())
6 {
7 Assert.IsTrue(matrix.Contains(item));
8 }
9 }

Figure 6 PUT (in Atom [1]) that could benefit from Pex’s TrueForAll assertion.

5.1.2 Assertion Usage

According to Figure 7, in all of the subjects except OpenMheg, the PUTs usually contain
assertions for nullness or equality checking. Instead, OpenMheg’s assertions are mainly
Assert.Inconclusive. Assert.Inconclusive is used to indicate that a test is still incomplete.
From our inspection of the PUTs with Assert.Inconclusive in OpenMheg, we find that
developers write Assert.Inconclusive("this test has to be reviewed") in the PUTs. When
we investigate the contents of these PUTs, we find that the developers indeed use these
assertions to keep track of which tests are still incomplete. One example of OpenMheg’s PUT
that contains Assert.Inconclusive is shown in Figure 8. The example is one of many PUTs
in OpenMheg that create a new object but then do nothing with the object and contain
no other assertions but Assert.Inconclusive. When we ignore all PUTs of OpenMheg that
contain only Assert.Inconclusive, we find that the remaining assertions are similar to our
other subjects in that most of them are for nullness or equality checking.

As shown in Table 4, the PFDS subject has the highest number of assume clauses per
PUT method. Upon closer investigation of PFDS’s assume clauses, we find that these clauses
are necessary because PUTs in PFDS test various data structures and the developers of
PFDS have to specify assumptions for all of its PUTs to guide Pex to generate data-structure
inputs that are not null and contain some elements. When we examine the assume clauses in
Atom, the subject with the second highest number of assume clauses per PUT method, we
also find similar cases. On the other hand, the Shweet subject has the highest number of
assert clauses per PUT method. Shweet’s high number of assert clauses per PUT method
can be attributed to the fact that the subject has multiple PUTs each of which contains
around 8 assertions. The reason why some of Shweet’s PUTs each have around 8 assertions
is that the subject’s PUTs test a web service, and the service returns 8 values every time
it is triggered. Therefore, multiple of Shweet’s PUTs assert for whether these 8 values are
correctly returned or not.

5.1.3 Attribute Usage

To investigate developers’ practices of configuring Pex via PUT attributes, we study the
number and settings of attributes, as configuration options for running Pex, written by
developers in PUTs. Our findings from the forum posts related to attributes suggest that
developers are often confused on what attributes to use or how they should configure
attributes. More specifically, 5 out of 23 of the Assumption/Assertion/Attribute usage forum
posts involve an answer recommending the use of a particular attribute or configuring an
attribute in a specific way. For example, a post titled “the test state was: path bounds
exceeded - infinite loop” discusses how developers should set the MaxBranches attribute of
Pex. The setting of MaxBranches controls the maximum number of branches taken by Pex
along a single execution path.

W. Lam et al. 5:13

Figure 7 Assertion-type distribution for each of our subjects.

1 [PexMethod]
2 public Content Constructor03(GenericContentRef genericContentRef) {
3 Content target = new Content(genericContentRef);
4 Assert.Inconclusive("this test has to be reviewed");
5 return target;
6 }

Figure 8 PUT (in OpenMheg [12]) that contains Assert.Inconclusive.

The fourth column of Table 4 shows the average number of attributes added per PUT.
The results show that developers add only 1 attribute for every 3-4 PUTs. Table 5 shows
the number of attributes added for our subjects. Common attributes that developers add
are MaxRuns, MaxConstraintSolverTime, and MaxBranches. The setting of MaxRuns controls the
maximum number of runs before Pex terminates. Developers commonly set this attribute to
be 100 runs when the default value is 1,000. Upon our inspection, most of the PUTs that use
this attribute test methods related to inserting objects into a data structure. By setting the
value of this attribute, developers make Pex terminate faster. In fact, 14 out of 18 attributes
used in QuickGraph are MaxRuns.

MaxConstraintSolverTime is another type of attribute that some projects contain. The
attribute controls the constraint solver’s timeout value during Pex’s exploration. By default,
MaxConstraintSolverTime is set to 10 seconds. Similar to MaxRuns, we find that developers
often set the value to be lower than the default value so that Pex would finish sooner. For
example, BBCode contains PUTs with MaxConstraintSolverTime set to 5 seconds, and Atom
contains PUTs with MaxConstraintSolverTime set to 2 seconds.

ECOOP 2018

5:14 A Characteristic Study of Parameterized Unit Tests

Table 4 Number of PexAssume clauses, PexAssert clauses, and Pex Attributes per PUT.

Subject Name # of Assume # of Assert # of Attrs
Cl. / PUT Cl. / PUT / PUT

Atom 1.72 (412/240) 1.71 (411/240) 0.07 (16/240)
BBCode 1.71 (29/ 17) 1.47 (25/ 17) 2.18 (37/ 17)
ConcurrentList 0.96 (22/ 23) 0.74 (17/ 23) 0.26 (6/ 23)
Functional-dotnet 1.39 (57/ 41) 1.24 (51/ 41) 0.17 (7/ 41)
Henoch 0.78 (49/ 63) 0.05 (3/ 63) 0.38 (24/ 63)
OpenMheg 0.76 (34/ 45) 1.29 (58/ 45) 0.00 (0/ 45)
PFDS 2.70 (27/ 10) 1.10 (11/ 10) 0.00 (0/ 10)
QuickGraph 0.91 (186/205) 0.85 (175/205) 0.10 (21/205)
SerialProtocol 0.44 (15/ 34) 0.00 (0/ 34) 0.00 (0/ 34)
Shweet 1.00 (12/ 12) 3.42 (41/ 12) 0.33 (4/ 12)
Utilities-net 0.18 (9/ 51) 1.37 (70/ 51) 0.00 (0/ 51)
Average 1.14 1.20 0.32

Table 5 Different types of Pex attributes in our subjects’ PUTs.

Pex Attribute Type #
MaxBranches 36
MaxRuns 18
MaxConstraintSolverTime 12
MaxConditions 8
MaxRunsWIthoutNewTests 6
MaxStack 5
Timeout 4
MaxExecutionTreeNodes 4
MaxWorkingSet 4
MaxConstraintSolverMemory 4
Total 101

In contrast to MaxRuns, we find that developers commonly set the value of MaxBranches
to be higher than the default value. A common value set by developers is 20,000 when the
default value is 10,000. When we study these PUTs, we find that the code tested by these
PUTs all has loops, and the developers’ intention when using this attribute is to increase
the number of loop iterations allowed by Pex. For example, ConcurrentList contains several
PUTs with MaxBranches = 20000 set. When we run Pex without this attribute, Pex suggests
to set MaxBranches to 20000. However, when we compare the code coverage with and without
the attribute being set, we find that the code coverage does not increase with the attribute
set. In fact, we find that when we manually unset all attributes of ConcurrentList, the code
coverage does not change at all. The number of input values (generated by Pex) that exhibit a
failed test result also does not change. Our findings indicate that increasing the default values
of attributes often does not help increase the code coverage. In fact, for some of BBCode’s
PUTs, its developers set 9 different attributes all to the value of 1,000,000,000. Based on our
estimation of running Pex on these PUTs, it would take approximately 2000 days for Pex
to terminate. When we run Pex with a time limit of three hours on BBCode’s PUTs with
the developer-specified attributes, we notice that the coverage increases marginally by less

W. Lam et al. 5:15

than 1% compared to running Pex with the same time limit on BBCode’s PUTs without any
attributes.

5.1.4 Implications
With the wide range of assumption and assertion types used by developers as shown in
Tables 3a and 3b, tool vendors or researchers can incorporate this data with their tools
to better infer assumptions and assertions to assist developers. For example, tool vendors
or researchers who care about the most commonly used assumption types should focus
on PexAssumeUnderTest or PexAssumeNotNull, since these two are the most commonly used
assumption types. Lastly, based on our subjects’ PUTs, we find that increasing the default
value of attributes as suggested by tools such as Pex rarely contributes to increased code
coverage. Tool vendors or researchers should aim to improve the quality of the attribute
recommendations provided by their tools, if any are provided at all.

5.2 RQ2. Non-primitive Parameters
Typically developers are expected to avoid hard-coding a method sequence in a PUT to
produce an object used for testing the method under test. Instead, developers are expected to
promote such objects to a non-primitive parameter of the PUT. In this way, the PUT can be
made more general, to capture the intended behavior and enable an automatic test generation
tool such as Pex to generate objects of various states for the non-primitive parameter. We
find that 4 out of 17 answers from our non-primitive parameters/object creation category
of forum posts described in Section 3 are directly related to how developers should replace
hard-coded method sequences with non-primitive parameters. For example, in a forum post
titled “Can Pex Generate a List<T> for my PUT”, one of the answers to the question is
that the developer should write a PUT that takes List as a non-primitive parameter instead
of hard-coding a specific method sequence for producing a List object. Doing so enables
Pex to generate non-empty, non-null objects of that list. Since many of our forum posts are
related to how developers should replace hard-coded method sequences with non-primitive
parameters, we decide to study how frequently developers write PUTs with non-primitive
parameters and how often hard-coded method sequences in these PUTs could be replaced
with non-primitive parameters. More details about the forum posts specifically related to
this research question can be found on our project website [2].

5.2.1 Non-primitive Parameter Usage
As shown in Table 6, our result indicates that developers on average write non-primitive
parameters 59.0% of the time for the PUTs in our subjects. In other words, for every
10 parameters used by developers, 5-6 of those parameters are non-primitive. However,
developers write factory methods for only 17.9% of the non-primitive parameters used in
our subjects’ PUTs. The lack of non-primitive parameters and factory methods for such
parameters inhibits test generation tools such as Pex from generating high-quality input
values. For example, Figure 9 depicts 1 out of 16 PUTs that tests the BinaryHeap data
structure in the QuickGraph subject. Promoting the object that it is testing (BinaryHeap) to
a non-primitive parameter enables Pex to use factory methods such as the one depicted in
Figure 10 to generate high-quality input values. Without promoting the BinaryHeap object
to a parameter and using a factory method such as the one in Figure 10, the input values
generated by Pex with the 16 PUTs can cover only 13% of the code blocks in the BinaryHeap

ECOOP 2018

5:16 A Characteristic Study of Parameterized Unit Tests

Table 6 Statistics for factory methods and non-primitive parameters of our subjects. Average is
calculated by dividing the sum of the two relevant columns (e.g., 59.0% is from the sum of Column
3 / the sum of Column 2).

Subject Name
Non-prim Non-prim w/ Factory

Total Non-prim / Params / Non-prim
Params Params Params w/ Factory Params

Atom 456 290 63.6% 66 22.8%
BBCode 33 9 27.3% 0 0.0%
ConcurrentList 16 0 0.0% 0 -
Functional-dotnet 50 5 10.0% 2 40.0%
Henoch 54 48 88.9% 0 0.0%
OpenMheg 75 55 73.3% 0 0.0%
PFDS 10 10 100.0% 0 0.0%
QuickGraph 125 111 88.8% 21 18.9%
SerialProtocol 51 21 41.2% 12 57.1%
Shweet 21 1 4.8% 0 0.0%
Utilities-net 66 15 22.7% 0 0.0%
Average 59.0% 17.9%

class as opposed to 80% when the BinaryHeap object is promoted and a factory method is
provided for it. When developers do not promote non-primitive objects to a non-primitive
parameter or provide factory methods for it, the effectiveness of their tests really depends
on the values that the developers use to initialize the objects in their tests. For example, if
developers do not promote the BinaryHeap object to a parameter or provide factory methods
for it, then depending on the values that the developers would use to initialize the BinaryHeap
object, the code blocks covered by the 16 PUTs could actually range from 13% to 80% (the
same as that achieved by promoting the BinaryHeap object to a parameter and providing
a factory method for it). Promoting the BinaryHeap object to a parameter and providing
factory methods for it not only enable tools such as Pex to generate objects of BinaryHeap
that the developers may not have thought of themselves, but also alleviate the burden of
developers to choose the right values for their tests to properly exercise the code under
test. It is important to note that if we just promote the BinaryHeap object in the 16 PUTs
but do not provide a factory method for it, the percentage of code blocks covered by the
PUTs is 52%. Our findings here suggest that to enable tools such as Pex to generate input
values that cover the most code, it is desirable to promote non-primitive objects in PUTs to
non-primitive parameters and provide factory methods for such parameters. However, even
if no factory methods are provided, simply promoting non-primitive objects in PUTs may
already increase the code coverage achieved by the input values generated by tools such as
Pex.

5.2.2 Promoting Receiver Object

To determine how often developers could have replaced a hard-coded method sequence with
a non-primitive parameter, we manually inspect each PUT to determine the number of them
that could have had their receiver objects be replaced with a non-primitive parameter. We
consider an object of a PUT to be a receiver object if the object directly or indirectly affects
the PUT’s assertions. The detailed results of our manual inspection effort can be found on

W. Lam et al. 5:17

1 [PexMethod(MaxRuns = 100)]
2 [PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperationException))]
3 public void InsertAndRemoveMinimum<TPriority, TValue>(
4 [PexAssumeUnderTest]BinaryHeap<TPriority, TValue> target,
5 [PexAssumeNotNull] KeyValuePair<TPriority, TValue>[] kvs)
6 {
7 var count = target.Count;
8 foreach (var kv in kvs)
9 target.Add(kv.Key, kv.Value);

10 TPriority minimum = default(TPriority);
11 for (int i = 0; i < kvs.Length; ++i)
12 {
13 if (i == 0)
14 minimum = target.RemoveMinimum().Key;
15 else
16 {
17 var m = target.RemoveMinimum().Key;
18 Assert.IsTrue(target.PriorityComparison(minimum, m) <= 0);
19 minimum = m;
20 }
21 AssertInvariant(target);
22 }
23 Assert.AreEqual(0, target.Count);
24 }

Figure 9 InsertAndRemoveMinimum PUT from the BinaryHeapTest class of QuickGraph [3].

1 [PexFactoryMethod(typeof(BinaryHeap<int, int>))]
2 public static BinaryHeap<int, int> Create(int capacity)
3 {
4 var heap = new BinaryHeap<int, int>(capacity, (i, j) => i.CompareTo(j));
5 return heap;
6 }

Figure 10 Factory method for the BinaryHeapTest class of QuickGraph [3].

our project website [2] under “PUT Patterns”. As shown in Table 7, 95.7% (709/741) of the
PUTs in our subjects have at least one receiver object. However, we find that 49.2% (349/709)
of these PUTs with receiver objects do not have a parameter for the receiver objects, and
89.4% (312/349) of them can actually be modified so that all receiver objects in the PUT
are promoted to PUT parameters. As shown in Table 8, we categorize the 349 PUTs whose
receiver objects could be promoted into the following four different categories. (1) In 47.9%
(167/349) of the PUTs, we can easily promote their receiver objects into a non-primitive
parameter (e.g., removing the object creation line and adding a parameter). (2) In 41.5%
(145/349) of the PUTs, their receiver objects are static (which cannot be instantiated). (3)
In 9.7% (34/349) of the PUTs, they are testing their receiver objects’ constructors. (4) In
1.6% (3/349) of the PUTs, they are testing multiple receiver objects with shared variables
(e.g., testing the equals method of an object).

Of the PUTs belonging to the first category shown in Table 8, 33.0% (55/167) of them
test specific object states. Figure 11 shows an example of a PUT that tests a specific object
state. The developers of this PUT could have promoted _list and element to parameters
and updated index accordingly before the assertion in Line 9. Figure 12 depicts a more
general version of the PUT in Figure 11. Notice how the initial contents of the list and the
element being added to the list are hard-coded in Figure 11 but not in Figure 12.

Upon further investigation, we find that the 145 PUTs in the second category shown in
Table 8 can and should actually be promoted by making the class under test not be static.
On the other hand, the PUTs that test their receiver objects’ constructors have no need to be
improved by promotion. Lastly, the PUTs that test multiple receiver objects are best left not
promoted. In the end we find that the 167 PUTs in the first category (their receiver objects
can be easily promoted) and the 145 PUTs in the second category (their receiver objects
are static) are PUTs whose receiver objects could be promoted and they should actually be

ECOOP 2018

5:18 A Characteristic Study of Parameterized Unit Tests

Table 7 Statistics of PUTs with receiver objects (ROs).

Subject Name # of PUTs # of PUTs w/o # of PUTs whose ROs
w/ ROs promoted ROs should be promoted

Atom 90.4% (217/240) 59.4% (129/217) 98.4% (127/129)
BBCode 88.2% (15/ 17) 100.0% (15/ 15) 100.0% (15/ 15)
ConcurrentList 100.0% (23/ 23) 56.5% (13/ 23) 100.0% (13/ 13)
Functional-dotnet 85.4% (35/ 41) 91.4% (32/ 35) 100.0% (32/ 32)
Henoch 100.0% (63/ 63) 25.4% (16/ 63) 43.8% (7/ 16)
OpenMheg 100.0% (45/ 45) 25.0% (11/ 45) 18.2% (2/ 11)
PFDS 100.0% (10/ 10) 100.0% (10/ 10) 100.0% (10/ 10)
QuickGraph 99.5% (204/205) 20.1% (41/204) 73.2% (30/ 41)
SerialProtocol 100.0% (34/ 34) 55.9% (19/ 34) 68.4% (13/ 19)
Shweet 100.0% (12/ 12) 100.0% (12/ 12) 100.0% (12/ 12)
Utilities-net 100.0% (51/ 51) 100.0% (51/ 51) 100.0% (51/ 51)
Total 95.7% (709/741) 49.2% (349/709) 89.4% (312/349)

1 [PexMethod]
2 public void GetItem(int index) {
3 IList<int> _list = new ConcurrentList<int>();
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 _list.Add(0);
8 _list.Add(element);
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 11 PUT testing a specific object state in ConcurrentList [7].

1 [PexMethod]
2 public void GetItem_Promoted(int index, IList<int> _list, int element) {
3 int size = _list.Count;
4 PexAssume.IsTrue(index >= 0);
5 for(int i = 0; i < index; i++)
6 _list.Add(0);
7 _list.Add(element);
8 index += size;
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 12 Version of the PUT in Figure 11 with receiver object promoted.

promoted. These two categories of PUTs form the total of 89.4% (312/394) of the PUTs that
could be promoted and should be promoted. Promoting these objects enables test generation
tools such as Pex to use factory methods to generate different states of the receiver objects
(beyond specific hard-coded ones) for the PUTs.

Based on our promotion experiences, often the time, after we promote receiver objects
(resulted from hard-coded method sequences) to non-primitive parameters of PUTs, we need
to add assumptions to constrain the non-primitive parameters so that test generation tools
will not generate input values that are of no interest to developers. For example, for the
GetItem_Promoted PUT in Figure 12, one of the input values generated by Pex with this
PUT can be found in Figure 13. Although the value of index (0) from the GetItem_CUT in
Figure 13 is reasonable for both the GetItem and GetItem_Promoted PUTs and the value of
element (5) is reasonable for the GetItem_Promoted PUT, the additional value of _list (null)
is unreasonable. The value is unreasonable because the GetItem PUT is expected to test

W. Lam et al. 5:19

Table 8 Categorization results of the PUTs whose receiver objects could be promoted.

Category #PUTs
(1) Their receiver objects can be easily promoted 167 (47.9%)
(2) Their receiver objects are static 145 (41.5%)
(3) Testing their receiver objects’ constructors 34 (9.7%)
(4) Testing multiple receiver objects with shared variables 3 (0.9%)
Total 349

1 [TestMethod]
2 public void GetItem_CUT()
3 {
4 GetItem_Promoted(0, null, 5);
5 }

Figure 13 Example of a CUT generated from the PUT in Figure 12.

adding various elements to _list but it is not expected to test the case when _list is null.
However, due to our promotion of _list’s hard-coded method sequence to a non-primitive
parameter, input values generated from GetItem_Promoted would actually test such a case.
In order for developers to prevent such nonsensical input values from being generated, the
developers would have to add the assumption of PexAssume.IsNotNull(_list) before Line 3
of GetItem_Promoted. Such assumption writing can be time-consuming: essentially promoting
hard-coded method sequences to be non-primitive parameters and adding assumptions to
these parameters are going from specifying “how” (to generate specific object states) to
specifying “what” (specific object states need to be generated).

5.2.3 Implications

There are a significant number of receiver objects (in the PUTs written by developers)
that could be promoted to non-primitive parameters, and a significant number of existing
non-primitive parameters that lack factory methods. It is worthwhile for tool researchers
or vendors to provide effective tool support to assist developers to promote these receiver
objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a
non-primitive parameter promoted from hard-coded method sequences. Additionally, once
hard-coded method sequences are promoted to non-primitive parameters, developers can also
use assistance in writing effective factory methods for such parameters.

5.3 RQ3. PUT Design Patterns and Bad Smells

Our categorization of forum posts as described in Section 3 shows that 5 out of 11 of the
PUT concept/guideline posts discuss patterns in which PUTs should be written in. For
example, two of the posts titled “Assertions in PUT” and “PUT with PEX” involve answers
informing the original poster that assertions are typically necessary for PUTs. One such
forum post contains the following response: “You should write Asserts, in order to ensure
that the Function (TestInvoice in this case) really does what it is intended to do”. To better
understand how developers write PUTs, we manually inspect all of the PUTs in our subjects
to see what the common design patterns and bad smells are. The detailed results of our
manual inspection effort can be found on our project website [2] under “PUT Patterns”.

ECOOP 2018

5:20 A Characteristic Study of Parameterized Unit Tests

1 [PexMethod]
2 public void Clear<T>([PexAssumeUnderTest]ConcurrentList<T> target) {
3 target.Clear();
4 }

Figure 14 PUT (in ConcurrentList [7]) that should be improved with assertions.

Table 9 Categorization results of bad smells in PUTs

Category #PUTs
(1) Code duplication 55
(2) Unnecessary conditional statement 39
(3) Hard-coded test data 37
Total 131

5.3.1 PUT Design Patterns
We find that the majority of the PUTs are written in the following patterns: “AAA” (Triple-A)
and Parameterized Stub. Triple-A is a well-known design pattern for writing unit tests [13].
These tests are organized into three sections: setting up the code under test (Arrange),
exercising the code under test (Act), and verifying the behavior of the code under test (Assert).
On the other hand, a Parameterized Stub test is used to test the code under test that already
contains many assertions (e.g., code equipped with code contracts [25, 30, 16]). In general,
Parameterized Stub tests are easy to write and understand, since the test body is short and
contains only a few method calls to the code under test. In our subjects, we find that 34.6%
(270/741) and 32.1% (251/741) of the PUTs to exhibit the Triple-A and Parameterized Stub
test pattern, respectively. Of the 251 PUTs that exhibit the Parameterized Stub pattern,
we find that 74.5% (187/251) of them are PUTs that should be improved with assertions,
given that the code under test itself does not contain any code-contract assertions or any
other type of assertions. For example, the PUT in Figure 14 contains only a single statement
to test the robustness of the Clear method, which by itself does not contain any assertions.
Developers of this PUT should at least add an assertion such as Assert.That(target.Count,
Is.EqualTo(0)); to the end of the PUT to ensure that once Clear is invoked, then the number
of elements in a ConcurrentList object will be 0.

Similar to the bad smells typically found in conventional unit tests [29], we consider the
following three categories of bad smells in our PUTs: (1) code duplication, (2) unnecessary
conditional statement, and (3) hard-coded test data. These three categories of bad smells can
cause tests to be difficult to understand and maintain. Table 9 shows the number of PUTs
containing each category of bad smells. Our analysis tools as described in Section 4.2 assist
our manual inspections of the PUTs by listing the PUTs that contain conditional statements
or hard-coded test data (as arbitrary strings). Using these lists of PUTs, we then manually
inspect each of these PUTs to determine whether it really has bad code smells. To determine
code duplication, we manually compare every PUT with every other PUT of the same class.
Next, we discuss each of the categories in detail.

5.3.2 Code Duplication in PUTs
Similar to conventional unit tests, PUTs also contain the bad smell of test-code duplication.
Test-code duplication is a poor practice because it increases the cost of maintaining tests.
Duplication often arises when developers clone tests and do not put enough thought into how
to reuse test logic intelligently. As the number of tests increases, it is important that the

W. Lam et al. 5:21

1 [PexMethod]
2 public void GetItem(int index)
3 {
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 {
8 _list.Add(0);
9 }

10 _list.Add(element);
11 Assert.That(_list[index], Is.EqualTo(element));
12 }

Figure 15 PUT (from the ConcurrentListHandWrittenTests class of ConcurrentList [7]) that
contains many lines of test-code duplication with another PUT named SetItem from the same class.

Table 10 Categorization results of why conditional statements exist in PUTs.

Category #PUTs
(1) Testing particular cases 16
(2) Forcing Pex to explore particular cases 9
(3) Testing different cases according to boolean conditions 9
(4) Unnecessary if statements 5
Total 39

developers either factor out commonly used sequences of statements into helper methods that
can be reused by various tests, or in the case of PUTs, consider merging the PUTs and using
assumptions/attributes to ensure that the specific cases being tested previously are still tested.
In our subjects’ PUTs, we find that 7.4% (55/741) of them contain test-code duplication. In
other words, for 55 of our subjects’ PUTs, there exist another PUT (in the same subject)
that contains a significant amount of duplicate test code. One example of such PUT is shown
in Figure 15. The PUT in this example is from the ConcurrentListHandWrittenTests class
of ConcurrentList [7] and is almost identical to another PUT named SetItem in the same
class. More specifically, the only lines that differ between the two PUTs are Lines 6 and
10. For Line 6 the loop terminating condition is set to i <= index as opposed to i < index.
For Line 10, instead of adding an element with the Add method, the line is _list[index] =
element;. In .NET, the use of brackets and an index value to add elements to a collection is
enabled by Indexers [6]. Since the intention of the two PUTs is to test whether setting and
getting an element from a list of arbitrary size correctly set and get the correct element, the
two differences in Lines 6 and 10 between the two PUTs actually do not matter. Instead of
duplicating so many lines of test code, the developers of these two PUTs should just delete
one of them. Doing so will not only help decrease the cost for developers to maintain the
tests, but also to speed up the testing time, since there will be fewer tests that cover the same
parts of the code under test. Developers can also make use of existing tools for detecting
code clones [18, 19] to automatically help detect code duplication in PUTs.

5.3.3 Unnecessary Conditional Statements in PUTs

Typically developers are expected not to write any conditional statements in their tests,
because tests should be simple, linear sequences of statements. When a test has multiple
execution paths, one cannot be sure exactly how the test will execute in a specific case.
In our subjects, 7.0% (52/741) of the PUTs contain at least one conditional branch. To
understand why developers write PUTs with conditionals, we study whether the conditionals

ECOOP 2018

5:22 A Characteristic Study of Parameterized Unit Tests

1 IList<int> _list = new ConcurrentList<int>();
2 [PexMethod(MaxBranches = 20000)]
3 public void Clear(int count)
4 {
5 var numClears = 100;
6 var results = new List<int>(numClears * 2);
7 var numCpus = Environment.ProcessorCount;
8 var sw = Stopwatch.StartNew();
9 using (SaneParallel.For(0, numCpus, x =>

10 {
11 for (var i = 0; i < count; i++)
12 _list.Add(i);
13 }))
14 {
15 for (var i = 0; i < numClears; i++)
16 {
17 Thread.Sleep(100);
18 results.Add(_list.Count);
19 _list.Clear();
20 results.Add(_list.Count);
21 }
22 }
23 sw.Stop();
24 for (var i = 0; i < numClears; i++)
25 Console.WriteLine("Before/After Clear #{0}: {1}/{2}", i, results[i << 1], results[(i << 1) + 1]);
26 Console.WriteLine("ClearParallelSane took {0}ms", sw.ElapsedMilliseconds);
27 _list.Clear();
28 Assert.That(_list.Count, Is.EqualTo(0));
29 }

Figure 16 PUT with hard-coded test data in the SaneParallelTests class of ConcurrentList [7].

in these PUTs are necessary and if they are not, why the developers write such conditionals
in their PUTs. We find that 25% (13/52) of the PUTs contain conditional statements that
could not be removed. These PUTs are typically testing the interactions of two or more
operations of the code under test (e.g., adding and removing from a data structure). The
remaining 75.0% (39/52) of the PUTs with conditionals can have their conditionals removed
or each of these PUTs should be split into two or more PUTs. Table 10 shows the reasons
for why the conditionals of such PUTs should be removed and the number of PUTs for each
of the reasons. The PUTs in the first and second categories should replace their conditionals
with PexAssume() statements to force Pex to explore and test particular cases. The PUTs in
the third category should be each split into multiple PUTs each of which tests a different
case of the conditional. For the PUTs created from the third category, developers can use
PexAssume() statements in the new PUTs to filter out inputs that do not satisfy the boolean
conditions of the case that the new PUTs are responsible for. The PUTs in the last category
contain conditionals that can be removed with a slight modification to the test (e.g., some
conditionals in a loop can be removed by amending the loop and/or adding code before the
loop). The automatic detection and fixing of unnecessary conditional statements in PUTs
would be a valuable and challenging line of future work due to the following. There are
various reasons for why a PUT may have conditionals as shown in Table 10, and depending
on the reason why a PUT may have conditionals, the fix for removing the conditionals, if
removal is possible, can be quite different.

5.3.4 Hard-coded Test Data in PUTs

Another bad smell that we identify in our subjects’ PUTs is hard-coded test data. This smell
can be problematic for three main reasons. (1) Tests are more difficult to understand. A
developer debugging the tests would need to look at the hard-coded data and deduce how
each value is related to another and how these values affect the code under test. (2) Tests

W. Lam et al. 5:23

are more likely to be flaky [28, 22, 15]. A common reason for tests to be flaky is the reliance
on external dependencies such as databases, file system, and global variables. Hard-coded
data in these tests often lead to multiple tests modifying the same external dependency
and these modifications could cause these tests to fail unexpectedly. (3) Hard-coded test
data prevent automatic test generation tools such as Pex from generating high-quality input
values. In our subjects’ PUTs, we find that 5.0% (37/741) of them use hard-coded test data.
One example of such PUT is shown in Figure 16. In this example, the developers are testing
the Clear method of the ConcurrentList object (_list). The PUT adds an arbitrary number
of elements to the _list object, clears the list, and records the number of elements in the list.
The process of adding and clearing the list repeats 100 times as decided by numClears on
Line 5. As far as we can tell, the developers arbitrarily choose the value of 100 for numClears
on Line 5. When we parameterize the numClears variable and add an assumption that the
variable should be between 1 and 1073741823 (to prevent ArgumentOutOfRangeException), we
find that the input values generated by Pex for the numClears variable to be 1 and 2. These
two values exercise the same lines of the Clear method just as the value of 100 would. The
important point here is that contrary to the developers’ arbitrarily chosen value of 100, Pex
is able to systematically find that using just the values of 1 and 2 would already sufficiently
test the Clear method. That is, as we manually confirm, even if the developers devote more
computation time to testing the Clear method by setting numClears to 100, they would not
cover any additional code or find any additional test failures. Therefore, the developers of
this PUT should not hard code the test data, and instead they should parameterize the
numClears variable. Doing so would enable automatic test generation tools such as Pex to
generate high-quality input values that sufficiently test the code under test. Developers can
also make use of existing program analysis tools [41] to automatically detect whether certain
hard-coded test data may exist between multiple PUTs.

5.3.5 Implications
By understanding how developers write PUTs, testing educators can suggest ways to improve
PUTs. For example, developers should consider splitting PUTs with multiple conditional
statements into separate PUTs each covering a case of the conditional statements. Doing so
makes the developer’s PUTs easier to understand and eases the effort to diagnose the reason
for test failures. Tool vendors and researchers can incorporate this data with their tools
to check the style of PUTs for better suggestions on how the PUTs can be improved. For
example, checking whether a PUT is a Parameterized Stub, contains conditionals, contains
hard-coded test data, and contains duplicate test code often correctly identifies a PUT that
can be improved.

6 Threats to Validity

There are various threats to validity in our study. We broadly divide the main threats into
internal and external validity.

6.1 Internal Validity
Threats to internal validity are concerned with the validity of our study procedure. Due
to the complexity of software, faults in our analysis tools could have affected our results.
However, our analysis tools are tested with a suite of unit tests, and samples of the results
are manually verified. Results from our manual analyses are confirmed by at least two of the

ECOOP 2018

5:24 A Characteristic Study of Parameterized Unit Tests

authors. Furthermore, we rely on various other tools for our study, such as dotCover [8] to
measure the code coverage of the input values generated by Pex. These tools could have
faults as well and consequently such faults could have affected our results.

6.2 External Validity

There are two main threats to external validity in our study.
1. We use the categorization of the Microsoft MSDN Pex Forum posts [31] to determine

the issues surrounding parameterized unit testing. These forum posts enable us and
the research community to access the issues of developers objectively and quantitatively,
but the issues identified from the posts may not be representative of all the issues that
developers encounter.

2. Our findings may not apply to subjects other than those that we study, especially since we
are able to find only 11 subjects matching the criteria defined in Section 4. Furthermore,
we primarily focus on projects using PUTs in the context of automated test generation,
so our findings from such subjects may not generalize to situations outside of this setting
(e.g., general usage of Theories [33] in Java). In addition, our analyses focus specifically
on subjects that contain PUTs written using the Pex framework, and the API differences
or idiosyncrasies of other frameworks may impact the applicability of our findings. All of
our subjects are written in C#, but vary widely in their application domains and project
sizes. Finally, all of our subjects are open source software, and therefore our findings may
not generalize to proprietary software.

7 Related Work

To the best of our knowledge, our characteristic study is the first on parameterized unit testing
in open source projects. In contrast, previous work focuses on proposing new techniques for
parameterized unit testing and does not provide any insight on the practices of parameterized
unit testing. For example, Xie et al. [43] propose a technique for assessing the quality of
PUTs using mutation testing. Thummalapenta et al. [36] propose manual retrofitting of
CUTs to PUTs, and show that new faults are detected and coverage is increased after such
manual retrofitting is conducted. Fraser et al. [21] propose a technique for generating PUTs
starting from concrete test inputs and results.

Our work is related to previous work on studying developer-written formal specifications
such as code contracts [16]. Schiller et al. [34] conduct case studies on the use of code
contracts in open source projects in C#. They analyze 90 projects using code contracts and
categorize their use of various types of specifications, such as null checks, bound checks, and
emptiness checks. They find that checks for nullity and emptiness are the most common
types of specifications. Similarly we find that the most common types of PUT assumptions
are also used for nullness specification. However, the most common types of PUT assertions
are used for equality checking instead of null and emptiness.

Estler et al. [20] study code contract usage in 21 open source projects using JML [27]
in Java, Design By Contract in Eiffel [30], and code contracts [16] in C#. Their study also
includes an analysis of the change in code contracts over time, relative to the change in the
specified source code. Their findings agree with Schiller’s on the majority use of nullness code
contracts. Furthermore, Chalin [17] studies code contract usage in over 80 Eiffel projects.
They show that programmers using Eiffel tend to write more assertions than programmers
using any other languages do.

W. Lam et al. 5:25

8 Conclusion

To fill the gap of lacking studies of PUTs in development practices of either proprietary
or open source software, we have presented categorization results of the Microsoft MSDN
Pex Forum posts (contributed primarily by industrial practitioners) related to PUTs. We
then use the categorization results to guide the design of the first characteristic study of
parameterized unit testing in open source projects. Our study involves hundreds of PUTs
that open source developers write for various open source projects.

Our study findings provide the following valuable insights for various stakeholders such
as current or prospective PUT writers (e.g., developers), PUT framework designers, test-
generation tool vendors, testing researchers, and testing educators.
1. We have studied the extents and types of assumptions, assertions, and attributes being

used in PUTs. Our study has identified assumption and assertion types that tool
vendors or researchers can incorporate with their tools to better infer assumptions
and assertions to assist developers. For example, tool vendors or researchers who care
about the most commonly used assumption types should focus on PexAssumeUnderTest or
PexAssumeNotNull, since these two are the most commonly used assumption types. We
have also found that increasing the default value of attributes as suggested by tools such
as Pex rarely contributes to increased code coverage. Tool vendors or researchers should
aim to improve the quality of the attribute recommendations provided by their tools, if
any are provided at all.

2. We have studied how often hard-coded method sequences in PUTs can be replaced
with non-primitive parameters and how useful it is for developers to do so. Our study
has found that there are a significant number of receiver objects in the PUTs written
by developers that could be promoted to non-primitive parameters, and a significant
number of existing non-primitive parameters that lack factory methods. Tool researchers
or vendors should provide effective tool support to assist developers to promote these
receiver objects (resulted from hard-coded method sequences), e.g., inferring assumptions
for a non-primitive parameter promoted from hard-coded method sequences. Additionally,
once hard-coded method sequences are promoted to non-primitive parameters, developers
can also use assistance in writing effective factory methods for such parameters.

3. We have studied the common design patterns and bad smells in PUTs, and have found that
there are a number of patterns that often correctly identify a PUT that can be improved.
More specifically, checking whether a PUT is a Parameterized Stub, contains conditionals,
contains hard-coded test data, and contains duplicate test code often correctly identifies
a PUT that can be improved. Tool vendors and researchers can incorporate this data
with their tools to check the style of PUTs for better suggestions on how these PUTs can
be improved.

The study is part of our ongoing industry-academia team efforts for bringing parameterized
unit testing to broad industrial practices of software development.

References
1 Atom. URL: https://github.com/tivtag/Atom.
2 PUT study project web. URL: https://sites.google.com/site/putstudy.
3 QuickGraph. URL: https://github.com/tathanhdinh/QuickGraph.
4 SearchCode code search. URL: https://searchcode.com.
5 Theories in JUnit. URL: https://github.com/junit-team/junit/wiki/Theories.
6 Using Indexers (C# Programming Guide). URL: https://docs.microsoft.com/en-us/

dotnet/csharp/programming-guide/indexers/using-indexers.

ECOOP 2018

https://github.com/tivtag/Atom
https://sites.google.com/site/putstudy
https://github.com/tathanhdinh/QuickGraph
https://searchcode.com
https://github.com/junit-team/junit/wiki/Theories
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers

5:26 A Characteristic Study of Parameterized Unit Tests

7 ConcurrentList. URL: https://github.com/damageboy/ConcurrentList.
8 dotCover. URL: https://www.jetbrains.com/dotcover.
9 GitHub code search. URL: https://github.com/search.
10 The .NET compiler platform Roslyn. URL: https://github.com/dotnet/roslyn.
11 NUnit Console. URL: https://github.com/nunit/nunit-console.
12 OpenMheg. URL: https://github.com/orryverducci/openmheg.
13 Parameterized Test Patterns for Microsoft Pex). URL: http://citeseerx.ist.psu.edu/

viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282.
14 Parameterized tests in JUnit. URL: https://github.com/junit-team/junit/wiki/

Parameterized-tests.
15 Stephan Arlt, Tobias Morciniec, Andreas Podelski, and Silke Wagner. If A fails, can B still

succeed? Inferring dependencies between test results in automotive system testing. In ICST
2015: Proceedings of the 8th International Conference on Software Testing, Verification and
Validation, pages 1–10, Graz, Austria, apr 2015.

16 Michael Barnett, Manuel Fähndrich, Peli de Halleux, Francesco Logozzo, and Nikolai Till-
mann. Exploiting the synergy between automated-test-generation and programming-by-
contract. In ICSE 2009: Proceedings of the 31st International Conference on Software
Engineering, pages 401–402, Vancouver, BC, Canada, may 2009.

17 Patrice Chalin. Are practitioners writing contracts? In Rigorous Development of Complex
Fault-Tolerant Systems, pages 100–113. Springer, 2006.

18 Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and Tao Xie.
XIAO: Tuning code clones at hands of engineers in practice. In ACSAC 2012: Proceedings
of 28th Annual Computer Security Applications Conference, pages 369–378, Orlando, FL,
USA, December 2012.

19 Yingnong Dang, Dongmei Zhang, Song Ge, Ray Huang, Chengyun Chu, and Tao Xie.
Transferring code-clone detection and analysis to practice. In ICSE 2017: Proceedings
of the 39th International Conference on Software Engineering, Software Engineering in
Practice (SEIP), pages 53–62, Buenos Aires, Argentina, May 2017.

20 H-Christian Estler, Carlo A Furia, Martin Nordio, Marco Piccioni, and Bertrand Meyer.
Contracts in practice. In FM 2014: Proceedings of the 19th International Symposium on
Formal Methods, pages 230–246. Springer, Singapore, 2014.

21 Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In ISSTA 2011:
Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages
364–374, Toronto, ON, Canada, jul 2011.

22 Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. Making
system user interactive tests repeatable: When and what should we control? In ICSE
2015: Proceedings of the 37th International Conference on Software Engineering, pages
55–65, Florence, Italy, may 2015.

23 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random
testing. In PLDI 2005: Proceedings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation, Chicago, IL, USA, jun 2005.

24 John V. Guttag and James J. Horning. The algebraic specification of abstract data types.
Acta Informatica, pages 27–52, 1978.

25 C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, pages 576–580, 1969.

26 Pratap Lakshman. Visual Studio 2015 – Build better software with Smart Unit Tests.
MSDN Magazine, 2015.

27 Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report TR 98-06i, Department of
Computer Science, Iowa State University, Jun 1998.

https://github.com/damageboy/ConcurrentList
https://www.jetbrains.com/dotcover
https://github.com/search
https://github.com/dotnet/roslyn
https://github.com/nunit/nunit-console
https://github.com/orryverducci/openmheg
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://github.com/junit-team/junit/wiki/Parameterized-tests

W. Lam et al. 5:27

28 Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical analysis
of flaky tests. In FSE 2014: Proceedings of the ACM SIGSOFT 22nd Symposium on the
Foundations of Software Engineering, pages 643–653, Hong Kong, nov 2014.

29 Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2006.

30 Bertrand Meyer. Applying "Design by Contract". Computer, pages 40–51, oct 1992.
31 Microsoft. Pex MSDN discussion forum, April 2011. URL: http://social.msdn.

microsoft.com/Forums/en-US/pex.
32 Microsoft. Generate unit tests for your code with IntelliTest, 2015. URL: https://msdn.

microsoft.com/library/dn823749.
33 David Saff. Theory-infected: Or how I learned to stop worrying and love universal quantifi-

cation. In OOPSLA Companion: Proceedings of the Object-Oriented Programming Systems,
Languages, and Applications, pages 846–847, Montreal, QC, Canada, oct 2007.

34 Todd W Schiller, Kellen Donohue, Forrest Coward, and Michael D Ernst. Case studies
and tools for contract specifications. In ICSE 2014: Proceedings of the 36th International
Conference on Software Engineering, pages 596–607, Hyderabad, India, jun 2014.

35 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C. In
ESEC/FSE 2005: Proceedings of the 10th European Software Engineering Conference and
the 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
263–272, Lisbon, Portugal, sep 2005.

36 Suresh Thummalapenta, Madhuri R Marri, Tao Xie, Nikolai Tillmann, and Jonathan
de Halleux. Retrofitting unit tests for parameterized unit testing. In FASE 2011: Pro-
ceedings of the Fundamental Approaches to Software Engineering, pages 294–309. Springer,
Saarbrücken, Germany, mar 2011.

37 Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation for .NET. In
TAP 2008: Proceedings of the 2nd International Conference on Tests And Proofs (TAP),
pages 134–153, Prato, Italy, apr 2008.

38 Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Parameterized unit testing: Theory
and practice. In ICSE 2010: Proceedings of the 32nd International Conference on Software
Engineering, pages 483–484, Cape Town, South Africa, may 2010.

39 Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Transferring an automated test
generation tool to practice: From Pex to Fakes and Code Digger. In ASE 2014: Proceedings
of the 29th Annual International Conference on Automated Software Engineering, pages
385–396, Västerøas, Sweden, sep 2014.

40 Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In ESEC/FSE 2005:
Proceedings of the 10th European Software Engineering Conference and the 13th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 253–262, Lisbon,
Portugal, 2005.

41 Matias Waterloo, Suzette Person, and Sebastian Elbaum. Test analysis: Searching for
faults in tests. In ASE 2015: Proceedings of the 30th Annual International Conference on
Automated Software Engineering, pages 149–154, Lincoln, NE, USA, nov 2015.

42 Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Precise identifica-
tion of problems for structural test generation. In ICSE 2011: Proceedings of the 33rd
International Conference on Software Engineering, pages 611–620, Waikiki, HI, USA, may
2011.

43 Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Mutation analysis
of parameterized unit tests. In ICSTW 2009: Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops, pages 177–181, Denver, CO,
USA, 2009.

ECOOP 2018

http://social.msdn.microsoft.com/Forums/en-US/pex
http://social.msdn.microsoft.com/Forums/en-US/pex
https://msdn.microsoft.com/library/dn823749
https://msdn.microsoft.com/library/dn823749

Learning to Accelerate Symbolic Execution via
Code Transformation
Junjie Chen
Key Laboratory of High Confidence Software Technologies (Peking University), MoE
Institute of Software, EECS, Peking University, Beijing, 100871, China
chenjunjie@pku.edu.cn

Wenxiang Hu
Key Laboratory of High Confidence Software Technologies (Peking University), MoE
Institute of Software, EECS, Peking University, Beijing, 100871, China
huwx@pku.edu.cn

Lingming Zhang
Department of Computer Science, University of Texas at Dallas, 75080, USA
lingming.zhang@utdallas.edu

Dan Hao1

Key Laboratory of High Confidence Software Technologies (Peking University), MoE
Institute of Software, EECS, Peking University, Beijing, 100871, China
haodan@pku.edu.cn

Sarfraz Khurshid
Department of Electrical and Computer Engineering, University of Texas at Austin, 78712, USA
khurshid@ece.utexas.edu

Lu Zhang
Key Laboratory of High Confidence Software Technologies (Peking University), MoE
Institute of Software, EECS, Peking University, Beijing, 100871, China
zhanglucs@pku.edu.cn

Abstract
Symbolic execution is an effective but expensive technique for automated test generation. Over
the years, a large number of refined symbolic execution techniques have been proposed to improve
its efficiency. However, the symbolic execution efficiency problem remains, and largely limits the
application of symbolic execution in practice. Orthogonal to refined symbolic execution, in this
paper we propose to accelerate symbolic execution through semantic-preserving code transform-
ation on the target programs. During the initial stage of this direction, we adopt a particular
code transformation, compiler optimization, which is initially proposed to accelerate program
concrete execution by transforming the source program into another semantic-preserving tar-
get program with increased efficiency (e.g., faster or smaller). However, compiler optimizations
are mostly designed to accelerate program concrete execution rather than symbolic execution.
Recent work also reported that unified settings on compiler optimizations that can accelerate
symbolic execution for any program do not exist at all. Therefore, in this work we propose a
machine-learning based approach to tuning compiler optimizations to accelerate symbolic exe-
cution, whose results may also aid further design of specific code transformations for symbolic
execution. In particular, the proposed approach LEO separates source-code functions and lib-
raries through our program-splitter, and predicts individual compiler optimization (i.e., whether
a type of code transformation is chosen) separately through analyzing the performance of exist-
ing symbolic execution. Finally, LEO applies symbolic execution on the code transformed by

1 corresponding author.

© Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu Zhang;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 6; pp. 6:1–6:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenjunjie@pku.edu.cn
mailto:huwx@pku.edu.cn
mailto:lingming.zhang@utdallas.edu
mailto:haodan@pku.edu.cn
mailto:khurshid@ece.utexas.edu
mailto:zhanglucs@pku.edu.cn
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Learning to Accelerate Symbolic Execution via Code Transformation

compiler optimization (through our local-optimizer). We conduct an empirical study on GNU
Coreutils programs using the KLEE symbolic execution engine. The results show that LEO sig-
nificantly accelerates symbolic execution, outperforming the default KLEE configurations (i.e.,
turning on/off all compiler optimizations) in various settings, e.g., with the default training/test-
ing time, LEO achieves the highest line coverage in 50/68 programs, and its average improvement
rate on all programs is 46.48%/88.92% in terms of line coverage compared with turning on/off
all compiler optimizations.

2012 ACM Subject Classification Software and its engineering → Software testing and debug-
ging

Keywords and phrases Symbolic Execution, Code Transformation, Machine Learning

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.6

Funding This work is partially supported by the National Key Research and Development
Program of China (Grant No. 2017YFB1001803), and NSFC 61672047, 61529201, 61522201,
61861130363. This work is also partially supported by NSF Grant No. CCF-1566589, UT Dallas
start-up fund, Google, Huawei, and Samsung. This work is also partially supported by NSF
Grant No. CCF-1704790.

1 Introduction

Symbolic execution is a systematic analysis methodology to explore program behaviors, and
has been widely used in test input generation [29, 15, 30]. In particular, symbolic execution
takes test inputs as symbolic values instead of concrete values so as to generate test inputs
by solving the constraints for program paths. Although symbolic execution facilitates test
generation to a large extent, it is widely recognized to suffer from the efficiency problem
due to the exponential number of paths and constraint solving cost. To relieve the efficiency
problem of symbolic execution, various optimization techniques have been proposed, e.g.,
compositional symbolic execution [41, 72], incremental symbolic execution [79, 88], and
parallel symbolic execution [78, 76]. However, symbolic execution remains one of the most
expensive testing methodologies [18].

Instead of refining symbolic execution techniques, in this paper, we aim to accelerate
symbolic execution via another orthogonal dimension – transforming the programs under
test. Intuitively, if a program under test can be transformed into a semantic-preserving but
easy-to-analyze program, the efficiency of symbolic execution will be improved. Moreover,
all the refined symbolic execution techniques will be also further improved because of the
orthogonality. That is, semantic-preserving code transformation rules for symbolic execution
are needed. However, few semantic-preserving code transformation rules studied in the
literature targets at symbolic execution, and designing such rules is a complex process
and will be a long-term project. During the initial stage of this direction, we borrow code
transformation rules for concrete execution to learn code transformation rules for symbolic
execution, because of the substantial knowledge accumulated over 30 years in the field
of concrete execution as well as the similarity between concrete execution and symbolic
execution. In particular, we borrow compiler optimization, which is one of the most mature
code transformation approaches to transforming the source program into another semantic-
preserving target program with increased efficiency (e.g., faster or smaller) and has been
widely recognized by its effectiveness on accelerating concrete execution [2, 32, 38, 27].

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.6

J. Chen et al. 6:3

Since compiler optimizations are specially designed for compilers to optimize program
concrete execution, they may reduce the efficiency of symbolic execution due to the difference
between concrete and symbolic execution. As reported by recent work [33, 14], some compiler
optimizations indeed largely accelerate symbolic execution for some programs, but some
compiler optimizations even make symbolic execution much slower for some programs.
Moreover, there is no unified configuration on the compiler optimizations guaranteeing the
efficiency of symbolic execution for all programs. If we can learn how to utilize compiler
optimizations to accelerate symbolic execution for each individual program, it will become a
very light-wight approach to accelerating symbolic execution via code transformation, and is
also helpful in designing specific effective code transformation rules for symbolic execution.
Therefore, in this paper we focus on learning to tune compiler optimizations to accelerate
symbolic execution.

In particular, we propose the first machine-LEarning-based approach to tuning compiler
Optimizations for symbolic execution (abbreviated as LEO). LEO tunes compiler optim-
izations for each code portion (e.g., each function) of a program individually rather than
for the whole program, because compiler optimizations transform different code portions
in different ways. More specifically, for any program under test, LEO first divides it into
source-code portions and libraries used in the program, and then learns their settings on
compiler optimizations separately. Library optimizations can be directly applied with the
corresponding compiler. To enable different code portions with different settings on compiler
optimizations, we design and implement two components. The first one is program-splitter,
which splits a program into multiple files so that each file contains only one source-code
portion (e.g., function). The second one is local-optimizer, which optimizes each preceding file
by its learnt compiler optimization settings. With these tools, LEO integrates the optimized
files and optimized libraries into a fine-optimized program using the LLVM linker. Such
fine-optimized program is semantically equivalent with the original program, and is treated as
inputs of symbolic execution engines instead of the original one, so as to accelerate symbolic
execution.

To evaluate LEO, we conduct an empirical study on KLEE using the widely used GNU
Coreutils programs [57, 86, 33, 15]. Our experimental study shows that compared with
two default settings of KLEE (i.e., symbolic execution without any code transformations
– turning off all compiler optimizations, and symbolic execution turning on all compiler
optimizations), LEO achieves the highest line coverage in 50/68 programs, indicating its
great performance on accelerating symbolic execution. In particular, compared with symbolic
execution without any code transformations (i.e., turning off all compiler optimizations),
the average improvement rate of LEO on all programs is 88.92% in terms of line cover-
age, demonstrating that code transformation is indeed a promising direction to accelerate
symbolic execution. Moreover, compared with symbolic execution turning on all compiler
optimizations, the average improvement rate of LEO on all programs is 46.48% in terms
of line coverage, indicating that effectively tunning compiler optimizations is a successful
exploration in this direction and our machine-learning based approach is able to predict
better compiler-optimization settings for accelerating symbolic execution. Furthermore,
the compiler optimizations recommended by LEO with some specified training symbolic
execution time (e.g., the default 10-minute) can always significantly outperform the default
settings of KLEE in most cases even when the testing symbolic execution time increases.

ECOOP 2018

6:4 Learning to Accelerate Symbolic Execution via Code Transformation

1 int fun2(int N, int h[10]){
2 int i;
3 ---for(i=0;i<N-2;++i) {
4 --- if(i%2==0) h[i] = 1;
5 --- else h[i]=0;
6 ---}
7 for(i=0;i<N;++i) {
8 h[i]=2*i;
9 }
10 int sum=0;
11 for(i=0;i<N;++i)
12 sum+=h[i];
13 return sum;
14 }
(a) Acceleration.

1 int fun1(int M, int g[10]) {
2 int i;
3 ---for(i=0;i<M;++i) {
 +++for(i=M-2;i<M;++i) {
4 g[i]=i*i;
5 }
6 for(i=0;i<M-2;++i) {
7 g[i]=0;
8 }
9 int sum=0;
10 for(i=0;i<M;++i)
11 sum+=g[i];
12 return sum;
13 }
(b) Deceleration.

Figure 1 Motivating examples.

The contributions of this paper are summarized as follows.
The first approach to accelerating symbolic execution via machine-learning based compiler
optimization tuning for code transformation.
An implementation of the proposed approach, including program-splitter and local-
optimizer components, enabling the learnt compiler optimization settings for different
code portions.
An extensive study on GNU Coreutils programs demonstrating the performance of LEO
on accelerating symbolic execution as well as the contributions of various components of
LEO.

2 Motivation

In this section, we use two examples of aggressive dead code elimination (ADCE) to illustrate
the motivation of this work, i.e., tunning compiler optimization can accelerate symbolic
execution. ADCE is a compiler optimization that assumes all instructions are dead unless
they are proven not and tries to eliminate dead statements within loop computations. This
optimization can accelerate program concrete execution but has different impacts on symbolic
execution. The first example is shown in Figure 1a, where the code with marks is the
code transformed through the compiler optimization. The transformation removes the first
redundant loop as marked, and accordingly simplifies path conditions, which facilitates
symbolic execution. As a result, symbolic execution after optimization requires only 11
queries2, while symbolic execution before optimization requires 54 queries.

Figure 1b presents another example on ADCE. Contradictory to the observation in
Figure 1a, the optimization used in Figure 1b decelerates symbolic execution. More specifically,
the transformation tries to avoid redundant computations by complicating the starting
condition of the first loop (i.e., at Line 3). That is, turning on this compiler optimization
increases the complexity of the path conditions, which enhances the difficulty of constraint
solving in symbolic execution. As a result, symbolic execution before optimization requires

2 Query is a concept of SMT constraint solving. More queries tend to decrease the efficiency of symbolic
execution.

J. Chen et al. 6:5

Feature
extraction Labeling

Imbalanced
instances
processing

Feature
extraction Labeling

Imbalanced
instances
processing

Predictive
model
building

Predictive
model
building

Function optimization

Library optimization Optimization tuning

functions

libraries

optimized
libraries

optimized
functions

functions

fu
nc

tio
ns

fine-optimized
program

Training
programs

Testing
program

Models

Models

library optimization settings

Program
-splitter

Local
-optimizer

Compiler

Linker
Symbolic
execution

function optimization settings

Figure 2 Overview of LEO.

48 queries, while it requires 107 queries after optimization, significantly aggravating the
efficiency problem of symbolic execution. Combining the observations from Figures 1a
and 1b, a compiler optimization can behave differently, e.g., accelerate or decelerate symbolic
execution, making it not proper to give a unified compiler optimization setting for all
programs. Therefore, this paper targets learning how to tune these compiler optimizations
for each individual program to accelerate symbolic execution via code transformation.

From Figures 1a and 1b, the transformation performed by compiler optimizations actually
occurs on some code portions rather than the whole program. For example, the transformation
in Figure 1a occurs at Lines 3-6, and the transformation in Figure 1b occurs at Lines 3. That
is, the transformation actually occurs at fine granularities (e.g., statements and functions)
rather than at coarse granularities (e.g., the whole program). If a compiler optimization
is uniformly set at coarse granularities, it is hard to guarantee the efficiency of symbolic
execution. For example, if a large program consists of the two functions in Figure 1a and
Figure 1b, it is hard to tell whether the optimization, ADCE, accelerates the symbolic
execution of the whole program because such an optimization has opposite influence on the
two functions. That is, to accelerate symbolic execution, compiler optimizations should be
tuned at fine granularities, e.g., the function level, rather than at coarse granularities. On
the other side, it is costly to tune compiler optimizations at much finer granularities (e.g.,
the statement level) due to the extra efforts on compiler optimization tuning. Therefore, in
this paper, we use the function level as a compromise and tune compiler optimizations for
symbolic execution at the function level.

3 Approach

To accelerate symbolic execution via code transformation, we propose the first approach
to tuning compiler optimizations at the function level based on machine learning. The key
insight of our approach is that program code portions with certain features (e.g., structure or
complexity features) or combinations of features are inherently more likely to be transformed
to easy-to-analyze programs by certain compiler optimizations. Besides the implemented
source functions, a program may use API functions of some libraries, and thus it is necessary
to learn how to set compiler optimizations for these libraries as well. However, the libraries
are usually so large that splitting libraries into functions and tuning compiler optimizations
for each library function incur huge costs, and thus LEO predicts the settings of compiler
optimizations for libraries in a way different from what it does for functions. That is, LEO

ECOOP 2018

6:6 Learning to Accelerate Symbolic Execution via Code Transformation

divides a program into source-code functions and libraries, and predicts their settings of
compiler optimizations separately.

Figure 2 presents the overview of LEO. It first trains a predictive model for each
optimization to predict whether the compiler optimization should be turned on for a function
(see Section 3.1), and then trains a predictive model for each compiler optimization to predict
whether the compiler optimization is turned on for libraries (see Section 3.2). Based on
the prediction results, LEO tunes the settings of compiler optimizations for the program
under test, and implements the program-splitter and local-optimizer components to facilitate
compiler optimization settings for each code portion (see Section 3.3). Note that although
the general idea of LEO applies to various symbolic execution engines and compilers, in this
work, we present LEO based on the KLEE symbolic execution engine [15] and its underlying
LLVM compiler infrastructure [55].

3.1 Function Optimization

In function optimization, LEO first collects a set of training instances from source functions
by extracting their features and identifying their labels, and then builds a predictive model
based on these training data for each compiler optimization.

3.1.1 Feature Extraction

To predict whether a compiler optimization can facilitate symbolic execution for a function,
the identified features from source functions should characterize how compiler optimizations
influence the efficiency of symbolic execution. Therefore, we identify features from two
aspects: path exploration and constraint solving, which are main reasons for the efficiency
problem of symbolic execution [18]. From the aspect of path exploration, we use a group of
features relevant to program structure, e.g., the number of basic blocks with one/two/more
than two successor(s), the number of edges in the control flow graph, and the number of
conditional branches. From the aspect of constraint solving, we use a group of features
relevant to program complexity, e.g., the number of references (def/use) of static/extern/local
variables, the number of instructions that do pointer arithmetic, and the number of indirect
references via pointers. In particular, prior work on compiler optimizations for program
concrete execution [38] has already recognized some characteristics of a program that are
related to compiler optimizations. Here we use all these characteristics as the features of
LEO because these features are relevant to either path exploration or constraint solving.
Details about our features can be found in the homepage of LEO.

For each function, LEO extracts the values of these features, which are represented by a
vector whose elements are numeric. As these features may have different value ranges, LEO
normalizes each element’s value into the range [0,1] using the min-max normalization [48] so
as to adjust values measured on different scales into a common scale. Supposed that the set
of training instances (i.e., functions) is denoted as P = {p1, p2, . . . , pn}, the set of vectors
extracted from P is denoted as V = {v1, v2, . . . , vn}, the set of elements in a vector is denoted
as E = {e1, e2, . . . , em}, and the value of the element ej in the vector vi before normalization
is denoted as xij , then the value of the element ej in the vector vi after normalization is
denoted as x∗

ij , Formula 1 presents the min-max normalization on xij , where 1 ≤ i ≤ n and
1 ≤ j ≤ m.

x∗
ij = xij −min({xkj |1 ≤ k ≤ n})

max({xkj |1 ≤ k ≤ n})−min({xkj |1 ≤ k ≤ n})
(1)

J. Chen et al. 6:7

3.1.2 Labeling

LEO is designed to build a predictive model for a compiler optimization, characterizing how
to accelerate symbolic execution through the compiler optimization setting. Therefore, the
label for each training instance is defined as the setting of a compiler optimization that
accelerates symbolic execution. In other words, a label of a training instance (i.e., function)
refers to whether a compiler optimization should be turned on or off.

For any training instance (i.e., function), LEO labels based on the comparison between
its symbolic execution efficiency with the compiler optimization turned on and turned off.
Same as existing work [33, 15, 87], symbolic execution efficiency is measured by line coverage
achieved by the generated test inputs within time limit. That is, within time limit, if line
coverage achieved when turning on this compiler optimization is higher than that when
turning off it, the instance label for this compiler optimization is “turning on”. Otherwise,
the label is “turning off”.

It is hard to learn whether a compiler optimization should be turned on or off for a
function, since symbolic execution takes the whole program rather than each function as
input. To relieve this issue, LEO estimates the label of each function by analyzing the line
coverage of the whole program instead. More specifically, LEO first collects line coverage of
the whole program, i.e., which line of code is covered by the test inputs generated through
symbolic execution, then determines the line coverage of each function by analyzing the
distribution of line coverage. Finally, for each function, LEO compares its line coverage
between symbolic execution with the optimization on and that with the optimization off to
set the label.

3.1.3 Imbalanced Instance Processing

Through the steps introduced by Sections 3.1.1 and 3.1.2, we collect a set of training instances
with features and labels. Based on the prior work [33], some compiler optimizations help
accelerate symbolic execution in most cases but some other compiler optimizations make
symbolic execution slower in most cases. That is, for a compiler optimization, its number of
training instances whose labels are turned on may be greatly different from its number of
training instances whose labels are turned off, which can incur the imbalanced data problem.

As the imbalanced problem may have serious impact on the accuracy of classification [23,
21], LEO uses over-sampling strategy to relieve the impact of imbalanced instances in
optimization prediction. Here we choose over-sampling strategy rather than other strategies
(e.g., under-sampling) because it is costly to collect a large number of training instances3.
In particular, LEO uses SMOTE [22], because SMOTE over-samples the minority class
by creating synthetic examples rather than by over-sampling with replacement [22]. More
specifically, for each instance in the minority class, SMOTE creates synthetic examples along
the line segments joining the instance and its k nearest neighbors by regarding all instances
as points in space. Based on the amount of over-sampling required, neighbors are randomly
chosen from the k nearest neighbors, and then one instance is created on each line segment.

3 Collecting a training instance requires feature extraction and labeling. Moreover, to label each instance,
each program has to be executed twice in symbolic execution, including turning on the compiler
optimization and turning off the compiler optimization.

ECOOP 2018

6:8 Learning to Accelerate Symbolic Execution via Code Transformation

3.1.4 Predictive Model
For each compiler optimization, LEO builds a predictive model through machine learning. In
particular, LEO adopts the SMO algorithm, which is used to solve the quadratic programming
problem in the training of Support Vector Machines (abbreviated as SVM) [69] and regarded
as the fastest for linear SVM and sparse data sets. Note that although LEO is implemented
based on SMO, it is not specific to this machine learning algorithm and we investigate the
impact of machine learning algorithms in Section 4.6.4.

3.2 Library Optimization
As the libraries are usually so large that splitting libraries into functions and tuning compiler
optimizations for each library function incur huge cost. Therefore, we predict compiler
optimizations for libraries in a different way. More specifically, LEO regards the functions of
libraries as a whole by building a predictive model for libraries used in a program (rather
than each function). Similar to function optimization prediction, LEO predicts compiler
optimizations for libraries as follows.

First, LEO defines a set of new features that characterize how compiler optimizations
accelerate symbolic execution for libraries. Since library functions are relatively fixed in
implementation and repeatedly used by various client code, it is not necessary to collect
detailed features about each library function separately. Instead, knowing how compiler
optimizations impact programs that used a library function before, can help predict how
compiler optimizations impact the current program using that library function. Therefore,
LEO directly uses whether each individual library function is called by a program as features
of library optimization. That is, for each training instance (i.e., a program), LEO identifies
the called library functions and uses 1/0 to represent a library function is/isn’t called. As
the values of these features are all 0 or 1, normalization is not necessary.

Second, LEO labels each training instance. An instance label is whether a compiler
optimization should be turned on or off for the libraries used in a program. Similar to the
process of function optimization prediction, LEO determines a label by comparing the line
coverage of the whole program achieved when turning on the compiler optimization and that
achieved when turning off the compiler optimization within time limit4.

Finally, based on the collected training data, LEO builds a predictive model for each
compiler optimization using also SMO. Note that LEO also uses SMOTE to filter the impact
of the imbalanced problem in library optimization prediction.

3.3 Optimization Tuning
Following Sections 3.1 and 3.2, LEO learns the settings of all compiler optimizations for a
program, including each source-code function and the related libraries. However, as symbolic
execution engines do not support various settings on different source-code functions of a
program, LEO provides such fine-granularity optimization tuning by implementing two
components: program-splitter and local-optimizer.

LEO first adopts the learnt settings of compiler optimizations for libraries by compiling
the libraries individually. Then LEO splits the whole program into multiple files, each
of which is only a function of the program, and adopts the learnt settings of compiler

4 As the features of a training instance are directly related to libraries and optimized libraries also
contribute to the line coverage of the program, LEO approximately uses whether the line coverage of
the program is improved when turning on a compiler optimization as the label for library optimization
prediction, to save the cost of labeling.

J. Chen et al. 6:9

optimizations for each file (i.e., function). Finally, LEO integrates the multiple optimized files
and optimized libraries into a fine-optimized program using the LLVM linker, and analyzes
this program rather than the original target program through symbolic execution. Due to
program complexity, implementing the program-splitter and local-optimizer is an important
technical challenge in LEO. In the following subsections, we first present the details on how
to split a program into multiple function-level files in Section 3.3.1, and then present the
details on how to optimize these files using learnt settings and integrate these optimized files
and libraries in Section 3.3.2.

3.3.1 Program-Splitter
For any given program denoted as PA, LEO splits it into function-level files
PB = {pb1, pb2, . . . , pbn}, where pbk refers to a function-level file (1 ≤ k ≤ n and n is
the total number of functions in PA), via two stages: preprocessing stage and splitting
stage. In the preprocessing stage, our approach preprocesses PA and prepares the necessary
materials, and in the splitting stage our approach splits PA into function-level files based on
these materials.

In the preprocessing stage, LEO first expands macro and removes comments to expediently
transform PA to PB , and then prepares the following materials for the splitting stage:

A common-symbol table, which contains the symbols of all common variables and functions
in PB

5, so as to solve the duplicate-name issue in link-time.
A type-definition table, which records all definitions of existing types (e.g., structs) in
PB .
A dependent table for each function in PB , which records the declarations of its dependent
functions and global variables.

In the splitting stage, our approach generates an individual file (denoted as pbk) for each
function (denoted as Mk) in PB by the following steps:

Putting the declarations of dependent functions and global variables into pbk and using
“extern” as their modifier, based on the dependent table of this function;
Modifying the scope of the dependent functions and global variables, i.e., removing the
“static” modifier, so that they can be used by the other files;
Putting Mk into the file pbk;
Putting all needed type definitions into pbk referring to the type-definition table, based
on all declarations in pbk.

In particular, our approach records all global variables in an individual file so that all
other files can use them.

3.3.2 Local-Optimizer
The optimizer of the KLEE symbolic execution engine applies all compiler optimizations
together, but does not allow to turn on one compiler optimization or a subset of compiler
optimizations. Therefore, we implement a local-optimizer by setting an interface that
appoints which compiler optimizations are turned on. That is, we regard the names of
compiler optimizations as parameters that are passed to the optimizer by the interface.
Finally, LEO integrates all optimized files and libraries into a fine-optimized program using

5 In this paper, common variables and functions refer to the global variables and functions without “static”
modifier.

ECOOP 2018

6:10 Learning to Accelerate Symbolic Execution via Code Transformation

the LLVM linker. When linking libraries, some symbols may have duplicate names, which
will incur link errors. To solve this problem, our approach utilizes the common-symbol table
generated in the program-splitter to remove the symbols whose scope is the current file from
the symbol table of the executable.

4 Experimental Study

Our study addresses the following four research questions:
RQ1: How does LEO perform on accelerating symbolic execution via code transformation?
RQ2: How do different training and testing time limits impact LEO?
RQ3: Do both function optimization and library optimization contribute to LEO?
RQ4: How do different machine learning algorithms impact LEO?

Note that in our study, there are two types of time limits: training time limit and testing
time limit. The former refers to the symbolic-execution time used for collecting training
instances, and the latter refers to the symbolic-execution time used to analyze the programs
under test.

4.1 Tools and Libraries
In our study, we use KLEE [15], one of the most widely used symbolic execution engines [15,
33, 87, 57]. KLEE is implemented using C++ based on the LLVM infrastructure, whose
compiler provides dozens of compiler optimizations. The same as prior work [87, 33], we build
KLEE with LLVM 2.9, which has 30 compiler optimizations integrated by KLEE. These
optimizations are turned on through the command “–optimize” and turned off through the
command “–disable-opt”, which are two default configurations of KLEE. In our study, we use
similar KLEE options as the prior work [15]. Following the prior work [33, 30], we use the
DFS search heuristic in KLEE so as to acquire more deterministic results, and disable the
caching of KLEE since the caching contents can be different for different strategies, making
it hard to check the actual impacts of different strategies. More discussion on the impact of
search heuristics and caching can be found in Section 5.2.

We implement LEO’s machine-learning component by using the SMO algorithm provided
by Weka 3.6.126, whose Puk kernel is set with omega = 3 and sigma = 1 in this study based
on a preliminary study on a small dataset.

In our study, we measure the performance with code coverage and fault detection
rates achieved by the test inputs generated within the given testing time limit. For code
coverage, we use line coverage, which is widely used to measure the effectiveness of symbolic
execution [33, 15, 87, 86]. For fault detection rates, since real faults are usually small in
number in practice and mutation faults have been widely recognized as suitable for simulating
real faults in software testing experimentation [5, 51, 26, 25], following prior work [86, 57], we
use mutation testing to simulate real faults and check the mutation scores, i.e., the proportion
of killed mutants in all generated mutants. When collecting code coverage and mutation
scores, we use widely-used and mature tools gcov7 and mutGen [5]. When calculating
mutation scores, following prior work [86, 57], we regard the console outputs of the original
program as test oracles. If there is any difference between the console outputs of the original
program and the console outputs of a mutant for the same test inputs, we regard a mutant
as killed.

6 http://www.cs.waikato.ac.nz/ml/weka/.
7 http://ltp.sourceforge.net/coverage/gcov.php

http://www.cs.waikato.ac.nz/ml/weka/
http://ltp.sourceforge.net/coverage/gcov.php

J. Chen et al. 6:11

4.2 Subjects
Following previous work on symbolic execution [15, 33, 87, 57, 86, 62], we also use GNU
Coreutils C programs as subjects, which implement different tools for Unix-like operating
systems [15, 57]. In particular, we use 76 GNU Coreutils 6.11 programs8, whose total lines
of source code (SLOC)9 are 39,752 linked with an internal library size of 49,710 SLOC and
an external library size of 223,147 SLOC.

Furthermore, when measuring mutation scores, we use 40 programs in GNU Coreutils
because the rest of programs cannot produce outputs under the study environment or their
outputs are related to environment/context information (e.g., system time). Following prior
work [86], for each program, we randomly select 100 mutants. If the total number of generated
mutants is less than 100, we use all generated mutants instead.

4.3 Experimental Setup
We consider the following independent variables:
Compared Approaches. LEO is the first automated approach to tuning compiler optim-

izations for accelerating symbolic execution. Therefore, we compare LEO with only
the default optimization configurations of KLEE, i.e., all compiler optimizations off
(abbreviated as NO) and all compiler optimizations on (abbreviated as ALL). Here, NO
is regarded as the baseline, representing the original symbolic execution without any
code transformations for programs under test whereas ALL is regarded as a compared
approach applying all available compiler optimizations to accelerate symbolic execution.

Time limits. As the GNU Coreutils programs are normally large and complicated, all paths
of a program cannot be fully explored by symbolic execution during the acceptable period
of time. Therefore, similar as prior work [15, 33], in the experiment we also limit the
maximum execution time of KLEE and halt its execution when reaching the time limit.
In particular, for the testing time limit, we set it to 10, 15, 20, 25, and 30 minutes, to
investigate whether LEO always performs well regardless of testing time limits. We set
the default training time limit to be 10 minutes in LEO. Moreover, we also study the
impact of different training time limits on LEO. Due to the high cost of training, we first
set the training time limit to be 10 minutes to 30 minutes with the step of 10 minutes.
Then, we also add a 5-minute training time limit to better understand the trend of the
impact of training time limit. That said, we set the training time limit to be 5, 10, 20,
and 30 minutes.

Variants of LEO. To explore whether each component of LEO (i.e., function optimization
and library optimization) contributes to LEO on accelerating symbolic execution, we
adapt LEO by removing each component and compare the performance of the adapted
LEO and the original LEO. In particular, LEO has four variants through such adaption,
which are (1) LEO with all compiler optimizations for libraries turned on (denoted as
LEO-Lall), (2) LEO with all compiler optimizations for libraries turned off (LEO-Lno),
(3) LEO with all compiler optimizations for functions turned on (LEO-Fall), and (4) LEO
with all compiler optimizations for functions turned off (LEO-Fno). That is, LEO-Lall
and LEO-Lno are variants of LEO without library optimization prediction, LEO-Fall and
LEO-Fno are variants of LEO without function optimization prediction.

8 We remove some programs from GNU Coreutils mainly because they can destroy our experimental data
by generating dangerous test inputs.

9 Following prior work [87, 61, 54, 60], the SLOC in this paper are measured by cloc, which is accessible
at https://github.com/AlDanial/cloc.

ECOOP 2018

https://github.com/AlDanial/cloc

6:12 Learning to Accelerate Symbolic Execution via Code Transformation

Machine learning algorithms. To investigate the impact of machine learning algorithms
on LEO, we consider other five typical machine learning algorithms besides SMO –
Alternating Decision Tree (abbreviated as ADT) [36], Bayesian Logistic Regression
(BLR) [40], Multinomial Logistic Regression (MLR) [56], LogitBoost (LB) [37], and
Random Forests (RF) [12]. In particular, we also use their implementations provided by
Weka.

Following prior work on machine learning [20, 6], LEO is evaluated through leave-one-out
cross-validation. That is, for each subject, we use the instances collected from the remaining
75 programs as the training data to build predictive models for compiler optimizations
respectively, and use these predictive models to learn the settings of compiler optimizations
for the specific subject. The training is conducted offline, and not included as overhead. Note
that we use 68 of 76 programs as the testing programs in turn because the other 8 programs
incur KLEE errors when using some predicted compiler optimization settings.

The dependent variables considered are line coverage and mutation scores, which have
been widely used in prior studies on symbolic execution [57, 86, 33, 15, 87].

4.4 Verifiability
The experimental study is conducted on a workstation with eight-core Intel Xeon E5620 CPU
(2.4GHz) with 24G memory, and Ubuntu 15.04 operating system. For ease of experiment
replication, we release the tools and implementation used in our experiment as well as all
the experimental data at the homepage of LEO10. The detailed results in the homepage
allow for verification without running the experiment again. The open-source tools, the
implementation of our experiment (including the source code and readme files), and the
subjects and mutants are available, so that one can easily reproduce our experiment.

4.5 Threats to Validity
The threats to internal validity mainly lie in the tool supports and our own implementations.
To reduce the threat from tool supports, we use the widely-used KLEE symbolic execu-
tion engine [15] and the LLVM compiler infrastructure [55]. Since LEO predicts compiler
optimizations for each source-code function, it may discount the effect of inter-procedural
compiler optimizations. In the future, we plan to utilize LEO to predict optimizations for a
subset of functions rather than a single function to reduce this threat. It can also bring an
additional benefit, i.e., reducing the cost of LEO for optimization prediction. Also, we use
the mature tools, i.e., gcov and mutGen [5], to collect line coverage and generate mutants,
respectively. To avoid implementation errors, the first two authors review the source code and
experimental scripts, and we adopt the mature implementations of those machine learning
algorithms used in our study, which are provided by Weka.

The threat to external validity mainly lies in the studied subjects. Although we use the
widely-used GNU Coreutils programs [15, 33, 87, 57], they may not be representative of other
programs. To reduce this threat, we will use more and larger subjects in the future. Note
that our current subjects do not suffer from overfitting. The reason is that GNU coreutils
was created by merging a lot of earlier GNU packages; even within the same package,
programs differ in their implementation, creation time, and functionalities. Moreover, LEO
optimizes at the function rather than program level. Regarding to the libraries, LEO predicts

10 https://github.com/JunjieChen/leo.

https://github.com/JunjieChen/leo

J. Chen et al. 6:13

optimizations of a library for a target program based on the actual library portions invoked
and does not necessarily produce the same prediction results on the same libraries of different
target programs, which is confirmed by our experimental data. Therefore, the library code
does not have overfitting concerns as well.

The threats to construct validity lie in the measurement, the time limits, and the compared
approaches. In this study, we measure the performance of LEO through only its acceleration
effectiveness rather than its cost because LEO has little overhead11. In particular, we choose
the mostly used line coverage and mutation scores. The second threat comes from the
time limit, including the training and testing time limits. To reduce these threats, we will
repeat the experiment by using other time limits. The third threat lies in the compared
approaches. As the first work on optimization prediction for symbolic execution, we use the
state-of-the-art symbolic execution work KLEE and its compiler optimization support as the
compared approaches (i.e., ALL and NO). There are also some other approaches that may
be compared in the study, such as statically applying a subset of compiler optimizations for
all the programs [84, 33]. However, according to the existing work [33], there is no unified
compiler-optimization configuration guaranteeing the efficiency of symbolic execution for
all programs. In particular, the experimental results in the existing work [33] have shown
that the four different subsets of KLEE compiler optimizations that are designed based
on their knowledge for symbolic execution perform almost the same as turning on all the
optimizations (i.e., ALL). Therefore, statically applying a subset of compiler optimizations
may not outperform LEO.

4.6 Results and Analysis
4.6.1 RQ1: Performance Comparison
Performance on line coverage. Table 1 lists the line coverage achieved by LEO and ALL/NO

under the 10-minute testing time limit12, where (4), (m), (8) represent that the approach
achieves the highest, medium, lowest line coverage on the corresponding subject among
LEO, ALL and NO, respectively. In particular, the last two rows of this table present the
number of subjects where each approach achieves the best, medium, and worst results.
From this table, the number of subjects where LEO achieves the best performance (i.e.,
50) is much larger than that of ALL (i.e., 26) and NO (i.e., 13), and the number of
subjects where LEO achieves the worst performance (i.e., 5) is much smaller than that
of ALL (i.e., 13) and NO (i.e., 44). Based on these results, LEO is more effective than
the baseline NO, demonstrating code transformation is indeed a promising direction to
accelerate symbolic execution. Also, LEO is more effective than ALL, indicating that
effectively tuning compiler optimizations is a good exploration in this direction and our
machine-learning based approach indeed predicts better compiler-optimization settings
specific to symbolic execution.

Figure 3 further shows the comparison results between LEO and ALL/NO under the
10-minute testing time limit, where we calculate the difference between the line coverage
achieved by LEO and that achieved by ALL/NO, as the coverage improvement using LEO. In
this figure, the y axis represents the coverage improvement using LEO and the x axis sorts the

11Predictive models are built offline and they predict each optimization for each function or libraries very
quickly (in seconds).

12 If no otherwise specified, all training symbolic execution runs of LEO use the default 10-minute training
time limit in the remainder of this paper.

ECOOP 2018

6:14 Learning to Accelerate Symbolic Execution via Code Transformation

Table 1 Line coverage achieved by LEO/ALL/NO within 10-minute testing time limit

Sub LEO ALL NO Sub LEO ALL NO

base64 71.43(4) 42.86(m) 14.29(8) basename 79.49(4) 79.49(4) 76.92(8)
cat 66.38(4) 55.17(m) 54.74(8) chcon 70.77(4) 45.64(m) 15.90(8)
chgrp 67.78(4) 67.78(4) 34.44(8) chown 65.59(4) 60.22(m) 30.11(8)
chroot 62.16(4) 62.16(4) 56.76(8) cksum 91.94(4) 80.65(8) 91.94(4)
comm 78.57(4) 71.43(m) 62.24(8) cp 41.46(m) 46.34(4) 26.29(8)
csplit 53.76(m) 62.57(4) 3.30(8) cut 64.53(4) 48.99(8) 56.08(m)
date 48.05(4) 44.16(m) 24.68(8) df 64.15(m) 64.42(4) 63.61(8)
dircolors 73.16(4) 20.00(m) 10.00(8) dirname 93.55(4) 74.19(m) 74.19(m)
echo 27.18(8) 28.16(m) 39.81(4) env 100.00(4) 82.22(m) 51.11(8)
expand 42.38(m) 39.07(8) 43.05(4) expr 48.22(m) 48.52(4) 34.02(8)
factor 71.64(4) 71.64(4) 64.18(8) fmt 65.83(4) 65.83(4) 60.19(8)
fold 43.36(m) 41.59(8) 44.25(4) hostid 63.64(4) 63.64(4) 59.09(8)
hostname 67.86(4) 57.14(8) 67.86(4) id 32.03(4) 27.34(m) 24.22(8)
join 12.93(8) 53.06(4) 28.80(m) link 75.00(4) 64.29(m) 60.71(8)
ln 78.35(4) 75.26(m) 29.38(8) logname 56.00(4) 56.00(4) 52.00(8)
ls 44.24(m) 45.33(4) 22.70(8) mkdir 77.27(4) 66.67(m) 34.85(8)
mkfifo 82.98(4) 74.47(m) 36.17(8) mknod 56.10(4) 53.66(m) 42.68(8)
mktemp 88.89(4) 76.77(m) 44.44(8) nice 61.02(8) 76.27(4) 72.88(m)
nl 48.82(4) 46.92(m) 42.18(8) nohup 77.63(4) 77.63(4) 77.63(4)
od 40.65(m) 40.79(4) 29.25(8) paste 66.84(m) 68.98(4) 44.92(8)
pathchk 46.97(m) 46.97(m) 56.06(4) pinky 83.33(4) 83.33(4) 79.91(8)
pr 38.08(4) 37.86(m) 36.64(8) printenv 77.14(4) 62.86(m) 62.86(m)
printf 74.32(4) 10.51(8) 12.45(m) pwd 20.34(4) 20.34(4) 20.34(4)
readlink 96.00(4) 72.00(m) 54.00(8) runcon 54.37(m) 55.34(4) 44.66(8)
seq 53.04(4) 53.04(4) 48.62(8) setuidgid 55.84(4) 41.56(m) 23.38(8)
shuf 59.88(4) 47.67(8) 59.30(m) sleep 45.65(4) 45.65(4) 43.48(8)
split 45.62(4) 41.01(m) 14.29(8) stat 37.05(4) 9.47(8) 31.75(m)
stty 29.43(m) 31.32(4) 13.77(8) tee 86.96(4) 75.36(m) 75.36(m)
touch 56.25(8) 68.75(4) 59.72(m) tr 22.15(8) 39.15(m) 40.52(4)
tsort 72.91(4) 6.90(8) 42.36(m) tty 76.67(4) 76.67(4) 50.00(8)
uname 79.55(4) 77.27(m) 19.32(8) unexpand 47.42(4) 44.85(8) 47.42(4)
uniq 64.32(4) 63.24(m) 45.95(8) unlink 72.00(4) 60.00(8) 72.00(4)
uptime 91.03(4) 17.95(8) 91.03(4) users 90.38(m) 26.92(8) 98.08(4)
who 83.09(4) 59.71(m) 24.10(8) whoami 53.85(4) 53.85(4) 50.00(8)

Best(4) 50 26 13 Med(m) 13 29 11
Worst(8) 5 13 44 – – – –

subjects in their coverage improvement by removing those with zero coverage improvement.
That is, any bar above 0 represents a subject whose LEO result is better than ALL or NO,
whereas any bar below 0 represents a subject whose LEO result is worse. Besides, LEO
achieves the same line coverage as ALL in 14 subjects, and as NO in 6 subjects. From this
figure, the vast majority of bars are above 0. That is, LEO makes symbolic execution more
efficient than both ALL and NO in most cases. Moreover, the improvement of LEO is usually
larger than its decrement. In particular, the increased coverage for uptime, tsort, printf
and users on ALL, as well as dircolors, printf and uname on NO are even more than 60%.

J. Chen et al. 6:15

-40

-20

0

20

40

60
u

p
ti

m
e

ts
o

rt
p

ri
n

tf
u

se
rs

d
ir

co
lo

rs
b

as
e6

4
st

at
ch

co
n

re
ad

lin
k

w
h

o
d

ir
n

am
e

en
v

cu
t

p
ri

n
te

n
v

se
tu

id
g

id
sh

u
f

m
kt

em
p

u
n

lin
k

te
e

ck
su

m
ca

t
h

o
st

n
am

e
lin

k
m

kd
ir

m
kf

if
o

co
m

m
ch

o
w

n
id

sp
lit

d
at

e
ex

p
an

d
ln

u
n

ex
p

an
d

m
kn

o
d

u
n

am
e

n
l

fo
ld

u
n

iq
p

r
o

d d
f

ex
p

r
ru

n
co

n
ec

h
o

ls st
ty

p
as

te
cp

cs
p

lit
to

u
ch

n
ic

e
tr jo
in

Im
p

ro
ve

m
en

t
co

ve
ra

g
e(

%
)

(a) LEO-ALL

-20

0

20

40

60

d
ir

co
lo

rs
p

ri
n

tf
u

n
am

e
w

h
o

b
as

e6
4

ch
co

n
cs

p
lit

ln en
v

m
kf

if
o

m
kt

em
p

m
kd

ir
re

ad
lin

k
ch

o
w

n
ch

g
rp

se
tu

id
g

id
sp

lit
ts

o
rt

tt
y

d
at

e
p

as
te

ls
d

ir
n

am
e

u
n

iq
co

m
m

st
ty

cp lin
k

p
ri

n
te

n
v

ex
p

r
m

kn
o

d
ca

t
te

e
o

d
ru

n
co

n
cu

t
id

fa
ct

o
r

n
l

fm
t

ch
ro

o
t

st
at

h
o

st
id

se
q

lo
g

n
am

e
w

h
o

am
i

p
in

ky
b

as
en

am
e

sl
ee

p
p

r
sh

u
f

d
f

ex
p

an
d

fo
ld

to
u

ch
u

se
rs

p
at

h
ch

k
n

ic
e

ec
h

o
jo

in tr

Im
p

ro
ve

m
en

t
co

ve
ra

g
e(

%
)

(b) LEO-NO

Figure 3 Coverage improvement within 10-minute testing time limit

This is another empirical evidence that LEO does effectively accelerate symbolic execution
on most subjects.

To further quantitatively measure the performance of LEO on accelerating symbolic
execution, similar to previous work [24], we calculate the improvement rate of LEO in terms
of line coverage for each program. It is calculated via Formula 2, where Cov(LEO) represents
the line coverage achieved by LEO and Cov(ALL(orNO)) represents the line coverage
achieved by ALL or NO. The average line-coverage improvement rate of LEO compared with
ALL on all subjects is 46.48% and that compared with NO is 88.92%, demonstrating the
significant acceleration performance of LEO in terms of line coverage.

RateCov = Cov(LEO)− Cov(ALL(orNO))
Cov(ALL(orNO)) ∗ 100% (2)

Note that in some cases LEO decelerates symbolic execution, e.g., nice and tr. We try
to analyze the possible reasons and find that some compiler optimizations have coupling
effect in fact. For instance, based on the comments of LLVM, the optimization “IndvarSim-
plify”13 should be performed after all the desired loop optimizations (e.g., the optimization
“LoopRotation”). Currently, LEO learns each predictive model for each compiler optimization

13This optimization analyzes and transforms the induction variables into simpler forms suitable for
subsequent analysis and transformation.

ECOOP 2018

6:16 Learning to Accelerate Symbolic Execution via Code Transformation

Table 2 Mutation scores achieved by LEO/ALL/NO within 10-minute testing time limit.

Sub LEO ALL NO Sub LEO ALL NO

base64 17.00 (4) 11.00 (m) 4.00(8) basename 44.00 (4) 44.00 (4) 44.00(4)
chcon 39.00 (4) 18.00 (m) 7.00(8) cksum 10.00 (m) 9.00 (8) 14.00(4)
comm 20.00 (m) 14.00 (8) 21.00(4) cut 19.00 (m) 18.00 (8) 25.00(4)
dircolors 46.00 (4) 12.00 (8) 45.00(m) dirname 74.12 (m) 98.82 (4) 74.12(m)
env 100.00 (4) 62.20 (m) 48.78(8) expand 3.00 (m) 3.00 (m) 13.00(4)
expr 100.00 (4) 99.00 (m) 8.00(8) fold 3.00 (m) 3.00 (m) 9.00(4)
hostid 60.87 (4) 60.87 (4) 34.78(8) link 37.00 (8) 46.00 (4) 39.00(m)
ln 99.00 (4) 42.00 (m) 11.00(8) logname 62.50 (4) 62.50 (4) 32.50(8)
mkfifo 51.28 (m) 50.00 (8) 100.00(4) mknod 50.00 (4) 46.00 (m) 26.00(8)
nice 29.00 (8) 48.00 (4) 40.00(m) nl 0.00 (m) 0.00 (m) 7.00(4)
nohup 39.00 (4) 39.00 (4) 39.00(4) od 25.00 (m) 28.00 (4) 3.00(8)
paste 11.00 (m) 10.00 (8) 23.00(4) pathchk 20.00 (m) 18.00 (8) 24.00(4)
printf 25.00 (4) 4.00 (m) 1.00(8) pwd 7.00 (4) 7.00 (4) 7.00(4)
readlink 66.67 (4) 38.10 (8) 47.62(m) runcon 32.00 (4) 27.00 (m) 25.00(8)
setuidgid 27.00 (4) 20.00 (m) 13.00(8) sleep 32.00 (4) 21.00 (8) 30.00(m)
split 12.00 (m) 16.00 (4) 11.00(8) tee 31.00 (4) 20.00 (8) 29.00(m)
touch 23.00 (8) 27.00 (4) 25.00(m) tr 4.00 (8) 12.00 (m) 15.00(4)
tsort 4.00 (8) 9.00 (4) 7.00(m) tty 46.30 (4) 44.44 (m) 24.07(8)
unexpand 3.00 (m) 3.00 (m) 12.00(4) unlink 98.61 (4) 58.33 (8) 98.61(4)
users 100.00 (4) 100.00 (4) 100.00(4) whoami 69.70 (4) 69.70 (4) 36.36(8)

Best(4) 22 14 16 Med(m) 13 15 9
Worst(8) 5 11 15 – – – –

individually. Neglect of such couple effects may impact the performance of LEO. Therefore,
in the future we plan to improve LEO by learning predictive models considering the coupling
effect of compiler optimizations, which can be learned/inferred through source code and
documentation of these optimizations.

Performance on mutation score. Besides line coverage, Table 2 further shows the compar-
ison of mutation scores. Similar with Table 1, in this table, (4), (m), (8) represent the
approach achieves the highest, medium, lowest mutation scores. From this table, similarly,
the number of subjects where LEO achieves the best mutation scores (i.e., 22) is larger
than that of ALL (i.e., 14) and NO (i.e., 16), and the number of subjects where LEO
achieves the worst mutation scores (i.e., 5) is smaller than that of ALL (i.e., 11) and NO
(i.e., 15). This finding further confirms the performance of LEO in enhancing symbolic
execution.

Similarly, to further quantitatively measure its performance, we also calculate the im-
provement rate of LEO in terms of mutation score for each program. It is calculated via
the similar formula – Formula 3, where Mut(LEO) represents the mutation score achieved
by LEO and Mut(ALL(orNO)) represents the mutation score achieved by ALL or NO.
The average mutation-score improvement rate of LEO compared with ALL on all subjects
is 33.88% and that compared with NO is 149.11%, further demonstrating the significant
acceleration performance of LEO in terms of mutation score.

RateMut = Mut(LEO)−Mut(ALL(orNO))
Mut(ALL(orNO)) ∗ 100% (3)

J. Chen et al. 6:17

Table 3 Comparison within various testing time limits under the default training time limit.

Time (minutes) #Best #Worst
LEO ALL NO LEO ALL NO

10 50 26 11 5 13 44
15 51 29 10 5 12 46
20 46 33 8 5 10 47
25 44 38 8 5 9 45
30 50 34 7 6 9 45

Table 4 Statistics analysis on LEO and ALL/NO within various testing time limits under the
default training time limit (α=0.05).

Time (minutes) 10 15 20 25 30

LEO
v.s. ALL

Imp. rate(%) 46.48 39.01 37.80 23.85 18.39
p-value 0.000(∗) 0.001(∗) 0.008(∗) 0.065 0.029(∗)

LEO
v.s. NO

Imp. rate(%) 88.92 86.70 87.26 79.47 89.60
p-value 0.000(∗) 0.000(∗) 0.000(∗) 0.000(∗) 0.000(∗)

4.6.2 RQ2: Impact of Training and Testing Time Limits

Although label collection in LEO needs to fix time limit, in practical usage symbolic execution
may set various time limits (i.e., testing time limit) based on different requirements. It
is quite necessary to investigate whether LEO always works no matter which testing time
limit is set. Therefore, we first explore the performance of LEO through symbolic execution
in different testing time limits by using the predictive models learnt in default 10-minute
training time limit, whose results are shown in Table 3. In this table, the first column
lists various testing time limits and Columns 2-4 and 5-7 represent the number of subjects
where the corresponding approach achieves the best and worst performance, respectively.
From Table 3, the number of subjects where LEO achieves best performance is always much
larger than that of ALL and NO, and the number of subjects where LEO achieves worst
performance is always much smaller than that of ALL and NO. That is, LEO accelerates
symbolic execution regardless of testing time limits.

To learn whether LEO outperforms ALL and NO significantly at various testing time
limits, we further perform statistical analysis on their results. First, we analyze the population
on line coverage achieved by each approach and find that the population of each approach
follows the normal distribution by Kolmogorov-Smirnov test [63], which is the precondition
of the paired sample T test. Then, we perform a paired sample T test (whose significant level
α is 0.05), and the results are shown in Rows 3 and 5 of Table 4, where “*” demonstrates
significant difference between the compared approaches. Moreover, in Table 4, Rows 2
and 4 refer to the average line-average improvement rates on all subjects. From this table,
LEO significantly outperforms ALL in 4/5 testing time limit comparisons with line-coverage
improvement rates ranging from 18.39% to 46.48%, and always significantly outperforms NO
with line-coverage improvement rates ranging from 79.47% to 89.60%.

Besides, from Tables 3 and 4, the smaller the gap between the default training time limit
and the used testing time limit, the better LEO tends to perform compared with ALL and
NO (especially ALL). This observation is as expected due to two possible reasons. First,
given sufficient time, symbolic execution can always achieve high line coverage for a subject.

ECOOP 2018

6:18 Learning to Accelerate Symbolic Execution via Code Transformation

0

20

40

60

80

100

NO ALL LEO−5 LEO−10

Li
ne

 c
ov

er
ag

e(
%

)

(a) 10min testing

0

20

40

60

80

100

NO ALL LEO−5 LEO−10 LEO−20

Li
ne

 c
ov

er
ag

e(
%

)

(b) 20min testing

0

20

40

60

80

100

NO ALL LEO−5 LEO−10 LEO−20 LEO−30

Li
ne

 c
ov

er
ag

e(
%

)

(c) 30min testing

Figure 4 Trend of performance of LEO with different training time limits.

30 minutes may be already long enough for symbolic execution of individual GNU Coreutils
programs, especially the transformed programs using compiler optimizations. Therefore,
symbolic execution will achieve similar (high) line coverage and become saturate eventually,
no matter what the settings of compiler optimization are (especially for LEO and ALL).
Second, based on the theory of machine learning [82], the time limit in training and testing
staying consistent tends to achieve the best effectiveness. In our study, even though the
training time limit of LEO is inconsistent with the testing time limit, LEO still improves the
efficiency of symbolic execution. That said, if LEO sets training time limit longer than 10
minutes, its accelerating effectiveness may be more obvious when being applied to symbolic
execution with these longer testing time limits.

Therefore, we further explore the impact of different training time limits on LEO. More
specifically, we study whether the performance of LEO within these longer testing time limits
becomes better when using longer training time limits. Figure 4 shows the performance
trends of LEO whose training time limit is gradually close to the testing time limit, where
the line in each box represents the median line coverage and LEO−X (i.e., X = 5, 10, 20,
and 30) refers to LEO with X-minute training time limit. Figures 4a, 4b, and 4c present the
trends in 10-minute, 20-minute, and 30-minute testing time limit, respectively. From each
subfigure in Figure 4, with the training time limit being closing to the specific testing time
limit, LEO indeed achieves better performance, confirming our hypothesis. Also, we find that
LEO always performs better than ALL and NO no matter which training time limit is used.

Furthermore, Table 5 further shows more details about the impacts of training time limits.
The comparison results include the number of subjects where LEO with various training
time limits achieve best and worst performance, and the average line-coverage improvement
rates compared with ALL and NO. For each row in this table, reading values from left
to right, we find that with the training time limit being close to the specific testing time
limit, the number of subjects where LEO achieve best performance becomes larger, the
number of subjects where LEO achieves worst performance becomes smaller, and the average
line-coverage improvement rates of LEO mostly becomes better. That is, when the training
time limit in LEO is close to the testing time limit, LEO achieves better performance on
accelerating symbolic execution.

Overall, LEO mostly significantly accelerates symbolic execution in various testing time
limits with our default training time limit. Furthermore, when having more sufficient training
time, LEO tends to perform better for longer testing time limits.

J. Chen et al. 6:19

Table 5 Comparison within various training time limits.

Training time (minutes) 5 10 20 30

Testing-10min

#Best 46 50 — —
#Worst 6 5 — —
Imp. rate(%) (v.s. ALL) 39.31 46.48 — —
Imp. rate(%) (v.s. NO) 79.18 88.92 — —

Testing-20min

#Best 45 46 47 —
#Worst 6 5 5 —
Imp. rate(%) (v.s. ALL) 32.04 37.80 38.23 —
Imp. rate(%) (v.s. NO) 81.66 87.26 87.92 —

Testing-30min

#Best 47 50 51 51
#Worst 8 6 6 4
Imp. rate(%) (v.s. ALL) 15.98 18.39 18.51 18.51
Imp. rate(%) (v.s. NO) 83.51 89.60 89.81 89.69

Table 6 Comparison between LEO and its variants.

Approach LEO v.s.
LEO-Lall LEO-Lno LEO-Fall LEO-Fno

#Win 36 50 7 7
#Lose 17 11 0 2

Avg. Improvement (%) 9.89 16.51 3.89 1.28

4.6.3 RQ3: Contribution of Function/Library Optimization
Table 6 shows the comparison between LEO and its four variants. In this table, the
second/third row presents the number of subjects where LEO achieves higher/lower line
coverage than its variants within 10-minute testing time limit. The last row presents the
average coverage improvement through LEO compared with its variants. Note that we do not
list the number of subjects that the two compared approaches perform equally, i.e., achieve
the same line coverage. From this table, LEO performs much better than its four variants
since the number of subjects LEO performing better is always larger than the number of
subjects it performing worse. Therefore, both function optimization and library optimization
are indispensable.

Furthermore, the difference between “#Win” and “#Lose” in the second and third columns
(i.e., results of LEO without library optimization prediction) is much larger than the following
two columns (i.e., results of LEO without function optimization prediction). Moreover, the
average coverage improvement of LEO compared with LEO without library optimization
prediction (i.e., LEO-Lall and LEO-Lno) is also larger than that of LEO compared with LEO
without function optimization prediction (i.e., LEO-Fall and LEO-Fno). That is, library
optimization is more important than function optimization for LEO in accelerating symbolic
execution. The main reason is that the studied GNU Coreutils programs usually use a large
portion of library code (Section 4.2).

These results tell us another promising direction for further improving LEO. We have
known that library optimization is more important for LEO. Currently, LEO achieves such
great performance through simply taking all the libraries used in the program as a whole by
predicting unified settings on compiler optimizations for them. If library optimization can be

ECOOP 2018

6:20 Learning to Accelerate Symbolic Execution via Code Transformation

0

20

40

60

80

100

ADT BLR MLR LB RF SMO

Li
ne

 c
ov

er
ag

e(
%

)

Figure 5 Comparison on machine learning algorithms.

better dealt with, LEO are quite likely to be improved on accelerating symbolic execution. In
the future, we plan to learn how to further fine-tune compiler optimizations for libraries, e.g.,
splitting libraries into several sets of functions (which is more coarse granularity than each
single function but makes it more efficient), or analyzing open-source repositories such as
Github. Since libraries are widely used in software development, we believe that, like existing
library researches (e.g., building a summary for library code to accelerating the analysis
of client code [80]), researches on better transforming libraries for accelerating symbolic
execution are also worthy and should attract more attentions.

4.6.4 RQ4: Impact of Machine Learning Algorithms
Figure 5 shows the results of LEO with various machine learning algorithms, to investigate
the impact of machine learning algorithms on LEO. Actually, our approach using any of
machine learning algorithms outperforms ALL and NO. From this figure, our approach using
SMO performs slightly better than our approach using other machine learning algorithms,
e.g., the top, median and bottom of SMO in box-plot are all higher than those of all other
algorithms. Therefore, LEO achieves stably good acceleration performance for all studied
machine learning algorithms, and SMO is a better choice.

5 Discussion

In this section, we first discuss the new direction that LEO opens for symbolic execution
acceleration, and then discuss the impact of search heuristics and caching on LEO.

5.1 Promising Direction
Our work demonstrates the significant performance of code transformation on accelerating
symbolic execution, indicating a promising direction for accelerating symbolic execution.
Moreover, learning to tune existing compiler optimizations is a good exploration to accelerate
symbolic execution in this direction. It can be further studied from the following aspects:

First, it is promising to design new code transformations specific to symbolic execution.
As code transformations designed for symbolic execution scarcely exist, and it is very difficult
to design such code transformations due to lack of knowledge in this direction, in this paper
LEO accelerates symbolic execution by borrowing the knowledge of code transformation for
concrete execution. Besides, LEO can be used as a light-weight approach to accelerating
symbolic execution via code transformation. The results of LEO (e.g., the predictive model)

J. Chen et al. 6:21

Table 7 Line coverage achieved by LEO/ALL/NO with random search heuristic and caching
within 10-minute testing time limit.

Sub LEO ALL NO Sub LEO ALL NO

chown 83.87(4) 82.80(m) 82.80(m) cp 48.24(8) 49.05(4) 48.78(m)
csplit 68.62(m) 64.59(8) 75.60(4) date 85.06(4) 80.52(8) 82.47(m)
echo 87.38(4) 79.61(m) 79.61(m) fmt 71.16(m) 66.77(8) 75.86(4)
id 60.94(4) 60.16(m) 60.16(m) ln 82.99(4) 76.80(8) 77.84(m)
ls 53.93(4) 50.34(8) 53.46(m) nice 96.61(4) 94.92(8) 96.61(4)
nl 86.26(4) 83.89(m) 78.20(8) od 86.08(4) 86.08(4) 84.11(8)
paste 92.51(4) 92.51(4) 92.51(4) pr 60.93(m) 60.60(8) 61.15(4)
printenv 100.00(4) 100.00(4) 100.00(4) pwd 20.34(4) 20.34(4) 20.34(4)
runcon 66.99(4) 66.99(4) 66.99(4) stat 63.23(4) 57.38(8) 62.40(m)
touch 76.39(8) 77.08(4) 77.08(4) tr 55.24(m) 55.69(4) 54.32(8)

Best(4) 14 8 9 Med(m) 4 4 8
Worst(8) 2 8 3 – – – –

can also provide knowledge to facilitate the design of code transformation specific to symbolic
execution. That is, LEO can be regarded as a necessary step to code transformation for
symbolic execution. Furthermore, when code transformations for symbolic execution are
available, we can also use LEO to tune these transformations to achieve best acceleration
performance due to the generality of our machine-learning based approach.

Second, code transformation can be combined with other symbolic execution optimization
techniques (e.g., parallel and incremental symbolic execution). Code transformation manipu-
lates the program under test by regarding symbolic execution as a black box, and thus it is
orthogonal to other symbolic execution optimization techniques. For instance, through code
transformation, a program is transformed into an easy-to-analyze target program, and then
various optimized symbolic execution techniques can be applied to this new target program,
making the analysis more easier. That is, LEO can further improve all the existing refined
symbolic execution techniques because of the orthogonality.

5.2 Impact of Random Search Heuristic and Caching
The default KLEE random search heuristic and caching is disabled in our experimental study
because the random search heuristic can bring much randomness and non-determinism and
the caching contents can be different for different strategies, making it hard to evaluate the
effectiveness of LEO. However, as random search heuristic and caching are widely used for
symbolic execution, it is still interesting to know the performance of LEO with random search
heuristic and caching on. Therefore, we conduct a preliminary study on 20 randomly-chosen
GNU Coreutils programs with the similar setting as Section 4, but using random search
heuristic and caching on. Table 7 shows the line coverage achieved by LEO, ALL, and NO
with random search heuristic and caching. In particular, we repeat the experiments 5 times
to reduce the impact of nondeterminism. From this table, with random search heuristic and
caching, the number of subjects where LEO achieves the best performance (i.e., 14) is still
larger than that of ALL (i.e., 8) and NO (i.e., 9), and the number of subjects where LEO
achieves the worst performance (i.e., 2) is also still smaller than that of ALL (i.e., 8) and NO
(i.e., 3). Furthermore, most subjects keep the same rankings with the results in Table 1. For
example, LEO always performs the best for chown no matter whether using random search
heuristic and caching. In particular, the main difference between using and not using random

ECOOP 2018

6:22 Learning to Accelerate Symbolic Execution via Code Transformation

search heuristic and caching is that when using them, the difference of LEO, ALL, and NO
becomes smaller than that when not using them, no matter which technique performs the
best. This is because random search heuristic and caching make symbolic execution more
efficient and thus LEO, ALL, and NO achieve the similar (high) line coverage under the
default 10-minute testing time limit. Therefore, the setting with random search heuristic
and caching has the orthogonal impact on accelerating symbolic execution with LEO. That
is, it further confirms that LEO, which optimizes the code under test, accelerates symbolic
execution from an orthogonal dimension with techniques optimizing symbolic execution itself.

6 Related Work

In this section, we present the related work on both the symbolic execution and code
transformation areas.

6.1 Symbolic Execution

Symbolic execution [29, 52, 17], is a systematic technique for generating program test inputs
based on exploring all possible program paths, which has been recognized as one of the
most costly testing methodologies. To improve the efficiency and effectiveness of symbolic
execution, a huge amount of research effort [74, 81, 15, 28, 45, 50, 43, 70, 71, 34, 65, 58, 68, 79,
67, 83, 13, 44, 41, 85, 49, 11, 75, 3, 73, 67, 39, 59, 10, 35, 72] has been dedicated to the area,
and more details on symbolic execution can be found in a recent survey [18]. To reduce the
cost of symbolic execution, variants of symbolic execution have been proposed, e.g., concolic
execution [42, 74] and execution-based testing [15, 16], which combine concrete execution
with symbolic execution. Some researchers also proposed various techniques to accelerate
the path exploration in symbolic execution. One specific approach is distributed symbolic
execution where the path exploration is distributed among different workers [78, 77]. Since
real-world programs usually consist of various sub-modules, a number of techniques have also
been proposed to use the compositional approach to speed up symbolic execution [13, 44, 43].
Furthermore, Researchers have also proposed techniques to prune the search space of symbolic
execution [79, 88].

Different from the above previous work on symbolic execution, our work accelerates
symbolic execution via another orthogonal dimension – manipulating the programs under test
via code transformation. Here we discuss closely related work applying code transformation to
symbolic execution. Anand et al. [4] applied code transformation based on type-dependence
analysis to help users identify problematic cases for symbolic execution and then the users
can manually solve the problem. Dong et al. [33] showed that compiler optimizations could
be harmful for symbolic execution via empirical study. Cadar [14] pointed out the potential
direction of transforming program under test for better symbolic execution. Perry et al. [66]
proposed code transformation rules specific to array operations to simplify constraints
involving arrays for symbolic execution. Wagner et al. [84] and Converse et al. [31] mainly
focused on reducing path exploration by simplifying program control-flow, but the generated
tests may fail to cover the original program paths. In contrast, our work provides a general
and fully automated machine-learning-based solution for accelerating symbolic execution
based on all possible transformations.

J. Chen et al. 6:23

6.2 Code Transformation
Compiler optimization is a typical and mature approach of code transformation [2, 32].
Besides, testability transformation [46], another code transformation approach, has been
proposed to speed up search-based test generation [8, 53, 7], but cannot be directly applied
to symbolic execution. Here we mainly review the work on compiler optimization [2, 32,
38, 19, 47, 1, 64, 9] since our work accelerates symbolic execution through this type of
code transformation. Traditional work on compiler optimization focused on defining new
optimizations and exploring their impacts on program concrete execution [2], whereas recently
researchers focused on choosing the most suitable set of optimizations for general or specific
target programs on concrete execution. More specifically, iterative compilation [32, 38,
19], a search-based approach that explores the compiler optimization space by iteratively
compiling for single optimization objective (e.g., performance or code size) or multiple
objectives [47]. Different from previous work searching for optimal compiler optimizations
for program concrete execution, this paper presents the first work on predicting optimal
compiler optimizations for symbolic execution based on machine learning.

7 Conclusion

Compiler optimization is a typical code transformation approach, which is firstly pro-
posed to accelerate program concrete execution. In this paper, we present LEO, the first
machine-learning-based approach to accelerating symbolic execution through tuning compiler
optimizations. More specifically, LEO predicts compiler optimizations for source-code func-
tions and libraries separately and applies the learnt optimization settings by program-splitter
and local-optimizer. From our empirical study, compared with the default turning on/off all
compiler optimizations in KLEE, LEO achieves the best acceleration performance in 50/68
GNU Coreutils programs and its average improvement rate on all programs is 46.48%/88.92%
in terms of line coverage, with the default training/testing time limit. Furthermore, LEO
consistently outperforms KLEE default settings with various training/testing time limits,
and tends to perform the best when training and testing time limits are close.

References
1 F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson,

M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative optimization.
In CGO, pages 295–305, 2006.

2 Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles, Techniques. Pear-
son Education, Inc., 1986.

3 Aws Albarghouthi, Arie Gurfinkel, Ou Wei, and Marsha Chechik. Abstract analysis of
symbolic executions. In CAV, pages 495–510, 2010.

4 Saswat Anand, Alessandro Orso, and Mary Jean Harrold. Type-dependence analysis and
program transformation for symbolic execution. In TACAS, pages 117–133, 2007.

5 J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? In ICSE, pages 402–411, 2005.

6 Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank based
fault localization approach using likely invariants. In ISSTA, pages 177–188, 2016.

7 André Baresel, David Binkley, Mark Harman, and Bogdan Korel. Evolutionary testing in
the presence of loop-assigned flags: A testability transformation approach. In ISSTA, pages
108–118, 2004.

ECOOP 2018

6:24 Learning to Accelerate Symbolic Execution via Code Transformation

8 David W. Binkley, Mark Harman, and Kiran Lakhotia. Flagremover: A testability trans-
formation for transforming loop-assigned flags. TOSEM, 20(3):12:1–12:33, 2011.

9 François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou. Iterative
compilation in a non-linear optimisation space. In PFDC, 1998.

10 Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Enhancing symbolic execution with
built-in term rewriting and constrained lazy initialization. In FSE, pages 411–421, 2013.

11 Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Symbolic execution of programs with
heap inputs. In FSE, pages 602–613, 2015.

12 Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
13 William R Bush, Jonathan D Pincus, and David J Sielaff. A static analyzer for finding

dynamic programming errors. SPE, 30(7):775–802, 2000.
14 Cristian Cadar. Targeted program transformations for symbolic execution. In FSE, pages

906–909, 2015.
15 Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI, pages 209–224,
2008.

16 Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
Exe: Automatically generating inputs of death. TISSEC, 12(2):10, 2008.

17 Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik Sen,
Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing in practice:
preliminary assessment. In ICSE, pages 1066–1071, 2011.

18 Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades
later. CACM, 56(2):82–90, 2013.

19 John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and
Olivier Temam. Rapidly selecting good compiler optimizations using performance counters.
In CGO, pages 185–197, 2007.

20 Gavin C Cawley and Nicola LC Talbot. Efficient leave-one-out cross-validation of kernel
fisher discriminant classifiers. Pattern Recognition, 36(11):2585–2592, 2003.

21 Nitesh V Chawla. Data mining for imbalanced datasets: An overview. In Data Min. Knowl.
Discov., pages 853–867. Springer, 2005.

22 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. JAIR, pages 321–357, 2002.

23 Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: Special issue on
learning from imbalanced data sets. SIGKDD Explor, 6(1):1–6, 2004.

24 Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie. Learning
to prioritize test programs for compiler testing. In ICSE, pages 700–711, 2017.

25 Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, and Bing Xie. How do
assertions impact coverage-based test-suite reduction? In ICST, pages 418–423, 2017.

26 Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and Hong Mei.
Supporting oracle construction via static analysis. In ASE, pages 178–189, 2016.

27 Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing
Xie. An empirical comparison of compiler testing techniques. In ICSE, pages 180–190,
2016.

28 Maria Christakis, Peter Müller, and Valentin Wüstholz. Guiding dynamic symbolic execu-
tion toward unverified program executions. In ICSE, pages 144–155, 2016.

29 Lori A. Clarke. A system to generate test data and symbolically execute programs. TSE,
SE-2(3):215–222, 1976. doi:10.1109/TSE.1976.233817.

30 Hayes Converse, Oswaldo Olivo, and Sarfraz Khurshid. Non-semantics-preserving trans-
formations for high-coverage test generation using symbolic execution. In ICST, pages
241–252, 2017.

http://dx.doi.org/10.1109/TSE.1976.233817

J. Chen et al. 6:25

31 Hayes Elliott Converse, Oswaldo Olivo, and Sarfraz Khurshid. Non-semantics-preserving
transformations for higher-coverage test generation using symbolic execution. PhD thesis,
The University of Texas at Austin, 2017.

32 Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steve Reeves, Devika Subramanian,
Linda Torczon, and Todd Waterman. Exploring the structure of the space of compilation
sequences using randomized search algorithms. J Supercomput, 36(2):135–151, 2006.

33 Shiyu Dong, Oswaldo Olivo, Lingming Zhang, and Sarfraz Khurshid. Studying the influence
of standard compiler optimizations on symbolic execution. In ISSRE, pages 205–215, 2015.

34 Ikpeme Erete and Alessandro Orso. Optimizing constraint solving to better support sym-
bolic execution. In ICSTW, pages 310–315, 2011.

35 Antonio Filieri, Corina S. Păsăreanu, Willem Visser, and Jaco Geldenhuys. Statistical
symbolic execution with informed sampling. In FSE, pages 437–448, 2014.

36 Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In ICML,
pages 124–133, 1999.

37 Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat.,
28(2):337–407, 2000.

38 Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois
Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christopher K. I. Wil-
liams, and Michael O’Boyle. Milepost gcc: Machine learning enabled self-tuning compiler.
IJPP, 39(3):296–327, 2011.

39 Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution.
In ISSTA, pages 166–176, 2012.

40 Alexander Genkin, David D Lewis, and David Madigan. Large-scale bayesian logistic
regression for text categorization. Technometrics, 49(3):291–304, 2007.

41 Patrice Godefroid. Compositional dynamic test generation. In POPL, pages 47–54, 2007.
42 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random

testing. In PLDI, pages 213–223, 2005.
43 Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. Statically validating

must summaries for incremental compositional dynamic test generation. In Proceedings
of the 18th International Conference on Static Analysis, SAS’11, pages 112–128, Berlin,
Heidelberg, 2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=2041552.
2041564.

44 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Composi-
tional may-must program analysis: Unleashing the power of alternation. In POPL, pages
43–56, 2010.

45 Shengjian Guo, Markus Kusano, and Chao Wang. Conc-ise: Incremental symbolic execu-
tion of concurrent software. In ASE, pages 531–542, 2016.

46 Mark Harman, André Baresel, David Binkley, Robert Hierons, Lin Hu, Bogdan Korel, Phil
McMinn, and Marc Roper. Testability transformation–program transformation to improve
testability. In Formal methods and testing, pages 320–344. Springer, 2008.

47 Kenneth Hoste and Lieven Eeckhout. Cole: Compiler optimization level exploration. In
CGO, pages 165–174, 2008.

48 Y Kumar Jain and Santosh Kumar Bhandare. Min max normalization based data perturb-
ation method for privacy protection. IJRCCT, 2(8):45–50, 2011.

49 Konrad Jamrozik, Gordon Fraser, Nikolai Tillmann, and Jonathan De Halleux. Augmented
dynamic symbolic execution. In ASE, pages 254–257, 2012.

ECOOP 2018

http://dl.acm.org/citation.cfm?id=2041552.2041564
http://dl.acm.org/citation.cfm?id=2041552.2041564

6:26 Learning to Accelerate Symbolic Execution via Code Transformation

50 Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S. Foster, and Armando
Solar-Lezama. Synthesizing framework models for symbolic execution. In ICSE, pages
156–167, 2016.

51 René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon
Fraser. Are mutants a valid substitute for real faults in software testing? In FSE, pages
654–665, 2014.

52 James C King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976.
53 Bogdan Korel, Mark Harman, S. Chung, P. Apirukvorapinit, R. Gupta, and Q. Zhang.

Data dependence based testability transformation in automated test generation. In ISSRE,
pages 245–254, 2005.

54 Tomasz Kuchta, Cristian Cadar, Miguel Castro, and Manuel Costa. Docovery: Toward
generic automatic document recovery. In ASE, pages 563–574, 2014.

55 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75–86, 2004.

56 Saskia Le Cessie and Johannes C Van Houwelingen. Ridge estimators in logistic regression.
Applied statistics, pages 191–201, 1992.

57 You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering symbolic execution to
less traveled paths. In OOPSLA, pages 19–32, 2013.

58 Daniel Liew, Cristian Cadar, and Alastair F. Donaldson. Symbooglix: A symbolic execution
engine for boogie programs. In ICST, 2016.

59 Kasper Luckow, Corina S. Păsăreanu, Matthew B. Dwyer, Antonio Filieri, and Willem Vis-
ser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In ASE, pages 575–586, 2014.

60 P. D. Marinescu and Cristian Cadar. KATCH: High-coverage testing of software patches.
In FSE, pages 235–245, 2013.

61 Paul Dan Marinescu and Cristian Cadar. High-coverage symbolic patch testing. In SPIN,
pages 7–21, 2012.

62 Paul Dan Marinescu and Cristian Cadar. Make test-zesti: A symbolic execution solution
for improving regression testing. In ICSE, pages 716–726, 2012.

63 Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. JASA, 46(253):68–78,
1951.

64 Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler optimiz-
ations for automatic performance tuning. In CGO, pages 319–332, 2006.

65 Corina S Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic execution of java
bytecode. In ASE, pages 179–180, 2010.

66 David M Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. Accelerating array
constraints in symbolic execution. In ISSTA, pages 68–78, 2017.

67 Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu. Differ-
ential symbolic execution. In FSE, pages 226–237, 2008.

68 Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incremental
symbolic execution. In PLDI, pages 504–515, 2011.

69 John Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14, Microsoft Research, April 1998.

70 Rui Qiu, Sarfraz Khurshid, Corina S Păsăreanu, Junye Wen, and Guowei Yang. Using test
ranges to improve symbolic execution. In NFM, pages 416–434. Springer, 2018.

71 Rui Qiu, Corina S Păsăreanu, and Sarfraz Khurshid. Certified symbolic execution. In
ATVA, pages 495–511. Springer, 2016.

72 Rui Qiu, Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. Compositional symbolic
execution with memoized replay. In ICSE, pages 632–642, 2015.

J. Chen et al. 6:27

73 Eric F. Rizzi, Mathew B. Dwyer, and Sebastian Elbaum. Safely reducing the cost of unit
level symbolic execution through read/write analysis. SEN, 39(1):1–5, 2014.

74 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C.
In FSE, pages 263–272, 2005.

75 Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise: Multi-path symbolic
execution using value summaries. In FSE, pages 842–853, 2015.

76 Junaid Haroon Siddiqui and Sarfraz Khurshid. ParSym: Parallel symbolic execution. In
ICSTE, pages V1–405–V1–409, 2010.

77 Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic execution using ranged
analysis. In OOPSLA, volume 47, pages 523–536, 2012.

78 Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for structural test genera-
tion. In ISSTA, pages 183–194, 2010.

79 Kunal Taneja, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. express: guided path
exploration for efficient regression test generation. In ISSTA, pages 1–11, 2011.

80 Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. Summary-
based context-sensitive data-dependence analysis in presence of callbacks. In POPL,
volume 50, pages 83–95, 2015.

81 Nikolai Tillmann and Jonathan De Halleux. Pex–white box test generation for .net. In
TAP, pages 134–153. Springer, 2008.

82 Lisa Torrey and Jude Shavlik. Transfer learning. Handbook of Research on Machine Learn-
ing Applications and Trends: Algorithms, Methods, and Techniques, 1:242, 2009.

83 Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. Green: Reducing, reusing and
recycling constraints in program analysis. In FSE, pages 58:1–58:11, 2012.

84 Jonas Wagner, Volodymyr Kuznetsov, and George Candea. -overify: Optimizing programs
for fast verification. In HotOS XIV. EPFL-CONF-186012, 2013.

85 Tao Wang, Abhik Roychoudhury, Roland HC Yap, and Shishir C Choudhary. Symbolic
execution of behavioral requirements. In PADL, pages 178–192. Springer, 2004.

86 Xiaoyin Wang, Lingming Zhang, and Philip Tanofsky. Experience report: How is dynamic
symbolic execution different from manual testing? a study on klee. In ISSTA, pages 199–
210, 2015.

87 Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. Dase: Document-assisted
symbolic execution for improving automated software testing. In ICSE, pages 620–631,
2015.

88 Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. Memoized symbolic execution.
In ISSTA, pages 144–154, 2012.

ECOOP 2018

Type Regression Testing to Detect
Breaking Changes in Node.js Libraries
Gianluca Mezzetti
Aarhus University, Denmark
mezzetti@gmail.com

Anders Møller
Aarhus University, Denmark
amoeller@cs.au.dk

Martin Toldam Torp
Aarhus University, Denmark
torp@cs.au.dk

Abstract
The npm repository contains JavaScript libraries that are used by millions of software developers.
Its semantic versioning system relies on the ability to distinguish between breaking and non-
breaking changes when libraries are updated. However, the dynamic nature of JavaScript often
causes unintended breaking changes to be detected too late, which undermines the robustness of
the applications.

We present a novel technique, type regression testing, to automatically determine whether an
update of a library implementation affects the types of its public interface, according to how the
library is being used by other npm packages. By leveraging available test suites of clients, type
regression testing uses a dynamic analysis to learn models of the library interface. Comparing
the models before and after an update effectively amplifies the existing tests by revealing changes
that may affect the clients.

Experimental results on 12 widely used libraries show that the technique can identify type-
related breaking changes with high accuracy. It fully automatically classifies at least 90% of the
updates correctly as either major or as minor or patch, and it detects 26 breaking changes among
the minor and patch updates.

2012 ACM Subject Classification Software and its engineering → Software libraries and repos-
itories

Keywords and phrases JavaScript, semantic versioning, dynamic analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.7

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.8

Funding This work was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 647544).

1 Introduction

The world’s largest software repository, npm,1 hosts 475 000 Node.js JavaScript packages as
of January 2018 and is used by millions of software developers. Most packages are libraries,

1 https://www.npmjs.com/

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mezzetti@gmail.com
mailto:amoeller@cs.au.dk
mailto:torp@cs.au.dk
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.7
http://dx.doi.org/10.4230/DARTS.4.3.8
https://www.npmjs.com/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

and many are frequently updated, so versioning is essential to ensure that the components
of a software system are compatible and up-to-date. The npm system encourages the use
of semantic versioning [25], which distinguishes between patch, minor and major version
updates: patch and minor are incremental updates that are not supposed to break any library
client, whereas major version updates do not have any restrictions.

Unfortunately, the distinction between breaking and non-breaking changes is not always
clear, and it may be difficult for the library developer to decide how to increment version
numbers when changes are released. The dynamic nature of the JavaScript ecosystem often
causes library developers to erroneously believe that their updates cannot break any clients.
A prominent example was the supposedly minor update of a package called debug from
version 2.3.3 to 2.4.0 on December 14 2016. Due to a simple spelling error, all clients that
tried to load the new version crashed immediately.2 The bug was fixed within an hour, but
debug was downloaded more than 27 million times in December 2016 alone, which means
that it may still have affected thousands of installations.

To make matters worse, Node.js library interfaces are rarely specified precisely, so library
developers and their clients may have different views on which aspects of the library are
supposed to be internal to the library and which aspects the client code may rely on. As
an example, the developers of the popular package React from version 15.3.2 to 15.4.0
reorganized the module react/lib/ReactMount that was intended for internal use only, but
numerous other packages used that module and therefore broke.3

In statically typed programming languages like Java, even without versioning systems,
the type system is helpful for detecting many situations where an upgrade of a library causes
an application to break. For example, if the type signature of a library method has changed,
the application code no longer compiles. Using access modifiers enables library developers to
encapsulate private parts of the library, so that internal data representations and operations
can be changed without affecting client code. Additionally, annotations about deprecated
functionality signal to the application developer that attention is needed. Java’s binary
compatibility conditions [13, Chapter 13] and tools like JAPICC [23] make it possible to
detect type-related breaking changes in libraries even without involving the client code. In
the world of JavaScript and npm, there is no static type system or compilation to binary
code, so incompatibility issues are often not detected until runtime.

We distinguish between two main categories of breaking changes. Type-related breaking
changes are modifications of a library that affect the presence or types of functions or other
properties in the library interface. Such changes include renaming a public function, moving
it to another location, or changing its type signature. Type-related breaking changes should
evidently always be reflected as major version updates. As the library interface is partly
defined by the library initialization code, initialization errors like the one in the debug
example are generally categorized as type-related breaking changes. Semantic breaking
changes are modifications that are not type-related but affect the library functionality in
other ways that may cause clients to malfunction. This category is more blurry, as it depends
on a semantic contract between the library and the clients. The type checker in Java detects
type-related breaking changes, but not semantic ones. Our goal is to provide a mechanism
that can similarly detect type-related breaking changes for Node.js JavaScript libraries,
without requiring type annotations.

2 https://github.com/visionmedia/debug/issues/347
3 https://github.com/supnate/rekit/issues/16

https://github.com/visionmedia/debug/issues/347
https://github.com/supnate/rekit/issues/16

G. Mezzetti, A. Møller, and M.T. Torp 7:3

In this paper, we first present a preliminary study of real-world breaking changes in
the npm repository. The study shows that breaking changes do occur at patch and minor
updates, and that a significant portion of the breakage is type-related. Next, we propose a
technique, called type regression testing, to automatically detect such type-related breaking
changes, which we call type regressions, thereby gaining some of the benefits that are known
from statically typed languages.

Our type regression testing technique is based on a novel dynamic type analysis that
automatically learns relevant information about the API of a given library. The basic idea
is quite simple: The npm repository makes it possible to identify packages that directly or
transitively depend on the library of interest. (For example, the lodash library has more
than 50 000 direct dependents.) By exercising the test suites for those packages, we can
monitor the dynamic execution and construct a model of the library API. When the library
implementation has been updated and a new version is about to be released, the test suites
are run again, this time with the updated library to infer a new model of the new API.
We then compare the new and the old API models using certain rules to identify breaking
changes in the update. Importantly, we do not use the library’s own test suite, but the test
suites of the clients, because they are more likely to provide representative executions and
only use the public parts of its API. Type regression testing amplifies the existing test suites:
even if the tests do not fail, it can identify type-related changes in the interactions between
the clients and the library.

Making this idea work in practice requires a suitable notion of models of library APIs,
together with a mechanism for comparing models before and after the library implementations
have been updated. The API modeling and the comparison mechanism need to be aligned
with how JavaScript library developers usually organize their code and try to adhere to the
semantic versioning guidelines.

In summary, the contributions of this paper are as follows.

We first present a preliminary experimental study on the prevalence and the kinds of
breaking changes in the npm repository. We find that at least 5% of all packages have
been affected by a breaking change in a minor or patch update of a dependency, and that
a majority of these breaking changes are due to changes in the public API of the package.

We propose type regression testing as a mechanism for leveraging the preexisting test
suites of npm packages that depend on a JavaScript library of interest, to learn models
of the library API and detect likely breaking changes.

At the core of the type regression testing mechanism, library APIs are modeled using
dynamic access paths and types that provide information about how the library and
the clients interact. We define precisely how these models are obtained and compared.
The possible breaking changes are identified by type regressions: changes in the type
signatures of the library APIs that are incompatible with the mutual expectations of
client and library developers.

We report results from an experimental evaluation of the approach on 12 of the most
depended upon libraries in the npm system, demonstrating that it can detect type-related
breaking changes with high accuracy. Our implementation, named NoRegrets, classifies
at least 90% of the updates correctly as either major or as minor or patch, and it also
successfully identifies 26 breaking changes among the minor and patch updates. Moreover,
in cases where a likely breaking change is detected, the warning message produced by the
tool pinpoints the involved part of the library, which aids diagnosis.

ECOOP 2018

7:4 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

2 A Preliminary Experimental Study of Breaking Changes

To understand how frequently library updates break client applications, and what the typical
causes of the breaking changes are, we conducted a large experiment on npm package updates.
For this experiment, we exploited the fact that many clients have test suites and that if a
test fails after updating a dependency, then the failure indicates that the update contains a
breaking change.

To serve as clients, a sample consisting of 4616 packages with test suites was randomly
picked from npm. Most of these packages are intended to be used as libraries, but they still
depend upon other libraries and have test suites as required for this study.

All npm packages include a configuration file called package.json where the package
dependencies are specified. Each dependency specification consists of a package name and a
versioning constraint. This constraint specifies the range of versions which the dependency
must lie within. The npm system will always install the newest version of the dependency
satisfying this versioning constraint. According to the semantic versioning guidelines, clients
should use constraints that permit all minor and patch updates but no major updates. Thereby
the client will automatically receive the bug fixes and other improvements introduced in
minor and patch updates, but hopefully never break since breaking changes are only allowed
in major updates.

For each dependency specified in the package.json file, we ran the test suites using each
version of the dependency going from the oldest to the newest version satisfying the semantic
versioning constraint. We removed versions which, although satisfying the semantic versioning
constraint, would never have been installed by npm in practice since a newer version was
already available at the point where the constraint was created. An update was flagged
as potentially breaking whenever the test suite of the client went from all tests passing to
at least one test failing after applying the update. We did not count at the granularity of
individual test cases, since it is technically difficult to do because of nested and parameterized
tests.

This amounts to 75 913 executions of test suites of the 4616 packages. Of these, 430 fail,
meaning that breaking changes are detected. Whenever we had two versions of the same
client appearing among the failures, we discarded the oldest one of them to avoid duplicates.
We also discarded major updates and updates containing a pre-release identifier. A pre-
release identifier is a hyphen followed by a tag added to the end of a version number used to
indicate, for example, release candidates and beta versions. Updates containing a pre-release
identifier should be treated as a major updates according to the semantic versioning principle.
Furthermore, we chose to exclude 94 failures that could not be reproduced consistently due to
flaky tests in the clients. With these filters, the total number of failures was reduced to 263
affecting 259 different clients. None of these 263 breaking changes should have appeared if
semantic version had worked as intended and the library developers and the client developers
had a common agreement on what is the public interface of the libraries!

Thus, at least 5% of the npm packages have experienced a breaking change due to a
non-major dependency update. The actual number is likely much higher, because not many
packages have test suites that are thorough enough to catch all breaking changes in libraries
they depend on.

Next, we manually categorized the test failures as either type-related, semantic, or unknown,
the latter for the cases where we could not determine the cause within 30 minutes. We
consider any update that modifies the presence or types of modules, properties, function
arguments, and function return values as type-related. Specifically, an update that relocates

G. Mezzetti, A. Møller, and M.T. Torp 7:5

a module to a different path typically causes attempts to load the module using the old
path to fail. Any test failure that is not type-related is considered semantic. Thus, the
type-related test failures roughly correspond to the kinds of errors that could be caught
statically if using a language like Java with type checking instead of JavaScript.

As result we found that among the 263 failures, 176 were type-related, 37 were semantic,
and the remaining 50 were marked as unknown. Some type-related breaking changes are
easy to detect. In particular, sometimes simply attempting to load a library module fails,
because it has been relocated or because its initialization code consistently crashes after an
update. An example of the latter is the bug in the debug package mentioned in Section 1,
which alone accounts for 101 of the failures. Even if we only count the occurrence of this
bug once, we still find that at least 46% of the breaking changes are type-related.

This preliminary study motivates the need for tool support to detect breaking changes in
Node.js libraries before the developers publish new versions of their libraries. It also justifies
focusing on breaking changes that are type-related, which are more amenable to automated
detection than the semantic ones.

To our knowledge the only similar tool is dont-break,4 which follows essentially the
approach we have used in our preliminary study: it detects breaking changes simply by
running the test suites of library clients each time a new version of the library is about to be
released. Although this is a simple approach, it has an important limitation: The library
developer presumably has no knowledge of the clients, let alone their tests, so it can be
difficult for him or her to identify the relevant parts of the library whenever a client test fails.
In contrast, type regression testing precisely pinpoints the involved changes made at the
library interface, allowing the library developer to decide whether or not the breaking change
is intended, without having any knowledge of the client code. Additionally, type regression
testing can detect breaking changes that do not necessarily surface as failing client tests and
can therefore also be viewed as a test amplification mechanism.

3 Motivating Example

Consider the following subtle change of the isIterateeCall method in the lodash library when
upgraded from 3.2.0 to 3.3.0—a minor update that should not introduce breaking changes.

1 // lodash 3.2.0
2 function isIterateeCall(value, index, object) {
3
4 return prereq && object[index] === value;
5 }

6 // lodash 3.3.0
7 function isIterateeCall(value, index, object) {
8
9 var other = object[index];

10 return prereq && (value === value ? value === other : other !== other);
11 }

The variable prereq is computed in the same way in both versions. The important difference
is that the object[index] property lookup is only executed when prereq is true in version
3.2.0, due to short-circuiting of &&, whereas it is always executed in version 3.3.0. If index is
an object, then the toString method is implicitly called on index to coerce it to a string such

4 https://www.npmjs.com/package/dont-break

ECOOP 2018

https://www.npmjs.com/package/dont-break

7:6 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

that it can be used in the property lookup. However, it is possible that there is no toString

method on index if, for example, the index value was created using Object.create(null).
Consequently, a type error exception will be thrown when the coercion is attempted.

The isIterateeCall method is not directly visible to the client code, but it is called
internally by the public merge method that forwards one of its arguments as the index

parameter of isIterateeCall. The merge method takes a target object and a variadic number
of source objects and merges the properties of the source objects into the target object. The
artificial library client in lines 13–18 witnesses the problem.

12 // client
13 var l = require(’lodash’);
14 var o1 = {};
15 var o2 = {};
16 var oBad = Object.create(null);
17 var o4 = {};
18 l.merge(o1, o2, oBad, o4); // Type error in lodash 3.3.0

The oBad object is passed as the index parameter to isIterateeCall, and a runtime type error
appears when using lodash 3.3.0 but not when using the older version. The problem has been
confirmed by the developers who fixed it in lodash 3.3.1 as mentioned in the changelog.5

Type regression testing automatically finds this problem as follows. First, it builds a
model of the library API by observing the executions of the tests of clients, for both the
old and the new library version. Second, it compares the two models to detect breaking
changes. This particular breaking change is detected by observing that the lodash 3.3.0
model, unlike the one generated by version 3.2.0, requires the toString method to be present
on the third argument of merge. This expectation is breaking since the third parameter is in
a contravariant position and its type is more specific than before the update.

It is important to notice that type regression testing leverages and amplifies preexisting
test suites. For this lodash bug, the breaking change is detected even though the execution
of merge does not trigger the type error in any of the client tests.

Furthermore, even if one of the client tests had triggered the type error, that would only
produce a stack trace indicating a problem in isIterateeCall, and manual effort would then
be required to be connect this type error to the third argument of merge. In contrast, type
regression testing identifies exactly the toString property on the third argument of merge as
the source of the problem.

4 Overview

Type regression testing targets a specific use case: a library developer is ready to release a
new library version and wants to know whether the new implementation introduces breaking
changes. The workflow of type regression testing comprises two phases.

(1) Public API Discovery. In the first phase, all the packages with tests that depend on the
old library version are retrieved from npm. The type regression in the motivating example
can be spotted by using any client whose tests cause the invocation of the lodash merge

function, for example strong-params at version 0.7.0.6 Then, a public API model of both
the old and the new library version is built using an instrumented interpreter that runs the

5 https://github.com/lodash/lodash/wiki/Changelog#v331
6 https://github.com/ssowonny/strong-params

https://github.com/lodash/lodash/wiki/Changelog#v331
https://github.com/ssowonny/strong-params

G. Mezzetti, A. Møller, and M.T. Torp 7:7

tests of all the collected dependents. A model π, which we formally define in Section 5, is a
map from dynamic access paths to types.

Intuitively, a dynamic access path is an abstraction of the sequence of actions that are
performed to obtain a value. Types are an abstraction over values that is more specific
than the ordinary notion of runtime types in JavaScript. For example, the path p =
require(lodash).merge(3)4.toString exhibits the regression in the example from Section 3. This
path denotes any value obtained by accessing the toString property of the third argument
passed to the merge function when merge is invoked with four arguments. No type is associated
with this path in the execution of the tests of strong-params when using lodash 3.2.0, but a
function is observed when switching to lodash 3.3.0. In the model π of the public API of
lodash 3.2.0, we have π(p) = ◦, denoting the fact that no value has been observed for p. In the
model π′ of the public API of lodash 3.3.0, we instead have π′(p) = function ∧ object, which
means that the value is an instance of function and object (formally π′(p) is an intersection
type). This phase is fully detailed in Section 5.

(2) Type Regression Detection. In the second phase, we compare the models π and π′

obtained from the old and the new library version to report type regressions, which are
indications of type-related breaking changes. Type regressions are detected by comparing
π(p) and π′(p) for every dynamic access path p, using a notion of subtyping, which we
define in Section 5.2. In the example above, the type regression is reported because the type
function ∧ object is not a supertype of ◦. This phase is fully detailed in Section 6.

5 Public API Discovery

The workflow described in Section 3 requires two models of the public API to be built, one
for the old and one for the new library version. It is important that the API models only
capture the publicly available API, so that the comparison is not susceptible to changes in
the private parts of the library where modifications are always allowed.

In statically typed languages, like Java, the package structure, class hierarchy, and access
modifiers statically identify the public API of a library. In a dynamically typed language,
such as JavaScript, a library module is initialized by the execution of the library module itself.
Specifically, in Node.js, the library code for initialization of a library foo is executed the first
time require("foo") is called. The object stored by the library code in the module.exports

variable is the one returned by the call to require. However, this object only exposes the
immediately accessible part of the public API, and the public API often contains much more
functionality. For example, all methods of router objects in the express library only become
accessible after invoking Router().7 As this example illustrates, it is generally difficult to
statically identify the public API, which is why we resort to dynamic analysis.

The model of the public API of a library is a map π : Path→ Type assigning a type
t ∈ Type to each dynamic access path p ∈ Path. We now define dynamic access paths and
types, and then we describe the discovery mechanism that builds π.

5.1 Dynamic Access Paths
Dynamic access paths, hereafter also shortened to paths, are used in the model to refer to
values that are part of the interface between the client and the library. This mechanism

7 http://expressjs.com

ECOOP 2018

http://expressjs.com

7:8 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

ignores the syntactical structure of the library code and only considers how the library is
being accessed dynamically by the client code.

I Definition 1 (Dynamic Access Path). A dynamic access path p ∈ Path is a possibly empty
sequence of actions α that abstractly represents a set of values, as defined by the grammar
below. We indicate integers by the letters i, j and strings (library names and property names)
by the letter n.

p ::= ε | require(n) | pα p ∈ Path
α ::= .n | ()i | new()i | (j)i | .∗

At runtime, values are associated with paths, and conversely, each path represents a set of
values, as defined by recursion on the structure of paths:

ε: the empty path ε denotes any value that is not used for modeling the library API.
require(n): the objects returned by the require function when passing the library name n
as argument.
p.n: the values obtained when accessing a property of name n of an object denoted by
the path p.
p()i: the values returned by calling a function denoted by the path p when the function
is called with i arguments.
pnew()i: the values returned by calling a function denoted by the path p as a constructor
with i arguments (i.e., using the new keyword in the call).
p(j)i: the values of the j’th argument passed to a function that is denoted by the path p
and called with i arguments (similarly, pnew(j)i represents values of constructor arguments).
p.∗: the elements of the arrays denoted by p.

I Example 2. The following listing shows a client that uses a hypothetical library twice,
which has a single method twice that takes an object and returns an object with the property
res that contains the doubled value of the x property of the argument object.

19 // Twice library
20 module.exports.twice = function(t) {
21 return { res : t.x * 2 };
22 }

23 // Client
24 var m = require("twice");
25 var a = {x: 42, y: 43};
26 var b = m.twice(a);
27 a.y + b.res;

Consider which parts of the twice library are part of its public API. The value of the property
b.res must be part of the public API, because b is coming from the library and res is accessed
by the client on line 27. Intuitively, the client expects the res property to be available on the
return value of the call on line 26. This value is given the path require(twice).f()1.res. Likewise,
the value of the property a.x is also part of the public API with the path require(twice).f(1)1.x.
The twice method reads the x property, so it should be present on the argument passed
to twice. The value of the property a.y, instead, is not part of the library API since it is
never read by the twice method (even though a is passed to twice). We describe in detail
our mechanism for distinguishing between public and private parts of the API in Section 5.3.

G. Mezzetti, A. Møller, and M.T. Torp 7:9

Note that a value can be given different paths during a single program execution, and
multiple values can be denoted by the same path. We include the number of arguments
in the function invocation action, to distinguish two invocations of the same function with
different numbers of arguments. JavaScript developers often define variadic functions where
the function behavior changes depending on the number of arguments. For example, consider
the map function of lodash, which implements the standard higher-order map function. In
lodash, the function implicitly chooses the identity function as its function argument if no
other argument is supplied. Hence, it is beneficial for the precision of the API model to
distinguish an invocation of map where a function argument is supplied from one where no
function argument is supplied. We leave more complex forms of overloading to future work.

5.2 Types
We use a notion of types that extends the basic types of ECMAScript (strings, numbers,
objects, etc.) with types that have a special meaning in Node.js, for example, arrays, sets,
maps, event-emitters, and streams. We also include intersection types that are used to
capture the prototype hierarchies of objects, as explained later. Union types are used to
easily join different observations.

I Definition 3 (Types). A type t ∈ Type is a term in the following grammar:

t ::= ◦ | b t ∈ Type
b ::= b ∨ b′ | b ∧ b′ | undefined | string | boolean | number | object | function

| array | set | map | event-emitter | stream | throws

To simplify the presentation, we only show a representative subset of the Node.js types. The
type b ∨ b′ is a union type, while b ∧ b′ is an intersection type. The type ◦ has a special use:
If a path p is ascribed the type ◦ in a model (i.e., π(p) = ◦), then no values represented by
the path have been observed during client test execution, therefore they are assumed not to
be part of the public interface of the library. (Note that the special type ◦ and the special
path ε are both used for identifying the library API; ◦ is used in the generated models, and
ε is used for tagging values in our instrumented interpreter as explained in Section 5.3.) The
special type throws is ascribed to functions that throw exceptions. Considering exceptions as
a special type is unusual, but as we demonstrate in Section 7, it fits our setting well.

The function type(v) gives the type of a runtime value v. The function assigns the
corresponding type to primitive values, e.g., string to strings, but it does more for objects
and functions to account for prototype inheritance: for example, the type of a function
is function ∧ object because functions are also objects, and similarly, the type of a set is
set ∧ object.

Types do not distinguish between boxed and unboxed primitive values and do not represent
function types explicitly by an arrow type as usually done in type systems. As explained
above, the parameters and return types of a function are instead expressed as different paths.

As mentioned in Section 4, we use subtyping to detect changes in the public API of a
library that are breaking. The intuition, according to the Liskov substitution principle, is
that subtyping should satisfy substitutability. Informally, if t′ is a subtype of t, denoted
t′ <: t, then values of type t may be replaced with values of type t′ without affecting the
desirable properties of the program [21]. In our case, if a library method returns a value
of type t in the old version and a value of type t′ in the new version where t′ <: t, then
behavioral subtyping tells us that there is no type-related breaking change.

ECOOP 2018

7:10 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

JavaScript is a dynamic languages, with many different programming styles used by
library developers, and there is no canonical notion of subtyping that perfectly fits all styles.
This problem arises also in optionally typed languages, such as TypeScript, where the type
checker has more than 10 different options that library developers can customize to better
match their programming styles.8 The subtyping relation that we use in our implementation
is defined below, although we envision that library developers may want to customize some
of the rules when adopting the type regression testing technique.

I Definition 4 (Subtyping). The subtyping relation <: among types is the relation given by
the reflexive, transitive closure of the following rules.

b <: b ∨ b′ b′ <: b ∨ b′ b ∧ b′ <: b b ∧ b′ <: b′

b <: b′′ b′ <: b′′

b ∨ b′ <: b′′
b′′ <: b b′′ <: b′

b′′ <: b ∧ b′ object <: undefined t <: ◦

The rules for intersection and union types are standard. Note that the subtyping
relation, because of union and intersection types, is not anti-symmetric [15]: for example
b ∧ b′ <: b′ <: b ∧ b′ whenever b′ <: b. Consequently, types are not an order under the
subtyping but only a preorder. Therefore, the least upper bound (also called join), which
is needed for inference and checking, is not unique. For this reason, we implicitly work
on the quotient order constructed from the preorder whenever we use the join operator t.
The rule object <: undefined is motivated by the following example, and t <: ◦ is relevant for
Example 9.

I Example 5. Consider the patch update of the express library from 3.0.1 to 3.0.2:

28 // express 3.0.1
29 app.use = function(route, fn){
30 ...
31 return this._router.route.apply(this._router, args);
32 }
33 // express 3.0.2
34 app.use = function(route, fn){
35 ...
36 this._router.route.apply(this._router, args);
37 return this;
38 }

The return type of get changes from undefined (the value returned by the route function is
undefined) to object ∧ function (the type of the this value). The reason the developers of
express introduced this modification was to enable cascading of method calls, i.e., the ability
to write app.use(...).use(...). This update is clearly non-breaking, and the subtyping rule
for undefined ensures that type regression testing does not consider this as a breaking change
for express because function ∧ object <: object <: undefined.

Note that, although unlikely, it is possible to write a client that relies on the fact that
use returns undefined rather than a function, so that some library developers might prefer to
be warned about a possible breaking change in this case. The simple example shows that it
may be worthwhile to allow JavaScript developers to customize the subtyping rules.

8 https://www.typescriptlang.org/docs/handbook/compiler-options.html

https://www.typescriptlang.org/docs/handbook/compiler-options.html

G. Mezzetti, A. Møller, and M.T. Torp 7:11

5.3 Instrumented Interpreter
We will explain our approach for public API discovery though the rules of an instrumented
interpreter on a subset of the JavaScript language. At the beginning of the execution of the
client tests, the model π assigns the type ◦ to all paths. As values are determined to be part
of the public API, the corresponding path is assigned a new type using the type function.
Eventually, at the end of the test execution, π will hold a model of the public API of the
library, corresponding to the subset that the client has used in the tests.

It is important to notice that the model which we build may not exactly match what the
library developer intended as the public API. For example, if the library developer states in
the documentation that clients are not supposed to read a certain value, but some client does
it anyway, then the value will be considered part of the public API. Without a formal and
generally accepted mechanism for specifying and enforcing encapsulation, any client usage
taking place in practice has to be regarded as legitimate.

We describe the evaluation of a representative subset of JavaScript language constructs
in A-normal form, i.e., where every subterm has been evaluated to a value [11]. For
simplicity, we focus on a core language and do not explain the instrumentation of binary
operators, constructor invocations, writes to local variables, exceptions, functions with
multiple parameters, etc. The purpose of the following definitions is to explain the API
discovery mechanism as an instrumentation of an existing JavaScript interpreter; in particular
we are here not interested in all the details of JavaScript semantics, which are described
elsewhere [14, 6].

I Definition 6 (A-Normal Forms). The A-normal forms considered are the ones below; v
denotes values, and c denotes constants.

e ::= c (literal constant) e ∈ Exp
| x (variable read)
| v[v] (property access)
| v[v] = v (property update)
| v(v) (function call)

The instrumented interpreter is defined by a big-step operational semantics. We assume
that the original semantics uses judgments of the form 〈e, ρ, σ〉 ⇓ 〈v, σ′〉, which associate an
initial term e, an environment ρ, and a store σ with a resulting value v and a store σ′. The
environment ρ maps variable identifiers to primitive values (strings, numbers, booleans, and
undefined) or to store locations l. The store σ maps locations to objects and closures. Objects
are similar to environments, mapping identifiers to primitive values or to store locations.

The instrumented semantics 〈e, ρ, σ, π〉 ⇓I 〈v, σ′, π′〉 extends the semantics with the π, π′

components where π′ is the computed public API model. The initial model π, used at the
beginning of the program execution, associates the type ◦ with each path p. Similarly to
information flow analyses, the instrumented interpreter uses tagged values vp where p ∈ Path
is a path, in place of the original values [5]. Values vp and vp

′ are indistinguishable by
JavaScript programs for any p, p′. Recall that ε is called the empty path and is intended to
represent values that are not part of the public API.

The key idea about the use of tagged values is to preserve the following property: If
a value vp is read in the client code and has a nonempty path p, then the value has been
retrieved through the use of the public library API. Vice versa, if a value vp in the library
code has a nonempty path, then the value has been passed to the library through the public
library API.

ECOOP 2018

7:12 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

Our instrumentation ensures that values that are passed between library and client code
through the public API are always assigned a nonempty path. Initially, the only value with
a nonempty path is the value returned by require when the library is first loaded.

I Example 7. Suppose the library foo is used by a client as follows:
39 var lib = require(foo);
40 var x = new lib.c();
41 lib.m(x);

The function values of lib.m and lib.c are tagged with require(foo).m and require(foo).c,
respectively. The object value of x is initially assigned the path require(foo).cnew()0 because
it is a value returned by the library constructor c. Assume the object has properties that
are written by c and read by m, and are not accessed by the client code. Such properties
should be considered private to the library, so that changes to them in a library update are
not treated as type regressions. This scenario is detected by our instrumented interpreter by
observing that x already has a nonempty path when it is passed to m. Therefore, the path of
x is emptied (set to ε) to avoid the object being considered part of the public API.

In general, whenever a value crosses the API a second time, the path of that value is set
to ε, so that its usages are not recorded as being part of the public API.

The semantic rules for the instrumented interpreter are shown in Figure 1. We use the
notation {p 7→ t} meaning the model that maps the path p to the type t and all other paths
to ◦. The join π t π′ of two models π, π′ is the pointwise join of the types for each path.
By a slight abuse of notation, when joining the type ◦ with another type we assume that it
behaves as the unit, i.e. if π(p) = ◦ and π′(p) = t then (π t π′)(p) = t.

When evaluating a constant, it is tagged by the empty path (rule const). When
evaluating a variable, the tagged value is looked up in the environment (rule var). The
model is unaffected in both cases.

At property accesses, the value of a property needs to be retrieved from a target object,
and the model should be updated to reflect the type of the property accessed whenever the
target object is part of the public library API. The rule access uses an auxiliary function
Lookup to handle the actual lookup of the property, possibly walking the prototype chain, to
retrieve the value vpr

r of the property vpf

f of the object vpt

t in the store σ. (We omit formal
definitions of this and other auxiliary functions since they are not important for the tagging
mechanism.) The rule distinguishes three cases for the path p′

r that is used as tag for the
resulting value vr. Assume the property access occurs in the client code. In the first case, pt
is nonempty and pr is empty, meaning that the object vt comes from the library, and the
library code that wrote the property value vr to the object did not obtain that value from
the client, so in this case the path p′

r is set to ptα. The recorded action α is .vf where vf
is the name of the property accessed, unless vt is an array, in which case the special array
access action .∗ is used. In the second case, pt and pr are both nonempty. This means that
we are accessing a property of a library object, and the library code that wrote the property
value to the object obtained that value from the client, so we are in a situation similar to
Example 7, and we set p′

r to ε accordingly. In the third case, pt is empty, which means that
the object vt comes from the client, so we simply keep the existing path pr for the resulting
value. If the property access instead occurs in the library code, the reasoning is the same,
but with the roles of client and library swapped. In either case, the π component is updated
to reflect that a value of type type(vr) has been observed for the path p′

r.
At property updates, a value is assigned as property on a target object. The rule update

uses the auxiliary function Update to perform the actual update of the property vpf

f of the

G. Mezzetti, A. Møller, and M.T. Torp 7:13

const
〈c, ρ, σ, π〉 ⇓I 〈cε, σ, π〉

var
ρ(x) = vp

〈x, ρ, σ, π〉 ⇓I 〈vp, σ, π〉

access
Lookup(vpt

t , v
pf

f , σ) = vpr
r

p′
r =


ptα if pt 6= ε ∧ pr = ε

ε if pt 6= ε ∧ pr 6= ε

pr if pt = ε

α =
{
.∗ if vt is an array
.vf otherwise

π′ = π t {p′
r 7→ type(vr)}

〈vpt

t [vpf

f], ρ, σ, π〉 ⇓I 〈vp
′
r
r , σ, π

′〉

update

p′
a =

{
ε if pt 6= ε

pa if pt = ε

Update(vpt

t , v
pf

f , v
p′

a
a , σ) = σ′

〈vpt

t [vpf

f] = vpa
a , ρ, σ, π〉 ⇓I 〈v

p′
a
a , σ

′, π〉

call

p′
a =


pf (1)1 if pf 6= ε ∧ pa = ε

ε if pf 6= ε ∧ pa 6= ε

pa if pf = ε

Call(vpf

f , v
p′

a
a , σ, π) = 〈vpr

r , σ
′, π′〉

p′
r =


require(va) if vf = lrequire

pf ()1 if vf 6= lrequire ∧ pf 6= ε ∧ pr = ε

ε if vf 6= lrequire ∧ pf 6= ε ∧ pr 6= ε

pr if vf 6= lrequire ∧ pf = ε

π′′ = π′ t {p′
a 7→ type(va)} t {p′

r 7→ type(vr)}

〈vpf

f (vpa
a), ρ, σ, π〉 ⇓I 〈vp

′
r
r , σ

′, π′′〉

Figure 1 Semantic rules of the instrumented interpreter.

object vpt

t with the value vp
′
a
a in the store σ, resulting in a new store σ′ where the object

property has been updated. The path p′
a of the value being assigned is selected as follows.

If the path pt of the object is nonempty, then we are intuitively sending a value across the
boundary between client and library. If pa is also nonempty, it means that the value now
crosses the API boundary a second time, so we set p′

a to ε. In all other cases, we simply

ECOOP 2018

7:14 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

preserve the existing path pa. (In particular, this means that in the situation where pt is
nonempty and pa is empty, p′

a becomes ε, which is the only sensible choice with our current
language of dynamic access paths.)

The rule call models the instrumentation of function calls. We use the auxiliary function
Call to perform the actual call to the function vpf

f with argument vp
′
a
a , store σ, and initial

model π. The argument value va is tagged by the path p′
a, which is selected as follows.

Assume, without loss of generality, that the call occurs in the client code. In the first case of
the definition of p′

a, pf is nonempty and pa is empty, meaning that the function vf comes
from the library and the argument value va comes from the client. In this case, the path
p′
a is set to pf (1)1, indicating that va is used as first argument to the library function pf

when executing the function body. (This generalizes naturally to functions with multiple
arguments.) The two remaining cases follow the same reasoning as for p′

r in rule access.
The auxiliary function Call returns a value vpr

r , a updated store σ′, and an updated model
π′. The path p′

r used to tag the resulting value vr is decided depending on the the function
vf , its path pf , and the path pr of the returned value. If vt is the require function, written
vt = lrequire, then the path p′

r is require(va). Otherwise, the path is either set to ε (according
to the principle already discussed according to which the values crossing the API boundary
twice are given an empty path), pf ()1 (if the call is to a library function and the resulting value
came from the library side), or kept as pr. The resulting model π′′ collects the observations
from the execution of the function and the types of the function argument and the resulting
value.

As described above, the instrumented interpreter generates a model for each client test
being run. A complete model for a library version is made by joining all the models of the
client tests using the t operator.

6 Type Regression Testing

Every mapping in a model π establishes a sort of mutual expectation between the client
and the library. The direction of such an expectation depends on the path structure. For
example, if π(require(lib)) = t, then it is the client that expects an object of type t from the
library lib. The same direction applies to properties accessed on the object returned from
require. For example, if π(require(lib).p) = t, then the client expects that the library has a
property p of type t. The direction of the expectation flips upon an argument action. For
example, if π(require(lib).p(j)i) = t, then it is the library that expects the client to pass a
value of type t.

The direction of the expectation affects the direction of the subtyping to use when checking
for type regressions in library updates, much like covariance and contravariance in standard
type checking. For example, if π(require(lib)) = t in version 1.0.0 and π′(require(lib)) =
t′ in version 1.1.0, then we have to check that t′ <: t. Symmetrically, if the type for
π(require(lib)(j)i) = t in version 1.0.0 and it is π′(require(lib)(j)i) = t′ in version 1.1.0, then
we have to check that t <: t′ because the library is certainly allowed to relax its expectations
on minor version upgrades but it cannot require a more specific type.

We use the relation <:p to ensure that the direction of the typing relation is correct. It
is inductively defined on the structure of the path p. The direction is switched on every
argument action, as with contravariance for traditional function subtyping. In the base case
where the path is empty, the ordinary subtyping relation <: is used:

t <: t′

t <:ε t′
α = (j)i t′ <:p′ t

t <:p′α t
′

α 6= (j)i t <:p′ t′

t <:p′α t
′

G. Mezzetti, A. Møller, and M.T. Torp 7:15

We can now define precisely how to detect type regressions. Note that type regressions
are never reported for empty paths, because empty paths represent values that are not part
of the public API of the library.

I Definition 8 (Type Regression). Let π and π′ be models of an old and a new library version,
respectively. A nonempty path p exhibits a type regression whenever π′(p) 6<:p π(p).

I Example 9. Continuing the example from Section 3, the path where the type regression
is detected is p = require(lodash).merge(3)4.toString. In the old model π(p) = ◦, while in the
new model π′(p) = function ∧ object. By definition, the path p exhibits a type regression:
function ∧ object 6<:p ◦ because ◦ <: function ∧ object does not hold.

Note that if the opposite change was made to the library, such that toString is read in
the old version of the library but not in the new version, then the rule t <: ◦ (see Definition 4)
would prevent the type regression, as desired.

7 Evaluation

To evaluate the type regression testing technique, we developed a tool, NoRegrets.9 The
implementation consists of 1800 lines of TypeScript code and 6400 lines of Scala code. The
TypeScript part implements the instrumentation described in Section 5, using ES6 proxies.
The Scala part fetches test suites for the npm packages from GitHub and post-processes the
generated models to detect type regressions as described in Section 6.

Our primary hypothesis is that the type regression testing technique can help a developer
decide if an update should be marked as either a major update or as a minor or patch update.
We test this hypothesis by considering the tool as a binary classifier [28, 29], that is, a
decision procedure that, given an input (in our case, a library update), returns one of two
possible outcomes (breaking or non-breaking). Our secondary hypothesis is that the tool
improves the dont-break approach for finding breaking changes, by amplifying the ability of
the client test suites to reveal breaking changes, and by providing accurate and meaningful
type regression reports. These hypotheses lead to the following research questions:

RQ1 How accurate is NoRegrets in the classification of library updates as breaking or
non-breaking?

RQ2 How does NoRegrets compare with the dont-break approach? Specifically:
1. How many breaking changes does NoRegrets find, and how many of those cannot be

detected by the dont-break approach?
2. How many of the type regressions reported by NoRegrets are spurious?
3. When a failure is detected, is it easy to locate the root cause?

Benchmarks. We randomly selected 12 among the most depended upon libraries from
npm10 as benchmarks, listed in Table 1. Since the development and release process of
those libraries is usually under scrutiny of many skilled developers, they can be considered
high-quality libraries: their changelogs are usually accurate, minor updates rarely introduce
breaking changes, and major updates are usually reserved for those situations where breaking
changes have been introduced.

9 node.js type regression tester
10 https://www.npmjs.com/browse/depended

ECOOP 2018

https://www.npmjs.com/browse/depended

7:16 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

Table 1 Node.js libraries used in the experimental evaluation.

Benchmark LOC Minor/Patch Major Client Test Suites Model Size
debug 2.0.0 226 19 1 63 33
async 2.0.0 1682 5 0 64 3316
lodash 3.0.0 5225 16 1 42 4661
moment 2.0.0 1041 31 0 5 5
express 3.0.0 1011 95 1 4 54
chalk 1.0.0 169 4 0 93 105
bluebird 3.0.0 4827 29 0 16 503
react 15.0.0 41 685 11 1 5 31
commander 2.0.0 370 12 0 4 7
request 2.0.0 626 98 0 9 13
body-parser 1.0.0 89 55 0 3 6
q 1.0.0 1152 9 1 8 277

For our experiments, we picked a recent major version of each library, together with all
minor and patch updates up to the next major release. The main focus of these experiments
is on minor and patch updates, which are the ones where the developers do not expect
breaking changes, but we also include a few major updates to check that NoRegrets is able
to classify those as breaking.

Table 1 contains additional details on the selected libraries: the name and the major
version of the library, the number of lines of code in the major version of the library, the
number of minor/patch and major updates of the library considered, the number of clients
with test suites, and the size of the public API (counted as the number of non-◦ paths in the
inferred model, averaged over the different library versions). All the data collected comes
from a snapshot of the npm repository taken in April 2017. To simplify the experiments we
only consider clients that use the Mocha testing framework, and to reduce noise we omit test
suites that do not succeed consistently on major releases.

Our open-source implementation of NoRegrets and all benchmarks and experimental
data are available at http://brics.dk/noregrets.

RQ1 (accuracy as binary classifier)

Since the benchmarks selected in this experiment are high-quality libraries, we assume that
most of the minor and patch updates of our benchmarks are not introducing breaking changes,
and that most of the major updates are introducing breaking changes. In this way, we can
evaluate our tool by checking that it correctly classifies major and non-major updates as
breaking and non-breaking, respectively.

NoRegrets reports type regressions for only 36 out of 384 minor or patch updates, and for
4 of the 5 major updates. A few of the type regressions detected at minor updates are actual
breaking changes being introduced by mistake, for instance the one shown in the motivating
example and all the ones discussed for RQ2.1 later in this section. Moreover, NoRegrets is
in fact correct also for the major update that is not being reported: a manual inspection
confirms that the update of debug to version 3.0.0 does not introduce any type-related
breaking changes apart from removing functions that were already deprecated and therefore
not used by any available clients. Even if we disregard the fact that some of the minor
updates are actually breaking and some major updates are non-breaking, NoRegrets is able
to give accurate suggestions to library developers: In at least 90% of the cases, NoRegrets
is able to correctly classify a library update as either major or as minor or patch.

http://brics.dk/noregrets

G. Mezzetti, A. Møller, and M.T. Torp 7:17

Table 2 Breaking changes found.

Benchmark Changelog Test Failure Synthetic Client
debug 2.0.0 0 1 0
async 2.0.0 0 3 0
lodash 3.0.0 2 0 0
moment 2.0.0 2 0 0
express 3.0.0 0 0 18

Total 26

RQ2 (comparison with the dont-break approach)
To answer the second research question, we manually inspected each type regression reported
by NoRegrets on minor and patch updates. To reduce the time spent, we focused on 5
benchmarks (debug, async, lodash, moment, and express).

RQ2.1. We consider a type regression on a path as introducing a breaking change whenever
(i) the developers reference the change in the changelog, (ii) the breaking change can be
witnessed by a test failure of one of the selected clients, or (iii) we can construct a synthetic
client that crashes because of the change. If none of these conditions are satisfied, then the
type regression is classified as a false positive. The breaking changes in the second category
are the only ones that can be identified by the dont-break approach. The synthetic clients in
the third category may not be representative of typical clients, but they nevertheless witness
breaking changes. Also, as demonstrated by our motivating example and by Example 10,
breaking changes often cause problems exactly because clients use libraries in ways that the
library developers did not anticipate.

I Example 10. An example of a breaking change in the first category is the one introduced
by moment 2.5.1 where the library started using the method hasOwnProperty. Unfortunately,
the method is only available on non-host objects in older browsers. It took until version 2.8.2
for developers to realize this fact and fix the problem.11

The main results of our inspection of the reported regressions are shown in Table 2.
The Changelog column contains the number of breaking changes that are confirmed by the
changelog, and the Test Failure and Synthetic Client columns show how many are witnessed
by a failing preexisting test or a synthetic client, respectively. Remarkably, NoRegrets is
able to find 26 breaking changes in minor updates of high-quality libraries. It is also notable
that this is accomplished with few client tests; for example, the two breaking changes in
moment are detected using only 5 client test suites.

Moreover, only 4 of the breaking changes that we have found could also be identified
by a test failure, demonstrating that our approach amplifies client tests compared to the
dont-break approach. Going back to Example 10, note that detecting the breaking change
by the dont-break approach would not just require a test that triggers the invocation of
hasOwnProperty on non-host objects, but the test should also be run in a specific browser.
Instead, NoRegrets reports a type regression indicating that the object passed to moment
should have a function hasOwnProperty.

11 https://github.com/moment/moment/pull/1874

ECOOP 2018

https://github.com/moment/moment/pull/1874

7:18 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

RQ2.2. On the 5 benchmarks, NoRegrets reports a total of 168 type regressions across 167
library updates. By manually inspecting these 168 reports we find that 96 indicate actual
breaking changes. (Some reports have the same root cause, which is how we arrive at a total
of 26 breaking changes.) Thus, the number of false positives is acceptable: on average around
one warning is reported per library update, and the majority of the warnings indicate actual
breaking changes. Moreover, in the situations where multiple warnings are reported at a
library update, we find that investigating the cause of one warning often quickly shows that
other warnings have the same cause and therefore can be dismissed with little effort.

I Example 11. In lodash 3.10.0, the developers changed the behavior of the public method
isPlainObject to use a different heuristic for recognizing so-called plain objects. Quoting from
the implementation: “In most environments an object’s own properties are iterated before
its inherited properties”. The method was changed accordingly to inspect all properties of
the given object using a for-in loop, which causes 44 type regressions to be reported, one for
each property of the objects being passed to isPlainObject. We classified this case as a false
positive: the type regressions do not identify a breaking change since the property values are
not used for anything but equality checks. We only had to inspect one library code location
to understand that the other type regression reports had the same cause.

In our inspection of the regression reports, we proceeded hierarchically by the length of
the paths involved in type regressions. By doing so, in our classification, we only needed to
inspect a total of 36 type regressions out of 168, to identify the root cause of the breaking
change they were referring to or discard them as false positives.

As already mentioned, 26 of our investigations resulted in the identification of an actual
breaking change. To give some examples, the type regressions for 5 of these 26 breaking
changes are listed in the first first 5 rows of Table 3. The lodash and moment examples have
already been explained in Section 3 and in Example 10. The debug example, which shows the
type regression for the breaking change mentioned in Section 1, and the async example both
involve the special throws type. In the async example, the call to require returns an object
in version 2.0.1 but throws an exception in version 2.1.0 because the module has been moved.
Notice that none of type rules in Section 5.2 explicitly involve the throws type. Thereby, it
is a type error if a function either starts throwing exceptions or stops throwing exceptions
after a library update, which the async example motivates well; moving a public module
clearly affects the public API. Likewise in the debug example, a spelling error results in an
excepting being thrown when the debug module is loaded, which breaks the public API. The
express example is similar to the moment and lodash examples: the property readable of the
function argument is not accessed in version 3.14.0 of express, but it is accessed in version
3.15.0, demonstrating that the type signature of the library function has changed.

NoRegrets also reported 72 type regressions that we categorized as false positives. Using
the same approach as when investigating the true positives, we found that these false positives
had 10 separate causes. Many of these were due to technical limitations of NoRegrets rather
than of the type regression testing technique itself. ES6 introduces default exports of objects
and functions, where the default exports are automatically read by Node.js when reading
properties of the required object, but from the perspective of dynamic access paths it still
looks like the properties are read from the default object, e.g., require(foo).default.p instead
of just require(foo).p. In the 2.1.2 patch update of the async library, it started to use default
exports resulting in 3 reports about breaking changes that are false positives. These are only
false positives because a fallback mechanism is included to handle old installations that do
not support default exports. Therefore, it is fair to assume that an inconsiderate developer,
who did not include a fallback mechanism, may still have benefited from these warnings.

G. Mezzetti, A. Møller, and M.T. Torp 7:19

Table 3 Type regression examples.

Library Update Path Type Regression
debug 2.3.3 � 2.4.0 require(debug)()1 throws ∧ object 6<: function ∧ object

async 2.0.1 � 2.1.0 require(async/asyncify) throws ∧ object 6<: function ∧ object

lodash 3.2.0 � 3.3.0 require(lodash).merge(3)4.toString ◦ 6<: undefined

moment 3.5.0 � 3.5.1 require(moment)(1)1.hasOwnProperty ◦ 6<: function ∧ object

express 3.14.0 � 3.15.0 require(express)()0(1)2.readable ◦ 6<: boolean

lodash 3.10.1 � 4.0.0 require(lodash).pluck undefined 6<: function ∧ object

express 3.21.2 � 4.0.0 require(express).mime undefined 6<: object

lodash 3.10.1 � 4.0.0 require(lodash).forEach(2)3()3 undefined 6<: throws ∧ object

Another cause of false positives is that hasOwnProperty is not being instrumented, which is
due to limitations of ES6 proxies.

RQ2.3. For each breaking change detected by NoRegrets, the type regression report
contains the involved dynamic access path p and associated types π(p) and π′(p). In contrast,
when the dont-break approach detects a breaking change, it only provides the failing client
test, with no information about the interactions between the client code and the library.

Based on our experience with the dont-break approach in the preliminary study (Section 2)
and the NoRegrets approach in the experiment for RQ2.1, we find that type regression
reports greatly simplify the investigations of the breaking changes. The library developer
does not need to understand what the client tests are doing, and can focus exclusively on the
changes in the library’s codebase that have resulted in the changes of the public API. Since
NoRegrets additionally records the call-stack at the point when a new type observation is
created, dynamic access paths can easily be correlated with actions performed deep down in
the private code of the library. A typical example is the one discussed in Section 3 where
the path require(lodash).merge(3)4.toString shows that the coercion performed in the private
isIterateeCall function is actually performed on the third argument of the merge function,
and such information is not available if using the dont-break approach.

The last three rows of Table 3 show examples of type regressions found by NoRegrets
in major updates. The first two examples show that the pluck function was removed from
lodash in version 4.0.0 and that the mime property was removed from express in version
4.0.0. The last example, involving the forEach function of lodash, is a little more subtle. The
forEach function takes 3 parameters in version 3.10.1, a collection, a callback function, which
is applied to each element in the collection, and an object that is used as the this object
in the callback. However, in version 4.0.0, the ability to set the this object of the callback
is removed from the forEach function. After the update, reading a property of this in the
callback causes a type error since this is now undefined.

Discussion
The experimental evaluation is based on relatively few client test suites, which limits the
fraction of the public APIs that are modeled and thereby reduces NoRegrets’s ability to
detect breaking changes. The libraries used in the experiments have thousands of clients, but
our current implementation uses a fairly simply technique to locate clients and retrieve their
test suites. In particular, it currently does not look for clients on GitHub but only uses npm.
Also, tests are rarely published together with packages on npm, so NoRegrets requires that

ECOOP 2018

7:20 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

the packages.json file for each client contains a URL to a GitHub repository and that this
repository contains a git tag matching the client version that is required. Many clients do
not include tags in their repositories, so we chose to discard those clients. In principle, this
issue could be alleviated by comparing the source code in all the repository commits with
the source of the client published on npm, but we leave that to future work. Additionally,
as mentioned we exclude test suites that do not succeed consistently on major releases.
This is a well-known problem: In a recent study of 373 popular JavaScript applications, 41
of the packages had tests that failed or froze, and 3 had build or deployment issues [10].
This problem could in principle be mitigated by using a more fine-grained approach where
NoRegrets looks at test failures at the granularity of single tests rather than entire test
suites. Furthermore, the ES6 proxy mechanism used by NoRegrets sometimes interferes with
tests causing them to fail, so we have to disregard those too to avoid noise. This is a known
problem with opaque ES6 proxies, which has already been addressed by Thiemann et al. [17].
We could similarly solve this problem by modifying Node.js such that proxies becomes
transparent, but this is again a technical limitation of our current implementation that could
be alleviated with further implementation work. Still, the experimental results obtained with
our current proof-of-concept implementation suffice to demonstrate the potential of the type
regression testing idea.

Another opportunity for improvements is to investigate extensions of our notion of types
that could arguably enable NoRegrets to better fit specific programming constructs. For
example, Andreasen et al. [3] show that parametric polymorphism and recursive types
could be beneficial to type JavaScript functional programming constructs used in practice.
Other possible extensions include representations of tuple types, polymorphic functions, and
variadic parameters. Although these are theoretically interesting ideas, and could easily be
implemented in NoRegrets, in our evaluation we have not yet encountered concrete use-cases
to justify the technical effort to introduce them.

8 Related Work

Studies of npm. Several experimental studies have investigated the npm repository [10, 19].
A study on JavaScript repositories showed that regression testing is a common practice, with
an average of 78% of the packages having at least one test [10]. Two studies focus on the
structure of the npm dependency network [30, 18]. In one of the studies, it is shown that
the mean number of direct dependencies is 6, and that this number seems to be growing
rapidly [30]. The same study also showed that the percentage of packages that are depended
upon by other packages is only 27.5%, and a few popular packages are widely used by other
packages. This should not be seen as a threat to the general applicability of our technique.
If a package has no dependencies, then it matters little that the packages developer adheres
to the semantic versioning principle. Another study has shown that the number of transitive
dependencies is 10 times the number of direct dependencies and confirms that the number of
dependencies of packages is growing exponentially, with a 60% increase in 2016 [18].

Studies of library updates and breaking changes. Our preliminary study is the first
published study of the prevalence of breaking changes in the npm repository. So far, research
on breaking changes has focused on other ecosystems, mainly Java. An experimental study
by Derr et al. [9], involving 203 developers, analyzed the reasons behind many Android
applications using outdated libraries versions. More than 50% of the participants indicated
that one of the reasons was to “prevent incompatibilities”. The authors developed a tool to
compute the difference between the public API of two Java library versions, which they used

G. Mezzetti, A. Møller, and M.T. Torp 7:21

to show that as many as 39% of minor and patch updates should have been flagged as major,
which justifies the skepticism about the guarantees of semantic versioning expressed by the
203 developers.

The study from Raemakers et al. [26] addressed the use and misuse of semantic versioning
in the Maven repository for Java packages. They conclude that “one third of all releases
introduces at least one breaking change, and that this figure is the same for minor and
major releases, indicating that version numbers do not provide developers with information
in stability of interfaces”, showing that breaking changes are prevalent in Maven repositories.
A similar study by Jezek et al. [16] on 109 Java open-source libraries discovered that every
library introduces at least one breaking change of the public API in non-major updates.

Other studies are concerning the relation between library updates and breaking changes for
JavaScript libraries. Mirhosseini and Parnin [22] showed that breaking changes, understanding
the implications of changes, and migration effort are among the top concerns of JavaScript
developers. A small user study among npm package maintainers showed that package updates
are mostly coordinated by personal communications between developers [7]. A follow-up
study, comparing 8 npm library developers to Eclipse and R/CRAN developers, showed that
“npm developers were more willing than developers of other platforms to perform breaking
changes in the name of progress” [8]. A study of the prevalence of client side vulnerabilities
in web applications also showed that, like in the Maven system, many applications are using
outdated libraries [20]. Zerouali et al. also found that many dependencies in the npm system
are outdated due to too strict version constraints, and conclude that developers are reluctant
to update dependencies since they want to avoid incompatible changes [31]. Wittern et
al. [30] showed that 29% of all package.json version constraints specify a fixed version, while
68% of the constraints allow either all minor and patch updates or just all patch updates.
The remaining 3% are free ranging constraints that also allow major updates.

Type inference for dynamic languages. Dynamic inference of types for dynamic languages
is a widely studied topic [2, 3, 27, 1, 24]. However, this paper is the first one to also distinguish
between private and public parts of a library’s API. The use of runtime traces to learn
types has already been exploited for Ruby [2], JavaScript [3, 27], and Dart [1]. One notable
difference with our approach is that we do not ascribe types to syntactical elements of the
programs, but instead to our notion of dynamic access paths. TypeDevil [24] uses a dynamic
analysis to gather runtime type information where types are either primitive or records of
types. Inconsistencies of the observed types are reported as potential bugs. Other forms of
dynamic analysis for JavaScript are discussed in a recent survey [4].

Detection of breaking changes. The only other tool that also aims at detecting breaking
changes in npm package updates is the dont-break tool. Unfortunately, we were not able to
make dont-break work properly, but we applied the same methodology in the preliminary
study as discussed in Sections 2 and 7.

Greenkeeper is a service that helps packages maintainers avoid introducing dependency
updates that contain breaking changes.12 Instead of using range-based dependency con-
straints that allow all minor and patch updates, packages that use Greenkeeper will fix each
dependency to a specific version. Whenever a new version of a dependency is available,
Greenkeeper will run the tests of the package with the updated dependency to verify that
the update did not break anything.

12 https://greenkeeper.io/

ECOOP 2018

https://greenkeeper.io/

7:22 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

Java’s binary compatibility conditions [13, Chapter 13] and tools like JAPICC [23] make it
possible to automatically detect type-related breaking changes in Java libraries. A disciplined
set of guidelines for upgrading library releases have also been developed within the IBM’s
System Object Model to guarantee binary compatibility [12].

9 Conclusion

We have shown that breaking changes do occur in minor and patch updates of npm packages
and that the majority of the breaking changes are type-related. Furthermore, we have
designed a novel technique called type regression testing that detects type-related breaking
changes across library versions, by leveraging the test suites of the library’s clients. Type
regression testing uses an instrumented JavaScript interpreter to build a model of a library’s
API through dynamic observations of how the client tests interact with the library. The
models use the notion of dynamic access paths to give types to the individual components of
the library’s API. Specific differences in the model across two library versions are identified
as type regressions, indicating that a breaking change likely has occurred.

We have implemented type regression testing in the tool NoRegrets. Our evaluation
shows that NoRegrets is capable of detecting 26 breaking changes in 167 minor and patch
updates of 5 high quality npm packages, and most of those breaking changes could not
have been detected by existing techniques. We also find that NoRegrets reports only a
small number of false positives, and that the reported type regressions make it easy for
the developer to determine the causes of the breaking changes. Furthermore, NoRegrets
correctly classifies at least 90% of the updates as either major or as minor or patch.

References
1 Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. Analyzing test com-

pleteness for dynamic languages. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 142–153, 2016. doi:10.1145/2931037.2931059.

2 Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dynamic
inference of static types for Ruby. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, Jan-
uary 26-28, 2011, pages 459–472, 2011. doi:10.1145/1926385.1926437.

3 Esben Andreasen, Colin S. Gordon, Satish Chandra, Manu Sridharan, Frank Tip, and
Koushik Sen. Trace typing: An approach for evaluating retrofitted type systems. In 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, pages 1:1–1:26, 2016. doi:10.4230/LIPIcs.ECOOP.2016.1.

4 Esben Andreasen, Anders Møller, Liang Gong, Michael Pradel, Marija Selakovic, Koushik
Sen, and Cristian-Alexandru Staicu. A survey of dynamic analysis and test generation for
JavaScript. ACM Computing Surveys, 50(5):66:1–66:36, 2017.

5 Thomas H. Austin, Tim Disney, Alan Jeffrey, and Cormac Flanagan. Dynamic information
flow analysis for featherweight JavaScript. Technical Report UCSC-SOE-11-19, UC Santa
Cruz, 2011.

6 Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A trusted mechanised JavaSript
specification. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages
87–100. ACM, 2014.

http://dx.doi.org/10.1145/2931037.2931059
http://dx.doi.org/10.1145/1926385.1926437
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.1

G. Mezzetti, A. Møller, and M.T. Torp 7:23

7 Christopher Bogart, Christian Kästner, and James D. Herbsleb. When it breaks, it breaks:
How ecosystem developers reason about the stability of dependencies. In 30th IEEE/ACM
International Conference on Automated Software Engineering Workshops, ASE Workshops
2015, Lincoln, NE, USA, November 9-13, 2015, pages 86–89, 2015. doi:10.1109/ASEW.
2015.21.

8 Christopher Bogart, Christian Kästner, James D. Herbsleb, and Ferdian Thung. How
to break an API: cost negotiation and community values in three software ecosystems.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages 109–
120, 2016. doi:10.1145/2950290.2950325.

9 Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me updated:
An empirical study of third-party library updatability on Android. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 2187–2200, 2017.

10 Amin Milani Fard and Ali Mesbah. JavaScript: The (un)covered parts. In 2017 IEEE
International Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017, pages 230–240. IEEE Computer Society, 2017.

11 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico,
USA, June 23-25, 1993, pages 237–247, 1993. doi:10.1145/155090.155113.

12 Ira R. Forman, Michael H. Conner, Scott Danforth, and Larry K. Raper. Release-to-release
binary compatibility in SOM. In OOPSLA’95, Proceedings of the Tenth Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications, Austin, Texas,
USA, October 15-19, 1995, pages 426–438. ACM, 1995.

13 James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

14 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In
ECOOP 2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slove-
nia, June 21-25, 2010. Proceedings, pages 126–150, 2010.

15 Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. Journal
of Object Technology, 6(2):47–68, 2007. OOPS Track at the 21st ACM Symposium on
Applied Computing, SAC 2006. doi:10.5381/jot.2007.6.2.a3.

16 Kamil Jezek, Jens Dietrich, and Premek Brada. How Java APIs break - an empirical study.
Information & Software Technology, 65:129–146, 2015. doi:10.1016/j.infsof.2015.02.
014.

17 Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and Peter Thie-
mann. Transparent object proxies in JavaScript. In 29th European Conference on Object-
Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, pages
149–173, 2015. doi:10.4230/LIPIcs.ECOOP.2015.149.

18 Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and evolution
of package dependency networks. In Proceedings of the 14th International Conference
on Mining Software Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017,
pages 102–112. IEEE Computer Society, 2017.

19 Raula Gaikovina Kula, Ali Ouni, Daniel M. Germán, and Katsuro Inoue. On the im-
pact of micro-packages: An empirical study of the npm JavaScript ecosystem. CoRR,
abs/1709.04638, 2017. arXiv:1709.04638.

20 Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo Wilson,
and Engin Kirda. Thou shalt not depend on me: Analysing the use of outdated JavaScript

ECOOP 2018

http://dx.doi.org/10.1109/ASEW.2015.21
http://dx.doi.org/10.1109/ASEW.2015.21
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.1145/155090.155113
http://dx.doi.org/10.5381/jot.2007.6.2.a3
http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.149
http://arxiv.org/abs/1709.04638

7:24 Type Regression Testing to Detect Breaking Changes in Node.js Libraries

libraries on the web. Proceedings of Network and Distributed System Security Symposium
(NDSS), 2017.

21 Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994. doi:10.1145/197320.197383.

22 Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage software
developers to upgrade out-of-date dependencies? In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA,
October 30 - November 03, 2017, pages 84–94, 2017. doi:10.1109/ASE.2017.8115621.

23 Andrey V. Ponomarenko and Vladimir V. Rubanov. Backward compatibility of software
interfaces: Steps towards automatic verification. Programming and Computer Software,
38(5):257–267, 2012.

24 Michael Pradel, Parker Schuh, and Koushik Sen. TypeDevil: Dynamic type inconsistency
analysis for JavaScript. In 37th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 314–324, 2015.
doi:10.1109/ICSE.2015.51.

25 Tom Preston-Werner. Semantic versioning 2.0.0. http://semver.org/.
26 Steven Raemaekers, Arie Van Deursen, and Joost Visser. Semantic versioning versus break-

ing changes: A study of the Maven repository. Proceedings - 2014 14th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2014, pages 215–
224, 2014. doi:10.1109/SCAM.2014.30.

27 Claudiu Saftoiu, Arjun Guha, and Shriram Krishnamurthi. Runtime type-discovery for
JavaScript. Technical Report Brown University CS-10-05, 2010.

28 Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage., 45(4):427–437, 2009.

29 Sofia Visa, Brian Ramsay, Anca L. Ralescu, and Esther van der Knaap. Confusion matrix-
based feature selection. In Proceedings of the 22nd Midwest Artificial Intelligence and
Cognitive Science Conference 2011, Cincinnati, Ohio, USA, April 16-17, 2011, pages 120–
127, 2011. URL: http://ceur-ws.org/Vol-710/paper37.pdf.

30 Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics of the
JavaScript package ecosystem. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, pages 351–
361, 2016. doi:10.1145/2901739.2901743.

31 Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús M. González-
Barahona. An empirical analysis of technical lag in npm package dependencies. In New
Opportunities for Software Reuse - 17th International Conference, ICSR 2018, Madrid,
Spain, May 21-23, 2018, Proceedings, volume 10826 of Lecture Notes in Computer Science,
pages 95–110. Springer, 2018.

http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1109/ASE.2017.8115621
http://dx.doi.org/10.1109/ICSE.2015.51
http://semver.org/
http://dx.doi.org/10.1109/SCAM.2014.30
http://ceur-ws.org/Vol-710/paper37.pdf
http://dx.doi.org/10.1145/2901739.2901743

Targeted Test Generation for Actor Systems
Sihan Li
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
sihanli2@illinois.edu

Farah Hariri
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
hariri2@illinois.edu

Gul Agha
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
agha@illinois.edu

Abstract
This paper addresses the problem of targeted test generation for actor systems. Specifically, we
propose a method to support generation of system-level tests to cover a given code location in
an actor system. The test generation method consists of two phases. First, static analysis is
used to construct an abstraction of an entire actor system in terms of a message flow graph
(MFG). An MFG captures potential actor interactions that are defined in a program. Second,
a backwards symbolic execution (BSE) from a target location to an “entry point” of the actor
system is performed. BSE uses the MFG constructed in the first phase of our targeted test
generation method to guide execution across actors. Because concurrency leads to a huge search
space which can potentially be explored through BSE, we prune the search space by using two
heuristics combined with a feedback-directed technique. We implement our method in Tap, a
tool for Java Akka programs, and evaluate Tap on the Savina benchmarks as well as four open
source projects. Our evaluation shows that the Tap achieves a relatively high target coverage
(78% on 1,000 targets) and detects six previously unreported bugs in the subjects.

2012 ACM Subject Classification Software and its engineering → Software testing and debug-
ging

Keywords and phrases actors, symbolic execution, test generation, static analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.8

Acknowledgements This work is supported in part by the National Science Foundation under
grants NSF CCF 14-38982 and NSF CCF 16-17401. The authors would like to thank Krishna
Kura for his help on transforming the benchmarks to Java Akka and thank Nadeem Jamali and
the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

We address the problem of targeted test generation for actor systems. Recall that an actor is
an autonomous, concurrent agent which communicates with other actors using asynchronous
messages. Asynchronous message-passing and state encapsulation (isolation) in actors make it
easier to understand the message flow and facilitate scalability. State encapsulation prevents
low-level data races and atomicity violations. Asynchronous message-passing avoids syntactic
deadlocks [6, 7]. As a result, actor languages and frameworks–such as Erlang [9], Salsa [40],
Scala/Java Akka [4, 2], and Orleans [3]–have gained in popularity, and have been used for
scalable applications (for example, see [1, 3]).

© Sihan Li, Farah Hariri, and Gul Agha;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 8; pp. 8:1–8:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sihanli2@illinois.edu
mailto:hariri2@illinois.edu
mailto:agha@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Targeted Test Generation for Actor Systems

A goal of testing programs is to detect violations of desired safety properties. Some
safety properties such as “no dangling links” or “division by zero” are implicit. Others
are explicitly stated in the form of assertions. Violations of safety properties happen if
particular lines of the code can be reached with problematic data. Because concurrency leads
to nondeterminism, figuring out if particular lines of the code can be reached is challenging.
By taking advantage of the actor semantics, more effective testing tools may be developed.
One approach [33, 22] is to combine concolic testing [34] with partial order reduction based
on a macro-step actor semantics [8]. Unfortunately, given the very large number of potential
message schedules in an actor system, concolic testing is sometimes ineffective in determining
if a particular code location can be reached.

An alternate approach is to use a targeted test generation technique to try to generate tests
that cover specific code locations.1 Targeted test generation has the advantage that one does
not explore paths leading to code locations that obviously cannot have problems. Previous
research has developed techniques and tools based on symbolic execution for targeted test
generation for sequential programs (e.g., [24, 18, 16, 25, 10, 15, 29, 13]).

In this paper, we propose a method for generating targeted tests for actor systems based
on backward symbolic execution (BSE). The tests we generate are system-level test: they
exercise a group of interacting actors rather than only an isolated actor. The goal is to
find if a particular line can be reached through sending messages to the entry point of an
actor system, where an entry point is a message handler of an actor which interacts with the
external environment. In actor terminology, such actors are called receptionists. Each test
consists not only of the messages received by each actor but also the order in which these
messages are received. We start a BSE from the target code and explore only those paths
that are relevant to reaching that target; the exploration continues until a feasible path to
an entry point of the actor system is found.

In sequential programs, a call graph is used to guide the inter-procedural BSE [15, 29, 13].
In the actor context, we propose to use an abstraction of an actor system called message
flow graph (MFG). An MFG captures interactions between actors and is useful to guide
inter-actor BSE. We develop a sound whole-system static analysis to construct MFGs for
actor systems.

One challenge in static MFG construction and BSE for actor systems is to handle actor
operations such as message send/receive and actor creation. Even when an actor framework is
written in a language like Java, analyses that treat these actor operations as normal methods
would not work: if the actor semantics is ignored, BSE will explore the library methods
that are used to implement an actor runtime. Because a library that implements an actor
runtime contains complex multi-threading and networking code, symbolic execution would
become infeasible (cf. [22]). In addition, a static analysis would not be able to establish
connections between actors without understanding the meaning of these library methods.
To solve this problem, we define formal semantic models of actor operations in both MFG
analysis and BSE, and replace actual implementations of actor operations with the semantic
models. Assuming that the actor library has been correctly implemented, we prevent our
analysis from exploring the underlying library. This makes our analysis more efficient and
thus scalable.

In general, it is computationally intractable to consider every possible message arrival
schedule even if we explore only paths that are relevant to a single target. To efficiently
navigate the search space, we use a depth-first search strategy combined with two heuristics

1 Targeted test generation is sometimes called directed or guided test generation in the literature.

S. Li, F. Hariri, and G. Agha 8:3

and a feedback-directed search technique. The depth-first strategy attempts to reach the
entry point of the actor system as soon as possible. The two heuristics are as follows:
1. Each message handler is executed atomically so that search space is reduced due to

the lack of the interleaved execution of message handlers. This heuristic applies the
macro-step semantics in the Actor model [8], which follows from the fact that messages
to a given actor are processed one at a time and that actors do not share state.

2. Low weights are assigned to transitions in BSE that introduce more actors to be explored,
in order to avoid unnecessary explorations. The heuristic is based on the conjecture that
most concurrency bugs may be triggered by considering interactions of a small number of
actors. We do not have direct evidence of this conjecture. However, there is a previous
finding that most concurrency bugs in multi-threaded programs may be triggered using
only two threads [23].

As constraints are collected and solved, some paths turn out to be infeasible. In this
case, we deduce an unsatisfiable core–a subset of the constraint clauses whose conjunction is
unsatisfiable. Our feedback-directed technique uses these unsatisfiable cores to effectively
drive BSE towards a feasible path. The technique is particularly useful in cases where BSE
frequently hits infeasible paths.

We have implemented our method in a tool called Tap for the Java Akka framework [2],
a popular library enabling actor-style programming in Java. However, our method can be
applied to other actor frameworks or languages. We evaluate Tap on Savina [21], a set of 30
third-party actor benchmarks, as well as on four open source actor projects from GitHub.
The evaluation results show that Tap is effective in covering targets, achieving 78% target
coverage on a total of 1,000 targets. The heuristics and the feedback-directed technique
together substantially improve the target coverage over random search. In addition, Tap
detects six previously unreported bugs in the subjects, five of which are crash bugs caused
by out-of-order message delivery.

The paper makes the following contributions:
The MFG concept and construction: We introduce the MFG abstraction for actor
systems and develop a sound static analysis to construct it.
Modeling of actor operations in BSE: We formally define the full semantics of actor
operations in BSE for actor systems.
Efficient path exploration: We propose two search heuristics and a feedback-directed
technique to efficiently navigate the generally huge search space in BSE of actor systems.
Implementation and evaluation: We implement our method in Tap for Java Akka,
and conduct evaluations on benchmarks and real-world projects that demonstrate Tap’s
effectiveness in target coverage and bug detection.

2 Background

We provide background on the Actor model and the Java Akka framework. We also describe
the targeted test generation problem for actor systems in terms of the inputs and outputs.

2.1 The Actor model
In the Actor model [19, 6, 8], an actor is an agent of computation; it performs computations
as a response to a message. An actor is characterized by an actor name, a local state, and
behaviors. The actor name serves as the address of the actor in the system; it can be passed
around to other actors so that they may send messages to it. The local state of an actor is

ECOOP 2018

8:4 Targeted Test Generation for Actor Systems

1 public class Main {
2 public static void main(String[] args) {
3 ActorSystem system = ActorSystem.create("Banking");
4 ActorRef serverActor = system.actorOf(Server.props()));
5 ActorRef clientActor = system.actorOf(Client.props(serverActor));
6 }
7 }
8 public class Client extends UntypedActor {
9 private double balance = 100;
10 private ActorRef server;
11 @Override
12 public void onReceive(Object message) {
13 if (message instanceof WithdrawMessage) {
14 double amount = ((WithdrawMessage) message).amount;
15 if(balance >= amount) {
16 balance -= amount;
17 server.tell(message);
18 }
19 } else if(message instanceof DepositMessage) {
20 double amount = ((DepositMessage) message).amount;
21 balance += amount;
22 server.tell(mesage);
23 }
24 }
25 }
26 public class Server extends UntypedActor {
27 private double balance = 100;
28 @Override
29 public void onReceive(Object message) {
30 if (message instanceof WithdrawMessage) {
31 double amount = ((WithdrawMessage) message).amount;
32 assert(balance >= amount);
33 balance -=amount;
34 } else if(message instanceof DepositMessage) {
35 double amount = ((DepositMessage) message).amount;
36 balance += amount;
37 }
38 }
39 }

Figure 1 A simplified Bank Account example.

encapsulated within the actor – no external entity can change it directly. The only way to
change the local state of an actor is to send it a message that triggers this actor to change
its own state. Upon receiving a message, an actor can have the following three behaviors:
(1) performing local computations (updating its local state), (2) sending messages to actors,
or (3) creating new actors. Communication between actors is through asynchronous message
passing – the sender does not block its computation waiting on the recipient to process the
message, nor does it assume the order in which the recipient processes its incoming messages.
Messages are immutable and processed by the recipient one at a time without interleaving.
An actor system contains a group of actors. The subset of actors that can communicate
with the external environment are called receptionists, and the other actors in the system are
called internal actors.

2.2 Actors in Akka
Akka is a set of libraries for developing distributed and scalable systems on the Java Virtual
Machine. It can be used in both Scala and Java. The core of Akka is the akka-actor library,
which is an implementation of the Actor model. Figure 1 shows a simplified Bank Account
example written using Java Akka. We use this example to illustrate important concepts of
the Actor model in the context of Akka.

S. Li, F. Hariri, and G. Agha 8:5

Actor Creation. To create actors, we need to first create the enclosing actor system (Line
3 in Figure 1), a container in which the actors run. Then we create actors that live in the
system via the method actorOf. The example creates two actors: a client and a server (Lines
4-5). The actorOf method takes as input a configuration object (props) that specifies the
options for creating an actor such as its type and arguments to its constructor, and returns
an ActorRef object, which represent the address of the actor in the system. The ActorRef
corresponds to the concept, actor name in the Actor model. Following the naming convention
in Akka, we will use the terms actor reference and actor name interchangeably in this paper.
Other actors can send a message to this ActorRef, and the actor identified by this ActorRef
will receive this message. Note that other actors cannot directly access the local state of this
actor (e.g., access fields, call instance methods) through the ActorRef.

Acquaintance Relations. Actor A knows of actor B if A has access to the actor reference
(ActorRef) of B. At Line 5 in our example, we create a clientActor and pass it the ActorRef of
the serverActor (now the client knows of the server and can send messages to it). The actor
reference can also be sent as a message to inform other actors. Another type of acquaintance
between actors is via receiving messages: when an actor receives a message, it can access the
actor reference of the sender through the getSender() method. An actor can also get its own
actor reference through the getSelf() method.

Sending and Processing Messages. Every actor must implement a message handler, the
onReceive method. The onReceive method takes as input a message object, and is invoked
upon receiving a message. Typically, different types of messages trigger different behaviors in
the actor. For example, the onReceive of the Client actor (Lines 13-23) behaves differently on
the WithdrawMessage and the DepositMessage. Messages are sent via calling the tell method
on an ActorRef object (e.g., Line 17).

2.3 Problem Description
Actors model an open system – a system that may interact with its external environment. In
order to preserve locality properties of actors, such interaction is through messages received
by receptionist actors in the system and messages sent to external actors by actors in the
system. Thus the entry points of the system are message handlers of receptionists. Examples
of open systems in the real-world include Twitter, LinkedIn, Facebook Chat, and Halo 4, all
of which have been implemented using actors.

The input to our problem includes: (1) the code under test, (2) a target code location,
(3) a user defined set of receptionists of the system, and (4) a start configuration defining
the initial acquaintance between actors. The output (if found) is a test case that covers the
target. Such a test consists of messages sent to relevant actors as well as their arrival orders
on each of these actors.

In our Bank Account example, the code under test is the Client and the Server actor
classes; the receptionist is the Client actor as the client is the interface of the system for
user interactions. The main method sets up the initial acquaintance that the client knows
of the server. Suppose our target is the negation of the assertion at Line 32. One possible
output test case that covers the target is as follows. The client receives a deposit message
with the amount 50 and a withdraw message with the amount 120, in that order. Since
the deposit message is received before the withdraw message, the condition at Line 15 is
evaluated to true, and the client forwards both messages to the server. However, on the
server side, the withdraw message somehow arrives before the deposit message, causing the
assertion violation. This test case specifies the messages received by the client and the server

ECOOP 2018

8:6 Targeted Test Generation for Actor Systems

Class ::= class C extends C ′ {
−−−−→
C ′′ f; K

−→
M}

ActorClass ::= class C extends C’ {
−−−→
C” f; K R

−→
M}

K ∈ Ctor ::= C(
−−→
C ′ f) {super(

−→
f ′);

−−−−−−−−−−−−→
this.f ′′ = f ′′′;}

R ∈ Receive ::= void onReceive(C v) {
−−−−→
C’ v’; −→s }

M ∈ Method ::= C m(
−−→
C ′ v) {

−−−→
C ′v′; −→s }

s ∈ Stmt ::= v = e;` | return v;` | if (e) −→s else
−→
s′ ;`| v.send(v’);`

e ∈ Expr ::= v | (C) v′ | v.f | v.m(
−→
v′) | new C(−→v)| v op v′ | aref

aref ∈ ARef ::= create(C.class, −→v) | self | sender

v ∈ Var is a set of variable names
f ∈ FieldName is a set of field names
C ∈ ClassName is a set of class names
m ∈ MethName is a set of method names

` ∈ Lab is a set of labels
op ∈ {+,−, ∗, /,<,>,==, ! =, . . . , instanceof}

Figure 2 An actor language extending Featherweight Java.

as well as the message receiving orders on both actors. For illustration purposes, we do not
assume the first-in-first-out (FIFO) message delivery between a pair of actors in this example.
Given FIFO message delivery, the two messages could be routed through different actors,
still creating nondeterminism in the arrival order at the server.

Note that we must specify the receptionists of an actor system in our problem settings.
This requirement enforces system-level testing because internal actors can only be tested
through receptionists. In our example, to cover the target we have to send messages to the
client in order to trigger messages sent to the server. If all actors were potential receptionists,
then every actor may receive messages directly from the external environment. In this case,
each actor may be tested individually with all possible message sequences and no interaction
between actors need be considered. The benefit of considering external messages only to
designated actors is that it constrains the generated tests to those which would realistically
occur in an actor system. While this means that system-level testing is required, it eliminates
consideration of tests based on arbitrary messages to individual actors that would never be
sent in a realistic system.

3 Actor Language

To formally describe our method, we define a simplified actor language by extending Feather-
weight Java [20] and adding actor constructs to it. We choose the Featherweight Java language
for its simplicity and for the fact that our tool targets Java Akka. The formalism in this paper
largely follows the conventions in previous work [20, 35, 26]. The actor constructs in our
language resemble the counterparts in Java Akka. Although there have been formalizations of
actor languages [8, 32], our formalization of the language is closely coupled with our analysis,
and includes more details such as data store and context, which are required to specify our
analysis.

S. Li, F. Hariri, and G. Agha 8:7

α ∈ ActorMap = ActorRef → ActorState

msg ∈Message = ActorRef ×ActorRef ×Obj
r ∈ ActorRef ⊂ Obj
ς ∈ ActorState = Stmt× Stack × Store× CallStack × Context

st ∈ Stack = (Var ⇀ Addr)∗

σ ∈ Store = Addr → Obj

o ∈ Obj = HContext× (FieldName ⇀ Addr)
cs ∈ CallStack = (Stmt× Context×Addr)∗

a ∈ Addr = (Var × Context) ∪ (FieldName×HContext)
c ∈ Context is an infinite set of regular contexts

hc ∈ HContext is an infinite set of heap contexts

Figure 3 Domains of actor maps and messages.

3.1 Syntax
Figure 2 describes the grammar of a simplified actor language. The language is in A-Normal
form, where computations are syntactically sequentialized. For example, the statement v =
o.m(o.f) is transformed to two statements v1 = o.f; v2 = o.m(v1) in A-Normal form. Such
transformation brings our language closer to an intermediate language for simpler semantics
definitions. Most of the notations in Featherweight Java are intuitive. We give a quick
reminder of the less obvious conventions. A class declaration consists of a list of fields (we
use an arrow to represent a list), a single constructor, and a list of methods. The constructor
takes as input a list of arguments and assigns each argument to the corresponding field.
Each statement in the language is assigned a distinct label. We augment Featherweight Java
with binary expressions and if statements, which are later needed in the formalization of
the BSE semantics. We omit the loop statement because loops are bounded and unrolled
into if statements in our analysis. Such unrolling trades completeness for tractability and is
standard practice in testing.

We now introduce actor constructs (highlighted in bold). Each actor class declaration
must include exactly one onReceive method. This method takes a single input (message)
and returns void. An actor creation operation create(A.class, −→v) takes as input the class
of the actor to be created C, followed by a list of arguments to the constructor of C, and
returns the actor reference of the created actor. A message send operation v.send(v′);` sends
the message v′ to the actor reference v of the recipient actor.

3.2 Concrete Semantics
An instantaneous snapshot of an actor systems is called a configuration.2 The semantics of
our language is defined by a transition relation on configurations. A configuration is a tuple,〈

α
∣∣ µ〉

2 Recall that actors are asynchronous: there is no unique global time. Thus an actor snapshot is with
respect to some frame of reference, i.e., a causally consistent linearlization of a partial order.

ECOOP 2018

8:8 Targeted Test Generation for Actor Systems

Actor Creation〈
α • r 7→ (Jv = create(C.class,

−→
v′);`K, st, σ,_)

∣∣ _〉⇒C〈
α • r 7→ (succ(`), st, σ′,_) • r′ 7→ ς

∣∣ _〉, where
r′ is fresh σ′ = σ + [st(v) 7→ r′] o′i = σ(st(v′i)) ς = (nil, [], σ′′, [], nil)
−→
f = F(C) ai = (fi, hc) o = (hc, [fi 7→ ai]) σ′′ = [athis 7→ o, ai 7→ o′i, aself 7→ r′]

Message Sending〈
α • r 7→ (Jv.send(v′);`K, st, σ,_)

∣∣ µ〉⇒C〈
α • r 7→ (succ(`), st, σ,_)

∣∣ µ • (r, σ(st(v)), σ(st(v′)
)〉

Message Receiving〈
α • r 7→ (nil, st, σ, cs, c)

∣∣ µ • (r′, r, o)
〉
⇒C〈

α • r 7→ (s, st′, σ′, cs′, c′)
∣∣ µ〉, where

c′ is fresh o0 = σ(athis) Jvoid onReceive (C v) {
−−−→
C ′ v′;

−→
s′ }K = rec(cls(o0))

s = car(
−→
s′) a = (v, c′) a′i = (v′i, c′) st′ = cons([v 7→ a, v′i 7→ a′i], st)

cs′ = cons((nil, c, nil), cs) σ′ = σ + [a 7→ o, asender 7→ r′]
Self Reference〈
α • r 7→ (Jv = self;`K, st, σ,_)

∣∣ _〉⇒C

〈
α • r 7→ (succ(`), st, σ + [st(v) 7→ r)],_)

∣∣ _〉
Sender Reference〈
α • r 7→ (Jv = sender;`K, st, σ,_)

∣∣ _〉⇒C〈
α • r 7→ (succ(`), st, σ + [st(v) 7→ σ(asender)],_)

∣∣ _〉
Figure 4 Concrete semantics for actor operations of the simplified actor language.

where α is an actor map that maps a finite set of actor references to actor states, and µ is a
finite multi-set of pending messages. It is important to note that by modeling the pending
messages as a multi-set, the order in which messages are sent is not preserved. As a result,
our language semantics does not guarantee the FIFO message delivery between a pair of
actors. We choose not to assume the FIFO message delivery in both the concrete language
semantics and the BSE semantics in Section 5.1, because the FIFO semantics is not primitive
in the Actor model [19, 6, 8]. However, one can easily accommodate the FIFO semantics
in our models by replacing the multi-set with a data structure that preserves the message
sending orders (e.g., a set of lists representing a sequence of messages, one list for each pair
of a sender and a receiver). Since most real-world actor languages and frameworks guarantee
the FIFO message delivery, we do implement the FIFO semantics in our tool.

The domains in a configuration are described in Figure 3. A message is a tuple consisting
of the actor reference of the sender, the actor reference of the recipient, and the message
content. An actor reference is an object that stores the location information of an actor. An
actor state ς consists of a statement under execution, a data stack to store local variables,
a data store of points-to relations, a call stack to track active method invocations, and a
current execution context. A data stack st consists of a list of data frames, each of which
maps local variables to addresses. A data store σ maps addresses to objects. A call stack cs
consists of a list of call frames, and each call frame consists of the statement to return to,

S. Li, F. Hariri, and G. Agha 8:9

MFG
Construction BSE

System
Under Test Target

TestMFG

Figure 5 The overview of our two-phased test generation method.

the context to restore, and the address to store the return value. An object o consists of a
heap context and a list of fields. An address is a location that holds an object. An address a
consists of either a local variable and its regular context (allocated for a local variable) or a
field and its heap context (allocated for a field). In the concrete semantics, every dynamic
object instance has a unique heap context, and every dynamic method call has a unique
regular context.

We express the concrete semantics of our language as a transition relation (⇒C) from
one configuration to another. Figure 4 shows the semantics of actor operations only. The
semantics of local computations in an actor is similar to the normal semantics of Java, and
thus omitted. For simplicity, we use underscore _ in our transition rules, to represent the
remaining states in a tuple that are neither used nor updated in the transition. We use
standard functions car, cdr, cons, list to manipulate lists, and define a number of helper
functions: succ returns the next statement given the label of the current statement, F
returns a list of field names for a given class, cls returns the class name of a given object, and
rec returns the declaration of the onReceive method of a given class. We use the operator •
to add an element to a set, and the notation + to insert or update (if existing) entries in a
map. We use nil as the null value for every domain. A fresh value means that a new value
is generated from the corresponding domain. The symbols athis, aself, and asender represent
reserved addresses to store the this object, the actor reference of itself, and the actor reference
of a sender, respectively.

The Actor Creation rule says that a new actor is created with a fresh reference r′ in the
system. The actor has an initial state, where the current statement is nil. The Message
Sending rule defines the asynchronous semantics of sending messages. The new message is
put in the set of pending messages µ, and the sending actor continues its execution. Note
that messages are immutable so that there are no concurrent writes on messages. The
Message Receiving rule says that an actor can receive a message only when it is ready (i.e.,
the statement is nil). Upon receiving the message, the onReceive method is invoked, and
the message is no longer pending and thus removed from µ. After executing the onReceive
method, the statement is set to nil, signifying that the actor is ready to receive a message
again. The Self Reference rule says that the actor reference of the this object is assigned to
a local variable v. Similarly, the Sender Reference rule says that the actor reference of the
message sender is assigned to a local variable v.

4 Message Flow Graph Construction

Our test generation method operates in two phases as shown in Figure 5. In the first phase,
we use static analysis to construct a message flow graph (MFG), an abstraction of an actor
system that models potential interactions (i.e., actor creation and communication) between

ECOOP 2018

8:10 Targeted Test Generation for Actor Systems

Client Server
W, DW, D

ActorRef(Server)

Figure 6 The MFG of the Bank Account example. The symbols W and D represent the withdraw
message and the deposit message, respectively.

actors in the system. The input to our MFG analysis is the system under test including
the code and the specified receptionists, and the output is an MFG of the system. In the
second phase, we use BSE to generate a test that covers a given target. To generate tests
that exercise multiple actors, BSE must go across actors. The MFG from the first phase is a
key input that enables inter-actor BSE. After BSE reaches the entry of the message handler
on an actor a, it queries the MFG to obtain actors that can send the required message to
the actor a. Then BSE picks one potential sender, jumps to the exit of the message handler
of the sender, and continues with the previous path constraint carried over. When a feasible
path is found during the path exploration, we generate the test from the path constraint.
We next explain the MFG construction and the BSE (in Section 5) in details.

An MFG is a directed graph between abstract objects, where an abstract object represents
multiple concrete objects of the same class whose field values have been merged into a set.
Specifically, a node in the MFG represents an abstract actor and a directed edge between
two nodes means that the abstract actor represented by the source node either creates or
sends a message to the abstract actor represented by the sink node. MFG edges are labeled
with abstract constructor parameters for actor-creation edges and abstract messages for
message-sending edges. Note that the MFG edges do not indicate the acquaintance between
actors–it is possible that an actor a knows of another actor b, but there is no edge from a to
b because a neither creates b nor sends a message to b.

An abstract object may be replaced by its class if there is only one abstract object
per class. Figure 6 shows the MFG of the Bank Account example. There are two actors,
Client and Server, in the graph. The symbols W and D represent the WithdrawMessage and
the DepositMessage, respectively. Both actors are created (creation edges are represented
with dashed arrows) by the external environment. The Client is initialized with an actor
reference mapped to the Server, and it can send WithdrawMessage and DepositMessage to the
Server. The Client is the only receptionist of the system and can receive WithdrawMessage
and DepositMessage from the external environment.

To construct a MFG, we need to not only resolve the recipient of each message-sending
site and the actor being created of each actor-creation site, but also pass along the messages
and constructor parameters between actors. This is because the message and constructor
parameters can affect the analysis of receiving actors. We use points-to analysis to compute
the points-to sets for messages, constructor parameters, and actor references. In addition, we
model the semantics of actor operations so that analysis information can be carried across
actor boundaries. In particular, the actor creation operation conceptually creates two objects:
an actor reference object and a corresponding actor object. Our analysis keeps track of such
mappings to resolve the actor being created, and passes the points-to set of constructor
parameters to this actor for instantiation.

S. Li, F. Hariri, and G. Agha 8:11

ω ∈ Ω = ActorState×Graph×RefMap

γ ∈ RefMap = ActorRef → (ClassName×Obj)
r ∈ ActorRef ⊂ Obj
G ∈ Graph = ActorRef ×ActorRef × Type ⇀ (P(Obj))∗

Type = {create, send}
ς ∈ ActorState = Stmt× Stack × Store× CallStack × Context

st ∈ Stack = (Var ⇀ Addr)∗

σ ∈ Store = Addr → P(Obj)
o ∈ Obj = HContext× (FieldName ⇀ Addr)

cs ∈ CallStack = (Stmt× Context×Addr)∗

a ∈ addr = (Var ×MethodName× Context) ∪ (FieldName×HContext)
Context = HContext = Lab

Figure 7 State space of the small-step state machine.

Note that passing only the type of the message or constructor parameter between actors
can result in unacceptable imprecision in our analysis. For example, a common case is that
an actor reference r is sent as a message to a recipient actor A; A receives r and then sends a
message to r. When resolving r in A, we only know that the type of r is ActorRef, but we
know nothing about the actor that lives in r. Thus, we have to conservatively assume all
actor classes in our system may live in r, and add a message-sending edge from A to every
actor class. To avoid such imprecision, we need to pass along the points-to sets of messages
and constructor parameters instead of their types. We next formally describe our analysis.

4.1 Analysis Semantics
We express the semantics of our analysis using small-step state machines, each modeling one
abstract actor. Communication between actors is modeled by global states shared across
state machines. The domain Ω of a state machine is defined in Figure 7. The reference map
γ stores the mappings between actor references and the actors created in the system. The
graph G records the actor-creation and message-sending events between actors. Specifically,
G maps a tuple of a source actor reference, a sink actor reference, and an operation type to
a list of points-to sets of messages or constructor parameters. Visually, an entry in the map
can be seen as a directed edge, with the label being the list of points-to sets. The ActorState
is similar to the one defined in concrete semantics of our language except that now the
ActorState is an abstract state: the store maps an address to a set of objects rather than
one object; the regular and heap contexts are a finite set of statement labels. An important
design decision made by our analysis is that we create only one abstract actor object per
actor class. That is, actors of the same class created in different sites are merged into one
abstract actor object by merging the points-to sets of the corresponding fields. In this way,
we only need to create one state machine per actor class, making our analysis faster and
more scalable. The incurred imprecision can be refined by the BSE in phase II because our
BSE distinguishes every concrete actor.

ECOOP 2018

8:12 Targeted Test Generation for Actor Systems

Actor Creation(
(Jv = create(C.class,

−→
v′);`K, st, σ,_), G, γ

)
⇒A

(
(succ(`), st, σ′,_), G′, γ′

)
, where

(γ′, r) = getRef(γ,C) σ′ = σ t [st(v) 7→ {r}] r′ ∈ σ(aself)
G′ = merge(G, [(r′, r, create) 7→ list(σ(st(v′i)))])

Message Sending(
(Jv.send(v′);`K, st, σ,_), G, _

)
⇒A

(
(succ(`), st, σ,_), G′, _

)
, where

r ∈ σ(st(v)) r′ ∈ σ(aself) G′ = merge(G, [(r′, r, send) 7→ list(σ(st(v′)))])
Message Receiving(
(nil, st, σ, cs, c), G, _

)
⇒A

(
(s, st′, σ′, cs′, c′), G, _

)
, where

o0 ∈ σ(athis) Jvoid onReceive (C v) {
−−−→
C ′ v′;

−→
s′ }K = rec(cls(o0)) s = car(

−→
s′)

(hc0,_) = o0 c′ = hc0 a = (v, onReceive, c′) a′i = (v′i, onReceive, c′)
st′ = cons([v 7→ a, v′i 7→ a′i], st) cs′ = cons((nop, c, nil), cs) r ∈ σ(aself)
Or = preds(G, r, send, γ) O ∈ {car(G((r′, r, send))) | r′ ∈ Or}
σ′ = σ t [a 7→ O, asender 7→ Or]

Self Reference(
(Jv = self;`K, st, σ,_), _

)
⇒A

(
(succ(`), st, σ t [st(v) 7→ σ(aself)],_), _

)
Sender Reference(
(Jv = sender;`K, st, σ,_), _

)
⇒A

(
(succ(`), st, σ t [st(v) 7→ σ(asender)],_), _

)
Figure 8 Abstract semantics for actor operations in MFG analysis.

The analysis semantics is defined by the transition relation (⇒A) ⊂ Ω× Ω. The analysis
semantics of local computations is precisely the 1-object-sensitive points-to analysis [27].
We provide the transition rules for local computations in the appendix. Figure 8 describes
transition rules for the actor operations. The getRef function checks if the given class C is
in the value set of γ. If found, it returns itself and the key of the value. If not found, it adds
an entry r 7→ (C, nil) to γ, where r is fresh, and returns the updated γ′ and r. Since only
one abstract actor object is created per actor class, an actor class can appear in at most one
tuple in the value set of γ. The merge function merges the labels of edges with the same
source and sink. The preds function finds all predecessors of a given type for a node r in the
graph G and returns the set of actor objects mapped by the predecessors in γ.

In the Actor Creation rule, instead of instantiating the actor object at the creation site,
an actor-creation event is recorded and merged into the graph. Subsequently, when a state
machine for this actor class is created, actor-creation events are used to instantiate the single
abstract actor object for this class. Similarly in the Message Sending rule, a message-sending
event is recorded and merged into the graph. The Message Receiving rule says that the
onReceive method of the actor is invoked upon receiving a message. The graph G is queried
to find the set of all possible senders Or, and the set of all possible messages received by O.
Note that when updating the call stack, we use nop instead of nil for the statement to return
to. nop indicates no operation to be performed and stops the state machine. Otherwise, the
state machine will not halt.

S. Li, F. Hariri, and G. Agha 8:13

Algorithm 1: Iterative MFG construction.
Input : An Actor system P , a raw graph G ∈ Graph, and an actor reference map

γ ∈ RefMap

Output : A message flow graph of P
1 worklist← [] factStore← []
2 worklist.appendAll(γ.keySet())
3 while worklist not empty do
4 r ← worklist.removeFirst()
5 beforeFacts← InEdges (r, G)
6 if factStore[r] 6= beforeFacts then
7 factStore[r]← beforeFacts

8 Mr ← CreateStateMachine (r,G, γ)
9 Mr.execute()

10 worklist.appendAll(Successors (r,G))
11 end
12 end
13 return CollapseToMFG (γ,G)
14 Procedure CreateStateMachine (r, G, γ)
15 (C,_)← γ(r)

−→
f ← F(C) ai ← (fi, `C)

16 o← (`C , [ai 7→ fi]) // actor allocation
17 γ ← γ + [r 7→ (C, o)] // ref map update

18
−→
O ← [∅, . . . , ∅] // a list of points-to sets

19 foreach (r′, r′′, create) 7→
−→
O′ in InEdges (r,G) do

20 Oi ← Oi ∪O′
i

21 end
22 σ ← [athis 7→ {o}, ai 7→ Oi, aself 7→ {r}]
23 ω0 ← ((nil, [], σ, [], nil), G, γ)
24 CreateMr with the initial state ω0

25 return Mr

26 End

4.2 MFG Construction Algorithm

Algorithm 1 shows our iterative algorithm to construct the MFG. The algorithm takes as
input an actor system P , a raw graph G, and a reference map γ, and outputs an MFG
graph. G and γ are initialized from the driver code that sets up the actor system. Initially,
G contains actor-creation and message-sending events by the external environment, and γ
contains the mappings for actors created by the external environment. For each actor class,
one state machine is instantiated to model the abstract actor of this class. The algorithm
maintains a worklist that keeps track of the abstract actors to be analyzed next as well as a
factStore that stores the relevant data facts for each abstract actor. The data facts for an
abstract actor are essentially the set of incoming edges of this actor node in G, and these
facts affect the initial state of the state machine for this actor.

The algorithm starts with pushing the initial actors onto the worklist (Line 2), and
iteratively analyzes these actors one at a time. Before the analysis, the algorithm computes
the relevant data facts for this actor from G (Line 5). It then checks whether the facts
are changed, by comparing the computed facts with the previous facts stored in factStore.
If changed, the algorithm updates the facts for this actor in factStore (Line 7), analyzes
this actor with these new facts by instantiating and running the state machine described in

ECOOP 2018

8:14 Targeted Test Generation for Actor Systems

Section 4.1 (Lines 8-9), and pushes all the successors of this actor node onto worklist (Line
10). Otherwise, the algorithm skips this actor because the execution of its state machine will
yield the same result and will not change the global state G. This process continues until
worklist is empty, indicating a fixed point is reached. The CreateStateMachine procedure
is the only place where instantiations of abstract actors happen. The constructor parameters
of multiple actor-creation edges are merged (Lines 18-21) and the results are used to initialize
the fields of the abstract object (Line 22). Finally, the algorithm builds an MFG from G and
γ by collapsing the abstract objects of nodes and labels into classes. If an object is an actor
reference, we also encode the class of the underlying actor into the MFG.

4.3 Optimizations
Our analysis applies two lightweight yet effective optimizations to actor classes based on
the code pattern in actor programs. Since actors often receive multiple types of messages
and behave differently for each message type, a common code pattern in actors’ onReceive
methods is that an if statement is used at the top of its control flow to check the message
type and process one type of message in one branch. In our running example, both the
Client and the Server actors follow this pattern.

Our first optimization eliminates unreachable code based on the potential types of the
message in our analysis. Specifically, we compute the potential types from the points-to set of
the message and analyze only the branches of the top if statement that may be taken under
these message types. Our second optimization is based on the idea that when a message
must be of a certain type under some context, we can safely remove objects that are not
an instance of this type from the points-to set of this message. The optimization works as
follows: after entering a branch of the top if statement, we carry the corresponding type
constraint of the message (obtained from the condition of the if statement) with our analysis.
That is, whenever we query the points-to set of the message in this branch, an additional
filter function f : P(Obj)× ClassName→ P(Obj) is applied to the original points-to set to
filter out objects that are not an instance of the given type. Our evaluation shows that these
optimizations significantly reduce the size of the MFGs.

Example. Let us illustrate the optimizations using the Client actor in Figure 1. Suppose
that the points-to set of the message parameter in the onReceive method contains only one
DepositMessage message. Based on the first optimization, we only need to analyze the second
branch of the if statement (Lines 20 - 22) instead of the whole method. To illustrate our
second optimization, we now suppose that the points-to set of the message parameter contains
a WithdrawMessage message and a DepositMessage message. Then both branches of the if
statement must be analyzed. When analyzing its first branch (Lines 14-18), we know that the
message parameter must be of the type WithdrawMessage. With this type constraint, we can
remove the DepositMessage message from the points-to set in this branch because it is not an
instance of the type WithdrawMessage. Hence, we can conclude that at Line 17, message must
point to a WithdrawMessage message rather than may point to a WithdrawMessage message or
a DepositMessage message. Similarly, the optimization can be applied to the second branch
as well.

5 Test Generation

In phase II, we use backward symbolic execution to generate tests for the target. BSE starts
from the target, and performs a backward exploration, searching for a feasible path to the
entry points of the system. Constraints over the execution are collected and used to generate

S. Li, F. Hariri, and G. Agha 8:15

α ∈ ActorMap = ActorRef → ActorState

Event = SendingEvent ∪ CreationEvent

SendingEvent = ̂ActorRef × ̂ActorRef × V̂ ar × T̂ ime

CreationEvent = ̂ActorRef × ClassName× (V̂ ar)∗ × T̂ ime

ς ∈ ActorState = LocalState× T̂ ime×Requests

β ∈ LocalState = Stmt× CallStack × V̂ ar

cs ∈ CallStack = (Stmt× V̂ ar × V̂ ar)∗

Q ∈ Requests = V̂ ar × ̂ActorRef × T̂ ime

V̂ ar, ̂ActorRef, T̂ ime are sets of free variables in first order logic.

Figure 9 State space of the backward symbolic execution.

the test. The generated test consists of the messages sent to relevant actors as well as the
message receiving orders.

The semantics of BSE is formally defined as a transition relation ⇒S from one symbolic
configuration to another symbolic configuration. A symbolic configuration is a tuple,〈

α
∣∣ µ ∣∣ φ ∣∣ χ〉

where α represents relevant actors in BSE and is a map from a finite set of actor references
to actor states, µ is a finite set of pending events (including both actor creation and message
sending events). φ is the path condition collected over the transitions, and χ is the set of
external messages to the system. The domain of φ is the quantifier-free formulae in first-order
logic (FOL) with equality. The domain of the remaining configuration is described in Figure 9.
Note that V̂ ar, ̂ActorRef, T̂ ime are sets of free variables in FOL, which can hold values of
primitives and references. A message-sending event consists of the actor reference of the
sender, the actor reference of the recipient, the message, and the time when the message is
sent. An actor-creation event consists of the actor reference of the actor being created, the
type of the actor, and a list of constructor parameters, and the creation time. An actor state
consists of a local state, the current local time of the actor, and a set of message requests.

Since BSE goes backwards, a message request under this context indicates that a certain
message is required in order for the execution to reach this point, yet this message is not in
the mailbox of that actor. For each message request, BSE attempts to find an actor that
can send the corresponding message, and thus “fulfill” this request. The local state consists
of the current statement, the call stack, and a variable representing the receiver object of
the current method call. A message request consists of a message, an actor reference for the
sender, and the time of receiving the message. The call stack consists of a list of call frames,
and each call frame consists of the statement to return to, the variable of the return value,
and the variable of the caller object. T̂ ime is a set of integer variables.

To describe the BSE semantics, we add two additional types of statements to our language
as indicators of reaching the entry of a method. We use entryR; as the first statement for
every onReceive method, and use entry; as the first statement for all other methods. For
space considerations, the formal semantics of local computations in BSE is described in the
appendix.

ECOOP 2018

8:16 Targeted Test Generation for Actor Systems

Actor Creation〈
α • r 7→ ((Jv = create(C.class,

−→
v′);`K,_), t̂,_)

∣∣ µ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((pred(`),_), t̂′,_)

∣∣ µ′ ∣∣ φ′ ∣∣ _〉, where
t̂′, r̂′ are fresh φ′ = φ[r̂′/v̂] ∧ t̂′ < t̂ µ′ = µ ∪ {(r̂′, C,

−→
v̂′ , t̂)}

Message Sending〈
α • r 7→ ((Jv.send(v′);`K,_), t̂,_)

∣∣ µ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((pred(`),_), t̂′,_)

∣∣ µ′ ∣∣ φ′ ∣∣ _〉, where
t̂′ is fresh φ′ = φ ∧ t̂′ < t̂ µ′ = µ ∪ {(r̂, v̂, v̂′, t̂)}

Actor Entry-Existing Actor〈
α • r 7→ ((JentryR;`K,_), t̂, Q)

∣∣ _ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((nil,_), t̂′, Q′)

∣∣ _ ∣∣ φ′ ∣∣ _〉, where
t̂′ is fresh φ′ = φ ∧ t̂′ < t̂ Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = method(`)

Q′ = Q ∪ {(v̂′, ˆrsender, t̂)}
Actor Entry-New Actor〈
α • r 7→ ((JentryR;`K,_), t̂, Q)

∣∣ _ ∣∣ φ ∣∣ _〉⇒S〈
α • r 7→ ((nil,_), t̂′, Q′) • r′ 7→ ((nil, [], v̂′0), t̂′′, [])

∣∣ _ ∣∣ φ′ ∣∣ _〉, where
t̂′, t̂′′, r̂′, v̂′0 are fresh is fresh Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = method(`)

C ∈ predCls(AC(r)) Q′ = Q ∪ {(v̂′, ˆrsender, t̂)} φ′ = φ ∧ t̂′ < t̂ ∧ t̂′′ < t̂

Messaging Event Matching-Internal〈
α • r 7→ (_, Q • (v̂, ˆrsender, t̂))

∣∣ µ • (r̂′, r̂′′, v̂′, t̂′)
∣∣ φ ∣∣ χ〉⇒S〈

α • r 7→ (_, Q)
∣∣ µ ∣∣ φ′ ∣∣ χ〉,where

φ′ = φ ∧ r̂ == r̂′′ ∧ v̂ == v̂′ ∧ ˆrsender == r̂′ ∧ t̂′ < t̂

Messaging Event Matching-External〈
α • r 7→ (_, Q • (v̂, ˆrsender, t̂))

∣∣ _ ∣∣ χ〉⇒S

〈
α • r 7→ (_, Q)

∣∣ _ ∣∣ χ ∪ {(r̂, v̂)}
〉

Creation Event Matching〈
α • r 7→ ((nil,_, v̂0), t̂, [])

∣∣ µ • (r′, AC(r),−→v̂ , t̂′)
∣∣ φ ∣∣ _〉⇒S

〈
α
∣∣ µ ∣∣ φ′ ∣∣ _〉,where

−→
f = F(AC(r)) φ′ = φ ∧ r̂ == r̂′ ∧ read(v̂0, fi) == v̂i ∧ t̂′ < t̂

OnReceive Looping〈
α • r 7→ ((nil,_), _)

∣∣ _〉⇒S

〈
α • r 7→ ((last(−→s),_), _)

∣∣ _〉,where
Jvoid onReceive(C ′v′){

−−−→
C ′′v′′; −→s }K = rec(AC(r))

Self Reference〈
α • r 7→ ((Jv = self;`K,_), _)

∣∣ φ ∣∣ _〉⇒S 〈α • r 7→ ((pred(`),_), _)
∣∣ φ[r̂/v̂]

∣∣ _〉
Sender Reference〈
α • r 7→ ((Jv = sender;`K,_), _)

∣∣ φ ∣∣_〉⇒S 〈α • r 7→ ((prev(`),_), _)
∣∣ φ[ˆrsender/v̂]

∣∣_〉
Figure 10 Transition rules for actor operations in backward symbolic execution.

S. Li, F. Hariri, and G. Agha 8:17

5.1 Semantics Of Actor Operations In BSE

Figures 10 shows the semantics of BSE for actor operations. We put a hat on a symbol to
represent a free variable in φ. For example, we use v̂ in φ to represent the corresponding
variable v is free. Note that for variables with the same name in different execution contexts,
we create distinct variables in φ to represent them. The notation φ[v̂′/v̂] means that every
occurrence of v̂ in φ is syntactically replaced by v̂′. It is important to note that whenever
such substitutions happen in φ, we also perform the corresponding substitutions in the rest
of the symbolic configuration. For readability, we omit these subsequent substitutions in our
transition rules. We use a number of helper functions in our transition rules. The function
pred returns the previous statement of a given label, and the function last returns the last
element of a given list. The function method returns the method that encloses the statement
with the given label. The function AC returns the class name of the actor object mapped
by the given actor reference. The function read takes as input a free variable representing
an object and the field name, and returns the variable representing the field. The function
predCls takes as input a class name, locates the node of this class in the MFG, finds the
predecessors of the node, and returns a set of class name of the predecessors.

The Actor Creation rule and the Message Sending rule say that upon an actor-creation
or message-sending operation, an actor-creation or a message-sending event is added to a
pool of pending events µ. Every actor keeps a local time t̂, and increases its local time when
an actor operation is performed. Hence, the constraint t̂′ < t̂ indicates that the operation at
t̂′ happens before the operation at t. The Actor Entry rules describe potential transitions
when BSE reaches the entry of the onReceive method of an actor. Reaching the entry of
the onReceive method implies that this actor must have been created and have received
a message. Thus, in both Actor Entry rules, a corresponding message request is added
to the set Q, indicating that the specific message is required in order for the execution to
reach this point, and BSE needs to find an actor that sends the message. There are two
possibilities concerning who may create this actor or send a message to this actor. The Actor
Entry-Existing Actor describes one possibility that this actor is created by an existing actor
in α, and the message is also sent from an existing actor; there is no need to introduce new
actors in α. The Actor Entry-New Actor describes the other possibility: either the actor
creation or the message send is done by actors not in α. As a result, a new actor is added
to α. The MFG is queried to obtain the predecessors of this actor class, which is the set
of actor classes that may create or send a message to this actor. Then an actor with the
default initial state is created in α with its type being one of the predecessors. This is the
only rule that introduces new actors to our exploration.

A message request is fulfilled either by a pending message event in µ sent from an actor
inside the system or, if the actor is a receptionist, by a message sent from the external
environment. The Messaging Event Matching-Internal rule describes the first case, in which
the matched request and event are remove from Q and µ respectively, and a happens-before
constraint between the message receive and send operations is added to φ. The Messaging
Event Matching-External rule describes the second case, in which the request is removed
from Q, and an external message is added to χ. The Creation Event Matching rule says that
a pending actor-creation event is matched with an actor in α. Note that to match a creation
event, the type of the actor must be the same as the type specified in the creation event, and
the message request set Q of the actor must be empty, indicating all message requests are
fulfilled. The Receive Looping rule says that an idle actor can start an execution from the
exit of the onReceive method.

ECOOP 2018

8:18 Targeted Test Generation for Actor Systems

5.2 Path Exploration In BSE
The initial symbolic configuration is that the actor map α contains only one actor with the
statement being the target, and the event pool µ contains the actor-creation events from
the external environment. BSE starts with the initial configuration and takes one transition
at a step. The computation branches when multiple transition rules can be matched on
one configuration. BSE uses the depth-first search strategy for path exploration. At each
branching point, we pick one transition from all enabled transitions, and check if the path
constraints in the new configuration is satisfiable. If satisfiable, we continue the exploration
on the new configuration; otherwise, we backtrack. The final accepting configurations are
the ones with α being empty and φ being satisfiable. A system test can be constructed from
the model of φ, the transition path, and the set of external messages.

Because actors in the configuration proceed their computations concurrently, almost
any configuration has multiple enabled transitions. As a result, the search space in BSE is
intractable. To address this problem, we propose two search heuristics and a feedback-directed
search technique to efficiently find a feasible path in the huge search space.

Search heuristics. Our first heuristic is that BSE always explores a message handler
atomically. In other words, once BSE starts a transition of local computations in a message
handler of an actor, all transitions on other actors are disabled and BSE will keep exploring
this message handler until reaching the entry of the message handler. As a result, the number
of enabled transitions on each symbolic configuration is reduced. This heuristic leverages the
atomicity of the macro-step semantics [8] in the Actor model–messages to a given actor are
processed one at a time without interleaving. Macro-step is also enabled by the fact that
the concurrent execution of message handlers on different actors need not be interleaved
(i.e., messages to different actors can be sequentialized). This is because actors do not share
states. Therefore, the heuristic is safe: it reduces the search space in BSE without missing
any tests that can potentially cover the target.

Our second heuristic keeps the number of actors in the generated test small in order
to avoid exploring unnecessary paths. This heuristic is based on the conjecture that most
concurrency bugs may be triggered by considering interactions of a small number of actors.
The conjecture is the result of a previous finding that most concurrency bugs in multi-
threaded programs can be triggered using two threads [23]. With this conjecture, we assign
different weights to transition rules for actor operations. When multiple transition rules are
enabled on a configuration, the probability of picking a rule is based on its weight (rules with
more weights have a higher chance of being picked). We give a much lower weight to the
ActorEntry−NewActor rule, which is the only rule to introduce new actors to a test. This
is because introducing a new actor opens up a whole new search space – BSE has to find a
feasible execution trace on this actor. In this way, we keep the number of actors in our test
small, and avoid fruitless explorations. In addition, we give more weights to transition rules
that consume pending events in the event pool µ so that message requests from actors can
be fulfilled as soon as possible. Recall that a test is generated only when BSE reaches a final
accepting configuration, where the actor map α must be empty. An actor is removed from α

only when all of its message requests are fulfilled. Hence, fulfilling these message requests
helps BSE find a test efficiently.

Feedback-directed search. Heuristics do not always work well. There are cases where a
large number of transitions are enabled, but only a few of them can lead to a feasible path. If
the heuristics do not bias towards these transitions, BSE will frequently hit infeasible paths.

S. Li, F. Hariri, and G. Agha 8:19

1 private int pingsLeft = 100;
2 public void onReceive (Object message) {
3 if(message instanceof PongMessage) {
4 pongActor.tell(new PingMessage(), getSelf());
5 pingsLeft --;
6 if(pingsLeft == 0) {
7 \\ target
8 } ...
9 } ...
10 }

Figure 11 An example from our subjects that illustrates the feedback-directed search technique.

The feedback-directed search technique guides BSE out from such undesirable situations by
leveraging the unsatisfiable cores of the path constraint from the previous infeasible paths.
An unsatisfiable core is a subset of clauses in the original constraint such that the conjunction
of these clauses is unsatisfiable. To make the path constraint feasible, the clauses in the
unsatisfiable core need to be changed. The idea of our feedback-directed technique is to drive
the execution towards the code that changes the values of the variables in the unsatisfiable
core, hoping that the changes will make the path constraint satisfiable.

Our feedback-directed technique has two steps. In the first step, we identify a set of code
instructions that can potentially change the unsatisfiable core. We obtain the unsatisfiable
core of the path constraint directly from the underlying SMT solver Z3 [14]. Then we
extract all the variables from the unsatisfiable core, and map these variables to corresponding
program variables. This can be done without additional overhead, because our symbolic
execution keeps track of the mapping between the variables in path constraints and program
variables. For each program variable, we identify a set of instructions that define this
variable (definition sites). In our implementation, BSE is performed on an IR that is in the
static-single-assignment form. Hence, there is only one definition site per variable. In the
second step, we drive the execution to the definition sites identified in the first step. To do
this, we compute the transitions that may lead to at least one of these definition sites. A
transition may lead to a definition site if the statement transited to is reachable from the
definition site in the inter-procedural control flow graph. We prioritize these transitions over
the others.

Figure 11 shows the message handler of the ping actor in the Ping-Pong example. The
pingsLeft field keeps track of the ping messages sent out, and is initially set to 100. To
cover the target at Line 7, the ping actor has to receive 100 pong messages. Suppose
that when BSE first reaches the entry of the message handler from the target, it chooses
to jump to the constructor of the ping actor, meaning that only one pong message is
received after creating this actor. Obviously, this path is infeasible. Its path constraint is
p = 100∧ p− 1 = 0∧ subType(type(m), PongMessage), where p and m map to the program
variables pingsLeft and message, respectively. The unsatisfiable core of this path constraint
is {p = 100, p − 1 = 0}, whose only variable maps to pingsLeft. Thus, Line 1 and Line 5
are identified as the definition sites for pingsLeft. Then BSE backtracks to the entry of the
message handler, and picks the transition that jumps to Line 8, because it may lead to the
definition site at Line 5. This transition indicates that the ping actor has received two pong
messages. Note that BSE does not pick the transition that may lead to Line 1 (i.e., the
transition that jumps to the constructor), because it has been explored previously, leading to
an infeasible path. This process iterates 100 times and BSE finds a feasible path in which
the ping actor receives 100 pong messages. Without this technique, in each iteration, BSE
may try other messages that do not affect pingsLeft, thus making the search inefficient.

ECOOP 2018

8:20 Targeted Test Generation for Actor Systems

Table 1 Characteristics of the subjects in our evaluations.

Subjects LOC Description

Micro Bench. 50 - 200 8 well-known actor example programs
Concurrency Bench. 100 - 400 8 classic concurrency problems
Parallelism Bench. 200 - 1,000 14 realistic parallel applications
AkkaCrawler 715 A web crawler and indexer
Batch 1,309 A concurrent batch processing framework
Parallec 12,457 A parallel client firing requests and aggregating responses
Stone 20,935 An online game server framework

6 Implementation

We implement our method in a tool called Tap for actor systems developed with Java Akka.
Tap is built on top of Wala [5], a static analysis infrastructure for Java. Tap transforms
the Java bytecode of the system under test to Wala IR and performs analysis on Wala IR.
The benefit of working on Wala IR is that one can directly use the basic built-in analyses
provided by Wala. Tap uses multiple Wala built-in analyses such as class hierarchy analysis,
call graph analysis, and points-to analysis. Since Scala Akka programs are also compiled
to Java bytecode, Tap in principle may be used to analyze Scala Akka programs as well.
However, Scala Akka has a different set of interfaces, and substantial engineering work is
required to support Scala Akka. We plan to support Scala Akka in the future.

Tap consists of two major components, an MFG builder containing ∼4,000 lines of Java
code and a BSE engine containing ∼11,000 lines of Java code. The implementation of the
MFG builder closely follows the formalizations and the iterative MFG construction algorithm
described in Section 4. A key part for MFG construction is resolving recipients and messages
in message-sending sites. Tap maintains a map from an actor reference to a set of actor
objects that are possibly referenced by it. This map is used to resolve ActorRef pointers.
Tap queries Wala’s points-to analysis to resolve all other pointers.

The BSE engine includes a backward symbolic interpreter on Wala IR as well as the
search techniques. The interpreter implements a transition rule (similar to the semantic rules
in our BSE formalization) for each type of statements in Wala IR. The actor library calls
are interpreted using our semantic models so that Tap does not explore the actor library
methods. The BSE engine forks a new symbolic configuration whenever the computation
branches. Tap uses Z3 [14] as the off-the-shelf SMT solver for solving path constraints
and computing unsatisfiable cores. An important deviation from the formalizations is that
Tap implements the FIFO message delivery semantics, because our target actor framework,
Java Akka guarantees the FIFO semantics. To implement the FIFO semantics, Tap models
the pending messages as a set of lists rather than a multi-set. Each list models a FIFO
communication channel between a pair of actors so that the message sending order is
preserved.

7 Evaluation

We evaluate Tap on a set of third-party benchmarks called Savina [21] as well as four
randomly selected open-source projects from GitHub. Our experiments consist of two parts:
1) the evaluation on the MFG construction analysis, measuring the size of the MFGs, analysis
time, and the effectiveness of the optimizations; 2) the evaluation on the effectiveness of our
test generation method.

S. Li, F. Hariri, and G. Agha 8:21

Table 2 Comparison between the baseline MFG analysis and the optimized MFG analysis. The
numbers for the three benchmark categories are averages.

Subjects Baseline Analysis Optimized Analysis
Nodes # Edges # Labels Time (s) # Nodes # Edges # Labels Time (s)

Micro 2.5 4.3 6.5 45 2.5 4.3 6.2 45
Concurrency 3.8 10.4 16.5 56 3.8 9.3 14.4 59
Parallelism 4.5 17.5 24.9 79 4.5 15.8 19.2 72
AkkaCrawler 3 6 15 57 3 6 12 55
Batch 5 12 31 85 5 10 21 77
Parallec 8 16 67 190 8 13 46 131
Stone 38 74 173 243 38 58 121 169

Table 1 describes the subjects used in our evaluation. The Savina benchmarks consist
of 30 diverse programs written purely using actors. Savina has three categories: micro
benchmarks with 8 well-known actor examples, concurrency benchmarks with 8 classic
concurrency problems, and parallel benchmarks with 14 realistic parallel applications. Savina
has been used in the actor community for various evaluation purposes, such as performance
comparison of actor languages/frameworks [21, 12], actor profiling [31], and mapping from
message passing concurrency to threads [39]. The original Savina does not have a Java Akka
implementation. We transformed the Scala Akka implementation in Savina into Java Akka
and used the transformed version in our experiment because Tap currently supports only
Java Akka. We had at least two actor programmers double check that the transformed Java
version is equivalent to the Scala version.

All four open source projects are written in Java using the Java Akka library. Most
of their application logic is implemented in actors. AkkaCrawler is a parallel web crawler
and indexer. Batch is a framework for concurrent batch processing. Parallec is a scalable
asynchronous client, developed by eBay, for firing large numbers of HTTP/SSH/TCP/UDP
requests and aggregating responses in parallel. Stone is a framework for developing online
game servers. From all the actor-based Java Akka projects that we can find on Github,
Parallec and Stone are among the largest projects. Some projects mix the Actor model with
other concurrency models [36]. We exclude those projects from our evaluation because Tap
does not handle other concurrency models such as threads. All our experiments ran on a
quad-core machine with 16 GB of RAM, running a 64-bit Ubuntu 14 system.

7.1 Results on MFG Construction
To demonstrate the effectiveness of the optimizations described in Section 4.3, we compare
the optimized MFG analysis to the one without optimizations in terms of the size of the
MFGs and the time taken for MFG construction. We measure the size of an MFG using the
number of nodes, the number of edges and the number of labels on all edges. Overall, 92%
of the onReceive methods in our subjects match the code pattern for optimizations (i.e.,
the message handler has a top-level if statement that checks for the message type).

MFG Size. Table 2 shows the comparison results. The numbers for the three benchmark
categories are averages because there are multiple projects in each category. On average,
the optimized analysis reduces the number of edges by 11% and the number of labels by
23%. The number of nodes is not reduced because our analysis creates only one node per

ECOOP 2018

8:22 Targeted Test Generation for Actor Systems

actor class. Recall that our optimizations are safe, indicating that all the reduced edges and
labels are false positives. The results show that our optimizations substantially improve the
precision of MFG analysis.

The results also show that the optimized analysis reduces a far larger percentage of edges
and labels on larger projects. Table 2 highlights (in bold) cases where our optimizations
significantly reduces the size of MFGs. For instance, the optimized analysis reduces edges
by 19% and labels by 31% for the Parallec project, and reduces edges by 22% and labels
by 30% for the Stone project. However, on small subjects such as the micro benchmarks,
our optimizations do not produce a significant difference. The reason is that the computed
points-to sets in larger projects are typically larger than those computed in smaller projects.
Our optimizations often reduces the points-to set to only one element or a much smaller
subset in a top-level branch. Therefore, the larger the points-to sets are, the more false
positives are reduced. In summary, the optimized analysis has a bigger impact on larger
projects.

Analysis Time. We ran the same experiment five times to obtain the average time taken
by each analysis on each subject. An interesting observation is that the optimized analysis
takes much less time than the baseline analysis does in projects where the optimized analysis
reduces the MFG size significantly. For instance, on both Parallec and Stone projects, the
analysis time drops about 30% with the optimizations. In other words, the optimized analysis
produces more precise results with less time. Our investigation indicates that with smaller
points-to sets, the iterative MFG construction algorithm reaches the fixed point faster: having
larger points-to sets implies more candidate actors or messages, and this often leads to more
iterations for the algorithm to converge. The overhead of our optimizations is negligible,
because the optimized analysis performs only a simple structural check on the control flow
graph of the onReceive method. As shown in the results, the two analyses take similar time
on small projects such as the micro benchmarks and the AkkaCrawler project.

7.2 Results on Test Generation

To evaluate the effectiveness of our test generation method, we randomly selected basic blocks
in actor classes as targets from all subjects, and for each target, we applied Tap to generate
tests to cover it. To avoid biases, we evenly distributed the targets based on the size of actor
classes in each project. In practice, the targets may be software patches [25], assertions, and
suspicious code locations. In total, we selected 500 targets for the Savina benchmarks and
500 targets for the four open source projects. The effectiveness of our method is measured by
the percentage of targets covered. A target is covered only when Tap finds a feasible path to
the target within the given timeout.

Our problem settings require the specification of receptionists for each actor system.
Unfortunately, such information is not specified in our subjects. Therefore, we manually
inferred receptionists for each project from its drivers and tests. We set a timeout of
ten minutes per target excluding the time for MFG construction. To compare our search
techniques, we ran Tap using the following five settings: 1) Random, pick a transition
randomly from all matched rules on a symbolic configuration; 2) H1, enable only the first
heuristic; 3) H2, enable only the second heuristic; 4) H1 + H2, enable both heuristics; 5)
H + F, enable both heuristics and the feedback-directed technique. All five settings used
the depth-first search strategy.

S. Li, F. Hariri, and G. Agha 8:23

Table 3 The target coverage results of running Tap with five settings.

Subjects Targets Random H1 H2 H1 + H2 H + F
Cov (%) # Cov (%) # Cov (%) # Cov (%) # Cov (%)

Micro 97 52 (54%) 55 (57%) 59 (61%) 76 (78%) 82 (85%)
Concurrency 162 73 (45%) 91 (56%) 79 (49%) 114 (70%) 124 (77%)
Parallelism 241 86 (36%) 103 (43%) 143 (59%) 161 (67%) 173 (72%)
AkkaCrawler 39 21 (54%) 25 (64%) 28 (72%) 34 (87%) 35 (90%)
Batch 60 38 (63%) 43 (72%) 42 (70%) 51 (85%) 55 (92%)
Parallec 178 75 (42%) 81 (46%) 86 (48%) 91 (51%) 139 (78%)
Stone 223 64 (29%) 96 (43%) 107 (48%) 124 (56%) 167 (75%)
Total 1000 409 (41%) 494 (49%) 544 (54%) 651 (65%) 775 (78%)

Avg. time per target (s) 258 217 176 124 91

7.2.1 Target Coverage

Table 3 summarizes the results of running Tap with the five settings. Column 2 shows
the number of targets selected for each subject. Columns 3-7 show the number and the
percentage of the targets covered by the five settings, respectively. The last row shows the
average time (in seconds) taken for covering a target in each setting excluding the time for
MFG construction. Overall, the combination of heuristics and feedback-directed technique is
effective in covering targets. Search heuristics increase the target coverage from 41% to 65%.
The feedback-directed technique further increases the target coverage to 78%.

The Random setting does not work well. It times out in 228 out of 1000 cases. The
major problem with Random is that it often introduces many unnecessary actors to path
exploration. Introducing a new actor in a test is an expensive operation, because it opens up
additional search space for Tap to find a feasible execution trace on the new actor. As a
result, Random wastes lots of resources exploring traces for unnecessary actors, and takes
longer time to cover a target. In additional, the tests generated by Random are typically
larger in terms of the number of actors. The H1 setting suffers the same problem. However,
it reduces the search space by sequentializing the execution of message handlers. As a result,
the number of enabled transitions on each symbolic configuration in H1 is much smaller than
that in Random. Due to the space reduction, H1 improves the target coverage to 49%.

The H2 setting improves Random by keeping the tests as small as possible to avoid
exploring unnecessary space. Our experiment results show that in many cases, the target can
be reached with no more than three actors. For example, many subjects use the master-worker
pattern to implement parallelism. The workers proceed in parallel, and do not interact with
each other. In such cases, it suffices to cover any target in the worker with only two actors:
one master and one worker. Creating new workers only adds complexity to the problem. H2
is very efficient in covering such targets because it assigns a very low weight to transitions
that introduce new actors.

The feedback-directed technique is particularly useful when our heuristics do not work
well and BSE frequently hits infeasible paths. In our experiment, we find that there are
a number of cases where covering the target requires creating multiple actors of the same
class (e.g., comparing the IDs of actors). In these cases, the heuristics work poorly because
they prefer to reuse the existing actor rather than create a new actor of the same class. As
a result, the heuristics keep hitting infeasible paths in these cases. The feedback-directed
technique is quite effective in guiding BSE to find a feasible path. For instance, in the case
of checking for different IDs, it directly identifies that the ID field of the actor needs to be

ECOOP 2018

8:24 Targeted Test Generation for Actor Systems

1 public void onReceive (Object message) {
2 if (message instanceof TokenMessage) {
3 TokenMessage token = (TokenMessage)message;
4 if(token.hasNext()) {
5 // bug: potential null de-reference on nextActor
6 this.nextActor.tell(token.next(), getSelf());
7 } ...
8 } else if (message instanceof DataMessage) {
9 this.nextActor = (ActorRef) ((DataMessage) message).data;
10 } ...
11 }

Figure 12 A bug caused by out-of-order message delivery in the ThreadRing benchmark.

changed, because the unsatisfiable core contains variables that map to this field. Since the
only way to change the ID field of the actor is through its constructor, the feedback-directed
technique prioritizes the transitions that introduce new actors to be explored first, and thus
quickly finds a feasible path.

We analyze the cases in which Tap fails to cover the targets in the H + F setting. More
than half of the cases are due to a lack of environment modeling (e.g., access to database
and network). Such issues can be mitigated by adding models for calls to the environment.
The rest of the cases are mainly due to timeouts for the exploration and complex constraints
that Z3 fails to solve.

7.2.2 Bug Detection
By running Tap to cover these 1,000 targets, we are able to find six distinct bugs in our
subjects. All six bugs are found in the Savina benchmarks in three projects. Five out of the
six bugs are crash bugs. One bug is less critical: a non-crash warning from Akka regarding
messages sent to actors that have been killed. We have confirmed that all bugs are triggered
in both the original benchmarks and the transformed versions with our generated tests. We
diagnose the six bugs and find that all five crash bugs are caused by out-of-order message
delivery. Such bugs are hard to reveal locally because out-of-order message delivery is unlikely
to happen locally. The other bug is caused by sending two stop messages to kill an actor,
and the recipient actor kills itself after receiving the first stop message.

Figure 12 shows one crash bug found in the ThreadRing benchmark. There is a potential
null de-reference on the nextActor field at Line 6. The ThreadRing system starts with a
coordinator sending a DataMessage to each token passer to inform them the next passer
and form a ring among them. The coordinator then sends a token to one passer in the ring,
and then the token is passed from one passer to another in the ring. The passer sets its
nextActor field at Line 9 upon receiving a DataMessage and sends the token at Line 6 upon
receiving a TokenMessage. The assumption is that every passer must set the nextActor before
sending the token (i.e., receive the DataMessage before the TokenMessage). Since the Akka
framework guarantees FIFO message delivery, this assumption holds for the first passer.
However, the assumption may not hold for the other passers. It is possible that the second
passer receives the TokenMessage from the first passer before receiving the DataMessage from
the coordinator. Although the DataMessage is sent before the TokenMessage, the two messages
are sent by different senders, and may be delivered out of order. In this case, a null pointer
exception is thrown in the second passer. Tap found this bug because the exceptional branch
of Line 6 (Wala IR contains exceptional branches for potential null dereferences) happened
to be chosen as a target. A simple fix to this bug is adding a null check on nextActor before
passing the token.

S. Li, F. Hariri, and G. Agha 8:25

8 Related Work

Testing Actors. The most related work on testing Actor systems is dCUTE [33]. dCUTE
differs from Tap in three aspects. First, dCUTE’s goal is to achieve overall coverage while
Tap aims at covering target code locations. They can be used to complement each other.
Second, dCUTE performs forward concolic execution while Tap does backwards symbolic
execution without a side-by-side concrete execution. Lastly, dCUTE handles only a subset of
actor operations. For example, it assumes that all actors have been created before execution,
and thus does not handle dynamic actor creation. However, we provide a rigorous definition
of the semantics of all actor operations in BSE.

Basset [22] leverages a model checker to systematically explore message schedules in an
actor system. Basset assumes that input messages are given, and aims at exploring as many
message schedules as possible on the given input. It uses state merging and dynamic partial
order reduction (DPOR) to reduce the search space of message schedules. Bita [38] also
explores possible message schedules for given input messages. It defines new schedule coverage
criteria, and uses these criteria to guide the exploration to expose bugs. TransDPOR [37]
proposes another DPOR technique that exploits the transitivity of the dependency relations
between actors for schedule space reduction. Tap not only explores message schedules,
but also generates message contents. These exploration techniques and space-reduction
techniques can be integrated into Tap for more efficient test generation.

Targeted Test Generation. A number of targeted test generation techniques have been
developed on sequential programs using both forward symbolic execution [24, 18, 16, 25, 10]
and backward symbolic execution [15, 29, 13]. However, they cannot be directly applied to
actor systems. Since an actor library often contains complex multi-threading and networking
code, direct exploration of these actor library methods is impractical and the execution often
fails to go across actors. Our work fills this gap by defining formal semantic models of actor
operations in our analysis, and thus preventing our analysis from exploring the actor library.

Feedback-Directed Test Generation. Previous research has proposed using information
from previous executions as feedback to guide test generation. Randoop [30] uses execution
feedback from previous tests to avoid generating redundant and illegal inputs. Garg et al. [17]
use the unsatisfiable cores from previous infeasible paths to generalize the reason for the
infeasibility, and thus rule out more infeasible paths. We also use the unsatisfiable cores
from infeasible paths, but we use them to guide BSE to efficiently find a feasible path.

Backward Symbolic Analysis. Snugglebug [11] uses backward symbolic analysis for
computing inter-procedural weakest preconditions. The symbolic reasoning in their work is
similar to ours except that their analysis works on all possible program paths to the target
while our BSE aims at finding one feasible path.

Static Analysis of Actors. There has been previous work [28] on static analysis of actor
programs to infer the ownership transfer of messages. This analysis works on individual actors
(i.e., intra-actor), and does not model interactions between actors. Our MFG construction is
a more complex whole-system analysis that requires modeling actor interactions.

ECOOP 2018

8:26 Targeted Test Generation for Actor Systems

9 Conclusion

We have presented a method for targeted test generation for actor systems based on BSE.
Our method first constructs an MFG to capture the potential interactions between actors.
Guided by the MFG, it starts BSE directly from the target to find a feasible path to the
entry point of the actor system. We have provided high-level models for all actor operations
and formally defined their semantics in our analysis to avoid analyzing the complex code in
the actor library. To efficiently navigate the huge search space in BSE, we have proposed
two heuristics and a feedback-directed search technique. We have implemented our method
in Tap, and evaluated it on Savina and four open source projects. The evaluation results
have shown that Tap is effective in targeted test generation for actor systems.

In the future, we plan to further improve our search techniques in BSE. One direction is to
reduce the state space of message schedules using partial order reduction. The happens-before
relation used in previous work is fairly coarse-grained. We plan to define a finer-grained
partial order relation based on program analysis to further reduce the search space. Another
direction is to leverage dynamic traces from existing tests to guide our explorations.

References
1 Erlang Introduction. http://erlang.org/faq/introduction.html.
2 Java Akka. https://doc.akka.io/docs/akka/current/actors.html?language=java.
3 Orleans. https://dotnet.github.io/orleans/index.html.
4 Scala Akka. https://doc.akka.io/docs/akka/current/index-actors.html?language=scala.
5 Wala. http://wala.sourceforge.net.
6 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
7 Gul Agha. Concurrent Object-oriented Programming. Commun. ACM, 33(9):125–141,

1990.
8 Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(1):1–72, 1997.
9 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-

shelf, 2007.
10 Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. Statically-

directed dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages 12–22. ACM, 2011.

11 Satish Chandra, Stephen J Fink, and Manu Sridharan. Snugglebug: a powerful approach
to weakest preconditions. ACM Sigplan Notices, 44(6):363–374, 2009.

12 Dominik Charousset, Raphael Hiesgen, and Thomas C Schmidt. Caf-the C++ actor frame-
work for scalable and resource-efficient applications. In Proceedings of the 4th International
Workshop on Programming based on Actors Agents and Decentralized Control, pages 15–28.
ACM, 2014.

13 Florence Charreteur and Arnaud Gotlieb. Constraint-based test input generation for java
bytecode. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Sym-
posium on, pages 131–140. IEEE, 2010.

14 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg, 2008.

15 Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete back-
ward execution. In Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 31–36. ACM, 2014.

S. Li, F. Hariri, and G. Agha 8:27

16 Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Guided dynamic symbolic exe-
cution using subgraph control-flow information. In International Conference on Software
Engineering and Formal Methods, pages 76–81. Springer, 2016.

17 Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
Feedback-directed unit test generation for C/C++ using concolic execution. In Proceedings
of the 2013 International Conference on Software Engineering, pages 132–141. IEEE Press,
2013.

18 Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In USENIX Security
Symposium, pages 49–64, 2013.

19 Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial intelli-
gence, 8(3):323–364, 1977.

20 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

21 Shams Imam and Vivek Sarkar. Savina-an actor benchmark suite. In 4th International
Workshop on Programming based on Actors, Agents, and Decentralized Control, AGERE,
2014.

22 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A Framework for State-
Space Exploration of Java-Based Actor Programs. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, pages 468–479,
Washington, DC, USA, 2009.

23 Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In ACM Sigplan Notices,
volume 43, pages 329–339. ACM, 2008.

24 Kin-Keung Ma, Khoo Yit Phang, Jeffrey Foster, and Michael Hicks. Directed symbolic
execution. Static Analysis, pages 95–111, 2011.

25 Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of software patches.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages
235–245. ACM, 2013.

26 Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the
k-CFA paradox: illuminating functional vs. object-oriented program analysis. In ACM
Sigplan Notices, volume 45, pages 305–315. ACM, 2010.

27 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(1):1–41, 2005.

28 Stas Negara, Rajesh K Karmani, and Gul Agha. Inferring ownership transfer for efficient
message passing. In ACM SIGPLAN Notices, volume 46, pages 81–90. ACM, 2011.

29 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Detecting and exploiting second order denial-
of-service vulnerabilities in web applications. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 616–628. ACM, 2015.

30 Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
Directed Random Test Generation. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007.

31 Andrea Rosà, Lydia Y Chen, and Walter Binder. Profiling actor utilization and communic-
ation in Akka. In Proceedings of the 15th International Workshop on Erlang, pages 24–32.
ACM, 2016.

32 Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing Active Objects to Concur-
rent Components. In Theo D’Hondt, editor, ECOOP 2010 – Object-Oriented Programming,
pages 275–299, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

ECOOP 2018

8:28 Targeted Test Generation for Actor Systems

33 Koushik Sen and Gul Agha. Automated systematic testing of open distributed programs.
In International Conference on Fundamental Approaches to Software Engineering, pages
339–356. Springer, 2006.

34 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a Concolic Unit Testing Engine for
C. In Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005.

35 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In ACM SIGPLAN Notices, volume 46, pages 17–30.
ACM, 2011.

36 Samira Tasharofi, Peter Dinges, and Ralph E Johnson. Why do scala developers mix the
actor model with other concurrency models? In European Conference on Object-Oriented
Programming, pages 302–326. Springer, 2013.

37 Samira Tasharofi, Rajesh K Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and
Gul Agha. TransDPOR: A novel dynamic partial-order reduction technique for testing
actor programs. In Formal Techniques for Distributed Systems, pages 219–234. Springer,
2012.

38 Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson. Bita: Coverage-guided,
automatic testing of actor programs. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 114–124. IEEE, 2013.

39 Ganesha Upadhyaya and Hridesh Rajan. Effectively mapping linguistic abstractions for
message-passing concurrency to threads on the Java virtual machine. ACM SIGPLAN
Notices, 50(10):840–859, 2015.

40 Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with
salsa. SIGPLAN Not., 36(12):20–34, 2001.

A Semantics of Local Computations in MFG Analysis

Figure 13 shows the transition rules for local computations in the MFG analysis. Since
local computations concern only the actor state ς in ω, we omit other states in ω in our
transition rules for better readability (the other states are the same on both sides of the
rules). The operator t is used to merge two maps by merging the values of the same key
in both maps. The dispatch function takes as input an object and a method name, and
returns the dispatched method3. The transition rules describe precisely the 1-object-sensitive
points-to analysis [27]. The Object Allocation rule says that the heap context of an object is
the label of its allocation site. The Method Invocation rule describes the context sensitivity.
The rule says that the context used for analyzing a method is the heap context of the receiver
object, which is the label of its allocation site.

B Semantics Of Local Computations In BSE

Figure 14 and Figure 15 show respectively the semantics of intra-procedural BSE and
the semantics of inter-procedural BSE for local computations in an actor. Since local
computations concern only the local state β and the path condition φ, we omit other states in
the symbolic configuration in our transition rules for better readability. Note that subType is
a predicate in FOL to check the sub-type relation, and type and field are functions in FOL.

3 Our language does not support method overloading, and thus a method can be dispatched based on the
given object and its method name

S. Li, F. Hariri, and G. Agha 8:29

Variable Reference
(Jv = v′;`K, st, σ,_)⇒A (succ(`), st, σ′,_), where σ′ = σ t [st(v) 7→ σ(st(v′))]
Field Reference
(Jv = v′.f;`K, st, σ,_)⇒A (succ(`), st, σ′,_), where

(_, [f 7→ af]) ∈ σ(st(v′)) σ′ = σ t [st(v) 7→ σ(af)]
Object Allocation

(Jv = new C(
−→
v′);`K, st, σ,_)⇒A (succ(`), st, σ′,_), where

hc = `
−→
f = F(C) ai = (fi, hc) o = (hc, [fi 7→ ai])

σ′ = σ t [st(v) 7→ {o}, ai 7→ σ(st(v′i))]
Method Invocation

(Jv = v0.m(
−→
v′);`K, st, σ, cs, c)⇒A (s, st′, σ′, cs′, c′), where

M = JC m(
−−−→
C ′ v′′) {

−−−−→
C ′′v′′′;

−→
s′ }K = dispatch(o0,m) o0 ∈ σ(st(v0)) (hc0,_) = o0

c′ = hc0 ai = (v′′i ,m, c′) a′i = (v′′′i ,m, c
′) st′ = cons([v′′i 7→ ai, v

′′′
i 7→ a′i], st)

s = car(
−→
s′) σ′ = σ t [ai 7→ σ(st(v′i))] cs′ = cons((succ(`), c, st(v)), cs)

Return
(Jreturn v;`K, st, σ, cs, c)⇒A (s, cdr(st), σ′, cdr(cs), c′),where

(s, c′, aret) = car(cs) σ′ = σ t [aret 7→ σ(st(v))]
Casting
(Jv = (C) v′;`K, st, σ,_)⇒A (succ(`), st, σ′,_), where σ′ = σ t [st(v) 7→ σ(st(v′))]

Figure 13 Abstract semantics for local computations in MFG analysis.

We also use a number of helper functions in our transition rules. The function pred returns
the previous statement of a given label, and the function last returns the last element of a
given list. The function method returns the method that encloses the statement with the
given label. The function callee takes as input the label of a call site s, and returns the set
of all possible callees. Specifically, it retrieves the signature sig of the called method from s,
locates the enclosing method M of s in the call graph, and returns the set of all callees of
M that match sig. The function callsites returns the set of all possible call sites of a given
method.

In what follows, we explain the inter-procedural rules, which are more interesting. We
assume that our language uses the call-by-value evaluation strategy. To perform inter-
procedural BSE, a context-insensitive call graph is used to guide the execution. The entry
point of the call graph is the message handler of the actor. As we execute a method m

backwards, there are two possible cases regarding the target: 1) the target is outside m,
indicating that BSE has previously reached the call site of m and has jumped from that call
site to m, and the current call stack must be not empty; 2) the target is inside m, indicating
that BSE starts from m and the current call stack must be empty. The first three rules
in Figure 15 apply to the first case. The Method Invocation rule says that upon a method
invocation, BSE queries the call graph for all possible callees of the invocation, jumps to
the last statement of a possible callee, and adds the constraint that every parameter must

ECOOP 2018

8:30 Targeted Test Generation for Actor Systems

Variable Reference
((Jv = v′;`K,_), φ)⇒S ((pred(`),_), φ[v̂′/v̂])
Binary Expression
((Jv = v′ op v′′;`K,_), φ)⇒S ((pred(`),_), φ′), where φ′ = φ[(v̂′ op v̂′′)/v̂]
Field Reference
((Jv = v′.f;`K,_), φ)⇒S ((pred(`),_), φ[read(v̂′, f)/v̂])
Field Update
((Jv.f = v′;`K,_), φ)⇒S ((pred(`),_), φ[update(f, v, v′)/f])
Casting
((Jv = (C) v′;`K,_), φ)⇒S ((pred(`),_), φ[v̂′/v̂] ∧ subType(type(v̂), C))
Object Allocation

((Jv = new C(
−→
v′);`K,_), φ)⇒S ((pred(`),_), φ′), where

v̂′′ is fresh
−→
f = F(C) φ′ = φ[v̂′′/v̂, update(fi, v

′′, v′i)/fi] ∧ type(v̂′′) == C

If-True

((Jif (e) −→s else
−→
s′ ;`K,_)φ)⇒S ((last(−→s),_), φ ∧ ê)

If-False

((Jif (e) −→s else
−→
s′ ;`K,_)φ)⇒S ((last(

−→
s′),_), φ ∧ ¬ê)

Figure 14 Transition rules for intra-procedural backward symbolic execution.

Method Invocation

((Jv = v′.m(
−→
v′′);`K, cs, v̂0), φ)⇒S ((s, cs′, v̂′), φ′), where

M = JC m(
−−−→
C ′ v′′′) {

−→
s′ }K M ∈ callees(`) s = last(

−→
s′)

cs′ = cons((pred(`), v̂, v̂′), cs) φ′ = φ ∧ v̂′′′i == v̂′′i

Return-CallStack Not Empty
((Jreturn v;`K, cs,_), φ)⇒S ((pred(`), cs,_), φ[v̂/v̂′]), where (_, v̂′,_) = car(cs)
Method Entry-CallStack Not Empty

((Jentry;`K, cs, v̂0), φ)⇒S (s, cdr(cs), v̂′0), φ), where (s,_, v̂′0) = car(cs)
Return-CallStack Empty
((Jreturn v;`K, [],_), φ)⇒S ((pred(`), [],_), φ)
Method Entry-CallStack Empty
((Jentry;`K, [], v̂0), φ)⇒S ((pred(`′), [], v̂′), φ′),where

s = Jv = v′.m(
−→
v′′);`′

K `′ ∈ callsites(M)

M = JC m′(
−−−→
C ′ v′′′) {

−→
s′ }K = method(`′) φ′ = φ ∧ v̂′′′i == v̂′′i

Figure 15 Transition rules for inter-procedural backward symbolic execution.

S. Li, F. Hariri, and G. Agha 8:31

be equal to its corresponding argument of the callee (call-by-value). The Return-CallStack
Not Empty rule says that the variable to which the return value is assigned at the call site
is replaced with the return value in the path constraint. The Method Entry-CallStack Not
Empty rule says that the execution returns to the call site, and the top frame is popped from
the call stack. The last two rules in Figure 15 apply to the second case. The Return-CallStack
Empty rule does not update the path constraint, because the caller is unknown at this point,
so is the variable that would hold the return value. The Method Entry-CallStack Empty says
that BSE queries the call graph for all possible callers of the current method, jumps back to
a possible call site, and adds the constraint that every argument of the callee are equal to its
corresponding parameter in the call site. Note that no constraint over the variable v that
holds the return value is added to the path constraint, because once the execution returns to
the call site, it moves backwards and will never use the variable v. The constraints over v do
not affect covering the target, and thus need not be added.

ECOOP 2018

Typed First-Class Traits
Xuan Bi
The University of Hong Kong, Hong Kong, China
xbi@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

Abstract
Many dynamically-typed languages (including JavaScript, Ruby, Python or Racket) support
first-class classes, or related concepts such as first-class traits and/or mixins. In those languages
classes are first-class values and, like any other values, they can be passed as an argument, or
returned from a function. Furthermore first-class classes support dynamic inheritance: i.e. they
can inherit from other classes at runtime, enabling programmers to abstract over the inheritance
hierarchy. In contrast, type system limitations prevent most statically-typed languages from
having first-class classes and dynamic inheritance.

This paper shows the design of SEDEL: a polymorphic statically-typed language with first-
class traits, supporting dynamic inheritance as well as conventional OO features such as dynamic
dispatching and abstract methods. To address the challenges of type-checking first-class traits,
SEDEL employs a type system based on the recent work on disjoint intersection types and dis-
joint polymorphism. The novelty of SEDEL over core disjoint intersection calculi are source
level features for practical OO programming, including first-class traits with dynamic inherit-
ance, dynamic dispatching and abstract methods. Inspired by Cook and Palsberg’s work on the
denotational semantics for inheritance, we show how to design a source language that can be
elaborated into Alpuim et al.’s Fi (a core polymorphic calculus with records supporting disjoint
polymorphism). We illustrate the applicability of SEDEL with several example uses for first-
class traits, and a case study that modularizes programming language interpreters using a highly
modular form of visitors.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases traits, extensible designs

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.9

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.9

Funding Hong Kong Research Grant Council projects number 17210617 and 17258816

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Many dynamically-typed languages (including JavaScript [1], Ruby [4], Python [2] or
Racket [3]) support first-class classes [26], or related concepts such as first-class mixins
and/or traits. In those languages classes are first-class values and, like any other values, they
can be passed as an argument, or returned from a function. Furthermore first-class classes
support dynamic inheritance: i.e., they can inherit from other classes at runtime, enabling

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Xuan Bi and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 9; pp. 9:1–9:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xbi@cs.hku.hk
mailto:bruno@cs.hku.hk
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.9
http://dx.doi.org/10.4230/DARTS.4.3.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Typed First-Class Traits

programmers to abstract over the inheritance hierarchy. Those features make first-class
classes very powerful and expressive, and enable highly modular and reusable pieces of code,
such as:

const mixin = Base => { return class extends Base { ... } };

In this piece of JavaScript code, mixin is parameterized by a class Base. Note that the
concrete implementation of Base can be even dynamically determined at runtime, for example
after reading a configuration file to decide which class to use as the base class. When applied
to an argument, mixin will create a new class on-the-fly and return that as a result. Later
that class can be instantiated and used to create new objects, as any other classes.

In contrast, most statically-typed languages do not have first-class classes and dynamic
inheritance. While all statically-typed OO languages allow first-class objects (i.e. objects
can be passed as arguments and returned as results), the same is not true for classes.
Classes in languages such Scala, Java or C++ are typically a second-class construct, and
the inheritance hierarchy is statically determined. The closest thing to first-class classes in
languages like Java or Scala are classes such as java.lang.Class that enable representing
classes and interfaces as part of their reflective framework. java.lang.Class can be used
to mimic some of the uses of first-class classes, but in an essentially dynamically-typed
way. Furthermore simulating first-class classes using such mechanisms is highly cumbersome
because classes need to be manipulated programmatically. For example instantiating a new
class cannot be done using the standard new construct, but rather requires going through
API methods of java.lang.Class, such as newInstance, for creating a new instance of a class.

Despite the popularity and expressive power of first-class classes in dynamically-typed
languages, there is surprisingly little work on typing of first-class classes (or related concepts
such as first-class mixins or traits). First-class classes and dynamic inheritance pose well-
known difficulties in terms of typing. For example, in his thesis, Bracha [15] comments several
times on the difficulties of typing dynamic inheritance and first-class mixins, and proposes the
restriction to static inheritance that is also common in statically-typed languages. He also
observes that such restriction poses severe limitations in terms of expressiveness, but that
appeared (at the time) to be a necessary compromise when typing was also desired. Only
recently some progress has been made in statically typing first-class classes and dynamic
inheritance. In particular there are two works in this area: Racket’s gradually typed first-
class classes [51]; and Lee et al.’s model of typed first-class classes [30]. Both works provide
typed models of first-class classes, and they enable encodings of mixins [16] similar to those
employed in dynamically-typed languages.

However, as far as we known no previous work supports statically-typed first-class traits.
Traits [47] are an alternative to mixins, and other models of (multiple) inheritance. The
key difference between traits and mixins lies on the treatment of conflicts when composing
multiple traits/mixins. Mixins adopt an implicit resolution strategy for conflicts, where the
compiler automatically picks one implementation in case of conflicts. For example, Scala uses
the order of mixin composition to determine which implementation to pick in case of conflicts.
Traits, on the other hand, employ an explicit resolution strategy, where the compositions
with conflicts are rejected, and the conflicts are explicitly resolved by programmers.

Schärli et al. [47] make a good case for the advantages of the trait model. In particular,
traits avoid bugs that could arise from accidental conflicts that were not detected by
programmers. With the mixin model, such conflicts would be silently resolved, possibly
resulting in unexpected runtime behaviour due to a wrong method implementation choice.
In a setting with dynamic inheritance and first-class classes this problem is exacerbated by
not knowing all components being composed statically, greatly increasing the possibility
of accidental conflicts. From a modularity point-of-view, the trait model also ensures that

X. Bi and B. C. d. S. Oliveira 9:3

composition is commutative, thus the order of composition is irrelevant and does not affect
the semantics. Bracha [15] claims that “The only modular solution is to treat the name
collisions as errors...”, strengthening the case for the use of a trait model of composition.
Otherwise, if the semantics is affected by the order of composition, global knowledge about
the full inheritance graph is required to determine which implementations are chosen. Schärli
et al. discuss several other issues with mixins, which can be improved by traits. We refer to
their paper for further details.

This paper presents the design of SEDEL: a polymorphic statically-typed (pure) language
with first-class traits, supporting dynamic inheritance as well as conventional OO features
such as dynamic dispatching and abstract methods. Traits pose additional challenges when
compared to models with first-class classes or mixins, because method conflicts should
be detected statically, even in the presence of features such as dynamic inheritance and
composition and parametric polymorphism. To address the challenges of typing first-class
traits and detecting conflicts statically, SEDEL adopts a polymorphic structural type system
based on disjoint polymorphism [7]. The choice of structural typing is due to its simplicity,
but we think similar ideas should also work in a nominal type system.

The main contribution of this paper is to show how to model source language constructs
for first-class traits and dynamic inheritance, supporting standard OO features such as
dynamic dispatching and abstract methods. Previous work on disjoint intersection types
is aimed at core record calculi, and omits important features for practical OO languages,
including (dynamic) inheritance, dynamic dispatching and abstract methods. Based on Cook
and Palsberg’s work on the denotational semantics for inheritance [19], we show how to
design a source language that can be elaborated into Alpuim et al.’s Fi [7], a polymorphic
calculus with records supporting disjoint polymorphism. SEDEL’s elaboration into Fi is
proved to be both type-safe and coherent. Coherence ensures that the semantics of SEDEL is
unambiguous. In particular this property is useful to ensure that programs using traits are
free of conflicts/ambiguities (even when the types of the object parts being composed are
not fully statically know).

We illustrate the applicability of SEDEL with several example uses for first-class traits.
Furthermore we conduct a case study that modularizes programming language interpreters
using a highly modular form of Object Algebras [39] and Visitors. In particular we show
how SEDEL can easily compose multiple object algebras into a single object algebra. Such
composition operation has previously been shown to be highly challenging in languages like
Java or Scala [41, 44]. The previous state-of-the-art implementations for such operation
require employing type-unsafe reflective techniques to simulate the features of first-class
classes. Moreover conflicts are not statically detected. In contrast the approach in this paper
is fully type-safe, convenient to use and conflicts are statically detected.

In summary the contributions of this paper are:
Typed first-class traits: We present SEDEL: a statically-typed language design that
supports first-class traits, dynamic inheritance, as well as standard high-level OO con-
structs such as dynamic dispatching and abstract methods.
Elaboration of first-class traits into disjoint intersection types/polymorphism:
We show how the semantics of SEDEL can be defined by elaboration into Alpuim et
al.’s Fi [7]. The elaboration is inspired by the work of Cook and Palsberg [19] to model
inheritance.
Implementation and modularization case study: SEDEL is implemented and avail-
able.1 To evaluate SEDEL we conduct a case study. The case study shows that support

1 The implementation, case study code and appendix are available at https://goo.gl/uFrWkr.

ECOOP 2018

https://goo.gl/uFrWkr

9:4 Typed First-Class Traits

for composition of Object Algebras and Visitors is greatly improved in SEDEL. Using
such improved design patterns we re-code the interpreters in Cook’s undergraduate
Programming Languages book [18] in a modular way in SEDEL.

2 Overview

This section aims at introducing first-class classes and traits, their possible uses and applica-
tions, as well as the typing challenges that arise from their use. We start by describing a
hypothetical JavaScript library for text editing widgets, inspired and adapted from Racket’s
GUI toolkit [51]. The example is illustrative of typical uses of dynamic inheritance/compos-
ition, and also the typing challenges in the presence of first-class classes/traits. Without
diving into technical details, we then give the corresponding typed version in SEDEL, and
informally presents its salient features.

2.1 First-Class Classes in JavaScript
A class construct was officially added to JavaScript in the ECMAScript 2015 Language
Specification [23]. One purpose of adding classes to JavaScript was to support a construct
that is more familiar to programmers who come from mainstream class-based languages,
such as Java or C++. However classes in JavaScript are first-class and support functionality
not easily mimicked in statically-typed class-based languages.

Conventional Classes. Before diving into the more advanced features of JavaScript classes,
we first review the more conventional class declarations supported in JavaScript as well as
many other languages. Even for conventional classes there are some interesting points to note
about JavaScript that will be important when we move into a typed setting. An example of
a JavaScript class declaration is:

class Editor {
onKey(key) { return "Pressing " + key; }
doCut() { return this.onKey("C-x") + " for cutting text"; }
showHelp() { return "Version: " + this.version() + " Basic usage..."; }

};

This form of class definition is standard and very similar to declarations in class-based
languages (for example Java). The Editor class defines three methods: onKey for handling
key events, doCut for cutting text and showHelp for displaying help message. For the purpose
of demonstration, we elide the actual implementation, and replace it with plain messages.

We wish to bring the readers’ attention to two points in the above class. Firstly, note that
the doCut method is defined in terms of the onKey method via the keyword this . In other
words the call to onKey is enabled by the self reference and is dynamically dispatched (i.e.,
the particular implementation of onKey will only be determined when the class or subclass is
instantiated). Secondly, notice that there is no definition of the version method in the class
body, but such method is used inside the showHelp method. In a untyped language, such
as JavaScript, using undefined methods is error prone – accidentally instantiating Editor
and then calling showHelp will cause a runtime error! Statically-typed languages usually
provide some means to protect us from this situation. For example, in Java, we would need
an abstract version method, which effectively makes Editor an abstract class and prevents
it from being instantiated. As we will see, SEDEL’s treatment of abstract methods is quite
different from mainstream languages. In fact, SEDEL has a unified (typing) mechanism
for dealing with both dynamic dispatch and abstract methods. We will describe SEDEL’s
mechanism for dealing with both features and justify our design in Section 3.

X. Bi and B. C. d. S. Oliveira 9:5

First-Class Classes and Class Expressions. Another way to define a class in JavaScript is
via a class expression. This is where the class model in JavaScript is very different from
the traditional class model found in many mainstream OO languages, such as Java, where
classes are second-class (static) entities. JavaScript embraces a dynamic class model that
treats classes as first-class expressions: a function can take classes as arguments, or return
them as a result. First-class classes enable programmers to abstract over patterns in the
class hierarchy and to experiment with new forms of OOP such as mixins and traits. In
particular, mixins become programmer-defined constructs. We illustrate this by presenting a
simple mixin that adds spell checking to an editor:

const spellMixin = Base => {
return class extends Base {

check() { return super.onKey("C-c") + " for spell checking"; }
onKey(key) { return "Process " + key + " on spell editor"; }

}
};

In JavaScript, a mixin is simply a function with a superclass as input and a subclass extending
that superclass as an output. Concretely, spellMixin adds a method check for spell checking.
It also provides a method onKey. The function spellMixin shows the typical use of what
we call dynamic inheritance. Note that Base, which is supposed to be a superclass being
inherited, is parameterized. Therefore spellMixin can be applied to any base class at runtime.
This is impossible to do, in a type-safe way, in conventional statically-typed class-based
languages like Java or C++.2

It is noteworthy that not all applications of spellMixin to base classes are successful.
Notice the use of the super keyword in the check method. If the base class does not implement
the onKey method, then mixin application fails with a runtime error. In a typed setting, a
type system must express this requirement (i.e., the presence of the onKey method) on the
(statically unknown) base class that is being inherited.

We invite the readers to pause for a while and think about what the type of spellMixin
would look like. Clearly our type system should be flexible enough to express this kind of
dynamic pattern of composition in order to accommodate mixins (or traits), but also not too
lenient to allow any composition.

Mixin Composition and Conflicts. The real power of mixins is that spellMixin’s function-
ality is not tied to a particular class hierarchy and is composable with other features. For
example, we can define another mixin that adds simple modal editing – as in Vim – to an
arbitrary editor:

const modalMixin = Base => {
return class extends Base {

constructor() {
super();
this.mode = "command";

}
toggleMode() { return "toggle succeeded"; }
onKey(key) { return "Process " + key + " on modal editor"; }

};
};

2 With C++ templates, it is possible to implement a so-called mixin pattern [49], which enables extending
a parameterized class. However C++ templates defer type-checking until instantiation, and such pattern
still does not allow selection of the base class at runtime (only at up to class instantiation time).

ECOOP 2018

9:6 Typed First-Class Traits

modalMixin adds a mode field that controls which keybindings are active, initially set to the
command mode, and a method toggleMode that is used to switch between modes. It also
provides a method onKey.

Now we can compose spellMixin with modalMixin to produce a combination of function-
ality, mimicking some form of multiple inheritance:

class IDEEditor extends modalMixin(spellMixin(Editor)) {
version() { return 0.2; }

}

The class IDEEditor extends the base class Editor with modal editing and spell checking
capabilities. It also defines the missing version method.

At first glance, IDEEditor looks quite fine, but it has a subtle issue. Recall that two
mixins modalMixin and spellMixin both provide a method onKey, and the Editor class also
defines an onKey method of its own. Now we have a name clash. A question arises as to
which one gets picked inside the IDEEditor class. A typical mixin model resolves this issue
by looking at the order of mixin applications. Mixins appearing later in the order overrides
all the identically named methods of earlier mixins. So in our case, onKey in modalMixin gets
picked. If we change the order of application to spellMixin(modalMixin(Editor)), then onKey
in spellMixin is inherited.

Problem of Mixin Composition. From the above discussion, we can see that mixin are
composed linearly: all the mixins used by a class must be applied one at a time. However,
when we wish to resolve conflicts by selecting features from different mixins, we may not
be able to find a suitable order. For example, when we compose the two mixins to make
the class IDEEditor, we can choose which of them comes first, but in either order, IDEEditor
cannot access to the onKey method in the Editor class.

Trait Model. Because of the total ordering and the limited means for resolving conflicts
imposed by the mixin model, researchers have proposed a simple compositional model called
traits [47, 21]. Traits are lightweight entities and serve as the primitive units of code reuse.
Among others, the key difference from mixins is that the order of trait composition is
irrelevant, and conflicting methods must be resolved explicitly. This gives programmers fine-
grained control, when conflicts arise, of selecting desired features from different components.
Thus we believe traits are a better model for multiple inheritance in statically-typed OO
languages, and in SEDEL we realize this vision by giving traits a first-class status in the
language, achieving more expressive power compared with traditional (second-class) traits.

Summary of Typing Challenges. From our previous discussion, we can identify the following
typing challenges for a type system to accommodate the programming patterns (first-class
classes/mixins) we have just seen in a typed setting:

How to account for, in a typed way, abstract methods and dynamic dispatch.
What are the types of first-class classes or mixins.
How to type dynamic inheritance.
How to express constraints on method presence and absence (the use of super clearly
demands that).
In the presence of first-class traits, how to detect conflicts statically, even when the traits
involved are not statically known.

SEDEL elegantly solves the above challenges in a unified way, as we will see next.

X. Bi and B. C. d. S. Oliveira 9:7

2.2 A Glance at Typed First-Class Traits in SEDEL
We now rewrite the above library in SEDEL, but this time with types. The resulting code
has the same functionality as the dynamic version, but is statically typed. All code snippets
in this and later sections are runnable in our prototype implementation. Before proceeding,
we ask the readers to bear in mind that in this section we are not using traits in the most
canonical way, i.e., we use traits as if they are classes (but with built-in conflict detection).
This is because we are trying to stay as close as possible to the structure of the JavaScript
version for ease of comparison. In Section 3 we will remedy this to make better use of traits.

Simple Traits. Below is a simple trait editor, which corresponds to the JavaScript class
Editor. The editor trait defines the same set of methods: on_key, do_cut and show_help:

trait editor [self : Editor & Version] => {
on_key(key : String) = "Pressing " ++ key;
do_cut = self.on_key "C-x" ++ " for cutting text";
show_help = "Version: " ++ self.version ++ " Basic usage..."

};

The first thing to notice is that SEDEL uses a syntax (similar to Scala’s self type annota-
tions [36]) where we can give a type annotation to the self reference. In the type of self we
use & construct to create intersection types. Editor and Version are two record types:

type Editor = {on_key : String → String, do_cut : String, show_help : String};
type Version = {version : String};

For the sake of conciseness, SEDEL uses type aliases to abbreviate types.

Self-Types Encode Abstract Methods. Recall that in the JavaScript class Editor, the
version method is undefined, but is used inside showHelp. How can we express this in
the typed setting, if not with an abstract method? In SEDEL, self-types play the role of
trait requirements. As the first approximation, we can justify the use of self.version by
noticing that (part of) the type of self (i.e., Version) contains the declaration of version.
An interesting aspect of SEDEL’s trait model is that there is no need for abstract methods.
Instead, abstract methods can be simulated as requirements of a trait. Later, when the trait
is composed with other traits, all requirements on the self-types must be satisfied and one of
the traits in the composition must provide an implementation of the method version.

As in the JavaScript version, the on_key method is invoked on self in the body of do_cut.
This is allowed as (part of) the type of self (i.e., Editor) contains the signature of on_key.
Comparing editor to the JavaScript class Editor, almost everything stays the same, except
that we now have the typed version. As a side note, since SEDEL is currently a pure functional
OO language, there is no difference between fields and methods, so we can omit empty
arguments and parameter parentheses.

First-Class Traits and Trait Expressions. SEDEL treats traits as first-class expressions,
putting them in the same syntactic category as objects, functions, and other primitive forms.
To illustrate this, we give the SEDEL version of spellMixin:

type Spelling = {check : String};
type OnKey = {on_key : String → String};

spell_mixin [A * Spelling & OnKey] (base : Trait[Editor & Version, Editor & A]) =
trait [self : Editor & Version] inherits base => {
override on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = super.on_key "C-c" ++ " for spelling check"

};

ECOOP 2018

9:8 Typed First-Class Traits

This looks daunting at first, but spell_mixin has almost the same structure as its JavaScript
cousin spellMixin, albeit with some type annotations. In SEDEL, we use capital letters (A, B,
. . .) to denote type variables, and trait expressions trait [self : ...] inherits ... => {...}
to create first-class traits. Trait expressions have trait types of the form Trait[T1, T2] where
T1 and T2 denote trait requirements and functionality respectively. We will explain trait types
in Section 3. Despite the structural similarities, there are several significant features that are
unique to SEDEL (e.g., the disjointness operator *). We discuss these in the following.

Disjoint Polymorphism and Conflict Detection. SEDEL uses a type system based on
disjoint intersection types [40] and disjoint polymorphism [7]. Disjoint intersections empower
SEDEL to detect conflicts statically when trying to compose two traits with identically named
features. For example composing two traits a and b that both provide foo gives a type error
(the overloaded & operator denotes trait composition):

trait a => { foo = 1 };
trait b => { foo = 2 };
trait c inherits a & b => {}; -- type error!

Disjoint polymorphism, as a more advanced mechanism, allows detecting conflicts even in
the presence of polymorphism – for example when a trait is parameterized and its full set
of methods is not statically known. As can be seen, spell_mixin is actually a polymorphic
function. Unlike ordinary parametric polymorphism, in SEDEL, a type variable can also
have a disjointness constraint. For instance, A * Spelling & OnKey means that A can be
instantiated to any type as long as it does not contain check and on_key. To mimic mixins,
the argument base, which is supposed to be some trait, serves as the “base” trait that is
being inherited. Notice that the type variable A appears in the type of base, which essentially
states that base is a trait that contains at least those methods specified by Editor, and
possibly more (which we do not know statically). Also note that leaving out the override
keyword will result in a type error. The type system is forcing us to be very specific as to
what is the intention of the on_key method because it sees the same method is also declared
in base, and blindly inheriting base will definitely cause a method conflict. As a final note,
the use of super inside check is allowed because the “super” trait base implements on_key, as
can be seen from its type.

Dynamic Inheritance. Disjoint polymorphism enables us to correctly type dynamic inher-
itance: spell_mixin is able to take any trait that conforms with its assigned type, equips
it with the check method and overrides its old on_key method. As a side note, the use of
disjoint polymorphism is essential to correctly model the mixin semantics. From the type
we know base has some features specified by Editor, plus something more denoted by A. By
inheriting base, we are guaranteed that the result trait will have everything that is already
contained in base, plus more features. This is in some sense similar to row polymorphism [55]
in that the result trait is prohibited from forgetting methods from the argument trait. As we
will discuss in Section 6, disjoint polymorphism is more expressive than row polymorphism.

Typing Mixin Composition. Next we give the typed version of modalMixin as follows:
type ModalEdit = {mode : String, toggle_mode : String};

modal_mixin [A * ModalEdit & OnKey] (base : Trait[Editor & Version, Editor & A]) =
trait [self : Editor & Version] inherits base => {
override on_key(key : String) = "Process " ++ key ++ " on modal editor";
mode = "command";
toggle_mode = "toggle succeeded"

};

X. Bi and B. C. d. S. Oliveira 9:9

Now the definition of modal_mixin should be self-explanatory. Finally we can apply both
“mixins” one by one to editor to create a concrete editor:

type IDEEditor = Editor & Version & Spelling & ModalEdit;

trait ide_editor [self : IDEEditor]
inherits modal_mixin Spelling (spell_mixin > editor) => { version = "0.2" };

As with the JavaScript version, we need to fill in the missing version method. It is easy
to verify that the on_key method in modal_mixin is inherited. Compared with the untyped
version, here this behaviour is reasonable because in each mixin we specifically tags the
on_key method to be an overriding method. Let us take a close look at the mixin applications.
Since SEDEL is currently explicitly typed, we need to provide concrete types when using
modal_mixin and spell_mixin. In the inner application (spell_mixin > editor), we use the
top type > to instantiate A because the editor trait provides exactly those method specified by
Editor and nothing more (hence >). In the outer application, we use Spelling to instantiate A.
This is where implicit conflict resolution of mixins happens. We know the result of the inner
application actually forms a trait that provides both check and on_key, but the disjointness
constraint of A requires the absence of on_key, thus we cannot instantiate A to Spelling &
OnKey for example when applying modal_mixin. Therefore the outer application effectively
excludes on_key from spell_mixin. In summary, the order of mixin applications is reflected
by the order of function applications, and conflict resolution code is implicitly embedded.
Of course changing the mixin application order to spell_mixin ModalEdit (modal_mixin >
editor) gives the expected behaviour.

Admittedly the typed version is unnecessarily complicated as we were mimicking mixins
by functions over traits. The final editor ide_editor suffers from the same problem as the
class IDEEditor, since there is no obvious way to access the on_key method in the editor
trait.3 Section 3 makes better use of traits to simplify the editor code.

3 Typed First-Class Traits

In Section 2 we have seen some examples of first-class traits at work in SEDEL. In this section
we give a detailed account of SEDEL’s support for typed first-class traits, to complement
what has been presented so far. In doing so, we simplify the examples in Section 2 to make
better use of traits. Section 4 presents the formal type system of first-class traits.

3.1 Traits in SEDEL
SEDEL supports a simple, yet expressive form of traits [47]. Traits provide a simple mechanism
for find-grained code reuse, which can be regarded as a disciplined form of multiple inheritance.
A trait is similar to a mixin in that it encapsulates a collection of related methods to be added
to a class. The practical difference between traits and mixins is the way conflicting features
that typically arise in multiple inheritance are dealt with. Instead of automatically resolved
by scoping rules, conflicts are, in SEDEL, detected by the type system, and explicitly resolved
by the programmer. Compared with traditional trait models, there are three interesting
points about SEDEL’s traits: (1) they are statically typed; (2) they are first-class values; and
(3) they support dynamic inheritance. The support for such combination of features is one of
the key novelties of SEDEL. Another minor difference from traditional traits (e.g., in Scala)
is that, due to the use of structural types, a trait name is not a type.

3 In fact, as we will see in Section 3, we can still access on_key in editor by the forwarding operator.

ECOOP 2018

9:10 Typed First-Class Traits

3.2 Two Roles of Traits in SEDEL
Traits as Templates for Creating Objects. An obvious difference between traits in SEDEL
and many other models of traits [47, 25, 37] is that they directly serve as templates for objects.
In many other trait models, traits are complemented by classes, which take the responsibility
for object creation. In particular, most models of traits do not allow constructors for traits.
However, a trait in SEDEL has a single constructor of the same name. Take our last trait
ide_editor in Section 2 for example:

a_editor1 = new[IDEEditor] ide_editor;

As with conventional OO languages, the keyword new is used to create an object. A difference
to other OO languages is that the keyword new also specifies the intended type of the object.
We instantiate the ide_editor trait and create an object a_editor1 of type IDEEditor. As
we will see in Section 3.4, constructors with parameters can also be expressed.

It is tempting to try to instantiate the editor trait such as new[Editor] editor. However
this results in a type error, because as we discussed, editor has no definition of version, and
blindly instantiating it would cause runtime error. This behaviour is on a par with Java’s
abstract classes – traits with undefined methods cannot be instantiated on their own.

Traits as Units of Code Reuse. The traditional role of traits is to serve as units of code
reuse. SEDEL’s traits can have this role as well. Our spell_mixin function in Section 2 is
more complicated than it should be. This is because we were mimicking classes as traits, and
mixins as functions over traits. Instead, traits already provide a mechanism of code reuse.
To illustrate this, we simplify spell_mixin as follows:

trait spell [self : OnKey] => {
on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = self.on_key "C-c" ++ " for spell checking"

};

This is much cleaner. The trait spell adds a method check. It also defines a method on_key.
A key difference with spell_mixin is that on_key is invoked on the self parameter instead of
super. Note that this does not necessarily mean check will call on_key defined in the same
trait. As we will see, the actual behaviour entirely depends on how we compose spell with
other traits. One minor difference is that we do not need to tag on_key with the override
keyword, because spell stands as a standalone entity. Another interesting point is that
the self-type OnKey is not the same as that of the trait body, which also contains the check
method. In SEDEL, self-types of traits are known as trait requirements.

Classes and/or Traits. In the literature on traits [21, 47], the aforementioned two roles are
considered as competing. One reason of the two roles conflicting in class-based languages is
because a class must adopt a fixed position in the class hierarchy and therefore it can be
difficult to reuse and resolve conflicts, whereas in SEDEL, a trait is a standalone entity and
is not tied to any particular hierarchy. Therefore we can view our traits either as generators
of instances, or units of reuse. Another important reason why our model can do just with
traits is because we have a pure language. Mutable state can often only appear in classes in
imperative models of traits, which is a good reason for having both classes and traits.

3.3 Trait Types and Trait Requirements
Object Types and Trait Types. SEDEL adopts a relatively standard foundational model of
object-oriented constructs [30] where objects are encoded as records with a structural type.

X. Bi and B. C. d. S. Oliveira 9:11

This is why the type of the object a_editor1 is the record type IDEEditor. In SEDEL, an
object type is different from a trait type. A trait type is specified with the keyword Trait.
For example, the type of the spell trait is Trait[OnKey, OnKey & Spelling].

Trait Requirements and Functionality. In general, a trait type Trait[T1, T2] specifies both
the requirements T1 and the functionality T2 of a trait. The requirements of a trait denote the
types/methods that the trait needs to support for defining the functionality it provides. Both
are reflected in the trait type. For example, spell has type Trait[OnKey, OnKey & Spelling],
which means that spell requires some implementation of the on_key method, and it provides
implementations for the on_key and check methods. When a trait has no requirements, the
absence of a requirement is denoted by using the top type (>). A simplified sugar Trait[T]
is used to denote a trait without requirements, but providing functionality T.

Trait Requirements as Abstract Methods. Let us go back to our very first trait editor.
Note how in editor the type of the self parameter is Editor & Version, where Version
contains a declaration of the version method that is needed for the definition of show_help.
Note also that the trait itself does not actually contain a version definition. In many other
OO models a similar program could be achieved by having an abstract definition of version.
In SEDEL there are no abstract definitions (methods or fields), but a similar result can
be achieved via trait requirements. Requirements of a trait are met at the object creation
point. For example, as we mentioned before, the editor trait alone cannot be instantiated
since it lacks version. However, when it is composed with a trait that provides version, the
composition can be instantiated, as shown below:

trait foo => { version = "0.2" };
bar = new[Editor & Version] foo & editor;

SEDEL uses a syntax where the self parameter can be explicitly named (not necessarily
named self) with a type annotation. When the self parameter is omitted (for example in the
foo trait above), its type defaults to >. This is different from typical OO languages, where
the default type of the self parameter is the same as the class being defined.

Intersection Types Model Subtyping. IDEEditor is defined as an intersection type (Editor
& Version & Spelling & ModalEdit). Intersection types [20, 43] have been woven into many
modern languages these days. A notable example is Scala, which makes fundamental use of
intersection types to express a class/trait that extends multiple other traits. An intersection
type such as T1 & T2 contains exactly those values which can be used as values of type T1 and
of type T2, and as such, T1 & T2 immediately introduces a subtyping relation between itself
and its two constituent types T1 and T2. Unsurprisingly, IDEEditor is a subtype of Editor.

3.4 Traits with Parameters and First-Class Traits
So far our uses of traits involve no parameters. Instead of inventing another trait syntax
with parameters, a trait with parameters is just a function that produces a trait expression,
since functions already have parameters of their own. This is one benefit of having first-class
traits in terms of language economy. To illustrate, let us simplify modal_mixin in a similar
way as in spell_mixin:

modal (init_mode : String) = trait => {
on_key(key : String) = "Process " ++ key ++ " on modal editor";
mode = init_mode;
toggle_mode = "toggle succeeded"

};

ECOOP 2018

9:12 Typed First-Class Traits

The first thing to notice is that modal is a function with one argument, and returns a trait
expression, which essentially makes modal a trait with one parameter. Now it is easy to
see that a trait declaration trait name [self : ...] => {...} is just syntactic sugar for
function definition name = trait [self : ...] => {...}. The body of the modal trait is
straightforward. We initialize the mode field to init_mode. The modal trait also comes with a
constructor with one parameter, so we can do new[ModalEdit] (modal "insert") for example.

3.5 Detecting and Resolving Conflicts in Trait Composition
A common problem in multiple inheritance is how to detect and/or resolve conflicts. For
example, when inheriting from two traits that have the same field, then it is unclear which
implementation to choose. There are various approaches to dealing with conflicts. The
trait-based approach requires conflicts to be resolved at the level of the composition, otherwise
the program is rejected by the type system. SEDEL provides a means to help resolve conflicts.

We start by assembling all the traits defined in this section to create the final editor with
the same functionality as ide_editor in Section 2. Our first try is as follows:

ide_editor (init_mode : String) = trait [self : IDEEditor]
-- conflict
inherits editor & spell & modal init_mode => { version = "0.2" };

Unfortunately the above trait gets rejected by SEDEL because editor, spell and modal all
define an on_key method. Recall that in Section 2, when we use a mixin-style composition,
the conflict resolution code has been hardwired in the definition. However, in a trait-style
composition, this is not the case: conflicts must be resolved explicitly. The above definition is
ill-typed precisely because there is a conflicting method on_key, thus violating the disjointness
conditions of disjoint intersection types.

Resolving Conflicts. To resolve the conflict, we need to explicitly state which on_key gets
to stay. SEDEL provides such a means, the so-called exclusion operator (denoted by \),
which allows one to exclude a field/method from a given trait. The following matches the
behaviour in Section 2 where on_key in the modal trait is selected:

ide_editor (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell \ {on_key : String → String} & modal init_mode =>
{ version = "0.2" };

Now the above code type checks. We can also select on_key in the spell trait as easily:

ide_editor2 (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell & (modal init_mode) \ {on_key : String → String} =>
{ version = "0.2" };

In Section 2 we mentioned that in the mixin style, it is impossible to select on_key in the
editor trait, but this is not a problem here:

ide_editor3 (init_mode : String) = trait [self : IDEEditor]
inherits editor & spell \ {on_key : String → String} &

(modal init_mode) \ {on_key : String → String} =>
{ version = "0.2" };

The Forwarding Operator. Another operator that SEDEL provides is the so-called for-
warding operator, which can be useful when we want to access some method that has been

X. Bi and B. C. d. S. Oliveira 9:13

explicitly excluded in the inherits clause. This is a common scenario in diamond inheritance,
where super is not enough. Below we show a variant of ide_editor:

ide_editor4 (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell \ {on_key : String → String} &
modal init_mode => {

version = "0.2";
override on_key(key : String) =
super.on_key key ++ " and " ++ (spell ^ self).on_key key

};

Notice that on_key in spell has been excluded. However, we can still access it by using
the forwarding operator as in spell ^ self, which gives full access to all the methods in
spell. Also note that using super only gives us access to on_key in the modal trait. To see
ide_editor4 in action, we create a small test:

a_editor2 = new[IDEEditor] (ide_editor4 "command");
main = a_editor2.do_cut
-- "Process C-x on modal editor and Process C-x on spell editor for cutting text"

3.6 Disjoint Polymorphism and Dynamic Composition
SEDEL supports disjoint polymorphism. The combination of disjoint polymorphism and
first-class traits enables the highly modular code where traits with statically unknown types
can be instantiated and composed in a type-safe way! The following is illustrative of this:

merge A [B * A] (x : Trait[A]) (y : Trait[B]) = new[A & B] x & y;

The merge function takes two traits x and y of some arbitrary types A and B, composes them,
and instantiates an object with the resulting composed trait. Clearly such composition
cannot always work if A and B can have conflicts. However, merge has a constraint B * A that
ensures that whatever types are used to instantiate A and B they must be disjoint. Thus,
under the assumption that A and B are disjoint the code type-checks. We want to emphasize
that row polymorphism is unable to express this kind of disjointness of two polymorphic
types, thus systems using row polymorphism is unable to define the merge function, which
plays an essential role in Section 5.

4 Formalizing Typed First-Class Traits

This section presents the syntax and semantics of SEDEL. In particular, we show how to
elaborate high-level source language constructs (self-references, abstract methods, first-class
traits, dynamic inheritance, etc) in SEDEL to Fi [7], a pure record calculus with disjoint
polymorphism. The treatment of the self-reference and dynamic dispatching is inspired by
Cook and Palsberg’s work on the denotational semantics for inheritance [19]. We then prove
the elaboration is type safe, i.e., well-typed SEDEL expressions are translated to well-typed
Fi terms. Finally we show that SEDEL is coherent. Full proofs can be found in the appendix.

4.1 Syntax
The core syntax of SEDEL is shown in Fig. 1, with trait related constructs highlighted . For
brevity of the meta-theoretic study, we do not consider definitions, which can be added in
standard ways.

ECOOP 2018

9:14 Typed First-Class Traits

Types A,B,C ::= > | Int | A→ B | A & B | {l : A} | α | ∀ (α ∗A).B | Trait [A,B]
Expressions E ::= > | i | x | λx.E | E1 E2 | Λ (α ∗A).E | E A | E1 , , E2 | E : A

| {l = E} | E . l | letrec x : A = E1 in E2 | new [A](Ei
i) | E1^ E2

| trait [self : B] inherits Ei
i { lj = E ′

j
j } : A

Contexts Γ ::= • | Γ, x : A | Γ, α ∗A

Record types {l1 : A1, ... , ln : An} := {l1 : A1}& ... & {ln : An}
Records {l1 = E1, ... , ln = En} := {l1 = E1} , , ... , , {ln = En}

Figure 1 SEDEL core syntax and syntactic abbreviations.

Types. Metavariables A, B, C range over types. Types include a top type >, type of
integers Int, function types A→ B, intersection types A & B, singleton record types {l : A},
type variables α and disjoint (universal) quantification ∀ (α ∗ A).B. The main novelty is the
type of first-class traits Trait [A,B], which expresses the requirement A and the functionality
B. We will use [A/α]B to denote capture-avoiding substitution of A for α inside B.

Expressions. Metavariable E ranges over expressions. We start with constructs required
to encode objects based on records: term variables x, lambda abstractions λx.E , function
applications E1 E2, singleton records {l = E}, record projections E . l, recursive let bindings
letrec x : A = E1 in E2, disjoint type abstraction Λ (α ∗A).E and type application E A. The
calculus also supports a merge construct E1 , , E2 for creating values of intersection types and
annotated expressions E : A. We also include a canonical top value > and integer literals i.

First-class traits and trait expressions. The central construct of SEDEL is the trait
expressiontrait [self : B] inherits Ei

i { lj = E ′
j

j
} : A, which specifies a (possibly empty)

list of trait expressions Ei in the inherits clause, an explicit self reference (with type an-
notation B), and a set of methods {lj = E′

j}. Intuitively this trait expression has type
Trait [B,A]. Unlike the conventional trait model, a trait expression denotes a first-class
value: it may occur anywhere where an expression is expected. Trait instantiation expressions
new [A](Ei

i) instantiate a composition of trait expressions Ei to create an object of type A.
Finally E1^E2 is the forwarding expression, where E1 should be some trait.

Abbreviations. For ease of programming, multiple-field record types are merely syntactic
sugar for intersections of single-field record types. Similarly, multi-field record expressions
are syntactic sugar for merges of single-field records.

4.2 Semantics
Subtyping and Well-formedness. Figure 2 shows the most relevant subtyping and well-
formedness rules for SEDEL. Omitted rules are standard and can be found in previous work [7].
The subtyping rule for trait types (rule Sub-trait) resembles the one for function types
(rule Sub-arr) in that it is contravariant on the first type A and covariant on the second
type B. The well-formedness rule for trait types is straightforward.

Disjointness. Figure 3 shows the disjointness judgment Γ ` A∗B, which is used for example
in rule WF-and. The disjointness checking is the underlying mechanism of conflict detection.

X. Bi and B. C. d. S. Oliveira 9:15

A <: B (Subtyping)

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
Sub-arr

B1 <: A1 A2 <: B2

Trait [A1,A2] <: Trait [B1,B2]
Sub-trait

Γ ` A (Well formedness)

Γ ` A Γ ` B Γ ` A ∗ B
Γ ` A & B

WF-and
Γ ` A Γ ` B
Γ ` Trait [A,B]

WF-trait

Figure 2 Subtyping and well-formedness of SEDEL (excerpt).

We naturally extend the disjointness rules in Fi to cover trait types. We refer to their
paper [7] for further explanation. Here we discuss the rules related with traits. Rule D-trait
says that as long as the functionalities that two traits provide are disjoint, the two trait
types are disjoint. Rules D-traitArr1 and D-traitArr2 deal with situations where one
of the two types is a function type. At first glance, these two look strange because a trait
type is different from a function type, and they ought to be disjoint as an axiom. The reason
is that SEDEL has an elaboration semantics, and as we will see, trait types are translated
to function types. In order to ensure the elaboration is type-safe, we have to have special
treatment for trait and function types. In principle, if SEDEL has its own semantics, then
trait types are always disjoint to function types. The axiom rules of the form A ∗ax B take
care of two types with different language constructs.

Typing Traits. The typing rules of trait related constructs are shown in Fig. 4. The full set
of rules can be found in the appendix. The reader is advised to ignore the highlighted parts
for now. SEDEL employs two modes: the inference mode (⇒) and the checking mode (⇐).
The inference judgment Γ ` E ⇒ A says that we can synthesize a type A for expression E in
the context Γ. The checking judgment Γ ` E ⇐ A checks E against A in the context Γ. One
representative of inference rules is

Γ ` E1 ⇒ A e1 Γ ` E2 ⇒ B e2 Γ ` A ∗ B
Γ ` E1 , , E2 ⇒ A & B e1 , , e2

Inf-merge

which says that a merge of two expressions is valid only if their types are disjoint. This is
the underlying mechanism for conflict detection. One representative of checking rules is

Γ ` E ⇒ A e A <: B Γ ` B
Γ ` E ⇐ B e

Chk-sub

where subtyping is used to coerce expressions of one type to another.
To type-check a trait (rule Inf-trait) we first type-check if its inherited traits Ei are

valid traits. Note that each trait Ei can possibly refer to self. Methods must all be well-typed
in the usual sense. Apart from these, we have several side-conditions to make sure traits
are well-behaved. The well-formedness judgment Γ ` C1 & .. & Cn & C ensures that we do
not have conflicting methods (in inherited traits and the body). The subtyping judgments
B <: Bi ensure that the self parameter satisfies the requirements imposed by each inherited
trait. Finally the subtyping judgment C1 & .. & Cn & C <: A sanity-checks that the assigned
type A is compatible.

ECOOP 2018

9:16 Typed First-Class Traits

Γ ` A ∗ B (Disjointness)

D-top

Γ ` > ∗A

D-topSym

Γ ` A ∗ >

D-var
α ∗A ∈ Γ A <: B

Γ ` α ∗ B

D-varSym
α ∗A ∈ Γ A <: B

Γ ` B ∗ α

D-forall
Γ, α ∗A1 & A2 ` B ∗ C

Γ ` ∀ (α ∗A1).B ∗ ∀ (α ∗A2).C

D-rec
Γ ` A ∗ B

Γ ` {l : A} ∗ {l : B}

D-recn
l1 6= l2

Γ ` {l1 : A} ∗ {l2 : B}

D-arrow
Γ ` A2 ∗ B2

Γ ` A1 → A2 ∗ B1 → B2

D-andL
Γ ` A1 ∗ B Γ ` A2 ∗ B

Γ ` A1 & A2 ∗ B

D-andR
Γ ` A ∗ B1 Γ ` A ∗ B2

Γ ` A ∗ B1 & B2

D-trait
Γ ` A2 ∗ B2

Γ ` Trait [A1,A2] ∗Trait [B1,B2]

D-traitArr1
Γ ` A2 ∗ B2

Γ ` Trait [A1,A2] ∗ B1 → B2

D-traitArr2
Γ ` A2 ∗ B2

Γ ` A1 → A2 ∗Trait [B1,B2]

D-ax
A ∗ax B

Γ ` A ∗ B

A ∗ax B (Disjointness axiom)

Dax-intTrait

Int ∗ax Trait [A1,A2]

Dax-traitForall

Trait [A1,A2] ∗ax ∀ (α ∗ B1).B2

Dax-traitRec

Trait [A1,A2] ∗ax {l : B}

Figure 3 Disjointness rules of SEDEL (excerpt).

Trait instantiation (rule Inf-new) requires that each instantiated trait is valid. There are
also several side-conditions, which serve the same purposes as in rule Inf-trait. Rule Inf-
forward says that the first operand E1 of the forwarding operator must be a trait. Moreover,
the type of the second operand E2 must satisfy the requirement of E1.

Treatments of Exclusion, Super and Override. One may have noticed that in Fig. 1 we did
not include the exclusion operator in the core SEDEL syntax, neither do super and override
appear. The reason is that in principle all uses of the exclusion operator can be replaced
by type annotations. For example to exclude a bar field from {foo = a, bar = b, baz = c},
all we need is to annotate the record with type {foo : A, baz : C} (suppose a has type A,
etc). By rule Chk-sub, the resulting record is guaranteed to contain no bar field. In the
same vein, the use of override can be explained using the exclusion operator. The super
keyword is internally a variable pointing to the inherits clause (its typing rule is similar
to rule inf-trait and can be found in the appendix). We omit all of these features in
the meta-theoretic study in order to focus our attention on the essence of first-class traits.
However in practice, this is rather inconvenient as we need to write down all types we wish
to retain rather than the one to exclude. So in our implementation we offer all of them.

Elaboration. The operational semantics of SEDEL is given by means of a type-directed
translation into Fi extended with (lazy) recursive let bindings. This extension is standard and
type-safe. The syntax of Fi is shown in Fig. 5. Let us go back to Fig. 4, now focusing on the
highlighted parts, which denote the elaborated Fi terms. Most of them are straightforward

X. Bi and B. C. d. S. Oliveira 9:17

Γ ` E ⇒ A e (Infer)

Inf-trait
Γ, self : B ` Ei ⇒ Trait [Bi ,Ci] ei

i∈1..n
Γ, self : B ` { lj = E′

j
j∈1..m } ⇒ C e

B <: Bi
i∈1..n Γ ` C1 & .. & Cn & C C1 & .. & Cn & C <: A

Γ ` trait [self : B] inherits Ei
i∈1..n { lj = E′

j
j∈1..m } : A ⇒ Trait [B,A] λ(self : |B|). ((ei self) i∈1..n) , , e

Inf-forward
Γ ` E1 ⇒ Trait [A,B] e1 Γ ` E2 ⇐ A e2

Γ ` E1^E2 ⇒ B e1 e2

Inf-new
Γ ` Ei ⇒ Trait [Ai ,Bi] ei

i∈1..n
A <: Ai

i∈1..n Γ ` B1 & .. & Bn B1 & .. & Bn <: A

Γ ` new [A](Ei
i∈1..n) ⇒ A letrec self : |A| = (ei self) i∈1..n

in self

Figure 4 Typing of SEDEL (excerpt).

Types τ, σ ::= > | Int | τ → σ | τ &σ | {l : τ} | α | ∀ (α ∗ τ). σ
Expressions e ::= > | i | x | λx. e | e1 e2 | Λ (α ∗ τ). e | e τ | e1 , , e2 | e : τ

| {l = e} | e. l | letrec x : τ = e1 in e2

Figure 5 Syntax of Fi with let bindings.

translations and are thus omitted. We explain the most involved rules regarding traits.
In rule Inf-trait, a trait is translated into a lambda abstraction with self as the formal
parameter. In essence a trait corresponds to what Cook and Palsberg [19] call a generator.
The translations of the inherited traits (i.e., ei) are each applied to self and then merged
with the translation of the trait body e. Now it is clear why we require B (the type of self)
to be a subtype of each Bi (the requirement of each inherited trait). Note that we abuse the
bar notation here with the intention that (ei self)

i∈1..n
means e1 self , , .. , , en self. Here is

an example of translating the ide_editor trait from Section 2 into plain Fi terms equipped
with definitions (suppose modal_mixin and spell_mixin have been translated accordingly):

The gray parts in rule Inf-new show the translation of trait instantiation. First we
apply every translation (i.e., ei) of the instantiated traits to the self parameter, and then
merge the applications together. The bar notation is interpreted similarly to the translation
in rule Inf-trait. Finally we compute the lazy fixed-point of the resulting merge term,
i.e., self-reference must be updated to refer to the whole composition. Taking the fixed-
point of the traits/generators again follows the denotational inheritance model by Cook and
Palsberg. This is the key to the correct implementation of dynamic dispatching. Finally,
rule Inf-forward translates forwarding expressions to function applications. We show the
translation of the a_editor1 object in Section 3 to illustrate the translation of instantiation:

--END_EDITOR_INST

One remarkable point is that, while Cook and Palsberg work is done in an untyped
setting, here we apply their ideas in a setting with disjoint intersection types and disjoint
polymorphism. Our work shows that disjoint intersection types blend in quite nicely with
Cook and Palsberg’s denotational model of inheritance.

Flattening Property. In the literature of traits [21, 47, 34], a distinguished feature of traits
is the so-called flattening property. This property says that a (non-overridden) method in a

ECOOP 2018

9:18 Typed First-Class Traits

trait has the same semantics as if it were implemented directly in the class that uses the
trait. It would be interesting to see if our trait model has this property. One problem in
formulating such a property is that flattening is a property that talks about the equivalence
between a flattened class (i.e., a class where all trait methods have been inlined) and a class
that reuses code from traits. Since SEDEL does not have classes, we cannot state exactly
the same property. However, we believe that one way to talk about a similar property for
SEDEL is to have something along the lines of the following example:

I Example 1 (Flattening). Suppose we have m well-typed (i.e, conflict-free) traits trait
t1 {l11 = E11,..},..., trait tm {lm1 = Em1,..}, each with some number of methods, then
new (trait inherits t1 & ... & tm {}) = new (trait {l11 = E11,..,lm1 = Em1,..})

If we elaborate these two expressions, the property boils down to whether two merge terms
(E1 , , E2) , , E2 and E1 , , (E2 , , E3) have the same semantics. As is shown by Bi et al. [13],
merges are associative and commutative, so it is not hard to see that the above two expressions
are semantically equivalent. We leave it as future work to formally state and prove flattening.

4.3 Type Soundness and Coherence
Since the semantics of SEDEL is defined by elaboration into Fi [7] it is easy to show that key
properties of Fi are also guaranteed by SEDEL. In particular, we show that the type-directed
elaboration is type-safe in the sense that well-typed SEDEL expressions are elaborated into
well-typed Fi terms. We also show that the source language is coherent and each valid source
program has a unique (unambiguous) elaboration.

We need a meta-function | · | that translates SEDEL types to Fi types, whose definition is
straightforward. Only the translation of trait types deserves attention:

|Trait [A,B]| = |A| → |B|

That is, trait types are translated to function types. | · | extends naturally to typing contexts.
Now we show several lemmas that are useful in the type-safety proof.

I Lemma 2. If Γ ` A then |Γ| ` |A|.
Proof. By structural induction on the well-formedness judgment. J

I Lemma 3. If A <: B then |A| <: |B|.
Proof. By structural induction on the subtyping judgment. J

I Lemma 4. If Γ ` A ∗ B then |Γ| ` |A| ∗ |B|.
Proof. By structural induction on the disjointness judgment. J

Finally we are in a position to establish the type safety property:

I Theorem 5 (Type-safe translation). We have that:
If Γ ` E ⇒ A e then |Γ| ` e ⇒ |A|.
If Γ ` E ⇐ A e then |Γ| ` e ⇐ |A|.

Proof. By structural induction on the typing judgment. J

I Theorem 6 (Coherence). Each well-typed SEDEL expression has a unique elaboration.
Proof. By examining every elaboration rule, it is easy to see that the elaborated Fi term
in the conclusion is uniquely determined by the elaborated Fi terms in the premises. Then
by the coherence property of Fi, we conclude that each well-typed SEDEL expression has a
unique unambiguous elaboration, thus SEDEL is coherent. J

X. Bi and B. C. d. S. Oliveira 9:19

5 Case Study: Modularizing Language Components

To further illustrate the applicability of SEDEL, we present a case study using Object
Algebras [39] and Extensible Visitors [38, 52]. Encodings of extensible designs for Object
Algebras and Extensible Visitors have been presented in mainstream languages [38, 52, 39,
41, 44]. However, prior approaches are not entirely satisfactory due to the limitations in
existing mainstream OO languages. In Section 5.1, we show how SEDEL makes those designs
significantly simpler and convenient to use. In particular, SEDEL’s encoding of extensible
visitors gives true ASTs and supports conflict-free Object Algebra combinators, thanks to
first-class traits and disjoint polymorphism. Based on this technique, Section 5.2 gives a
bird-view of several orthogonal features of a small JavaScript-like language from a textbook
on Programming Languages [18], and illustrates how various features can be modularly
developed and composed to assemble a complete language with various operations baked in.
Section 5.3 compares our SEDEL’s implementation with that of the textbook using Haskell
in terms of lines of code.

5.1 Object Algebras and Extensible Visitors in SEDEL

First we give a simple introduction to Object Algebras, a design pattern that can solve the
Expression Problem [54] (EP) in languages like Java. The objective of EP is to modularly
extend a datatype in two dimensions: by adding more cases to the datatype and by adding
new operations for the datatype. Our starting point is the following code:

type ExpAlg[E] = { lit : Int → E, add : E → E → E };
type IEval = { eval : Int };
trait evalAlg => {

lit (x : Int) = { eval = x };
add (x : IEval) (y : IEval) = { eval = x.eval + y.eval }

};

ExpAlg[E] is the generic interface of a simple arithmetic language with two cases, lit for
literals and add for addition. ExpAlg[E] is also called an Object Algebra interface. A concrete
Object Algebra will implement such an interface by instantiating E with a suitable type.
Here we also define one operation IEval, modelled by a single-field record type. A concrete
Object Algebra that implements the evaluation rules is given by a trait evalAlg.

First-Class Object Algebra Values. The actual AST of this simple arithmetic language is
given as an internal visitor [42]:

type Exp = { accept : forall E . ExpAlg[E] → E };

Note that Object Algebras as implemented in languages like Java or Scala do not define
the type Exp because this would make adding new variants very hard. Although extensible
versions of this visitor pattern do exist, they usually require complex types using advanced
features of generics [39, 52]. However, as we will see, this is not a problem in SEDEL. We
can build a value of Exp as follows:

e1 : Exp = { accept E f = f.add (f.lit 2) (f.lit 3) };

ECOOP 2018

9:20 Typed First-Class Traits

Adding a New Operation. We add another operation IPrint to the language:

type IPrint = { print : String };
trait printAlg => {

lit (x : Int) = { print = x.toString };
add (x : IPrint) (y : IPrint) = {

print = "(" ++ x.print ++ " + " ++ y.print ++ ")"
}

};

This is done by giving another trait printAlg that implements the additional print method.

Adding a New Case. A second dimension for extension is to add another case for negation:

type ExpExtAlg[E] = ExpAlg[E] & { neg : E → E };
trait negEvalAlg inherits evalAlg => {

neg (x : IEval) = { eval = 0 - x.eval }
};
trait negPrintAlg inherits printAlg => {

neg (x : IPrint) = { print= "-" ++ x.print }
};

This is achieved by extending evalAlg and printAlg, implementing missing operations for
negation, respectively. We define the actual AST similarly:

type ExtExp = { accept: forall E. ExpExtAlg[E] → E };

and build a value of -(2 + 3) while reusing e1:

e2 : ExtExp = { accept E f = f.neg (e1.accept E f) };

Relations between Exp and ExpExt. At this stage, it is interesting to point out an inter-
esting subtyping relation between Exp and ExtExp: ExpExt, though being an extension of Exp
is actually a supertype of Exp. As Oliveira [38] observed, these relations are important for
legacy and performance reasons since it means that, a value of type Exp can be automatically
and safely coerced into a value of type ExpExt, allowing some interoperability between new
functionality and legacy code. However, to ensure type-soundness, Scala (or other common
OO languages) forbids any kind of type-refinement on method parameter types. The con-
sequence of this is that in those languages, it is impossible to express that ExtExp is both an
extension and a supertype of Exp.

Dynamic Object Algebra Composition Support. When programming with Object Algeb-
ras, oftentimes it is necessary to pack multiple operations in the same object. For example, in
the simple language we have been developing it can be useful to create an object that supports
both printing and evaluation. Oliveira and Cook [39] addressed this problem by proposing
Object Algebra combinators that combine multiple algebras into one. However, as they noted,
such combinators written in Java are difficult to use in practice, and they require significant
amounts of boilerplate. Improved variants of Object Algebra combinators have been encoded
in Scala using intersection types and an encoding of the merge construct [41, 44]. However,
the Scala encoding of the merge construct is quite complex as it relies on low-level type-
unsafe programming features such as dynamic proxies, reflection or other meta-programming
techniques. In SEDEL, the combination of first-class traits, dynamic inheritance and disjoint
polymorphism allows type-safe, coherent and boilerplate-free composition of Object Algebras.

combine A [B * A] (f : Trait[ExpExtAlg[A]]) (g : Trait[ExpExtAlg[B]]) =
trait inherits f & g => {};

X. Bi and B. C. d. S. Oliveira 9:21

Types τ ::= int | bool
Expressions e ::= i | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2 natF

| B | if e1 then e2 else e3 boolF
| e1 == e2 | e1 < e2 compF
| e1 && e2 | e1 || e2 logicF
| x | var x = e1; e2 varF
| e1 e2 funcF

Programs pgm ::= decl1 . . . decln e funcF
Functions decl ::= function f (x : τ){e} funcF
Values v ::= i | B

Figure 6 Mini-JS expressions, values, and types.

That is it. None of the boilerplate in other approaches [39], or type-unsafe meta-programming
techniques of other approaches [41, 44] are needed! Two points are worth noting: (1) combine
relies on dynamic inheritance. Notice how combine inherits two traits f and g, for which their
implementations are unknown statically; (2) the disjointness constraint (B * A) is crucial to
ensure two Object Algebras (f and g) are conflict-free when being composed.

To conclude, let us see combine in action. We combine negEvalAlg and negPrintAlg:

combinedAlg = combine IEval IPrint negEvalAlg negPrintAlg;

The combined algebra combineAlg is useful to avoid multiple interpretations of the same AST
when running multiple operations. For example, we can create an object o that supports
both evaluation and printing in one go:

o = e2.accept (IEval & IPrint) (new[ExpExtAlg[IEval & IPrint]] combinedAlg);
main = o.print ++ " = " ++ o.eval.toString -- "-(2.0 + 3.0) = -5.0"

5.2 Case Study Overview
Now we are ready to see how the same technique scales to modularize different language
features. A feature is an increment in program functionality [56, 31]. Figure 6 presents the
syntax of the expressions, values and types provided by the features; each line is annotated
with the corresponding feature name. Starting from a simple arithmetic language, we
gradually introduce new features and combine them with some of the existing features to
form various languages. Below we briefly explain what constitutes each feature:

natF and boolF contain, among others, literals, additions and conditional expressions.
compF and logicF introduce comparisons between numbers and logical connectives.
varF introduces local variables and variable declarations.
funcF introduces top-level functions and function calls.

Besides, each feature is packed with 3 operations: evaluator, pretty printer and type checker.
Having the feature set, we can synthesize different languages by selecting one or more

operations, and one or more data variants, as shown in Fig. 7. For example arith is a simple
language of arithmetic expressions, assembled from natF , boolF and compF . On top of that,
we also define an evaluator, a pretty printer and a type checker. Note that for some languages
(e.g., simplenat), since they have only one kind of value, we only define an evaluator and
a pretty printer. We thus obtain 12 languages and 30 operations in total. The complete
language mini-JS contains all the features and supports all the operations. The reader can
refer to our supplementary material for the source code of the case study.

ECOOP 2018

9:22 Typed First-Class Traits

Language Operations Data variants
eval print check natF boolF compF logicF varF funcF

simplenat 3 3 3

simplebool 3 3 3

natbool 3 3 3 3 3

varbool 3 3 3 3

varnat 3 3 3 3

simplelogic 3 3 3 3

varlogic 3 3 3 3 3

arith 3 3 3 3 3 3

arithlogic 3 3 3 3 3 3 3

vararith 3 3 3 3 3 3 3

vararithlogic 3 3 3 3 3 3 3 3

mini-JS 3 3 3 3 3 3 3 3 3

Figure 7 Overview of the languages assembled.

5.3 Evaluation
To evaluate SEDEL’s implementation of the case study, Figure 8 compares the number of
source lines of code (SLOC, lines of code without counting empty lines and comments) for
SEDEL’s modular implementation with the vanilla non-modular AST-based implementations
in Haskell. The Haskell implementations are just straightforward AST interpreters, which
duplicate code across the multiple language components.

Since SEDEL is a new language, we had to write various code that is provided in Haskell
by the standard library, so they are not counted for fairness of comparison. In the left part,
for each feature, we count the lines of the algebra interface (number beside the feature name),
and the algebras for the operations. In the right part, for each language, we count the lines
of ASTs, and those to combine previously defined operations. For example, here is the code
that is needed to make the arith language.

type ArithAlg[E] = NatBoolAlg[E] & CompAlg[E]; -- Object Algebra interface
type Arith = { accept : forall E. ArithAlg[E] → E }; -- AST
evalArith (e : Arith) : IEval = -- Evaluator

e.accept IEval (new[ArithAlg[IEval]] evalNatAlg & evalBoolAlg & evalCompAlg);
ppArith (e : Arith) : IPrint = -- Pretty printer

e.accept IPrint (new[ArithAlg[IPrint]] ppNatAlg & ppBoolAlg & ppCompAlg);
tcArith (e : Arith) = -- Type checker

e.accept ITC (new[ArithAlg[ITC]] tcNatAlg & tcBoolAlg & tcCompAlg);

We only need 8 lines in total: 2 lines for the AST, and 6 lines to combine the operations.
Therefore, the total SLOC of SEDEL’s implementation is the sum of all the lines in

the feature and language parts (237 SLOC of all features plus 94 SLOC of ASTs and
operations). Although SEDEL is considerably more verbose than a functional language like
Haskell, SEDEL’s modular implementation for 12 languages and 30 operations in total reduces
approximately 60% in terms of SLOC. The reason is that, the more frequently a feature is
reused by other languages directly or indirectly, the more reduction we see in the total SLOC.
For example, natF is used across many languages. Even though simplenat itself alone has
more SLOC (40 = 7 + 23 + 7 + 3) than that of Haskell (which has 33), we still get a huge
gain when implementing other languages.

X. Bi and B. C. d. S. Oliveira 9:23

Feature eval print check Lang name SEDEL Haskell % Reduced
natF(7) 23 7 39 simplenat 3 33 91%
boolF(4) 9 4 17 simplebool 3 16 81%

compF(4) 12 4 20 natbool 5 74 93%
logicF(4) 12 4 20 varbool 4 24 83%

varF(4) 7 4 7 varnat 4 41 90%
funcF(3) 10 3 9 simplelogic 4 28 86%

varlogic 6 36 83%
arith 8 94 91%
arithlogic 8 114 93%
vararith 8 107 93%
vararithlogic 8 127 94%
mini-JS 33 149 78%

Total 237 331 843 61%

Figure 8 SLOC statistics: SEDEL implementation vs vanilla AST implementation.

Finally, we acknowledge the limitation of our case study in that SLOC is just one metric
and we have not measured any other metrics. Nevertheless we believe that the case study is
already non-trivial in that we need to solve EP. Note that Scala traits alone are not sufficient
on their own to solve EP. While there are solutions to EP in both Haskell and Scala, they
introduce significant complexity, as explained in Section 5.1.

6 Related Work

Typed First-Class Classes/Mixins/Traits. First-class classes have been used in Racket [26],
along with mixin support, and have shown great practical value. For example, DrRacket
IDE [24] makes extensive use of layered combinations of mixins to implement text editing
features. The topic of first-class classes with static typing has been explored by Takikawa
et al. [51] in Typed Racket. They designed a gradual type system that supports first-class
classes. Of particular interest is their use of row polymorphism [55] to type mixins. As
with our use of disjoint polymorphism, row polymorphism can express constraints on the
presence or absence of members. Unlike disjoint polymorphism, row polymorphism prohibits
forgetting class members. For example, in SEDEL we can write:

foo [A * {bar : String}] (t : Trait[{bar : String} & A]) : Trait[A] = t;

where foo drops bar from its argument trait t, which is impossible to express in Typed Racket.
Also as we pointed out in Section 3.6, row polymorphism alone cannot express the merge
function that is able to compose objects of statically unknown types. In this sense, we argue
disjoint polymorphism is more powerful than row polymorphism in terms of expressivity. It
would be interesting to investigate the relationship between disjoint polymorphism and row
polymorphism. We leave it as future work.

More recently, Lee et al. [30] proposed a model for typed first-class classes based on
tagged objects. Like our development, the semantics of their source language is defined by a
translation into a target language. One notable difference to SEDEL is that they require the
use of a variable rather than an expression in the extends clause, whereas we do not have this
restriction. In their source language, subclasses define subtypes, which limits its applicability
to extensible designs. Also their target calculus is significantly more complex than ours due

ECOOP 2018

9:24 Typed First-Class Traits

to the use of dependent function types and dependent sum types. As they admitted, they
omit inheritance in their formalization.

Racket also supports a dynamically-typed model of first-class traits [26]. However, unlike
Racket’s first-class classes and mixins, there’s no type system supporting the use of first-class
traits. A key difficulty is statically detecting conflicts. As far as we know, SEDEL is the first
design for typed first-class traits.

Mixin-Based Inheritance. Bracha and Cook’s seminal paper [16] extends Modula-3 with
mixins. Since then, many mixin-based models have been proposed [27, 14, 8]. Mixin-based
inheritance requires that mixins are composed linearly, and as such, conflicts are resolved
implicitly. In comparison, the trait model in SEDEL requires conflicts to be resolved explicitly.
We want to emphasize that conflict detection is essential in expressing composition operators
for Object Algebras, without running into ambiguities. Bracha’s Jigsaw [15] formalized
mixin composition, along with a rich trait algebra including merge, restrict, select, project,
overriding and rename operators. Lagorio et al. [29] proposed FJig that reformulates Jigsaw
constructs in a Java-like setting. Allen et al. [6] described how to add first-class generic types
– including mixins – to OO languages with nominal typing. As such, classes and mixins,
though they enjoy static typing, are still second-class constructs, and thus their system
cannot express dynamic inheritance. Bessai et al. [9] showed how to type classes and mixins
with intersection types and Bracha-Cook’s merge operator [16].

Trait-Based Inheritance. Traits were proposed by Schärli et al. [47, 21] as a mechanism
for fine-grained code reuse to overcome many limitations of class-based inheritance. The
original proposal of traits were implemented in the dynamically-typed class-based language
Squeak/Smalltalk. Since then various formalizations of traits in a Java-like (statically-
typed) setting have been proposed [25, 46, 50, 34]. In most of the above proposals, trait
composition and class-based inheritance live together. SEDEL, in the spirit of pure trait-based
programming languages [12, 11], embraces traits as the sole mechanism for code reuse. The
deviation from traditional class-based inheritance is not only because of its simplicity, but
also because we need a very dynamic form of inheritance.

Languages with More Advanced Forms of Inheritance. Self [53] is a dynamically-typed,
prototype-based language with a simple and uniform object model. Self’s inheritance model
is typical of what we call mutable inheritance, because an object’s parent slot may be assigned
new values at runtime. Mutable inheritance is rather unstructured, and oftentimes access
to any clashing methods will generate a “messageAmbiguous” error at runtime. Although
SEDEL’s dynamic inheritance is not as powerful as mutable inheritance, its static type system
can guarantee that no such errors occur at runtime. Eiffel [33] supports a sophisticated
class-based multiple inheritance with deep renaming, exclusion and repeated inheritance. Of
particular interest is that in Eiffel, name collisions are considered programming errors, and
ambiguities must be resolved explicitly by the programmer (by means of renaming). In this
regard, SEDEL is quite like Eiffel. However, the type system in SEDEL is more lenient in
that two identically named methods with different signatures can coexist. Grace [35, 28]
is an object-based language designed for education, where objects are created by object
constructors. Since Grace has mutable fields, it has to consider many concerns when it
comes to inheritance, resulting in a rather complex inheritance mechanism with various
restrictions. Since SEDEL is pure, a relatively simple encoding of traits with late binding
of self suffices for our applications. Grace’s support for multiple inheritance is based on

X. Bi and B. C. d. S. Oliveira 9:25

so-called instantiable traits. We believe that there is plenty to be learned from Grace’s
design of traits if we want to extend our trait model with features such as mutable state.
MetaFJig [48] (an extension of FJig) supports dynamic trait replacement [50, 10, 21], a
feature for changing the behavior of an object at runtime by replacing one trait for another.

Module Systems. In parallel to OOP, the ML module system originally proposed by
MacQueen [32] also offers powerful support for flexible program construction, data abstraction
and code reuse. Mixin modules in the Jigsaw framework [17] provides a suite of operators for
adapting and combining modules. The MixML [45] module system incorporates mixin module
composition, while retaining the full expressive powerful of ML modules. Module systems
usually put more emphasis on supporting type abstraction. Support for type abstraction
adds considerable complexity, which is not needed in SEDEL. SEDEL is focused on OOP and
supports, among others, method overriding, self references and dynamic dispatching, which
(generally speaking) are all missing features in module systems.

Intersection Types, Polymorphism and Merge Construct. There is a large body of work
on intersection types. Here we only talk about work that has direct influences on ours.
Dunfield [22] shows significant expressiveness of type systems with intersection types and
a merge construct. However his calculus lacks coherence. The limitation was addressed by
Oliveira el at. [40], where they introduced the notion of disjointness to ensure coherence. The
combination of intersection types, a merge construct and parametric polymorphism, while
achieving coherence was first studied in the Fi calculus [7]. Fi serves as the target language
of SEDEL. Dynamic inheritance, self-references and abstract methods are all missing from Fi
but, as shown in this paper, they can be encoded using an elaboration that employs ideas
from Cook and Palsberg’s denotational model of inheritance [19].

7 Conclusion

This paper presents SEDEL: the first design for a polymorphic statically-typed language with
first-class traits, supporting dynamic inheritance as well as conventional OO features such
as dynamic dispatching and abstract methods. The paper also shows how high-level source
language constructs can be elaborated into a core record calculus with disjoint polymorphism.
Finally the paper illustrates the applicability of SEDEL by showing greatly improved design
patterns such as Object Algebras and Extensible Visitors, leveraging first-class traits. As
for future work, we are interested to study how first-class traits interacts with features such
as mutable state and recursive types. For mutable state, one immediate issue of supporting
mutation is how it affects the coherence property of Fi, and we foresee major technical
challenges to adjust the previous coherence proof. A more powerful proof method such as
logical relations [13, 5] may be needed.

References
1 Javascript. URL: https://www.javascript.com/.
2 Python. URL: https://www.python.org/.
3 Racket. URL: https://racket-lang.org/.
4 Ruby. URL: https://www.ruby-lang.org/en/.
5 Amal Jamil Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University,

2004.

ECOOP 2018

https://www.javascript.com/
https://www.python.org/
https://racket-lang.org/
https://www.ruby-lang.org/en/

9:26 Typed First-Class Traits

6 Eric E. Allen, Jonathan Bannet, and Robert Cartwright. A first-class approach to genericity.
In Object-Oriented Programming Systems, Languages and Applications (OOPSLA), 2003.

7 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In
European Symposium on Programming (ESOP), 2017.

8 Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam–designing a java extension with
mixins. In ACM Transactions on Programming Languages and Systems (TOPLAS), 2003.

9 Jan Bessai, Boris Düdder, Andrej Dudenhefner, Tzu-Chun Chen, and Ugo de’Liguoro. Typ-
ing classes and mixins with intersection types. In Workshop on Intersection Types and
Related Systems (ITRS), 2014.

10 Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dynamic trait replace-
ment for java-like languages. Science of Computer Programming, 78(7):907–932, 2013.

11 Lorenzo Bettini and Ferruccio Damiani. Xtraitj: Traits for the java platform. Journal of
Systems and Software, 131:419–441, 2017.

12 Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. Traitrecordj: A pro-
gramming language with traits and records. Science of Computer Programming, 78(5):521–
541, 2013.

13 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The essence of nested composition.
In European Conference on Object-Oriented Programming, 2018.

14 Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes and mixins.
In European Conference on Object-Oriented Programming (ECOOP), 1999.

15 Gilad Bracha. The programming language jigsaw: mixins, modularity and multiple inherit-
ance. PhD thesis, Dept. of Computer Science, University of Utah, 1992.

16 Gilad Bracha and William R. Cook. Mixin-based inheritance. In Object-oriented Program-
ming, Systems, Languages and Applications (OOPSLA), 1990.

17 Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In International Con-
ference on Computer Languages, pages 282–290. IEEE Computer Society, 1992.

18 William R. Cook. Anatomy of Programming Languages. The University of Texas, 2013.
URL: http://www.cs.utexas.edu/~wcook/anatomy/.

19 William R. Cook and Jens Palsberg. A denotational semantics of inheritance and its correct-
ness. In Object-Oriented Programming: Systems, Languages and Applications (OOPSLA),
1989.

20 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.

21 Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Programming Languages
and Systems, 28(2):331–388, mar 2006.

22 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Program-
ming, 24(2-3):133–165, 2014.

23 Ecma International. ECMAScript 2015 Language Specification. Ecma International,
Geneva, 6th edition, June 2015. URL: http://www.ecma-international.org/ecma-262/
6.0/ECMA-262.pdf.

24 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-
namurthi, Paul Steckler, and Matthias Felleisen. Drscheme: a programming environment
for scheme. J. Funct. Program., 12(2):159–182, 2002.

25 Kathleen Fisher and John Reppy. A typed calculus of traits. In Workshop on Foundations
of Object-oriented Programming, 2004.

26 Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,
and traits. In Programming Languages and Systems (APLAS), 2006.

27 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
Principles of Programming Languages (POPL), 1998.

http://www.cs.utexas.edu/~wcook/anatomy/
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf

X. Bi and B. C. d. S. Oliveira 9:27

28 Timothy Jones, Michael Homer, James Noble, and Kim B. Bruce. Object inheritance
without classes. In European Conference on Object-Oriented Programming (ECOOP), 2016.

29 Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight jigsaw — replacing
inheritance by composition in java-like languages. Information and Computation, 214:86–
111, 2012.

30 Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. A theory of tagged objects.
In European Conference on Object-Oriented Programming (ECOOP), 2015.

31 Roberto E Lopez-Herrejon, Don Batory, and William Cook. Evaluating support for fea-
tures in advanced modularization technologies. In European Conference on Object-Oriented
Programming (ECOOP), 2005.

32 David MacQueen. Modules for standard ML. In Proceedings of the 1984 ACM Symposium
on LISP and functional programming - LFP '84, 1984.

33 Bertrand Meyer. Eiffel: programming for reusability and extendibility. ACM Sigplan
Notices, 22(2):85–94, 1987.

34 Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening traits. Journal of
Object Technology, 5(4):129–148, 2006.

35 James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and Timothy Jones. Grace’s
inheritance. Journal of Object Technology, 16(2):2:1–35, 2017.

36 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An overview of the scala programming language. Technical report, EPFL Lausanne, Switzer-
land, 2004.

37 Martin Odersky and Matthias Zenger. Scalable component abstractions. In Object-Oriented
Programming: Systems, Languages and Applications (OOPSLA 2005), 2005.

38 Bruno C. d. S. Oliveira. Modular visitor components: A practical solution to the expression
families problem. In European Conference on Object Oriented Programming (ECOOP),
2009.

39 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses. In European
Conference on Object-Oriented Programming (ECOOP), 2012.

40 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

41 Bruno C. d. S. Oliveira, Tijs Van Der Storm, Alex Loh, and William R Cook. Feature-
oriented programming with object algebras. In European Conference on Object-Oriented
Programming (ECOOP), 2013.

42 Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons. The visitor pattern as a reusable,
generic, type-safe component. In Object Oriented Programming: Systems, Languages and
Applications (OOPSLA), 2008.

43 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

44 Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. From object
algebras to attribute grammars. In Object Oriented Programming, Systems Languages and
Applications (OOPSLA), 2014.

45 Andreas Rossberg and Derek Dreyer. Mixin’ up the ML module system. ACM Transactions
on Programming Languages and Systems, 35(1):1–84, apr 2013.

46 Nathanael Scharli, St Ducasse, Roel Wuyts, Andrew Black, et al. Traits: The formal model.
CSETech, 2003.

47 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. Traits:
Composable units of behaviour. In European Conference on Object-Oriented Programming
(ECOOP), 2003.

ECOOP 2018

9:28 Typed First-Class Traits

48 Marco Servetto and Elena Zucca. A meta-circular language for active libraries. Science of
Computer Programming, 95:219–253, 2014.

49 Yannis Smaragdakis and Don S. Batory. Mixin-based programming in C++. In Generative
and Component-Based Software Engineering (GCSE), 2000.

50 Charles Smith and Sophia Drossopoulou. Chai: Traits for java-like languages. In Andrew P.
Black, editor, European Conference on Object-Oriented Programming (ECOOP), 2005.

51 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Object-oriented Programming:
Systems, Languages and Applications (OOPSLA), 2012.

52 Mads Torgersen. The Expression Problem Revisited. In European Conference on Object-
Oriented Programming (ECOOP), 2004.

53 David Ungar and Randall B Smith. Self: the power of simplicity (object-oriented language).
In Compcon Spring’88. Thirty-Third IEEE Computer Society International Conference,
Digest of Papers, 1988.

54 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
55 Mitchell Wand. Type inference for objects with instance variables and inheritance. Theor-

etical aspects of object-oriented programming, pages 97–120, 1994.
56 Pamela Zave. Faq sheet on feature interaction. Link: http://www. research. att. com/˜

pamela/faq. html, 1999.

CrySL: An Extensible Approach to Validating the
Correct Usage of Cryptographic APIs
Stefan Krüger
Paderborn University, Germany
stefan.krueger@uni-paderborn.de

Johannes Späth
Fraunhofer IEM
johannes.spaeth@iem.fraunhofer.de

Karim Ali
University of Alberta, Canada
karim.ali@ualberta.ca

Eric Bodden
Paderborn University& Fraunhofer IEM, Germany
eric.bodden@uni-paderborn.de

Mira Mezini
Technische Universität Darmstadt, Germany
mezini@cs.tu-darmstadt.de

Abstract
Various studies have empirically shown that the majority of Java and Android apps misuse
cryptographic libraries, causing devastating breaches of data security. It is crucial to detect such
misuses early in the development process. To detect cryptography misuses, one must first define
secure uses, a process mastered primarily by cryptography experts, and not by developers.

In this paper, we present CrySL, a definition language for bridging the cognitive gap between
cryptography experts and developers. CrySL enables cryptography experts to specify the secure
usage of the cryptographic libraries that they provide. We have implemented a compiler that
translates such CrySL specification into a context-sensitive and flow-sensitive demand-driven
static analysis. The analysis then helps developers by automatically checking a given Java or
Android app for compliance with the CrySL-encoded rules.

We have designed an extensive CrySL rule set for the Java Cryptography Architecture (JCA),
and empirically evaluated it by analyzing 10,000 current Android apps. Our results show that
misuse of cryptographic APIs is still widespread, with 95% of apps containing at least one misuse.
Our easily extensible CrySL rule set covers more violations than previous special-purpose tools
with hard-coded rules, with our tooling offering a more precise analysis.

2012 ACM Subject Classification Security and privacy → Software and application security,
Software and its engineering → Software defect analysis, Software and its engineering → Syntax,
Software and its engineering → Semantics

Keywords and phrases cryptography, domain-specific language, static analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.10

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.6

Funding This work was supported by the DFG through its Collaborative Research Center
CROSSING, the project RUNSECURE, by the Natural Sciences and Engineering Research Coun-

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Stefan Krüger and Johannes Späth and Karim Ali and Eric Bodden and Mira Mezini;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 10; pp. 10:1–10:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.krueger@uni-paderborn.de
mailto:johannes.spaeth@iem.fraunhofer.de
mailto:karim.ali@ualberta.ca
mailto:eric.bodden@uni-paderborn.de
mailto:mezini@cs.tu-darmstadt.de
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
http://dx.doi.org/10.4230/DARTS.4.3.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

cil of Canada, by the Heinz Nixdorf Foundation, a Fraunhofer ATTRACT grant, and by an Oracle
Collaborative Research Award.

Acknowledgements We would like to thank the maintainers of AndroZoo for allowing us to use
their data set in our evaluation.

1 Introduction

Digital devices are increasingly storing sensitive data, which is often protected using cryp-
tography. However, developers must not only use secure cryptographic algorithms, but
also securely integrate such algorithms into their code. Unfortunately, prior studies suggest
that this is rarely the case. Lazar et al. [22] examined 269 published cryptography-related
vulnerabilities. They found that 223 are caused by developers misusing a security library
while only 46 result from faulty library implementations. Egele et al. [13] statically analyzed
11,748 Android apps using cryptography-related application interfaces (Crypto APIs) and
found 88% of them violated at least one basic cryptography rule. Chatzikonstantinou et
al. [12] reached a similar conclusion by analyzing apps manually and dynamically. In 2017,
VeraCode listed insecure uses of cryptography as the second-most prevalent application-
security issue right after information leakage [11]. Such pervasive insecure use of Crypto APIs
leads to devastating vulnerabilities such as data breaches in a large number of applications.
Rasthofer et al. [31] showed that virtually all smartphone apps that rely on cloud services
use hard-coded keys. A simple decompilation gives adversaries access to those keys and to
all data that these apps store in the cloud.

Nadi et al. [27] were the first to investigate why developers often struggle to use
Crypto APIs. The authors conducted four studies, two of which survey Java developers
familiar with the Java Crypto APIs. The majority of participants (65%) found their
respective Crypto APIs hard to use. When asked why, participants mentioned the API level
of abstraction, insufficient documentation without examples, and an API design that makes
it difficult to understand how to properly use the API. A potential long-term solution is
to redesign the APIs such that they provide an easy-to-use interface for developers that is
secure by default. However, it remains crucial to detect and fix the existing insecure API uses.
When asked about what would simplify their API usage, participants wished they had tools
that help them automatically detect misuses and suggest possible fixes [27]. Unfortunately,
approaches based solely on specification inference and anomaly detection [33] are not viable
for Crypto APIs, because – as elaborated above – most uses of Crypto APIs are insecure.

Previous work has tried to detect misuses of Crypto APIs through static analysis. While
this is a step in the right direction, existing approaches are insufficient for several reasons.
First, these approaches implement mostly lightweight syntactic checks, which yield fast
analysis times at the cost of exposing a high number of false negatives. Therefore, such
analyses fail to warn about many insecure (especially non-trivial) uses of cryptography. For
instance, applications using password-based encryption commonly do not clear passwords
from heap memory and instead rely on garbage collection to free the respective memory
space. Moreover, existing tools cannot easily be extended to cover those rules; instead they
have cryptography-specific usage rules hard coded. The Java Cryptography Architecture
(JCA), the primary cryptography API for Java applications [27], offers a plugin design that
enables different providers to offer different crypto implementations through the same API,
often imposing slightly different usage requirements on their clients. Hard-coded rules can
hardly possibly reflect this diversity.

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:3

In this paper, we present CrySL, a definition language that enables cryptography experts
to specify the secure usage of their Crypto APIs in a lightweight special-purpose syntax. We
also present a CrySL compiler that parses and type-checks CrySL rules and translates them
into an efficient, yet precise flow-sensitive and context-sensitive static data-flow analysis. The
analysis automatically checks a given Java or Android app for compliance with the encoded
CrySL rules. CrySL was specifically designed for (and with the help of) cryptography
experts. Our approach goes beyond methods that are useful for general validation of API
usage (e.g., typestate analysis [3, 7, 28, 8] and data-flow checks [2, 5]) by enabling the
expression of domain-specific constraints related to cryptographic algorithms and their
parameters.

To evaluate CrySL, we built the most comprehensive rule set available for the JCA
classes and interfaces to date, and encoded it in CrySL. We then used the generated static
analysis CogniCryptsast to scan 10,000 Android apps. We have also modelled the existing
hard-coded rules by Egele et al. [13] in CrySL and compared the findings of the generated
static analysis (CogniCryptcl) to those of CogniCryptsast. Our more comprehensive rule
set reports 3× more violations, most of which are true warnings. With such comprehensive
rules, CogniCryptsast finds at least one misuse in 95% of the apps. CogniCryptsast is
also highly efficient: for more than 75% of the apps, the analysis finishes in under 3 minutes
per app, where most of the time is spent in Android-specific call graph construction.

In summary, this paper presents the following contributions:
We introduce CrySL, a definition language to specify correct usages of Crypto APIs.
We encode a comprehensive specification of correct usages of the JCA in CrySL.
We present a CrySL compiler that translates CrySL rules into a static analysis to find
violations in a given Java or Android app.
We empirically evaluate CogniCryptsast on 10,000 Android apps.

We have integrated CogniCryptsast into crypto assistant CogniCrypt [20] and
have open-sourced our implementation and artifacts on GitHub. CogniCryptsast is
available at https://github.com/CROSSINGTUD/CryptoAnalysis. The latest version of
the CrySL rules for the JCA can be accessed at https://github.com/CROSSINGTUD/
Crypto-API-Rules.

2 Related Work

Before we discuss the details of our approach, we contrast it with the following related lines
of work: approaches for specifying API (mis)uses, approaches for inferring API specifications,
and previous approaches for detecting misuses of security APIs. Our review of these
approaches shows that existing specification languages are not optimally suited for defining
misuses of Crypto APIs. Additionally, automated inference of correct uses of Crypto APIs is
hard to achieve, and existing tools for detecting misuses of Crypto APIs are limited mainly
because they have hard-coded rule sets, and support for the most part lightweight syntactic
analyses.

2.1 Languages for Specifying and Checking API Properties

There is a significant body of research on textual specification languages that ensure API
properties by means of static data-flow analysis. Tracematches [3] were designed to check
typestate properties defined by regular expressions over runtime objects. Bodden et al. [8, 10]

ECOOP 2018

https://github.com/CROSSINGTUD/CryptoAnalysis
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules

10:4 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

as well as Naeem and Lhoták [28] present algorithms to (partially) evaluate state matches
prior to the program execution, using static analysis.

Martin et al. [24] present Program Query Language (PQL) that enables a developer to
specify patterns of event sequences that constitute potentially defective behaviour. A dynamic
analysis (i.e., tracematches optimized by a static pre-analysis) matches the patterns against
a given program run. A pattern may include a fix that is applied to each match by dynamic
instrumentation. PQL has been applied to detecting security-related vulnerabilities such as
memory leaks [24], SQL injection and cross-site scripting [23]. Compared to tracematches,
PQL captures a greater variety of pattern specifications, at the disadvantage of using only
flow-insensitive static optimizations. PQL serves as the main inspiration for the CrySL
syntax. Other languages that pursue similar goals include PTQL [16], PDL [26], and TS4J [9].

We investigated tracematches and PQL in detail, yet found them insufficiently equipped
for the task at hand. First, both systems follow a black-list approach by defining and finding
incorrect program behaviour. We initially followed this approach for crypto-usage mistakes
but quickly discovered that it would lead to long, repetitive, and convoluted misuse-definitions.
Consequently, CrySL defines desired behaviour, which in the case of Crypto APIs leads to
more compact specifications. Second, the above languages are general-purpose languages
for bug finding, which causes them to miss features essential to define secure usages of
Crypto APIs in particular. The strong focus of CrySL on cryptography allows us to cover a
greater portion of cryptography-related problems in CrySL compared to other languages,
while at the same time keeping CrySL relatively simple. Third, the CrySL compiler
generates state-of-the-art static analyses that were shown to have better performance and
precision than other approaches [36], lowering the threat of false warnings.

2.2 Inference/Mining of API-usage specifications
As an alternative to specifying API-usage properties manually, one can attempt to infer
them from existing program code. Robillard et al. [34] surveyed over 60 approaches to API
property inference. As this survey shows, however, all but two of the surveyed approaches
infer patterns from client code (i.e., from applications that use the API in question). When
it comes to Crypto APIs, however, past studies have shown that the majority of existing
usages of those APIs is, in fact, insecure [13, 12, 35]. Another idea that appears sensible at
first sight is to infer correct usage of Crypto APIs from posts on developer portals such as
StackOverflow. However, recent studies show that the “solutions” posted there often include
insecure code [1].

In result, one can only conclude that automated mining of API-usage specifications is
very challenging for Crypto APIs, if it is possible at all. In the future, we plan to investigate
a semi-automated approach in which we use automated inference to infer at least partial
specifications, but directly in CrySL, that security experts can then further correct and
complete by hand.

2.3 Detecting Misuses of Security APIs
Only few previous approaches specifically address the detection of misuses of security APIs.
CryptoLint [13] performs a lightweight syntactic analysis to detect violations of exactly six
hard-coded usage rules for the JCA in Android apps. Those six rules, while important to
obey for security, resemble only a tiny fraction of the rule set we provide in this work. It is
also hard to specify and validate new rules using CryptoLint, because they would have
to be hard-coded. Unlike CryptoLint, CrySL is designed to allow crypto experts to also

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:5

1 SecretKeyGenerator kG = KeyGenerator . getInstance ("AES");
2 kG.init (128);
3 SecretKey cipherKey = kG. generateKey ();
4
5 String plaintextMSG = getMessage ();
6 Cipher ciph = Cipher . getInstance ("AES/GCM");
7 ciph.init(Cipher . ENCRYPT_MODE , cipherKey);
8 byte [] cipherText = ciph. doFinal (plaintextMSG . getBytes ("UTF -8"));

Figure 1 An example illustrating the use of javax.crypto.KeyGenerator to implement data
encryption in Java.

express comprehensive and complex rules with ease. In Section 8, we extensively compare
our tool CogniCryptsast to CryptoLint.

Another tool that finds misuses of Crypto APIs is Crypto Misuse Analyzer (CMA) [35].
Similar to CryptoLint, CMA’s rules are hard-coded, and its static analysis is rather basic.
Many of CMA’s hard-coded rules are also contained in the CrySL rule set that we provide.
Unlike CogniCryptsast, CMA has been evaluated on a small dataset of only 45 apps.

Chatzikonstantinou et al. [12] manually identified misuses of Crypto APIs in 49 apps
and then verified their findings using a dynamic checker. All three studies concluded that at
least 88% of the studied apps misuse at least one Crypto API.

None of the previous approaches facilitates rule creation by means of a higher-level
specification language. Instead, the rules are hard-coded into each tool, making it hard
for non-experts in static analysis to extend or alter the rule set, and impossible to share
rules among tools. Moreover, such hard-coded rules are quite restricted, causing the tools to
have a very low recall (i.e., missing many actual API misuses). CrySL, on the other hand,
due to its Java-like syntax, enables cryptography experts to easily define new rules. The
CrySL compiler then automatically transforms those rules into appropriate, highly-precise
static-analysis checks. By defining crypto-usage rules in CrySL instead of hard-coding them,
one also makes those rules reusable in different contexts.

3 An Example of a Secure Usage of Crypto APIs

Throughout the paper, we will use the code example in Figure 1 to motivate the language
features in CrySL. The code in this figure constitutes an API usage that according to the
current state of cryptography research can be considered secure. Lines 1–3 generate a 128-bit
secret key to use with the encryption algorithm AES. Lines 5–7 use that key to initialize
a Java Cipher object that encrypts plaintextMSG. Since AES encrypts plaintext block by
block, it must be configured to use one of several modes of operation. The mode of operation
determines how to encrypt a block based on the encryption of the preceding block(s). Line 6
configures Cipher to use the Galois/Counter Mode (GCM) of operation [25].

Although the code example may look straightforward, a number of subtle alterations to the
code would render the encryption non-functional or even insecure. First, both KeyGenerator
and Cipher only support a limited choice of encryption algorithms. If the developer passes
an unsupported algorithm to either getInstance methods, the respective line will throw a
runtime exception. Similarly, the design of the APIs separates the classes for key generation
and encryption. Therefore, the developer needs to make sure they pass the same algorithm
(here "AES") to the getInstance methods of KeyGenerator and Cipher. If the developer
does not configure the algorithms as such, the generated key will not fit the encryption
algorithm, and the encryption will fail by throwing a runtime exception. None of the existing

ECOOP 2018

10:6 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

METHOD :=
methname(PARAMETERS)

PARAMETERS :=
varname , PARAMETERS
varname

TYPES :=
QualifiedClassName , TYPES
TYPE

CONSTANTLIST :=
constant , CONSTANTLIST
constant

AGGREGATE :=
label | AGGREGATE
label ;

EVENT :=
AGGREGATE
label : METHOD
label : varname = METHOD A: B = C(D) – a single event with

label A consisting of method C, its
parameter D, and return object B

PREDICATE :=
predname(PARAMETERS)
predname(PARAMETERS) after EVENT

PREDICATES :=
PREDICATE ; PREDICATES

Figure 2 Basic CrySL syntax elements.

tools discussed in Section 2.3 are capable of detecting such functional misuses. Moreover,
some supported algorithms are no longer considered secure (e.g., DES or AES/ECB [15]). If
the developer selects such an algorithm, the program will still run to completion, but the
resulting encryption could easily be broken by attackers. To make things worse, the JCA, the
most popular API, offers the insecure ECB mode by default (i.e., when developers request
only "AES" without specifying a mode of operation explicitly).

To use Crypto APIs properly, developers generally have to take into consideration two
dimensions of correctness: (1) the functional correctness that allows the program to run and
terminate successfully and (2) the provided security guarantees. Prior empirical studies have
shown that developers, for instance by looking for code examples on web portals such as
StackOverflow [14], frequently succeed in obtaining functionally correct code. However, they
often fail to obtain a secure use of Crypto APIs, primarily because most code examples on
those web portals provide “solutions” that themselves are insecure [14].

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:7

SPEC TYPE;

OBJECTS
OBJECTS :=

OBJECT ; OBJECTS A ; B – a list of objects A and B
OBJECT ; A – a list of the single object A

OBJECT :=
TYPE varname A B – object B of Java type A

EVENTS
EVENTS :=

EVENT ; EVENTS A ; B – a list of events A and B
EVENT ; A – a list of the single event A

FORBIDDEN
FMETHODS :=

FMETHOD ; FMETHODS A ; B – a list of forbidden A and B
FMETHOD ; A – a list of the single forbidden method A

FMETHOD :=
methname(TYPES) => label A(B) => C – a forbidden method named A

with parameter of Type B and replacement C

ORDER
USAGEPATTERN :=

USAGEPATTERN , USAGEPATTERN A , B – A followed by B
USAGEPATTERN | USAGEPATTERN A | B – A or B
USAGEPATTERN ? A? – A is optional
USAGEPATTERN * A* – 0 or more As
USAGEPATTERN + A+ – 1 or more As
(USAGEPATTERN) (A) – grouping
AGGREGATE

CONSTRAINTS
CONSTRAINTS :=

CONSTRAINT ; CONSTRAINTS
CONSTRAINT => CONSTRAINT A => B – A implies B
CONSTRAINT

CONSTRAINT :=
varname in { CONSTANTLIST } A in {1, 2} – A should be 1 or 2

REQUIRES
REQ_PREDICATES :=

PREDICATES

ENSURES
ENS_PREDICATES :=

PREDICATES

NEGATES
NEG_PREDICATES :=

PREDICATES

Figure 3 CrySL rule syntax in Extended Backus-Naur Form (EBNF) [6].

ECOOP 2018

10:8 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

4 CrySL Syntax

As we discuss in Section 2.2, mining API properties for Crypto APIs is extremely challenging,
if possible at all, due to the overwhelming number of misuses one finds in actual applications.
Hence, instead of relying on the security of existing usages and examples, we here follow an
approach in which cryptography experts define correct API usages manually in a special-
purpose language, CrySL. In this section, we give an overview of the CrySL syntax elements.
A formal treatment of the CrySL semantics is presented in Section 5. Figure 2 presents the
basic syntactic elements of CrySL, and Figure 3 presents the full syntax for CrySL rules.
Figure 4 shows an abbreviated CrySL rule for javax.crypto.KeyGenerator.

4.1 Design Decisions Behind CrySL
We designed CrySL specifically with crypto experts in mind, and in fact with the help of
crypto experts. This work was carried out in the context of a large collaborative research
center than involves more than a dozen research groups involved in cryptography research.
As a result of the domain research conducted within this center, we made the following design
decisions when designing CrySL.
White listing. During our domain analysis, we observed that, for the given Crypto APIs,

there are many ways they can be misused, but only a few that correspond to correct and
secure usages. To obtain concise usage specifications, we decided to design CrySL to use
white listing in most places (i.e., defining secure uses explicitly, while implicitly assuming
all deviations from this norm to be insecure).

Typestate and data flow. When reviewing potential misuses, we observed that many of
them are related to data flows and typestate properties [38]. Such misuses occur because
developers call the wrong methods on the API objects at hand, call them in an incorrect
order or miss to call the methods entirely. Data-flow properties are important when
reasoning about how certain data is being used (e.g., passwords, keys or seed material).

String and integer constraints. In the crypto domain, string and integer parameters are
ubiquitously used to select or parametrize specific cryptography algorithms. Strings
are widely used, because they are easily recognizable, configurable, and exchangeable.
However, specifying an incorrect string parameter may result in the selection of an insecure
algorithm or algorithm combination. Many APIs also use strings for user credentials.
Those credentials, passwords in particular, should not be hard-coded into the program’s
bytecode. A precise specification of correct crypto uses must therefore comprise constraints
over string and integer parameters.

Tool-independent semantics. We equipped CrySL with a tool-independent semantics (to
be presented in Section 5). In the future, those semantics will enable us and others to
build other or more effective tools for working with CrySL. For instance, in addition to
the static analysis the CrySL compiler derives from the semantics within this paper, we
are currently working on a dynamic checker to identify and mitigate CrySL violations at
runtime.

Our desire to allow crypto experts to easily express secure crypto uses also precludes us
from using existing generic definition languages such as Datalog. Such languages, or minor
extensions thereof, might have sufficient expressive power. However, following discussions
with crypto developers, we had to acknowledge that they are often unfamiliar with those
languages’ concepts. CrySL thus deliberately only includes concepts familiar to those
developers, hence supporting an easy understanding. We next explain the elements that a
typical CrySL rule comprises.

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:9

4.2 Mandatory Sections in a CrySL Rule
To provide simple and reusable constructs, a CrySL rule is defined on the level of individual
classes. Therefore, the rule starts off by stating the class that it is defined for.

In Figure 4, the OBJECTS section defines three objects1 to be used in later sections of
the rule (e.g., the object algorithm of type String). These objects are typically used as
parameters or return values in the EVENTS section.

The EVENTS section defines all methods that may contribute to the successful use of a
KeyGenerator object, including two method event patterns (Lines 17–18). The first pattern
matches calls to getInstance(String algorithm), but the second pattern actually matches
calls to two overloaded getInstance methods:

getInstance(String algorithm, Provider provider)
getInstance(String algorithm, String provider)

The first parameter of all three methods is a String object whose value states the algorithm
that the key should be generated for. This parameter is represented by the previously defined
algorithm object. Two of the getInstance methods are overloaded with two parameters.
Since we do not need to specify the second parameter in either method, we substitute it with
an underscore that serves as a placeholder in one combined pattern definition (Line 18). This
concept of method event patterns is similar to pointcuts in aspect-oriented programming
languages such as AspectJ [19]. For CrySL, we resort to a more lightweight and restricted
syntax as we found full-fledged pointcuts to be unnecessarily complex. Subsequently, the
rule defines patterns for the various init methods that set the proper parameter values
(e.g., keysize) and a generateKey method that completes the key generation and returns the
generated key.

Line 30 defines a usage pattern for KeyGenerator using the keyword ORDER. The usage
pattern is a regular expression of method event patterns that are defined in EVENTS. Although
each method pattern defines a label to simplify referencing related events (e.g., g1, i2, and
GenKey), it is tedious and error-prone to require listing all those labels again in the ORDER
section. Therefore, CrySL allows defining aggregates. An aggregate represents a disjunction
of multiple patterns by means of their labels. Line 19 defines an aggregate GetInstance that
groups the two getInstance patterns. Using aggregates, the usage pattern for KeyGenerator
reads: there must be exactly one call to one of the getInstance methods, optionally followed
by a call to one of the init methods, and finally a call to generateKey.

Following the keyword CONSTRAINTS, Lines 33–35 define the constraints for objects
defined under OBJECTS and used as parameters or return values in the EVENTS section. In the
abbreviated CrySL rule in Figure 4, the first constraint limits the value of algorithm to
"AES" or "Blowfish". For each algorithm, there is one constraint that restricts the possible
values of keysize.

The ENSURES section is the final mandatory construct in a CrySL rule. It allows
CrySL to support rely/guarantee reasoning. The section specifies predicates to govern
interactions between different classes. For example, a Cipher object uses a key obtained
from a KeyGenerator. The ENSURES section specifies what a class guarantees, presuming
that the object is used properly. For example, the KeyGenerator CrySL rule in Figure 4
ends with the definition of a predicate generatedKey with the generated key object and its
corresponding algorithm as parameters. This predicate may be required (i.e., relied on) by
the rule for Cipher or other classes that make use of such a key through the optional element
of the REQUIRES block as illustrated in Figure 5.

1 As the example shows, in CrySL, OBJECTS also comprise primitive values.

ECOOP 2018

10:10 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

9 SPEC javax. crypto . KeyGenerator
10
11 OBJECTS
12 java.lang. String algorithm ;
13 int keySize ;
14 javax. crypto . SecretKey key;
15
16 EVENTS
17 g1: getInstance (algorithm);
18 g2: getInstance (algorithm , _);
19 GetInstance := g1 | g2;
20
21 i1: init(keySize);
22 i2: init(keySize , _);
23 i3: init(_);
24 i4: init(_, _);
25 Init := i1 | i2 | i3 | i4;
26
27 GenKey : key = generateKey ();
28
29 ORDER
30 GetInstance , Init?, GenKey
31
32 CONSTRAINTS
33 algorithm in {"AES", " Blowfish "};
34 algorithm in {"AES"} => keySize in {128 , 192, 256};
35 algorithm in {" Blowfish "} => keySize in {128 , 192, 256, 320, 384,

448};
36
37 ENSURES
38 generatedKey [key , algorithm];

Figure 4 CrySL rule for using javax.crypto.KeyGenerator.

To obtain the required expressiveness, we have further enriched CrySL with some
simple built-in auxiliary functions. For example, in Figure 5, the function alg extracts
the encryption algorithm from transformation (Line 55). This function is necessary,
because generatedKey expects only the encryption algorithm as its second parameter,
but transformation optionally specifies also the mode of operation and padding scheme
(e.g., Line 6 in Figure 1). For instance, alg would extract "AES" from "AES/GCM" or from
"AES/CBC/PKCS5Padding". Table Table 1 lists all of these functions. Note the last two
functions callTo and noCallTo may seem redundant to the ORDER and FORBIDDEN (see
Section 4.3) sections because they appear to fulfil the same purpose of requiring or forbidding
certain method calls. However, these two functions go beyond that because they allow for
the specification of conditional forbidden and required methods.

4.3 Optional Sections in a CrySL Rule
A CrySL rule may contain optional sections that we showcase through the CrySL rule
for PBEKeySpec. In Figure 6, the FORBIDDEN section specifies methods that must not be
called, because calling them is always insecure. PBEKeySpec derives cryptographic keys from
a user-given password. For security reasons, it is recommended to use a cryptographic salt
for this operation. However, the constructor PBEKeySpec(char[] password) does not allow
for a salt to be passed, and the implementation in the default provider does not generate
one. Therefore, this constructor should not be called, and any call to it should be flagged.
Consequently, the CrySL rule for PBEKeySpec lists it in the FORBIDDEN section (Line 72). In

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:11

39 SPEC javax. crypto . Cipher
40
41 OBJECTS
42 int encmode ;
43 java. security .Key key;
44 java.lang. String transformation ;
45 ...
46
47 EVENTS
48 g1: getInstance (transformation);
49 ...
50 i1: init(encmode , key);
51
52 ...
53
54 REQUIRES
55 generatedKey [key , alg(transformation)];
56
57 ENSURES
58 encrypted [cipherText , plainText];

Figure 5 CrySL rule for using javax.crypto.Cipher.

Table 1 Helper Functions in CrySL.

Function Purpose

alg(transformation) Extract algorithm/mode/padding
from transformation parameter
of Cipher.getInstance call.

mode(transformation)
padding(transformation)
length(object) Retrieve length of object
nevertypeof(object, type) Forbid object to be of type
callTo(method) Require call to method
noCallTo(method) Forbid call to method

the case of PBEKeySpec, there is an alternative secure constructor (Line 68). CrySL allows
one to specify an alternative method event pattern using the arrow notation shown in Line 72.
With FORBIDDEN events, CrySL’s language design deviates a bit from its usual white-listing
approach. We made this choice deliberately to keep specifications concise. Without explicit
FORBIDDEN events, one would have to simulate their effect by explicitly listing all events
defined on a given type except the one that ought to be forbidden. This would significantly
increase the size of CrySL specifications.

In general, predicates are generated for a particular usage whenever it does not use any
FORBIDDEN events, its regular EVENTS follow the usage pattern defined in the ORDER section,
and if the usage fulfils all constraints in the CONSTRAINTS section of its corresponding rule.
PBEKeySpec, however, deviates from that standard. The class contains a constructor that
receives a user-given password, but the method clearPassword deletes that password later,
making it no longer accessible to other objects that might use the key-spec. Consequently, a
PBEKeySpec object fulfils its role after calling the constructor but only until clearPassword
is called.

To model this usage precisely, CrySL allows one to specify a method-event pattern using
the keyword after (Line 80). If the respective method is called, a predicate is generated.
Furthermore, CrySL supports invalidating an existing predicate in the NEGATES section

ECOOP 2018

10:12 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

59 SPEC javax. crypto .spec. PBEKeySpec
60
61 OBJECTS
62 char [] pw;
63 byte [] salt;
64 int it;
65 int keylength ;
66
67 EVENTS
68 create : PBEKeySpec (pw , salt , it , keylength);
69 clear: clearPassword ();
70
71 FORBIDDEN
72 PBEKeySpec (char []) => create ;
73 PBEKeySpec (char [], byte [], int) => create ;
74
75 ORDER
76 create , clear
77 ...
78
79 ENSURES
80 keyspec [this , keylength] after create ;
81
82 NEGATES
83 keyspec [this , _];

Figure 6 CrySL rule for javax.crypto.spec.PBEKeySpec.

(Line 83). The last call to be made on a PBEKeySpec object is the call to clearPassword
(Line 76). Additionally, the rule lists the predicate keySpec[this,_] within the NEGATES
block. Semantically, the negation of the predicates means the following. A final event in the
ORDER pattern, in this case a call to clearPassword, invalidates the previously generated
keyspec predicate(s) for this. Section 5.2.2 presents the formal semantics of predicates.

5 CrySL Formal Semantics

5.1 Basic Definitions

A CrySL rule consists of several sections. The OBJECTS section comprises a set of typed
variable declarations V. In the syntax in Figure 3, each declaration v ∈ V is represented by
the syntax element TYPE varname. M is the set of all resolved method signatures, where
each signature includes the method name and argument types. The EVENTS section contains
elements of the form (m, v), where m ∈ M and v ∈ V∗. We denote the set of all methods
referenced in EVENTS by M . The FORBIDDEN section lists a set of methods from M denoted
by their signatures; forbidden events cannot bind any variables. The ORDER section specifies
the usage pattern in terms of a regular expression of labels or aggregates that are in M ,
i.e., over the defined EVENTS. We express this regular expression formally by the equivalent
non-deterministic finite automaton (Q,M, δ, q0, F) over the alphabet M , where Q is a set of
states, q0 is its initial state, F is the set of accepting states, and δ : Q×M → P(Q) is the
state transition function.

The CONSTRAINTS section is a subset of C := (V→ O ∪V)→ B (i.e., each constraint is a
boolean function), where the argument is itself a function that maps variable names in V to
objects in O or values with primitive types in V.

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:13

A CrySL rule is a tuple (T,F ,A, C), where T is the reference type specified by the SPEC
keyword, F ⊆ M is the set of forbidden events, A = (Q,M, δ, q0, F) ∈ A is the automaton
induced by the regular expression of the ORDER section, and C ⊆ C is the set of CONSTRAINTS
that the rule lists. We refer to the set of all CrySL rules as SPEC.

Our formal definition of a CrySL rule does not contain the sections REQUIRES, ENSURES,
and NEGATES. Those sections reason about the interaction of predicates, whose formal
treatment we discuss in Section 5.2.2.

5.2 Runtime Semantics
Each CrySL rule encodes usage constraints to be validated for all runtime objects of the
reference type T stated in its SPEC section. We define the semantics of a CrySL rule in
terms of an evaluation over a runtime program trace that records all relevant runtime objects
and values, as well as all events specified within the rule.

I Definition 1 (Event). Let O be the set of all runtime objects and V the set of all primitive-
typed runtime values. An event is a tuple (m, e) ∈ E of a method signature m ∈ M and
an environment e (i.e., a mapping V→ O ∪ V of the parameter variable names to concrete
runtime objects and values). If the environment e holds a concrete object for the this value,
then it is called the event’s base object.

I Definition 2 (Runtime Trace). A runtime trace τ ∈ E∗ is a finite sequence of events
τ0 . . . τn.

I Definition 3 (Object Trace). For any τ ∈ E∗, a subsequence τi1 ...τin is called an object
trace if i1 < ... < in and all base objects of τij

are identical.

Lines 1–2 in Figure 1 result in an object trace that has two events:

(m0, {algorithm 7→ "AES", this 7→ okg})
(m1, {algorithm 7→ "AES", keySize 7→ 128, this 7→ okg})

where m0 and m1 are the signatures of the getInstance and init methods of the
KeyGenerator class. For static factory methods such as getInstance, we assume that
this is bound to the returned object. We use okg to denote that the object o is bound to
the variable kG at runtime.

The decision whether a runtime trace τ satisfies a set of CrySL rules involves two
steps. In the first step, individual object traces are evaluated independently of one another.
Yet, different runtime objects may still interact with each other. CrySL rules capture this
interaction by means of rely/guarantee reasoning, implemented through predicates that a
rule ensures on a runtime object. These interactions between different objects are checked
against the specification in a second step by considering the predicates they require and
ensure. We first discuss individual object traces in more detail.

5.2.1 Individual Object Traces
The sections FORBIDDEN, ORDER and CONSTRAINTS are evaluated on individual object traces.
Figure 7 defines the function sato that is true if and only if a given trace τo for a runtime
object o satisfies its CrySL rule. This definition of sato ignores interactions with other
object traces. We will discuss later how such interactions are resolved. In the following, we
assume the trace τo = τo

0 , ..., τ
o
n, where τo

i = (mo
i , e

o
i). To illustrate the computation, we will

also refer to our example from Figure 1 and the involved rules of KeyGenerator (Figure 4)
and Cipher (Figure 5). The function sato is composed of three sub-functions:

ECOOP 2018

10:14 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

sato : E∗ × SPEC→ B
[τo, (T o,Fo,Ao, Co)]→ satoF (τo,Fo) ∧

satoA(τo,Ao) ∧
satoC(τo, Co)

Figure 7 The function sato verifies an individual object trace for the object o.

0start 1 2 3
GetInstance Init GenKey

GenKey

Figure 8 The state machine for the CrySL rule in Figure 4 (without an implicit error state).

5.2.1.1 Forbidden Events (sato
F)

Given a trace τo and a set of forbidden events F , sato ensures that none of the trace events
is forbidden.

satoF (τo,Fo) :=
∧

i=0...n

mo
i /∈ Fo

The CrySL rule for KeyGenerator does not list any forbidden methods. Hence, sato
trivially evaluates to true for object kG in Figure 1.

5.2.1.2 Order Errors (sato
A)

The second function checks that the trace object is used in compliance with the specified
usage pattern (i.e., all methods in the rule are invoked in no other than the specified order).
Formally, the sequence of method signatures of the object trace mo := mo

0, . . . ,m
o
n (i.e., the

projection onto the method signatures) must be an element of the language L(Ao) that the
automaton Ao = (Q,M, δ, q0, F) of the ORDER section induces. By definition of language
containment, after the last observed signature of the trace mo

n, the corresponding state of the
automaton must be an accepting state s ∈ F . This definition ignores any variable bindings.
They are evaluated in the second step.

satoA(τo,Ao) := mo ∈ L(Ao)

Figure 8 displays the automaton created for KeyGenerator using the aggregate names as
labels. State 0 is the initial state, and state 3 is the only accepting state. Following the code
in Figure 1 for the object kG of type KeyGenerator, the automaton transitions from state 0
to 1 at the call to getInstance (Line 1). With the calls to init (Line 2) and generateKey
(Line 3), the automaton first moves to state 2 and finally to state 3. Therefore, function
satoA evaluates to true for this example.

5.2.1.3 Constraints (sato
C)

The validity check of the constraints ensures that all constraints of C are satisfied. This check
requires the sequence of environments (eo

0, ..., e
o
n) of the trace τo. All objects that are bound

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:15

to the variables along the trace must satisfy the constraints of the rule.

satoC(τo, Co) :=
∧

c∈Co,i=0...n

c(eo
i)

To compute satoC for the KeyGenerator object kG at the call to getInstance in Line 1,
only the first constraint has to be checked. This is because the corresponding environment eo

1
holds a value only for algorithm, and the other two constraints reference other variable names.
The evaluation function c returns true if algorithm assumes either “AES” or “Blowfish”
as its value, which is the case in Figure 1. The computation of satoC for Lines 2–3 works
similarly.

5.2.2 Interaction of Object Traces
To define interactions between individual object traces, the REQUIRES, ENSURES, and NEGATES
sections allow individual CrySL rules to reference one another. For a rule for one object to
hold at any given point in an execution trace, all predicates that its REQUIRES section lists
must have been both previously ensured (by other specifications) and not negated. Predicates
are ensured (i.e., generated) and negated (i.e., killed) by certain events. Formally, a predicate
is an element of P := {(name, args) | args ∈ V∗} (i.e., a pair of a predicate name and a
sequence of variable names). Predicates are generated in specific states. Each CrySL rule
induces a function G : S → P(P) that maps each state of its automaton to the predicate(s)
that the state generates.

The predicates listed in the ENSURES and NEGATES sections may be followed by the term
after n, where n is a method event pattern label or aggregate. The states that follow the
event or aggregate n in the automaton generate the respective predicate. If the term after is
not used for a predicate, the final states of the automaton generate (or negate) that predicate
(i.e., we interpret it as after n, where n is an event that leads to a final state).

In addition to states selected as predicate-generating, the predicate is also ensured if the
object resides in any state that transitively follows the selected state, unless the states are
explicitly (de-)selected for the same predicate within the NEGATES section. At any state that
generates a predicate, the event driving the automaton into this state binds the variable
names to the values that the specification previously collected along its object trace.

Formally, an event no = (mo, eo) ∈ E of a rule r and for an object o ensures a predicate
p = (predName, args) ∈ P on the objects eo ∈ O if:
1. The method mo of the event leads to a state s of the automaton that generates the

predicate p (i.e., p ∈ G(s)).
2. The runtime trace of the event’s base object o satisfies the function sato.
3. All relevant REQUIRES predicates of the rule are satisfied at execution of event no.

For the KeyGeneraor object kG in Figure 1, a predicate is generated at Line 7 because
(1) its automaton transitions to its only predicate-generating state (state 3 of the automaton
in Figure 8), (2) sato evaluates to true as previously shown for each subfunction and (3) the
corresponding CrySL rule does not require any predicates.

6 Detecting Misuses of Crypto APIs

To detect all possible rule violations, our tool CogniCryptsast approximates the evaluation
function sato using a static data-flow analysis. In a security context, it is a requirement to
detect as many misuses as possible. One drawback is the potential for false warnings that

ECOOP 2018

10:16 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

84 boolean option1 = isPrime (66); // some non - trivial predicate returning
false

85 byte [] input = " Message ". getBytes ("UTF -8");
86
87 String alg = "SHA -256";
88 if (option1) alg = "MD5";
89 MessageDigest md = MessageDigest . getInstance (alg);
90
91 if (input.size () > 0) md. update (input);
92 byte [] digest = md. digest ();

Figure 9 An example illustrating the usage of java.security.MessageDigest in Java.

originate from over-approximations any static analysis requires. In the following, we use the
example in Figure 9 to illustrate why and where approximations are required. We will show
later in our evaluation that, in practice, our analysis is highly precise and that the chosen
approximations rarely actually lead to false warnings.

The code example in Figure 9 implements a hashing operation. By default, the code
uses SHA-256. However, if the condition option1 evaluates to true, MD5 is chosen instead
(Line 88). The CrySL rule for MessageDigest, displayed in Figure 10, does not allow the
usage of MD5 though, because it is no longer secure [15].

The update operation is performed only on non-empty input (Line 91). Otherwise, the call
to update is skipped and only the call to digest is executed, without any input. Although
not strictly insecure, this usage does not comply with the CrySL rule for MessageDigest,
because it leads to no content being hashed.

To approximate satoF , the analysis must search for possible forbidden events by first
constructing a call graph for the whole program under analysis. It then iterates through the
graph to find calls to forbidden methods. Depending on the precision of the call graph, the
analysis may find calls to forbidden methods that cannot be reached at runtime.

The analysis represents each runtime object o by its allocation site. In our example,
allocation sites are new expressions and calls to getInstance that return an object of a type
for which a CrySL rule exists. For each such allocation site, the analysis approximates satoA
by first creating a finite-state machine. CogniCryptsast then evaluates the state machine
using a typestate analysis that abstracts runtime traces by program paths. The typestate
analysis is path-insensitive, thus, at branch points, it assumes that both sides of the branch
may execute. In our contrived example, this feature leads to a false positive: although
the condition in Line 91 always evaluates to true, and the call to update is never actually
skipped, the analysis considers that this may happen, and thus reports a rule violation.

To approximate satoC, we have extended the typestate analysis to also collect potential
runtime values of variables along all program paths where an allocated object is used. The
constraint solver first filters out all irrelevant constraints. A constraint is irrelevant if it
refers to one or more variables that the typestate analysis has not encountered. In Figure 10,
the rule only includes one internal constraint – on variable algorithm. If we add a new
internal constraint to the rule about the variable offset, the constraint solver will filter it
out as irrelevant when analyzing the code in Figure 9 because the only method this variable
is associated with (digest labelled d3) is never called. The analysis distinguishes between
never encountering a variable in the source code and not being able to extract the values of
a variable. With the same rule and code snippet, if the analysis fails to extract the value for
algorithm, the constraint evaluates to false. Collecting potential values of a variable over all
possible program paths of an allocation site may lead to further imprecision. In our example,

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:17

93 SPEC java. security . MessageDigest
94
95 OBJECTS
96 java.lang. String algorithm ;
97 byte [] input;
98 int offset ;
99 int length ;

100 byte [] hash;
101 ...
102
103 EVENTS
104 g1: getInstance (algorithm);
105 g2: getInstance (algorithm , _);
106 Gets := g1 | g2;
107 ...
108 Updates := ...;
109
110 d1: output = digest ();
111 d2: output = digest (input);
112 d3: digest (hash , offset , length);
113 Digests := d1 | d2 | d3;
114
115 r: reset ();
116
117 ORDER
118 Gets , (d2 | (Updates +, Digests)), (r, (d2 | (Updates +, Digests)))*
119
120 CONSTRAINTS
121 algorithm in {"SHA -256", "SHA -384", "SHA -512"};
122
123 ENSURES
124 digested [hash , ...];
125 digested [hash , input];

Figure 10 CrySL rule for java.security.MessageDigest.

the analysis cannot statically rule out that algorithm may be MD5. The rule forbids the
usage of MD5. Therefore, the analysis reports a misuse.

Handling predicates in our analysis follows the formal description very closely. If sato
evaluates to true for a given allocation site, the analysis checks whether all required predicates
for the allocation site have been ensured earlier in the program. In the trivial case, when no
predicate is required, the analysis immediately ensures the predicate defined in the ENSURES
section. The analysis constantly maintains a list of all ensured predicates, including the
statements in the program that a given predicate can be ensured for. If the allocation site
under analysis requires predicates from other allocation sites, the analysis consults the list of
ensured predicates and checks whether the required predicate, with matching names and
arguments, exists at the given statement. If the analysis finds all required predicates, it
ensures the predicate(s) specified in the ENSURES section of the rule.

7 Implementation

We have implemented the CrySL compiler using Xtext [17], an open-source framework for
developing domain-specific languages as well as the CrySL- parameterizable static analysis
CogniCryptsast. We have further integrated CogniCryptsast with CogniCrypt [20], in
which it replaces the original code-analysis component.

ECOOP 2018

10:18 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

7.1 CrySL
Given the CrySL grammar, Xtext provides a parser, type checker, and syntax highlighter for
the language. When supplied with a type-safe CrySL rule, Xtext outputs the corresponding
AST, which is then used to generate the required static analysis.

We developed CrySL rules for all relevant JCA classes in an iterative process. That is,
we first worked through the JCA documentation to produce a set of rules and then refined
these rules through selective discussions with cryptographers and searching security blogs and
forums. In total, we have devised 23 rules covering classes ranging from key handling to digital
signing. All rules define a usage pattern. Some classes (e.g. IvParameterSpec) contain one
call to a constructor only, while others (e.g. Cipher) involve almost ten elements with several
layers of nesting. Fifteen rules come with parameter constraints, eight of which contain
limitations on cryptographic algorithms. The eight rules without parameter constraints
are mostly related to classes whose purpose is to set up parameters for specific encryptions
(e.g. GCMParameterSpec). All rules define at least one ENSURES predicate, while only eleven
require predicates from other rules. Across all rules, we have only declared two methods
forbidden. We do not find this low number surprising as such methods are always insecure
and should not at all be part of a security API. If at all, two forbidden methods is too high a
number. All rules are available at https://github.com/CROSSINGTUD/Crypto-API-Rules.

7.2 CogniCryptsast
CogniCryptsast consists of several extensions to the program analysis framework Soot [39,
21]. Soot transforms a given Java program into an intermediate representation that facilitates
executing intra- and inter-procedural static analyses. The framework provides standard static
analyses such as call-graph construction. Additionally, Soot can analyze a given Android
app intra-procedurally. Further extensions by FlowDroid [5] enable the construction of
Android-specific call graphs that are necessary to perform inter-procedural analysis.

Validating the ORDER section in a CrySL rule requires solving the typestate check satoA.
To this end, we use IDEal, a framework for efficient inter-procedural data-flow analysis [36],
to instantiate a typestate analysis. The analysis defines the finite-state machine Ao to check
against and the allocation sites to start the analysis from. From those allocation sites, IDEal

performs a flow-, field-, and context-sensitive typestate analysis.
The constraints and the predicates require knowledge about objects and values associated

with rule variables at given execution points in the program. The typestate analysis in
CogniCryptsast extracts the primitive values and objects on-the-fly, where the latter are
abstracted by allocation sites. When the typestate analysis encounters a call site that is
referred to in an event definition, and the respective rule requires the object or value of an
argument to the call, CogniCryptsast triggers an on-the-fly backward analysis to extract the
objects or values that may participate in the call. This on-the-fly analysis yields comparatively
high performance and scalability, because many of the arguments of interest are values of type
String and Integer. Thus, using an on-demand computation avoids constant propagation
of all strings and integers through the program. For the on-the-fly backward analysis, we
extended the on-demand pointer analysis Boomerang [37] to propagate both allocation sites
and primitive values. Once the typestate analysis is completed, and all required queries to
Boomerang are computed, CogniCryptsast solves the internal constraints and predicates
using our own custom-made solvers.

CogniCryptsast may be operated as a standalone command line tool. This way, it
takes a program as input and produces an error report detailing misuses and their locations.

https://github.com/CROSSINGTUD/Crypto-API-Rules

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:19

However, we have further integrated CogniCryptsast into CogniCrypt [20]. CogniCrypt
is a Eclipse plugin, which supports developers in using Crypto APIs by means of scenario-
based code generation as well code analysis for Crypto APIs. In this context, CogniCrypt
translates misuses found by CogniCryptsast into standard Eclipse error markers.

8 Evaluation

We evaluate our implementation CogniCryptsast using the following research questions:
RQ1: What are the precision and recall of CogniCryptsast?
RQ1: What types of misuses does CogniCryptsast find?
RQ1: How fast does CogniCryptsast run?
RQ1: How does CogniCryptsast compare to the state of the art?

To answer these questions, we applied the generated static analysis CogniCryptsast
to 10,000 Android apps from the AndroZoo dataset [4] using our full CrySL rule set
for the JCA. We ran our experiments on a Debian virtual machine with sixteen cores
and 64 GB RAM. We chose apps that are available in the official Google Play Store
and received an update in 2017. This ensures that we report on the most up-to-date
usages of Crypto APIs. We make available all artefacts at this Github repository: https:
//github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts.

8.1 Precision and Recall (RQ1)

Setup
To compute precision and recall, the first two authors manually checked 50 randomly selected
apps from our dataset for typestate errors and violations of internal constraints. To collect
this random sample, we implemented a Java program that generates random numbers
using SecureRandom and retrieved the apps from the corresponding lines in the spreadsheet
containing the results of analysing the 10,000 apps. We did not check for unsatisfied predicates
or forbidden events, because these are hard to detect manually – while it may seem simple
to check for calls to forbidden events, it is non-trivial to determine whether or not such
calls reside in dead code. We compare the results of our manual analysis to those reported
by CogniCryptsast. The goal of this evaluation is to compute precision and recall of the
analysis implementation in CogniCryptsast, not the quality of our CrySL rules. We discuss
the latter in Section 8.4. Consequently, we define a false positive to be a warning that should
not be reported according to the specified rule, irrespective of that rule’s semantic correctness.
Similarly, a false negative would arise if CogniCryptsast missed to report a misuse that,
according to the CrySL rule, does exist in the analyzed program.

Results
In the 50 apps we inspected, CogniCryptsast detects 228 usages of JCA classes. Table 2
lists the misuses that CogniCryptsast finds (156 misuses in total). In particular, Cog-
niCryptsast issues 27 typestate-related warnings, with only 2 false positives. Both arise
because the analysis is path-insensitive (Section 6). We further found 4 false negatives that
are caused by initializing a MessageDigest or a MAC object without completing the operation.
CogniCryptsast fails to find these typestate errors because the supporting off-the-shelf alias
analysis Boomerang times out, causing CogniCryptsast to abort the typestate analysis

ECOOP 2018

https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts
https://github.com/CROSSINGTUD/paper-crysl-reproduciblity-artefacts

10:20 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

Table 2 Correctness of CogniCryptsast warnings.

Total Warnings False Positives False Negatives

Typestate 27 2 4
Constraints 129 19 0

Total 156 21 4

without reporting a warning for the object at hand. A larger timeout or future improvements
to the alias analysis Boomerang would avoid this problem.

The automated analysis finds 129 constraint violations. We were able to confirm 110
of them. In the other 19 cases, highly obfuscated code causes the analysis to fail to
extract possible runtime values statically. For such values, the constraint solver reports
the corresponding constraint as violated. A better handling of such highly obfuscated code
can be enabled by techniques complementary to ours. For instance, one could augment
CogniCryptsast with the hybrid static/dynamic analysis Harvester [32]. We have also
checked the apps for missed constraint violations (false negatives), but were unable to find
any.

RQ1: In our manual assessment, the typestate analysis achieves high precision (92.6%)
and recall (86.2%). The constraint resolution has a precision of 85.3% and a recall of 100%.

8.2 Types of Misuses (RQ2)
Setup
We report findings obtained by analyzing all our 10,000 Android apps from AndroZoo [4].
We then use the results of our manual analysis (Section 8.1) as a baseline to evaluate our
findings on a large scale.

CogniCryptsast detects the usage of at least one JCA class in 8,422 apps. Further
investigation unveiled that many of these usages originate from the same common libraries
included in the applications. To avoid counting the same crypto usages twice, and to
prevent over-counting, we exclude usages within packages com.android, com.facebook.ads,
com.google or com.unity3d from the analysis.

Results
Excluding the findings in common libraries, CogniCryptsast detects the usage of at least
one JCA class in 4,349 apps (43% of the analyzed apps). Most of these apps (95%) contain at
least one misuse. Across all apps, CogniCryptsast started its analysis for a total of 40,295
allocation sites (i.e., abstract objects). Of these, a total of 20,426 individual object traces
violate at least one part of the specified rule patterns. CogniCryptsast reports typestate
errors (ORDER section in the rule) for 4,708 objects, and reports a total of 4,443 objects to
have unsatisfied predicates (i.e., the object expected a predicate from another object as listed
in the REQUIRES block of a rule). The analysis also discovered 97 reachable call sites that call
forbidden events. The majority of object traces that violate at least one part of a CrySL
rule (54.7%) contradict a constraint listed in the CONSTRAINTS section of a rule.

Approximately 86% of these constraint-violations are related to MessageDigest. In
our manual analysis (see RQ1), 89 of the 110 found constraint violations originated from

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:21

usages of MD5 and SHA-1. We expect a similar fraction to also hold for the 11,178 constraint
contradictions reported over all 10,000 apps. Many developers still use MD5 and SHA-1,
although both are no longer recommended by security experts [15]. CogniCryptsast
identifies 1,228 (10.9%) constraint violations related to Cipher usages. In our manual
analysis, all misuses of the Cipher class are due to using the insecure algorithm DES or the
ECB mode of operation. This result is in line with the findings of prior studies [13, 35, 12].

More than 75% of the typestate errors that CogniCryptsast issues are caused by
misuses of MessageDigest. Our manual analysis attributes this high number to incorrect
usages of the method reset(). In addition to misusing MessageDigest, misuses of Cipher
contribute 766 typestate errors. Finally, CogniCryptsast detects 157 typestate errors
related to PBEKeySpec. The ORDER section of the CrySL rule for PBEKeySpec requires
calling clearPassword() at the end of the lifetime of a PBEKeySpec object. We manually
inspected 3 of the misuses and observed that the call to clearPassword() is missing in all
of them.

Predicates are unsatisfied when CogniCryptsast expects the interaction of multiple
object traces but is not able to prove their correct interaction. With 4,443 unsatisfied
predicates reported, the number may seem relatively large, yet one must keep in mind that
unsatisfied predicates accumulate transitively. For example, if CogniCryptsast cannot
ensure a predicate for a usage of IVParameterSpec, it will not generate a predicate for the
key object that KeyGenerator generates using the IVParameterSpec object. Transitively,
CogniCryptsast reports an unsatisfied predicate also for any Cipher object that relies on
the generated key object.

CogniCryptsast also found 97 calls to forbidden methods. Since only two JCA classes
require the definition of forbidden methods in our CrySL rule set (PBEKeySpec and Cipher),
we do not find this low number surprising. A manual analysis of a handful of reports suggests
that most of the reported forbidden methods originate from calling the insecure PBEKeySpec
constructors, as we explained in Section 4.

From the 4,349 apps that use at least one JCA Crypto API, 2,896 apps (66.6%) contain
at least one typestate error, 1,367 apps (31.4%) lack required predicates, 62 apps (1.4%) call
at least one forbidden method, and 3,955 apps (90.9%) violate at least one internal constraint.
Ignoring the class MessageDigest, and hereby excluding MD5 and SHA-1 constraints, 874
apps still violate at least one constraint in other classes.

RQ2: Approximately 95% of apps misuse at least one Crypto API. Violating the constraints
of MessageDigest is the most common type of misuse.

8.3 Performance (RQ3)

Setup
CogniCryptsast comprises four main phases. It constructs (1) a call graph using Flow-
Droid [5] and then runs the actual analysis (Section 6), which (2) calls the typestate analysis
and (3) constraint analysis as required, attempting to (4) resolve all declared predicates.
During the analysis of our dataset, we measured the execution time that CogniCryptsast
spent in each phase. We ran CogniCryptsast once per application and capped the time of
each run to 30 minutes.

In Section 8.2, we report that CogniCryptsast found usages of the JCA in 4,349 of
all 10,000 apps in our dataset. If we include in the reporting those usages that arise from
misuses within the common libraries previously excluded (see Section 8.2), this number rises

ECOOP 2018

10:22 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

10−1 100 101 102 103

Constraints
Typestate
Predicate
Call Graph
Total Time

Analysis Time (seconds)

Figure 11 Analysis time (in log scale) of the individual phases of CogniCryptsast when running
on the apps that use the JCA.

to 8,422. We include the analysis of the libraries in this part of the evaluation because it helps
evaluate the general performance of the analysis in the worst case when whole applications
are analyzed.

Results
Figure 11 summarizes the distribution of analysis times for the four phases and the total
analysis time across these 8,422 apps. For each phase, the box plot highlights the median,
the 25% and 75% quartiles, and the minimal and maximal values of the distribution.

Across the apps in our dataset, there is a large variation in the reported execution time
(10 seconds to 28.6 minutes). We attribute this variation to the following reasons. The
analyzed apps have varying sizes – the number of reachable methods in the call graph varies
between 116 and 16,219 (median: 3,125 methods). The majority of the total analysis time
(83%) is spent on call-graph construction. For the remaining three phases of the analysis,
the distribution is as follows. Across all apps, the resolution of all declared predicates takes
approximately a median of 50 milliseconds, and the typestate analysis phase takes a median
of 500 milliseconds. The median for the constraint phase is 350 milliseconds. Therefore, the
major bottleneck for the analysis is call-graph construction, a problem orthogonal to the one
we address in this work. Our analysis itself is efficient and the overall analysis time is clearly
dominated by the runtime of the call-graph construction.

RQ3: On average, CogniCryptsast analyzes an app in 101 seconds, with call-graph
construction taking most of the time (83%).

8.4 Comparison to Existing Tools (RQ4)
Setup
We compare CogniCryptsast to CryptoLint [13], as we explained in Section 2.3 the most
closely related tool. Unfortunately, despite contacting the authors we were unable to obtain
access to CryptoLint’s implementation. We thus resorted to reimplementing the original
rules that are hard-coded in CryptoLint as CrySL rules. The fact that all CryptoLint
rules can be modelled in CrySL shows its superior expressiveness.

In this section, Rulesetfull denotes CogniCrypt’s comprehensive CrySL rules that we
have created for all the JCA classes, while Rulesetcl denotes the set of CrySL rules that we
developed to model the original CryptoLint rules. Additionally, CogniCryptsast denotes
our analysis when it runs using Rulesetfull, and CogniCryptcl denotes the analysis when
it runs using Rulesetcl.

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:23

Rulesetfull consists of 23 rules, one for each class of the JCA. Rulesetcl comprises only
six individual rules, and they only use the sections ENSURES, REQUIRES and CONSTRAINTS. In
other words, the original hard-coded CryptoLint rules do not comprise typestate properties
nor forbidden methods. For three out of six rules, we managed to exactly capture the
semantics of the hard-coded CryptoLint rule in a respective CrySL rule. The remaining
three rules (3, 4, and 6 of the original CryptoLint rules) cannot be perfectly expressed as
a CrySL rule, and our CrySL-based rules over-approximate them instead.

CryptoLint rule 4, for instance, requires salts in PBEKeySpec to be non-constant. In
CrySL, such a relationship is expressed through predicates. Predicates in CrySL, however,
follow a white-listing approach and therefore only model correct behaviour. Therefore, in
CrySL we model the CryptoLint rule for PBEKeySpec in a stricter manner, requiring the
salt to be not just non-constant but truly random, i.e., returned from a proper random
generator. We followed a similar approach with the other two CryptoLint rules that
we modelled in CrySL. In result, Rulesetcl is stricter than the original implementation
of CryptoLint. In the comparison of CogniCryptsast and CogniCryptcl in terms of
their findings, the stricter rules produce more warnings than the original implementation of
CryptoLint. In our comparison against CogniCryptsast, this setup favours CryptoLint
because we assume that these additional findings to be true positives. Both rule sets are
available at https://github.com/CROSSINGTUD/Crypto-API-Rules.

Results
CogniCryptcl detects usages of JCA classes in 1,866 Android apps. For these apps, Cog-
niCryptcl reports 5,507 misuses, only a third of the 20,426 misuses that CogniCryptsast
identifies using Rulesetfull, our more comprehensive rule set.

Using CogniCryptcl, all reported warnings are related to 6 classes, compared to 23
classes that are specified in Rulesetfull. As we have pointed out, CryptoLint does not
specify any typestate properties or forbidden methods. Hence, CogniCryptcl does not find
the 4,805 warnings that CogniCryptsast identifies in these categories using Rulesetfull.
Furthermore, while CogniCryptsast reports 11,178 constraint violations with the standard
rules, CogniCryptcl reports only 1,177 constraint violations. Of the 11,178 constraint
violations, 9,958 are due to the rule specification for the class MessageDigest. CryptoLint
does not model this class. If we remove these violations, 1,609 violations are still reported by
CogniCryptsast, a total of 432 more than by CogniCryptcl.

We compare our findings to the study by Egele et al. [13] that identifies the use of ECB
mode as a common misuse of cryptography. In that study, 7,656 apps use ECB (65.2% of apps
that use Crypto APIs). On the other hand, in our study, CogniCryptcl identified 663 uses
of ECB mode in 35.5% of apps that use Crypto APIs. Although a high number of apps still
exhibit this basic misuse, there is a considerable decrease (from 65.2% to 35.5%) compared to
the previous study by Egele et al. [13]. Given that all apps in our study must have received
an update in 2017, we believe that the decrease of misuses reflects taking software security
more seriously in today’s app development.

Based on the high precision (92.6%) and recall (96.2%) values discussed in RQ1, we argue
that CogniCryptsast provides an analysis with a much higher recall than CryptoLint.
Although the larger and more comprehensive rule set, Rulesetfull, detects more complex
misuses, the precise analysis keeps the false-positive rate at a low percentage.

RQ4: The more comprehensive Rulesetfull detects 3× as many misuses as CryptoLint
in almost 4× more JCA classes.

ECOOP 2018

https://github.com/CROSSINGTUD/Crypto-API-Rules

10:24 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

8.5 Threats to Validity
Our ruleset Rulesetfull is mainly based on the documentation of the JCA [18]. Although
we have significant domain expertise, our CrySL-rule specifications for the JCA are only
as correct as the JCA documentation. Our static-analysis toolchain depends on multiple
external components and despite an extensive set of test cases, of course, we cannot fully
rule out bugs in the implementation.

Java allows a developer to programmatically select a non-default cryptographic service
provider. CogniCryptsast currently does not detect such customizations but instead assumes
that the default provider is used. This behaviour may lead to imprecise results because our
rules forbid certain default values that are insecure for the default provider, but may be
secure if a different one is chosen.

9 Conclusion

In this paper, we present CrySL, a description language for correct usages of cryptographic
APIs. Each CrySL rule is specific to one class, and it may include usage pattern definitions
and constraints on parameters. Predicates model the interactions between classes. For
example, a rule may generate a predicate on an object if it is used successfully, and another
rule may require that predicate from an object it uses. We also present a compiler for
CrySL that transforms a provided ruleset into an efficient and precise data-flow analysis
CogniCryptsast checking for compliance according to the rules. For ease of use, we have
integrated CogniCryptsast and with Eclipse crypto assistant CogniCrypt. Applying
CogniCryptsast, the analysis for our extensive ruleset Rulesetfull, to 10,000 Android apps,
we found 20,426 misuses spread over 95% of the 4,349 apps using the JCA. CogniCryptsast
is also highly efficient: for more than 75% of the apps the analysis finishes in under 3 minutes,
where most of the time is spent in Android-specific call graph construction.

In future work, we plan to address the following challenges. We have developed all the
rules used in CogniCryptsast ourselves. While we have acquired some deeper familiarity
with cryptographic concepts in general and the JCA in particular, we are not cryptographers.
Therefore, we are open to and want cryptography experts to correct potential mistakes
in our existing rules. We would further encourage domain experts to model their own
cryptographic libraries in CrySL to improve the support in CogniCryptsast and, by
extension, CogniCrypt. CrySL currently only supports a binary understanding of security
– a usage is either secure or not. We would like to enhance CrySL to have a more fine-
grained notion of security to allow for more nuanced warnings in CogniCryptsast. This
is challenging because the CrySL language still ought to be concise. Additionally, CrySL
currently requires one rule per class per JCA provider, because there is no way to express the
commonality and variability between different providers implementing the same algorithms,
leading to specification overhead. To address this issue, we plan to modularize the language
using import and override mechanisms. Moreover, we plan to extend CrySL to support
more complex properties such as using the same cryptographic key for multiple purposes.
We will also perform consistency checks for the CrySL rules. For now, only Xtext-based
type checks are performed.

Lastly, we also intend on applying CrySL in other contexts. One of the authors of this
paper has already started to have students implement a dynamic checker to identify and
mitigate violations at runtime. While the JCA is indeed the most commonly used Crypto
library, other Crypto libraries such as BouncyCastle [29] are being used as well and we will
to extend CogniCryptsast to support them. Additionally, we will investigate to which

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:25

extent CrySL is applicable to Crypto APIs in other programming languages. At the time
of writing, we are exploring CrySL’s compatibility with OpenSSL [30]. We finally aim to
examine whether CrySL is expressive enough to meaningfully specify usage constraints for
non-crypto APIs.

References
1 Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl. Developers

need support, too: A survey of security advice for software developers. In 2017 IEEE
Cybersecurity Development (SecDev), pages 22–26, Sept 2017. doi:10.1109/SecDev.2017.
17.

2 Dima Alhadidi, Amine Boukhtouta, Nadia Belblidia, Mourad Debbabi, and Prabir Bhat-
tacharya. The dataflow pointcut: a formal and practical framework. In Proceedings of
the 8th International Conference on Aspect-Oriented Software Development, AOSD 2009,
Charlottesville, Virginia, USA, March 2-6, 2009, pages 15–26, 2009.

3 Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha Kuzins,
Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to aspectj. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 345–364,
2005. doi:10.1145/1094811.1094839.

4 Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: col-
lecting millions of android apps for the research community. In Proceedings of the 13th
International Conference on Mining Software Repositories, MSR 2016, Austin, TX, USA,
May 14-22, 2016, pages 468–471, 2016.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. Flowdroid: precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 259–269, 2014.

6 John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John McCarthy, Alan J. Perlis,
Heinz Rutishauser, Klaus Samelson, Bernard Vauquois, Joseph Henry Wegstein, Adriaan
van Wijngaarden, Michael Woodger, and Peter Naur. Revised report on the algorithm
language ALGOL 60. Communications of the ACM, 6(1):1–17, 1963.

7 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada, pages 301–320, 2007. doi:10.1145/1297027.1297050.

8 Eric Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent
states. In ICSE ’10: International Conference on Software Engineering, pages 5–14, New
York, NY, USA, may 2010. ACM.

9 Eric Bodden. TS4J: a fluent interface for defining and computing typestate analyses. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on the State Of the Art in
Java Program analysis, SOAP 2014, Edinburgh, UK, Co-located with PLDI 2014, June 12,
2014, pages 1:1–1:6, 2014.

10 Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state runtime
monitors ahead of time. ACM Transactions on Programming Languages and Systems (TO-
PLAS), 34(2):7:1–7:52, 2012.

11 VeraCode (CA). State of software security 2017. https://info.veracode.com/
report-state-of-software-security.html, 2017.

ECOOP 2018

http://dx.doi.org/10.1109/SecDev.2017.17
http://dx.doi.org/10.1109/SecDev.2017.17
http://dx.doi.org/10.1145/1094811.1094839
http://dx.doi.org/10.1145/1297027.1297050
https://info.veracode.com/report-state-of-software-security.html
https://info.veracode.com/report-state-of-software-security.html

10:26 CrySL: An Approach to Validating the Correct Usage of Cryptographic APIs

12 Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and Christos
Xenakis. Evaluation of cryptography usage in android applications. In International Con-
ference on Bio-inspired Information and Communications Technologies, pages 83–90, 2016.

13 Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In ACM Conference on Computer
and Communications Security, pages 73–84, 2013.

14 Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Mi-
chael Backes, and Sascha Fahl. Stack overflow considered harmful? the impact of
copy&paste on android application security. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 121–136, 2017.

15 German Federal Office for Information Security (BSI). Cryptographic mechanisms: Recom-
mendations and key lengths. Technical Report BSI TR-02102-1, BSI, 2017.

16 Simon Goldsmith, Robert O’Callahan, and Alexander Aiken. Relational queries over pro-
gram traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005, October
16-20, 2005, San Diego, CA, USA, pages 385–402, 2005.

17 Xtext home page. http://www.eclipse.org/Xtext/, 2017.
18 Oracle Inc. Java Cryptography Architecture (JCA) Reference Guide. https://docs.

oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html,
2017.

19 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
Griswold. An overview of aspectj. ECOOP 2001—Object-Oriented Programming, pages
327–354, 2001.

20 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian
Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram Kamath. Cog-
niCrypt: Supporting Developers in Using Cryptography. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, Urb-
ana, IL, USA, October 30 - November 03, 2017, pages 931–936, 2017.

21 Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Compiler Infrastructure
Workshop (CETUS 2011), oct 2011.

22 David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryptographic
software fail?: a case study and open problems. In ACM Asia-Pacific Workshop on Systems
(APSys), pages 7:1–7:7, 2014.

23 V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java ap-
plications with static analysis. In Proceedings of the 14th USENIX Security Symposium,
Baltimore, MD, USA, July 31 - August 5, 2005, 2005.

24 Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding application errors
and security flaws using PQL: a program query language. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 365–383,
2005.

25 David A. McGrew and John Viega. The security and performance of the galois/counter
mode (GCM) of operation. In Progress in Cryptology - INDOCRYPT 2004, 5th Interna-
tional Conference on Cryptology in India, Chennai, India, December 20-22, 2004, Proceed-
ings, pages 343–355, 2004.

26 Clint Morgan, Kris De Volder, and Eric Wohlstadter. A static aspect language for check-
ing design rules. In Proceedings of the 6th International Conference on Aspect-Oriented
Software Development, AOSD 2007, Vancouver, British Columbia, Canada, March 12-16,
2007, pages 63–72, 2007.

http://www.eclipse.org/Xtext/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

S. Krüger and J. Späth and K. Ali and E. Bodden and M. Mezini 10:27

27 Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops: why
do Java developers struggle with cryptography APIs? In International Conference on
Software Engineering (ICSE), pages 935–946, 2016.

28 Nomair A. Naeem and Ondrej Lhoták. Typestate-like analysis of multiple interacting
objects. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2008, October 19-23, 2008,
Nashville, TN, USA, pages 347–366, 2008.

29 Legion of the Bouncy Castle Inc. BouncyCastle, 2018. URL: https://www.bouncycastle.
org/java.html.

30 OpenSSL. OpenSSL - Cryptography and SSL/TLS Toolkit, 2018. URL: https://www.
openssl.org/.

31 Siegfried Rasthofer, Steven Arzt, Robert Hahn, Max Kohlhagen, and Eric Bodden.
(in)security of backend-as-a-service. In BlackHat Europe 2015, 2015.

32 Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime
values in android applications that feature anti-analysis techniques. In Network and Dis-
tributed System Security Symposium (NDSS), 2016.

33 Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford.
Automated api property inference techniques. IEEE TOSEM, 39(5):613–637, 2013. doi:
10.1109/TSE.2012.63.

34 Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford.
Automated API property inference techniques. IEEE Transactions on Software Engineering
(TSE), 39:613–637, 2013.

35 Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang, and Chenjie Shi. Modelling ana-
lysis and auto-detection of cryptographic misuse in Android applications. In nternational
Conference on Dependable, Autonomic and Secure Computing, pages 75–80, 2014.

36 Johannes Späth, Karim Ali, and Eric Bodden. Ideal: Efficient and precise alias-aware data-
flow analysis. In 2017 International Conference on Object-Oriented Programming, Lan-
guages and Applications (OOPSLA/SPLASH). ACM Press, 2017. To appear.

37 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow- and context-sensitive pointer analysis for java. In 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy,
pages 22:1–22:26, 2016.

38 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986. doi:
10.1109/TSE.1986.6312929.

39 Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and
Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it feasible? In
Compiler Construction, pages 18–34, 2000.

ECOOP 2018

https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://www.openssl.org/
https://www.openssl.org/
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1109/TSE.1986.6312929

Safe Transferable Regions
Gowtham Kaki
Purdue University, USA1

gkaki@purdue.edu

G. Ramalingam
Microsoft Research, India
grama@microsoft.com

Abstract
There is an increasing interest in alternative memory management schemes that seek to combine
the convenience of garbage collection and the performance of manual memory management in a
single language framework. Unfortunately, ensuring safety in presence of manual memory man-
agement remains as great a challenge as ever. In this paper, we present a C#-like object-oriented
language called Broom that uses a combination of region type system and lightweight runtime
checks to enforce safety in presence of user-managed memory regions called transferable regions.
Unsafe transferable regions have been previously used to contain the latency due to unbounded
GC pauses. Our approach shows that it is possible to restore safety without compromising on the
benefits of transferable regions. We prove the type safety of Broom in a formal framework that
includes its C#-inspired features, such as higher-order functions and generics. We complement
our type system with a type inference algorithm, which eliminates the need for programmers
to write region annotations on types. The inference algorithm has been proven sound and rel-
atively complete. We describe a prototype implementation of the inference algorithm, and our
experience of using it to enforce memory safety in dataflow programs.

2012 ACM Subject Classification Software and its engineering → Allocation / deallocation
strategies, Software and its engineering→Object oriented languages, Software and its engineering
→ Data flow languages, Software and its engineering → Software verification and validation

Keywords and phrases Memory Safety, Formal Methods, Type System, Type Inference, Regions,
Featherweight Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.11

Acknowledgements We are grateful to Kapil Vaswani, Dimitrios Vytiniotis, Michael Isard, and
Steven Hand for their valuable inputs during the initial stages of this project. We would also
like to thank multiple anonymous reviewers for their careful scrutiny and feedback on various
versions of this work.

1 Introduction

Computations performed by a network of concurrent communicating actors often involve data
transfer between producers and consumers. Consider for example the SELECT query operator
shown in Fig. 1, which functions as an actor in a dataflow computation involving a network
of other such query operators. SELECT receives a stream of input messages, each associated
with a time window t, processed by method onReceive. Each input message contains a
list of inputs, each processed by applying a user-defined function to create a corresponding

1 Work done during an internship at Microsoft Research, India.

© Gowtham Kaki and G. Ramalingam;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 11; pp. 11:1–11:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkaki@purdue.edu
mailto:grama@microsoft.com
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Safe Transferable Regions

1 c lass SelectVertex <TIn , TOut > {
2 Func <TIn , TOut > selector ;
3 Dictionary <Time , List <TOut >> map;
4 ...
5 void onReceive (Time t, List <TIn > inList) {
6 i f (! map. ContainsKey (t)) map[t] = new List <TOut >();
7 foreach (TIn input in inList) {
8 TOut output = selector (input);
9 map[t]. add(output); } }

10 void onNotify (Time t) {
11 List <TOut > outList = map[t];
12 map. Remove (t);
13 transfer (successorId , t, outList); }
14 }

Figure 1 SELECT dataflow operator.

Producer

R

(a) Before transfer.

Producer Consumer
R

(b) After transfer.

Figure 2 References in and out of a transferable region (R) become invalid after transfer.

output. Multiple messages with the same timestamp are permitted and messages with
different timestamps may arrive out of order. An invocation of method OnNotify indicates
that no more input messages with a timestamp t will be subsequently delivered. At this
point, the operator completes the processing for time window t and sends a corresponding
output message to its successor.

Performance. When the transferred data structures are large, as is the case with many
streaming big-data analysis systems, garbage collection overhead becomes significant [7].
Further, in a distributed dataflow system, the GC pause at one node can have a cascading
adverse effect on the performance of other nodes [7, 14]: a GC pause at an upstream actor can
block downstream actors that are waiting for messages. However, much of the GC overhead
results from the collector performing avoidable or unproductive work. For the example in
Fig. 1, GC might repeatedly traverse the map , although its objects cannot be collected until
a suitable timing message arrives. There has been increasing interest in off-heap memory
management for better performance in the context of several systems and languages (e.g.,
Spark [25], Scala [18], Rust). Several systems (e.g., [3]) resort to using “free object pools” to
partially alleviate this problem, in the absence of language support.

Safety. Several of these systems are designed to allow the producer and consumer to execute
in the same address space or in different address spaces (as determined by the compiler and
runtime). We wish to ensure memory safety in the presence of such transferred data. A
transfer operation, with no additional checks, may cause memory safety violations, both at
the producer of the data structure, and its (possibly remote) consumer. At the producer,
any existing references into the transferred data structure become invalid post transfer. If

G. Kaki and G. Ramalingam 11:3

the data structure contains references to objects outside (the transferred data), then such
references become invalid in the context of the consumer. Both scenarios are depicted in
Fig. 2. While references from within the transferable data to outside can be disallowed in
the interest of safety, references into transferable data needs to be allowed before the data is
transferred. Allowing such references is crucial, as any non-trivial program creates temporary
references to the internal objects of a data-structure.

Safe Transferable Regions. In this paper, we present a language-based approach to cleanly
encapsulate transferable data and a safe and efficient implementation of such data based
on regions. A region is a block of memory that is allocated and freed in one shot, often in
constant time. A region may contain one or more contiguous range of memory locations, and
individual objects may be dynamically allocated within the region over time, while they are
deallocated en masse when the region is freed. Thus, a region is a good fit for a transferable
data-structure. In Fig. 1, the output to be constructed for each time window t (i.e., map[t])
can be a separate region that is allocated when the first message with timestamp t arrives,
and deallocated after map[t] is transferred in onNotify .

The use of regions alleviates the performance concern related to garbage collection
described earlier. (It also enables more efficient serialization/deserialization of data-structures
across address spaces, which is also a significant performance bottleneck in such systems.)
However, manual region memory management introduces memory safety issues such as
dangling pointers. We present a single type system that simultaneously addresses this safety
concern, as well as those described above related to the use of transferable data.

Safe region-based memory management using types was pioneered by Tofte and Talpin [20,
21], who use only lexically scoped regions. At runtime, the set of all regions (existing at a
point in time) forms a stack. Thus, the lifetimes of all regions must be well-nested: it is not
possible to have two regions whose lifetimes overlap, with neither one’s lifetime contained
within the other. Unfortunately, the data structures in the above example do not satisfy
this restriction (as the output messages for multiple time windows may be simultaneously
live, without any containment relation between their lifetimes). We refer to regions with
lexically scoped lifetimes as stack regions and to regions that do not have such a lexically
scoped region as dynamic regions.

Our focus, in this paper, is on first-class memory-safe dynamic regions that can be safely
transferred across address spaces. We refer to such dynamic regions as transferable regions.
Our approach is based on a variation of ideas introduced by [23, 10] that combine linear types
and regions to support dynamic regions. Unlike the prior work, we ensure memory safety in
the presence of transferable regions through a combination of a static typing discipline and
lightweight runtime checks in place of linear types.

Language. The cornerstone of this approach is an open lexical block for transferable regions,
that “opens” a transferable region and guarantees that the region won’t be transferred/freed
while it is open. By nesting a Tofte-Talpin style letregion lexical block, that delimits
the lifetime of a stack region, inside an open lexical block for a transferable region, we can
guarantee that the transferable region will remain live as long as the stack region is live.
We say that the former outlives the latter, and any references from the stack region to the
transferable region are therefore safe. This is particularly useful, since such stack regions
serve as temporary working storage while working with the (opened) transferable regions.

By controlling the outlives relationships between various regions, we only allow safe
cross-region references, while prohibiting unsafe ones. In the above example, an outlives

ECOOP 2018

11:4 Safe Transferable Regions

relationship from the stack region to the transferable region means that the references in
that direction are allowed, but not the references in the opposite direction. In contrast, if an
open block of a transferable region R0 is nested inside an open block of another transferable
region R1, we do not establish any outlives relationships, thus declaring our intention to
not allow any cross-region references between R0 and R1. Finally, we observe that outlives
relationships are established based on the lexical structure of the program, hence a static
type system can enforce them effectively. By assigning region types to objects, which capture
the regions such objects are allocated in, and by maintaining outlives relationships between
various regions, we can statically decide the safety of all references in the program.

Type System. Formally, our type system introduces region parameters (for both classes
and methods) and uses constrained parametric polymorphism over these parameters, where
the constraints capture outlives constraints between the region parameters. The type system
may be seen as a form of ownership type system [5], with a region being the owner of all
objects allocated in that region.

Lightweight Runtime Checks. Ensuring memory safety using this approach requires en-
suring that the use of transferable regions satisfies certain temporal properties. Firstly, a
transferable region should not be transferred/freed inside an open block of that region (i.e,
while it is still open). Secondly, a transferred/freed region should not be opened. These are
typestate invariants on the transferable region objects, which are hard to enforce statically in
the presence of unrestricted aliasing. Techniques like linear types and unique pointers can be
used to restrict aliasing, but the constraints they impose are often hard to program around.
We therefore enforce typestate invariants at runtime via lightweight checks. In particular, we
define an acceptable state transition discipline for transferable regions (Fig. 4), and check, at
runtime, whether a given transition of a transferable region (e.g., from open state to freed
state) is valid or not. The check is lightweight since it only involves checking a single tag
that captures the current state. We believe that this is a reasonable choice since regions are
coarse-grained objects manipulated infrequently, when compared to the fine-grained objects
that are present inside these regions, for which safety is enforced statically.

Type Inference. One of the key contributions of this paper is a type inference algorithm
that eliminates the need for users to write region type annotations. The users write programs
in the underlying language that provides primitives for the users to manipulate regions (create,
open, free, transfer) and to allocate objects in regions, but has no region type annotations.

Our inference algorithm proceeds in three stages: in the first stage, we elaborate the
program by introducing region parameters (for classes and methods); in the second stage
we generate a set of constraints that must be satisfied for the program to type check; in
the third stage, we solve the set of constraints, inferring the preconditions of all classes and
methods (in terms of the expected outlives-constraints between the region parameters). We
show that the algorithm is sound, and the stages of constraint generation and solving are
complete (i.e., the algorithm is complete relative to the first stage of elaboration).

Evaluation. Our work was inspired by [7], which presents evidence that realistic programs
can be written using transferable regions and that this can yield significant performance
improvements. While [7] addresses the engineering challenges in extending a managed
runtime with transferable regions, it adopts an ad hoc approach insofar as language design
is concerned, exposing the region functionality through an unsafe API, and in the process

G. Kaki and G. Ramalingam 11:5

losing the safety guarantees. Our contribution is an alternative approach that is grounded in
sound theory and restores the language safety guarantees. The utility of our approach is
demonstrated by a prototype implementation of our type inference algorithm that was able
to identify unsafe memory accesses among the benchmarks extracted from [7].

Contributions. The paper makes the following contributions:
We present Broom, a C# -like typed object-oriented language that supports programmer-
managed memory regions. Broom extends its core language, which includes lambdas
(higher-order functions) and generics (parametric polymorphism), with constructs to
create, manage and free static and transferable memory regions. Transferable regions are
first-class values in Broom.
Broom is equipped with a region type system that statically guarantees safety of all
memory accesses in a well-typed program, provided that certain typestate invariants on
regions hold. The latter invariants are enforced via simple runtime checks.
We define an operational semantics for Broom, and a type safety result that clearly
defines and proves safety guarantees described above.
We describe a region type inference algorithm for Broom that (a). completely eliminates
the need to annotate Broom programs with region types, and (b). enables seamless
interoperability between region-aware Broom programs and legacy standard library code
that is region-oblivious. Our inference algorithm is based on a novel constraint solver
that performs abduction in a partial-order constraint domain to infer weakest solutions
to recursive constraints.
We establish the soundness and relative completeness of the type inference algorithm.
We describe an implementation of Broom frontend in OCaml, along with case studies
where the region type system was able to identify unsafe memory accesses statically.

2 An Informal Overview of Broom

Broom enriches a simple object-oriented language (supporting parametric polymorphism
and lambdas) with a set of region-specific constructs. In this section, we present an informal
overview of these region-specific constructs.

2.1 Using Regions in Broom

Stack Regions. The “ letregion R { S } ” construct creates a new stack region, with a
static identifier R , whose scope is restricted to the statement S . The semantics of letregion
is similar to Tofte and Talpin [20]’s letregion expression: objects can be allocated by S in
the newly created region while R is in scope, but the region and all objects allocated within
it are freed at the end of S .

Object Allocation. The “ new@R T() ” construct creates a new object of type T in the
region R . The specification of the allocation region R in this construct is optional. At
runtime, Broom maintains a stack of active regions, and we refer to the region at the top
of the stack as the allocation context. The statement new T() allocates the newly created
object in the current allocation context. This is important as it enables Broom applications
to use existing region-oblivious C# libraries, as explained soon.

ECOOP 2018

11:6 Safe Transferable Regions

Transferable Regions. Transferable regions are first class values of Broom: they are
objects of the class Region , they are created using the new keyword, and can be passed as
arguments, stored in data structures, and returned from methods. A transferable region is
intended to encapsulate a single data-structure, consisting of a collection of objects with a
distinguished root object of some type T , which we refer to as the region’s root object. The
class Region is parametric over the type T of this root object.

The Region constructor takes as a parameter a function that constructs the root object:
it creates a new region and invokes this function, with the new region as the allocation
context, to create the root object of the region. The following code illustrates the creation of
a transferable region, whose root is an object of type A .

Region <A> rgn = new Region <A >(() => new A())

In the above code, rgn is called the handler to the newly created region, and is required to
read the contents of the region, or change its state. The class Region offers two methods:
a free method that deallocates the region (and all the objects allocated within it), and
transfer method that transfers the region to a (possibly remote) consumer process.

Open and Closed Regions. A transferable region must be explicitly opened using Broom’s
open construct in order to either read or update or allocate objects in the region. Specifically,
the construct “ open rgn as v@R { S } ” does the following: (a). It opens the transferable
region handled by rgn for allocation (i.e., makes it the current allocation context), (b).
binds the identifier R to this open region, and (c). initializes the newly introduced local
variable v to refer to the root object of the region. The @R part of the statement is optional
and may be omitted. The open construct is intended to simplify the problem of ensuring
memory safety, as will be explained soon. We refer to a transferable region that has not been
opened as a closed region. A transferable region can only be transferred or freed when it is
in closed state. The acceptable state transition discipline over the lifetime of a transferable
region is described in Fig. 4. Enforcement of this discipline is done at runtime.

Opening a region also makes it the current allocation context. Thus, given a C# library
function f (that makes no use of Broom’s region constructs), opening a region R and
invoking f has the effect that all objects created by this invocation are allocated in the
region R .

Motivating Example. Fig 3 shows how the motivating example of Fig. 1 can be written in
Broom. The onReceive method receives its input message in a transferred region (i.e., a
closed region whose ownership is transferred to the recipient). On Line 7, we create a new
region to store the output for time t , initializing it to contain an empty list. On Lines 8
and 9, we open the input region inRgn followed by creating a new stack region R0 . The
temporary objects created by the iteration on line 10, for example, will be allocated in the
stack region R0 that lives just long enough. We open the desired output region on line
11, so that the new output objects created by the invocation of selector on line 12 are
allocated in the output region. Finally, the input region is freed on line 14. The output
region at map[t] stays as along as input messages with timestamp t keep arriving. When
the timing message for t arrives, the onNotify method transfers the outRgn at map[t]
to a downstream actor.

Cloning. Note that in the example from Fig. 3 the object returned by the selector (on
Line 12) should not contain any references to the input object, since the input region, where
the object resides, will be freed at the end of the method. If there is a need for the output

G. Kaki and G. Ramalingam 11:7

1 c lass SelectVertex <TIn , TOut > {
2 Func <TIn , TOut > selector ;
3 Dictionary <Time , Region <List <TOut >>> map;
4 ...
5 void onReceive (Time t,Region <List <TIn >> inRgn){
6 i f (! map. ContainsKey (t))
7 map[t] = new Region <List <TOut >> (() => new List <TOut >());
8 open inRgn as inList {
9 letregion R0 {

10 foreach (TIn input in inList) {
11 open map[t] as outList {
12 TOut output = selector (input);
13 outList .add(output); } } } }
14 inRgn.free ();
15 }
16 void onNotify (Time t) {
17 Region <List <TOut >> outRgn = map[t];
18 map. Remove (t);
19 outRgn . transfer (successorId);
20 }
21 }

Figure 3 SELECT dataflow operator in Broom.

CLOSED OPEN

FREEDTRANSFERRED

new
Region()

free()transfer()
open

open

Figure 4 The lifetime of a dynamic (transferable) region in Broom.

π ∈ Region identifiers ρ ∈ Region variables a, b ∈ Type variables

m ∈ Method names x, y, f ∈ Variables and fields

cn ∈ Class names ::= Object | Region | A | B
K ∈ FGJ class types ::= cn〈T 〉
T ∈ FGJ types ::= a | K | unit | T → T

r ∈ Region annotations ::= ρ | π
N ∈ Annotated class types ::= cn〈T 〉〈r〉
τ ∈ types ::= T@r | N | unit | 〈ρ |φ〉τ r−→ τ

C ∈ Class definitions ::= class cn〈a / K〉〈ρ |φ〉 / N{τ f ; d}
d ∈ Methods ::= τ m〈ρ |φ〉(τ x){ return e; }
φ,Φ ∈ Region constraints ::= true | r � r | r = r | φ ∧ φ
e ∈ Expressions ::= () | x | e.f | e.m〈r〉(e) | new N(e)

| λ@r〈ρ |φ〉(x : τ).e | e〈r〉(e) | let x = e in e

| letregion π in e | open e as y@π in e

Figure 5 Featherweight Broom: syntax.

ECOOP 2018

11:8 Safe Transferable Regions

object to point to subobjects of the input object, such subobjects must be cloned (to copy
them from the input region to the output region). Fortunately, Broom’s region type system
(§ 3) is capable of capturing such nuances in the type of selector and the type checker will
ensure correctness. Furthermore, the type can be automatically inferred by Broom’s region
type inference (§ 4), which can perform the above reasoning on behalf of the programmer.

3 Featherweight Broom

The purpose of Broom’s region type system is to enforce the key invariant required for
memory safety, namely that an object o1 in a region R1 contains a reference to an object o2 in
R2, only if R2 is guaranteed to outlive R1. While the invariant is easily stated, enforcing it in
the presence of first-class dynamic regions, parametric polymorphism (generics), and higher-
order functions requires new reasoning principles that we formally develop in this section.
We introduce Featherweight Broom (FB), an explicitly typed core language (with region
types) that incorporates the features introduced in the previous section. Featherweight
Broom builds on the Featherweight Generic Java (FGJ) [13] formalism, and reuses notations
and various definitions from [13], such as the definition of type well-formedness for the core
(region-free) language. (The language used in Section 2 is essentially a version of FGJ without
region types and with some syntactic sugar.)

3.1 Syntax

Fig 5 describes the syntax of FB. We refer to the class types of FGJ as core types. The
following definition of Pair class in FB illustrates some of the key elements of the formal
language (the symbol / should be read extends, and the symbol � stands for outlives):

c lass Pair <a / Object , b / Object >
<ρ0, ρ1, ρ2 | ρ1 � ρ0 ∧ ρ2 � ρ0> / Object <ρ0> {

a@ρ1 fst;
b@ρ2 snd;
a@ρ1 getFst () { return this .fst; }

}

Note that we elide showing constructors since they are uninteresting from the type system’s
standpoint; their behavior in FB is same as in FGJ.

A class in FB is parametric over zero or more type variables (as in FGJ) as well as one
or more region variables ρ. We refer to the first region parameter (ρ0 in the above example)
as the allocation region of the class: it serves to identify the region where an instance of the
class is allocated2. An object in FB can contain fields referring to objects allocated in regions
(ρ) other than its own allocation region (ρ), provided that the former outlive the latter (i.e.,
ρ � ρ). In such case, the definition of object’s class needs to be parametric over allocation
regions of its fields (i.e., their classes). Furthermore, the constraint that such regions must
outlive the allocation region of the class needs to be made explicit in the definition, as the
Pair class does in the above definition. We say that the Pair class exhibits constrained
region polymorphism.

2 In general, ρ denotes the sequence ρ1ρ2... of region parameters of a class or a method. In some cases,
we also represent region parameters as ρρ to clearly distinguish between the allocation region parameter
(ρ) and the rest.

G. Kaki and G. Ramalingam 11:9

To construct objects of the Pair class, its type and region parameters need to be
instantiated with core types (T) and region annotations3 (r), respectively. For example:
letregion π0 in

let snd = new Object <π0 >() in
letregion π1 in

let fst = new Object <π1 >() in
let p = new Pair <Object ,Object ><π1,π1,π0> (fst ,snd);

In the above code, the instantiation of ρ0 and ρ1 with π1, and ρ2 with π0 is allowed because
(a) π0 and π1 are live during the instantiation, and (b). π0 � π1 and π1 � π1 (since outlives
is reflexive). Observe that the region type of p conveys the fact that (a). it is allocated
in region π1, and (b). it holds references to objects allocated in region π0 and π1. In
contrast, if we choose to allocate the snd object also in π1, then p would be contained in π1,
and its region type would be Pair< Object , Object ><π1,π1,π1> , which we abbreviate as
Pair< Object , Object >@π1 . In general, we treat B〈T 〉@π as being equivalent to B〈T 〉〈π〉.
Region annotation on type a, where a is a type variable, assumes the form a@π. If a is
instantiated with Pair< Object , Object > , the result is the type of a Pair object contained
in π.

Classes in FB are independently parameterized over types and regions. While this design
decision has a downside in that it allows type variables to only denote the types of objects
contained in a single region, it yields benefits that outweigh the costs. In particular, it lets us
support region-polymorphic higher-order functions as class fields. This allows, for example, a
generic class, whose type parameters are a and b, to contain a region-polymorphic function
of type 〈ρ0, ρ1, ρ2 | ρ1 � ρ0 ∧ ρ2 � ρ0〉(a@ρ1, b@ρ2)→ Pair 〈a, b〉〈ρ0, ρ1, ρ2〉 as its field. Such
region-polymorphic higher-order fields are used frequently by the dataflow operators, which
apply them in the context of various regions (e.g., see Fig. 3). Keeping type and region
parameterizations separate also simplifies the type system so that inference becomes practical
(Sec. 4). The need for polymorphism at the field level is also why FB treats function closures
specially, rather than as objects of type Func as in C#.

Like classes, methods can also exhibit constrained region polymorphism. A method
definition in FB is necessarily polymorphic over its allocation context (§ 2.1), and optionally
polymorphic with respect to the regions containing its arguments (i.e., a method has at
least one region parameter). Region parameters, like those on classes, are qualified with
constraints (φ). If a method is not intended to be polymorphic with respect to its allocation
context (for example, if its allocation context needs to be same as the allocation region of its
this argument), then the required monomorphism can be captured as an equality constraint
in φ.

FB extends FGJ’s expression language with a lambda expression and an application
expression (e〈r〉(e)) to define and apply functions (lambdas). Functions, like methods, exhibit
constrained region polymorphism, as evident in their arrow region type (〈ρ |φ〉τ r−→ τ). A
function, like a method, is necessarily polymorphic w.r.t its allocation context. Since a
function closure can escape the context in which it is created, it is important to keep track
of the region in which it is created in order to avoid unsafe dereferences. The r annotation
above the arrow in the arrow type denotes the allocation region of the corresponding closure.

Note that mutable object fields are conspicuously absent from the FB model (and also
the FGJ model in general), but this isn’t a major shortcoming considering that constructor
application, which happens during a new object creation, includes assignments to the object
fields (see FGJ [13]). Thus the type system is already obligated to handle unsafe assignments.

3 Region annotations (r) include region variables (ρ) and region identifiers (π). Region identifiers are to
region variables, as types (T) are to type variables (a)

ECOOP 2018

11:10 Safe Transferable Regions

3.2 Types and Well-formedness

Well-formedness and typing rules of Featherweight Broom establish the conditions under
which a region type is considered well-formed, and an expression is considered to have a
certain region type, respectively. Fig. 6 contains an illustrative subset of such rules4. The
rules refer to a context (A), which is a tuple of:

A set (∆ ∈ 2r) of regions that are estimated to be live,
A finite map (Θ ∈ a 7→ K) of type variables to their bounds, i.e., classes they are declared
to extend (this artifact is inherited from FGJ), and
A constraint formula (Φ) that captures the outlives constraints on regions in ∆.

In addition, the context for the expression typing judgment also includes (a). a type envir-
onment (Γ ∈ x 7→ τ) that contains the type bindings for variables in scope, and (b). the
region (r) that serves as the allocation context for the expression being type checked. Like
the judgments in FGJ [13], all the judgments defined by the rules in Fig. 6 are implicitly
parameterized on a class table (CT ∈ cn 7→ D) that maps class names to their definitions in
FB.
The well-formedness judgment on region types (A ` τ ok) makes use of the well-formedness
and subtyping judgments on core types. We use a double-piped turnstile (
) for judgments
in FGJ [13], and a simple turnstile (`) for those in FB. The class table (JCT K) for FGJ
judgments is derived from FB’s class table (CT) by erasing all region annotations on types,
and region arguments in expressions (J·K denotes the region erasure operation). The well-
formedness rule for class types (B〈T 〉〈r〉) is responsible for enforcing the safety property
that prevents objects from containing unsafe references. It does so by insisting that regions
r satisfy the constraints (φ) imposed by the class on its region parameters. The latter is
enforced by checking the validity of φ, with actual region arguments substituted for formal
region parameters, under the conditions (Φ) guaranteed by the context. The semantics of this
sequent is straightforward, and follows directly from the properties of outlives and equality
relations. For any well-formed core type T , T@r is a well-formed region type if r is a valid
region. The type Region 〈T 〉〈r〉 is well-formed only if r = π>, where π> is a special immortal
region that outlives every other live region. This arrangement allows Region handlers to
be aliased and referenced freely from objects in various regions, regardless of their lifetimes.
On the flip side, this also opens up the possibility of references between transferable regions,
which become unsafe in context of the recipient’s address space. Fortunately, such references
are explicitly prohibited by the type rule of Region objects, as described below.

The type rules distinguish between the new expressions that create objects of the
Region class, and new expressions that create objects of other classes. The rule for the latter
relies on an auxiliary definition5 called fields (undefined for Region class) that returns the
sequence of type bindings for fields (instance variables) of a given class type. Like in FGJ,
the names and types of a constructor’s arguments in FB are same as the names and types
of its class’s fields. The type rule for the field access expression (e.fi) also uses fields and
another definition called bound, which returns the bound of a type variable (bound is an
identity function for concrete types).

The type rule for the new Region expression expects the Region class’s constructor
to be called with a nullary function that returns a value in its allocation context. This
ensures that the value returned by the function stores no references to objects allocated

4 Full formal development can be found in the appendix
5 All auxiliary definitions we use in this exposition originate from the FGJ calculus.

G. Kaki and G. Ramalingam 11:11

Type Well-formedness A ` τ ok

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} r ∈ ∆ Θ
 B〈T 〉 ok Φ ` [r/ρ](φ)
(∆,Θ,Φ) ` B〈T 〉〈r〉 ok

Θ
 T ok r ∈ ∆ Θ
 T <: Object

(∆,Θ,Φ) ` T@r ok

Θ
 T ok A = (∆,Θ,Φ)
A ` Region 〈T 〉〈π>〉 ok

Expression Typing A,Γ, r ` e : τ

A,Γ, r ` e : τ
A ` N ok fields(N) = f : τ
A,Γ, r ` new N(e) : N

A,Γ, r ` e : 〈ρ〉 unit r−→ T@ρ
A,Γ, r ` new Region 〈T 〉〈π>〉(e) : Region 〈T 〉〈π>〉

A,Γ, r ` e : τ ′

f : τ = fields(boundA.Θ(τ ′))
A,Γ, r ` e.fi : τi

A = (∆,Θ,Φ) A′ = (∆ ∪ {π},Θ,Φ ∧ φ)
π /∈ ∆ φ = ∆ � π A′,Γ, π ` e : τ A ` τ ok

A,Γ, r ` letregion π in e : τ

A = (∆,Θ,Φ) π /∈ ∆
A,Γ, r ` ea : Region 〈T 〉〈π>〉
A ` τ ok A′ = (∆ ∪ {π},Θ,Φ)

Γ′ = Γ[y 7→ T@π] A′,Γ′, π ` eb : τ
A,Γ, r ` open ea as y@π in eb : τ

A = (∆,Θ,Φ) r ∈ ∆ ∆ � r
ρ, ρ /∈ ∆ A′ = (∆ ∪ {ρ, ρ},Θ,Φ ∧ φ)

∆ ∪ {ρ, ρ} ` φ ok A′ ` τ1 ok

A′ ` τ2 ok A′,Γ[x 7→ τ1], ρ ` e : τ2

A,Γ, r ` λ@r〈ρρ |φ〉(x : τ1).e : 〈ρρ |φ〉τ1 r−→ τ2

A = (∆,Θ,Φ) A,Γ, r ` e0 : τ
mtype(m, boundΘ(τ)) = 〈ρρ |φ〉τ1 → τ2

r, r ∈ ∆ A ` 〈ρρ |φ〉τ1 → τ2 ok

A,Γ, r ` e : [rr/ρρ] τ1 Φ ` [rr/ρρ]φ
A,Γ, r ` e0.m〈rr〉(e) : [rr/ρρ] τ2

A = (∆,Θ,Φ) r′, r, r ∈ ∆

A,Γ, r ` e : 〈ρρ |φ〉τ1 r′
−→ τ2

Φ ` [rr/ρρ]φ A,Γ, r ` e : [rr/ρρ]τ1

A,Γ, r ` e〈rr〉(e) : [rr/ρρ]τ2

Method Well-formedness d ok in B

∆ = {ρ, ρm, ρm} A = (∆, [a 7→ K], φm) ∆ ` φm ok

A ` τ1, τ2 ok CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} A,Γ, ρm ` e : τ2

Γ = ·[x 7→ τ1][this 7→ B〈a〉〈ρ〉] A ` override(m,N, 〈ρmρm |φm〉τ1 → τ2)
τ2 m〈ρmρm |φm〉(τ1 x){ return e; } ok in B

Figure 6 Featherweight Broom: select type rules.

elsewhere, including the top region (π>), thus preventing cross-region references originating
from transferable regions. The body of the function might however create new regions while
execution, but this is not a problem as long as such regions, and objects allocated in them,
don’t find their way into the result of its evaluation.

The type rule for the letregion expression requires that the static identifier introduced
by the expression be unique under the current context (i.e., π /∈ ∆). This condition is needed
in order to prevent the new region from incorrectly assuming existing outlives relationships
on an eponymous region. The expression (e) under letregion is typechecked with the new

ECOOP 2018

11:12 Safe Transferable Regions

region as its allocation context, under the assumption that the region is live (∆ ∪ {π}) and
that it is outlived by all existing live regions (∆ � π). The result of a letregion expression
must have a type that is well-formed under a context not containing the new region. This
ensures that the value obtained by evaluating a letregion expression contains no references
to the temporary objects inside the region.

The rule for the open expression, unlike the rule for letregion , does not introduce
any outlives relationship between the newly opened region and any pre-existing region while
checking the type of the expression (e) under open . This prevents new objects allocated
inside the transferable region from storing references to those outside. The newly opened
region becomes the allocation context for e, which is type checked under an environment (Γ)
extended with the type binding for the root object.

The type rule for the lambda expression typechecks the lambda-bound expression (e)
under an extended type environment containing bindings for function’s arguments, assuming
that region parameters are live, and that declared constraints over region parameters hold.
The constraints (φ) are required to be well-formed under ∆ extended with the function’s
region parameters (ρρ). Unlike a typical object, a function closure might capture references
that may become unsafe if the closure escapes its allocation context. FB prevents this
scenario by requiring the function closure to always be allocated in the current allocation
context (r).

The type rule for method application uses an auxiliary definition mtype that gives the type
of a class method. Method application involves instantiation of method’s region parameters,
and the type rule requires the first region parameter to be instantiated with the current
allocation context (r). The type rule for function application does similarly. This requirement
ensures the safety of closures as demonstrated by the following example.

Consider a method m with two region parameters - ρ0 and ρ1 (i.e., m〈ρ0, ρ1〉(. . .)).
Suppose the method immediately returns a function closure that contains a reference to
(an object in) ρ1. Since function closures are always allocated in the current allocation
context, the closure is allocated in ρ0, the allocation context for the method body (the rule
for methods discussed below). Now, consider the following use of the method:

letregion R0 in
let f = letregion R1 in m<R0 ,R1 >()
in f()

Observe that the first region parameter of m is instantiated with R0 , while the allocation
context for the method call is R1 . The function f returned by m stores a reference to R1 ,
which is unsafe when f is finally called. The type system fortunately disallows this scenario
by enforcing certain restrictions during method and function applications as described above.

The method well-formedness rule makes use of an auxiliary definition override that judges
whether the current method is a valid overriding of any eponymous method from the super
class. The type environment is extended with a binding that binds the this keyword to
the type of the current class. Note that the type of the current method as accessed via
this (i.e., this . m) is region-parametric, thus admitting region-polymorphic recursion (i.e.,
recursive call to m can have different region arguments than m).

3.3 Operational Semantics and Type Safety
The operational semantics of FB describes a non-trivial runtime component that introduces
memory regions and performs run-time verification of their typestate. Fig. 7 shows the
additional language constructs of FB that manifest only at run-time. A location (l) abstracts

G. Kaki and G. Ramalingam 11:13

l ∈ Memory locations

r ∈ Region annotations ::= l | . . .
s ∈ Region Typestate ::= � | � | ×
e ∈ Expressions ::= letd l in e | opened l(s) in e | ⊥ | . . .

Figure 7 Featherweight Broom: extended syntax to accommodate run-time constructs.

all the memory locations associated with a region (i.e., each memory region is associated with
a single location). A transferable region can be in one of three possible states: closed (�),
open/live (�), and transferred/freed (×). Constructs letd and opened are the run-time
manifestations of letregion and open ; letregion reduces to letd while allocating a
(static) region, and open reduces to opened while opening a (transferable) region. An
opened expression is tagged with the typestate (s) of the transferable region before it is
opened (as Fig. 4 shows, a transferable region can be open ’d from either an open state or a
closed state). Special value ⊥ denotes an exception.

Operational semantics of FB defines a four-place small-step reduction relation of the
form shown below:

(e,Σ) −→ (e′,Σ′)

The typestate of regions is tracked by a finite map (Σ) from locations to typestates (Fig. 4).
The reduction relation relates an expression (e) and a typestate map (Σ) to a reduced
expression (e′) and an updated typestate map (Σ′). The semantics gets “stuck” if e attempts
to access an object whose allocation region is not present in ∆, or if e tries to open a
transferable region that is not mapped to an appropriate typestate by Σ. On the other hand,
if e attempts to commit an operation on a Region object that is not sanctioned by the
transition discipline in Fig. 4, then it raises an exception value (⊥). An illustrative subset
of operational semantics that formalize the intuitions described above is shown in Fig. 8.
Fig. 15 of the appendix contains rest of the rules.

To help state the type safety theorem, we define the syntactic class of (runtime) values:

v ∈ values ::= new B〈T 〉〈l〉(v) | λ@l〈ρ |φ〉(τ x).e | new Region 〈T 〉〈l>l〉(v)

The first two forms are obtained by using locations for region annotations in new and
lambda expressions. The last form is the value that new Region expressions gets evaluated
to; the location l> stands for the region π>, and l is the location of the newly allocated
transferable region. The following type safety theorem shows that a well-typed program will
never attempt to dereference an “invalid” reference (a reference to an object in a region that
has been transferred or freed):

I Theorem 1 (Type Safety). ∀e, τ,∆,Σ, such that consistent(∆,Σ) and ∆ ` Φ ok, if
(∆, ·,Φ), · ` e : τ , then either e is a value, or e raises an exception ((e,Σ) −→ ⊥), or there
exists an e′ and a Σ′ such that consistent(∆,Σ′) and (e,Σ) −→ (e′,Σ′) and (∆, ·,Φ), · ` e′ : τ .

The relation consistent relates ∆ and Σ only if both make consistent assumptions about
liveness of regions. Since ∆ is consistent with both Σ and Σ′, the theorem also captures the
key property of operational semantics that no live region is ever freed or transferred.

ECOOP 2018

11:14 Safe Transferable Regions

(e,Σ) −→ (e′,Σ′)

[LetRegionBegin]
l 6∈ dom(Σ) Σ′ = Σ[l 7→ �]

(letregion r in e,Σ) −→ (letd l in [l/r]e,Σ′)

[LetRegion]
(e,Σ) −→ (e′,Σ′)

(letd l in e,Σ) −→ (letd l in e′,Σ′)

[LetRegionEnd]
Σ′ = Σ[l 7→ ×]

(letd l in v,Σ) −→ (v,Σ′)

[NewRegion]
l 6∈ dom(Σ) Σ′ = Σ[l 7→ �]

(new Region 〈T 〉〈π>〉(v),Σ) −→ (new Region 〈T 〉〈l>l〉(v〈l〉()),Σ′)

[NewRegion]
(e,Σ[l 7→ �]) −→ (e′,Σ′)

(new Region 〈T 〉〈l>l〉(e),Σ) −→ (new Region 〈T 〉〈l>l〉(e′),Σ′)

[Open]
va = new Region 〈T 〉〈l>l〉(v) Σ(l) = � or Σ(l) = � Σ′ = Σ[l 7→ �]
(open va as x@r in eb,Σ) −→ (opened l(Σ(l)) in [v/x][l/r]eb,Σ′)

[Opened]
(e,Σ) −→ (e′,Σ′)

(opened l(s) in e,Σ) −→ (opened l(s) in e′,Σ′)

[OpenEnd]
Σ′ = Σ[l 7→ s]

(opened l(s) in v,Σ) −→ (v,Σ′)

[OpenTransferred]
va = new Region 〈T 〉〈l>l〉(v) Σ(l) 6= � and Σ(l) 6= �

(open va as x@r in eb,Σ) −→ ⊥

[Transfer]
Σ(l) = � Σ′ = Σ[l 7→ ×]

((new Region 〈T 〉〈l>l〉(v)).transfer(. . .),Σ) −→ (() ,Σ′)

[TransferOpened]
Σ(l) = �

((new Region 〈T 〉〈l>l〉(v)).transfer(. . .),Σ) −→ ⊥

Figure 8 Featherweight Broom: a select subset of operational semantics.

Integrating regions with GC heap. FB stores the region handlers in a distinguished top
region, which abstracts the GC heap. Type system prevents transferable regions from storing
references into the GC heap. A static region however can store references to region handles,
which need to be taken into account while GC’ing the heap. Traversing the region memory
to identify references into the GC heap unfortunately defeats the purpose of regions. The
solution we adopt is to disable collecting region handles as long as any static region is open.
Since static regions are intended to store temporary objects while populating a dynamic
region, their lifetimes are short enough to let region handles to be GC’d.

G. Kaki and G. Ramalingam 11:15

4 Type Inference

Broom’s region type system imposes an annotation burden, and manually annotating C#
standard libraries with region types can be tedious. We now present our region type inference
algorithm that eliminates the need to write region type annotations. Formally, the type
inference algorithm is an elaboration function from programs in JFBK (i.e., FB without region
types, but with letregion and open expressions, similar to the language introduced in § 2)
to programs in FB. For simplicity, we assume that each letregion and open construct in
the input program introduces a distinct region identifier π.

Overview. We now present a high-level outline of the type inference algorithm. The
algorithm consists of the following steps:
1. Region Parameterization. The first step elaborates the input program by introducing

formal region parameters (for each class and method), and region variables (representing
yet undetermined actual region parameters). We also introduce for each class and method,
a predicate variable (ϕ) to denote an undetermined set of outlives-constraints over the
region parameters of that class/method.

2. Constraint Generation. In the second step, we analyze the program to generate a set of
constraints (over the region identifiers and the predicate variables) that must hold (as
per the static semantics in Fig. 6).

3. Constraint Solving. We solve the generated set of constraints using our fixpoint constraint
solving algorithm, which reduces the constraint solving problem to an abduction problem.
If the original program in JFBK contains unsafe references, for example, a reference
from a transferable region to a stack region, then the constraints generated during the
elaboration are not satisfiable. In such a case, the solver fails to solve the constraints.

4. If the solver succeeds, it returns a solution η consisting of a pair of substitution functions
ηR and ηP for free region and predicate variables, respectively, introduced in step 1. We
apply these substitutions to the elaborated program to produce the final program.

We later on establish the soundness of the type inference algorithm, and the completeness
of the constraint-generation and constraint-solving steps (steps 2 and 3 above).

4.1 Region Parameterization for Classes
Region parameterization is an iterative process involving the following three steps, the first
two of which are mutually dependent on each other.

Introduction of Formal Region Parameters. For every class C , we identify a sequence of
formal region parameters π0, · · ·πn that C should be parametric over.

Introduction of Actual Region Parameters. We then replace every instance of class C in
the program by an instance C 〈ρ0, · · · , ρn〉, where ρ0, · · · , ρn are fresh identifiers denoting
actual region parameters.

Predicate Variable Introduction. For every class C , we introduce a fresh predicate variable
ϕ, which represents the yet undetermined outlives-constraints between the formal region
parameters of class C .

We identify the region parameters of classes as follows.
Non-Recursive Classes. The class Object is defined to have a single region parameter

π0 (the allocation region). The region parameters for any other non-recursive class C is
determined only after the region parameters of any class that C depends on have been
determined: this includes the base-class B of C and the class (type) of any of its fields. We

ECOOP 2018

11:16 Safe Transferable Regions

replace every dependee type T in C by its instantiated type, using fresh region parameters
as needed. The sequence of region parameters for C is defined to be the sequence of region
parameters for the base class B concatenated with the list of all fresh region parameters
introduced while instantiating the types of the fields in the class. (The class inherits its
allocation region from its base class. Note that if a class does not specify an explicit base
class, it has an implicit base class Object .)

This transformation is illustrated below, using a non-generic Pair class:

c lass Pair / Object {
Object fst;
Object snd;

}
⇒

c lass Pair 〈ρ0, ρ1, ρ2 | ϕ〉 / Object 〈ρ0〉 {
Object 〈ρ1〉 fst;
Object 〈ρ2〉 snd;

}

Recursive Classes. The region parameters for a recursive class is computed in a similar
fashion, with the following difference: any recursive field is ignored while instantiating region
parameters for the fields of the class, and the region parameters of the recursive class are
computed as before. We then do parameter instantiation for all recursive fields, such that
their region annotations (the actual region parameters) are exactly the same as the (formal)
region parameters of the class. The following example illustrates this for a non-generic List
class. The resulting class represents a linked list with spine in the region ρ0 and data objects
in the region ρ1.

c lass List / Object {
Object data;
List next;

}
⇒

c lass List 〈ρ0, ρ1 | ϕ〉 / Object 〈ρ0〉 {
Object 〈ρ1〉 data;
List 〈ρ0, ρ1〉 next;

}

The above technique can be extended to mutually recursive classes in a straightforward
manner, by simultaneously parameterizing them (and then instantiating them).

Type-Parametric Classes. The type parameter T of a class C is instantiated as T @ρ
using a single region parameter ρ. (This can be extended to use the bound specified for T , if
any.)

Function Types. Since FB is higher-order, fields of function type are allowed.We explain
how the parameter instantiation step instantiates function types below, after discussing
parameterization for methods.

4.2 Region Parameterization for Methods and Function Types
As the next step, we introduce region parameters for every method. We do this by instantiating
the types of all parameters and the return value (of the method) using fresh region identifiers
(as explained previously), and then generalizing these region identifiers as formal region
parameters of the method. In addition, a fresh region identifier is introduced to represent
the allocation region. We also introduce a fresh predicate variable ϕ for every method, just
as we did for each class. Thus, the method

Object m (List x) {...}
is instantiated as

Object〈ρ3〉 m〈ρ0, ρ1, ρ2, ρ3〉 (List〈ρ1, ρ2〉 x) {...}
We then consider every method invocation in the program, and introduce fresh region

variables representing the (yet unknown) actual region parameters for this particular invoca-
tion. We similarly perform instantiation for every constructor invocation of the form new@π0
T(. . .) , by instantiating the type T as before, turning it into new T〈π0, ρ1, · · · , ρn〉(. . .) ,
where ρ1, · · · , ρn are fresh region variables. Note that the programmer typically specifies the

G. Kaki and G. Ramalingam 11:17

π ∈ R (Region constants) ν ∈ V (Region vars) ϕ ∈ P (Predicate vars) ∆ ⊆ R

ρ ∈ Region Identifiers ::= π | ν
φ ∈ Region Constraint ::= true | ρ � ρ | φ ∧ φ

F ∈ Substitution ::= · | [ρ/ρ]F
` ∈ Antecedent ::= φ | ϕ | ϕ ∧ φ
r ∈ Consequent ::= φ | F (ϕ)

Constraint ::= ` ` r | ν ∈ ∆ | ∆ ` ϕ ok

Figure 9 Syntax of constraints.

region π0 where the object is to be allocated. If the programmer does not specify this, it is
allocated in the allocation-context region by default. Region variables are introduced only
for the other region parameters.

Function types (of fields and parameters) are instantiated just like methods above, (and
the region where the closure is allocated is determined just as for other objects). For example,
the function type List → Object is instantiated as 〈ρ0, ρ1, ρ2, ρ3 |ϕ〉 List 〈ρ1, ρ2〉

π−→
Object 〈ρ3〉. Note that the newly introduced region identifiers are generalized as formal
region parameters of the function type. This is a (heuristic) choice made in the case of higher
order functions. Consider a higher order function f with a function typed parameter g. The
fresh region identifiers introduced while instantiating the type of g could be alternatively
generalized as formal region parameters of f , but we choose to generalize them as formal
region parameters of g. We will discuss this aspect again later.

4.3 Constraint Generation
The constraint generation algorithm mimics the static type checker, but accumulates con-
straints that must hold for the type checking to succeed.

Syntax of Constraints. (See Fig. 9.) The constraints are expressed using a set R of region
constants, a set V of region variables, and a set P of predicate variables.

Recall that a region constant may be either (a) a formal region parameter of a class
or method, or (b) a static region identifier introduced by a letregion construct, or (c)
an open transferable region identifier introduced by an open construct. A region variable
is introduced to represent an unknown actual region parameter of a method invocation or
object allocation, and the constraint-solver, if successful, will bind each region variable to a
region constant.

A region-constraint φ consists of a conjunction of outlives-constraints of the form ρ1 � ρ2.
A predicate variable ϕ is introduced to represent, e.g., the unknown precondition of a method.
The constraint-solver will end up binding it to a region-constraint φ over a set of fixed formal
region parameters. Our constraints also make uses of pending substitutions F : A pending
substitution serves to bind formal region parameters in ϕ to the actual region parameters
used in a particular context: E.g., in the validity constraint π1 � π2 ` [π1/ρ1][π2/ρ2]ϕ, the
pending substitution is [π1/ρ1][π2/ρ2].

The constraints are primarily of the form ϕi ∧ φcx ` φcs or ϕi ∧ φcx ` Fj(ϕj). Here, ϕi
is a predicate variable (representing the precondition of a method to be determined), φcs is a

ECOOP 2018

11:18 Safe Transferable Regions

Expression Typing Constraint Generation A,Γ, r ` e : τ C C

[New]
A,Γ, r ` e : τ C C1 A ` N ok C C2 fields(N) = f : τ

A,Γ, r ` newN(e) : N C C1 ∪ C2

[NewRegion]
A,Γ, r ` e : 〈ρ〉 unit r−→ T@ρ C C

A,Γ, r ` new Region 〈T 〉〈π>〉(e) : Region 〈T 〉〈π>〉 C C

[LetRegion]

A = (∆,Θ,Φ) π /∈ ∆ A′ = (∆ ∪ {π},Θ,Φ ∧ (∆ � π))
A′,Γ, π ` e : τ C C1 A ` τ ok C C2

A,Γ, r ` letregion π in e : τ C (C1 ∪ C2)

[FnApply]

A = (∆,Θ,Φ) C1 = {rr ∈ ∆} A,Γ, r ` e : 〈ρρ |φ〉τ1 r−→ τ2 C C2

C3 = {Φ ` [rr/ρρ]φ} A,Γ, r ` e : [rr/ρρ]τ1 C C4

A,Γ, r ` e〈rr〉(e) : [rr/ρρ]τ2 C ∪4
i=1Ci

[Open]

A = (∆,Θ,Φ) π /∈ ∆ A,Γ, r ` ea : Region 〈T 〉〈π>〉 C C1

(∆ ∪ {π},Θ,Φ),Γ[y 7→ T@π] ` eb : τ C C2 A ` τ ok C C3

A,Γ, r ` open ea as y@π in eb : τ C (C1 ∪ C2 ∪ C3)

Figure 10 Constraint generation rules part 1.

region-constraint that is required to hold at a particular program point (within the method),
and φcx is a region-constraint that is known to hold at that program point. Constraints of
the form ϕi∧φcx ` Fj(ϕj) are generated by an invocation of a method with precondition ϕj .

We use well-formedness constraints of the form ρ ∈ ∆ to restrict the domain of unification
for a region variable (ρ) to a constant set ∆ = {π1, · · · , πn} of regions in scope, and well-
formedness constraints of form ∆ ` ϕ ok to restrict the domain of a predicate variable (ϕ) to
the set of all possible region-constraint formulas over a fixed set of regions (∆ = {π1, · · · , πn})
in scope.

Constraint Solution. We define an assignment η to be a pair of functions (ηR, ηP), where
ηR is a map from V to R and ηP is a map from P to a region-constraint formula. Such an
assignment is said to satisfy a set of constraints C if every sequent in C is valid after the
substitutions ηP and ηR. We say that C is satisfiable if it has a satisfying assignment.

Constraint Generation. The constraint generation algorithm is a direct adaption of the
type checker: each type checking judgment is modified to produce a set of constraints that
must hold for the type checker to succeed.

Fig. 10 illustrates this for selected language constructs. (The appendix contains the
remaining constraint generation rules.) These rules use the same context as the corresponding
typing judgment in Fig. 6, except that this is generalized to permit the use of region variables
and predicate variables. Symbols A and Γ retain their meaning, modulo this extension. Thus,
the component Φ of A will now be a symbolic expression of the form ϕ ∧ φ, where ϕ is the
predicate variable representing the undetermined precondition of the method being analyzed.

G. Kaki and G. Ramalingam 11:19

The algorithm proceeds top-down, analyzes an expression e in a context A,Γ, r, and returns
a type τ and a set of constraints C (expressed in the rules as A,Γ, r ` e : τ CC), indicating
that the expression will have a type τ provided the constraints C hold.

When we adapt a type-checking judgement rule to produce a corresponding constraint-
generation rule, we treat the antecedent conditions of the type-checking rule in one of
two ways. Many of these antecedent conditions are converted into constraints which are
accumulated in the set C. However, some of the antecedent conditions are expected to be
trivially satisfied and are expressed as antecedent conditions in the constraint-generation
rule as well. E.g., our frontend ensures that the region constants introduced by open and
letregion constructs are unique (and the elaboration phase ensures this by alpha-renaming
them as needed). Thus, the precondition ρ 6∈ ∆ in rules LetRegion and Open is expected
to hold true at constraint-generation time (and does not produce any constraints).

The rules for generating constraints from a method and class definition first build a
context (A) containing a set (∆) denoting regions that are currently live, a map (Θ) mapping
type variables to their bounds, and a constraint formula (Φ) capturing constraints over live
region variables. We use predicate variables (ϕ and ϕm) to capture constraints over variables
in ∆ that are yet to be inferred.

Let GenConstraint(q) denote the set of constraints generated from an elaborated
program q. The following theorem states that constraint-generation is sound and complete:

I Theorem 2. Let C = GenConstraint(q). An assignment η (for the region and predicate
variables in q) satisfies C iff q[η] is well-typed.

4.4 The Constraint Solver

We refer to any validity constraint whose antecedent contains a predicate variable (i.e., is of
the form ϕ∧φcx) as an abduction constraint. Here, φcx is either true (in which case, we call the
constraint a trivial abduction constraint) or a conjunction of one or more outlives-constraints
(in which case, we call the constraint a non-trivial abduction constraint).

Non-trivial abduction constraints are a key challenge in solving the constraints. We now
describe some special properties of the set of constraints C generated by our algorithm, which
allow us to handle abduction constraints efficiently.

For any predicate variable ϕ used in C, C has exactly one constraint of the form ∆ ` ϕ ok.
We will refer to this ∆ as ∆C

P (ϕ). (Our constraint-generation algorithm guarantees the
preceding property. Even otherwise, a set of constraints ∆i ` ϕ ok can be replaced by
the single equivalent constraint (∩i∆i) ` ϕ ok.) We say that an abduction constraint is
C-decomposable if its antecedent is of the form ϕ ∧ φcx where ϕ is a predicate variable and
φcx is a conjunction of zero or more outlives-constraints of the form π1 � π2 satisfying
the following conditions: (1) π2 /∈ ∆C

P (ϕ). (2) if π1 ∈ ∆C
P (ϕ), then for every πf ∈ ∆C

P (ϕ),
πf � π2 is a conjunct in φcx. We will omit the reference to C in the above notation if no
confusion is likely.

I Lemma 3. Every abduction constraint in C, where C = GenConstraint(q), is C-
decomposable.

I Lemma 4. Consider any C-decomposable constraint ϕ ∧ φ ` πi � πj where both πi and
πj are region constants. Let η satisfy C.
(a) If {πi, πj} ⊆ ∆P (ϕ): η satisfies ϕ ∧ φ ` πi � πj iff η satisfies ϕ ` πi � πj.
(b) If {πi, πj} 6⊆ ∆P (ϕ): η satisfies ϕ ∧ φ ` πi � πj iff η satisfies φ ` πi � πj

ECOOP 2018

11:20 Safe Transferable Regions

The above lemma shows how we can reduce a non-trivial abduction constraint to either a
trivial abduction constraint or a non-abduction constraint, provided that the consequent is
an outlives-constraint without region variables.

Constraint Solver. The first step in our algorithm for solving a set of constraints C computes
a set C∗ ⊇ C of constraints by iteratively applying the following rules until a fixed point is
reached:
1. (Initialization) ` ` r ∈ C ⇒ ` ` r ∈ C∗

2. (Transitivity)
a. ` ` ρ1 � ρ2 ∈ C∗, ` ∧ φ ` ρ2 � ρ3 ∈ C∗ ⇒ ` ∧ φ ` ρ1 � ρ3 ∈ C∗

b. ` ∧ φ ` ρ1 � ρ2 ∈ C∗, ` ` ρ2 � ρ3 ∈ C∗ ⇒ ` ∧ φ ` ρ1 � ρ3 ∈ C∗

3. (Substitution) ` ` F (ϕ) ∈ C∗, ϕ ` φ ∈ C∗ ⇒ ` ` F (φ) ∈ C∗

4. (Abduction Decomposition)
a. ϕ ∧ φcx ` πi � πj ∈ C∗, {πi, πj} ⊆ ∆P (ϕ) ⇒ ϕ ` πi � πj ∈ C∗

b. ϕ ∧ φcx ` πi � πj ∈ C∗, {πi, πj} 6⊆ ∆P (ϕ), {πi, πj} ⊆ R ⇒ φcx ` πi � πj ∈ C∗

We can show that every new constraint added by the above rules is implied by existing
constraints:

I Theorem 5. Let C = GenConstraint(q). An assignment η satisfies C iff η satisfies C∗.

A key goal of this step is to identify the value every region variable must have in any
solution of the set of constraints, as explained below. Consider a set of constraints D. We
say that a region variable ρ occurs in a context ` (in D) if D contains some constraint ` ` r
where ρ occurs in r. We say that a region variable ρ is bound to a region constant π in a
context ` if {` ` ρ � π, ` ` π � ρ} ⊆ D. We say that a region variable ρ is bound to a
region constant π (in D) if ρ is bound to π in every context ` in which it occurs. We say
that a region variable ρ is somewhere-bound to a region constant π (in D) if ρ is bound to π
in some context ` in which it occurs.

The set C∗ makes it easy to identify a solution η̂ (if one exists), as below. For
any predicate variable ϕ, η̂P (ϕ) is defined to be ∧{π1 � π2 | π1, π2 ∈ R,ϕ ` π1 �
π2 ∈ C∗}. For any region variable ρ, we define η̂R(ρ) to be any element of the set
{π ∈ R | ρ is somewhere-bound to π in C∗}, if this set is non-empty. If this set is empty for
any ρ, η̂ is undefined.

The set C∗ also makes it easy to check if C is satisfiable. Let C∗g denote the subset of all
ground constraints (i.e., constraints without any region variable or predicate variable) in
C∗. Let WFR denote the subset of all well-formedness constraints for region variables in C∗.
Define Solve(C) as below.

Solve(C) =
{

Some(η̂) if C∗g is valid and η̂ is defined and satisfies WFR
None otherwise

I Theorem 6. Let C = GenConstraint(q). (Soundness) If Solve(C) = Some(η), then
η satisfies C. (Completeness) If Solve(C) = None, then C is unsatisfiable.

Checking the validity of a ground constraint is straightforward. A ground constraint
is of the form ∧i∈I`i ` r, where each `i and r is an outlives-constraint. Let D denote
{ ` `i | i ∈ I}. The given constraint is valid iff r belongs to D∗.

G. Kaki and G. Ramalingam 11:21

Algorithmic Aspects. Note that checking the validity of a ground constraint can be realized
using a simple graph reachability algorithm. Given a set S of outlives constraints, define
the directed graph G(S) = (V (S), E(S)) as follows. Every distinct region identifier ρ in S is
represented by a vertex, which we will also refer to as ρ. Every outlives constraint ρ1 � ρ2 is
represented by an edge from ρ1 to ρ2. It is easy to see that ∧S ` ρ1 � ρ2 iff there exists
a path from ρ1 to ρ2 in G(S). Thus, a simple graph reachability algorithm can be used to
check the validity of ground constraints.

This idea generalizes. Extending the simple graph reachability algorithm to incorporate
the Substitution rule (in computing C∗) turns the problem into a context-free reachability
problem in graphs [16] (as usual for context-sensitive interprocedural analysis).

Algorithms for context-free reachability can be adapted to incorporate the Abduction
Decomposition step. Alternatively, the iterative process described above is a standard fixed
point computation and can be encoded using a set of Datalog rules, allowing us to compute
the closure using any Datalog engine.

4.5 Soundness and Completeness: Discussion
Theorems 2 and 6 show that the second and third steps of the type-inference algorithm are
sound. It is easy to verify the soundness of the first step (the elaboration phase): For any
program p ∈ JFBK, the elaboration phase produces a q such that for any assignment η, we
have Jq[η]K = p. The soundness of the type inference algorithm follows.

Theorem 2 and 6 also establish the completeness of the constraint-generation and
constraint-solving steps. The only source of incompleteness in the type inference algorithm
is the set of heuristic choices made during the first step, as explained below.

(1) We determine the set of region parameters for a recursive class using the heuristic
that a recursive occurrence of the class has the same parameters, in the same order, as the
class itself. This heuristic fails, for example, if the program uses a recursive list type whose
elements alternatively come from two different regions. Such a program would require the
following elaboration, which is beyond the scope of our approach:

c lass List / Object
{

Object data;
List next;

}

⇒

c lass List 〈ρ0, ρ1, ρ2 | ϕ〉 / Object 〈ρ0〉
{

Object 〈ρ1〉 data;
List 〈ρ0, ρ2, ρ1〉 next;

}

(2) Our technique for region parameterization also uses a heuristic in the case of higher
order programs. The following examples illustrates that principal types may not exist for
higher order functions.

unit apply (T → unit f, T x, T y) { f(x); f(y); }

This method may be typed assuming either that f is polymorphic over the region that
its parameter is allocated in (permitting x and y to be allocated in any regions), or by
assuming that x and y are allocated in the same region ρ1 that f expects its parameters
to be allocated in. Neither type subsumes the other. Our algorithm heuristically chooses the
first option, as it appears to be the more likely and useful candidate.

If users provide partial region annotations, especially in situations (such as above) where
elaboration makes a heuristic choice, the elaboration procedure can use the user-provided
choices instead. This can help the type-inference overcome these limitations.

ECOOP 2018

11:22 Safe Transferable Regions

4.6 Modularity Aspects of Type Inference
The type inference algorithm, as presented, traverses the entire program to generate the
set of constraints, which are solved en masse, using an iterative fixed point computation.
However, the type inference can be realized in a modular and compositional fashion, subject
only to the restrictions imposed by recursion.

In the elaboration phase, we can process a class C only after any class B that C depends
on has been processed: class C depends on class B if B is either C ’s base class or the
type of any field of C depends on B . In effect, this means that any collection of mutually
recursive classes must be processed together. Non-recursive dependences can be handled in a
compositional fashion: if class C depends on B non-recursively, then the elaboration can be
done for B first, and then C can be processed.

The same idea applies to the constraint-solving phase as well. Given a set of constraints,
we say that a predicate variable ϕ1 directly-depends on another predicate variable ϕ2 if the
set of constraints includes a constraint ϕ1 ∧ φcx ` F (ϕ2). We say that ϕ1 depends on ϕ2
if ϕ1 transitively depends on ϕ2. The constraint solver needs to process any collection of
mutually dependent predicate variables together. In effect, this requires the type inference
to process any collection of mutually recursive methods together. However, methods that
are not mutually recursive can be processed separately.

5 Implementation and Evaluation

As mentioned earlier, our work is a continuation of the work reported in [7], which provides
users with a C#-based implementation of transferable regions (the features described in
Section 2). This system has no type system and provides users with no safety guarantees. [7]
presents evidence that realistic programs can be implemented using transferable regions and
that this can yield significant performance gains. In particular, it reports speedups up to
34% for typical big-data analytics jobs. We now describe our implementation and experience
with the type system and type inference algorithm presented in the current paper.

We have implemented Broomc, a prototype of Broom compiler frontend, including its
region type system and type inference, in 3k+ lines of OCaml. The input to Broomc is a
program in JFB+K, an extended version of JFBK that includes assignments, conditionals,
loops, more primitive datatypes (e.g., integers), and a null value. Our implementation of
region type inference and constraint solving closely follows the description given in Sec. 4.

We performed two kinds of experiments to evaluate our region type system and type
inference. First, we implemented some microbenchmarks (≤100 LOC) consisting of standard
classes such as pairs, lists, list iterators, etc., in JFB+K, and used our inference engine to
infer their region types. These classes are region-oblivious. Hence, as long as they are
well-typed as per the core type system, Broomc must be able to automatically construct its
region-type-annotated definition without fail. Broomc was able to infer the expected region
types for all these classes under 10ms. Fig 11 shows the region-type-annotated definition
computed for the list reverse method. Observe that Broomc was able to infer that the list
and its data (of type T) can be allocated in different regions, as long as the latter outlives
the former. This allows, for instance, a preOrder method to traverse a tree in a transferable
region, and return a list of its nodes, where the list itself is allocated in the stack region.

Next, we translated 4 out of the 6 Naiad streaming query operator benchmarks (Naiad
vertices) used in [7] to JFB+K, and used Broomc to verify their safety. The 2 remaining
benchmarks were left out because their region behavior (from the perspective of the type
system) is subsumed by the included benchmarks. The number of LOC performing operations

G. Kaki and G. Ramalingam 11:23

c lass LinkedList <T><R5 ,R4 | R4�R5 > {
ListNode <T><R5 ,R4 > head; ...
List <T><R17 ,R4 > rev <R17 ,R4 | R4�R17 >(unit u) {

List <T><R17 ,R4 > xs = new List <T><R17 ,R4 >(this .head.val);
ListNode <T><R5 ,R4 > cur = this .head.next;
while (! cur == Null) {

xs.add <R17 >(cur.val)
cur = cur.next; }

return xs;
}

Figure 11 Region-annotated definition of rev computed by Broomc.

on Region objects relative to the total LOC is 8% or under in the Naiad benchmarks. During
the process, we found multiple instances of potential memory safety violations in the JFB+K
translation of all the 4 Naiad vertices, which we verified to be present in the original C#
implementation as well. The cause of all safety violations is the creation of a reference from
the outgoing message (a transferable region) to the payload of the incoming message. For
example, the implementation of SelectVertex contains the following:

i f (this . selector (inMsg. payload [i])) {
outMsg .set(outputOffset , inMsg. payload [i]);
...

}

The outMsg is later transferred to a downstream actor, where the reference to inMsg ’s
payload becomes unsafe6. We eliminated such unsafe references by creating a clone of
inMsg.payload[i] in outMsg , and our compiler was subsequently able to certify the safety
of all references.

Our experience with Naiad benchmarks shows the utility of our type inference/checking
tool, particularly because it comes at no additional cost to the developer.

6 Related Work

Following Tofte and Talpin’s seminal work in [15, 20, 21], static type systems for safe region-
based memory management have been extensively studied in the context of various languages
and problem settings [8, 10, 24, 2, 1, 9, 23, 17, 11]. Our work differs from the existing
proposals in one or more of the following respects.

1. Our design choice focuses on ensuring memory-safety while giving programmers control
over region management and allocation of objects in regions. In contrast, some systems
automate all aspects of memory management. This is a convenience-performance trade-off.

2. We support both lexically scoped (stack) regions and dynamic transferable regions (both
programmer-managed).

3. We exploit a combination of a simple static type discipline and lightweight runtime
checks to ensure memory safety. In particular, our approach circumvents the need for
restrictive static mechanisms (e.g., linear types and unique pointers) or expensive runtime
mechanisms (e.g., garbage collection and reference counting) in order to guarantee safety.

6 This unsafe reference could have gone unnoticed during experiments in [7] because their experimental
setup included only one actor.

ECOOP 2018

11:24 Safe Transferable Regions

4. We present a full (interprocedural) type inference algorithm that eliminates the need to
write region annotations on types.

5. Our underlying language is an object-oriented programming language, equipped with
higher-order functions and parameterized (generic) types. These language features
necessitate some non-trivial choices in the design of the region-parametricity aspect of
the language, which also have an impact on aspects such type inference.

Tofte and Talpin’s approach [21] uses compiler-managed lexically scoped (stack) regions
(as a replacement for GC). Our type inference is analogous to theirs in some respects, while
differing in others. Their inference algorithm only generates equality constraints, solvable
via unification. Our type inference algorithm generates partial order outlives constraints.
Consequently, our constraint solving algorithm is more sophisticated, and is capable of
inferring unknown outlives constraints over region arguments of polymorphic recursive
functions.

Walker and Watkins [23] extend lambda calculus with first-class regions with dynamic
lifetimes, and impose linear typing to control accesses to regions. Our open/close lexical
block for transferable regions traces its origins to the let! expression in [23] and [22], which
safely relaxes linear typing restrictions, allowing variables to be temporarily aliased. We
don’t use linear typing (for references to regions), thus admit unrestricted aliasing, but use
lightweight runtime checks for safety. Moreover, [23]’s linear type system is insufficient to
enforce the invariants needed to ensure safety under region transfers, such as the absence of
references that escape a transferable region.

Cyclone [8] equips C with programmer-managed stack regions, and a typing discipline
that statically guarantees the safety of all pointer dereferences. Later proposals [10, 19]
extends Cyclone with dynamic regions. Broom differs from Cyclone in its non-intrusiveness
design principle, which requires its safety mechanisms to not intrude on the programming
practices of C#. Broom programmers, for example, shouldn’t be forced to abandon iterators
in favor of for-loops, annotate region types, or rewrite C#’s standard libraries to use in
Broom. Cyclone requires C programmers to use new language constructs and abandon some
standard programming idioms in the interest of preserving safety. For instance, Cyclone
programmers are required to write region types for functions; the type inference is only
intraprocedural. Ensuring safety in presence of dynamic regions requires using either unique
pointers or reference-counted objects. Both approaches are intrusive. For example, unique
pointers constrain, or in some cases forbid, the use of the familiar iterator pattern, which
requires creation of aliases to objects in a collection. Some standard library functions, for
example, those that use caching, may need to be rewritten. Moreover, even with unique
pointers, safety cannot be guaranteed statically; checks against NULL are needed at run-time
to enforce safety. For ref-counted objects, Cyclone requires programmers to use special
functions (alias_refptr and drop_refptr) to create and destroy aliases. Reference count
is affected only by these functions. An alias going out of scope, for instance, does not
decrement the ref-count. The requirement to use additional constructs to manage aliases
makes reference counting more-or-less as intrusive as unique pointers.

Our work differs from Cyclone also in terms of its technical contributions. While Cyclone
equips C with a range of region constructs [19], the semantics of (a significant subset of)
such constructs, and the safety guarantees of the language are not formalized. In contrast,
the (static and dynamic) semantics of Broom has been rigorously defined with respect to a
well-understood formal system (FGJ). The safety guarantees have been formalized and proved.
Similar contrast can be made of region type inference in both the languages. Cyclone’s type
inference was only ever described as being similar to Tofte and Talpin’s, and its effectiveness

G. Kaki and G. Ramalingam 11:25

in presence of tracked pointers is not clear. In contrast, a detailed type inference algorithm
is one of our core contributions.

Our region type system can also be thought of as a specialized ownership type system [5],
where each region is the owner of all objects allocated in the region. An ownership type
system for safe region-based memory management in real-time Java has been proposed
by Boyapati et al. [2]. Their language permits only lexically-scoped (stack) regions. In
contrast, we permit regions with dynamically determined lifetimes. Our language also admits
generics and higher-order functions. We also establish type safety and transfer safety results
that formalize the guarantees provided by our system. While Boyapati et al.’s language is
explicitly typed, our language comes equipped with full type inference. However, several
inference algorithms have been proposed in the context of other ownership type systems.
Our type inference algorithm is also novel compared to these existing ownership inference
algorithms, which are based on, e.g., pointer analysis [12] or boolean satisfiability [6]. (See
Section 5.2 of Clark et al.’s survey of ownership type systems [5] for a more comprehensive
discussion of ownership inference algorithms.) Some distinguishing characteristics of our
algorithm is that it is customized to our problem, does not use any pointer analysis algorithm
(which can be a source of imprecision) or SAT solvers (which can be a source of inefficiency),
and comes with relative completeness guarantees.

Henglein et al. [9] propose a flow-sensitive approach for first-order programs to generalize
Tofte and Talpin’s approach to dynamic regions. Cherem and Rugina [4] describe a flow-
insensitive and context-sensitive analysis that transforms Java programs to use (dynamic)
regions. However, neither of themr supports dynamic regions as first-class objects; they
cannot be stored in data structures or passed to methods. Furthermore, while Henglein et
al. [9] require reference counting to ensure memory safety, Cherem and Rugina’s analysis [4]
comes with no formal safety guarantees. Holk et al. [11] use regions to safely transfer data
between the CPU and GPU in the context of Scheme. However, their setting only includes
lexically-scoped regions for which Tofte and Talpin-style analysis suffices. In contrast, we
provide first-class support for transferable regions with dynamic lifetimes.

References

1 Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heum-
ann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen
Vakilian. A type and effect system for deterministic parallel java. In Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’09, pages 97–116, New York, NY, USA, 2009. ACM.
doi:10.1145/1640089.1640097.

2 Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and Martin Rinard.
Ownership types for safe region-based memory management in real-time java. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI ’03, pages 324–337, New York, NY, USA, 2003. ACM. doi:
10.1145/781131.781168.

3 Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, John C. Platt,
James F. Terwilliger, and John Wernsing. Trill: A high-performance incremental query
processor for diverse analytics. PVLDB, 8(4):401–412, 2014. URL: http://www.vldb.
org/pvldb/vol8/p401-chandramouli.pdf.

4 Sigmund Cherem and Radu Rugina. Region analysis and transformation for java programs.
In Proceedings of the 4th International Symposium on Memory Management, ISMM ’04,
pages 85–96, New York, NY, USA, 2004. ACM. doi:10.1145/1029873.1029884.

ECOOP 2018

http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/781131.781168
http://dx.doi.org/10.1145/781131.781168
http://www.vldb.org/pvldb/vol8/p401-chandramouli.pdf
http://www.vldb.org/pvldb/vol8/p401-chandramouli.pdf
http://dx.doi.org/10.1145/1029873.1029884

11:26 Safe Transferable Regions

5 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership Types: A
Survey, pages 15–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-36946-9_3.

6 Werner Dietl, Michael D. Ernst, and Peter Müller. Tunable static inference for gen-
eric universe types. In ECOOP 2011 - Object-Oriented Programming - 25th European
Conference, Lancaster, UK, July 25-29, 2011 Proceedings, pages 333–357, 2011. doi:
10.1007/978-3-642-22655-7_16.

7 Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis, Ganesan
Ramalingam, Manuel Costa, Derek Gordon Murray, Steven Hand, and Michael Isard.
Broom: Sweeping out garbage collection from big data systems. In 15th Workshop on
Hot Topics in Operating Systems, HotOS XV, Kartause Ittingen, Switzerland, May 18-20,
2015, 2015. URL: https://www.usenix.org/conference/hotos15/workshop-program/
presentation/gog.

8 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in cyclone. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Implementation, PLDI ’02,
pages 282–293, New York, NY, USA, 2002. ACM. doi:10.1145/512529.512563.

9 Fritz Henglein, Henning Makholm, and Henning Niss. A direct approach to control-flow
sensitive region-based memory management. In Proceedings of the 3rd ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP
’01, pages 175–186, New York, NY, USA, 2001. ACM. doi:10.1145/773184.773203.

10 Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe
manual memory-management in cyclone. In Proceedings of the 4th International Symposium
on Memory Management, ISMM ’04, pages 73–84, New York, NY, USA, 2004. ACM. doi:
10.1145/1029873.1029883.

11 Eric Holk, Ryan Newton, Jeremy Siek, and Andrew Lumsdaine. Region-based memory
management for gpu programming languages: Enabling rich data structures on a spartan
host. In Proceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA ’14, pages 141–155, New York,
NY, USA, 2014. ACM. doi:10.1145/2660193.2660244.

12 Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking
of object ownership. In ECOOP 2012 - Object-Oriented Programming - 26th European
Conference, Beijing, China, June 11-16, 2012. Proceedings, pages 181–206, 2012. doi:
10.1007/978-3-642-31057-7_9.

13 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: A minimal
core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

14 Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. Trash day: Coordinating
garbage collection in distributed systems. In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems, HOTOS’15, pages 1–1, Berkeley, CA, USA, 2015.
USENIX Association. URL: http://dl.acm.org/citation.cfm?id=2831090.2831091.

15 Mads Tofte and Jean-Pierre Talpin. A Theory of Stack Allocation in Polymorphically
Typed Languages. Technical Report DIKU-report 93/15, University of Copenhagen, 1993.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6564.

16 Thomas W. Reps. Program analysis via graph reachability. Information & Software Tech-
nology, 40(11-12):701–726, 1998. doi:10.1016/S0950-5849(98)00093-7.

17 The Rust Programming Language, 2015. Accessed: 2015-11-7 13:21:00. URL: https:
//doc.rust-lang.org/book.

18 Type-safe off-heap memory, 2016. Accessed: 2016-06-6 13:21:00. URL: https://github.
com/densh/scala-offheap.

http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1007/978-3-642-22655-7_16
http://dx.doi.org/10.1007/978-3-642-22655-7_16
https://www.usenix.org/conference/hotos15/workshop-program/presentation/gog
https://www.usenix.org/conference/hotos15/workshop-program/presentation/gog
http://dx.doi.org/10.1145/512529.512563
http://dx.doi.org/10.1145/773184.773203
http://dx.doi.org/10.1145/1029873.1029883
http://dx.doi.org/10.1145/1029873.1029883
http://dx.doi.org/10.1145/2660193.2660244
http://dx.doi.org/10.1007/978-3-642-31057-7_9
http://dx.doi.org/10.1007/978-3-642-31057-7_9
http://dx.doi.org/10.1145/503502.503505
http://dl.acm.org/citation.cfm?id=2831090.2831091
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6564
http://dx.doi.org/10.1016/S0950-5849(98)00093-7
https://doc.rust-lang.org/book
https://doc.rust-lang.org/book
https://github.com/densh/scala-offheap
https://github.com/densh/scala-offheap

G. Kaki and G. Ramalingam 11:27

19 Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe manual
memory management in cyclone. Science of Computer Programming, 62(2):122–144, 2006.
Special Issue: Five perspectives on modern memory management - Systems, hardware and
theory. doi:10.1016/j.scico.2006.02.003.

20 Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus
using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’94, pages 188–201, New York, NY, USA,
1994. ACM. doi:10.1145/174675.177855.

21 Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, 1997. doi:10.1006/inco.1996.2613.

22 Philip Wadler. Linear Types Can Change the World! In M. Broy and C. B. Jones, editors,
IFIP TC 2 Working Conference on Programming Concepts and Methods, pages 561–581,
Sea of Gallilee, Israel, 1990. North-Holland.

23 David Walker and Kevin Watkins. On regions and linear types (extended abstract). In Pro-
ceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, pages 181–192, New York, NY, USA, 2001. ACM. doi:10.1145/507635.507658.

24 Bennett Norton Yates. A type-and-effect system for encapsulating memory in java. Master’s
thesis, Department of Computer Science and Information Science, University of Oregon,
1999.

25 Matei Zaharia. New developments in spark, 2015. URL: http://www.slideshare.net/
databricks/new-developments-in-spark.

A Appendix

A.1 Static Semantics

allocRgn(A〈rr〉〈T 〉) = r

allocRgn(〈ρ |φ〉τ1 r−→ τ2) = r

shape(A〈r〉〈T 〉) = A〈T 〉

boundΘ(a@r) = Θ(a)@r
boundΘ(N) = N

fields(Object 〈r〉) = •

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; ...} S = [r/ρ, T/a] fields(S(N)) = g : τg

fields(B〈T 〉〈r〉) = g : τg, f : S(τf)

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; d} m /∈ d S = [r/ρ, T/a]
mtype(m,B〈T 〉〈r〉) = mtype(m,S(N))

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; d} τ2 m〈ρm |φm〉(τ1 x){...} ∈ d S = [r/ρ, T/a]
mtype(m,B〈T 〉〈r〉) = S(〈ρm |φm〉τ1 → τ2)

mtype(m,N) = 〈ρ1 |φ1〉τ11 → τ12 implies

A.Φ ` φ2 ⇔ [ρ2/ρ1](φ1) and τ21 = [ρ2/ρ1](τ11) and A ` τ22 <: [ρ2/ρ1](τ12)
A ` override(m,N, 〈ρ2 |φ1〉τ21 → τ22)

Figure 12 Featherweight Broom: auxiliary definitions.

ECOOP 2018

http://dx.doi.org/10.1016/j.scico.2006.02.003
http://dx.doi.org/10.1145/174675.177855
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1145/507635.507658
http://www.slideshare.net/databricks/new-developments-in-spark
http://www.slideshare.net/databricks/new-developments-in-spark

11:28 Safe Transferable Regions

Subtyping A ` τ1 <: τ2

A ` τ <: τ
(∆,Θ,Φ) ` a@ρ <: Θ(a)@ρ CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...}

A ` B〈T 〉〈r〉 <: [r/ρ, T/a](N)

A ` τ1 <: τ2
A ` τ2 <: τ3
A ` τ1 <: τ3

A.Φ ` φ1 ⇒ φ2

A ` τ11 <: τ21 A ` τ22 <: τ12

A ` 〈ρ |φ2〉τ21 r−→ τ22 <: 〈ρ |φ1〉τ11 r−→ τ12

Type, and Type Constraint Well-formedness A ` τ ok, ∆ ` φ ok

r ∈ ∆
(∆,Θ,Φ) ` Object 〈r〉 ok

r0, r1 ∈ ∆
∆ ` r0 � r1 ok

∆ ` φ0 ok ∆ ` φ1 ok

∆ ` φ0 ∧ φ1 ok

r ∈ ∆ ρ 6∈ ∆ ∆′ = ∆ ∪ {ρ} A′ = (∆′,Θ,Φ ∧ φ) ∆′ ` φ ok A′ ` τ1 ok A′ ` τ2 ok

(∆,Θ,Φ) ` 〈ρ |φ〉τ1 r−→ τ2 ok

Class Well-formedness B ok

∆ = {ρ, ρ} Θ = [a 7→ K] Φ = φ A = (∆,Θ,Φ) ∆ ` φ ok Θ
 K ok d ok in B

A ` N, τf ok shape(N) 6= Region 〈T 〉 Φ ` allocRgn(τf) � ρ allocRgn(N) = ρ

class B〈a / K〉〈ρρ |φ〉 / N{τf f ; d} ok

Figure 13 Featherweight Broom: subtyping and well-formedness rules (contiunuation of
Fig. 6).

Expression Typing A,Γ, r ` e : τ

A,Γ, r ` e1 : τ1
A,Γ[x 7→ τ1], r ` e2 : τ2

A,Γ, r ` let x = e1 in e2 : τ2

A = (∆,Θ,Φ) l /∈ ∆
A′ = (∆ ∪ {l},Θ,Φ ∧∆ � l)
A′,Γ, l ` e : τ A ` τ ok

A,Γ, r ` letd l in e : τ

A = (∆,Θ,Φ) A′ = (∆ ∪ {l},Θ,Φ) A′ ` T@l ok A′,Γ, l ` e : T@l

A,Γ, r ` new Region 〈T 〉〈l>l〉(e) : Region 〈T 〉〈π>〉

A = (∆,Θ,Φ) A′ = (∆ ∪ {l},Θ,Φ)
l ∈ ∆ implies s = � A′,Γ, l ` e : τ A ` τ ok

A,Γ, r ` opened l(s) in e : τ

A,Γ, r ` e : τ
A ` τ <: τ ′

A,Γ, r ` e : τ ′

Figure 14 Featherweight Broom: expression typing (continuation of Fig. 6).

G. Kaki and G. Ramalingam 11:29

A.2 Operational Semantics

(e,Σ) −→ (e′,Σ′)

[EvalOrder]
(e,Σ) −→ (e′,Σ′)

(E[e],Σ) −→ (E[e′],Σ′)

[Exception]
(e,Σ) −→ ⊥

(E[e],Σ) −→ ⊥

[FieldAccess]
Σ(l) = � fields(A〈T 〉〈ll〉) = f : τ

((new A〈T 〉〈ll〉(v)).fi,Σ) −→ (vi,Σ)

[MethodInv]
Σ(l) = � mbody(m,A〈T 〉〈ll〉) = ρρ.x.e

((new A〈T 〉〈ll〉(v)).m〈l′l′〉(v′),Σ) −→
([l′l′/ρρ][v′/x][new A〈T 〉〈ll〉(v)/ this] e,Σ)

[FnApply]
va = λ@l′〈ρρ〉(τ x).e Σ(l′) = �

(va〈ll〉(v),Σ) −→ ([v/x][ll/ρρ] e,Σ)

[Exception]
Σ(l) = � (e,Σ[l 7→ �]) −→ ⊥

(new Region 〈T 〉〈l>l〉(e),Σ) −→ ⊥

[LetExp]
(let x = v in e,Σ) −→ ([v/x]e,Σ)

Evaluation Context E

E ::= • | (•).f | •.m〈l〉(e) | v.m〈l〉(..., •, ...) | new N(..., •, ...)
| new Region 〈T 〉〈π>〉(•) | •〈l〉(e) | v〈l〉(..., •, ...)
| let x = • in e | open • as y@r in e

Figure 15 Featherweight Broom: operational semantics (continuation of Fig. 8).

ECOOP 2018

11:30 Safe Transferable Regions

A.3 Constraint Generation Rules

Expression Typing Constraint Generation A,Γ, r ` e : τ C C

[Unit] A,Γ, r ` () : unit C {}

[Var] A,Γ, r ` x : Γ(τ) C {}

[FieldAccess]
A,Γ, r ` e : τ ′ C C f : τ = fields(boundA.Θ(τ ′))

A,Γ, r ` e.fi : τi C C

[Let]
A,Γ, r ` e1 : τ1 C C1 A,Γ[x 7→ τ1], r ` e2 : τ2 C C2

A,Γ, r ` let x = e1 in e2 : τ2 C C1 ∪ C2

[MethodInv]

A,Γ, r ` e0 : τ C C1 C2 = {rr ∈ A.∆}
mtype(m, boundA.Θ(τ)) = 〈ρρ |φ〉τ1 → τ2

A ` 〈ρρ |φ〉τ1 → τ2 ok C C3 A,Γ, r ` e : [rr/ρρ](τ1) C C4

C5 = {A.Φ ` [rr/ρρ](φ)}
A,Γ, r ` e0.m〈rr〉(e) : [rr/ρρ](τ2) C C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5

[Lambda]

r ∈ A.∆ ρρ /∈ A.∆ A′ = (A.∆ ∪ {ρρ},A.Θ,A.Φ ∧ φ)
A′.∆ ` φ ok A′ ` τ1 ok C C1 A′ ` τ2 ok C C2

A′,Γ[x 7→ τ1], ρ ` e : τ2 C C3

A,Γ, r ` λ@r〈ρρ |φ〉(x : τ1).e : 〈ρρ |φ〉τ1 r−→ τ2 C ∪4
i=1Ci

[SubTyping]
A,Γ, r ` e : τ C C1 A ` τ <: τ ′ C C2

A,Γ, r ` e : τ ′ C C1 ∪ C2

Method Well-formedness Constraint Generation ` d ok in B C C

[Method]

CT (B) = class B〈a / K〉〈ρ |ϕ〉 / N{· · · }
A = (∆,Θ,Φ) = ({ρ, ρm, ρm}, [a 7→ K], ϕm) C1 = {∆ ` ϕm ok}
Γ = ·[this 7→ B〈a〉〈ρ〉][x 7→ τ1] mtype(m,N) = 〈ρm |φm〉τ1 → τ2

A,Γ, ρm ` e : τ2 C C2 A ` τ1 ok C C3 A ` τ2 ok C C4

` τ2 m〈ρmρm |ϕm〉(τ1 x){ return e; } ok in B C (C1 ∪ C2 ∪ C3 ∪ C4)

Class Well-formedness Constraint Generation ` B ok C C

[Class]

A = (∆,Θ,Φ) = ({ρ, ρ}, [a 7→ K], ϕ)
C1 = {∆ ` ϕ ok} Θ
 K ok A ` N ok C C2 A ` τf ok C C3

C4 = {Φ ` allocRgn(τf) � ρ ∧ allocRgn(N) = ρ}
` d ok in B C C5

` class B〈a / K〉〈ρρ |ϕ〉 / N{τf x; d} ok C
⋃5

i=1 Ci

Figure 16 Featherweight Broom: Constraint generation rules part 2 (Continuation of Fig. 10).

G. Kaki and G. Ramalingam 11:31

Subtyping Constraint Generation A ` τ1 <: τ2 C C

[Reflexivity] A ` τ <: τ C {}

[Unify] A ` τ <: [π/ρ](τ) C {π � ρ, ρ � π}

[Transitivity]
A ` τ1 <: τ2 C C1 A ` τ2 <: τ3 C C2

A ` τ1 <: τ3 C C1 ∪ C2

[FnSubtyping]

C1 = {A.Φ ` φ1 ⇒ φ2}
A ` τ11 <: τ21 C C2 A ` τ22 <: τ12 C C3

A ` 〈ρ |φ2〉τ21 r−→ τ22 <: 〈ρ |φ1〉τ11 r−→ τ12 C C1 ∪ C2 ∪ C3

Type Well-formedness Constraint Generation A ` τ ok C C

[ObjectType]
C = {r ∈ ∆}

(∆,Θ,Φ) ` Object 〈r〉 ok C C

[ClassType]

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} Θ
 B〈T 〉 ok

C = {r ∈ ∆,Φ ` [r/ρ](φ)}
(∆,Θ,Φ) ` B〈T 〉〈r〉 ok C C

[TypeParam]
Θ
 T ok Θ
 T <: Object C = {r ∈ ∆}

(∆,Θ,Φ) ` T@r ok C C

[FnType]

C1 = {r ∈ ∆}
ρ /∈ ∆ ∆′ = ∆ ∪ {ρ} A′ = (∆′,Θ,Φ ∧ φ)

∆′ ` φ ok C C2 A′ ` τ1 ok C C3 A′ ` τ2 ok C C4

(∆,Θ,Φ) ` 〈ρ |φ〉τ1 r−→ τ2 ok C C1 ∪ C2 ∪ C3 ∪ C4

[RegionType]
Θ
 T ok

(∆,Θ,Φ) ` Region 〈T 〉〈π>〉 ok C {}

Figure 17 Featherweight Broom: Constraint generation rules part 3 (Continuation of Fig. 16).

ECOOP 2018

KafKa: Gradual Typing for Objects
Benjamin Chung
Northeastern University, Boston, MA, USA

Paley Li
Czech Technical University, Prague, Czech Republic, and
Northeastern University, Boston, MA, USA

Francesco Zappa Nardelli
Inria, Paris, France, and
Northeastern University, Boston, MA, USA

Jan Vitek
Czech Technical University, Prague, Czech Republic, and
Northeastern University, Boston, MA, USA

Abstract
A wide range of gradual type systems have been proposed, providing many languages with the
ability to mix typed and untyped code. However, hiding under language details, these gradual
type systems embody fundamentally different ideas of what it means to be well-typed.

In this paper, we show that four of the most common gradual type systems provide distinct
guarantees, and we give a formal framework for comparing gradual type systems for object-
oriented languages. First, we show that the different gradual type systems are practically distin-
guishable via a three-part litmus test. We present a formal framework for defining and comparing
gradual type systems. Within this framework, different gradual type systems become translations
between a common source and target language, allowing for direct comparison of semantics and
guarantees.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases Gradual typing, object-orientation, language design, type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.12

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.10

Funding This work received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement 695412),
the NSF (award 1544542 and award 1518844) as well as ONR (award 503353).

Acknowledgements The author thank the reviewers of ecoop, popl, esop, and again ecoop
for comments that gradually improved this paper.
We are grateful to Leif Andersen, Fabian Muelbrock, Éric Tanter, Celeste Hollenbeck, Sam
Caldwell, Ming-Ho Yee, Lionel Zoubritzky, Benjamin Greenman and Matthias Felleisen for their
feedback.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 12; pp. 12:1–12:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
http://dx.doi.org/10.4230/DARTS.4.3.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Gradual Typing for Objects

1 Introduction
“Because half the problem is seeing the problem”

There never was a single approach to gradual typing. The field was opened by two simul-
taneously published papers. One, by Siek and Taha, typed individual Scheme terms using
a consistency relation, casts being inserted by a type directed translation [19]. The other,
by Tobin-Hochtstadt and Felleisen, described a system allowing programmers to add types
to individual modules, using constraint solving to determine where contracts are needed to
protect typed and untyped code from each other [26]. These two approaches set the tone for
a decade of research. Today, gradual type systems rely on a variety of languages, enforcement
mechanisms with various guarantees; this linguistic diversity is not without consequence,
however, as the very notion of what constitutes an error remains unsettled.

The type system and semantics of a programming language are necessarily tightly coupled;
each has to deal with the language’s complexity. As a result, the same gradual type system
may seem very different when applied to two different languages, an issue that shows up
clearly with object-oriented languages. Siek and Taha’s first effort [20] presented a gradual
type system for an object-oriented programing language. It related objects by generalizing
the notion of consistency [19] over structural subtyping. The work had drawbacks, most
notably in the handling of mutable state and aliasing – vital features of object-oriented
languages. Underlying each subsequent gradual type system are different design choices on
how to deal with mutability and aliasing.

The landscape of gradually typed object-oriented languages is rich and includes:

Typed Racket: a rich gradual type system based on contracts.
Gradualtalk: a gradual variant of Smalltalk.
C#: a statically typed language with a dynamic type.
Dart: a class-based language with optional types.
Hack: a statically typed variant of PHP that allows untyped code.
Thorn: a language with both statically typed and untyped code.
TypeScript: JavaScript with optional types.
StrongScript: a variant of TypeScript with nominal types.
Nom: a language supporting dynamic types and nominal typing.
Reticulated Python: a family of gradual type systems for Python.

These languages differ in their type systems and associated run-time enforcement strategies.
There are four major approaches, labeled here as optional, concrete, behavioral, and transient.
The optional approach, chosen by TypeScript, Dart, and Hack, amounts to static type
checking followed by type erasure. Erroneous values flowing from dynamically typed code to
statically typed code will not be caught. The concrete approach, used in C# and Nom, uses
run-time subtype tests on type constructors to supplement static typing. While statically
typed code executes at native speed, values are dynamically checked at typed-untyped
boundaries. The behavioral approach of Typed Racket and Gradualtalk monitors values
to ensure that they behave in accordance to their assigned types. Instead of checking
higher-order and mutable values for static type tags like concrete, wrappers ensure enduring
conformance of values to their declared type. The transient approach, specific to Reticulated
Python, lies between concrete and behavioral; it adds type casts but does so only for the top
level of data structures. Finally, Thorn and StrongScript combine the optional and concrete
approaches, differentiating between erased types and run-time-checked types.

Static type systems for object-oriented languages are designed to prevent dynamic “method
not understood” errors. For gradual type systems, however, some method not found errors

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:3

cannot be ruled out before execution. In such a gradual type system, untyped code can pass
an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a gradual
type system, therefore, depends on how type specifications are enforced. In other words,
each gradual type system may catch different “errors.” We demonstrate this with a litmus
test consisting of three simple programs capable of distinguishing the four above-mentioned
approaches. The litmus test programs are statically well-typed and “correct” in the sense
that they run to completion without error in an untyped language. However, when executed
under different gradual typing systems, they produce different errors. For intuition, consider
a call, x.m(), where x : C and C has a method m returning a D. In the concrete approach, this
call will succeed. With behavioral, the call will go through, but an error may be reported
if m returns a value of the wrong type. In transient, the call is similarly guaranteed to go
through, but might return the wrong type without reporting an error. Finally, in optional,
the call may get stuck, as x may not have a method named m; and, if it succeeds, there is no
guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual
typing for objects by translating a gradually typed
surface language to a target language called KafKa.
Our surface language is a gradually typed class-
based object-oriented language similar to Feather-
weight Java. KafKa is a statically typed class-based
object calculus with mutable state. The key differ-
ence between the two is the sound type system and
casts of KafKa. Where the surface language allows
implicit coercions, KafKa requires explicit casts to convert types. Casts come in two kinds:
structural casts check for subtyping, while behavioral casts monitor that an object behaves as
if it was of some type. Translating from surface to target language involves adding casts, the
location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.
Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [12] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee difficulties
either switching to a nominal type system or providing an additional nominal subtype cast.

All of our code and proofs are available from:

github.com/BenChung/GradualComparisonArtifact.

ECOOP 2018

github.com/BenChung/GradualComparisonArtifact

12:4 Gradual Typing for Objects

2 Background
“If you know the enemy and know yourself...”

The intellectual lineage of gradual typing can be traced back to attempts to add types to
Smalltalk and LISP. On the Smalltalk side, work on the Strongtalk optional type system [7]
led to Bracha’s notion of pluggable types [6]. In Bracha’s notion of pluggable types, types
exist solely to catch errors at compile-time, never affecting the run-time behavior of programs.
An optional type system is trace preserving: that is to say, if a term e reduces to a, then
adding type annotations to e does not prevent it from reducing to a [18]. This property is
valuable to developers as it ensures that type annotations will not introduce errors; and thus,
adding types does not increase the testing burden! Optional type systems in wide use include
Hack [25], TypeScript [3] and Dart [24].

Felleisen and his students have contributed substantially to gradual typing. The Typed
Scheme [27] design, that later became Typed Racket, is influenced by their earlier work
on higher-order contracts and semantic casts [10, 11]. Typed Racket was envisioned as a
vehicle for teaching programming, being able to explain the source of errors and avoiding
surprises for beginning users were important considerations. For this reason, a value that
flowed in a variable of type t, was required behave as if it belonged to that type throughout
its lifetime. Whenever a higher-order or mutable value crosses a boundary between typed
and untyped code, it is wrapped in a contract that monitors the value’s behavior. If the
value misbehaves, blame can be assigned to the boundary that assigned it the type that was
violated. The granularity of typing is the module, thus a module is either entirely typed or
entirely untyped. Typed Racket’s support for objects was described by Takikawa et al. [23].

Siek and Taha coined the term gradual typing in [19] as “any type system that allows
programmers to control the degree of static checking for a program by choosing to annotate
function parameters with types, or not.” They formalized this idea in the lambda calculus
augmented with references. To make the type system a gradual one, they defined the type
consistency relation t ∼ t′. If t ∼ t′, then t is consistent with t′, and can therefore be used
implicitly where a t′ instance is expected. This enables gradual typing, as ? ∼ t for every t
and vice versa, allowing untyped values to be passed where typed ones are expected. Siek
and Taha extended this idea to an object calculus [20]. In order to do so, they combined
consistency with structural subtyping, producing consistent subtyping. With consistent
subtyping, consistency can be used when checking structural subtyping, allowing typed objects
and untyped objects to be mixed. To explore the design space, Reticulated Python [28] was
given three modes: the guarded mode behaves as Typed Racket with contracts applied to
values. The transient mode performs shallow subtype checks on reads and method returns,
only validating if the value obtained has matching method types. The monotonic mode is
fundamentally different from any of the previous approaches. Monotonic cast updates the
type of values in place by replacing some of the occurrences of ? with more specific types,
and these updates propagate recursively through the heap until fix-point.

Other noteworthy systems include Gradualtalk [1], C# 4.0 [4], Thorn [5], Nom [15] and
StrongScript [18]. Gradualtalk is a variant of Smalltalk with behavioral casts and mostly
nominal type equivalence (structural equivalence can be specified on demand, but it is rarely
used). It has an optional mode and a mode in which blame can be turned off.

C# 4.0 adds the type dynamic to C# and adds dynamically resolved method invocation.
Thus C# has a dynamic sublanguage that allows developers to write unchecked code, working
alongside a sound typed sublanguage in which values are always of their declared type. The
implementation replaces ? by the type object and adds casts where needed.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:5

N
om

in
al

O
pt
io
na

l
C
on

cr
et
e

B
eh
av
io
ra
l

C
la
ss

ba
se
d

Fi
rs
t-
cl
as
s
C
la
ss

So
un

dn
es
s
cl
ai
m

U
nb

ox
ed

pr
im

.
Su

bt
yp

e
ca
st

Sh
al
lo
w

su
bt
yp

e
ca
st

B
eh
av
io
ra
l c

as
t

B
la
m
e

Pa
th
ol
og
ie
s

Dart • • • • -
Hack • • • • -

TypeScript • • -
C# • • • •2 • • • -

Thorn • • • • •2 • • -
StrongScript • • • • • •2 • • 1.1x

Nom • • • •2 • • • 1.1x
Gradualtalk •1 • • • • • 5x

Typed Racket • • • • • • • 121x
Reticulated Python

Transient • • • • 10x
Monotonic • • • • 27x

Guarded • • • • • 21x

Figure 1 Gradual type systems. (1) Opt. structural constraints. (2) Typed expressions are sound.

Thorn and StrongScript extend the C# approach with the addition of optional types
(called like types in Thorn). Thorn is implemented by translation to the JVM. StrongScript is
implemented on top of a modified version of the V8 VM. The presence of concrete types means
that the compiler can optimize code (unbox data and in-line methods) and programmers
are ensured that type errors will not occur within concretely typed code. Nom is similar to
Thorn in that it is nominal and follows the concrete approach.

Fig. 1 reviews gradual type systems for objects. All languages are class-based, except
TypeScript which has both classes and JavaScript objects. While that choice is not crucial;
classes are useful as a source of type declarations. Most languages build subtyping on explicit
subtype declarations, nominal typing, rather than on structural similarities. TypeScript uses
structural subtyping but does not implement a run-time check for it. Anecdotal evidence
suggests that TypeScript could switch to nominal subtyping with little effort, as was done for
StrongScript [18]. While nominal subtyping leads to more efficient type casts, Reticulated
Python’s subtype consistency relation is fundamentally structural; it would be nonsensical
to use it in a nominal system.

For Racket, the heavy use of first-class classes and class generation naturally leads to
structural subtyping as many of the classes being manipulated have no names and arise
during computation.

The optional approach is the default for Dart, Hack, and TypeScript. Transient Retic-
ulated Python allows any value to flow in a field, regardless of type annotations, leading
to its “open world” soundness guarantee [28]. Some languages like Dart and Gradualtalk
can operate in a checked and an uncheck mode. In Thorn, Nom, and C#, primitives are
concretely typed; they can be unboxed without tagging. The choice of casts follows from other
design decisions. The concrete approach naturally tends to use subtype tests to establish the
type of values. For nominal systems, there are highly optimized algorithms.

Shallow casts are casts that only check the presence of methods but not their signature.
They are used by Racket and Reticulated Python to ensure some basic form of type confor-

ECOOP 2018

12:6 Gradual Typing for Objects

mance. Behavioral casts are used when information, such as a type or a blame label, must
be associated with a reference or an object.

Some of the system provide soundness guarantees. In Typed Racket, Gradualtalk and
Guarded Reticulated Python, there is a guarantee that a type error that is exrcised will
be caught by a contract. In concrete approaches, any typed expression is guaranteed to
be correct, errors occur at boundary crossings. The guarantees provided by Transient and
Monotonic are somewhat harder to characterize and out of the scope of this review.

Blame assignment is a topic of investigation in its own right. Anecdotal evidence suggests
that the context provided by blame helps developers pinpoint the provenance of errors. In
the same way that a Java stack trace identifies the function that went wrong, blame identifies
where a type assertion came from. This is especially important in behavioural gradual type
systems, as type assertions become wrappers which can propagate through the heap. Blame
identifies where a failing wrapper came from, a task that would otherwise require extensive
backtracking debugging. Unlike stack traces, which have little run-time cost, blame tracking
has a cost due to its meta-data. Blame information has to be stored whenever a wrapper is
applied and is believed to cause substantial slowdowns. However, this has not been measured
in detail. With the concrete approach, blame is trivially available as evaluation stops at
the boundary that causes the failure [15]. We are primarily concerned with where the error
arises, rather than what information is reported; thus, we do not consider blame further.

The last column of Fig. 1 lists self-reported performance pathologies. These numbers
are not comparable, as they refer to different programs and different configurations of type
annotations. They are not worst case scenarios either; most languages lack a sufficient
corpus of code to conduct a thorough evaluation. Nevertheless, one can observe that for
optional types no overhead is expected, as the type annotations are erased during compilation.
Concrete types insert efficient casts and lead to code that can be optimized. The performance
of the transient semantics for Reticulated Python is a worst case scenario for concrete types –
i.e, there is a cast at almost every call. Finally, languages with behavioral casts are prone to
significant slowdowns. Compiler optimizations for reducing these overheads are an active
research topic [2, 17]. Languages such as C#, Nom, Thorn, and StrongScript are designed so
that the performance of fully typed code is better than untyped code, so that mixed code
performs well thanks to the relatively inexpensive nominal subtype tests.

In contemporary work, Greenman and Felleisen describe three approaches to migratory
typing in the context of a lambda calculus extended with pairs and primitive values [12].
Their natural embedding corresponds to the behavioral approach, the erasure embedding
is the optional approach, and the locally-defensive embeddeding is transient. They do not
consider the concrete approach – neither objects or mutable state. They give performance
results for a non-optimizing implementation of the embeddedings, and the results are as
expected: behavioral has extreme worst cases and transient significantly slows down fully-
typed programs. While they do not evalute object-oriented programs, these are unlikely to
fare better. Our work differs in that we are trying to express a translation between object
calculi using features that are readily available in most virtual machines.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:7

3 A Family of Gradually Typed Languages and their Litmus Test
“There is no perfection only life”

There is no single, common notion of what constitutes an erroneous gradually typed program
– a consequence of the varied enforcement strategies. The choice of enforcement strategy
is reflected in the semantics of the language which, in turn, implies that developers have
to understand the details of that strategy to avoid run-time errors. This also means that
it is possible to differentiate between approaches by simply observing the run-time errors
that each type system produces. We propose a litmus test consisting of three programs
whose execution depends on which gradual type system is in use. Each of these programs is
statically well-typed and runs without error when executed with a purely dynamic semantics.
However, this varies as we use different semantics for gradual typing. We start by presenting
a common surface language in which we can express our programs, and then explain why
the various approaches to gradual typing yield different run-time errors.

3.1 A Common Surface Language
To normalize our presentation, we use a single surface language for all four of the gradual
type systems under study. The surface language is a gradually typed object calculus without
inheritance, method overloading or explicit type cast operations. Fig. 2 gives its syntax and
an extract of its static semantics. The distinctive feature of the calculus is the presence of
type ? – the dynamic type. A variable of type ? can hold any value, an invocation of a
method with receiver of type ? is always statically well-typed, and an expression of type ?
can appear anywhere within a typed program.

This dynamic type lets us convert our otherwise statically typed language to a gradually
typed one. If a well-typed program does not use ?, then it will not get stuck on method
invocation. A program where all variables are annotated as ? is fully dynamic, and any
given invocation may get stuck. Gradual typing comes into play when an expression of
type ? occurs as an argument to a method that expects some other type C and conversely
when an argument of type C is passed to a method that expects ?. The static type system
of the surface language allows such implicit coercions – using the convertibility relation –
but run-time checks may be inserted to catch potential type mismatches. We formalize the
semantics of this system later; here, we appeal to the readers’ intuition.

Before presenting the litmus tests, some details about the type system of the surface
language may prove helpful. The subtyping relation is structural with the Amber rule [8] to
enable recursion. M K ` C <: D holds if class C has (at least) all the methods of class D and
the arguments and return types are related by subtyping in the usual contra- and co-variant
way; the class table K holds definitions of all classes, and M is a helper for recursion that
records the subtype relations encountered so far. One noteworthy feature of subtyping is
that the fields of objects do not play a role in deciding if classes are subtypes. Following
languages like Smalltalk, fields are encapsulated and can only be accessed from within their
defining object. Syntactically, field reads and writes are limited to the self-reference this.

The static type checking rules, Γ K s̀ e : t where Γ is a type environment and K is a
class table, are standard with two exceptions: method invocation and convertibility. Method
invocation is always allowed when the receiver e is of type ?; therefore, e.m(e′) has type ? if
the argument can have type ?. Convertibility is used when statically typed and dynamically
typed terms interact. The convertibility relation, written K s̀ t Z⇒ t′, states that type t is
convertible to type t′ in class table K. It is used both for up-casting and for conversions
of ? to non-? types. K s̀ t Z⇒ t′ holds when t <: t′, this allows up-casts. The remaining

ECOOP 2018

12:8 Gradual Typing for Objects

Syntax:

k ::= class C { fd1.. md1.. } md ::= m(x : t) : t {e} fd ::= f : t t ::= ? | C

K ::= k K | · Γ ::= x : t Γ | · M ::= C <: D M | ·

e ::= x | this | this.f | this.f = e | e.m(e) | new C(e1..)

Typing expressions:

Γ(x) = t
Γ K s̀ x : t

Γ(this) = C
f : t ∈ K(C)

Γ K s̀ this.f : t

Γ(this) = C f : t ∈ K(C)
Γ K s̀ e : t′ K s̀ t′ Z⇒ t

Γ K s̀ this.f = e : t

Γ K s̀ e : ?
Γ K s̀ e′ : t

Γ K s̀ e.m(e′) : ?

Γ K s̀ e : C Γ K s̀ e′ : t
m(t1) : t2 ∈ K(C) K s̀ t Z⇒ t1

Γ K s̀ e.m(e′) : t2

f1 : t1.. ∈ K(C)
Γ K s̀ e1 : t′

1.. K s̀ t′
1 Z⇒ t1..

Γ K s̀ new C(e1..) : C

Convertibility:
· K s̀ t <: t′

K s̀ t Z⇒ t′ K s̀ t Z⇒ ? K s̀ ? Z⇒ t

Subtyping:

M K ` ? <: ?
C <: D ∈ M

M K ` C <: D

M′ = C <: D M
md ∈ K(D) =⇒ md′ ∈ K(C) . M′ K ` md <: md′

M K ` C <: D

M K ` t′
1 <: t1 M K ` t2 <: t′

2

M K ` m(x : t1) : t2 {e} <: m(x : t′
1) : t′

2 {e′}

Figure 2 Surface language syntax and type system (extract).

two rules allow implicit conversion to and from the dynamic type. To avoid collapsing the
type hierarchy, convertibility is not transitive. It is through convertibility that our surface
language becomes gradual.

3.2 Litmus
Using three different programs, we can differentiate between four gradual type systems. The
litmus test, shown in Fig. 3, and its constituent programs are written in our surface language.
Each of these programs consists of a class table and an expression whose evaluation in the
context of the class table determines if the litmus test succeeds or fails.

The programs in the litmus test are designed to induce errors. This is done by arranging
for values to cross typed/untyped boundaries in a way that will cause some type systems to
report an error but not others. At heart, these programs can be summarized by the type
boundaries that are crossed by an object. The notation C | t denotes an object of class C
passing through a boundary that expects it to be of type t. For example, if method m expects
an argument of type t, a method call e.m(e′) would induce the boundary e′ | t. In program
L1, we have:

A | ? | I

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
n(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT & CONCLUSIONS

“There is no perfection only life.”

Gradual typing has matured beyond being an experimental language feature in the petri dish of academia.
Applications are now being written that incorporate gradual types. However the proposed language designs have
subtle semantics and di�er in their dark corners. It is the responsibility of language researchers to paint a clear
picture of each approach to gradual typing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

L1

L2 L3

Fig. 21. Gradual typing semantic litmus tests.

In this paper we have compared
the essence of four gradual type
system designs, namely Type-
script, Thorn, Typed Racket,
and Transient Python. Our for-
malization have shown that

, Vol. 1, No. 1, Article 1. Publication date: June 2017.

L1

L2 L31

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:20 Anon.

class A {

m(x:A):A {this}}

class I {

n(x:I):I {this}}

class T {

s(x:I):T {this}

t(x:*):* {this.s(x)}}

new T().t(new A())

class A {

m(x:A):A {this}}

class Q {

n(x:Q):Q {this}}

class I {

m(x:Q):I {this}}

class T {

s(x:I):T {this}

t(x:*):* {this.s(x)}}

new T().t(new A())

class C {

a(x:C):C {x}}

class D {

b(x:D):D {x}}

class E {

a(x:D):D {x}}

class F {

m(x:E):E {x}

n(x:*):* {this.m(x)}}

new F().n(new C())

.a(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 21. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers
for C and D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E,
which implies that the method m of C has type D to D, despite it actually having type C to C, even
with the possibility to call method m through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the
argument and return type of m is always a D. Therefore, if the method m is called with a C, the
program would get stuck at the cast to D. In Transient, the cast to E is a no-op, so when we call m
with C, no extra cast to D is encountered. The Transient design allows method m, which expects
an instance of class C as argument, to be called with a value of type ? at any point. However, this
forces m to check its arguments at every method invocation.

6 CONCLUSIONS

“There is no perfection only life.”

Another open question for gradual type system designers is performance of the resulting imple-
mentation. On the one hand, type annotations are a source of information about programmer intent
that could be used to generate e�cient code. On the other hand, without soundness guarantees this
information cannot be relied upon and becomes, at best, hints that can be used in heuristic-driven

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Concrete
Behavioral
Transient
Optional

Figure 3 Litmus test. Each program consists of a class table (top) and an expression (bottom).
Top left table indicates successful executions.

An instance of class A is first implicitly converted to ? and then to I; in this program classes
A and I are unrelated by subtyping. In L2, the same sequence of conversions is applied:

A | ? | I

This time A and I both have a method m, but the methods have incompatible argument
types. Lastly, in L3 we start by converting a C to ? and then to E and finally back to ?:

C | ? | E | ?

The resulting value is then used to call method m with an argument of class C. This correct
as method m in C does expect an argument of that type. If the object was an instance of E
instead, the call would not be legal because E’s method m expects a class D as argument.

Optional. An optional gradual type system simply erases all of the type annotations at
run-time; all three programs run to completion without error.

Concrete. The concrete approach ensures that a variable of some class C always refers to
an object of that class or of a subtype of it. To ensure this is the case, all implicit conversions
imply a run-time subtype check. This causes all three programs to fail. L1 and L2 fail on a
subtype test K ` A <: I. L3 fails on the subtype test K ` C <: E.

Behavioral. The behavioral approach allows conversion from ? to C if the value is compatible
to C and if, after that, it behaves as if it was an instance of C. The former is checked by a
shallow cast that only looks at method names, and the latter by a wrapper that monitors
further interactions. L1 fails at because A does not have the method n expected by I. L2,
however, executes without error because A has the method m expected by I. L3 fails, since
the instance of C has been applied a wrapper for E. When method a is called with a C, the
wrapper notices that E’s method a expects a D and that C and D are not compatible.

ECOOP 2018

12:10 Gradual Typing for Objects

Transient. The transient approach is weaker than behavioral. It retains the shallow
structural checks at casts of the behavioral approach, but does not wrap values. Transient
fails L1, for the same reason as the other two type systems, and passes L2, for the same
reason as behavioral. L3 succeeds because transient forgets that the C object was cast to E.

3.3 Discussion

These programs capture the behavior of implementations. The three have been expressed in
TypeScript (optional), StrongScript (concrete), Typed Racket (behavioral) and Reticulated
Python (transient), with the same errors.1 What the litmus test shows is that a precise
understanding of the semantics of gradually typed languages, and their run-time enforcement
machinery, is crucial for developers to know if a program is “correct.” Here, all errors are
false positives, since none of these programs performs an invalid operation. This underlines
the fact that in gradually typed language, type specifications can lead to run-time errors just
as faulty code can. Thus, type annotations must be audited and tested just like code.

These approaches induce usability trade-offs. One way to contextualize this is with the
gradual guarantee of Siek et al [21]. Informally, it states that if there exists a static type
assignment to an untyped program that allows the program to run to completion, any partial
assignment of those types will do too. The optional approach trivially fulfills this guarantee.
Transient likewise satisfies the gradual guarantee [29], as it only checks top-level structure of
values at type boundaries. Unlike optional, transient does ensure that typed calls succeed;
however, a call may produce a dynamic error if the receiver is of the wrong type (even in a
typed context), or the return is an ill-typed value. The behavioral approach also fulfills the
guarantee, as it only checks arguments and return types when wrappers are invoked. However,
typed function calls can fail if they call an untyped function that returns the wrong value.
Finally, the concrete approach ensures that every typed call is successful. However, this
comes at the expense of the gradual guarantee – partially typed classes are not compatible
with more-or-less typed ones. The guarantee is incompatible with subtyping. Suppose a
program were to rely on the judgment {m(C) : D} <: {m(C) : D}. Relaxing the argument
type to a dynamic type, {m(?) : D} <: {m(C) : D}, violates subtyping. To overcome this,
Reticulated Python augments subtyping with the aforementioned consistency relation. This
increases the number of programs accepted by the static type system. However, it is not used
by the run-time semantics and is fundamentally incompatible with the concrete approach
(because any use of consistent subtyping will fail). We omit consistent subtyping.

As an alternative consider the approaches taken by Thorn or StrongScript. They have
three kinds of types: ? (dynamic), C (concrete), and like C (optional), combining the concrete
and optional approach into the same language. This design allows for a different kind of
migration; once a program is fully annotated with optional types, they all can be converted
to concrete types without introducing any run-time errors [18]. We do not model this
combination directly, as the underlying details are no different from the concrete approach.

The motivation for making fields private is to simplify the system. With private fields,
errors are limited to method invocation. Field accesses can be trivially checked; as they are
always accessing this. Moreover, interposing on method invocation can easily be achieved by
wrappers, whereas interposing on field access would require modifying the code of clients.
This would make the formal development more cumbersome without adding insight.

1 github.com/BenChung/GradualComparisonArtifact/examples

github.com/BenChung/GradualComparisonArtifact/examples

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:11

4 KafKa: A Core Calculus
“Aux chenilles du monde entier et aux papillons qu’elles renferment”

Even without gradual typing, comparing languages is difficult. Small differences in syntax
and features can make even the most similar languages appear different. As a result, the
nuances of gradual type systems are often hidden amongst irrelevant details. To enable direct
comparison, we propose to translate gradually typed languages down to a common calculus
designed to highlight the distinctions between designs. The target for this translation is our
core language, KafKa. KafKa is a statically typed language similar to the surface language
but with several features added to enable its use as a common target language.

These additions make an explicit distinction between static and dynamic operations and
replace implicit conversions with explicit casts. KafKa’s first additions consist of two casts
which are used at boundaries between typed and untyped code. The structural subtype
cast, written 〈t〉 e, ensures that expression e evaluates to a subtype of t. The behavioral cast,
written J tI e, creates a wrapper around the value of e that monitors e to ensure that it
behaves as if it was of type t. Additionally, a syntactic distinction is made between static
method invocation, written e.mt�t′(e′), dynamic method invocation, e@m?�?(e′). Static
invocations does not get stuck, whereas dynamic invocations can. This makes explicit which
function calls can fail.

KafKa was designed to align with common statically-typed class-based object-oriented
compilation targets like .NET or the JVM. It maps to the intermediate language supported
by these platforms. KafKa also requires the ability to generate new classes at run-time, a
feature supported by these environments but typically not present in class-based calculi.

4.1 Syntax and Semantics
We had two requirements when designing KafKa: first, to be expressive enough to capture
the dynamic semantics implied by each gradual type system; second, to have a type system
that can express when code is known to be error free. KafKa’s syntax and semantics, loosely
inspired by Featherweight Java [13], are shown in Fig. 4. At the top level, classes are notated
as class C { fd1.. md1.. }; methods, ranged over by md, are denoted as m(x : t) : t {e}; and
fields f : t. Expressions consist of:

variables, x;
the self-reference this; and wrapper target, that;
field accesses, this.f, and field writes, this.f = e;
object creation, new C(e1..);
static and dynamic method invocations;
subtype and behavioral casts;
and heap addresses.

The static semantics holds only a few surprises; key typing rules appear in Fig. 4. The
subtyping relation is inherited from the surface language. The program typing relation (not
shown here), e K X, indicates that expression e is well-formed with respect to class table
K. The expression typing judgment Γ §K ` e : t, indicates that against Γ with heap typing
§and class table K, e has type t. Unlike the surface language, KafKa does not rely on a
convertibility relation from ? to C and back; instead, explicit casts are required.

Evaluation is mostly standard with an evaluation context consisting of a class table K,
the expression being evaluated e, and a heap σ mapping from addresses a to objects, denoted
C{a . . .}. Due to the need for dynamic code generation, the class table is part of the state.

ECOOP 2018

12:12 Gradual Typing for Objects

Syntax:

e ::= x | this | that |
this.f | this.f = e | new C(e1..) |
e.mt�t(e) | e@m?�?(e) |
〈t〉 e | J tI e |
a | a.f | a.f = e

k ::= class C { fd1.. md1.. }
md ::= m(x : t) : t {e}
fd ::= f : t
t ::= ? | C
K ::= k K | ·
Σ ::= a : t Σ | ·

Static semantics:

Γ Σ K ` e : C m(t) : t′ ∈ K(C) Γ Σ K ` e′ : t
Γ Σ K ` e.mt�t′ (e′) : t′

Γ Σ K ` e : ? Γ Σ K ` e′ : ?
Γ Σ K ` e@m?�?(e′) : ?

Γ Σ K ` e : t′

Γ Σ K ` 〈t〉 e : t
Γ Σ K ` e : t′

Γ Σ K `J tI e : t
Σ(a) = C

Γ Σ K ` a : C Γ Σ K ` a : ?

Execution contexts:

E ::= a.f = E | E.mt�t(e) | a.mt�t(E) | E@m?�?(e) |
a@m?�?(E) | 〈t〉E | J tI E | new C(a1..E e1..) | �

Dynamic semantics:

K new C(a1..) σ → K a′ σ′ where a′ fresh σ′= σ[a′ 7→ C{a1..}]
K a.fi σ → K ai σ where σ(a) = C{a1, . . . ai, an . . .}
K a.fi = a′ σ → K a′ σ′ where σ(a) = C{a1, . . . ai, an . . .}

σ′= σ[a 7→ C{a1, . . . a′, an . . .}]
K a.mt�t′ (a′) σ → K e′ σ where e′ = [a/this a′/x]e

m(x : t1) : t2 {e} ∈ K(C)
σ(a) = C{a1..} ∅ K ` t <: t1

∅ K ` t2 <: t′

K a@m?�?(a′) σ → K e′ σ where e′ = [a/this a′/x]e
m(x : ?) : ? {e} ∈ K(C)
σ(a) = C{a1..}

K 〈?〉 a σ → K a σ

K 〈D〉 a σ → K a σ where ∅ K ` C <: D σ(a) = C{a1..}
K J tI a σ → K′ a′ σ′ where K′ a′ σ′ = bcast(a, t, σ,K)
K E[e] σ → K′ E[e′]σ′ where K e σ → K′ e′ σ′

Figure 4 KafKa dynamic semantics and static semantics (extract).

4.1.1 Method Invocation

KafKa has two invocation forms, the dynamic e@m?�?(e′) and the static e.mt�t′(e′), both
denoting a call to method m with argument e′. There are several design issues worth
discussing. First, as our calculus is a translation target, it is acceptable to require some
explicit preparation for objects to be used in a dynamic context. A dynamic call is only
successful if the receiver has a method of the expected name and with argument and return
types of ?. This is a design choice of KafKa, even dynamic invocation has to be well-typed

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:13

(even if this typing is trivial). Secondly, it is possible for a static invocation to call an untyped
method (of type ? to ?). Consider the following class definition

class C {
m(x : Int) : Int { x + 2 }
m (x: ?) : ? { 〈?〉 this.mInt�Int(〈Int〉 x) }

}

assume that class table K holds a definition for Int, and that we have integer constants and
addition. The class demonstrates several features of KafKa. Its class well-formedness rules
(not shown here) allow a limited form of method overloading. A class may have at most two
occurrences of any method m: one “untyped” with ? as argument and return type; and one,
which we call “typed”, where either its argument or return type differ from ?. The static
type system enforces a single means of invoking a typed method m:

new C().mInt�Int(2)

Here, the receiver is obviously of type C and the argument is Int; thus, the call is statically
well-typed. The expression will therefore evaluate the body of m. For an untyped method,
there are two invocation modes:

new C()@m?�?(2)

The call executes correctly here, as C has an untyped m. However, in the general case, there
is no guarantee that the receiver of an untyped invocation has the requested method; and
therefore, a dynamic invocation can get stuck. The receiver of a dynamic invocation has type
?. When the receiver type is known to be some C and that class has the requested method,
then the static invocation can be used:

new C().m?�?(2)

The invocation will succeed. All nuances of invocation will come in handy when translating
the surface language to KafKa.

4.1.2 Run-time Casts
KafKa has two cast operations: the structural subtype cast 〈t〉 e and the behavioral cast
J tI e, both indicating the desire for the result of evaluating e to be of type t. Where the
casts differ is what is meant by “has type t”. The subtype cast checks that the result of
evaluating e is an object whose class is compatible with t. If t is a class, then it will check for
a subtyping relation; otherwise, if t = ?, the cast will succeeds. As every value in the heap is
tagged by its type constructor, it is always possible to perform this check. The behavioral
cast is more complex; we will describe it in the remainder of this section.

The objective of the behavioral cast is to ensure that the wrapped object behaves as the
target type dictates. When given the address a of some object, this cast creates a wrapper
object, say a′, that enforces the invariant that a behaves as a value of type t. Function
bcast(a, t, σ,K) = K′ a′ σ′ specifies its semantics, shown in Fig. 5. There are two cases to
consider: either the target type is a class C′, or it is ?.

If the target type is C′, then bcast(a,C′, σ,K) will return an updated class table K′,
a reference to the wrapped object a′, and an updated heap σ′. As long as a has every
method name specified by C′, the cast itself will succeed. If a is missing a method, it is

ECOOP 2018

12:14 Gradual Typing for Objects

Behavioral cast: bcast(a, t, σ,K) = K′ a′ σ′

a Reference to wrap a′ Wrapped reference
t Target type to enforce K′ Class table with wrapper
σ Original heap σ′ New heap
K Original class table

bcast(a,C′, σ,K) = K′ a′ σ′ where


σ(a) = C{a1..} D, a′ fresh σ′ = σ[a′ 7→ D{a}]
md1.. ∈ K(C) names(md′

1..) ⊆ names(md1..)
md′

1.. ∈ K(C′) nodups(md1..) nodups(md′
1..)

K′ = K W(C,md1..,md′
1..,D)

bcast(a, ?, σ,K) = K′ a′ σ′ where


σ(a) = C{a1..} md1.. ∈ K(C) D, a′ fresh
nodups(md1..) K′ = K W? (C,md1..,D)
σ′ = σ[a′ 7→ D{a}]

W(C,md1..,md′
1..,D) = class D { that : C md′′

1 .. }
where m(x : t1) : t2 {e} ∈ md1..

md′′
1 = m(x : t′

1) : t′
2 { J t′

2I this.that.mt1�t2 (J t1I x)} ..
if m(x : t′

1) : t′
2 {e′} ∈ md′

1..

m(x : t1) : t2 { this.that.mt1�t2 (x)} ..
otherwise

W? (C,md1..,D) = class D { that : C md′
1.. }

where md′
1 = m(x : ?) : ? { J?I this.that.mt�t′ (J tI x)} ..

if m(x : t) : t′ {e} ∈ md1..

Figure 5 Behavioral cast semantics.

impossible for a to implement C′ correctly, and early failure is indicated. Otherwise, the
metafunction continues to generate a type wrapper. Class generation itself is delegated to
the W metafunction. A W invocation, W(C,md1..,md′

1..,D), takes a class C, a fresh name D,
and two method lists md1.. and md′

1, respectively the method of C and the methods of the
type to enforce. The class generated by W will have adapter methods for each method m
occurring in both md1.. and md′

1... Type mismatches between the wrapped object and the
wrapping type are resolved with more behavioral casts. For methods that do not need to be
adapted (methods only in md1..), a simple pass-through method is generated. This method
simply calls the wrapped object; itself referred to by the distinguished variable that.

If the target type is ?, the wrapper class is simpler. It only needs to check that method
arguments match the types expected by the wrapped object. This is done by another
behavioral cast. Return values are cast to ?.

For example, consider the following program which has two classes C and D. Even though
C and D both have method a, they are not subtypes because the arguments to their m
implementations are not related.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:15

(JCI (JDI new C())).b(2) where K = class C {
m(x : ?) : ? { x }
n(x : ?) : ? { x }

}
class D { m(x : Int) : Int { x } }

The program starts with a C, casts it to D, and then back to C. The reason we generate pass-
through methods (the wrapper that enforces type D has a method n) is that without them,
the method n would be “lost”. Without the pass-through method, it would be impossible to
cast back to C, as the wrapper would only have an implementation for m. Wrappers with
this semantics are referred to as opaque, as it is not possible to see methods of the underlying
object though them. In contrast, KafKa uses transparent wrappers. To illustrate what this
looks like, the following class E is generated by the cast from C to D:

class E {
that : C
m(x : Int) : Int { J IntI that.m?�?(J?I x) }
n(x : ?) : ? { that.n?�?(x) }

}

By keeping n present, it is possible to return an instance of E to C again. If we were to
remove n, then E would no longer be convertible back to C again.

4.2 Type soundness
The KafKa type soundness theorem ensures that a well-formed program can only get stuck
at a dynamic invocation, a subtype cast, or a behavioral cast, and only there when justified.

I Theorem 1 (KafKa type soundness). For every well-formed state K e σ X and well-typed
expression ∅Σ K ` e : t, where heap typing Σ is obtained by mapping the class of each object
to the corresponding address, one of the following holds:

There exists some reference a such that e = a.
K e σ → K′ e′ σ′, where K′ e′ σ′ X, ∅Σ′ K′ ` e′ : t, σ′has all of the values of σ, Σ′ has
all of the types of σ′, and K′has all of the classes of K.
e = E[a@m?�?(a′)] and a refers to an object without a method m.
e = E[〈C〉 a], and a refers to an object whose class is not a subtype of C.
e = E[JCI a], and C contains a method that a does not.

The proof is mostly straightforward, with one unusual case, centered around the bcast
metafunction. When the bcast metafunction is used to generate a wrapper class, which
is then instantiated, producing a new class table and heap, we must then show that the
new class table is well formed, that the new heap is also well formed, and that the new
wrapper is a subtype of the given type C. Proving these properties is relatively easy. Class
table well-formedness follows by construction of the wrapper class and by well-formedness
of the old class table. Heap well-formedness follows by well-formedness of the class table,
construction of the new heap, and well-formedness of the old heap. Proving that the type
of the wrapper is a subtype of the required type proceeds by structural induction over the
required type. The proof of soundness has been formalized in Coq and is available in the
supplementary material. The proof relies on two axioms dealing with recursive structural
subtyping. We did not prove these as they have been shown in prior work [14].

ECOOP 2018

12:16 Gradual Typing for Objects

4.3 Discussion
The design of KafKa’s two invocation forms bears discussion. In some previous works,
dynamic invocation has been implemented by a combination of a cast and a statically typed
call. In our case, following this approach would require creating a type for each invocation
(as was done in [30]). Instead, providing a dynamic invocation form seemed more natural.
The use of explicitly typed invocation is a result of our desire to be able to rule out more
errors statically. Whenever a translation can generate a static invocation, the soundness
result ensure that the call will succeed. But, some methods need to be called from both
a typed and untyped context, to achieve this we generate two versions of the method and
leverage the difference between typed and untyped calls to express invovations occuring in
each context.

One of our requirements for KafKa was that it support transparent wrappers as these are
needed for the behavioral approach. The combination of structural subtyping and dynamic
class generation allows to generate subtypes on the fly. These subtypes have all the methods
of the target type plus some new ones. The choice of having fields be private means that the
wrappers do not have to special case field access. If fields were accessible from outside the
object, some more complex rewritting would have to be used.

KafKa was intended to match the intermediate languages of commercial VMs. To validate
this, we implemented a compiler from KafKa to C#.2 The only challenge was due to subtyping.
KafKa uses structural typing, while C# is nominal, and KafKa allows methods in subtypes to
be contra-variant in argument and co-variant in return type, while C# requires invariance.

Implementing structural subtyping on top of a nominally typed language is tricky.
Structural types create implicit subtyping relationships, which the nominal type system
expects to be explicit. Prior work used reflection and complex run-time code generation [9],
but this is needlessly complex for a proof of concept. Instead, we reify the implicit relationships
introduced by structural subtyping into explicit nominal relationships by generating interfaces.
Given two classes C and D, where K ` C <: D holds, we generate two interfaces CI and DI,
where CI is declared to extend DI. As a result, if two types are subtypes, their corresponding
C# interfaces will be as well. The next problem is that KafKa allows subtype methods to be
contra-variant in argument and co-variant in return types. As a result, a single method in CI
may not be sufficient to implement DI. We solve this by having every class’s C# equivalent
implement every interface explicitly, with each explicit implementation delegating to the real,
most general, implementation.

Despite these issues, we were able to accurately translate KafKa types. We translate static
and dynamic invocations into corresponding C# invocations since C# also has a dynamic
type. The underlying run time can then use the translated KafKa types to perform method
dispatch, while inserting dynamic checks wherever the KafKa code calls for an untyped
invocation. This prototype shows that KafKa primitives are close to those of intermediate
languages. As a result, the translation of gradual type systems to KafKa provides insight as
to how they might be implemented.

2 github.com/BenChung/GradualComparisonArtifact/netImpl

github.com/BenChung/GradualComparisonArtifact/netImpl

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:17

5 Translating Gradual Type Systems
“Was ist mit mir geschehen? dachte er. Es war kein Traum”

Equipped with the source and target languages, we can describe the gradual-to-statically
typed translation from source to KafKa. Each semantics is translated through a function
mapping well-typed surface programs into well-typed KafKa terms. The translation explicitly
determines which type casts need to be inserted and the invocation forms to use. A type-driven
translation will insert casts where the surface language used consistency.

5.1 Class Translation
The translations for surface level classes are shown in Fig. 6. Each class in the surface
language translates to a homonymous KafKa class, retaining type names through translation.
The grey background denotes code generated in the translation. The notation e; e′ denotes
sequencing.

Optional. The optional approach provides no correctness guarantees. Retaining the surface
type annotations through translation would not preserve this semantics, so we erase them.
The resulting class has all fields, all method arguments, and all return values typed as ?.

Transient. In the transient approach, ensure that for any method call, the receiver does
have a method with the corresponding name. To encode this within the KafKa type system

Optional:

OJclass C { fd1.. md1.. }K = class C { fd′
1.. md′

1.. }
where fd′

1 = f : ? .. fd1 = f : t..
md′

1 = m(x : ?) : ? {e′} ..
md1 = m(x : t1) : t2 {e} e′ = OJeK

Transient:

T Jclass C { fd1.. md1.. }K = class C { fd′
1.. md′

1.. }
where fd′

1 = f : ? .. fd1 = f : t..
md′

1 = m(x : ?) : ? {〈t〉 x ; e′
1} ..

md1 = m(x : t) : t′ {e}.. e′
1 = T LeM?

x:t this:C ..
Behavioral:

BJclass C { fd1.. md1.. }K = class C { fd1.. md′
1.. }

where md′
1 = m(x : t) : t′ {e′

1} ..
md1 = m(x : t) : t′ {e1} .. e′

1 = BJe1Kx:t this:C

Concrete:

CJclass C { fd1.. md1.. }K = class C { fd1.. md′
1..md′′

1 .. }

where md′
1 = m(x : t1) : t2 {e′} ..

md1 = m(x : t1) : t2 {e}.. e′ = CLeMt2
this:C x:t1

..
md′′

1 = m(x : ?) : ? {〈?〉 this.mt1�t2 (〈t1〉 x)}
if t1 6= ?

empty otherwise ..

Figure 6 Translations for classes.

ECOOP 2018

12:18 Gradual Typing for Objects

requires replacing all of the argument and return types with ?. This translation allows
functions to be called under any type and to return values of any type. Casts to the erased
types are then effectively shallow structural checks only. As there is no guarantee that fields
contain values of their type, the translation sets their type to ?.

Behavioral. The behavioral approach guarantees soundness by wrapping values that cross
type-untyped boundaries. Methods are preserved by the translation but bodies are translated.

Concrete. The concrete approach ensures that variables of non-? types refer to subtypes
of the given type. Each method appearing in the original class is retained as such with its
body translated. Moreover, all typed methods could be called from an untyped context,
so untyped variants are generated that guard the typed functions. These variants perform
subtype casts on their arguments to ensure that they were given the right types, then call
the guarded typed function.

5.2 Expression Translation
To accommodate differences between the gradual typing semantics, we use two different
expression translation schemes. The first is a type-agnostic one, used for the optional
approach. OJeK denotes optional translation, where e is the target expression, and the result
is a KafKa term. We use this form to simplify the optional translation, as it is ambivalent
about the types of the expressions it is translating; the optional semantics simply eliminates
all of them.

The second translation form is type-aware, used for the three other approaches. The
type-aware translation has two forms, SJeKΓ and SLeMt

Γ, inspired by work on bidirectional
type-checking [16]. The first form, SJeKΓ, is analogous to the synthetic case in bidirectional
type-checking. It is used for expressions without any specific required type. The second form,
SLeMt

Γ, is used when e must have some type t. Analogous to the analytic case of bidirectional
type-checking, this form applies when some enclosing expression has an expectation of the
type of e. For example, it is used in translation of method arguments, which must conform
to the types of the arguments to the method. We refer to this as assertive translation. These
two forms allow us to identify where consistency was needed to conclude the surface level
typing judgment.

Transient:

T LeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = T JeKΓ

T LeMt
Γ = 〈t〉 e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = T JeKΓ

Behavioral:

BLeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = BJeKΓ

BLeMt
Γ = J tI e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = BJeKΓ

Concrete:

CLeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = CJeKΓ

CLeMt
Γ = 〈t〉 e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = CJeKΓ

Figure 7 Assertive translation.

The assertive translation of Fig. 7 is responsible for producing well-typed terms by adding
casts into expressions where static types differ. The rules closely track the convertibility

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:19

relation of the surface language. Every type-driven translation has two cases. The first
case is used when the required type happens to be a supertype of the expression’s actual
type, in which cast upcasting can happen implicitly and no further action is required. The
second case handles typed-untyped boundaries, conversions to or from ?. The concrete and
transient approaches both use the subtype cast operator to protect these boundaries, though
the effective semantics are different; concrete retains the types that transient erases, so
subtype casts in transient check structural compatibility (e.g. are all the needed methods
present) alone whereas concrete subtype casts check the entire object’s types. The behavioral
approach instead inserts behavioral casts at boundaries.

The translation of field access appears in Fig. 8. The optional translation only inserts
a cast to ? in front of uses this as a technicality required for statically typing terms. The
transient translation casts variables and fields to their statically expected type, as their
values may be of any type. In transient, however, subtype casts only check the structure of
the types. The behavioral translation and the concrete translation leave both types of access
intact.

Optional:

OJxK = x
OJthisK = 〈?〉 this
OJthis.fK = this.f

Transient:

T JxKΓ = 〈t〉 x where K,Γ ` x : t
T JthisKΓ = this
T Jthis.fKΓ = 〈t〉 this.f where K,Γ ` this : C f : t ∈ K(C)

Behavioral:

BJxKΓ = x
BJthisKΓ = this
BJthis.fKΓ = this.f

Concrete:

CJxKΓ = x
CJthisKΓ = this
CJthis.fKΓ = this.f

Figure 8 Translations variables and field access.

The translation for assignment is shown in Fig. 9. All the approaches translate the value
only differing in the expected type. Behavioral and concrete require that the result has
the statically known type, transient expects ?, and the optional semantics imposes no type
requirement whatsoever.

Optional:

OJthis.f = eK = this.f = e′ where e′ =OJeK

Transient:

T Jthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = T LeM?
Γ

Behavioral:

BJthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = BLeMt
Γ

Concrete:

CJthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = CLeMt
Γ

Figure 9 Translations for assignment.

ECOOP 2018

12:20 Gradual Typing for Objects

The translation for object creation, shown in Fig. 10, follows the same reasoning. It
inserts casts for each argument to be the required type according to class translation.

The translations for invocation are shown in Fig. 11. The optional approach translates
all invocations to dynamic invocation, as it cannot provide any static guarantee. In the
concrete and behavioral approaches, since the static types are retained, arguments must be
asserted to have the statically known type. In the transient semantics, the argument type is
ignored, so the argument to a statically typed method call is only required to be of type ?,
but the return type is checked. In all of the systems, if the type of the receiver is ?, dynamic
invocation is used.

Optional:

OJnew C(e1..)K = 〈?〉new C(e′
1..) where e′

1 = OJe1K ..

Transient:

T Jnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = T Le1M?
Γ ..

Behavioral:

BJnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = BLe1Mt1
Γ ..

Concrete:

CJnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = CLe1Mt1
Γ ..

Figure 10 Translations for object creation.

Optional:

OJe1.m(e2)K = e′
1@m?�?(e′

2) where e′
1 = OJe1K e′

2 = OJe2K

Transient:

T Je1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = T Je1KΓ e′

2 = T Le2M?
Γ

T Je1.m(e2)KΓ = 〈D2〉 e′
1.m?�?(e′

2) where K,Γ ` e1 : C e′
1 = T Je1KΓ e′

2 = T Le2M?
Γ

m(D1) : D2 ∈ K(C)

Behavioral:

BJe1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = BJe1KΓ e′

2 = BLe2M?
Γ

BJe1.m(e2)KΓ = e′
1.mD1�D2 (e′

2) where K,Γ ` e1 : C e′
1 = BJe1KΓ e′

2 = BLe2MD1
Γ

m(D1) : D2 ∈ K(C)

Concrete:

CJe1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = CJe1KΓ e′

2 = CLe2M?
Γ

CJe1.m(e2)KΓ = e′
1.mD1�D2 (e′

2) where K,Γ ` e1 : C e′
1 = CJe1KΓ e′

2 = CLe2MD1
Γ

m(D1) : D2 ∈ K(C)

Figure 11 Translations for function invocation.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:21

5.3 Example

We illustrate the translation with the behavior of litmus program L3. The operational
principle of L3 is that it creates a new object (an instance of C), then uses an untyped
intermediate to represent it as type E. Type E ascribes the wrong type for argument x,
substituting D for the correct type C.

Source:

class F { m(x : E) : E {x} n(x : ?) : ? {this.m(x)} }

Optional:

class F { m(x : ?) : ? {x} n(x : ?) : ? {(〈?〉 this)@m?�?(x)} }

Transient:

class F { m(x : ?) : ? {〈E〉 x; 〈?〉 x} n(x : ?) : ? {〈?〉 x; 〈?〉 〈E〉 this.m?�?(〈?〉 〈?〉 x)} }

Behavioral:

class F { m(x : E) : E {x} n(x : ?) : ? {J?I this.mE�E(JEI x)} }

Concrete:

class F { m(x : E) : E {x} n(x : ?) : ? {〈?〉 this.mE�E(〈E〉 x)} }

Figure 12 Class translation for litmus test L3.

Two of the gradual type systems notice this invalid type. Concrete errors on L3 because
E is not a subtype of C. With behavioral, the unused type ascription is saved as a wrapper
and is enforced causing a run-time error.

While this reasoning provides an intuition, it provides few detail for which we turn to our
formalism. We present the translation from the top, starting with classes in Fig. 12. The
optional approach does no checking whatsoever, and simply erases types. Transient also
erases types, but adds argument casts on method entry. In the case of m, argument x is
checked to be of type E, as the translation of type E does not include types no type error
will be reported. Behavioral retains typed methods but adds behavioral casts on untyped
methods. The concrete semantics retains typed methods, and adds a subtype cast when a
variable of type ? is passed to a method that expects and E.

Fig. 13 presents the translation of class E. For the transient semantics, when x is cast to
E, all of the types on E are erased. Casting to E is tantamount to asking for the existence
of the method m. In contrast, the concrete semantics retains the types of m. A cast to E
is equivalent to checking if a method m that takes and returns an E exists. This comes at
the cost of the ability to migrate between untyped and typed code. Suppose that both the
optional and concrete versions of E existed, under a different name F. In that program, only
the concrete version of E could be used with the concrete version of F. Despite implementing
the same behavior, Behavioral uses the same representation for E as concrete. The behavioral
cast allows to use any value that behaves like an E.

To examine the operation of the behavioral cast in more detail, Fig. 14 depicts the
wrapper classes generated at the cast from C to ? and from it to E. Class C1 takes an instance
of C and makes it safe against use as ?. In behavioral, no typed invocations can be made on

ECOOP 2018

12:22 Gradual Typing for Objects

Source:

class E { m(x : D) : D {x} }

Optional:

class E { m(x : ?) : ? {x} }

Transient:

class E { m(x : ?) : ? {〈E〉 x; 〈?〉 x} }

Behavioral:

class E { m(x : E) : E {x} }

Concrete:

class E { m(x : E) : E {x} }

Figure 13 Translation of E in litmus test L3.

class C { a(x : C) : C {x} } class E { a(x : D) : D {x} }

class C1 { that : C a(x : ?) : ? {J?I this.that.aC�C(JCI x)} }
class C2 { that : C1 a(x : D) : D {JDI this.that.a?�?(J?I x)} }

Figure 14 Behavioral wrappers.

a value that was cast to ? (and not cast to some type somewhere); only untyped invocations
are allowed. As a result, the wrapper need only generate an untyped version of C’s method
a, which calls the underlying C instance’s a (adding suitable casts). The second wrapper
class C2 takes the C1 wrapper and casts it back to E. This wrapper takes the untyped
implementation of a and wraps it again, calling it with an argument cast to ? and casting
the return to D.

5.4 Discussion
These translations explicit the enforcement machinery of each of the four approaches. Pro-
grams can get stuck at dynamic invocation and casts. Inspecting where these are inserted
gives a precise account of what constitutes an error in each gradual type system.

Our account of the behavioral approach matches its implementation in Typed Racket.
However, one could imagine a slightly less restrictive implementation, one which does not
have a check for method names at wrapper creation. That check is pragmatic but perhaps
too strict – it will rule out programs that may be fine just because a method is missing. One
could have a wrapper that simply reports an error if a missing method is called.

Performance is a perennial worry for implementers of gradual type systems. It is difficult to
guess how a highly optimizing language implementation will perform, as these implementations
are likely to optimize away the majority of the casts and dynamic dispatches. Consider the
progress in the performance of Typed Racket reported in the literature [22, 2]. What we
can tell by looking at the translations is that with optional there is no obvious benefit or
cost to having type annotations. Transient has checks on reads, which are common, and
typed function calls. Furthermore, those checks are needed even if the entire program is
typed. Both concrete and behavioral can benefit from type information in typed code. The
difference is that the cost of boundary crossing are low in the concrete approach, as it uses
a subtype check whereas behavioral requires allocation of a wrapper. Wrappers may also
complicate the task of devirtualization and unboxing.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:23

6 Conclusion

This paper introduced KafKa, a framework for comparing the design of gradual type systems
for object-oriented languages. Our approach is to provide translations with different gradual
semantics from a common surface language into KafKa. These translations highlight the
different run-time enforcement strategies deployed by the languages under study. The differ-
ences between gradual type systems are highlighted explicitly by the observable differences of
their behavior in our litmus tests, demonstrating how there is no consensus on the meaning
of error. These litmus tests motivated the need to have a common framework to explore the
design space.

KafKa demonstrates that to express the different gradual approaches, one needs a calculus
with two casts (structural and behavioral), two invocation forms (dynamic and static), the
ability to extend the class table at run-time, and wrappers that expose their underlying
unwrapped methods. We provide a mechanized proof of soundness for KafKa that includes run-
time class generation. We also demonstrate that KafKa can be straightforwardly implemented
on top of a stock virtual machine.

A open question for gradual type system designers is performance of the resulting
implementation. Performance remains a major obstacle to adoption of approaches that
attempt to provide soundness guarantees. Under the optional approach, types are removed
by the translation; as a result, performance will be identical to that of untyped code. The
transient approach checks types at uses, so the act of adding types to a program introduces
more casts and may slow the program down (even in fully typed code). In contrast, the
behavioral approach avoids casts in typed code. The price it pays for this soundness, however,
is that heavyweight wrappers inserted at typed-untyped boundaries. Lastly, the concrete
semantics is also sound and has low overheads, but comes at a cost in expressiveness and
ability to migrate from untyped to typed.

Going forward, there are several issues we wish to investigate. We do not envision
that supporting nominal subtyping within KafKa will pose problems, it would only take
adding a nominal cast and changing the definition of classes. Then nominal and structural
could coexist. A more challenging question is how to handle the intricate semantics of
Monotonic Reticulated Python. For these we would need a somewhat more powerful cast
operation. Rather than building each new cast into the calculus itself, it would be interesting
to axiomatize the correctness requirements for a cast and let users define their own cast
semantics. The goal would be to have a collection of user defined pluggable casts within a
single framework.

References

1 Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. Gradual
typing for Smalltalk. Science of Computer Programming, 96, 2014. doi:10.1016/j.scico.
2013.06.006.

2 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt.
Sound gradual typing: Only mostly dead. Proc. ACM Program. Lang., 1(OOPSLA), 2017.
doi:10.1145/3133878.

3 Gavin Bierman, Martin Abadi, and Mads Torgersen. Understanding TypeScript. In
European Conference on Object-Oriented Programming (ECOOP), 2014. doi:10.1007/
978-3-662-44202-9_11.

ECOOP 2018

http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1145/3133878
http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1007/978-3-662-44202-9_11

12:24 Gradual Typing for Objects

4 Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to C#. In
European Conference on Object-Oriented Programming (ECOOP), 2010. doi:10.1007/
978-3-642-14107-2_5.

5 Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strnisa,
Jan Vitek, and Tobias Wrigstad. Thorn: Robust, concurrent, extensible scripting on the
JVM. In Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2009. doi:10.1145/1639950.1640016.

6 Gilad Bracha. Pluggable type systems. In OOPSLA 2004 Workshop on Revival of Dynamic
Languages, 2004. doi:10.1145/1167473.1167479.

7 Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA), 1993. doi:10.1145/165854.165893.

8 Luca Cardelli. Amber. In LITP Spring School on Theoretical Computer Science, pages
21–47. Springer, 1985.

9 Gilles Dubochet and Martin Odersky. Compiling structural types on the JVM: A compar-
ison of reflective and generative techniques from Scala’s perspective. In Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Program-
ming Systems (ICOOLPS), 2009. doi:10.1145/1565824.1565829.

10 Robert Findler and Matthias Felleisen. Contracts for higher-order functions. In Proceedings
of the ACM SIGPLAN International Conference on Functional Programming, 2002. doi:
10.1145/581478.581484.

11 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Semantic casts: Contracts
and structural subtyping in a nominal world. In European Conference on Object-Oriented
Programming (ECOOP), 2004. doi:https://doi.org/10.1007/978-3-540-24851-4_17.

12 Ben Greenman and Matthias Felleisen. A spectrum of soundness and performance. Proc.
ACM PL (ICFP), to appear, 2018.

13 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3), 2001. doi:
10.1145/503502.503505.

14 Timothy Jones and David J. Pearce. A mechanical soundness proof for subtyping over
recursive types. In Workshop on Formal Techniques for Java-like Programs (FTfJP), 2016.
doi:10.1145/2955811.2955812.

15 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well. Proc.
ACM Program. Lang., 1(OOPSLA), 2017. doi:10.1145/3133880.

16 Benjamin C. Pierce and David N. Turner. Local type inference. In Symposium on Principles
of Programming Languages (POPL), 1998. doi:10.1145/345099.345100.

17 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM already knew that: Lever-
aging compile-time knowledge to optimize gradual typing. Proc. ACM Program. Lang.,
1(OOPSLA), 2017. doi:10.1145/3133879.

18 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete types for TypeScript.
In European Conference on Object-Oriented Programming (ECOOP), 2015. doi:10.4230/
LIPIcs.ECOOP.2015.76.

19 Jeremy Siek. Gradual typing for functional languages. In Scheme and Functional Pro-
gramming Workshop, 2006. URL: http://ecee.colorado.edu/~siek/pubs/pubs/2006/
siek06_gradual.pdf.

20 Jeremy Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming (ECOOP), 2007. doi:10.1007/978-3-540-73589-2_2.

21 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In Summit on Advances in Programming Languages (SNAPL),
2015. doi:10.4230/LIPIcs.SNAPL.2015.274.

http://dx.doi.org/10.1007/978-3-642-14107-2_5
http://dx.doi.org/10.1007/978-3-642-14107-2_5
http://dx.doi.org/10.1145/1639950.1640016
http://dx.doi.org/10.1145/1167473.1167479
http://dx.doi.org/10.1145/165854.165893
http://dx.doi.org/10.1145/1565824.1565829
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/https://doi.org/10.1007/978-3-540-24851-4_17
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/2955811.2955812
http://dx.doi.org/10.1145/3133880
http://dx.doi.org/10.1145/345099.345100
http://dx.doi.org/10.1145/3133879
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:25

22 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Symposium on Principles of Programming
Languages (POPL), 2016. doi:10.1145/2837614.2837630.

23 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA), 2012. doi:10.1145/
2398857.2384674.

24 The Dart Team. Dart programming language specification, 2016. URL: http://dartlang.
org.

25 The Facebook Hack Team. Hack, 2016. URL: http://hacklang.org.
26 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to

programs. In Symposium on Dynamic languages (DLS), 2006. doi:10.1145/1176617.
1176755.

27 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
Scheme. In Symposium on Principles of Programming Languages (POPL), 2008. doi:
10.1145/1328438.1328486.

28 Michael Vitousek, Andrew Kent, Jeremy Siek, and Jim Baker. Design and evaluation
of gradual typing for Python. In Symposium on Dynamic languages (DLS), 2014. doi:
10.1145/2661088.2661101.

29 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:
Open-world soundness and collaborative blame for gradual type systems. In Symposium
on Principles of Programming Languages (POPL), 2017. doi:10.1145/3009837.3009849.

30 Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan
Vitek. Integrating typed and untyped code in a scripting language. In Symposium on
Principles of Programming Languages (POPL), 2010. doi:10.1145/1706299.1706343.

ECOOP 2018

http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/2398857.2384674
http://dx.doi.org/10.1145/2398857.2384674
http://dartlang.org
http://dartlang.org
http://hacklang.org
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/3009837.3009849
http://dx.doi.org/10.1145/1706299.1706343

Dependent Types for Class-based Mutable
Objects
Joana Campos
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
jcampos@lasige.di.fc.ul.pt

https://orcid.org/0000-0002-2185-8175

Vasco T. Vasconcelos
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
vv@di.fc.ul.pt

https://orcid.org/0000-0002-9539-8861

Abstract
We present an imperative object-oriented language featuring a dependent type system designed
to support class-based programming and inheritance. Programmers implement classes in the
usual imperative style, and may take advantage of a richer dependent type system to express
class invariants and restrictions on how objects are allowed to change and be used as arguments
to methods. By way of example, we implement insertion and deletion for binary search trees in
an imperative style, and come up with types that ensure the binary search tree invariant. This is
the first dependently-typed language with mutable objects that we know of to bring classes and
index refinements into play, enabling types (classes) to be refined by indices drawn from some
constraint domain. We give a declarative type system that supports objects whose types may
change, despite being sound. We also give an algorithmic type system that provides a precise
account of quantifier instantiation in a bidirectional style, and from which it is straightforward
to read off an implementation. Moreover, all the examples in the paper have been run, compiled
and executed in a fully functional prototype that includes a plugin for the Eclipse IDE.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases dependent types, index refinements, mutable objects, type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.13

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.1

Acknowledgements LASIGE Research Unit, ref. UID/CEC/00408/2013

1 Introduction

Dependent types constrain types with values that specify intrinsic properties of programs.
These sorts of types can represent concisely a number of invariants and prevent some classes
of errors at compile time, rather than at runtime, which constitutes a step towards more
reliable software. A key reason why dependent types are interesting is that they are a smooth
extension of simple types. For example, using dependent types it becomes possible to express
the non-negative balance b of a bank account as simply Account〈b〉, as well as ordered data
structures, such as a binary search tree BST〈l,u〉 whose elements can find a place within some
minimum (l) and maximum (u) keys.

Previous work has shown how far one can go with dependent types in the context of logic
and functional languages [2, 4, 18, 33, 53]. Agda [37], DML [51] and Idris [5] are noteworthy

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Joana Campos and Vasco T. Vasconcelos;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 13; pp. 13:1–13:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jcampos@lasige.di.fc.ul.pt
https://orcid.org/0000-0002-2185-8175
mailto:vv@di.fc.ul.pt
https://orcid.org/0000-0002-9539-8861
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.13
http://dx.doi.org/10.4230/DARTS.4.3.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Dependent Types for Class-based Mutable Objects

examples of functional languages that include advanced features and dependent types. Less
work has been done in an imperative setting [9, 48], and none (that we know of) in class-based
object-oriented programming with mutable objects.

While the benefits of a dependently-typed system in functional programming – increasing
expressiveness and safety – are exactly the same for object-oriented programming, how
to smoothly combine dependent types and mutable objects is still an open problem. For
example: What object invariants to enforce with dependent types, and when to enforce
them? How to track state in order to know which variables are modified and how? How to
achieve the “safe substitutability principle” [31] with dependent types? The extra complexity
that comes with developing the metatheory for a calculus that captures with dependent
types the essential (but non-trivial) features of object orientation, such as mutable state and
inheritance with subtyping, is challenging and requires a different approach.

In this paper, we formulate Dependent Object-oriented Language (DOL) as a smooth
extension of simply typed Java-like languages that addresses the challenges of combining
dependent types and object orientation. DOL offers a middle ground between traditional type
systems and verification techniques, along the lines suggested by Leino [30] when discussing
future challenges of the ESC static checker and the need to explore “more-than-types systems”
to enforce program invariants. As argued, static verification is a powerful approach, despite
being unsound, designed for “finding bugs in a program”, not for providing the guarantees
of a type system, yet significantly more expressive than types. As it so happens, formal
verification is not always suitable and is still too costly for mainstream adoption, often
requiring prior training in logic or theorem proving. Without giving up soundess or falling
back on dynamic checks, DOL is closer to existing programming methodologies, capturing
via types a subset of the ESC properties.

We present a solution that allows programmers to start with standard types, writing code
in an imperative style, and add more type information so as to gain additional guarantees.
From simply typed, the type systems of mainstream object-oriented languages have already
become more expressive and complex, namely when generics were introduced. DOL goes
a step further introducing a restricted form of dependent types to enable special terms,
called indices, to be parameters to classes and methods. By restricting the domain of the
constraint language to that of linear inequalities over the integers, along the lines of DML [53],
we render DOL’s type system decidable. The programmer simply needs to abstract the
class declaration on properties they want to capture. For example, a class Account may be
declared as follows: class Account〈b:natural〉{ balance: Integer〈b〉... } where natural is a subset
type that abbreviates {x:integer | x≥ 0}. The index variable b is used to sharpen the type of
fields and methods defined in Account, so that the typechecker can enforce through types a
behaviour that forbids overdrafts. We say that Account defines a family of classes representing
bank accounts whose instances can have many types, including the concrete type Account〈100〉
obtained by instantiating b with 100. Like generics, types in DOL support a variety of
arguments. The difference is that in DOL the arguments to types are index terms that satisfy
the specified constraints.

In certain states, some methods must not be available at the risk of violating object
invariants. DOL provides support for the specification of method availability through fine-
grained method signatures. For a withdraw method in the Account class, the signature should be
roughly “withdraw takes an Integer〈m〉 where 0≤ m≤ b on any Account〈b〉 that becomes Account〈b−
m〉”. The typechecker statically tracks objects and any state change, guaranteeing that calling
withdraw with an invalid argument leads to a type error caught by the compiler. Moreover, to
enforce behavioural subtyping, a subclass may reuse Account by declaring extends Account〈b〉
which ensures that the invariant of the superclass is preserved in the subtype.

J. Campos and V. T. Vasconcelos 13:3

Given that objects may be mutable, aliasing in a language that allows types to change
can result in a program “getting stuck”: if an Account object is aliased and its balance is
changed by foreign code, reading from the alias will produce an unexpected result. In DOL,
type varying objects are alias protected via a linear type discipline. A distinct category of
type invariant, shared objects is allowed to coexist, but cannot subvert the linear system.

As a specification of typechecking, we give a declarative type system which extends with
indices the Java notion of class types that take the form of Cī. From the dependent type
theory, the system generalises simple function spaces to dependent function spaces Πa : I.T
where the result type T can depend on the value of the argument a, restricted to special
terms of index type I. Similarly, dependent sum types, written Σa : I.T , generalise ordinary
product types restricted to some constraint domain. The language also includes union types
of the form T + U that eliminate the need of the unsafe null value. Moreover, the type
system is able to record changes to mutable state. The calculus is a significant contribution
of this paper, since it features the desirable property of type soundness, expressed via subject
reduction and progress.

Then, we give an algorithmic type system which modifies the rules that require guessing
quantifier instantiation [15, 16] and applies bidirectional typechecking [39] in order to
distinguish rules that synthesize types from those that check terms against types already
known. From this precise algorithm it is straightforward to read off an implementation.

We make the following contributions:
1. In contrast to other extensions to object-oriented programming, we define types that

capture both the immutable and mutable state of objects (cf. [38]). A combination of
index refinements and method signatures featuring input and output types enables a
smooth integration of dependent types and class-based mutable as well as immutable,
shared objects.

2. We let the type of an object change throughout the program based on a sound type
system whereby a linear type discipline enforces unique references to type varying objects.

3. We provide support for single class inheritance as long as the subtype satisfies the index
constraints defined by its supertype, and the inherited specifications remain meaningful
in the context of the subclass.

4. We give a precise algorithm that is both sound and complete. The algorithm has an
implementation in a prototype compiler for DOL that includes a plugin for the Eclipse
IDE, a development tool that is widely used in the context of object-oriented languages
but still new for dependently-typed languages.

2 DOL by Example

A class in DOL is declared just like any other class in a Java-like language, except that index
variables may be introduced in the header and be used within the class to constrain member
types. The class body contains fields and methods, including a constructor method named
init. Like Java, DOL supports single class inheritance using the optional extends declaration.
If omitted, the class is derived from the default superclass Top, a concrete class which has no
fields or methods, except for the constructor.

2.1 Bank Account
Figure 1 defines the indexed class Account and its subclass PlusAccount. Notice that if we omit
the extra type annotations in the example, we get plain Java-like code, with Account being
simply a class type. However, when indexed, the class name Account denotes a family of

ECOOP 2018

13:4 Dependent Types for Class-based Mutable Objects

1 class Account〈b:natural〉 {
2 balance: Integer〈b〉
3
4 init(): Account〈0〉 =
5 balance := 0
6
7 〈m:natural〉
8 [Account〈b〉 〈b+m〉]
9 deposit(amount: Integer〈m〉) =

10 balance := balance + amount
11
12 〈m:natural{m≤b}〉
13 [Account〈b〉 〈b−m〉]
14 withdraw(amount: Integer〈m〉) =
15 balance := balance − amount
16
17 getBalance(): Integer〈b〉 =
18 balance
19 }
20 class PlusAccount〈s,c,b:natural〉
21 extends Account〈b〉 {
22 savings: Integer〈s〉
23 checking: Integer〈c〉
24
25 init(): PlusAccount〈0,0,0〉 =
26 balance, savings, checking := 0

27
28 〈m:natural〉
29 [PlusAccount〈s,c,b〉 〈s+m,c,b+m〉]
30 deposit(amount: Integer〈m〉) =
31 super.deposit(amount);
32 savings := savings + amount
33
34 〈m:natural〉
35 [PlusAccount〈s,c,b〉 〈s,c+m,b+m〉]
36 deposit2Checking(amount: Integer〈m〉) =
37 super.deposit(amount);
38 checking := checking + amount
39
40 〈m:natural{m≤b ∧ b=s+c}〉
41 [PlusAccount〈s,c,b〉
42 〈max(s−m,0),min(c,c−m+s),b−m〉]
43 withdraw(amount: Integer〈m〉) =
44 super.withdraw(amount);
45 if amount ≤ savings {
46 savings := savings − amount
47 } else {
48 checking := checking − amount + savings;
49 savings := 0
50 }
51 }

Figure 1 The indexed class Account and its subclass PlusAccount.

classes. Instantiations, or concrete classes, represent bank accounts that cannot be overdrawn,
and may have many types, namely Account 〈0〉, Account〈1〉, ... where the occurrence of the
index variable introduced in the class header is replaced by the corresponding value (an index
term). State is somehow exposed in types through indices, but fields are always private to a
class, even if we do not use the corresponding keyword.

The special init method behaves as a typical constructor that initialises fields, creating a
fresh object assigned the proper (or concrete) type Account〈0〉 (line 4). One consequence of
objects having different types is that the compiler must track state changes throughout the
program, namely when client code creates an account object and calls methods on it:

acc := new Account(); // acc: Account〈0〉
acc.deposit(100); // acc: Account〈100〉
acc.withdraw(30) // acc: Account〈70〉

State Modifying Methods. We give indexed signatures to methods that are defined in
indexed classes. For example, the withdraw method (lines 12–15) must be invoked on a receiver
of type Account〈b〉, accepts an amount of type Integer〈m〉, modifies the type of the receiver
from the initial Account〈b〉 to the final Account〈b− m〉, and does so for any amount m that is a
natural number smaller or equal to the balance. In the formal language, the method type,
written Πm : {x : integer | 0 ≤ x ≤ b}.T , is a universal type that binds the index variable m
in a type T (where T represents the types of the implicit and explicit parameters and the
return type from the example), so that one can mention m in T . The scope of the index
variable m is therefore local; it may appear in the method signature, but not outside. The
type [Account〈b〉 〈b− m〉], read “Account〈b〉 becomes Account〈b− m〉”, is an abbreviation for a
pair of types. The first type is seen as the input type of the (implicit) receiver and the second

J. Campos and V. T. Vasconcelos 13:5

one is viewed as its output type. Finally, when a method does not explicitly declare a return
type, the typechecker assumes the supertype Top.

To illustrate the precision of the types in DOL, here is a variant of the preceding example,
changed by adding a second call to method withdraw that violates the object invariant:

acc := new Account(); // acc: Account〈0〉
acc.deposit(100); // acc: Account〈100〉
acc.withdraw(70); // acc: Account〈30〉
acc.withdraw(50) // Type error: 50>30

Both deposit and withdraw are examples of methods that change state, which we sometimes
call type varying methods, having to explicitly declare the input and output types of their
implicit receivers. On the contrary, in type invariant methods, that is, methods whose
input and output types coincide, receiver types may be omitted. The getBalance (lines 17–18)
method provides one such example.

Base Types and Literals. Constants and operators are used in the programmer’s language
only to make arithmetic and logic operations look more familiar, since they are not part of
DOL’s core language. In fact, constants and operators are desugared into object references
and method calls. Formally, Integer and Boolean, implemented natively, are families of classes.
For example, the Integer “interface” includes the following types:
class Integer〈i:integer〉 {
init(): Integer〈0〉
〈j:integer〉+(value: Integer〈j〉): Integer〈i+j〉
〈j:integer〉≤(value: Integer〈j〉): Boolean〈i≤j〉
...

}

Each desugared object of a primitive class is assigned a singleton type, with the constants
used in the examples representing the values on which the types depend. Technically, the
argument 100 from an earlier example is an object reference of type Integer〈100〉, obtained
by creating a new location, and subtraction is translated into the call balance.minus(amount)
before typecheking.

Controlled Aliasing. Aliasing is part of what makes mutable objects useful in programming.
However, shared state can be tricky to handle in a type system such as that of DOL, where the
type of a variable may no longer be a fixed class type; instead, it may be a (dependent) type
that changes throughout the program. In DOL, the potential sources of aliasing problems
are assignment and parameter passing. We adopt a solution that uses linear control of those
objects defined by type varying classes. We say that a class is type varying when at least one
of its methods is type varying, giving different input and output types to its receiver. Because
the Account class is type varying as per methods deposit and withdraw, the type system forbids
creating aliases of instances of Account. Here is how DOL’s typechecker handles aliasing:

alias := acc; // alias: Account〈30〉
acc.withdraw(20); // Type error: acc has been consumed!
alias.withdraw(10) // alias: Account〈20〉

Instead of creating an alias, the assignment “consumes” variable acc, removing it from the
typing context; hence, the call to withdraw in the second line is forbidden, with alias being
the only variable available in the typing context.

Similarly, our type system ensures that parameters are used correctly by treating these
references linearly when needed. To show that our language can be flexible, despite the linear

ECOOP 2018

13:6 Dependent Types for Class-based Mutable Objects

restriction, we could add a transferTo method to debit some amount from the current account
and credit into another account given as parameter, using the following implementation:
〈a:natural,m:natural{m≤b}〉
[Account〈b〉 〈b−m〉]
transferTo(other: Account〈a〉, amount: Integer〈m〉): Account〈a+m〉 =
var local := other; // other has been consumed!
withdraw(amount);
local.deposit(amount);
local

On the other hand, we say that a class is type invariant when its methods are type
invariant, i.e. when the input and output types coincide (or are omitted) in all methods. The
native Integer and Boolean provide two examples of such classes whose objects can be freely
shared. Since each new assignment creates a new location, instances of these classes carry
their types unchanged irrespective of being accessed or aliased.

Inheritance and Subtyping. Adapted from JML [13, 29], the PlusAccount class illustrates
how DOL can achieve the “safe substitutability principle” [31] via indexed types. By declaring
extends Account〈b〉, we make the subtype inherit the Account’s only field, as well as all of its
methods (except the constructor). In PlusAccount, we declare two extra index variables, s and c,
and use them to constrain fields savings and checking that hold two portions of the balance.

We can think of PlusAccount as extending the behaviour of Account by providing additional
fields and methods. So, the deposit method directly inherited (if not overridden) from Account

will be given the following type:
〈m:natural〉
[PlusAccount〈s,c,b〉 〈s,c,b+m〉]
deposit(amount: Integer〈m〉) = ...

However, we want relate the two new fields in the subclass with the superclass’s field by
enforcing that b=s+ c via method signatures. We override the deposit method (lines 28–32)
that adds the amount both to the account’s balance, by calling the superclass method, and
the savings field. A new method deposit2Checking (lines 34–38) also adds the given amount to
the checking field. The withdraw method (lines 40–50) must be redefined in order to take out
the amount from each balance portion. DOL’s typechecker gives the index equations issued
by types to an external constraint solver, and asks if they hold.

Common mistakes that violate the (inherited) invariant are readily detected. For example,
〈m:natural{m≤s}〉
[PlusAccount〈s,c,b〉 〈max(s−m,0),min(c,c−m+s),b−m〉]
withdraw(amount: Integer〈m〉) = ...

yields a type error, since a subtype cannot accept a stronger requirement, that is, it cannot
accept less arguments as valid [31] (it should be clear that the constraint m≤ s does not imply
m≤ b under the assumption that b=s+ c). A subtler type error is found in the following variant:
〈m:natural{m≤b}〉
[PlusAccount〈s,c,b〉 〈max(s−m,0),min(c,c−m+s),b−m〉]
withdraw(amount: Integer〈m〉) = ...

The problem here is that the constraint m≤ b does not relate the value of amount with the
two portions of the balance, unlike the indices in the output type. Specifically, the index
refinement does not provide enough evidence that allows the typechecker to conclude, after
interaction with the solver, that the index term min(c,c− m+ s) is a natural number that can
safely replace the index variable c introduced in the class header.

J. Campos and V. T. Vasconcelos 13:7

1 class BST〈l,u:integer〉 {
2 root: Nil + Node〈l,k,u〉
3 where k:integer{l≤k≤u}
4
5 init(): BST〈2,1〉 =
6 root := new Nil()
7
8 〈v:integer〉
9 [BST〈l,u〉 〈min(l,v),max(u,v)〉]

10 insert(value: Integer〈v〉) = ...
11
12 〈v:integer〉
13 remove(value: Integer〈v〉) = ...
14 }
15
16 class Nil {
17 init(): Nil = skip
18 }

19
20 class Node〈l,k,u:integer{l≤k≤u}〉 {
21 key: Integer〈k〉 // fields
22 left: Nil + Node〈l,k1,u1〉
23 where k1,u1:integer{l≤k1≤u1≤k}
24 right: Nil + Node〈l1,k1,u〉
25 where l1,k1:integer{k≤l1≤k1≤u}
26
27 〈v:integer〉
28 init(value: Integer〈v〉): Node〈v,v,v〉 =
29 key := value;
30 left, right := new Nil(), new Nil()
31
32 〈v:integer〉
33 [Node〈l,k,u〉 〈min(l,v),k,max(u,v)〉]
34 add(value: Integer〈v〉) = ...
35
36 〈v:integer〉
37 [Node〈l,k,u〉 〈l,k1,u〉
38 where k1:integer{l≤k1≤u}]
39 deleteChild(value: Integer〈v〉) = ...
40 }

Figure 2 Classes that implement a dependently-typed binary search tree.

52 8

22 2 88 8

Figure 3 The diagrammatic representation of an object of type Node〈2,5,8〉 where labels at each
tree node denote the smallest and greatest keys appearing in the tree.

2.2 Binary Search Tree
Binary search trees can naturally be described by the discipline of dependent types [14, 28,
34, 47]: a binary search tree is either empty or nonempty in which case it has two subtrees
that are binary search trees, and the key in the root node of the binary search tree is greater
than all the keys appearing in its left subtree and smaller than all the keys appearing in its
right subtree. This example shows that our type system can be precise and expressive while
implementations remain as usual. The effort of programming in DOL is essentially to come
up with the right type.

We implement the binary search tree in an imperative style, allowing subtrees to be
modified in place. In Figure 2, we show the types, defining BST as the “public” family of classes
that creates and manages both empty and nonempty trees using Nil (a proper class) and Node

(a family of classes). Our binary search tree contains integer numbers included in the loose
pair of bounds 〈l,u:integer〉 in the header of BST that can be used to define an interval [l,u].
Any element in a tree will find a place within the minimum (l) and maximum (u) keys.

While many approaches have been proposed [6, 8, 17] to handle Hoare’s billion dollar
mistake [23], DOL provides an elegant solution using union types (cf. [24]) that enable
programmers to build imperative linked data structures in a null-free style – object references
are, after all, the only values in DOL. Union types (denoted by T + U) represent objects that
can be of any of the specified types. Note that the lack of null in DOL means that every
variable must be initialised, and that every variable of a union type must be analysed by
way of a case construct before being used.

ECOOP 2018

13:8 Dependent Types for Class-based Mutable Objects

So, class BST has a single field root that is either Nil or Node. A dependent existential quan-
tified constructor (denoted by where ...) is used to keep track of the key, hidden in the field’s
type, so that the binary search tree invariant can be maintained. We write it as a dependent
sum type in the formal language of the form Σk : {x : integer | l ≤ x ≤ u}.Node l k u. Notice
that this type conforms to the constraint (l≤ k≤ u) issued by the signature of class Node that
ensures the binary search order invariant.

The special init method (lines 5–6) creates an empty binary search tree to which we give
the type BST〈2,1〉, making root an instance of Nil. When inserting a value in an empty tree,
we replace an instance of Nil with an instance of Node with no children (a leaf). Then, when
inserting in a nonempty tree, we recursively push the requirements of data inward, requiring
that the value at each node falls within the interval [l,u]. For example, a type BST〈2,8〉 may
represent the binary search tree whose root of type Node〈2,5,8〉 (depicted in Figure 3) issues
the minimum and maximum keys outward. The value 5 stored in the root is not exposed,
but is internally constrained by the tree bounds.

The Node class defines a field key, which holds the node value, and fields left and right

that may represent the two subtrees. We use union and existential types, again pushing
the data requirements inward to the types of the left and right fields. For example, the
type of the left field (lines 22–23) enforces the fact that all the values appearing in the left
subtree must be in the interval defined by [l,k], so that the binary search tree invariant
can be maintained. Similarly, the type of the right field enforces the fact that all the values
appearing in this subtree must be included in [k,u]. The init method (lines 27–30) creates a
leaf by accepting an integer value to be stored in the key field, making both left and right

instances of Nil. By definition, leaf nodes are such that l=k=u. So, for example, Node〈2,2,2〉
may be the type of the left subtree (a leaf) in Figure 3.

BST Insertion. We now define the insert method in the BST class, which takes as argument
an integer value and provides a useful demonstration of a case discrimination construct:
〈v:integer〉
[BST〈l,u〉 〈min(l,v),max(u,v)〉]
insert(value: Integer〈v〉) =
case root {
Nil⇒ root := new Node(value)
Node⇒ root.add(value)

}

The Node class implements the main insertion algorithm. Its method add takes an argument
similar to the one above, and also uses a case discrimination construct:
〈v:integer〉
[Node〈l,k,u〉 〈min(l,v),k,max(u,v)〉]
add(value: Integer〈v〉) =
if value < key {
case left {
Nil⇒ left := new Node(value)
Node⇒ left.add(value)

}
} else if value > key {
case right {
Nil⇒ right := new Node(value)
Node⇒ right.add(value)

}
}

We add an element to the tree by comparing the value to the key stored at each node and
recursively descending into the appropriate subtree until a leaf is reached that allows adding
the new node.

J. Campos and V. T. Vasconcelos 13:9

The precise types given to the BST and Node classes allow the typechecker to detect a
number of common programming errors. For example, the compiler will report a type error
if we try to call the add method as follows:

〈v:integer〉
[BST〈l,u〉 〈min(l,v),max(u,v)〉]
insert(value: Integer〈v〉) =
root.add(value)

Because the root field declares a union type, we cannot call a method directly on it; first, we
must use a case construct to analyse its type and discover whether the object is an instance
of Nil or Node, noting that, at each branch, the typechecker requires that root be bound to
only one of the types which are subtypes of the union of types. This guarantees that either
branch is taken and its execution succeeds.

Similarly, the compiler will object to the wrong conditional test below:

〈v:integer〉
[Node〈l,k,u〉 〈min(l,v),k,max(u,v)〉]
add(value: Integer〈v〉) =
if value > key {
case left {
Nil⇒ left := new Node(value)
...

Here, the compiler will report inconsistent constraints. The case construct is correctly used
to find out that left is a Nil. Then, the assignment changes the type of the left field to
Node〈v,v,v〉 (which is the type given to it by init). However, the compiler assumes v> k from
the conditional test, after which will not be able to assert v≤ k issued from the new type
of the left field. Recall the constraints on the declared type of left, requiring its value be
left-bounded by the minimum key l (which has become v) and right-bounded by value k

(known to be also v) such that l≤ k. Again, DOL relies on the external constraint solver to
statically verify that the specified constraints hold.

BST Deletion. Deletion from the binary search tree may involve removing a key not
only from the tree’s leaf nodes but also from an interior node, which requires some sort of
rearrangement of the tree structure. Moreover, unlike insertion, in which min and max could be
used to issue the new value’s standing vis-à-vis the minimum and maximum keys existing in
the tree, deletion delivers the same binary search tree where the new minimum or maximum
may be hidden in the subtrees.

However, we can still ensure via types that the tree after deletion is within the bounds,
no matter where the key removal occurs (from a fringe or the middle of the tree). The remove

method is implemented as usual:

〈v:integer〉
remove(value: Integer〈v〉) =
case root {
Nil⇒ skip
Node⇒
if root.isLeaf(value) {
root := new Nil()

} else {
root.deleteChild(value)

}
}

ECOOP 2018

13:10 Dependent Types for Class-based Mutable Objects

P ::= L̄ (programs)
L ::= class C : ∆ extends T{l̄ : T̄} is {M̄} (classes)
M ::= m(x) = t (methods)
T ::= Cī | Πa : I.T | Σa : I.T | T + T (types)

| T × T | T T | T → T

t ::= x | f | new C() | f := t | t; t | m(t) (terms)
| f.m(t) | case f of (Ck ⇒ tk)k∈1,2

| if t then t else t | while t do t
∆ ::= ε | ∆, a : I (index contexts)
I ::= integer | boolean | {a : I | p} (index types)
i ::= a | n | i⊕ i | p (index terms)
p ::= false | true | ¬p | i4 i | p7 p (propositions)
⊕ ::= + | − (arithmetic operators)
4 ::= < | ≤ | .= | ≥ | > (relational operators)
7 ::= ∧ | ∨ (logical operators)

Figure 4 Top-level syntax.

3 The DOL Language

The core language is a desugared version comprising all the properties informally described
in the examples. It builds on the core sequential language of Gay et al. [21], which allows us
to simplify proofs while keeping them manageable. We adapt and extend that language in
three ways. (1) We replace session types with dependent types and study the consequences of
this idea. (2) We incorporate inheritance and nominal subtyping, a feature absent from the
base language. (3) We combine linear and unrestricted objects in the formalisation, building
a less restrictive type system than the original one.

3.1 Syntax
Following standard practice [21], the formal language omits some features of the practical
syntax used in the examples, so as to simplify the proofs, even though our prototype includes
them. Below, we summarize the main differences.

Primitive values as used in the examples are translated into object references, which are
the only values in our language, and all computations are performed by calling methods.
This lightens the type system without affecting expressivity.
All methods have exactly one parameter. A method written m() = t abbreviates
m(top) = t where top of type Top is used as a dummy parameter. Defining methods that
take an arbitrary number of parameters does not introduce any major technical challenge.
Local variables are omitted, since they can be simulated by a parameter or extra fields.

We define the top-level syntax in Figure 4. Identifiers are drawn from the following
disjoint countable sets: that of class names (denoted by B,C,D), that of fields (denoted
by f, g), that of methods (denoted by m), that of object variables (denoted by x, y, o), and

J. Campos and V. T. Vasconcelos 13:11

that of index variables (denoted by a, b). Labels l identify class members, that can either
be fields or methods. The metavariables T,U, V,W range over object types; I, J range over
index types; and i, j range over index terms.

Programs P consist of collections of class declarations L. A class family, written class C :
∆ extends T{l̄ : T̄} is {M̄}, associates a class named C to an index context ∆, a supertype T ,
a sequence of member declarations l̄ : T̄ (field and method signatures), and a sequence of
method implementations M̄ . An index context maps index variables to index types, fixing
the class family arity, with each entry having the form a : I. A concrete or proper type,
written Cī, is obtained by instantiating a class family with indices in application position.
Index variables in ∆ can be used to constrain types inside the class, including that of the
explicit superclass T , where T is of the form Dī. (As we will see later, this restriction is
enforced by the typing rules.) Finally, a method is implemented separately from its signature
as m(x) = t, where t is the method body and, for simplicity, x its single parameter.

Types. Types T either classify objects or build method signatures. They can be of the
following seven forms:

A type Cī extends with indices the Java notion of class types.
A universal dependent type constructor, written Πa : I.T , where a may occur free in T ,
is a type that maps elements of the index type I to elements in the type T . It is used to
build method signatures.
An existential type constructor, written Σa : I.T , where a may occur free in T , also
maps elements of the index type I to elements in the type T , with the index variable a
representing some unknown value in T . It is used to represent undetermined properties
of a concrete object type.
A union type T + T classifies the set of objects belonging either to the left or the right
type. It is used to define a supertype grouping independently developed classes.
A product type, written T ×T , is used in method signatures, with the first type classifying
the current object this, implicitly passed to the method, and the second one classifying
the only explicit parameter.
A parameter type of the form T T relates the two components that classify the current
object this, the input type and a possibly different output type.
A method type, written T → T , maps the type of the parameters to a return type.

Terms. Terms t are fairly standard, except for some restricted forms that allow the type
system to record more precisely how the types of objects vary. The variable x denotes a
parameter. There is no qualified x.f . Instead, field access, written f , is only defined for a
shared field (a restriction enforced by the typing rules), or in combination with assignment,
method calls and case constructs. This is part of the linear control of objects. All fields
are private in the sense that every f always refers to a field of the current object (cf. [21]).
Object creation (new C()) does not take any parameters. Assignment (f := t) is defined in
terms of a non-standard swap operation in the style of [21]. The operation assigns the value
of t to the field f and returns the old value of f as its result.This prevents aliasing linear
fields in terms such as f2 := (f1 := t). The sequential term composition (t; t) is standard.
Method call is available both on the current object itself (a self call), written m(t), and on a
field of the current object this, written f.m(t), but not on a parameter or an arbitrary term
for that matter. This is because calling a method may change the type of the object on
which the method is called. Note that the type system only records changes on the type of

ECOOP 2018

13:12 Dependent Types for Class-based Mutable Objects

T ::= . . . | C[F] (types)
F ::= {f̄ : T̄} (field types)
r ::= o | r.f (paths)
t ::= . . . | return t (terms)
θ ::= ε | θ, i/a (index substitutions)

∆ ::= . . . | ∆, p (index contexts)
Γ ::= ε | Γ, x : T (object contexts)
K ::= ? | Πa : I.K (kinds)
h ::= ε | h, o = R (heaps)
R ::= C{f̄ = ō} (object records)
S ::= (h ∗ r, t) (states)
E ::= [_] | f := E | E ; t | m(E) | f.m(E) (evaluation contexts)

| return E | if E then t else t | while E do t

Figure 5 Extended syntax, used only in the type system and operational semantics.

the current object this, the only one that can access its fields. To simplify, the case construct
may only depend on a field, taking the form of case f of (Ck ⇒ tk)k∈1,2 where f plays the
role of the binding occurrence in the branches. Conditionals and while loops are standard.

Index Refinements. Index types I comprise the integer and boolean types, as well as the
subset type of the form {a : I | p}. Index terms i include some of the possible index constructs,
namely variables, integer literals, arithmetic operations, and also propositions, which take
the form of the truth values, the negation and linear inequalities. We omit functions max
and min from the examples as they do not introduce any additional technical challenge.

3.2 Additional Syntax Not Available to Programmers
Figure 5 defines syntactic extensions required for the formal system only. The internal type
C[F] (cf. [21]) is an alternative form of an object type that contains the class name C and
a record field typing F that provides types for all the fields of C, including the inherited
ones. For example, C[{f1 : T1, f2 : T2}] is the internal type of an object of C having two
fields of types T1 and T2, which may be defined either in C or in any of its superclasses. The
internal type, used to classify the current object (this) in the context, cannot be the type of
an arbitrary term, which never evaluates to this (as enforced by the typing rules). Instead,
the purpose of the internal type is to allow the current object (this) to access its own fields,
for typechecking assignment, method calls and case constructs, operations that may change
its type through the field typing.

Terms evaluate to object references o, the only values in our language. To simplify, we do
not define a separate syntactic category for object references. Instead, object references o
are a subset of the variable names. Paths r in the style of [21] represent locations in the
heap, formed by the top-level object followed by a sequence of an arbitrary number of fields.
For example, if r indicates the path of the currently active object, when a method call on a

J. Campos and V. T. Vasconcelos 13:13

field f relative to r is entered, r.f becomes the path that indicates the new current object
that becomes active. The return term represents an ongoing method call during which the
path changes as described above. Paths and the return term are constructs belonging to the
operational semantics.

Substitutions θ map index variables to index terms. Index contexts ∆ are extended to
accept propositions p. Object contexts Γ map object variables to types.

Types are classified into kinds K, much the same way as terms are classified into types.
Kind ? characterizes proper types, while kind Πa : I.K classifies families of classes, i.e. types
that have to be applied to index terms to form proper types. We only ever need to check for
proper types (with kind ?). In fact, the only way to construct a type of a kind other than ?
is by declaring an indexed class. So, in the bank account example, the class family Account
has kind Πb : natural.?, and an instantiation, say Account 0, of kind ?, denotes the proper
type of an object reference.

A heap h is a mapping from object references o to object records R. We assume three
special objects (top : Top, false : Boolean false, true : Boolean true) that are initially placed
in the heap. The heap produced by the operation h, (o = R) contains a new mapping from
object reference o to record R. The operation of adding this binding to the heap h is only
defined if o 6∈ dom(h). Note that the order in h is irrelevant. Records R are instances of
classes, represented by C{f̄ = ō}, comprising the class of the object followed by a mutable
record mapping field names to object references.

The operational semantics is defined as a reduction relation on states S of the form
(h ∗ r, t), consisting of a heap h, a path r that represents the current object, and a term t.
Evaluation contexts E are defined in the style of [46]. Intuitively, an evaluation context is
a term with a hole [_] at the point where the next reduction step must take place in a
call-by-value evaluation order; E [t] is the term obtained by replacing the hole in E by term t.

3.3 Static Semantics

We typecheck our language with respect to one index context ∆, and one object context Γ. The
ordering is important in the index context, because of (index) variable-to-type dependencies,
and irrelevant in the object context. For example, an index context (∆1, a : I,∆2) is said
to be well-formed if a 6∈ dom(∆1) ∪ dom(∆2) and a 6∈ FV(∆1); an index context such as
(c : {b : integer | b ≥ a}, a : I) is ill-formed. We give the subtyping and typing rules for top-
level terms in the sections that follow; we omit rules for the index language, kinding, context
formation and typing. First, we give an overview of index refinements and substitution.

Index Refinements and Substitution. Our formulation of index refinements requires a
way to somehow decide the semantically defined relation ∆ |= p in the style of Xi and
Pfenning [47, 52, 53]. The binding occurrences of index variables appear in subset types,
and also in types and kinds in the object language. We say that a occurs bound in p within
{a : I | p}, in T within Πa : I.T and Σa : I.T , and in K within Πa : I.K.

To simplify the proofs, and to avoid having to rename bound variables in substitution, we
follow Barendregt’s variable convention [3] whereby the names of bound variables must all
be distinct from each other and from any other variables occurring free in terms and types.

We denote by i1[i2/a] the capture-avoiding substitution of i2 for the free occurrences
of a in i1. Index substitutions are defined inductively on the structure of index terms.
For example, (i1 + i2)[i3/a] is defined as i1[i3/a] + i2[i3/a]. A single index substitution is
extended pointwise to multiple index substitution θ, which maps index variables to index
terms, by defining iε , i and i1([i2/a], θ) , (i1[i2/a])[θ].

ECOOP 2018

13:14 Dependent Types for Class-based Mutable Objects

∆ ` T <: U Under context ∆, type T is a subtype of U

class C : (ā : Ī) extends T{_} is {_} ∆ ` ī : Ī ∆ ` T [̄i/ā] : ?
(S-Super)

∆ ` Cī <: T [̄i/ā]

∆ |= ī
.= j̄ ∆ ` Cj̄ : ?

(S-App)
∆ ` Cī <: Cj̄

∆ ` T [i/a] <: U ∆ ` i : I
(S-ΠL)∆ ` Πa : I.T <: U

∆, a : I ` T <: U (S-ΠR)∆ ` T <: Πa : I.U
∆, a : I ` T <: U (S-ΣL)∆ ` Σa : I.T <: U

∆ ` T <: U [i/a] ∆ ` i : I
(S-ΣR)∆ ` T <: Σa : I.U

∆ ` T1 <: U ∆ ` T2 <: U (S-+L)
∆ ` (T1 + T2) <: U

∆ ` T <: Uk (S-+Rk)
∆ ` T <: (U1 + U2)

∆ ` T1 <: U1 ∆ ` T2 <: U2 (S-×)
∆ ` (T1 × T2) <: (U1 × U2)

∆ ` T̄ <: Ū (S-Record)
∆ ` C[{f̄ : T̄}] <: C[{f̄ : Ū}]

∆ ` T1 <: T2 ∆ ` T2 <: T3 (S-Trans)∆ ` T1 <: T3

Figure 6 Subtyping rules.

The judgement for deriving θ is of the form ∆1 ` θ : ∆2 where, under the assumptions in
context ∆1, we think of ∆2 as the input and θ as the output. The rules require that ∆2 and θ
have the same arity and that each substituent is well-formed in the context. Specifically,
for each substitution i/a, there is an entry a : I such that ∆1 ` i : I. As for index terms,
application of a substitution θ to a type T , denoted by T [θ], is standard, defined inductively
on the structure of T .

3.3.1 Subtyping

Term typing and method overriding rely on the subtyping relation defined as the reflexive and
transitive closure of the inheritance relation as in Java, guided by the “safe substitutability
principle” [31]. The judgement ∆ ` T <: U asserts that T is a subtype of U under the
assumptions in context ∆. We give the rules for subtyping in Figure 6.

All types in the top-level language are subject to subtyping, except for and → ,
since these types cannot arise from terms, and are not used to check method overriding
(cf. Figures 9 and 10). The internal field typing is also subject to subtyping in order to check
compatibility between fields of the same class. This relation is always derived with respect to
the internal type of the current object (this), the only one that has access to its own fields.

S-Super is completely standard for object-oriented languages, adjusted to dependent
types. Because class Top does not declare a supertype, it follows that Top is a supertype of
every other type. By S-App, subtyping is reflexive on class types, extended pointwise to
all possible applications of the class type that satisfy the |= relation, and by rule S-Trans,
subtyping is transitive.

Regarding S-ΠL and S-ΠR, the left rule instantiates the index variable a to i in the
subtype, while the right rule relates two types T and U provided the variable a does not
appear free in T . The reasoning for S-ΣL and S-ΣR is similar, yet inverted. Following
Barendregt’s variable convention [3], we implicitly assume that the variable a in the extended
context of both S-ΠR and S-ΣL is distinct from all the variables already in ∆.

J. Campos and V. T. Vasconcelos 13:15

classof(T) = C classof(Cī) = C classof(Σa : I.T) = classof(T)

fields(T) = U fields(Top) = Top[{}] fields(Σa : I.T) = Σa : I.fields(T)

class C : (ā : Ī) extends Dj̄{f̄ : Ū , m̄ : _} is {_} fields(Dj̄ [̄i/ā]) = D[{ḡ : V̄ }]
fields(Cī) = C[{ḡ : V̄ } t {f̄ : Ū [̄i/ā]}]

mtype(m,Cī) = T

class C : (ā : _) extends _{. . . ,m : U, . . .} is {_}
(MT-Class)

mtype(m,Cī) = U [̄i/ā]

class C : (ā : _) extends Dj̄{l̄ : _} is {_} m 6∈ l̄
(MT-Super)

mtype(m,Cī̄i′) = mtype(m,Dj̄ [̄īi′/ā])[Cī/D]

mbody(m,C) = λx.t

class C : _ extends _{_} is {. . . , init() = f̄ := new C̄(), . . .}
(MB-Init)

mbody(init, C) = f̄ := new C̄()

class C : _ extends _{_} is {. . . ,m(x) = t, . . .} m 6= init
(MB-Class)

mbody(m,C) = λx.t

class C : _ extends Dj̄{_} is {M̄} m 6∈ M̄
(MB-Super)

mbody(m,C) = mbody(m,D)

q(T) where q ::= un | lin un(Top)
not un(T)

lin(T)

classof(T) = C class C : _ extends _{f̄ : _, m̄ : Π_.(T̄ T̄ ×_→ _)} is {_}
un(T)

Figure 7 Auxiliary functions and predicates.

The two rules S-+L and S-+Rk together imply that a type T + U is a least upper bound
of T and U . S-× expresses that the subtyping relation is a congruence. S-Record checks
compatibility between field typings of the same class C.

3.3.2 Typing
Auxiliary Functions and Predicates. As in Featherweight Java (FJ) [25], our typing rules
rely on a few auxiliary functions and predicates. These are given in Figure 7 and described
below. We denote by t the disjoint union of field types, i.e. the operation of F1 t F2 is
defined by merging F1 and F2 if their domains are disjoint, being undefined otherwise. We
write m 6∈ l̄ and m 6∈ M̄ to indicate that the method name m is not included, respectively,
in the sequence of member names l̄ and method definitions M̄ . We denote by T [Cī/D] the
substitution of Cī for the free occurrences of D bound to a type in T .

The partial function classof(T) looks up the class of a type T of the form Cī and Σa : I.U ,
being undefined for other forms. Both fields(T) and mtype(m,T), also partial functions, look
up member types. Notice that a subclass may extend an instantiated superclass, which

ECOOP 2018

13:16 Dependent Types for Class-based Mutable Objects

∆1; Γ ` r : T a ∆2 Under initial contexts ∆1; Γ, path r has type T , with final context ∆2

∆ ` Γ (T-Ref)∆; Γ, r : T ` r : T a ∆
∆; Γ ` r : C[F] a ∆

(T-Field)
∆; Γ ` r.f : F (f) a ∆

∆1; Γ ` r : Σa : I.T a ∆2 (T-Unpack)∆1; Γ ` r : T a ∆2, a : I

∆; Γ ` r : C[F] a ∆ ∆ ` C[F] <: fields(Cī)
(T-Hide)

∆; Γ ` r : Cī a ∆

Figure 8 Typing rules for paths.

means that, because of substitutions, the types of fields and methods in the subclass may
not be identical to those in the superclass. On the other hand, mbody(m,C) is used only in
the operational semantics. The predicate q(T) assigns a qualifier q to a type T : a type is
said to be unrestricted (un) if denotes an instance of a type invariant class, that is, a class
whose methods do not change the state of the current object (the input and output types
are the same); it is linear (lin) if its class defines at least one type varying method, which
indicates that the state of the current object is modified.

Term Typing. For typing terms, we use a judgement of the form ∆1; Γ1 ∗ r1 ` t : T a
∆2; Γ2 ∗ r2 meaning that the evaluation of term t may both extend the context ∆1 (for
example, with existential variables that arise from the types of fields, or with propositions)
and change the types contained in Γ1 (for example, by assigning values to objects, or by
calling methods on them), giving rise to the final contexts ∆2; Γ2. Linearity is yet another
reason for a different final object context: if x is linear and is used in t, then x is consumed
and does not appear in Γ2. The judgement includes r1 and r2 in the style of Gay et al. [21],
which are paths needed for typing runtime terms and tracing objects in the heap. When
typechecking a program, both r1 and r2 are always this, and are used exclusively to access
the fields of the current class. Hence, the judgement for typing top-level terms will always
have the form ∆1; Γ1, this : C[F1] ∗ this ` t : T a ∆2; Γ2, this : C[F2] ∗ this, where Γ1 and Γ2
differ only in the method parameter x. If Γ1 is x : U and U is linear, then Γ2 must be ε
since x has been consumed by t.

The typing rules for the top-level terms (Figure 4) are given in Figure 9. They use
a judgement ∆1; Γ ` r : T a ∆2 for typing paths (Figure 8), and a definition C.lk which
means Tk for class C : ∆ extends T{l1 : T1, . . . , ln : Tn} is {M̄} with 1 ≤ k ≤ n.

I Definition 1 (Operations on Field Types and Object Contexts).
If F = {f1 : T1, . . . , fn : Tn}, then F (fk) , Tk, and F{fj ← [U} , {f1 : T ′1, . . . , fn : T ′n}
where T ′k = Tk and T ′j = U for k 6= j and n ≥ 1 and 1 ≤ k ≤ n and 1 ≤ j ≤ n.
(Γ, x : T){x← [U} , Γ, x : U .
Γ{r.f ← [T} , Γ{r ← [C[F{f ← [T}]} if ∆; Γ ` r : C[F] a ∆ for some ∆.

We now comment on these rules: T-UnVar and T-LinVar are used to access a parameter.
The former is the standard rule for reading a variable, while the latter implements destructive
reads. T-UnField is used for field access, being defined for unrestricted types only (since the
effect of reading f linear would remove it from the current object type). T-New is the rule
for object creation, giving the new object the type from the init method signature. T-Assign

J. Campos and V. T. Vasconcelos 13:17

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2
Under initial contexts ∆1; Γ1 with path r1,
term t has type T , with final contexts ∆2; Γ2 and path r2

∆ ` Γ un(T)
(T-UnVar)∆; Γ, x : T ∗ r ` x : T a ∆; Γ, x : T ∗ r

∆ ` Γ lin(T)
(T-LinVar)∆; Γ, x : T ∗ r ` x : T a ∆; Γ ∗ r

∆; Γ ` r.f : T a ∆ un(T)
(T-UnField)∆; Γ ∗ r ` f : T a ∆; Γ ∗ r

∆ ` Γ (T-New)
∆; Γ ∗ r ` new C() : C.init a ∆; Γ ∗ r

∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

∆2; Γ2 ` r2 : C[F] a ∆2 ∆2; Γ2{r2.f ← [T} ` r2 : Cī a ∆2 (T-Assign)
∆1; Γ1 ∗ r1 ` f := t : F (f) a ∆2; Γ2{r2.f ← [T} ∗ r2

∆1; Γ1 ∗ r1 ` t1 : U a ∆2; Γ2 ∗ r2 ∆2; Γ2 ∗ r2 ` t2 : T a ∆3; Γ3 ∗ r2 un(U)
(T-Seq)∆1; Γ1 ∗ r1 ` t1; t2 : T a ∆3; Γ3 ∗ r2

∆1; Γ1 ∗ r1 ` t : U [θ] a ∆2; Γ2 ∗ r2 ∆2; Γ2 ` r2 : Cī a ∆2

mtype(m,Cī) = Π∆.(Cī T × U →W) ∆2 ` ∆ : θ
∆2; Γ2{r2 ← [T [θ]} ` r2 : Cj̄ a ∆3 (T-SelfCall)

∆1; Γ1 ∗ r1 ` m(t) : W [θ] a ∆3; Γ2{r2 ← [fields(Cj̄)} ∗ r2

∆1; Γ1, r1 : C[F] ∗ r1 ` t : U [θ] a ∆2; Γ2 ∗ r2 ∆2; Γ2 ` r2.f : T1 a ∆3

mtype(m,T1) = Π∆.(T1 T2 × U →W) ∆3 ` ∆ : θ
∆3; Γ2{r2.f ← [T2[θ]} ` r2 : Cī a ∆3 (T-Call)

∆1; Γ1, r1 : C[F] ∗ r1 ` f.m(t) : W [θ] a ∆3; Γ2{r2.f ← [T2[θ]} ∗ r2

∆1; Γ1 ` r.f : (U1 + U2) a ∆2 classof(Uk) = Ck

∆2; Γ1{r.f ← [Uk} ∗ r ` tk : T a ∆3; Γ2 ∗ r C1 6= C2 (T-Case)
∆1; Γ1 ∗ r ` case f of (Ck ⇒ tk)k∈1,2 : T a ∆3; Γ2 ∗ r

∆1; Γ1 ∗ r1 ` t : Boolean p a ∆2; Γ2 ∗ r2

∆2, p; Γ2 ∗ r2 ` t1 : T a ∆3; Γ3 ∗ r2 ∆2,¬p; Γ2 ∗ r2 ` t2 : T a ∆3; Γ3 ∗ r2 (T-If)∆1; Γ1 ∗ r1 ` if t then t1 else t2 : T a ∆3; Γ3 ∗ r2

∆1; Γ1 ∗ r1 ` t1 : Boolean p a ∆2; Γ2 ∗ r2

∆2, p; Γ2 ∗ r2 ` t2 : Top a ∆2; Γ2 ∗ r2 (T-While)∆1; Γ1 ∗ r1 ` while t1 do t2 : Top a ∆2,¬p; Γ2 ∗ r2

∆1; Γ1 ∗ r1 ` t : U a ∆2; Γ2 ∗ r2 ∆2 ` U <: T (T-Sub)∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2

Figure 9 Typing rules for terms in the top-level language.

ECOOP 2018

13:18 Dependent Types for Class-based Mutable Objects

modifies a field of the current object, acting on its type C[F]. Unlike the rule for assignment
in Java, when a field is changed, we need to check all the other fields in F to ensure that
any dependencies are satisfied. We do this with judgement ∆2; Γ2{r2.f ← [T} ` r2 : Cī a ∆2
derived by rule T-Hide that recovers a top-level type Cī using with the updated context as
its initial context. Again, unlike the standard rule for assignment, our rule returns as its
result the type of the old object contained in the field as part of the linear control of objects.
T-Seq is the standard rule for the sequence operation, except that it checks the first subterm
and considers its possible effects in the typing context that checks the second one.

The two rules for calling methods are rather elaborate. T-SelfCall checks the type of the
parameter as usual, but uses rule T-Hide to obtain a top-level type for the current object r of
the form Cī that allows method m to be called (its signature yielding a substitution θ applied
to the parameter and output types). The final object context is updated in the conclusion
with a type obtained by fields(Cj̄) for r, where Cj̄ is derived by possibly unpacking the
receiver output type T [θ] in the premise ∆2; Γ2{r2 ←[T [θ]} ` r2 : Cj̄ a ∆3. T-Call checks
a method call on a field, combining the strategies used in T-Assign and T-SelfCall.

T-Case makes the case distinction on a field f with a union type. Each branch is then
typed with an initial context where f is bound to either the left or the right type. Two
branches must have the same type and final contexts, because f can only be bound to one
type. T-If expects t in the condition to be of type Boolean p. Each branch is then typed
with initial contexts asserting or negating the proposition p. T-While is analogous to T-If,
yet simpler. T-Sub is the usual subsumption rule, adapted to our requirements.

Program Typing. A well-formed program relies on well-typed fields, methods and classes,
which we formally define in Figure 10. The judgement `C M states that a method M

in a class C is well-typed. T-Method constructs the judgement for checking the body of
a regular method, whereas T-Init initialises all fields, including the inherited ones. The
judgement ∆ `T l : T checks that a member type is well-formed. T-FType states that
a field must be “typed” by kind ? of proper types. When checking method signatures,
one of the following must hold: the method is altogether new (T-Mtype), or a correct
override of a superclass method (T-Override). These judgements are used by T-Class.
By T-Program a program is well-formed if each class defined in it is well-typed.

3.4 Operational Semantics
Figure 11 defines an operational semantics on states S the form (h ∗ r, t) where the object
path r is used to resolve field references appearing in the term t. As usual, we denote
by t[o/x] the substitution of o for the free occurrences of x in t defined in the standard way.

I Definition 2 (Operations on Heaps). Let h be the heap of the form h = (h0, o = R) where
R is the object record C{f1 = o1, . . . , fn = on}. Then, h(o) , R and h(o).class = C and for
all k such that 1 ≤ k ≤ n,

R.fk , ok.
R{fj ← [o} , C{f̄ = ō′} where o′k = ok and o′j = o for k 6= j and 1 ≤ j ≤ n.
h{o.fk ← [o′} , (h0, o = R{fk ← [o′}).
h(r) , ok if r = o.fk, and h{r.f ←[o′} , h{ok.f ← [o′}.

R-New creates a fresh object and adds it to the heap, after having initialised all fields.
For this, it relies on the reduction of states for sequenced object creation. R-Assign replaces
the value of a field f of the current object located at r with a new reference, and returns

J. Campos and V. T. Vasconcelos 13:19

`C M Method M is well-formed in class C

class C : ∆1 extends _{. . . ,m : Π∆2.(T1 T2 × U →W), . . .} is {_}
∆1,∆2;x : U, this : fields(T1) ∗ this ` t : W a ∆3; Γ, this : C[F] ∗ this
x : U ∈ Γ⇒ un(U) ∆3 ` C[F] <: fields(T2) m 6= init

(T-Method)
`C m(x) = t

fields(C.init) = C[F] ε; ε ∗ r ` new C̄() : F (f̄) a ε; ε ∗ r no cycles in C
(T-Init)

`C init() = f̄ := new C̄()

∆ `T l : U Member l has type U with supertype T

∆ ` U : ? (T-Ftype)∆ `T f : U

mtype(m,T) undefined
∆1 ` Π∆2.(Cī× U ×W) : ? ∆1,∆2 ` Cj̄ <: T2 (T-Mtype)

∆1 `T m : Π∆2.(Cī T2 × U →W)

mtype(m,T) = Π∆′2.(T ′1 T ′2 × U ′ →W ′)
∆1 ` Π∆2.(T1 × T2 × U ′ ×W) <: Π∆′2.(T ′1 × T ′2 × U ×W ′) (T-Override)

∆1 `T m : Π∆2.(T1 T2 × U →W)

` L Class declaration L is well-formed

∆ ` T : ? ∆ `T l̄ : T̄ `C M̄ (T-Class)
` class C : ∆ extends T{l̄ : T̄} is {M̄}

` P Program P is well-formed

` L1 . . . ` Ln (T-Program)` L1 . . . Ln

Figure 10 Typing rules for program formation.

the former object pointed by f . R-Seq reduces to the second part of the sequence of terms,
discarding the first part only after it has become an object.

R-SelfCall is relative to a method call on the current object at r. The rule prepares
the method body t with a substitution (the actual parameter for the formal one) before
evaluating the term. R-Call is the rule for a call on the object at f (relative to the current
object at r), being defined in a slightly different way. The rule makes r.f become the current
object and wraps the method body t, prepared with the parameter substitution, in a return
term that replaces the method call. Then, the body is reduced to an object in rule R-Return
which also recovers the previous current object at r.

R-Casek means that either branch is taken, with the first having precedence over the
second, i.e. the second branch is only tried if the condition (h(r.f).class = C1) fails. The
two rules R-IfTrue and R-IfFalse use the special true and false objects for the references
that control the condition. In rule R-While, the term is rewritten to a nested conditional,
using top for the body of the else branch. R-Context is standard for reduction in contexts,
defining which term should be evaluated next.

ECOOP 2018

13:20 Dependent Types for Class-based Mutable Objects

S1 −→ S2 State S1 reduces to S2

mbody(init, C) = f̄ := new C̄()
(h1 ∗ r, new C̄()) −→ (h2 ∗ r, ō) o 6∈ dom(h2)

(R-New)
(h1 ∗ r, new C()) −→ ((h2, o = C{f̄ = ō} ∗ r), o)

h(r).f = o1 (R-Assign)
(h ∗ r, f := o2) −→ (h{r.f ← [o2} ∗ r, o1)

(h ∗ r, o; t) −→ (h ∗ r, t) (R-Seq) h(r).class = C mbody(m,C) = λx.t
(R-SelfCall)

(h ∗ r,m(o)) −→ (h ∗ r, t[o/x])

h(r.f).class = C mbody(m,C) = λx.t
(R-Call)

(h ∗ r, f.m(o)) −→ (h ∗ r.f , return t[o/x])

(h ∗ r.f , return o) −→ (h ∗ r, o) (R-Return)

h(r.f).class = Ck (R-Casek)
(h ∗ r, case f of (Ck ⇒ tk)k∈1,2) −→ (h ∗ r, tk)

(h ∗ r, if true then t1 else t2) −→ (h ∗ r, t1) (R-IfTrue)

(h ∗ r, if false then t1 else t2) −→ (h ∗ r, t2) (R-IfFalse)

t2 = if t then (t1; while t do t1) else top
(R-While)

(h ∗ r,while t do t1) −→ (h ∗ r, t2)

(h1 ∗ r1, t1) −→ (h2 ∗ r2, t2)
(R-Context)

(h1 ∗ r1, E [t1]) −→ (h2 ∗ r2, E [t2])

Figure 11 Reduction rules for states.

4 Type Soundness

In order to establish type soundness, we need an additional set of relations that describe
heaps and runtime states. This is given in Figure 12. For typing the heap, we use a judgement
of the form ∆; Γ ` h that states that under contexts ∆; Γ the heap h is well-formed. By rule
T-EmptyHeap, a heap is constructed from typing contexts containing assumptions and
types for all the objects relative to locations added to the heap by rule T-Heap. The latter
ensures that each heap entry has the prescribed field typing. The most important feature
of this rule is that all aliases of linear references are explicitly forbidden by the rightmost
premise. For typing sequenced objects ō as part of a runtime state, the judgement relies
on T-UnVar and T-LinVar as appropriate to type each object. In particular, for each
linear ok in o1, . . . , on, with 1 ≤ k ≤ n, the initial typing context contains ok and the final
one of the extended heap does not, meaning that a heap that contains multiple references to
the same linear object is not typable. The similar inverse argument justifies the existence of
cyclic structures in the heap. Rule T-HeapHide is used as needed in order to replace an
internal object type by an equivalent top-level one (cf. [21]).

Finally, we use a judgement ∆1; Γ1 ` S : T a ∆2; Γ2 ∗ r to type states and formalize the
main invariant of subject reduction. By T-State, given a state S of the form (h ∗ r1, t), the
heap h must be compatible with a context Γ1 under the assumptions in ∆1, which are the
initial contexts that type the runtime term t, knowing from the leftmost premises that h is

J. Campos and V. T. Vasconcelos 13:21

∆; Γ ` h Under contexts ∆; Γ, heap h is well-formed

∆ ` Γ (T-EmptyHeap)∆; Γ ` ε

∆; Γ1 ` h ∆; Γ1 ∗ o ` ō : F (f̄) a ∆; Γ2, o : C[F] ∗ o
(T-Heap)

∆; Γ2, o : C[F] ` h, (o = C{f̄ = ō})

∆; Γ, o : C[F] ` h ∆; Γ, o : C[F] ` o : Cī a ∆
(T-HeapHide)

∆; Γ, o : Cī ` h

∆1; Γ1 ` S : T a ∆2; Γ2 ∗ r
Under initial contexts ∆1; Γ1, state S has type T ,
with final contexts ∆2; Γ2 and path r

h complete
dom(Γ1) ⊆ dom(h) ∆1; Γ1 ` h ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2 (T-State)

∆1; Γ1 ` (h ∗ r1, t) : T a ∆2; Γ2 ∗ r2

Figure 12 Typing rules for heaps and states.

complete, i.e. for any o ∈ dom(h) we have childrenh(o) ⊆ dom(h), and that dom(Γ1) ⊆ dom(h),
i.e. every object that has a type in Γ1 appears in h along with all of its children.

I Definition 3 (Initial Heap and Object Context). In any well-formed program (` P), h0
and Γ0 represent the initial heap and object context such that h0 = (top = Top{}, false =
Boolean{}, true = Boolean{}) and Γ0 = (top : Top, false : Boolean false, true : Boolean true).

Main Results. By standard techniques [46], we now prove the expected results.

I Theorem 4 (Subject Reduction). Suppose that P is a well-formed program (` P). In this
context, let Γ0 ⊆ Γ1 and h0 ⊆ h1, and S1 = (h1 ∗ r1, t). If ∆1; Γ1 ` S1 : T a ∆2; Γ2 ∗ r2 and
S1 −→ S2, then ∆′1; Γ′1 ` S2 : T a ∆2; Γ′2 ∗ r2 for some ∆′1,Γ′1 and Γ′2 such that ∆1 ⊆ ∆′1
and Γ2 ⊆ Γ′2.

Proof sketch. In order to build this result, we need to prove a number of basic lemmas,
namely inversion of the term typing relation, exchange for object contexts, weakening for
index contexts, substitution for objects in term typing, substitution for indices, substitution
for class types, and agreement of judgements. We also prove soundness and instantiation
of function mtype as well as two lemmas (opening and closing) for the replacement of an
internal object type by an equivalent top-level one when typing the heap. We then show that
in well-formed DOL programs the types of objects describe their runtime values, that there
never exists more than one reference to a linear object, and that all aliasing never produce a
value of unexpected type. J

I Theorem 5 (Progress). Suppose that P is a well-formed program (` P). In this context,
let Γ0 ⊆ Γ1 and h0 ⊆ h1.
1. If ∆1; Γ1 ` (h1 ∗ r1, t1) : T a ∆2; Γ2 ∗ r2, then t1 is an object reference or (h1 ∗ r1, t1) −→

(h2 ∗ r2, t2).
2. If ∆1; Γ1 ` (h1 ∗ r, t̄) : T̄ a ∆2; Γ2 ∗ r, then (h1 ∗ r, t̄) −→ (h2 ∗ r, t̄′).

Proof sketch. By mutual induction on the structure of t and the length of t̄. J

ECOOP 2018

13:22 Dependent Types for Class-based Mutable Objects

∆1 ` T <: U a ∆2 Under initial context ∆1, type T is a subtype of U , with final context ∆2

class C : (ā : Ī) extends T{_} is {_} ∆1 ` T [̄i/ā] <: Dj̄ a ∆2 C 6= D
(AS-Super)

∆1 ` Cī <: Dj̄ a ∆2

∆ . T ◦ : ? (AS-Top)∆ ` T ◦ <: Top a ∆
∆1 ` ī ≡ j̄ a ∆2 (AS-App)

∆1 ` Cī <: Cj̄ a ∆2

∆1, â : I ` U [â/a] <: T ◦ a ∆2 (AS-ΠL)∆1 ` Πa : I.U <: T ◦ a ∆2

∆1, a : I ` T <: U a ∆2 (AS-ΠR)∆1 ` T <: Πa : I.U a ∆2

∆1, a : I ` T <: U a ∆2 (AS-ΣL)∆1 ` Σa : I.T <: U a ∆2

∆1, â : I ` T ◦ <: U [â/a] a ∆2 (AS-ΣR)∆1 ` T ◦ <: Σa : I.U a ∆2

∆1; Γ1 ` t ↑ T a ∆2; Γ2
Under initial contexts ∆1; Γ1,
term t synthesizes type T , with final contexts ∆2; Γ2

∆1; Γ1 ` t ↓ T a ∆2; Γ2
Under initial contexts ∆1; Γ1,
term t checks against input type T , with final contexts ∆2; Γ2

∆1; Γ1 ` this.f ↑ T1 a ∆2 mtype(m,T1) = Π(ā : Ī).(T1 T2 × U →W)
∆2, ¯̂a : Ī; Γ1 ` t ↓ U [¯̂a/ā] a ∆3; Γ2 ¯̂a fresh
∆3; Γ2{this.f ←[T2[¯̂a/ā]} ` this ↑h Cī a ∆4 (AT-Call)

∆1; Γ1 ` f.m(t) ↑W [¯̂a/ā] a ∆3; Γ2{this.f ← [T2[¯̂a/ā]}

∆1; Γ1 ` this.f ↑ (U1 + U2) a ∆2 classof(Uk) = Ck

∆2; Γ1{this.f ← [Uk} ` tk ↑ Tk a ∆k+2; Γk+2 C1 6= C2 (AT-Case)
∆1; Γ1 ` case f of (Ck ⇒ tk)k∈1,2 ↑ (T1 + T2) a (∆3; Γ3 ·∆4; Γ4)

Figure 13 Selected algorithmic rules. In the subtyping rules, T ◦ means that T is not a type Π, Σ,
or +. In rules AS-ΠL and AS-ΣR, index variable â is fresh.

5 Algorithmic Typechecking

We develop an algorithmic system in two steps. The first step is to introduce an existential
index variable (written â with the hat in the style of Dunfield and Krishnaswami [14, 15, 16])
into the initial index context whenever there is a need to make a guess at the appropriate
index term i. The oracular rules in the declarative system are S-ΠL and S-ΣR, T-Hide,
T-SelfCall, T-Call and T-Mtype. In the algorithmic type system, each declarative
judgement has a corresponding algorithmic judgement that takes an initial index context
and yields a final index context, possibly augmented with knowledge about what index terms
have to be. Instead of guessing, the algorithmic system adds judgements to instantiate
existential index variables of the form ∆1 ` â := i a ∆2, and to equate index terms, namely
∆1 ` i ≡ j a ∆2. The second step is to apply bidirectional typechecking [39] in order to
distinguish rules that synthesize types from those that check terms against types already
known, a technique that easily supports subtyping and index refinements. In the process, we
also eliminate the nondeterminism associated with the subtyping and typing rules for paths.

The system uses the syntax and meta-variables of the declarative system (Figures 4
and 5). In addition to solved existential index variable declarations a : I, index contexts in
the algorithmic system may also contain unsolved existential index variable declarations â : I.
Similarly to index contexts in the declarative system, index contexts in the algorithmic
system are ordered sequences.

J. Campos and V. T. Vasconcelos 13:23

We give some of the algorithmic rules in Figure 13. The algorithmic subtyping rules
use judgements of the form ∆1 ` T <: U a ∆2 where the final index context ∆2 may
carry information about solved existential index variables. In the bidirectional typechecking
algorithm [39], we alternate between synthesizing types and checking terms against types
already known. Bidirectional typechecking in DOL is formalised by replacing the typing
judgement of the form ∆1; Γ1 ∗ r1 ` t : T a ∆2; Γ2 ∗ r2 with the following two judgements:
∆1; Γ1 ` t ↑ T a ∆2; Γ2 for synthesizing and ∆1; Γ1 ` t ↓ T a ∆2; Γ2 for checking.

I Definition 6 (Complete Index Contexts). A complete index context, denoted by φ, is
an algorithmic index context such that for every existential index variable â in dom(φ),
φ(â) , â : I .= i.

Soundness. To show that the algorithmic system is sound with respect to the original
system, we are given an algorithmic judgement, with an initial index context ∆1 and a final
index context ∆2, and φ as a solved extension of context ∆2, and hence dom(∆1) ⊆ dom(φ)
(by transitivity). Applying φ as a substitution to the given algorithmic judgement produces
a declarative judgement, which is the result we want to obtain.

I Theorem 7 (Soundness of Algorithmic Subtyping). If ∆1 . T : ? and ∆1 . U : ? and
T [∆1] = T and U [∆1] = U and ∆1 ` T <: U a ∆2 and φ extends ∆2, then ∆2[φ] ` T [φ] <:
U [φ].

I Theorem 8 (Soundness of Algorithmic Typing). Let φ be a complete index context that
extends ∆2.
1. If ∆1; Γ ` r ↑ T a ∆2, then ∆1[φ]; Γ[φ] ` r : T [φ] a ∆2[φ].
2. If ∆1; Γ1 ` t ↑ T a ∆2; Γ2, then ∆1[φ]; Γ1[φ] ∗ this ` t : T [φ] a ∆2[φ]; Γ2[φ] ∗ this.
3. If ∆1; Γ1 ` t ↓ T a ∆2; Γ2 and ∆1 . T : ?, then ∆1[φ]; Γ1[φ]∗this ` t : T [φ] a ∆2[φ]; Γ2[φ]∗

this.

Completeness. To prove completeness of the algorithmic system, we somehow do the reverse
of soundness: from a declarative derivation, which has no existential index variables, we obtain
a complete index context along an algorithmic derivation. In completeness of algorithmic
subtyping, we are given an initial index context ∆1 and a complete index context φ1 that
extends it. In completeness of algorithmic typing, in addition we are given a final context ∆′1
that may extend ∆1 (with the result of unpacking or with propositions, for example) such that
dom(∆1) ⊆ dom(∆′1) and dom(∆′1) = dom(φ1), and hence dom(∆1) ⊆ dom(φ1). We show
that we can build an algorithmic derivation with a final context ∆2. However, the algorithmic
rules generate fresh index variables that may not be in ∆1,∆′1 or φ1. So, completeness
will also produce a complete index context φ2 that extends both ∆2 and φ1 such that
dom(∆2) = dom(φ2).

I Theorem 9 (Completeness of Algorithmic Subtyping). Let φ1 be a complete index context
that extends ∆1 such that dom(∆1) = dom(φ1). If ∆1[φ1] ` T [φ1] : ? and ∆1[φ1] ` U [φ1] : ?
and ∆1[φ1] ` T [φ1] <: U [φ1], then ∆1 ` T [∆1] <: U [∆1] a ∆2 and there exists φ2 that
extends both ∆2 and φ1 such that dom(∆2) = dom(φ2).

I Theorem 10 (Completeness of Algorithmic Typing). Let φ1 and ∆′1 be index contexts that
extend ∆1 such that dom(∆1) ⊆ dom(∆′1) and dom(∆′1) = dom(φ1).
1. If ∆1[φ1] ` T [φ1] : ?, ∆1[φ1]; Γ[φ1] ` r : T [φ1] a ∆′1[φ1], then ∆1; Γ[∆1] ` r : T [∆1] a ∆2

and there exists φ2 that extends both ∆2 and φ1 such that dom(∆2) = dom(φ2).

ECOOP 2018

13:24 Dependent Types for Class-based Mutable Objects

2. If ∆1[φ1] ` T [φ1] : ? and ∆1[φ1]; Γ1[φ1]∗r1 ` t : T [φ1] a ∆′1[φ1]; Γ2[φ1]∗r2, then depending
on t either ∆1; Γ1[∆1] ` t ↑ T [∆1] a ∆2; Γ2[∆1] or ∆1; Γ1[∆1] ` t ↓ T [∆1] a ∆2; Γ2[∆1]
and there exists φ2 that extends both ∆2 and φ1 such that dom(∆2) = dom(φ2).

Implementation. Our prototype ships with an IDE developed as an Eclipse plugin based on
the Xtext framework, where the examples can bes typechecked, compiled and run. The IDE
support includes: a code editor assistant for DOL programs, on-the-fly error checking, and
target code generation in the form of Java classes. Our typechecker is a direct implementation
of the algorithmic type system, extended with integer and boolean literals, local variables
and all the syntactic sugar from the examples. Constraint checking is performed as part of
typechecking via a direct interface to the Z3 constraint solver [12].

6 Related Work and Discussion

At the basis of index refinements lies the notion of dependent type developed by Martin-
Löf [32], and first applied to proof assistants (logical frameworks) such as AUTOMATH [44],
the Calculus of Constructions [11], NuPRL [10], Lego [54] and the Edinburgh Logical Frame-
work [22]. While full dependent types are an appealing feature to integrate in programming
languages, the price is increased complexity of typechecking. Unlike index refinements, full
dependent types do not restrict the domain of variables appearing in types. When added to
(possibly nonterminating) programming languages, the task of determining type equivalence
becomes as difficult as determining term equivalence (which is undecidable in general).

Some programming languages offer different strategies to handle nonterminating programs.
Cayenne [2] is a functional programming language in the style of Haskell with an undecidable
dependent type system. A semi-decidable approach forces the typechecker to terminate within
a number of prescribed steps, eventually providing the user with an answer. Epigram [33]
builds on a tactic-driven proof engine, similar to that of the Coq proof assistant, requiring
correctness proofs to be specified. Unlike Cayenne, Epigram rules out general recursive
programs, avoiding nontermination and any form of effects, thus making typechecking
decidable. Recursion is supported by the structure of dependent types which are inductive
families with inductive indices.

The Ynot tool is an extension of the functional dependently-typed language included in
Coq with support for side-effects via Hoare Type Theory (HTT) and Separation Logic [35, 36].
HTT introduces an indexed monadic type in the style of a Hoare triple to reason about
mutation. While DOL’s varying types may have similarities with the Hoare type, our
approach does not involve the complexity of higher-order abstraction. As HTT, the F*
language [43], designed for program verification, employs the monad technique generalising it
to multiple monads. This ML-style functional language uses dependent and refinement types
to specify effectful programs, and supports automated and interactive proofs. A related
approach is provided by RSP1 [45] that allows programming with proofs in an imperative
setting. The language offers decidable typechecking by banning impure operations from
types with the purpose of letting the user prove arbitrary properties of programs. All these
languages provide SMT-based automation and handle effectful programming. In that regard,
they are close to DOL, yet they differ substantially in their aim to combine programming
and theorem proving, which our language does not support. Targeting the C programming
language, Deputy [9] also handles mutation using a Hoare-inspired typing rule ensuring that
assignment results in a well-typed state. For decidability, Deputy combines compile time and
runtime checking, as opposed to our approach in which typechecking is performed statically.

J. Campos and V. T. Vasconcelos 13:25

Index refinements as formulated by Xi and Pfenning [53] reduce typechecking to a
constraint satisfaction problem on terms belonging to index sorts. Their approach (which
we adopt) offers the additional advantage of relative simplicity of the type system, as well
as requiring fewer annotations, when compared to full dependent type systems. Xi later
formulated Xanadu [48], a language with a C-like syntax combining imperative programming
with index refinements, and ATS [50] which also supports DML-style dependent types and
linear types (named viewpoints). While closely related, DOL extends the ideas of Xanadu
to class-based objects that exhibit state and behaviour. Our language also handles object-
oriented programming features such as modular development, inheritance with subtyping,
which Xanadu does not deal with. A proposal for building an object-oriented system on top
of DML was formulated by Xi [49]. The language includes inheritance without subtyping,
simulated via existentially quantified dependent types. Xi’s object model is simpler than ours,
since objects are not regarded as records of fields (they merely respond to messages), and the
language does not include imperative features. Ωmega [41] and Liquid Types [40] offer two
more examples of functional languages with a strict phase separation; the latter is implemented
in DSolve, a tool that automatically infers dependent types from an OCaml program and a
set of logical qualifiers. Cyclone [26] is a type-safe extension of the C programming language,
combining static analysis and runtime checks. It offers domain-specific indexed types for the
purpose of safe multi-threading and memory management.

Another reference is Dependent JavaScript (DJS) [7], which introduces refinement types
with predicates from an SMT-decidable logic in a dynamic real-world language. In DJS,
imperative updates involve the presence of mutation: the types of variables are changed by
assignment, for instance. The challenge is handled using flow-sensitive heap types, which
allow tracking variable types, in combination with refinement types. The result is an increase
in the language expressiveness by using type annotations inside JavaScript comments that
account for side-effects. DJS employs the alias types approach [42] for strong updates in
combination with thawing/freezing locations, an alternative to DOL’s linear approach.

Other forms of dependent types include X10’s constrained types [38], designed around the
notion of constraints on the immutable state of objects. The core language proposed extends
the purely functional FJ [25]. While appealing, constrained types currently cannot enforce
invariants on the mutable state of objects. Dependent classes [20] provide another approach
in the object-oriented setting. A class can be seen as forming a family of collaborating objects,
much like a type family in traditional dependent type theory. The model is complex, since it
also involves inheritance, and type soundness is hard to prove. Like DOL, full dependent
classes and its lightweight version [27] support class-based programming and inheritance.
A similar model is provided by Scala’s path-dependent types [1] that unify nominal and
structural type systems by allowing objects to contain type members. Dependent types in
this model are expressed not in type signatures but in type placements. An abstract type
refers to a type that must be defined by subclasses, becoming dependent on the instance it
refers to. None of these languages supports an imperative style of programming, whereas
DOL is designed to handle both mutable and immutable objects.

A kind of typestate seems to arise from having state exposed in (method) types and
relying on input and output types that define pre- and post-conditions. In this sense, DOL
relates to recent work on a typestate-oriented programming language [19] by Garcia et al.
As DOL, Featherweight Typestate (FT) is a nominal object-oriented language with mutable
state but whose types are enriched with state permissions. However, there are important
technical differences between FT and DOL. The former is based on transitions that specify
sequences of method calls explicitly, whereas DOL’s method availability is less explicit. FT
also allows flexible aliasing control by way of access permissions specified in types, whereas
DOL uses only linear objects (adding a better alias control is seen as an orthogonal issue).

ECOOP 2018

13:26 Dependent Types for Class-based Mutable Objects

Extensions. We have left out of DOL’s formalisation some features that are desirable in
practice. In particular, we need (1) richer index languages in domains of interest, possibly at
the cost of decidable typechecking, and (2) alternatives to the current strategy for handling
aliases. To relax the notion of uniqueness, we could, for instance, introduce an indirection
from the main type context to a compile-time heap of objects in the style of alias types [42].
The possibility of aliasing indexed types would require a pointer to the object, allowed to be
freely duplicated, while the type describing the object state must remain linear. However, to
record type indirections, this approach would require additional type annotations.

References
1 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In

OOPSLA. ACM Press, 2014.
2 Lennart Augustsson. Cayenne a language with dependent types. In ICFP, pages 239–250.

ACM Press, 1998.
3 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103

of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.
4 Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – A functional language

with dependent types. In TPHOLs, volume 5674 of LNCS, pages 73–78. Springer, 2009.
5 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design

and implementation. Journal of Functional Programming, 23:552–593, 2013.
6 Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating the

nullity annotation burden. In ECOOP, pages 227–247. Springer, 2007.
7 Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript. In

OOPSLA, pages 587–606. ACM Press, 2012.
8 Maciej Cielecki, Jȩdrzej Fulara, Krzysztof Jakubczyk, and Lukasz Jancewicz. Propagation

of jml non-null annotations in Java programs. In Principles and Practice of Programming
in Java, pages 135–140. ACM Press, 2006.

9 Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Necula.
Dependent types for low-level programming. In ESOP, volume 4421 of LNCS, pages 520–
535. Springer, 2007.

10 Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
Scott F. Smith, James T. Sasaki, and S. F. Smith. Implementing mathematics with the
Nuprl proof development system. Prentice Hall, 1986.

11 Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

12 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 4963 of LNCS, pages
337–340. Springer, 2008.

13 Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through spe-
cification inheritance. In International Conference on Software Engineering, pages 258–267,
1996.

14 Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, 2007. CMU-CS-07-129.

15 Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional
typechecking for higher-rank polymorphism. In ICFP, pages 429–442. ACM Press, 2013.

16 Joshua Dunfield and Neelakantan R. Krishnaswami. Sound and complete bidirectional
typechecking for higher-rank polymorphism with existentials and indexed types. CoRR,
abs/1601.05106, 2016.

J. Campos and V. T. Vasconcelos 13:27

17 Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an
object-oriented language. In OOPSLA, pages 302–312. ACM Press, 2003.

18 Cormac Flanagan. Hybrid type checking. In POPL, pages 245–256, 2006.
19 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-

oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, 2014.
20 Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent classes. In OOPSLA,

pages 133–152. ACM Press, 2007.
21 Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modular

session types for objects. Logical Methods in Computer Science, 11(4), 2015.
22 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. J.

ACM, 40(1):143–184, 1993.
23 Tony Hoare. Null references: The billion dollar mistake. QCon, 2009.
24 Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. In

Symposium on Applied Computing, pages 1435–1441. ACM Press, 2006.
25 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal

core calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.
26 Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In USENIX, pages 275–288. USENIX, 2002.
27 Tetsuo Kamina and Tetsuo Tamai. Lightweight dependent classes. In GPCE, pages 113–124.

ACM Press, 2008.
28 Kenneth L. Knowles. Executable Refinement Types. PhD thesis, University of California,

2014.
29 Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A beha-

vioral interface specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3):1–38,
2006.

30 K. Rustan M. Leino. Extended static checking: A ten-year perspective. In Informatics –
10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 157–175. Springer, 2001.

31 Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. TOPLAS,
16(6):1811–1841, 1994.

32 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis-Napoli, 1984.
33 Conor McBride. Epigram: Practical programming with dependent types. In Advanced

Functional Programming, volume 3622 of LNCS, pages 130–170. Springer, 2004.
34 Conor McBride. How to keep your neighbours in order. In ICFP, pages 297–309. ACM

Press, 2014.
35 Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.

Ynot: dependent types for imperative programs. In ICFP, pages 229–240, 2008.
36 Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-

morphism and separation. Journal of Functional Programming, 18(5-6):865–911, 2008.
37 Ulf Norell. Towards a practical programming language based on dependent type theory.

PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, 2007.

38 Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In OOPSLA, pages 457–474. ACM Press, 2008.

39 Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program.
Lang. Syst., 22(1):1–44, 2000.

40 Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In PLDI, pages
159–169. ACM Press, 2008.

41 Tim Sheard and Nathan Linger. Programming in Omega. In Central European Functional
Programming School, volume 5161 of LNCS, pages 158–227. Springer, 2007.

ECOOP 2018

13:28 Dependent Types for Class-based Mutable Objects

42 Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In ESOP, volume
1782 of LNCS, pages 366–381. Springer, 2000.

43 Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohl-
weiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent types and
multi-monadic effects in F*. In POPL, pages 256–270. ACM Press, 2016.

44 Diederik T. van Daalen. The Language Theory of Automath. PhD thesis, Technische
Hogeschool Eindhoven,Eindhoven, 1980.

45 Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based approach to func-
tionally correct imperative programming. In ICFP, LNCS, pages 268–279. ACM Press,
2005.

46 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. In-
formation and Computation, 115(1):38–94, 1994.

47 Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University, Pittsburgh, 1998.

48 Hongwei Xi. Imperative programming with dependent types. In LICS, pages 375–387.
IEEE Press, 2000.

49 Hongwei Xi. Unifying object-oriented programming with typed functional programming.
In PEPM, pages 117–125. ACM Press, 2002.

50 Hongwei Xi. Applied type system: Extended abstract. In TYPES, pages 394–408. Springer,
2004.

51 Hongwei Xi. Dependent ML: an approach to practical programming with dependent types.
Journal of Functional Programming, 17(2):215–286, 2007.

52 Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent
types. In PLDI, pages 249–257. ACM Press, 1998.

53 Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In POPL,
pages 214–227. ACM Press, 1999.

54 Luo Zhaohui and Robert Pollack. The LEGO proof development system: A user’s manual.
Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

Static Typing of Complex Presence Constraints in
Interfaces
Nathalie Oostvogels1

Vrije Universiteit Brussel, Brussels, Belgium
noostvog@vub.ac.be

Joeri De Koster
Vrije Universiteit Brussel, Brussels, Belgium
jdekoste@vub.ac.be

Wolfgang De Meuter
Vrije Universiteit Brussel, Brussels, Belgium
wdmeuter@vub.ac.be

Abstract
Many functions in libraries and APIs have the notion of optional parameters, which can be
mapped onto optional properties of an object representing those parameters. The fact that
properties are optional opens up the possibility for APIs and libraries to design a complex “de-
pendency logic” between properties: for example, some properties may be mutually exclusive,
some properties may depend on others, etc. Existing type systems are not strong enough to
express such dependency logic, which can lead to the creation of invalid objects and accidental
usage of absent properties. In this paper we propose TypeScriptIPC: a variant of TypeScript
with a novel type system that enables programmers to express complex presence constraints on
properties. We prove that it is sound with respect to enforcing complex dependency logic defined
by the programmer when an object is created, modified or accessed.

2012 ACM Subject Classification Theory of computation → Type theory, Software and its en-
gineering→ Object oriented languages, Software and its engineering→ Data types and structures

Keywords and phrases type checking, interfaces, dependency logic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.14

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.3

1 Introduction

Static type checking enables the compile-time detection of type errors in programs, which
would otherwise occur at run-time. To enable static type checking, developers have to include
type declarations in their code. These type declarations also serve as documentation, which
facilitates reasoning over code. Early type systems only describe the basic type of the values
that could be stored in a variable, but throughout the years more complex types have been
introduced, such as intersection types [26], union types, linear types [16] and dependent
types [22]. Using these more expressive types, developers can express more sophisticated
programs while retaining the compile-time guarantee that their code is correct.

1 Funded by a PhD Fellowship of the Research Foundation - Flanders (FWO)

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 14; pp. 14:1–14:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noostvog@vub.ac.be
mailto:jdekoste@vub.ac.be
mailto:wdmeuter@vub.ac.be
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.14
http://dx.doi.org/10.4230/DARTS.4.3.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Static Typing of Complex Presence Constraints in Interfaces

Table 1 Twitter API documentation for sending private messages4.

Property name Optional? Description
text required The text of your direct message.

user_id optional ID of the user who should receive the direct message.
screen_name optional Screen name of the user who should receive the direct message.

Note: One of user_id or screen_name are required.5

Dynamically typed languages have given rise to new challenges in type systems, such as
flow-sensitivity and optional types. One such challenge in particular is using the absence or
presence of parameters to encode information. For example, a search function might require
that at least one filter is specified, or objects might only be considered valid if a group of
properties are all present or all absent. For singular properties, optional types can already
express this. However, in order to fully resolve this challenge using static type systems, these
inter-property constraints must be made explicit.

These types of constraints are common for Web APIs [24], where the presence of a
property can determine the structure of other properties in the object of which it is a member,
or where the presence of a property even excludes other properties. However, inter-property
constraints also exist in programming languages and libraries. We show several examples of
inter-property constraints, classified into three categories:

Exclusive constraints: exactly one of a set of properties must be present. In the Twitter
API, users can be identified by either their user_id or their screen_name. Another
example is found in the Python standard library, where the function os.utime2 sets both
the access and modification time of a file. The documentation describes that the function
takes two optional parameters to set the time: times and ns, moreover it states that “It
is an error to specify tuples for both times and ns ”.
Dependent constraints: constraints on a property depend on the presence or the
value of another property. For example, properties explaining details of a picture (name,
description) should not be present if the picture property itself is not present either.
In Chart.js, a library for designing charts in JavaScript, the documentation for lines
in a chart states that “If the steppedLine value is set to anything other than false,
lineTension will be ignored”.3

Group constraints: a group of properties should either all be present or not present
in an object. For example, latitude and longitude properties of a GPS location should
always occur (or be omitted) together.

We will use a running example from the Twitter API specification to demonstrate that
state-of-the-art interfaces do not suffice to describe inter-property constraints. Table 1 shows
the specification for sending a private message, with a typical translation to a TypeScript
interface in Listing 1. Every object that contains the input data for sending a private message
should adhere to the PrivateMessage interface.

The accompanying note in Table 1 indicates that there is an exclusive constraint imposed

2 https://docs.python.org/3/library/os.html#os.utime
3 http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
4 At the time of writing, the note below the table was explicitly mentioned in the API. Recently, the

description has changed — omitting the note — but the constraint still holds.
5 https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/

api-reference/new-message

https://docs.python.org/3/library/os.html#os.utime
http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message

N. Oostvogels, J. De Koster, and W. De Meuter 14:3

on the user properties. However, in TypeScript (and also in other languages) it is impossible
to express that exactly one of user_id and screen_name is required. The question marks
after user_id and screen_name in Listing 1 denote that these properties are optional, but
this means that the type system accepts objects containing none or both of the user properties.
Similarly, a group constraint with latitude and longitude properties cannot be expressed: one
can mark both properties as optional, but the type system will not reject the program when
only one property is provided.

1 interface PrivateMessage {
2 text: string ;
3 user_id ?: number ;
4 screen_name ?: string ;
5 }

Listing 1 TypeScript interface for the specification in Table 1.

The lack of support for inter-property constraints in existing programming languages
causes errors to be delegated to the runtime. In the best case, the API or library provides
a detailed error message, stating which properties were incompatible. Sometimes no error
message is returned at all, and a silent choice is made instead: if both user properties are
provided, Twitter silently chooses the screen name over the user ID.

Existing type systems are incapable of expressing inter-property constraints and statically
checking these constraints both at construction time and during updates. In this paper we
describe a type system that can express such complex presence constraints over multiple
properties of an object. We show how interfaces with support for inter-property constraints
can be incorporated in programming languages in Section 2, and describe the key features of
the type system in Section 3. Sections 4 and 5 present the formalisations of the language,
as a variant of TypeScript. We prove that the type system enforces both type safety and
constraint integrity (Section 6). Sections 7 and 8 discuss related work and future work,
respectively. Section 9 contains concluding remarks.

2 Programming with Inter-property Constraints

In this section, we propose a syntax for expressing inter-property constraints and explain
intuitively how they can be used. Unless otherwise noted, every code snippet in the rest of this
paper is written in TypeScriptIPC, our version of TypeScript with support for inter-property
constraints. The syntax of TypeScriptIPC differs little from the syntax of TypeScript. Instead,
the type system makes optimal use of the information provided by the program about the
structure of objects.

2.1 Definition of interfaces with constraints
To handle inter-property constraints, the interface declaration syntax needs to be extended.
Listing 2 shows an example of an interface declaration, revisiting the Twitter specification
we showed in Table 1. Interfaces now consist of two parts: next to the traditional property
name–type declarations, they also contain a list of constraints over the presence and absence
of those properties. The syntax of constraints is as follows:

c ∈ Constraints ::= present(n) | (c) | c ∧ c | c ∨ c | ¬c | c→ c | c↔ c | c xor c

As opposed to TypeScript and many other languages — where properties are required by
default and can be made optional with a ? annotation — properties in TypeScriptIPC are
optional by default and are made required by adding a present(n) constraint.

ECOOP 2018

14:4 Static Typing of Complex Presence Constraints in Interfaces

Lines 2–4 list the three properties for PrivateMessage, and their types in TypeScriptIPC.
Lines 6 and 7 denote the constraints on the presence of those three properties. To improve
the expressiveness of interfaces, constraints on the presence of a property can be combined
with logical operators. The PrivateMessage interface lists two presence constraints: line 6
requires the presence of the text property and line 7 is the inter-property constraint from our
running example. Objects can only be of an interface type if all its constraints are satisfied.

1 interface PrivateMessage {
2 text: string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text);
7 present (user_id) xor present (screen_name);
8 }

Listing 2 Twitter private messaging API data expressed as interface with constraints.

The constraint definition language does not list optional properties as an explicit constraint
operation, as this can be expressed by the following constraint: present(n) ∨ ¬present(n),
which is a tautology.

Listing 3 shows another example of inter-property constraints, describing an interface
of a picture object with required caption (line 7) and optional geolocation. However, the
lat and long properties are dependent on the picture property: if the picture itself is not
provided, the location should be omitted as well. In other words: the presence of the location
properties implies that the picture must be present as well. These constraints are defined
on lines 8 and 9. The fourth constraint on line 10 requires that the latitude and longitude
properties are present or absent together.

1 interface Picture {
2 caption : string ;
3 picture : string ;
4 lat: number ;
5 long: number ;
6 } constraining {
7 present (caption);
8 present (lat) → present (picture);
9 present (long) → present (picture);

10 present (lat) ↔ present (long);
11 }

Listing 3 Interface with dependent and group inter-property constraints.

Interfaces with inter-property constraints can also benefit from interface inheritance. For
example, let us consider the case where we want a stricter version of the PrivateMessage
interface in which only the screen name is allowed. Instead of creating a new interface,
the existing interface can also be extended with extra constraints. Listing 4 shows an
interface in which all properties and constraints of PrivateMessage are inherited, with an
additional present(screen_name) constraint. As the xor constraint from PrivateMessage
is still applicable, this interface implicitly forbids the presence of a user_id property.

1 interface PrivateMessageStrict extends PrivateMessage {
2 // reuse properties from PrivateMessage
3 } constraining {
4 present (screen_name);
5 }

Listing 4 Extending PrivateMessage to require the screen name property.

N. Oostvogels, J. De Koster, and W. De Meuter 14:5

2.2 Object creation
Listing 5 shows how three objects are created and assigned to three variables of type
PrivateMessage. Even though the interface contains inter-property constraints, nothing
changes for the programmer on a syntactical level. To type check this code snippet properly,
the type system has to verify that the interface constraints are satisfied for that object. In
the example, the first object (msg1) satisfies all constraints, including the exclusive constraint:
only user_id is passed along as identification for the user. However, the type system has to
generate errors for msg2 and msg3, as they both violate the exclusive constraint.

1 var msg1: PrivateMessage = {text: "Hello", user_id : 42}; // correct
2 var msg2: PrivateMessage = {text: "Hello"}; // error: none present
3 var msg3: PrivateMessage = {text: "Hello",
4 user_id : 42,
5 screen_name : "Alice"}; // error: both present

Listing 5 Creating objects with inter-property constraints.

The type system also needs to ensure that no constraints are violated when expressions
with different interface types are assigned to each other, or when an instance of an interface
is assigned to a variable with a regular object literal type.

2.3 Property access
When inter-property constraints are involved, reading object properties requires extra caution.
The type system should only allow the access of a property when that property is guaranteed
to be present. For example, the property text in the PrivateMessage interface is a
required property and thus it is certain this property is always present in objects of type
PrivateMessage.

By contrast, the type system should reject programs where other properties of a
PrivateMessage object are accessed. The exclusive constraint guarantees that exactly
one of user_id and screen_name will be present, but it is not known which property ac-
tually is. The function getUserId (defined in Listing 6) tries to read the user_id of a
PrivateMessage, which generates a type error as this property access is unsafe.

To prevent errors from accessing undefined properties, programmers must verify whether
properties are present before using them. For example, the function getUser first performs a
test to check whether user_id is present. Inside the true branch, access to the user ID (line 6)
must be allowed. Additionally, because there is an inter-property constraint between user_id
and screen_name, the screen_name property is guaranteed to be absent even though we did
not explicitly test for it. The inverse holds in the false branch.

Similarly, in the function getLocation (which retrieves the longitude and latitude of a
picture), the type system has to allow the access of long, which follows directly from the if
statement. On top of that, the type system should also accept accessing the properties lat
and picture, which are both guaranteed to be present if long is present.

1 function getUserId (msg: PrivateMessage) : number {
2 return msg. user_id ; // error: user_id is not guaranteed to be present
3 }
4 function getUser (msg: PrivateMessage) {
5 if (msg. user_id !== undefined) {
6 msg. user_id ; // :: number (present due to if statement)
7 msg. screen_name ; // :: undefined (not present due to xor constraint)
8 } else {
9 msg. user_id ; // :: undefined (not present due to if statement)

10 msg. screen_name ; // :: string (present due to xor constraint)

ECOOP 2018

14:6 Static Typing of Complex Presence Constraints in Interfaces

11 }
12 }
13 function getLocation (picture : Picture) {
14 if (picture .long !== undefined) {
15 picture .long; // :: number (present due to if statement
16 picture .lat; // :: number (present due to group constraint)
17 picture . picture ; // :: string (present due to dependent constraint)
18 }
19 }

Listing 6 Accessing properties

2.4 Property updates
As with every object-oriented type system, the assignment of a new value to a property of an
object should only succeed when the value is of the correct type. Inter-property constraints
add an extra complication: assigning to a property might invalidate an inter-property
constraint.

Updating a property that was already guaranteed to be present is safe: the previous
section showed that the type system will only assign the intended type to properties that are
known to be present. Line 2 in Listing 7 illustrates this with the text property. The update
of the user_id property on line 4 will fail, however: the type system disallows the property
access, as explained in the previous section.

Note that it is not allowed to assign the value undefined to properties of any type
except Undefined, as this would make a required property absent (line 3). This principle
is known as the strict null-checking mode of TypeScript. In Listing 7, it is only allowed to
assign undefined to screen_name (line 8), as this property is known to be absent inside the
consequent of the if statement.

1 function setMsg (msg: PrivateMessage , text: string , user_id : number) {
2 msg.text = text; // ok
3 msg.text = undefined ; // error: assigning undefined to present property
4 msg. user_id = user_id ;// error: property with unknown presence status
5
6 if (msg. user_id !== undefined) {
7 msg. user_id = user_id ; // ok
8 msg. screen_name = undefined ; // ok
9 }

10 }

Listing 7 Updating properties.

The examples of Listing 7 only modify one property at a time. However, an inter-property
constraint often requires the modification of several properties at once, as the object could be
in a type-incorrect state inbetween several assignments. Let us consider the case in Listing 8
where a programmer wants to switch from user ID to screen name. The type system rejects
this program, as it breaks the rules imposed by the strict-null checking mode. This behaviour
is desirable: inbetween lines 3 and 4, the inter-property constraint of msg is violated: it
contains neither user ID nor screen name.

1 var msg: PrivateMessage = {text: "Hello", user_id : 42};
2 if (msg. user_id !== undefined) {
3 msg. user_id = undefined ;
4 msg. screen_name = "Alice";
5 }

Listing 8 Changing an inter-property constraint is not possible with separate assignments.

N. Oostvogels, J. De Koster, and W. De Meuter 14:7

Our solution is to enable updating of multiple properties simultaneously, such that the
object is never in an invalid state between consecutive assignment statements. We propose an
assign(i, o) operator6 that returns a copy of object i, in which the properties from the object
o are added or updated. Listing 9 shows how the assign operator switches from user_id to
screen_name. Note that assign is functional: instead of modifying its first arguments, it
returns a new object.

1 var msg: PrivateMessage = {text: "Hello", user_id : 42};
2 var msg2: PrivateMessage =
3 assign (msg , { user_id : undefined , screen_name : "Alice"}); // correct
4 var msg3: PrivateMessage =
5 assign (msg , { user_id : undefined }); // incorrect

Listing 9 Using multi-assign to switch from user ID to screen name.

While programmers can update any subset of the properties of an object, not all com-
binations are correct, as the msg3 example above shows. Intuitively, if an inter-property
constraint exists between two or more properties, they should all appear together in the call
to assign. The properties of an object can thus be divided into one or more “clusters”. For
example a Picture object has a trivial cluster for caption, and a separate cluster for the
long, lat and picture properties.

3 Verifying Constraints in TypeScript

The addition of constraints to interfaces has consequences on several facets of the type system.
In the following sections, we explain how the type system of TypeScriptIPC deals with the
creation, modification, and access of properties of interfaces with constraints. Because the
constraint language expresses constraints with logical connectives, the type system uses
several concepts from propositional logic to guarantee correctness.

3.1 Object literals have to satisfy constraints
The type system only accepts the assignment of an object literal to a variable with an
interface type when that object satisfies the interface constraints. Using terminology from
propositional logic, the type system requires that the object literal is a valuation [15] that
satisfies the logical formulas of the interface (constraints). More specifically, an object literal
defines a valuation, assigning truth values (presence and absence of properties) to proposition
symbols (property names). Moreover, for every valuation v there exists a unique function v̂
which takes a proposition (here: the constraints) and returns true or false.

3.2 Constraints dictate property presence
As with other type systems, interface declarations contain a list of properties with their types.
However, looking up a property of an interface may only succeed when the interface contains
a constraint indicating that property is present. Of course, with complex inter-property
constraints, these constraints may not be directly present in the constraint set. Instead, the
type system relies on logical entailment (denoted �`) to verify whether a present(n) constraint
follows from a set of constraints. Calculating logical entailments can be efficiently automated
using deductive systems such as the Gentzen system [15]. Returning to the PrivateMessage

6 assign resembles the Object.assign function in JavaScript, but does not modify its input object.

ECOOP 2018

14:8 Static Typing of Complex Presence Constraints in Interfaces

example, the type system verifies the following logical entailment for accessing the text
property:

{present(text); present(user_id) xor present(screen_name)} �` present(text)

Similarly, inter-property constraints can also guarantee the absence of a property. In the
case where neither the presence or absence of a property can be derived from the constraints,
the type system should conservatively reject the access of that property. This also follows
from the logical entailment. For example, the type checker rejects the function getUserId of
Listing 6, because neither the presence nor the absence of user_id is a logical consequence
of the interface constraints:

{present(text); present(user_id) xor present(screen_name)} 2` present(user_id)
{present(text); present(user_id) xor present(screen_name)} 2` ¬present(user_id)

3.3 Explicit property presence tests
In dynamic languages, it is common to perform runtime property presence tests. These
presence tests can provide the type system with more information about the object being
tested: in one branch it is certain that the property is present, while it is guaranteed to
be absent in the other. For the true branch in the function getUser of Listing 6, the type
system simply adds the new information (present(user_id)) to the set of constraints, to
allow the access of the user_id property.

That extra information can trigger other inter-property constraints, thus guaranteeing
the presence or absence of other properties. Using logical entailment, the type system can
prove that screen_name will not be present:

present(text);
present(user_id) xor present(screen_name);
present(user_id);

 �` ¬present(screen_name)

Similarly, the presence check on longitude in getLocation guarantees that the longit-
ude is present, but also suffices to safely access latitude (by combining the constraint
present(long) ↔ present(lat) with present(long)) and the picture itself (combining
constraints present(long)→ present(picture) and present(long)).

3.4 Interface–interface compatibility
Normally, an instance of interface I0 is considered assignable to a variable with as type
another interface I1 if I0 contains at least every property and method in the other interface.
However, with the addition of constraints we must also take care that no instance of I0
violates the constraints in I1. To guarantee that all constraints of I1 are satisfied, every
constraint from I1 must be a logical entailment of the constraints in I0. Properties which are
absent from I0 result in extra ¬present(n) constraints at the left-hand side of the entailment.

For example, assigning a variable with a more strict interface type PrivateMessage2
(defined in Figure 1) to a variable of type PrivateMessage, gives rise to the following logical
entailment. Next to the constraints of PrivateMessage, the left side of the logical entailment
contains an extra constraint due the absence of the screen name in PrivateMessage2.
Without the third constraint, the logical entailment would not be valid.

present(text);
present(user_id);
¬present(screen_name)

 �`
present(text) ∧

present(user_id) xor present(screen_name)

N. Oostvogels, J. De Koster, and W. De Meuter 14:9

1 interface PrivateMessage1 {
2 text: string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text);
7 present (user_id);
8 present (screen_name);
9 }

interface PrivateMessage2 {
text: string ;
user_id : number ;

} constraining {
present (text);
present (user_id);

}

Figure 1 Other versions of the PrivateMessage interface.

As for properties, one might expect that I0 may contain a superset of the properties in I1.
However, this can lead to constraint violations: consider the following example, with two
variations on the PrivateMessage interface (defined in Figure 1).

1 var msg1: PrivateMessage1 = {text:"Hello",user_id :42, screen_name :"Alice"};
2 var msg2: PrivateMessage2 = msg1;
3 var msg3: PrivateMessage = msg2;

On line 2, a variable of type PrivateMessage1 is assigned to a variable of type
PrivateMessage2 and line 3 assigns a variable of type PrivateMessage2 to a variable
of the default PrivateMessage interface: both assignments would be allowed, as no con-
straints are violated. However, line 3 would result in an object of type PrivateMessage that
contains both user_id and screen_name, violating its constraints.

Evidently, width subtyping is irreconcilable with a type system that requires the absence
of properties. Therefore, the type system has to counter-intuitively require that the interface
I0 only contains properties other than those in I1 when those properties are guaranteed to
be absent. This is not the case for the second assignment (line 2) in the example:{

present(text); present(user_id); present(screen_name)
}
2` ¬present(screen_name)

3.5 Updated objects have to satisfy constraints
To verify that all constraints are still satisfied after a simultaneous update of multiple
properties, the type system again uses valuations. However, as the update only affects a
subset of the properties, the object literal in the second argument only serves as a valuation
for a subset of the constraints.

Consider the following example of an interface that indicates both the sender (with the
s_* properties) and the receiver (r_*). Logically, these properties form separate clusters
that are not affected by each other.

1 interface PrivateMessage3 {
2 text: string ;
3 r_user_id : number ;
4 r_screen_name : string ;
5 s_user_id : number
6 s_screen_name : string ;
7 } constraining {
8 present (text);
9 r_user_id xor r_screen_name ;

10 s_user_id xor s_screen_name ;
11 }

var msg: PrivateMessage3 =
{text: "Hello",

r_user_id : 42,
s_user_id : 43};

var msg2 = assign (msg ,
{ r_user_id : undefined ,

r_screen_name : "Alice"});
\[
\]

The assign at the right side only updates the receiver of the private message. Therefore,
the constraints for the sender side do not have to be taken into account: the assign operation

ECOOP 2018

14:10 Static Typing of Complex Presence Constraints in Interfaces

type checks if the object literal is a valid valuation of the constraint on line 9. This is the
case, as undefined is interpreted as an absent property. Of course, the types of properties
in the object literal must conform to those defined in the interface (with the exception of
undefined properties). Note that an update is only valid when all properties of the cluster
are updated.

4 TypeScriptIP C: A Variant of TypeScript with Constraints

Section 2 showed how constraints on the presence of properties can be added to TypeScript’s
interfaces and Section 3 gave an informal idea of how the type system statically enforces
that constraints stay satisfied throughout the program. In this section, we formalise these
ideas in TypeScriptIPC, a variant of TypeScript.

TypeScript is an extension of JavaScript which adds optional static typing. It provides
extra features over JavaScript such as structural typing and named interfaces. To ensure
compatibility with existing JavaScript code, type annotations in TypeScript are optional
which enables developers to gradually convert existing JavaScript code to TypeScript.

This section introduces TypeScriptIPC. The syntax, semantics and type rules presented in
this section build upon those presented by Bierman et al. [7]. They present the type system
in two parts: the first is a safe calculus (called safeFTS) which contains the core features
of TypeScript, including structural typing, contextual types and the lack of block scoping
in JavaScript. The second part expands safeFTS to a production-ready calculus, which is
unsafe.

TypeScriptIPC reuses most of safeFTS’s features, which are based upon TypeScript 0.9.5.
However, as checking the presence or absence of properties is a key feature of TypeScriptIPC,
we use the subtyping rules from the strict null checking mode in TypeScript 2.0. These
make it illegal to assign null and undefined to variables of any other type, unless explicitly
allowed.

Our variant of TypeScript with constraints will focus on objects and interfaces. Contextual
typing and constructs to deal with the lack of block scoping are omitted for clarity. As they
are orthogonal to object creation and interfaces, they can be trivially added to the language
presented in this paper.

4.1 Syntax
Figure 2 presents the syntax of TypeScriptIPC, which is based on the syntax presented
in [7]. It features basic language expressions such as identifiers, literals, assignment and
binary operators. Literals can be numbers n, strings s, or one of the following constants:
true, false, null and undefined, where null indicates the empty object and undefined
is returned when accessing a property that is not present in an object.

Objects are defined using object literals, which map property names to values. Multiple
properties of an object can be updated at once using assign. This function returns a new
object that contains all properties of the first argument. Properties from the second argument
are either updated (when already present in the first argument) or added (otherwise).
Function expressions are similar to those in JavaScript, but with type annotations for the
parameters. Expressions can be cast to a type, but only when the cast is known to be
correct. Statements and variable declarations are straightforward. TypeScriptIPC only
features variable declarations where the type and the value for the variable are provided.

The empty sequence is denoted with •, a concatenation is denoted using a comma, and a
sequence of expressions is written as e. A sequence of property assignments {n : e} is an

N. Oostvogels, J. De Koster, and W. De Meuter 14:11

e, f ∈ Expressions ::= x (Identifier)
l (Literal)
{a} (Object literal)
e = f (Assignment operator)
assign(e, {a}) (Assign operator)
e ⊗ f (Binary operator)
e.n (Property access)
e(f) (Function call)
<T>e (Type assertion)
function (x : T) : S {s} (Function expression)

a ∈ Property assignments ::= n : e (Property assignment)
s, t ∈ Statements ::= e; (Expression statement)

if (e) {s} else {t} (If statement)
return; (Return statement)
return e; (Return value statement)
var x:T = e (Variable declaration)

Figure 2 Syntax of TypeScriptIPC.

abbreviation for {n1 : e1, . . . , nn : en}, with n the length of the sequence. Similarly, (x : T) is
a sequence of function arguments (x1 : T1, . . . , xn : Tn).

To reduce the size and complexity of our formalisation, we omit parts of safeFTS
that do not contribute to the necessary adaptations for inter-property constraints. More
specifically, TypeScriptIPC does not support computed property accesses, untyped identifiers,
call signatures without parameter types or return types, and untyped and uninitialised
variable declarations.

Figure 3 shows that TypeScriptIPC has three kinds of types: the top type any, primitive
types and object types. An object type is represented by either a literal type or an interface
type. Note that functions are represented as callable objects that contain one field with
its type of the form (x : S):T. A sequence of types is denoted as T, and the sequence of
properties and call signatures is analogous to their corresponding value sequences.

Interfaces play a key role in expressing inter-property constraints, and their declaration
in TypeScriptIPC is different from other languages:

D ∈ Declarations ::=
{

interface I {n : T} constraining {c}
interface I extends I {n : T} constraining {c} (I non-empty)

TypeScriptIPC interfaces first list the property (field or method) names, together with
their types as usual. However, constraints on the presence of a property are specified in the
constraining section, using the syntax presented in Section 2.1. By default, all properties
are optional unless marked as present. In addition, the constraining section can impose
inter-property constraints on properties of the interface. Interfaces can inherit properties
and constraints from other interfaces. TypeScriptIPC does not allow interfaces to define
properties with the same name as any of their superinterfaces. Furthermore, all properties
are public.

To retrieve the properties and constraints from a given interface, we define two auxiliary
functions properties and constraints. Analogous to the inheritance of properties, constraints
from the superinterfaces are simply accumulated.

ECOOP 2018

14:12 Static Typing of Complex Presence Constraints in Interfaces

R, S, T ∈ Types ::= any
P
O

P ∈ Primitive types ::= number
string
boolean
void
Null
Undefined

O ∈ Object types ::= I (Interface type)
L (Literal type)

L ∈ Object literal types ::= {M}
M, N ∈ Type members ::= n:T (Property)

(x : S):T (Call signature)

Figure 3 Types of TypeScriptIPC.

Property lookup (1)
Σi(I) = interface I {n : T} constraining {c}

properties(I) = {n : T}

Property lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

properties(I) = {n : T} ∪ properties(I)

Constraint lookup (1)
Σi(I) = interface I {n : T} constraining {c}

constraints(I) = {c}

Constraint lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

constraints(I) = {c} ∪ constraints(I)
Before analysis starts, all interface declarations are gathered and stored in a mapping Σi

of interface names I to their respective declaration D. As in safeFTS, a program is a pair
(Σi, s) containing an interface table and a sequence of statements. TypeScriptIPC requires
every interface to satisfy a set of sanity conditions:
1. For every I ∈ dom(Σi), Σi(I) = interface I {n : T} constraining {c} or Σi(I) =

interface I extends I {n : T} constraining {c};
2. for every interface name I appearing anywhere in Σi, it is the case that I ∈ dom(Σi);
3. there are no cycles in the dependency graph induced by the extends clauses of the

interface declarations defined in Σi;
4. for every interface name I in dom(Σi), there exists at least one valuation (that assigns

truth values (indicating presence or absence) to proposition symbols (property names))
that satisfies the constraints (constraints(I));

5. for every interface name I in dom(Σi), none of the properties of I is allowed to be of
type any or Undefined.

The first three sanity conditions are common, and almost identical to those in safeFTS, the
latter two are specifically for interfaces with inter-property constraints. The fourth condition
prevents the declaration of interfaces with inherent contradictions, and the fifth condition
prevents the assignment of undefined to an object property, which — at runtime — is equal
to an absent property.

N. Oostvogels, J. De Koster, and W. De Meuter 14:13

4.2 Type System
In this section we present the type system of TypeScriptIPC. Figure 4 shows the type rules of
TypeScriptIPC, which are based on those of safeFTS. For clarity, we omit contextual typing
and JavaScript’s lack of block scoping from the typing rules, which are orthogonal extensions
to the contribution in this paper. The typing judgement is written as follows: Γ ` e : T,
where given an environment Γ the expression e is of type T. Γ maps variables to types
(x : T) and is extended as follows: Γ, x : T. For sequences, we write Γ ` e : T as shorthand for
Γ ` e1 : T1, . . . ,Γ ` en : Tn, with n the length of the sequence. S 5 T is an abbreviation for
S1 5 T, . . . , Sn 5 T and we write S 5 T as shorthand for S1 5 T1, . . . , Sn 5 Tn.

The rules that do not (directly) deal with interfaces are standard: I-Id looks up a variable
in the environment. I-Number, I-String, I-Bool, I-Null and I-Undefined all type check a
constant. The type of an object literal is a mapping of all property names onto the type of
their expression (I-ObLit). In I-Op, the type system checks that the parameters have the
expected type.

4.2.1 Property lookup
I-Prop first retrieves the type of the object, and then determines the type of the property
using the lookup function:

lookup(S, n) =



lookup(Number, n) if S = number

lookup(Boolean, n) if S = boolean

lookup(String, n) if S = string

T if S = {M0, n:T, M1}
lookup(Object, n) if S = {M} and n /∈ M

T if S = I and n : T ∈ properties(I)
and constraints(I) �` present(n)

Undefined if S = I and n : T ∈ properties(I)
and constraints(I) �` ¬present(n)

Properties of primitive types are looked up in their associated interface type (lines 1–3).
Looking up a property in an object literal type is as expected (line 4). When the property is
not found in the object literal type, the lookup function searches the property in the Object
type (line 5). The last two lines show how a property is looked up in a TypeScriptIPC
interface. Simply looking up the property in the list of interface properties does not suffice:
as shown in Section 3.2, the constraints on an interface type dictate the presence of its
properties. If the property is guaranteed to be present, lookup returns its type, otherwise it
returns Undefined. If neither the presence nor the absence of a property can be guaranteed,
the lookup function is not defined.

4.2.2 Assignment Compatibility
In I-Assign, a new expression may only be assigned to an expression when the new expression
has a type that is assignable to the type of the original expression. Similarly, I-Call uses the
assignment compatibility relationship to check that the parameters of the function call have
the correct type. When type checking a function definition, I-Func extends the environment
as usual with the type declarations for the parameters, and type any for the this variable.
The return types of the function body must all be assignable to the declared return type. As

ECOOP 2018

14:14 Static Typing of Complex Presence Constraints in Interfaces

I-Id Γ, x:T ` x:T
I-Number Γ ` n : number

I-String Γ ` s : string

I-Bool Γ ` true, false : boolean
I-Null Γ ` null : Null

I-Undefined Γ ` undefined : Undefined
I-ObLit Γ ` e : T

Γ ` {n : e} : {n : T}

I-Op
Γ ` e : S0 Γ ` f : S1 S0 ⊗ S1 = T

Γ ` e⊗ f:T
I-Prop

Γ ` e : S
lookup(S, n) = T

Γ ` e.n:T

I-Assign

Γ ` e : S Γ ` f:T
T 5 S

Γ ` e = f:T
I-Call

Γ ` e : {(x : S) : R}
Γ ` f : T T 5 S

Γ ` e(f) : R

I-Func
Γ, this : any, x : T ` s : R R 5 S

Γ ` function(x : T) : S {s} : {(x : T) : S}
I-Assert

Γ ` e : S
S 5 T

Γ ` <T>e : T

I-AssertInf

Γ ` {n : e} : {M} {Mp} = {n : T | n : T ∈ {M} ∧ T 6= Undefined}
{Mp} ⊆ properties(I) cp = {present(n) | n : T ∈ {Mp}}

{Mnp} = properties(I) \ {Mp} cnp = {¬present(n) | n : T ∈ {Mnp}}
v = cp ∪ cnp v̂(constraints(I)) = true

Γ ` <I>{n : e} : I

I-UpdateObj
Γ ` e : {M} Γ ` {n : e} : {N}

Γ ` assign(e, {n : e}) : {M}] {N}

I-UpdateInf

Γ ` e : I I′ = slice(I, n, constraints(I))
Γ ` <I′>{n : e} : I′ n ∈ dom(properties(I)) n = dom(properties(I′))

Γ ` assign(e, {n : e}) : I

Figure 4 Type rules of TypeScriptIPC.

only safe casts are allowed in TypeScriptIPC, casting an expression to another type is only
allowed when the original type is assignable to the cast type (I-Assert).

The assignment compatibility relation is defined in Figure 5, and is based on the rules
of safeFTS. In safeFTS, interfaces are replaced by corresponding object literals. When an
interface (indirectly) references itself in its field declarations, this can lead to an infinite type
expansion. To deal with this, safeFTS defines assignment compatibility as a coinductive
relation, which guarantees termination. In TypeScriptIPC, on the other hand, interfaces
cannot be replaced by object literals, as interfaces may also contain constraints. Thus,
assignment compatibility for interface fields with interface types in TypeScriptIPC must be
checked against the interface definition instead of via a coinductive relation.

First, assignment compatibility is transitive (A-Trans) and reflexive (A-Refl). Any type
can be assigned to any (A-AnyR). null can only be assigned to itself or any, and undefined
can only be assigned to itself, any or void (A-Undefined). For assigning primitive types,
A-Prim looks up their interface type. An object literal type can be assigned to another
object literal type when all the properties of the source object are also present on the target
object, and properties are assignable pairwise (A-Object). A-Prop defines that assigning

N. Oostvogels, J. De Koster, and W. De Meuter 14:15

properties to each other is invariant. Assigning call signatures is contra-/co-variant (A-CS
and A-CS-Void). A-Interface is as discussed in Section 3.4: interfaces must be at least as
strict as the target interface to be considered assignment-compatible, and common properties
should have the same type. Extra properties on I0 are not allowed, unless their absence can
be proven from the contraints. A-IntObj allows assigning an interface to an object when the
constraints on the interface guarantee that all properties are present.

Due to width subtyping, the type of an object does not guarantee that only those
properties are present at runtime (as can be seen in A-Object). However, width subtyping
conflicts with inter-property constraints, that may require properties to be absent: the
assignment of an object to an interface could possibly invalidate the interface constraints at
runtime. Therefore, there is no assignment compatibility rule for assigning an object to an
interface: TypeScriptIPC only allows the casting of a literal object to an interface. This is
covered by the rule I-AssertInf (covered in Section 4.2.3). By only allowing object literals
(instead of all object literal types), the type system has an exact view of the properties that
are present and can thus guarantee that the interface constraints are satisfied.

A small study7 on web APIs indicates that this is not a severe restriction. The study
explored a list of GitHub projects that use an SDK to send requests to the Twitter and
YouTube API. In 163 of the 180 studied API calls, the data was provided as an object literal.
In 14 out of the 17 cases where the data argument was not an object literal, the object was
defined directly above the API call.

Note that, as a consequence, the examples in Section 2 that create objects with inter-
property constraints (Listing 5) are only accepted by the type checker if they are first typecast
to PrivateMessage.

4.2.3 Creating and updating
The rule I-AssertInf covers the case where an object literal is cast to an interface. As
explained in Section 3.1, the cast only succeeds when the properties of the object have
the correct type and the presence and absence of properties form a valid valuation of the
constraints. A property is considered absent when it is not in the object literal, or when its
type is Undefined.

I-UpdateInf and I-UpdateObj cover updating multiple properties of an object at once,
using the functional assign function (see Section 3.5). When the type of the first argument
of assign is an object literal type, I-UpdateObj simply combines (updates or adds, when
the property is already present resp. not present in the first argument) the properties of the
second argument with the first, using]. More caution is required when the type of e is an
interface, as updating properties could invalidate the constraints. As the second argument
does not necessarily contain every property of the interface, it does not suffice to check
whether the new properties satisfy all the constraints. To solve this, I-UpdateInf uses the slice
function (defined below) to generate an interface that only contains constraints concerning
the properties that are being updated. Given this generated interface, rule I-AssertInf is
reused to verify whether the updated properties satisfy the applicable subset of constraints.
An assign fails if any of the updated properties are not declared in the interface I, or when
not all properties of I’ are part of the second argument of assign.

To preserve soundness, assign does not modify its first argument; instead it returns a
fresh object. Allowing assign to mutate the object would impose severe usage restrictions
(such as in Flow [10] and RSC [34]), or requires tracking aliases (such as in DJS [11]).

7 http://soft.vub.ac.be/~noostvog/typescriptipc/olrestriction.pdf

ECOOP 2018

http://soft.vub.ac.be/~noostvog/typescriptipc/olrestriction.pdf

14:16 Static Typing of Complex Presence Constraints in Interfaces

A-Trans
R 5 S S 5 T

R 5 T
A-Refl S ` �

S 5 S
A-AnyR S ` �

S 5 any

A-Undefined
Undefined 5 void

A-Prim
I(P) 5 T

P 5 T

A-Object
{M0, M1} ` � M1 5 M2

{M0, M1} 5 {M2}
A-Prop

n : T 5 n : T

A-CS

T 5 S R1 6= void
R0 5 R1

(x : S) : R0 5 (y : T) : R1
A-CS-Void

T 5 S R ` �
(x : S) : R 5 (y : T) : void

A-Interface

∀n : S ∈ properties(I0) ∧ n : T ∈ properties(I1) : S = T
c0 = {¬present(n) | n : T ∈ properties(I0) \ properties(I1)}
c1 = {¬present(n) | n : T ∈ properties(I1) \ properties(I0)}

constraints(I0) ∪ c1 �`

∧
constraints(I1)

∧
c0

I0 5 I1

A-IntObj
properties(I) 5 {M} {n : T} = {M} constraints(I) �` present(n)

I 5 {M}

Figure 5 Assignment compatibility for types in TypeScriptIPC.

slice returns the transitive closure of all properties and constraints of the given interface
which are affected by the properties being updated. Formally, slice is defined as follows. It
uses an auxiliary function fv which takes a constraint and returns all referenced properties.

slice(I, p, c) =
{

interface I′ {p} constraining {c} if (p, c) ≡ (p′, c′)
slice(I, p′, c′) otherwise

where c′ = c ∪ {c | c ∈ constraints(I) ∧ fv(c) ∩ p 6= ∅}
p′ = p ∪ {fv(c)|c ∈ c′}

4.2.4 Sequence typing
Finally, Figure 6 shows the type rules for sequences, which are of the form Γ ` s : R, where
given an environment Γ the sequence of statements s has a set of return types R. These
return types are collected from all return statements in the sequence. This is used by the
type system to verify whether the types of all return statements in a function are assignable
to the declared return type.

All rules are default and identical to those in safeFTS, except for the type rules for if
statements. As with latent predicates in occurrence typing [33], the type system uses the
presence tests inside conditions of if statements to refine interface types in the branches.
I-IfPresenceInterface shows the case where the condition contains a property presence test
(cfr. Section 3.3) for a property of an object with an interface type.

The function addConstraint adds the constraints to the interface, and performs a satis-
fiability check to verify that there are no inconsistent constraints in the extended constraint

N. Oostvogels, J. De Koster, and W. De Meuter 14:17

I-EmpSeq Γ ` • : • I-ExpSt Γ ` e : S Γ ` s : R
Γ ` e; s : R

I-IfPresenceInterface

Γ ` x : I n : S ∈ properties(I) Γ ` s : R
I− = addConstraint(I,¬present(n)) Γ] x : I− ` t1 : T1
I+ = addConstraint(I, present(n)) Γ] x : I+ ` t2 : T2

Γ ` if (x.n ≡ undefined) {t1} else {t2}; s : T1, T2, R

I-IfGeneral

Γ ` e : S Γ ` t1 : T1
Γ ` t2 : T2 Γ ` s : R

Γ ` if (e) {t1} else {t2}; s : T1, T2, R
I-Return Γ ` s : R

Γ ` return; s : void, R

I-ReturnVal Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

I-ITVarDec
Γ ` e : T T 5 S noDup(Γ, x : S) Γ] x : S ` s : R

Γ ` var x : S = e; s : R

Figure 6 Sequence type rules in TypeScriptIPC.

set. In the case of inconsistencies (ie. when the formula present(n) ∧ ¬present(n) can be
proven for any n), addConstraint will return the bottom type Undefined, preventing access
to an invalid object. The definition of addConstraint is straightforward and omitted for
lack of space. Note that the type assignment for e is overwritten in both branches using],
leaving type assignments for other variables as-is. Although Figure 6 only defines rules for a
single pattern of conditional expressions, the type rule can be generalised to inequalities and
combined logical expressions, like in [33]. If statements without presence tests are covered by
I-IfGeneral.

5 Operational Semantics of TypeScriptIPC

TypeScript is a superset of JavaScript that adds typing. However, after compilation,
TypeScript emits JavaScript code in which all types are erased, which means that the
semantics of TypeScript (and TypeScriptIPC) are the same of those of JavaScript. However,
we provide the operational semantics of TypeScriptIPC, which will be used in Section 6 to
prove its soundness.

A heap H is a partial function from locations (l) to heap objects (o) . A heap object is
either a closure or an object map. A closure represents a function, and is a pair containing
a lambda expression (where function(x){s} is shortened to λx.{s}) and a scope chain L.
An object map represents an object literal, and is a partial function from variables (x) to
values (v). A variable is either a program variable x, a property name n or the internal
properties @this or @interface. A value is a location l or a literal l. A result r is a value
or a reference, and a reference is a pair containing a location and a variable.

An empty heap is indicated by emp, a heap cell by l 7→ o, a heap lookup by H(l, x),
a heap update by H[l 7→ o] and the union of two disjoint heaps is indicated by H1 ∗ H2.
H[(l, x) 7→ v] updates or extends an object map l with the element x. H(l, x)↓ is true iff
H(l, x) is defined. We define a helper function γ(H, r) that returns r if r is a value, otherwise
(i.e. r is a reference (l, x)) it returns H(l, x) if defined and undefined otherwise. null is a
distinguished location, and may not be in the domain of the heap.

ECOOP 2018

14:18 Static Typing of Complex Presence Constraints in Interfaces

The evaluation rules use a scope chain to model the treatment of variables in JavaScript:
JavaScript resolves variables dynamically against a scope object. A scope chain is a list of
locations of the scope objects, and l : L is a concatenation of a location l to a scope chain L.
A program is evaluated with a scope chain containing only the global JavaScript object lg.
For each function call, a new scope object is created and prepended to the beginning of the
scope chain. After evaluating the function call, that scope object is removed from the scope
chain. The variable lookup function σ is defined as follows:

σ(H, l : L, x) =
{
l if H(l, x)↓
σ(H,L, x) otherwise

The evaluation of an expression e is written as follows: 〈H1, L, e〉 ⇓ 〈H2, r〉, with H1 as
initial heap and L as scope chain, evaluating to heap H2 with result r. As we often need to
evaluate expressions to values instead of references, we define 〈H1, L, e〉 ⇓v 〈H2, v〉 as the
combination 〈H1, L, e〉 ⇓ 〈H2, r〉 and γ(H2, r) = v.

Figure 7 shows the semantics for evaluating expressions in TypeScriptIPC. The evaluation
rules of TypeScriptIPC are almost identical to those in safeFTS, but omit block scoping.
E-Oblit uses an auxiliary function new to create a new location in the object map, E-Update
uses the auxiliary function clone to duplicate an object, and E-Prop’ uses the auxiliary
function box to box primitive values. Note that we do not create bindings for all local variables
up front: they are added to the local scope as they are declared and initialised. E-Update and
E-TypeAssertInf are new. E-Update evaluates the functional update of multiple properties
at once, and E-TypeAssertInf covers the casting of an object literal to an interface. Next to
evaluating the object literal (as in E-ObLit), the internal property @interface indicates that
the expression is of interface type I. In the next section, this property is used for linking the
run-time interface in a location to the declared type in the program. In E-Call, the auxiliary
functions This and act are used:

This(H, (l, x)) =
{
l if H(l, @this)↓
lg otherwise

act(l, x, v, l′) = l 7→ ({x 7→ v, @this 7→ l′})

The evaluation relation for statement sequences is written as 〈H1, L, s1〉 ⇓ 〈H2, s〉, where
s is a statement result (i.e. either return;, return v; or ;). These rules are omitted for
brevity. Unlike safeFTS, the branches of if statements introduce a new scope, so variables
declared there are not visible outside.

6 Soundness

The novelty of the TypeScriptIPC type system lies in its guarantee that all constraints
imposed on objects are guaranteed to be satisfied throughout the execution of the program,
including those over multiple properties. This property is captured in Lemma 1.

Our proof of type soundness is structured identically to [7], albeit without support for
block typing and contextual typing. We define a heap type Σ as a partial function from
heap locations to types [3, 8] (either function types, object literal types, or interface types).
Next, we introduce a number of judgments. First, we define a well-formedness judgment
for heaps H |= � and a judgment that a heap H and scope chain L are compatible, written
H , L |= �. This judgment requires that all scope objects in the scope chain exist on the heap.
We use a judgment Σ |= H to denote that the heap H is compatible with the heap type Σ .

N. Oostvogels, J. De Koster, and W. De Meuter 14:19

E-Id
σ(H,L, x) = l

〈H,L, x〉 ⇓ 〈H, (l, x)〉
E-Lit

〈H,L, l〉 ⇓ 〈H, l〉

E-this

σ(H,L,@this) = l1
H(l1,@this) = l

〈H,L, this〉 ⇓ 〈H, l〉
E-Op

〈H0, L, e1〉 ⇓v 〈H1, l1〉
〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊗ e2〉 ⇓ 〈H2, l1 ⊗ l2〉

E-ObLit

H1 = H0 ∗ [l 7→ new()]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, {n1 : e1, . . . , nm : em}〉 ⇓ 〈H, l〉

E-Assign
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) 7→ v], v〉

E-Update

〈H0, L, e〉 ⇓v 〈H ′0, l〉 H1 = H ′0 ∗ [lr 7→ clone(l)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(lr, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(lr, nm) 7→ vm]
〈H0, L, assign(e, {n1 : e1, . . . , nm : em})〉 ⇓ 〈H, lr〉

E-Prop

〈H0, L, e〉 ⇓v 〈H1, l〉
l 6= null

〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉
E-Prop’

〈H0, L, e〉 ⇓v 〈H1, l〉
H2 = H1 ∗ [l 7→ box(l)]
〈H0, L, e.n〉 ⇓ 〈H2, (l, n)〉

E-Call

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return v; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, v〉

E-CallUndef

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, undefined〉

E-Func
H1 = H0 ∗ [l 7→ 〈λx.{s}, L〉]

〈H0, L, function(x){s}〉 ⇓ 〈H1, l〉
E-TypeAssert

〈H0, L, e〉 ⇓ 〈H1, r1〉
〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

E-TypeAssertInf

H1 = H0 ∗ [l 7→ {@interface 7→ I}]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, <I>{n : e}〉 ⇓ 〈H, l〉

Figure 7 Operational semantics of TypeScriptIPC.

ECOOP 2018

14:20 Static Typing of Complex Presence Constraints in Interfaces

This compatibility also requires that the constraints of interface types are satisfied, which we
prove in Lemma 2. Finally, we depend on a function context(Σ , L) which builds a typing
judgment describing the variables in the scope chain L, using the types in Σ . The] operator
ensures that only the inner-most type for a variable is used: if a variable is present on both
sides, the right instance is returned. Because E-TypeAssertInf attaches an @interface label
to all interface variables in the heap, Σ can reconstruct interface types as well as function
types and object literal types.

context(Σ, []) = {}
context(Σ, l : L) = context(Σ, L)] Σ(l)

We combine the judgments above to write Σ |= 〈H , L, e〉 : T to mean Σ |= H ;
H , L |= �; and context(Σ , L) ` e : T. We define an analogous judgment for statements,
as Σ |= 〈H , L, s〉 : T. Finally, we add a judgment on the result of evaluation of expressions,
written Σ |= 〈H , r〉 : T.

Before we can prove the safety properties of our type system with respect to evaluation,
we first show that the constraints of an interface type accurately predict the presence or
absence of its properties at runtime.

I Lemma 1 (Constraint–presence correlation). The type system of TypeScriptIPC guarantees
that if the constraints of an interface contain a constraint present(n), it is certain that the
property n is present at runtime in objects with that interface type. Similarly: if there is a
constraint not(present(n)), it is certain that the property n will not be present.

Proof. There are three cases to consider:
Case 1: Construction Interfaces can only be constructed in three ways, which all ensure

that the correlation holds:
Case 1a: I-AssertInf. When an object literal is cast to an interface, the interface con-

straints are verified against the properties in the object literal. The correlation is thus
informed by the exact properties of the runtime object (E-TypeAssertInf) and enforced
by the type system.

Case 1b: I-Assign. When an instance of interface I0 is assigned to a variable of type
interface I1, the type system requires that the constraints are satisfied via the as-
signment compatibility rule A-Interface. The correlation holds for the source object
(with type I0) and the compatibility rule asserts that the properties of I1 must be
respectively present or absent. Therefore, the correlation must hold after the cast as
well. At runtime, nothing changes.

Case 1c: I-Assert. Analogous to Case 1b: assignment compatibility dictates the presence
and absence of properties in the source object. Nothing changes at runtime.

Case 2: Property assignment The assignment of new values to object properties either hap-
pens on a per-property basis (Case 2a), or multiple properties at once using
assign (Case 2b).
Case 2a: I-Assign. When a new value is assigned to a property n of an interface, two

typing rules are relevant: I-Prop (including the lookup function) and I-Assign. At
runtime, the E-Assign rule simply overwrites the object property, so it is up to the
type system to enforce the correlation. We assume the correlation holds before the
assignment, so the constraints of the interface must state one of the following:
present(n): the lookup function of I-Prop returns the type of n and I-Assign then

allows the assignment of another value (following the typing rules). As this will

N. Oostvogels, J. De Koster, and W. De Meuter 14:21

only update the value of a property that is already present, this does not change
the presence of n in the object, thus the correlation holds.

¬present(n): the lookup function of I-Prop returns type Undefined. The assignment
compatibility required by I-Assign will fail as no type is assignable to Undefined,
except for undefined, in which case the property will remain absent. Again, the
correlation holds.

Neither: the lookup function of I-Prop is not defined in this case, so the program does
not typecheck. Without this safety guard in place, the correlation would not hold.

Case 2b: I-Update. The assign function updates multiple properties of an object.
Again, we assume that the correlation holds before the assignment. The assign
function returns a new object, of the same type as the first argument, in which the
properties of the second argument are updated. Properties can become absent or
present (by resp. assigning undefined or a value different from undefined), or simply
change value. The assignment is only accepted by the type checker if the second
argument of assign is assignable to the generated interface which covers its prop-
erties. Therefore, a change in presence for those properties is only allowed if the
input interface did not already require their presence or absence. At runtime, rule
E-Update first clones the object and then the properties are overwritten by those of
the second argument. The correlation holds for both the generated interface (because
of assignment compatibility and isolation) and the rest of the object.

Case 3: After a presence test In case of an if statement that tests the presence of an
interface property, the newly gained information is added to the constraints of the type
in both branches (function addConstraint in I-IfPresenceInterface). Here the property
follows from the program flow: if the field presence test succeeds the type system can only
conclude that the present constraint applies, and vice versa when the presence test fails.
Outside of the if statement, the present constraint is discarded again. Even though the
runtime value does not change, this is again an example of the properties of the runtime
value informing the the type system and thus the correlation. J

From Lemma 1, we can prove that a well-typed program does not violate constraints at
runtime. We add an additional condition to the heap–heap type compatibility rule stated
above as Σ |= H : (the fields function returns field names of an object at runtime)

I Lemma 2 (Correctness of interface types at runtime). For heap locations tagged as interface
types, i.e. those where Σ(l) = I, the following is required:
1. Every interface object is tagged as such:

H (l, @interface) = I′ ∧ I′ 5 I;
2. All properties are correctly typed:
∀n ∈ fields(l) : n:T ∈ properties(I) ∧H ,Σ ` (l, n) : T′ ∧ T′ 5 T.

3. The constraints are satisfied by a valuation over the presence or absence of properties:
v = cp ∪ cnp and v̂(constraints(I)) = true

where cp = {present(n) | n ∈ fields(l)}
where cnp = {¬present(n) |n ∈ properties(I)

∧ (¬H (l, n)↓∨ H (l, n) = undefined)}
where fields(l) = {n | H (l, n) ↓ ∧ n 6= @interface ∧H (l, n) 6= undefined}

This lemma is not only unaffected by explicit property presence tests, it guarantees it because
of property 3. Assuming an object (with interface type I) is well-formed before the presence

ECOOP 2018

14:22 Static Typing of Complex Presence Constraints in Interfaces

test, then the strengthened interface type I′ in the taken branch must more closely resemble
the state of the runtime object.

Proof. By induction on the evaluation rules. Most rules do not directly modify the heap, so
we only focus on the rules that potentially invalidate this condition.
E-TypeAssertInf This evaluation rule is responsible for instantiating interface types on
the heap, given an object literal. Property 1 follows from the evaluation rule. Properties 2
and 3 follow directly from the type system.
E-Assign There are three sub-cases: e1 can either resolve to a variable reference, an object
property, or an interface property:

In case of a variable reference to an interface I, the three properties follow directly from
assignment compatibility between I and the interface type I’ assigned to e2.
In case of a property belonging to an object: the three properties cannot be invalidated.
In case of an interface property: it depends on whether this expression is trying to add a
new property or update a present property. The type system assigns type Undefined to
properties which are guaranteed to be absent, and rejects programs that access properties
whose presence is unknown.
For property update, we prevent users from modifying the @interface property (pre-
serving property 1). Properties 2 and 3 are guaranteed by assignment compatibilty.

E-Update This rule first clones the source object (for which all properties are already
satisfied) before assigning the new fields. Property 1 follows from the evaluation rule: the
@interface tag is cloned along with other fields. We now consider the generated interface
I′ in I-UpdateInf. slice ensures that the interface contains the smallest possible subset of
constraints and properties such that all constraints in I either do not mention any properties
from I′ or are part of the constraints in I′. For the fields in I′, the properties 2 and 3 are
guaranteed by the I-UpdateInf rule. For fields not in I′, properties 2 and 3 continue to hold,
as they cannot be affected by the assign operation by definition.
E-ObLit This rule creates a new object on the heap, but cannot invalidate existing interface
types on the heap.
E-Prop’, E-Func These rules create a heap location for respectively properties of literal
objects and a closure, but neither can affect existing interface types on the heap.
E-Call, E-CallUndef The heap modifications made by these two rules are limited to
evaluation of sub-expressions or the allocation of a new scope object to hold the new
function’s local variables. In the latter case, we rely on the fact that extension cannot affect
existing interface types on the heap. J

Finally, we can combine Lemma 2 with the existing proof of safeFTS to obtain proof of
type safety in the presence of constraints.

I Theorem 3 (Subject reduction).
If Σ |= 〈H , L, e〉 : T and 〈H , L, e〉 ⇓ 〈H ′, r〉
then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, r〉 : T′ and T′ 5 T.
If Σ |= 〈H , L, s〉 : T and 〈H , L, s〉 ⇓ 〈H ′, s〉
then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, s〉 : T′ and T′ 5 return(T).

7 Related Work

To the best of our knowledge, TypeScriptIPC is the first language that statically verifies all
aspects of programming with inter-property constraints: defining, initialising, accessing and

N. Oostvogels, J. De Koster, and W. De Meuter 14:23

updating objects with inter-property constraints. In this section, we give an overview of
existing work related to various aspects of the type system presented in this paper.

Dependent and refinement types

Dependently typed languages [5, 36] allow programmers to write more expressive types,
by parametrising types on values. There are no restrictions on what dependent types can
express, which comes at the cost of decidability. Refinement types are a restricted form of
dependent types where types are “refined” with predicates that are statically decidable, for
example through SMT solvers. Refinement types have been used to verify many different
properties [35, 14, 29, 23, 6, 11, 34]. We limit our discussion of refinement types to the
applications that are close to our work: refinement types for dynamic programming languages
and object-oriented programming languages.

DJS [11] extends a subset of JavaScript with dependent types, which allows (with some
modifications) the expression of inter-property constraints over object properties. However,
DJS requires extensive knowledge on heap typing from the developer. This significant
annotation overhead is acknowledged in the paper. Contrast this to TypeScriptIPC, which
proposes a lightweight extension to regular TypeScript interfaces.

In [34], Vekris et al. introduce RSC, a lightweight refinement system for TypeScript. RSC
allows invariants to be imposed in classes and objects, including inter-property constraints
on properties. However, the soundness of these invariants is guaranteed by restricting
invariants to be imposed on immutable properties. Flanagan et al. introduce Hoop [13], a
hybrid object-oriented programming language with refinement types and object invariants.
Hoop requires refinements and variants to be pure and therefore refinements can only be
placed on immutable data. In [23], Nystrom et al. introduce a form of dependent types for
objects in X10. Again, constraints can only be imposed on immutable fields. To conclude,
although refinement type systems are often able to express inter-property constraints, none
of them support inter-property constraints after the initialisation phase: updating properties
that are part of inter-property constraints is impossible. In contrast, TypeScriptIPC allows
single-property updates of objects, and guarantees that the constraints remain satisfied.

Type refinements

The type system of TypeScriptIPC extracts property presence information from conditional
expressions. This concept is known as occurrence typing [32, 33] or type refinement, which
narrows (or strengthens) variable types based on predicates in conditional expressions.
Several static type systems for dynamic languages such as TypeScript [2], Hack [1], Flow [10],
λS [17] and [20] support refining types using tests on the type of a value. Recently, a
hybrid occurrence-refinement type system was proposed in [21]. As this paper demonstrates,
occurrence typing can also be applied to objects with inter-property constraints.

Constraint-based programming

The constraint-centric interfaces introduced in this paper should not be confused with
constraint-based programming [30]. Constraint-based programming is a discipline that finds
solutions for a number of variables given constraints over these variables. By contrast,
TypeScriptIPC uses constraints and flow information to determine the most specific presence
information for properties of objects.

ECOOP 2018

14:24 Static Typing of Complex Presence Constraints in Interfaces

Type systems for dynamic languages

In recent years, several formalisations for TypeScript have been proposed. As already men-
tioned earlier, TypeScriptIPC is based on earlier work [7] by Bierman et al., who formalised
both sound and unsound features of TypeScript, including features such as contextual typing
and the lack of block scoping in JavaScript. There exist several other approaches for adding
gradual typing to dynamic languages such as TypeScript [27, 28] and Dart [19]. These
approaches focus on improving the combination between sound and unsound parts of type
systems for dynamic languages, which is orthogonal to the goal of our paper: enabling
programmers to express inter-property constraints and statically enforcing them.

There already exist several research efforts that focus on the dynamic nature of objects in
JavaScript [4, 31, 18, 9], providing a static type system that verifies the usage of objects, such
as property additions, accesses and updates. The focus of this paper is not on supporting
JavaScript’s object types, but on extending object types with inter-property constraints.
Accessing and updating object properties with inter-property constraints is allowed, but only
when it does not invalidate the object constraints.

Optional object properties

TypeScriptIPC is not the first language to impose constraints on the presence of an object
property. In TypeScript, objects (and methods) can contain optional properties (and
parameters). In strict null checking mode, the type of an optional property in TypeScript
is automatically transformed to a union type, combining the original type with Undefined.
Similarly, programmers can only assign null to value types in C# if that type is indicated
as a nullable type. To support the notion of required and optional properties in Java, there
also exist Java frameworks that provide support for @NonNull annotations (such as [12, 25]).
However, all of these languages and frameworks are restricted to single-property constraints
(types and presence) and cannot express inter-property constraints.

8 Future Work

This paper introduces the concept of constraints in programming languages. Going forward,
we would like to further expand the expressiveness of constraint-centric interfaces. So far,
TypeScriptIPC only supports inter-property constraints on the presence of properties. In
the future, we plan to add support for value-dependent constraints, where the presence of
a property depends on the value of another property. The introduction already listed an
example of a value-dependent constraint in the Chart.js library: “If the steppedLine value
is set to anything other than false, lineTension will be ignored”. Another example can be
found in the Google Maps API for rendering directions8, where “the infoWindow property is
ignored when the property suppressInfoWindows is set to true”. To enable value-dependent
constraints, we plan on using TypeScript’s literal types that limit types to a set of predefined
values.

In this paper we only considered constraints as applied to interfaces, but constraints could
also be imposed on the parameters of a function definition. Listing 10 shows the (simplified)
function utime from the Python standard library, which imposes a NAND constraint on two
of its parameters.

8 https://developers.google.com/maps/documentation/javascript/reference/3/directions

https://developers.google.com/maps/documentation/javascript/reference/3/directions

N. Oostvogels, J. De Koster, and W. De Meuter 14:25

1 function utime(path: string , times: array , ns: array) {
2 // ...
3 } constraining {
4 present (path);
5 ¬(present (ns) ∧ present (times));
6 }

Listing 10 Hypothetical example of a function with inter-parameter constraints.

Finally, this paper highlighted the need for updating multiple properties at once. In
the future, we plan on updating multiple object properties in place without increasing the
annotation burden, by means of alias tracking or stronger heap types.

9 Conclusion

This paper shows how complex constraints on the presence of interface properties can be
statically enforced in programming languages. We introduced a type system with constraint-
centric interfaces, which express constraints on the presence of properties in the desired
pattern.

To achieve this, the type system is extended with four new features: 1) Interfaces carry
constraints on their properties; 2) The type system uses if statements to enrich variable
types of interfaces used in the condition with extra information about property presence;
3) Accessing and updating a property of an object is only allowed when the constraints can
statically guarantee its presence; 4) Finally, a novel procedure assign allows the (functional)
updating of multiple properties at once, which is necessary to safely update properties that
are part of an inter-property constraint.

Implementation. The implementation of TypeScriptIPC is available at https://github.
com/noostvog/TypeScriptIPC.

References
1 Hack. http://hacklang.org/.
2 TypeScript 2.0 Release Notes. https://www.typescriptlang.org/docs/handbook/

release-notes/typescript-2-0.html.
3 Martin Abadi and Luca Cardelli. A theory of objects. Springer Science & Business Media,

2012.
4 Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type inference

for JavaScript. In European conference on Object-oriented programming, pages 428–452.
Springer, 2005.

5 Lennart Augustsson. Cayenne: a language with dependent types. In Proceedings of the
Third ACM SIGPLAN International Conference on Functional Programming, ICFP ’98,
pages 239–250, New York, NY, USA, 1998. ACM.

6 Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D Gordon, and Sergio
Maffeis. Refinement types for secure implementations. ACM Transactions on Programming
Languages and Systems (TOPLAS), 33(2):8, 2011.

7 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In
European Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

8 Gavin M Bierman, MJ Parkinson, and AM Pitts. MJ: An imperative core calculus for Java
and Java with effects. Technical report, University of Cambridge, Computer Laboratory,
2003.

ECOOP 2018

https://github.com/noostvog/TypeScriptIPC
https://github.com/noostvog/TypeScriptIPC
http://hacklang.org/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html

14:26 Static Typing of Complex Presence Constraints in Interfaces

9 Satish Chandra, Colin S Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Srid-
haran, Frank Tip, and Youngil Choi. Type inference for static compilation of JavaScript.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 410–429. ACM, 2016.

10 Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. Fast
and precise type checking for JavaScript. Proceedings of the ACM on Programming Lan-
guages, 1(OOPSLA):48, 2017.

11 Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for JavaScript. In Pro-
ceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, pages 587–606, New York, NY, USA, 2012.
ACM.

12 Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-null Types in an
Object-oriented Language. In Proceedings of the 18th Annual ACM SIGPLAN Conference
on Object-oriented Programing, Systems, Languages, and Applications, OOPSLA ’03, pages
302–312, New York, NY, USA, 2003. ACM.

13 Cormac Flanagan, Stephen N Freund, and Aaron Tomb. Hybrid types, invariants, and
refinements for imperative objects. FOOL/WOOD, 6, 2006.

14 Tim Freeman and Frank Pfenning. Refinement Types for ML. In In Proceedings of the
SIGPLAN’91 Symposium on Language Design and Implementation. Citeseer, 1991.

15 Jean H Gallier. Logic for computer science: foundations of automatic theorem proving.
Courier Dover Publications, 2015.

16 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.
17 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and State

Using Flow Analysis. In European Symposium on Programming, pages 256–275. Springer,
2011.

18 Phillip Heidegger and Peter Thiemann. Recency types for analyzing scripting languages.
In European conference on Object-oriented programming, pages 200–224. Springer, 2010.

19 Thomas S Heinze, Anders Møller, and Fabio Strocco. Type safety analysis for Dart. In
Proceedings of the 12th Symposium on Dynamic Languages, pages 1–12. ACM, 2016.

20 Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf.
Type Refinement for Static Analysis of JavaScript. In Proceedings of the 9th Symposium
on Dynamic Languages, DLS ’13, pages 17–26, New York, NY, USA, 2013. ACM.

21 Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. Occurrence Typing Modulo
Theories. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, pages 296–309, New York, NY, USA, 2016. ACM.

22 Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bibliopolis
Napoli, 1984.

23 Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In In OOPSLA’08: Proceedings of the 23rd ACM SIG-
PLAN Conference on Object Oriented Programming Systems Languages and Applications.
Citeseer, 2008.

24 Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Inter-parameter Con-
straints in Contemporary Web APIs. In International Conference on Web Engineering,
pages 323–335. Springer, 2017.

25 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for Java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201–212. ACM, 2008.

26 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

N. Oostvogels, J. De Koster, and W. De Meuter 14:27

27 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris.
Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages
167–180, New York, NY, USA, 2015. ACM.

28 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete types for TypeScript.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 37. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

29 Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’08, pages 159–169, New York, NY, USA, 2008. ACM.

30 Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

31 Peter Thiemann. Towards a type system for analyzing javascript programs. In European
Symposium On Programming, pages 408–422. Springer, 2005.

32 Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of Typed
Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’08, pages 395–406, New York, NY, USA, 2008.
ACM.

33 Sam Tobin-Hochstadt and Matthias Felleisen. Logical Types for Untyped Languages. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’10, pages 117–128, New York, NY, USA, 2010. ACM.

34 Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement Types for TypeScript.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, pages 310–325, New York, NY, USA, 2016. ACM.

35 Hongwei Xi and Frank Pfennig. Eliminating Array Bound Checking Through Dependent
Types. In In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, 1998.

36 Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 214–227. ACM, 1999.

ECOOP 2018

Mailbox Types for Unordered Interactions
Ugo de’Liguoro
Università di Torino, Dipartimento di Informatica, Torino, Italy
deligu@di.unito.it

https://orcid.org/0000-0003-4609-2783

Luca Padovani
Università di Torino, Dipartimento di Informatica, Torino, Italy
luca.padovani@unito.it

https://orcid.org/0000-0001-9097-1297

Abstract
We propose a type system for reasoning on protocol conformance and deadlock freedom in net-
works of processes that communicate through unordered mailboxes. We model these networks in
the mailbox calculus, a mild extension of the asynchronous π-calculus with first-class mailboxes
and selective input. The calculus subsumes the actor model and allows us to analyze networks
with dynamic topologies and varying number of processes possibly mixing different concurrency
abstractions. Well-typed processes are deadlock free and never fail because of unexpected mes-
sages. For a non-trivial class of them, junk freedom is also guaranteed. We illustrate the expres-
siveness of the calculus and of the type system by encoding instances of non-uniform, concurrent
objects, binary sessions extended with joins and forks, and some known actor benchmarks.

2012 ACM Subject Classification Theory of computation → Type structures, Theory of com-
putation→ Process calculi, Software and its engineering→ Concurrent programming structures,
Software and its engineering → Message passing

Keywords and phrases actors, concurrent objects, first-class mailboxes, unordered communica-
tion protocols, behavioral types, protocol conformance, deadlock freedom, junk freedom

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.15

Related Version Proofs and additional examples are found in the related technical report [17],
https://arxiv.org/abs/1801.04167.

Acknowledgements The authors are grateful to the anonymous reviewers for their valuable
feedback. The second author misses his beloved cat Arturo, who passed away on January 8, 2018.
Much of this paper was written next to Arturo during the last weeks of his long illness.

1 Introduction

Message passing is a key mechanism used to coordinate concurrent processes. The order
in which a process consumes messages may coincide with the order in which they arrive at
destination (ordered processing) or may depend on some intrinsic property of the messages
themselves, such as their priority, their tag, or the shape of their content (out-of-order
or selective processing). Ordered message processing is common in networks of processes
connected by point-to-point channels. Out-of-order message processing is common in networks
of processes using mailboxes, into which processes concurrently store messages and from
which one process selectively receives messages. This communication model is typically
found in the various implementations of actors [26, 1] such as Erlang [3], Scala and Akka
actors [24], CAF [8] and Kilim [52]. Non-uniform, concurrent objects [50, 48, 15] are also

© Ugo de’Liguoro and Luca Padovani;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 15; pp. 15:1–15:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deligu@di.unito.it
https://orcid.org/0000-0003-4609-2783
mailto:luca.padovani@unito.it
https://orcid.org/0000-0001-9097-1297
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://arxiv.org/abs/1801.04167
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Mailbox Types for Unordered Interactions

1 class Account(var balance: Double) extends ScalaActor[AnyRef] {
2 private val self = this
3 override def process(msg: AnyRef) {
4 msg match {
5 case dm: DebitMessage =>
6 balance += dm.amount
7 val sender = dm.sender.asInstanceOf[Account]
8 sender.send(ReplyMessage.ONLY)
9 case cm: CreditMessage =>

10 balance -= cm.amount
11 val sender = cm.sender.asInstanceOf[ScalaActor[AnyRef]]
12 val recipient = cm.recipient.asInstanceOf[Account]
13 recipient.send(new DebitMessage(self , cm.amount))
14 receive {
15 case rm: ReplyMessage =>
16 sender.send(ReplyMessage.ONLY)
17 }
18 case _: StopMessage => exit()
19 case message =>
20 val ex = new IllegalArgumentException("Unsupported␣message")
21 ex.printStackTrace(System.err)
22 }
23 }
24 }

Listing 1 An example of Scala actor taken from the Savina benchmark suite [32].

examples of out-of-order message processors. For example, a busy lock postpones the
processing of any acquire message until it is released by its current owner. Out-of-order
message processing adds further complexity to the challenging task of concurrent and parallel
application development: storing a message into the wrong mailbox or at the wrong time,
forgetting a message in a mailbox, or relying on the presence of a particular message that is
not guaranteed to be found in a mailbox are programming mistakes that are easy to do and
hard to detect without adequate support from the language and its development tools.

The Scala actor in Listing 1, taken from the Savina benchmark suite [32], allows us to
illustrate some of the subtle pitfalls that programmers must carefully avoid when dealing
with out-of-order message processing. The process method matches messages found in the
actor’s mailbox according to their type. If a message of type DebitMessage is found, then
balance is incremented by the deposited amount and the actor requesting the operation
is notified with a ReplyMessage (lines 5–8). If a message of type CreditMessage is found,
balance is decremented by the amount that is transferred to recipient (lines 9–13). Since
the operation is meant to be atomic, the actor temporarily changes its behavior and waits
for a ReplyMessage from recipient signalling that the transfer is complete, before notifying
sender in turn (lines 14–17). A message of type StopMessage terminates the actor (line 18).

Note how the correct execution of this code depends on some key assumptions:
ReplyMessage should be stored in the actor’s mailbox only when the actor is involved
in a transaction, or else the message would trigger the “catch all” clause that throws a
“unsupported message” exception (lines 19–21).
No debit or credit message should be in the actor’s mailbox by the time it receives
StopMessage, or else some critical operations affecting the balance would not be performed.

U. de’Liguoro and L. Padovani 15:3

Two distinct accounts should not try to simultaneously initiate a transaction with each
other. If this were allowed, each account could consume the credit message found in its
own mailbox and then deadlock waiting for a reply from the other account (lines 14–17).

Static analysis techniques that certify the validity of assumptions like these can be valuable
for developers. For example, session types [29] have proved to be an effective formalism for the
enforcement of communication protocols and have been applied to a variety of programming
paradigms and languages [2], including those based on mailbox communications [41, 7, 19, 43].
However, session types are specifically designed to address point-to-point, ordered interactions
over channels [27]. Retrofitting them to a substantially different communication model calls
for some inevitable compromises on the network topologies that can be addressed and forces
programmers to give up some of the flexibility offered by unordered message processing.

Another aspect that complicates the analysis of actor systems is that the pure actor model
as it has been originally conceived [26, 1] does not accurately reflect the actual practice of
actor programming. In the pure actor model, each actor owns a single mailbox and the only
synchronization mechanism is message reception from such mailbox. However, it is a known
fact that the implementation of complex coordination protocols in the pure actor model is
challenging [54, 53, 33, 9]. These difficulties have led programmers to mix the actor model
with different concurrency abstractions [31, 53], to extend actors with controlled forms of
synchronization [54] and to consider actors with multiple/first-class mailboxes [23, 33, 9]. In
fact, popular implementations of the actor model feature disguised instances of multiple/first-
class mailbox usage, even if they are not explicitly presented as such: in Akka, the messages
that an actor is unable to process immediately can be temporarily stashed into a different
mailbox [23]; in Erlang, hot code swapping implies transferring at runtime the input capability
on a mailbox from a piece of code to a different one [3].

In summary, there is still a considerable gap between the scope of available approaches
used to analyze mailbox-based communicating systems and the array of features used in
programming these systems. To help narrowing this gap, we make the following contributions:

We introduce mailbox types, a new kind of behavioral types with a simple and intuitive
semantics embodying the unordered nature of mailboxes. Mailbox types allow us to de-
scribe mailboxes subject to selective message processing as well as mailboxes concurrently
accessed by several processes. Incidentally, mailbox types also provide precise information
on the size of mailboxes that may lead to valuable code optimizations.

We develop a mailbox type system for the mailbox calculus, a mild extension of the
asynchronous π-calculus [51] featuring tagged messages, selective inputs and first-class
mailboxes. The mailbox calculus allows us to address a broad range of systems with
dynamic topology and varying number of processes possibly using a mixture of concurrency
models (including multi-mailbox actors) and abstractions (such as locks and futures).

We prove three main properties of well-typed processes: the absence of failures due
to unexpected messages (mailbox conformance); the absence of pending activities and
messages in irreducible processes (deadlock freedom); for a non-trivial class of processes,
the guarantee that every message can be eventually consumed (junk freedom).

We illustrate the expressiveness of mailbox types by presenting well-typed encodings of
known concurrent objects (locks and futures) and actor benchmarks (atomic transactions
and master-workers parallelism) and of binary sessions extended with forks and joins. In
discussing these examples, we emphasize the impact of out-of-order message processing
and of first-class mailboxes.

ECOOP 2018

15:4 Mailbox Types for Unordered Interactions

Structure of the paper. We start from the definition of the mailbox calculus and of the
properties we expect from well-typed processes (Section 2). We introduce mailbox types
(Section 3.1) and dependency graphs (Section 3.2) for tracking mailbox dependencies in
processes that use more than one. Then, we present the typing rules (Section 3.3) and the
soundness results of the type system (Section 3.4). In the latter part of the paper, we discuss
a few more complex examples (Section 4), related work (Section 5) and ideas for further
developments (Section 6).

2 The Mailbox Calculus

We assume given an infinite set of variables x, y, an infinite set of mailbox names a, b, a set
of tags m and a finite set of process variables X. We let u, v range over variables and mailbox
names without distinction. Throughout the paper we write e for possibly empty sequences
e1, . . . , en of various entities. For example, u stands for a sequence u1, . . . , un of names and
{u} for the corresponding set.

The syntax of the mailbox calculus is shown below:

Process P,Q ::= done | u!m[v] | G | P |Q | (νa)P | X[u]
Guard G,H ::= fail u | free u.P | u?m(x).P | G+H

The term done represents the terminated process that performs no action. The term
u!m[v] represents a message stored in mailbox u. The message has tag m and arguments v. A
guarded process G is a composition of actions offered on a mailbox. Actions will be described
in a moment. We assume that all actions in the same guard refer to the same mailbox u. The
term P |Q represents the parallel composition of P and Q and (νa)P represents a restricted
mailbox a with scope P . The term X[u] represents the invocation of the process named X
with parameters u. For each process variable X we assume that there is a corresponding
global process definition of the form X(x) , P . The action fail u represents the process that
fails with an error for having received an unexpected message from mailbox u. The action
free u.P represents the process that deletes the mailbox u if u is empty and then continues
as P . The action u?m(x).P represents the process that receives an m-tagged message from
mailbox u and then continues as P with x replaced by the message’s arguments. A compound
guard G+H offers all the actions offered by G and H. The notions of free and bound names
of a process P are standard and respectively denoted by fn(P) and bn(P).

The operational semantics of the mailbox calculus is mostly conventional. We use the
structural congruence relation ≡ defined below to rearrange equivalent processes:

fail a+G ≡ G G+H ≡ H +G G+ (H +H ′) ≡ (G+H) +H ′

done | P ≡ P P |Q ≡ Q | P P | (Q |R) ≡ (P |Q) |R
(νa)(νb)P ≡ (νb)(νa)P (νa)P |Q ≡ (νa)(P |Q) if a 6∈ fn(Q)

Structural congruence captures the usual commutativity and associativity laws of guard
and process composition, with fail and done acting as the respective units. Additionally,
the order of mailbox restrictions is irrelevant and the scope of a mailbox may shrink or
extend dynamically. The reduction relation → is inductively defined by the rules

[r-read] a!m[c] | a?m(x).P +G → P{c/x}
[r-free] (νa)(free a.P +G) → P

[r-def] X[c] → P{c/x} if X(x) , P
[r-par] P |R → Q |R if P → Q

[r-new] (νa)P → (νa)Q if P → Q

[r-struct] P → Q if P ≡ P ′ → Q′ ≡ Q

U. de’Liguoro and L. Padovani 15:5

where P{c/x} denotes the usual capture-avoiding replacement of the variables x with the
mailbox names c. Rule [r-read] models the selective reception of an m-tagged message from
mailbox a, which erases all the other actions of the guard. Rule [r-free] is triggered when the
process is ready to delete the empty mailbox a and no more messages can be stored in a
because there are no other processes in the scope of a. Rule [r-def] models a process invocation
by replacing the process variable X with the corresponding definition. Finally, rules [r-par],
[r-new] and [r-struct] close reductions under parallel compositions, name restrictions and
structural congruence. We write →∗ for the reflexive and transitive closure of →, we write
P X→∗ Q if not P →∗ Q and P X→ if P X→ Q for all Q.

Hereafter, we will occasionally use numbers and conditionals in processes. These and
other features can be either encoded or added to the calculus without difficulties.

I Example 1 (lock). In this example we model a lock as a process that waits for messages
from a self mailbox in which acquisition and release requests are stored. The lock is either
free or busy. When in state free, the lock nondeterministically consumes an acquire message
from self . This message indicates the willingness to acquire the lock by another process and
carries a reference to a mailbox into which the lock stores a reply notification. When in
state busy, the lock waits for a release message indicating that it is being released:

FreeLock(self) , free self .done
+ self ?acquire(owner).BusyLock[self , owner]
+ self ?release.fail self

BusyLock(self , owner) , owner!reply[self] | self ?release.FreeLock[self]

Note the presence of the free self guard in the definition of FreeLock and the lack thereof
in BusyLock. In the former case, the lock manifests the possibility that no process is willing
to acquire the lock, in which case it deletes the mailbox and terminates. In the latter case,
the lock manifests its expectation to be eventually released. Also note that FreeLock fails if
it receives a release message. In this way, the lock manifests the fact that it can be released
only if it is currently owned by a process. A system where two users alice and carol compete
for acquiring lock can be modeled as the process

(νlock)(νalice)(νcarol)(FreeLock[lock] | User[alice, lock] | User[carol, lock]) (1)

where

User(self , lock) , lock!acquire[self] | self ?reply(l).(l!release | free self .done)

Note that User uses the reference l – as opposed to lock – to release the acquired lock.
As we will see in Section 3.3, this is due to the fact that it is this particular reference to the
lock’s mailbox – and not lock itself – that carries the capability to release the lock.

I Example 2 (future variable). A future variable is a one-place buffer that stores the result
of an asynchronous computation. The content of the future variable is resolved once and for
all by the producer once the computation completes. After that, its content can be retrieved
any number of times by the consumers. If a consumer attempts to retrieve the content of
the future variable beforehand, the consumer suspends until the variable is resolved. We can
model a future variable thus:

Future(self) , self ?put(x).Present[self , x]
Present(self , x) , free self .done

+ self ?get(sender).(sender!reply[x] | Present[self , x])
+ self ?put.fail self

ECOOP 2018

15:6 Mailbox Types for Unordered Interactions

The process Future represents an unresolved future variable, which waits for a put message
from the producer. Once the variable has been resolved, it behaves as specified by Present,
namely it satisfies an arbitrary number of get messages from consumers but it no longer
accepts put messages.

I Example 3 (bank account). Below we see the process definition corresponding to the actor
shown in Listing 1. The structure of the term follows closely that of the Scala code:

Account(self , balance) , self ?debit(amount, sender).
(sender!reply | Account[self , balance + amount])

+ self ?credit(amount, recipient, sender).
(recipient!debit[amount, self] |
self ?reply.(sender!reply | Account[self , balance + amount]))

+ self ?stop.free self .done
+ self ?reply.fail self

The last term of the guarded process, which results in a failure, corresponds to the
catch-all clause in Listing 1 and models the fact that a reply message is not expected to be
found in the account’s mailbox unless the account is involved in a transaction. The reply
message is received and handled appropriately in the credit-guarded term.

We can model a deadlock in the case two distinct bank accounts attempt to initiate a
transaction with one another. Indeed, we have

Account[alice, 8] | alice!credit[2, carol, bank] |
Account[carol, 9] | carol!credit[5, alice, bank] →∗ carol!debit[2, alice] | alice?reply . . . |

alice!debit[5, carol] | carol?reply . . .

where both alice and carol ignore the incoming debit messages, whence the deadlock.

We now provide operational characterizations of the properties enforced by our typing
discipline. We begin with mailbox conformance, namely the property that a process never
fails because of unexpected messages. To this aim, we define a process context C as a process
in which there is a single occurrence of an unguarded hole []:

C ::= [] | C | P | P | C | (νa)C

The hole is “unguarded” in the sense that it does not occur prefixed by an action. As
usual, we write C [P] for the process obtained by replacing the hole in C with P . Names
may be captured by this replacement. A mailbox conformant process never reduces to a
state in which the only action of a guard is fail:

I Definition 4. We say that P is mailbox conformant if P X→∗ C [fail a] for all C and a.

Looking at the placement of the fail u actions in earlier examples we can give the
following interpretations of mailbox conformance: a lock is never released unless it has been
acquired beforehand (Example 1); a future variable is never resolved twice (Example 2); an
account will not be notified of a completed transaction (with a reply message) unless it is
involved in an ongoing transaction (Example 3).

We express deadlock freedom as the property that all irreducible residuals of a process
are (structurally equivalent to) the terminated process:

I Definition 5. We say that P is deadlock free if P →∗ Q X→ implies Q ≡ done.

According to Definition 5, if a deadlock-free process halts we have that: (1) there is no
sub-process waiting for a message that is never produced; (2) every mailbox is empty. Clearly,
this is not the case for the transaction between alice and carol in Example 3.

U. de’Liguoro and L. Padovani 15:7

I Example 6 (deadlock). Below is another example of deadlocking process using Future from
Example 2, obtained by resolving a future variable with the value it does not contain yet:

(νf)(νc)(Future[f] | f !get[c] | c?reply(x).free c.f !put[x]) (2)

Notice that attempting to retrieve the content of a future variable not knowing whether
it has been resolved is legal. Indeed, Future does not fail if a get message is present in the
future variable’s mailbox before it is resolved. Thus, the deadlocked process above is mailbox
conformant but also an instance of undesirable process that will be ruled out by our static
analysis technique (cf. Example 21). We will need dependency graphs in addition to types
to flag this process as ill typed.

A property stronger than deadlock freedom is fair termination. A fairly terminating
process is a process whose residuals always have the possibility to terminate. Formally:

I Definition 7. We say that P is fairly terminating if P →∗ Q implies Q→∗ done.

An interesting consequence of fair termination is that it implies junk freedom (also known
as lock freedom [34, 44]) namely the property that every message can be eventually consumed.
Our type system does not guarantee fair termination nor junk freedom in general, but it
does so for a non-trivial sub-class of well-typed processes that we characterize later on.

3 A Mailbox Type System

In this section we detail the type system for the mailbox calculus. We start from the
syntax and semantics of mailbox types (Section 3.1) and of dependency graphs (Section 3.2),
the mechanism we use to track mailbox dependencies. Then we present the typing rules
(Section 3.3) and the properties of well-typed processes (Section 3.4).

3.1 Mailbox Types
The syntax of mailbox types and patterns is shown below:

Mailbox Type τ, σ ::= ?E | !E
Pattern E,F ::= 0 | 1 | m[τ] | E + F | E · F | E∗ (3)

Patterns are commutative regular expressions [11] describing the configurations of messages
stored in a mailbox. An atom m[τ] describes a mailbox containing a single message with
tag m and arguments of type τ . We let M range over atoms and abbreviate m[τ] with m
when τ is the empty sequence. Compound patterns are built using sum (E + F), product
(E ·F) and exponential (E∗). The constants 1 and 0 respectively describe the empty and the
unreliable mailbox. There is no configuration of messages stored in an unreliable mailbox,
not even the empty one. We will use the 0 pattern for describing mailboxes from which an
unexpected message has been received. Let us look at a few simple examples. The pattern
A + B describes a mailbox that contains either an A message or a B message, but not both,
whereas the pattern A + 1 describes a mailbox that either contains a A message or is empty.
The pattern A · B describes a mailbox that contains both an A message and also a B message.
Note that A and B may be equal, in which case the mailbox contains two A messages. Finally,
the pattern A∗ describes a mailbox that contains an arbitrary number (possibly zero) of A
messages. We adopt the usual conventions on the priority of connectives, whereby ∗ binds
stronger than · which, in turn, binds stronger than +.

ECOOP 2018

15:8 Mailbox Types for Unordered Interactions

A mailbox type consists of a capability (either ? or !) paired with a pattern. The capability
specifies whether the pattern describes messages to be received from (?) or stored in (!) the
mailbox. Here are some examples: A process using a mailbox of type !A must store an A
message into the mailbox, whereas a process using a mailbox of type ?A expects to receive
an A message from the mailbox. A process using a mailbox of type !(A + 1) may store an A
message into the mailbox, but is not obliged to do so. A process using a mailbox of type
!(A + B) decides whether to store an A message or a B message in the mailbox, whereas a
process using a mailbox of type ?(A + B) must be ready to receive both kinds of messages.
A process using a mailbox of type ?(A · B) expects to receive both an A message and a B
message and may decide in which order to do so. A process using a mailbox of type !(A · B)
must store both A and B into the mailbox. A process using a mailbox of type !A∗ decides
how many A messages to store in the mailbox, whereas a process using a mailbox of type ?A∗

must be prepared to receive an arbitrary number of A messages.
To cope with possibly infinite types we interpret the productions in (3) coinductively and

consider as types the regular trees [13] built using those productions. We require every infinite
branch of a type tree to go through infinitely many atoms. This strengthened contractiveness
condition allows us to define functions inductively on the structure of patterns, provided that
these functions do not recur into argument types (cf. Definitions 8 and 14).

The semantics of a pattern is a set of multisets of atoms. Because patterns include types,
the given semantics is parametric in the subtyping relation, which will be defined next:

I Definition 8 (subpattern). The configurations of E are inductively defined by the following
equations, where A and B range over multisets 〈M〉 of atoms and] denotes multiset union:

J0K def= ∅
J1K def= {〈〉}

JE + F K def= JEK ∪ JF K
JE · F K def= {A] B | A ∈ JEK,B ∈ JF K}

JMK def= {〈M〉}
JE∗K def= J1K ∪ JEK ∪ JE · EK ∪ · · ·

Given a preorder relation R on types, we write E vR F if 〈mi[τ i]〉i∈I ∈ JEK implies
〈mi[σi]〉i∈I ∈ JF K and τ i R σi for every i ∈ I. We write 'R for vR ∩ wR.

For example, JA + BK = {〈A〉, 〈B〉} and JA · BK = {〈A, B〉}. It is easy to see that vR is a
pre-congruence with respect to all the connectives and that 'R includes all the known laws
of commutative Kleene algebra [11]: both + and · are commutative and associative, + is
idempotent and has unit 0, · distributes over +, it has unit 1 and is absorbed by 0. Also
observe that vR is related covariantly to R, that is τ R σ implies m[τ] vR m[σ].

We now define subtyping. As types may be infinite, we resort to coinduction:

I Definition 9 (subtyping). We say that R is a subtyping relation if τ R σ implies either
1. τ = ?E and σ = ?F and E vR F , or
2. τ = !E and σ = !F and F vR E.
We write 6 for the largest subtyping relation and say that τ is a subtype of σ (and σ a
supertype of τ) if τ 6 σ. We write ≶ for 6 ∩>, v for v6 and ' for '6.

Items 1 and 2 respectively correspond to the usual covariant and contravariant rules for
channel types with input and output capabilities [47]. For example, !(A + B) 6 !A because a
mailbox of type !(A + B) is more permissive than a mailbox of type !A. Dually, ?A 6 ?(A + B)
because a mailbox of type ?A provides stronger guarantees than a mailbox of type ?(A + B).
Note that !(A · B) ≶ !(B · A) and ?(A · B) ≶ ?(B · A), to witness the fact that the order in which
messages are stored in a mailbox is irrelevant.

Mailbox types whose patterns are in particular relations with the constants 0 and 1 will
play special roles, so we introduce some corresponding terminology.

U. de’Liguoro and L. Padovani 15:9

I Definition 10 (type and name classification). We say that (a name whose type is) τ is:
relevant if τ 66 !1 and irrelevant otherwise;
reliable if τ 66 ?0 and unreliable otherwise;
usable if !0 66 τ and unusable otherwise.

A relevant name must be used, whereas an irrelevant name may be discarded because not
storing any message in the mailbox it refers to is allowed by its type. All mailbox types with
input capability are relevant. A reliable mailbox is one from which no unexpected message
has been received. All names with output capability are reliable. A usable name can be
used, in the sense that there exists a construct of the mailbox calculus that expects a name
with that type. All mailbox types with input capability are usable, but ?(A · 0) is unreliable.
Both !A and !(1 + A) are usable. The former type is also relevant because a process using
a mailbox with this type must (eventually) store an A message in it. On the contrary, the
latter type is irrelevant, since not using the mailbox is a legal way of using it.

Henceforth we assume that all types are usable and that all argument types are also
reliable. That is, we ban all types like !0 or !(0 · m) and all types like ?m[?0] or !m[?0].

I Example 11 (lock type). The mailbox used by the lock (Example 1) will have several
different types, depending on the viewpoint we take (either the lock itself or one of its users)
and on the state of the lock (whether it is free or busy). As we can see from the definition of
FreeLock, a free lock waits for an acquire message which is supposed to carry a reference
to another mailbox into which the capability to release the lock is stored. Since the lock is
meant to have several concurrent users, it is not possible in general to predict the number of
acquire messages in its mailbox. Therefore, the mailbox of a free lock has type

?acquire[!reply[!release]]∗

from the viewpoint of the lock itself. When the lock is busy, it expects to find one release
message in its mailbox, but in general the mailbox will also contain acquire messages
corresponding to pending acquisition requests. So, the mailbox of a busy lock has type

?(release · acquire[!reply[!release]]∗)

indicating that the mailbox contains (or will eventually contain) a single release message
along with arbitrarily many acquire messages.

Prospective owners of the lock may have references to the lock’s mailbox with type
!acquire[!reply[!release]] or !acquire[!reply[!release]]∗ depending on whether they
acquire the lock exactly once (just like alice and carol in Example 1) or several times. Other
intermediate types are possible in the case of users that acquire the lock a bounded number
of times. The current owner of the lock will have a reference to the lock’s mailbox of type
!release. This type is relevant, implying that the owner must eventually release the lock.

3.2 Dependency Graphs
We use dependency graphs for tracking dependencies between mailboxes. Intuitively, there is
a dependency between u and v if either v is the argument of a message in mailbox u or v
occurs in the continuation of a process waiting for a message from u. Dependency graphs
have names as vertices and undirected edges. However, the usual representation of graphs
does not account for the fact that mailbox names may be restricted and that the multiplicity
of dependencies matters. Therefore, we define dependency graphs using the syntax below:

Dependency Graph ϕ,ψ ::= ∅ | {u, v} | ϕ t ψ | (νa)ϕ

ECOOP 2018

15:10 Mailbox Types for Unordered Interactions

{u, v} u−v−−−→ ∅ [g-axiom]
ϕ

u−v−−−→ ϕ′

ϕ t ψ u−v−−−→ ϕ′ t ψ
[g-left]

ψ
u−v−−−→ ψ′

ϕ t ψ u−v−−−→ ϕ t ψ′
[g-right]

ϕ
u−v−−−→ ψ a 6= u, v

(νa)ϕ u−v−−−→ (νa)ψ
[g-new]

ϕ
u−w−−−→ ψ ψ

w−v−−−→ ϕ′

ϕ
u−v−−−→ ϕ′

[g-trans]

Figure 1 Labelled transitions of dependency graphs.

The term ∅ represents the empty graph which has no vertices and no edges. The unordered
pair {u, v} represents the graph made of a single edge connecting the vertices u and v. The
term ϕ t ψ represents the union of ϕ and ψ whereas (νa)ϕ represents the same graph as ϕ
except that the vertex a is restricted. The usual notions of free and bound names apply to
dependency graphs. We write fn(ϕ) for the free names of ϕ.

To define the semantics of a dependency graph we use the labelled transition system of
Table 1. A label u − v represents a path connecting u with v. So, a relation ϕ

u−v−−−→ ϕ′

means that u and v are connected in ϕ and ϕ′ describes the residual edges of ϕ that have
not been used for building the path between u and v. The paths of ϕ are built from the
edges of ϕ (cf. [g-axiom]) connected by shared vertices (cf. [g-trans]). Restricted names cannot
be observed in labels, but they may contribute in building paths in the graph (cf. [g-new]).

I Definition 12 (graph acyclicity and entailment). Let dep(ϕ) def= {(u, v) | ∃ϕ′ : ϕ u−v−−−→ ϕ′}
be the dependency relation generated by ϕ. We say that ϕ is acyclic if dep(ϕ) is irreflexive.
We say that ϕ entails ψ, written ϕ⇒ ψ, if dep(ψ) ⊆ dep(ϕ).

Note that t is commutative, associative and has ∅ as unit with respect to dep(·). These
properties of dependency graphs are key to prove that typing is preserved by structural
congruence on processes. Note also that t is not idempotent. Indeed, {u, v}t {u, v} is cyclic
whereas {u, v} is not. The following example motivates the reason why the multiplicity of
dependencies is important.

I Example 13 (multiplicity of dependencies). Even though we have not presented the typing
rules yet, we can use the above intuition on how dependencies are established to argue that
the process below yields a cyclic dependency graph:

P
def= (νa)(νb)(a!A[b] | a!B[b] | a?A(x).a?B(y).free a.x!m[y])→∗ (νb)b!m[b] X→

Observe that P stores two messages in the mailbox a, each containing a reference to the
mailbox b. Thus, the same dependency {a, b} arises twice, resulting in a cyclic dependency
involving a and b. By reducing the process, we note that the two variables x and y, which
were syntactically different in P , are unified into b in the reduct, which is deadlocked.

3.3 Typing Rules
We use type environments for tracking the type of free names occurring in processes. A type
environment is a partial function from names to types written as u : τ or u1 : τ1, . . . , un : τn.
We let Γ and ∆ range over type environments, we write dom(Γ) for the domain of Γ and
Γ,∆ for the union of Γ and ∆ when dom(Γ) ∩ dom(∆) = ∅. We say that Γ is reliable if so
are all the types in its range.

U. de’Liguoro and L. Padovani 15:11

Typing rules for processes Γ ` P :: ϕ

∅ ` done :: ∅
[t-done]

X : (x : τ ;ϕ)
u : τ ` X[u] :: ϕ{u/x}

[t-def]
Γ, a : ?1 ` P :: ϕ

Γ ` (νa)P :: (νa)ϕ
[t-new]

u : !m[τ], v : τ ` u!m[v] :: {u, {v}}
[t-msg]

u : ?E,Γ ` G � E

u : ?E,Γ ` G :: {u, dom(Γ)}
[t-guard]

Γi ` Pi :: ϕi (i=1,2)

Γ1 ‖ Γ2 ` P1 | P2 :: ϕ1 t ϕ2
[t-par]

∆ ` P :: ψ Γ 6 ∆ ϕ⇒ ψ

Γ ` P :: ϕ
[t-sub]

Typing rules for guards Γ ` G

u : ?0,Γ ` fail u
[t-fail]

Γ ` P :: ϕ
u : ?1,Γ ` free u.P

[t-free]

u : ?E,Γ, x : τ ` P :: ϕ
u : ?(m[τ] · E),Γ ` u?m(x).P

[t-in]
u : ?Ei,Γ ` Gi (i=1,2)

u : ?(E1 + E2),Γ ` G1 +G2
[t-branch]

Figure 2 Typing rules.

Judgments for processes have the form Γ ` P :: ϕ, meaning that P is well typed in Γ and
yields the dependency graph ϕ. Judgments for guards have the form Γ ` G, meaning that
G is well typed in Γ. We say that a judgment Γ ` P :: ϕ is well formed if fn(ϕ) ⊆ dom(Γ)
and ϕ is acyclic. Each process typing rule has an implicit side condition requiring that its
conclusion be well formed. For each global process definition X(x) , P we assume that
there is a corresponding global process declaration of the form X : (x : τ ;ϕ). We say that
the definition is consistent with the corresponding declaration if x : τ ` P :: ϕ, where we
require the dependency graph yielded by P to be the same ϕ associated with the definition.
Hereafter, all process definitions are assumed to be consistent. We now discuss the typing
rules in detail, introducing auxiliary notions and notation as we go along.

Terminated process. According to the rule [t-done], the terminated process done is well
typed in the empty type environment and yields no dependencies. This is motivated by the
fact that done does not use any mailbox. Later on we will introduce a subsumption rule
[t-sub] that allows us to type done in any type environment with irrelevant names.

Message. Rule [t-msg] establishes that a message u!m[v] is well typed provided that the
mailbox u allows the storing of an m-tagged message with arguments of type τ and the
types of v are indeed τ . The subsumption rule [t-sub] will make it possible to use arguments
whose type is a subtype of the expected ones. A message u!m[v] establishes dependencies
between the target mailbox u and all of the arguments v. We write {u, {v1, . . . , vn}} for the
dependency graph {u, v1} t · · · t {u, vn} and use ∅ for the empty graph union.

Names with output capability are introduced by the ‖ operator that combines type
environments and that will be defined later on, when discussing rule [t-par].

ECOOP 2018

15:12 Mailbox Types for Unordered Interactions

Process invocation. The typing rule for a process invocation X[u] checks that there exists
a global definition for X which expects exactly the given number and type of parameters.
Again, rule [t-sub] will make it possible to use parameters whose types are subtypes of the
expected ones. A process invocation yields the same dependencies as the corresponding
process definition, with the appropriate substitutions applied.

Guards. Guards are used to match the content of a mailbox and retrieve messages from it.
According to rule [t-fail], the action fail u matches a mailbox u with type ?0, indicating that
an unexpected message has been found in the mailbox. The type environment may contain
arbitrary associations, since the fail u action causes a runtime error. Rule [t-free] states
that the action free u.P matches a mailbox u with type ?1, indicating that the mailbox is
empty. The continuation is well typed in the residual type environment Γ. An input action
u?m(x).P matches a mailbox u with type ?(m[τ] · E) that guarantees the presence of an
m-tagged message possibly along with other messages as specified by E. The continuation
P must be well typed in an environment where the mailbox has type ?E, which describes
the content of the mailbox after the m-tagged message has been removed. Associations
for the received arguments x are also added to the type environment. A compound guard
G1 +G2 offers the actions offered by G1 and G2 and therefore matches a mailbox u with
type ?(E1 +E2), where Ei is the pattern that describes the mailbox matched by Gi. Note
that the residual type environment Γ is the same in both branches, indicating that the type
of other mailboxes used by the guard cannot depend on that of u.

The judgments for guards do not yield any dependency graph. This is compensated by
the rule [t-guard], which we describe next.

Guarded processes. Rule [t-guard] is used to type a guarded process G, which matches
some mailbox u of type ?E and possibly retrieves messages from it. As we have seen while
discussing guards, E is supposed to be a pattern of the form E1 + · · ·+ En where each Ei
is either 0, 1 or of the form M · F . However, only the patterns E that are in normal form
(defined below) are suitable to be used in this typing rule and the side condition � E checks
that this is indeed the case. Before defining the notion of pattern normal form we motivate
its need by means of a simple example.

Suppose that our aim is to type a process u?A.P + u?B.Q that consumes either an
A message or a B message from u, whichever of these two messages is matched first in u,
and then continues as P or Q correspondingly. Suppose also that the type of u is ?E with
E

def= A · C + B · A, which allows the rules for guards to successfully type check the process. As
we have seen while discussing rule [t-in], P and Q must be typed in an environment where the
type of u has been updated so as to reflect the fact that the consumed message is no longer
in the mailbox. In this particular case, we might be tempted to infer that the type of u in
P is ?C and that the type of u in Q is ?A. Unfortunately, the type ?C does not accurately
describe the content of the mailbox after A has been consumed because, according to E,
the A message may be accompanied by either a B message or by a C message, whereas ?C
only accounts for the second possibility. Thus, the appropriate pattern to be used for typing
this process is A · (B + C) + B · A, where the fact that B may be found after consuming A is
made explicit. This pattern and E are equivalent as they generate exactly the same set of
valid configurations. Yet, A · (B + C) + B · A is in normal form whereas E is not. In general
the normal form is not unique. For example, also the patterns B · A + C · A and A · (B + C)
are in normal form and equivalent to E and can be used for typing processes that consume
messages from u in different orders or with different priorities.

U. de’Liguoro and L. Padovani 15:13

The first ingredient for defining the notion of pattern normal form is that of pattern
residual E/M , which describes the content of a mailbox that initially contains a configuration
of messages described by E and from which we remove a single message with type M :

I Definition 14 (pattern residual). The residual of a pattern E with respect to an atom M ,
written E/M , is inductively defined by the following equations:

0/M = 1/M
def= 0

(E∗)/M def= E/M · E∗
m[τ]/m[σ] def= 1 if τ 6 σ

m[τ]/m′[σ] def= 0 if m 6= m′
(E + F)/M def= E/M + F/M

(E · F)/M def= E/M · F + E · F/M

If we take the pattern E discussed earlier we have E/A = 1 · C + A ·0 + 0 ·1 + B ·1 ' B + C.
The pattern residual operator is closely related to Brzozowski’s derivative in a commutative
Kleene algebra [4, 28]. Unlike Brzozowski’s derivative, the pattern residual is a partial
operator: E/m[σ] is defined provided that the σ are supertypes of all types τ found in
m-tagged atoms within E. This condition has a natural justification: when choosing the
message to remove from a mailbox containing a configuration of messages described by E,
only the tag m of the message – and not the type of its arguments – matters. Thus, σ
faithfully describe the received arguments provided that they are supertypes of all argument
types of all m-tagged message types in E. For example, assuming nat 6 int, we have that
(m[int] + m[nat])/m[int] is defined whereas (m[int] + m[nat])/m[nat] is not.

We use the notion of pattern residual to define pattern normal forms:

I Definition 15 (pattern normal form). We say that a pattern E is in normal form, written
� E, if E � E is derivable by the following axioms and rules:

E � 0 E � 1
F ' E/M
E �M · F

E � F1 E � F2

E � F1 + F2

Essentially, the judgment � E verifies that E is expressed as a sum of 0, 1 and M · F
terms where F is (equivalent to) the residual of E with respect to M .

A guarded process yields all the dependencies between the mailbox u being used and the
names occurring free in the continuations, because the process will not be able to exercise
the capabilities on these names until the message from u has been received.

Parallel composition. Rule [t-par] deals with parallel compositions of the form P1 |P2. This
rule accounts for the fact that the same mailbox u may be used in both P1 and P2 according
to different types. For example, P1 might store an A message into u and P2 might store
a B message into u. In the type environment for the parallel composition as a whole we
must be able to express with a single type the combined usages of u in P1 and P2. This is
accomplished by introducing an operator that combines types:

I Definition 16 (type combination). We write τ ‖ σ for the combination of τ and σ, where ‖
is the partial symmetric operator defined as follows:

!E ‖ !F def= !(E · F) !E ‖ ?(E · F) def= ?F ?(E · F) ‖ !E def= ?F

Continuing the previous example, we have !A‖!B = !(A ·B) because storing one A message
and one B message in u means storing an overall configuration of messages described by the
pattern A · B. When u is used for both input and output operations, the combined type of u
describes the overall balance of the mailbox. For example, we have !A ‖ ?(A · B) = ?B: if we
combine a process that stores an A message into u with another process that consumes both

ECOOP 2018

15:14 Mailbox Types for Unordered Interactions

an A message and a B message from the same mailbox in some unspecified order, then we
end up with a process that consumes a B message from u.

Notice that ‖ is a partial operator in that not all type combinations are defined. It might
be tempting to relax ‖ in such a way that !(A · B) ‖ ?A = !B, so as to represent the fact that
the combination of two processes results in an excess of messages that must be consumed
by some other process. However, this would mean allowing different processes to consume
messages from the same mailbox, which is not safe in general (see Example 17). For the same
reason, the combination of ?E and ?F is always undefined regardless of E and F . Operators
akin to ‖ for the combination of channel types are commonly found in substructural type
systems for the (linear) π-calculus [51, 44]. Unlike these systems, in our case the combination
concerns also the content of a mailbox in addition to the capabilities for accessing it.

I Example 17. Suppose that we extend the type combination operator so that ?(E · F) =
?E ‖ ?F . To see why this extension would be dangerous, consider the process

(u!A[True] | u?A(x).(system!print_bool[x] | free u.done)) |
(u!A[2] | u?A(y).(system!print_int[y] | free u.done))

Overall, this process stores into u a combination of messages that matches the pattern
A[bool] ·A[int] and retrieves from u the same combination of messages. Apparently, u is used
in a balanced way. However, there is no guarantee that the u!A[True] message is received by
the process at the top and that the u!A[2] message is received by the process at the bottom.
In fact, the converse may happen because only the tag of a message – not the type or value
of its arguments – is used for matching messages in the mailbox calculus.

We now extend type combination to type environments in the expected way:

I Definition 18 (type environment combination). We write Γ ‖∆ for the combination of Γ
and ∆, where ‖ is the partial operator inductively defined by the equations:

Γ ‖∆ def= Γ,∆ if dom(Γ) ∩ dom(∆) = ∅ (u : τ,Γ) ‖ (u : σ,∆) def= u : τ ‖ σ, (Γ ‖∆)

With this machinery in place, rule [t-par] is straightforward to understand and the
dependency graph of P1 | P2 is simply the union of the dependency graphs of P1 and P2.

Mailbox restriction. Rule [t-new] establishes that the process creating a new mailbox a with
scope P is well typed provided that the type of a is ?1. This means that every message
stored in the mailbox a by (a sub-process of) P is also consumed by (a sub-process of) P .
The dependency graph of the process is the same as that of P , except that a is restricted.

Subsumption. As we have anticipated earlier in a few occasions, the subsumption rule [t-sub]

allows us to rewrite types in the type environment and to introduce associations for irrelevant
names. The rule makes use of the following notion of subtyping for type environments:

I Definition 19 (subtyping for type environments). We say that Γ is a subtype environment
of ∆ if Γ 6 ∆, where 6 is the least preorder on type environments such that:

u : !1,Γ 6 Γ
τ 6 σ

u : τ,Γ 6 u : σ,Γ

Intuitively, Γ 6 ∆ means that Γ provides more capabilities than ∆. For example,
u : !(A + B), v : !1 6 u : !A since a process that is well typed in the environment u : !A stores

U. de’Liguoro and L. Padovani 15:15

an A message into u, which is also a valid behavior in the environment u : !(A + B), v : !1
where u has more capabilities (it is also possible to store a B message into u) and there is an
irrelevant name v not used by the process.

Rule [t-sub] also allows us to replace the dependency graph yielded by P with another one
that generates a superset of dependencies. In general, the dependency graph should be kept
as small as possible to minimize the possibility of yielding mutual dependencies (see [t-par]).
The replacement allowed by [t-sub] is handy for technical reasons, but not necessary. The
point is that the residual of a process typically yields fewer dependencies than the process
itself, so we use [t-sub] to enforce the invariance of dependency graphs across reductions.

I Example 20. We show the full typing derivation for FreeLock and BusyLock defined in
Example 1. Our objective is to show the consistency of the global process declarations

FreeLock : (self : τ ; ∅) BusyLock : (self : τ, owner : ρ; {self , owner})

where τ def= ?acquire[ρ]∗ and ρ
def= !reply[!release]. In the derivation trees below we

rename self as x and owner and y to resonably fit the derivations within the page limits.
We start from the body of BusyLock, which is simpler, and obtain

[t-msg]
x : !release, y : ρ ` y!reply[x] :: {y, x}

[t-def]
x : τ ` FreeLock[x] :: ∅

[t-in]
x : σ ` x?release.FreeLock[x]

[t-guard]
x : σ ` x?release.FreeLock[x] :: ∅

[t-par]
x : τ, y : ρ ` y!reply[x] | x?release.Lock[x] :: {y, x} t ∅

where σ def= ?(release · acquire[ρ]∗).
Concerning FreeLock, the key step is rewriting the pattern of τ in a normal form that

matches the branching structure of the process. To this aim, we use the property E∗ '
1 + E · E∗ and the fact that 0 is absorbing for the product connective:

...

[t-fail]
x : ?0 ` fail x

[t-guard]
x : ?0 ` fail x :: ∅

[t-in]
x : ?(release · 0) ` x?release.fail x

[t-branch]
x : ?(1 + acquire[ρ] · acquire[ρ]∗ + release · 0) ` · · ·+ x?release.fail x

[t-guard]
x : ?(1 + acquire[ρ] · acquire[ρ]∗ + release · 0) ` · · ·+ x?release.fail x :: ∅

[t-sub]
x : τ ` free x.done + · · ·+ x?release.fail x :: ∅

The elided sub-derivation concerns the first two branches of FreeLock and is as follows:

[t-done]
∅ ` done :: ∅

[t-free]
x : ?1 ` free x.done

[t-def]
x : τ, y : ρ ` BusyLock[x, y] :: {x, y}

x : ?acquire[ρ] · acquire[ρ]∗ ` x?acquire(y).BusyLock[x, y]
x : ?(1 + acquire[ρ] · acquire[ρ]∗) ` free x.done + x?acquire(y).BusyLock[x, y]

The process (1), combining an instance of the lock and the users alice and carol, is also
well typed. As we will see at the end of Section 3.4, this implies that both alice and carol
are able to acquire the lock, albeit in some unspecified order.

ECOOP 2018

15:16 Mailbox Types for Unordered Interactions

I Example 21. In this example we show that the process (2) of Example 6 is ill typed. In
order to do so, we assume the global process declaration

Future : (self : ?(put[int] · get[!reply[int]]∗); ∅)

which can be shown to be consistent with the given definition for Future. In the derivation
below we use the pattern F

def= put[int] · get[ρ]∗ and the types τ def= !put[int], σ def=
?(reply[int] · 1) and ρ def= !reply[int]:

f : !get[ρ], c : ρ ` f !get[c] :: {f , c}

f : τ, x : int ` f !put[x] :: ∅
f : τ, c : ?1, x : int ` free c.f !put[x]

f : τ, c : ?1, x : int ` free c.f !put[x] :: {c, f }
f : τ, c : σ ` c?reply(x).free c.f !put[x]

f : τ, c : σ ` c?reply(x).free c.f !put[x] :: {c, f }
f : !(get[ρ] · put[int]), c : ?1 ` f !get[c] | c?reply(x).free c.f !put[x] :: −

[t-sub]
f : !F, c : ?1 ` f !get[c] | c?reply(x).free c.f !put[x] :: −
f : !F ` (νc)(f !get[c] | c?reply(x).free c.f !put[x]) :: −

In attempting this derivation we have implicitly extended the typing rules so that names
with type int do not contribute in generating any significant dependency. The critical point
of the derivation is the application of [t-par], where we are composing two parallel processes
that yield a circular dependency between c and f . In the process on the left hand side,
the dependency {f , c} arises because c is sent as a reference in a message targeted to f . In
the process on the right hand side, the dependency {c, f } arises because there are guards
concerning the mailbox c that block an output operation on the mailbox f .

I Example 22 (non-deterministic choice). The same input action can occur multiple times in
the same guarded process. This feature can be used to encode in the mailbox calculus the
non-deterministic choice between P1 and P2 as the process

(νa)(free a.P1 + free a.P2) (4)

provided that Γ ` Pi :: ϕi for i = 1, 2. That is, P1 and P2 must be well typed in the same
type environment. Below is the typing derivation for (4)

Γ ` P1 :: ϕ1
[t-free]

Γ, a : ?1 ` free a.P1

Γ ` P2 :: ϕ2
[t-free]

Γ, a : ?1 ` free a.P2
[t-branch]

Γ, a : ?(1 + 1) ` free a.P1 + free a.P2
[t-guard]

Γ, a : ?(1 + 1) ` free a.P1 + free a.P2 :: ϕ
[t-sub]

Γ, a : ?1 ` free a.P1 + free a.P2 :: ϕ
[t-new]

Γ ` (νa)(free a.P1 + free a.P2) :: (νa)ϕ

where ϕ def= {a, dom(Γ)}. The key step is the application of [t-sub], which exploits the
idempotency of + (in patterns) to rewrite 1 as the equivalent pattern 1 + 1.

3.4 Properties of well-typed processes
In this section we state the main properties enjoyed by well-typed processes. As usual,
subject reduction is instrumental for all of the results that follow as it guarantees that typing
is preserved by reductions:

U. de’Liguoro and L. Padovani 15:17

I Theorem 23. If Γ is reliable and Γ ` P :: ϕ and P → Q, then Γ ` Q :: ϕ.

Interestingly, Theorem 23 seems to imply that the types of the mailboxes used by a process
do not change. In sharp contrast, other popular behavioral typing disciplines (session types
in particular), are characterized by a subject reduction result in which types reduce along
with processes. Theorem 23 also seems to contradict the observations made earlier concerning
the fact that the mailboxes used by a process may have different types (Example 11). The
type preservation guarantee assured by Theorem 23 can be explained by recalling that
the type environment Γ in a judgment Γ ` P :: ϕ already takes into account the overall
balance between the messages stored into and consumed from the mailbox used by P (see
Definition 18). In light of this observation, Theorem 23 simply asserts that well-typed
processes are steady state: they never produce more messages than those that are consumed,
nor do they ever try to consume more messages than those that are produced.

A practically relevant consequence of Theorem 23 is that, by looking at the type ?E of
the mailbox a used by a guarded process P (rule [t-guard]), it is possible to determine bounds
to the number of messages that can be found in the mailbox as P waits for a message to
receive. In particular, if every configuration of E contains at most k m-tagged atoms, then
at runtime a contains at most m-tagged messages. As a special case, a mailbox of type ?1
is guaranteed to be empty and can be statically deallocated. Note that the bounds may
change after P receives a message. For example, a free lock is guaranteed to have no release
messages in its mailbox, and will have at most one when it is busy (see Example 20).

The main result concerns the soundness of the type system, guaranteeing that well-typed
(closed) processes are both mailbox conformant and deadlock free (Definitions 4 and 5):

I Theorem 24. If ∅ ` P :: ϕ, then P is mailbox conformant and deadlock free.

Fair termination and junk freedom are not enforced by our typing discipline in general.
The usual counterexamples include processes that postpone indefinitely the use of a mailbox
with a relevant type. For instance, the m message in the well-typed process (νa)(a!m | X[a])
where X(x) , X[x] is never consumed because a is never used for an input operation.
Nevertheless, fair termination is guaranteed for the class of finitely unfolding processes:

I Theorem 25. We say that P is finitely unfolding if all maximal reductions of P use [r-def]

finitely many times. If ∅ ` P :: ϕ and P is finitely unfolding, then P is fairly terminating.

The class of finitely unfolding processes obviously includes all finite processes (those not
using process invocations) but also many recursive processes. For example, every process of
the form (νa)(a!m | · · · | a!m | X[a]) where X(x) , x?m.X[x] + free x.done is closed, well
typed and finitely unfolding regardless of the number of m messages stored in a, hence is
fairly terminating and junk free by Theorem 25.

4 Examples

In this section we discuss a few more examples that illustrate the expressiveness of the
mailbox calculus and of its type system. We consider a variant of the bank account shown in
Listing 1 (Section 4.1), the case of master-workers parallelism (Section 4.2) and the encoding
of binary sessions extended with forks and joins (Sections 4.3 and 4.4).

4.1 Actors using futures
Many Scala programs combine actors with futures [53]. As an example, Listing 2 shows
an alternative version of the Account actor in Akka that differes from Listing 1 in the

ECOOP 2018

15:18 Mailbox Types for Unordered Interactions

1 class Account(var balance: Double) extends AkkaActor[AnyRef] {
2 override def process(msg: AnyRef) {
3 msg match {
4 case dm: DebitMessage =>
5 balance += dm.amount
6 sender () ! ReplyMessage.ONLY
7 case cm: CreditMessage =>
8 balance -= cm.amount
9 val recipient = cm.recipient.asInstanceOf[ActorRef]

10 val future = ask(recipient , new DebitMessage(self ,cm.amount))
11 Await.result(future , Duration.Inf)
12 sender () ! ReplyMessage.ONLY
13 case _: StopMessage => exit()
14 case message =>
15 val ex = new IllegalArgumentException("Unsupported␣message")
16 ex.printStackTrace(System.err)
17 }
18 }
19 }

Listing 2 An Akka actor using futures from the Savina benchmark suite [32].

handling of CreditMessages (lines 10–11). The future variable created here is initialized
asynchronously with the result of the debit operation invoked on recipient. To make sure
that each transaction is atomic, the actor waits for the variable to be resolved (line 11) before
notifying sender that the operation has been completed.

This version of Account is arguably simpler than the one in Listing 1, if only because the
actor has a unique top-level behavior. One way of modeling this implementation of Account
in the mailbox calculus is to use Future, discussed in Example 2. A simpler modeling stems
from the observation that future in Listing 2 is used for a one-shot synchronization. A future
variable with this property is akin to a mailbox from which the value of the resolved variable
is retrieved exactly once. Following this approach we obtain the process below:

Account(self , balance) , self ?debit(amount, sender).
sender!reply | Account[self , balance + amount]

+ self ?credit(amount, recipient, sender).

(νfuture)

recipient!debit[amount, future] |
future?reply.free future.
(sender!reply | Account[self , balance − amount])


+ self ?stop.free self .done
+ self ?reply.fail self

Compared to the process in Example 3, here the notification from the recipient account is
received from the mailbox future, which is created locally during the handling of the credit
message. The rest of the process is the same as before. This definition of Account and the
one in Example 3 can both be shown to be consistent with the declaration

Account : (self : ?(debit[int, ρ]∗ ·credit[int, !debit[int, ρ], ρ]∗+stop), balance : int; ∅)

where ρ def= !reply. In particular, the dependencies between self and future that originate in
this version of Account are not observable from outside Account itself.

U. de’Liguoro and L. Padovani 15:19

The use of multiple mailboxes and the interleaving of blocking operations on them may
increase the likelyhood of programming mistakes causing mismatched communications and/or
deadlocks. However, these errors can be detected by a suitable typing discipline such the one
proposed in this paper. Types can also be used to mitigate the runtime overhead resulting
from the use of multiple mailboxes. Here, for example, the typing of future guarantees
that this mailbox is used for receiving a single message and that future is empty by the
time free future is performed. A clever compiler can take advantage of this information to
statically optimize both the allocation and the deallocation of this mailbox.

4.2 Master-workers parallelism
In this example we model a master process that receives tasks to perform from a client. For
each task, the master creates a pool of workers and assigns each worker a share of work. The
master waits for all partial results from the workers before sending the final result back to
the client and making itself available again. The number of workers may depend on some
quantity possibly related to the task to be performed and that is known at runtime only.

Below we define three processes corresponding to the three states in which the master
process can be, and we leave Worker unspecified:

Available(self) , self ?task(client).(νpool)CreatePool[self , pool, client]
+ free self .done

CreatePool(self , pool, client) , if more workers needed then
(νworker)(worker!work[pool] | Worker[worker]) |
CreatePool[self , pool, client]

else
CollectResults[self , pool, client]

CollectResults(self , pool, client) , pool?result.CollectResults[self , pool, client]
+ free pool.(client!result | Available[self])

The “if condition then P else Q” form used here can be encoded in the mailbox calculus
and is typed similarly to the non-deterministic choice of Example 22. These definitions can
be shown to be consistent with the following declarations:

Available : (self : ?task[!result]∗; ∅)
CreatePool,CollectResults : (self : ?task[!result]∗, pool : ?result∗, client : !result;

{pool, self } t {pool, client})

The usual implementation of this coordination pattern requires the programmer to keep
track of the number of active workers using a counter that is decremented each time a partial
result is collected [32]. When the counter reaches zero, the master knows that all the workers
have finished their job and notifies the client. In the mailbox calculus, we can model the
counter using a dedicated mailbox pool from which the partial results are collected: when
pool becomes disposable, it means that no more active workers remain.

4.3 Encoding of binary sessions
Session types [27, 29] have become a popular formalism for the specification and enforcement
of structured protocols through static analysis. A session is a private communication channel
shared by processes that interact through one of its endpoints. Each endpoint is associated
with a session type that specifies the type, direction and order of messages that are supposed

ECOOP 2018

15:20 Mailbox Types for Unordered Interactions

to be exchanged through that endpoint. A typical syntax for session types in the case of
binary sessions (those connecting exactly two peer processes) is shown below:

T, S ::= end | ?[τ].T | ![τ].T | T & S | T ⊕ S

A session type ?[τ].T describes an endpoint used for receiving a message of type τ and
then according to T . Dually, a session type ![τ].T describes an endpoint used for sending a
message of type τ and then according to T . An external choice T & S describes an endpoint
used for receiving a selection (either left or right) and then according to the corresponding
continuation (either T or S). Dually, an internal choice T ⊕ S describes an endpoint used for
making a selection and then according to the corresponding continuation. Communication
safety and progress of a binary session are guaranteed by the fact that its two endpoints are
linear resources typed by dual session types, where the dual of T is obtained by swapping
inputs with outputs and internal with external choices.

In this example we encode sessions and session types using mailboxes and mailbox types.
We encode a session as a non-uniform, concurrent object. The object is “concurrent” because
it is accessed concurrently by the two peers of the session. It is “non-uniform” because its
interface changes over time, as the session progresses. The object uses a mailbox self and its
behavior is defined by the equations for SessionT (self) shown below, where T is the session
type according to which it must be used by one of the peers:

Sessionend(self) , free self .done
Session?[τ].T (self) , self ?send(x, s).self ?receive(r).

(s!reply[self] | r!reply[x, self] | SessionT [self])
Session![τ].T (self) , Session?[τ].T [self]
SessionT&S(self) , self ?left(s).self ?receive(r).

(s!reply[self] | r!left[self] | SessionT [self])
+ self ?right(s).self ?receive(r).

(s!reply[self] | r!right[self] | SessionS [self])
SessionT⊕S(self) , SessionT&S [self]

To grasp the intuition behind the definition of SessionT (self), it helps to recall that each
stage of a session corresponds to an interaction between the two peers, where one process
plays the role of “sender” and its peer that of “receiver”. Both peers manifest their willingness
to interact by storing a message into the session’s mailbox. The receiver always stores a
receive message, while the sender stores either send, left or right according to T . All
messages contain a reference to the mailbox owned by sender and receiver (respectively s
and r) where they will be notified once the interaction is completed. A send message also
carries actual payload x being exchanged. The role of SessionT (self) is simply to forward
each message from the sender to the receiver. The notifications stored in s and r contain
a reference to the session’s mailbox so that its type reflects the session’s updated interface
corresponding to the rest of the conversation.

Interestingly, the encoding of a session with type T is undistinguishable from that of
a session with the dual type T . This is natural by recalling that each stage of a session
corresponds to a single interaction between the two peers: the order in which they store the
respective messages in the session’s mailbox is in general unpredictable but also unimportant,
for both messages are necessary to complete each interaction.

As an example, suppose we want to model a system where Alice asks Carol to compute
the sum of two numbers exchanged through a session s. Alice and Carol use the session ac-
cording to the session types T def= ![int].![int].?[int].end and T def= ?[int].?[int].![int].end,

U. de’Liguoro and L. Padovani 15:21

respectively. The system is modeled as the process

(νalice)(νcarol)(νs)(Alice[alice, s] | Carol[carol, s] | SessionT [s]) (5)

where Alice and Carol are defined as follows:
Alice(self , s) , s!send[4, self] | self ?reply(s).

(s!send[2, self] | self ?reply(s).
(s!receive[self] | self ?reply(x, s).
(system!print_int[x] | free self .done)))

Carol(self , s) , s!receive[self] | self ?reply(x, s).
(s!receive[self] | self ?reply(y, s).
(s!send[x + y, self] | self ?reply(s).free self .done))

The process (5) and the definitions of Alice and Carol are well typed. In general, SessionT
is consistent with the declaration SessionT : (self : ?(E (T) · E (T)); ∅) where E (T) is the
pattern defined by the following equations:

E (end) def= 1

E (?[τ].T) def= receive[!reply[τ, !E (T)]]
E (![τ].T) def= send[τ, !reply[!E (T)]]
E (T & S) def= receive[!(left[!E (T)] + right[!E (S)])]
E (T ⊕ S) def= left[!reply[!E (T)]] + right[!reply[!E (S)]]

By interpreting both the syntax of T and the definition of SessionT coinductively, it is
easy to see that this encoding of binary sessions extends to internal and external choices with
arbitrary labels and also to recursive session types. The usual regularity condition ensures
that SessionT is finitely representable. Finally, note that the notion of subtyping for encoded
session types induced by Definition 9 coincides with the conventional one [21]. Thus, the
mailbox type system subsumes a rich session type system where Theorem 24 corresponds to
the well-known communication safety and progress properties of sessions.

4.4 Encoding of sessions with forks and joins
We have seen that it is possible to share the output capability on a mailbox among several
processes. We can take advantage of this feature to extend session types with forks and joins:

T, S ::= end | ?[τ].T | ![τ].T | T &S | T ⊕S | `i∈Imi[τi];T | ⊗i∈Imi[τi];T

The idea is that the session type ⊗1≤i≤nmi[τi];T describes an endpoint that can be
used for sending all of the mi messages, and then according to T . The difference between
⊗1≤i≤nmi[τi];T and a session type of the form ![τ1] . . . ![τn].T is that the mi messages can be
sent by independent processes (for example, by parallel workers) in whatever order instead
of by a single sender. Dually, the session type `1≤i≤nmi[τi];T describes an endpoint that
can be used for collecting all of the mi messages, and then according to T . Forks and joins
are dual to each other, just like simple outputs are dual to simple inputs. The tags mi need
not be distinct, but equal tags must correspond to equal argument types.

The extension of SessionT to forks and joins is shown below:

Session⊗i∈I mi[τi];T (self) , self ?send(s).self ?receive(r).Join⊗i∈I mi[τi];T [self , s, r]
Session`i∈I mi[τi];T (self) , Session⊗i∈I mi[τi];T [self]

Join⊗i∈I mi[τi];T (self , s, r) ,
{
s!reply[self] | r!reply[self] | SessionT [self] if I = ∅
self ?mi(xi).(r!mi[xi] | Join⊗i∈I\{i}mi[τi];T [self , s, r]) if i ∈ I

ECOOP 2018

15:22 Mailbox Types for Unordered Interactions

As in the case of simple interactions, sender and receiver manifest their willingness to
interact by storing send and receive messages into the session’s mailbox self . At that point,
JoinT [self , s, r] forwards all the mi messages coming from the sender side to the receiver side,
in some arbitrary order (case i ∈ I). When there are no more messages to forward (case
I = ∅) both sender and receiver are notified with a reply message that carries a reference to
the session’s endpoint, with its type updated according to the rest of the continuation.

The encoding of session types extended to forks and joins follows easily:

E (⊗i∈Imi[τi];T) def= send[!reply[!E (T)]] ·
∏
i∈I mi[τi]

E (`i∈Imi[τi];T) def= receive[!(
∏
i∈I mi[τi]) · reply[!E (T)]]

An alternative definition of JoinT that fowards messages as soon as they become available
can be obtained by providing suitable input actions for each i ∈ I instead of picking an
arbitrary i ∈ I.

5 Related Work

Concurrent Objects. There are analogies between actors and concurrent objects. Both
entities are equipped with a unique identifier through which they receive messages, they
may interact with several concurrent clients and their behavior may vary over time, as
the entity interacts with its clients. Therefore, static analysis techniques developed for
concurrent objects may be applicable to actors (and vice versa). Relevant works exploring
behavioral type systems for concurrent objects include those of Najim et al. [42], Ravara and
Vasconcelos [50], and Puntigam et al. [48, 49]. As in the pure actor model, each object has a
unique mailbox and the input capability on that mailbox cannot be transferred. The mailbox
calculus does not have these restrictions. A notable variation is the model studied by Ravara
and Vasconcelos [50], which accounts for distributed objects: there can be several copies of an
object that react to messages targeted to the same mailbox. Another common trait of these
works is that the type discipline focuses on sequences of method invocations and types contain
(abstract) information on the internal state of objects and on state transitions. Indeed, types
are either finite-state automata [42], or terms of a process algebra [50] or tokens annotated
with state transitions [49]. In contrast, mailbox types focus on the content of a mailbox
and sequencing is expressed in the type of explicit continuations. The properties enforced
by the type systems in these works differ significantly. Some do not consider deadlock
freedom [50, 48], others do not account for out-of-order message processing [48]. Details on
the enforced properties also vary. For example, the notion of protocol conformance used by
Ravara and Vasconcelos [50] allows sending to an object any message that can be handled by
some future state of the object. In our setting, this would mean allowing to send a release
message to a free lock if the lock is acquired later on, or allowing to send a reply message
to an account if the account will later be involved in a transaction.

The most closely related work among those addressing concurrent objects is the one by
Crafa and Padovani [15], who propose the use of the Objective Join Calculus as a model for
non-uniform, concurrent objects and develop a type discipline that can be used for enforcing
concurrent object protocols. While mailbox types have been directly inspired by their types
of concurrent objects, there are two major differences with our work. First, in the Objective
Join Calculus every object is associated with a single mailbox, just like in the pure actor
model [26, 1], meaning that mailboxes are not first class. As a consequence, the types
considered by Crafa and Padovani [15] all have an (implicit) output capability. Second, in
the Objective Join Calculus input operations are defined atomically on molecules of messages,

U. de’Liguoro and L. Padovani 15:23

whereas in the mailbox calculus messages are received one at a time. As a consequence, the
type of a mailbox in the work of Crafa and Padovani [15] is invariant, whereas the same
mailbox may have different types at different times in the mailbox calculus (Example 11).

Static analysis of actors. Srinivasan and Mycroft [52] define a type discipline for controlling
the ownership of messages and ensuring actor isolation, but consider only uniformly typed
mailboxes and do not address mailbox conformance or deadlock freedom.

Christakis and Sagonas [10] describe a static analysis technique whose aim is to ensure
matching between send and receive operations in actors. The technique, which is described
only informally and does not account for deadlocks, has been implemented in a tool called
dialyzer and used for the analysis of Erlang programs.

Crafa [14] defines a behavioural type system for actors aimed at ensuring that the order
of messages produced and consumed by an actor follows a prescribed protocol. Protocols
are expressed as types and describe the behavior of actors rather than the content of the
mailboxes they use. Deadlock freedom is not addressed.

Charousset et al. [8] describe the design and implementation of CAF, the C++ Actor
Framework. Among the features of CAF is the use of type-safe message passing interfaces
that makes it possible to statically detect a number of protocol violations by piggybacking on
the C++ type system. There are close analogies between CAF’s message passing interfaces
and mailbox types with output capability: both are equipped with a subset semantics and
report only those messages that can be stored into the mailbox through a mailbox reference
with that type. Charousset et al. [8] point out that this feature fosters the decoupling of
actors and enables incremental program recompilation.

Giachino et al. [22, 40] define a type system for the deadlock analysis of actors making
use of implicit futures. Mailbox conformance and deadlocks due to communications are not
taken into account.

He et al. [25] discuss a typed extension of Akka [24] ensuring that, in well-typed programs,
messages sent to an actor are understood by the actor. The type system is not behavioral
though, meaning that it is not possible to reason on which configurations of messages are
legal. In particular, behavior upgrades are monotonic and actors can only increase the type
of messages they understand. This is in sharp contrast with our typing disipline, which
allows behavior upgrades with possibly unrelated mailbox types (Examples 1 and 2).

Fowler et al. [20] formalize channel-based and mailbox-based communicating systems,
highlighting the differences between the two models and studying type-preserving encodings
between them. Mailboxes in their work are uniformly typed, but the availability of union
types make it possible to host heterogeneous values within the same mailbox. This however
may lead to a loss of precision in typing. This phenomenon, called type pollution by He et
al. [25] and Fowler et al. [20], is observable to some extent also in our typing discipline and
can be mitigated by the use of multiple mailboxes (cf. Section 4.2). Finally, Fowler et al. [20]
leave the extension of their investigation to behaviorally-typed language of actors as future
work. Our typing discipline is a potential candidate for this investigation and addresses a
more general setting thanks to the support for first-class mailboxes.

Sessions and actors. The encoding of binary sessions into actors discussed in Section 4.3 is
new and has been inspired by the encoding of binary sessions into the linear π-calculus [35, 16],
whereby each message is paired with a continuation. In our case, the continuation, instead of
being a fresh (linear) channel, is either the mailbox of the peer or that of the session. This
style of communication with explicit continuation passing is idiomatic in the actor model,

ECOOP 2018

15:24 Mailbox Types for Unordered Interactions

which is based on asynchronous communications. The encoding discussed in Section 4.3
can be generalized to multiparty sessions by defining SessionT as a medium process through
which messages are exchanged between the parties of the session. This idea has been put
forward by Caires and Pérez [5] to encode multiparty sessions using binary sessions.

Mostrous and Vasconcelos [41] study a session type system for enforcing ordered dyadic
interactions in core Erlang. They use references for distinguishing messages pertaining to
different sessions, making use of the advanced pattern matching capabilities of Erlang. Their
type system guarantees a weaker form of mailbox conformance, whereby junk messages
may be present at the end of a computation, and does not consider deadlock freedom.
Compared to our encoding of binary sessions, their approach does not require a medium
process representing the session itself.

Neykova and Yoshida [43] propose a framework based on multiparty session types for the
specification and implementation of actor systems with guarantees on the order of interactions.
This approach is applicable when designing an entire system and both the network topology
and the communication protocol can be established in advance. Fowler [19] builds upon the
work of Neykova and Yoshida to obtain a runtime protocol monitoring mechanism for Erlang.
Charalambides et al. [7] extend the multiparty session approach with a protocol specification
language that is parametric in the number of actors participating in the system. In contrast
to these approaches based on multiparty/global session types, our approach ensures mailbox
conformance and deadlock freedom of a system compositionally, as the system is assembled
out of smaller components, and permits the modeling of systems with a dynamic network
topology or with a varying number of interacting processes.

Linear logic. Shortly after its introduction, linear logic has been proposed as a specification
language suitable for concurrency. Following this idea, Kobayashi and Yonezawa [37, 38]
have studied formal models of concurrent objects and actors based on linear logic. More
recently, a direct correspondence between propositions of linear logic and session types has
been discovered [6, 55, 39]. There are several analogies between the mailbox type system and
the proof system of linear logic. Mailbox types with output capability are akin to positive
propositions, with !0 and !1 respectively playing the roles of 0 and 1 in linear logic and
!(E + F) and !(E · F) corresponding to ⊕ and ⊗. Mailbox types with input capability are
akin to negative propositions, with ?0 and ?1 corresponding to > and ⊥ and ?(E + F) and
?(E · F) corresponding to & and `. Rules [t-fail], [t-free] and [t-branch] have been directly
inspired from the rules for >, ⊥ and & in the classical sequent calculus for linear logic.
Subtyping corresponds to inverse linear implication and its properties are consistent with
those of the logic connectives according to the above interpretation.

Deadlock freedom. There is a vast literature on type systems ensuring deadlock freedom
(or stronger properties) of communicating processes and/or concurrent objects. These are
based on various mechanisms, including dependency relations between channels, sessions
or objects [12, 36, 45], process types [30] and behavioral types [42, 34, 44]. Hüttel et
al. [29] survey most of these techniques. Our approach is based on the idea of enforcing an
acyclic network topology and has been inspired by the session type systems based on linear
logic [6, 55, 39]. Interestingly, these works do not require any additional mechanism to ensure
deadlock freedom. There are two reasons that call for dependency graphs in our setting.
First, the rule [t-par] is akin to a symmetric cut rule. Dependency graphs are necessary
to detect mutual dependencies that may consequently arise (Example 21). Second, unlike
session endpoints, mailbox references can be used non-linearly. Thus, the multiplicity of
dependencies, and not just the presence or lack thereof, is relevant (Example 13).

U. de’Liguoro and L. Padovani 15:25

Igarashi and Kobayashi [30] study a generic type system for the π-calculus that allows
the enforcement of various safety properties, among which deadlock freedom. Unlike our
approach, which is based on typing mailboxes, their approach associates types with processes.
Process types collect information about both the messages exchanged over channels as well as
the dependencies between them, potentially achieving better precision in the analysis. This
also means, however, that the properties of a system are established by a global check on
the type of the system as a whole, which may hinder compositional reasoning. Determining
whether their type system subsumes our own is non-trivial and left for future work.

As a final consideration, it is easy to see from the typing rules and the structure of
judgments that dependency graphs are completely orthogonal to the other components of
the type system. This makes it possible to remove or replace them with more fine-grained
mechanisms if desired/appropriate. For example, some of the aforementioned works [36, 45]
are able to establish deadlock freedom of some cyclic network topologies. It might be
interesting to see whether and how these may be applied in our setting.

6 Concluding Remarks

We have presented a mailbox type system for reasoning about processes that communicate
through first-class, unordered mailboxes. The type system enforces mailbox conformance,
deadlock freedom and, for a significant class of processes, junk freedom as well. In sharp
contrast with session types, mailbox types embody the unordered nature of mailboxes and
enable the description of mailboxes concurrently accessed by several processes, abstracting
away from the state and behavior of the processes using these mailboxes. The fact that a
mailbox may have different types during its lifetime is entirely encapsulated by the typing
rules and not apparent from mailbox types themselves. The mailbox calculus subsumes
the actor model and allows us to analyze systems with a dynamic network topology and a
varying number of processes mixing different concurrency abstractions.

In the associated technical report [17] we informally discuss how to relax the syntax of
guarded processes to accommodate actions referring to different mailboxes as well as actions
representing timeouts. This extension makes the typing rules for guards more complex to
formulate but enhances expressiveness and precision of typing. As a further extension, it is
also possible to allow multiple processes to receive messages from the same mailbox.

Concerning further developments, the intriguing analogies between the mailbox type
system and linear logic pointed out in Section 5 surely deserve a more thorough investigation.
On the practical side, a primary goal is the application of the proposed typing discipline to
real-world programs based on the actor model and extensions thereof. In this respect, one
promising approach is the development of a tool for the analysis of Java bytecode along the
lines of what has already been done for Kilim [52]. Meanwhile, we have derived an algorithmic
version of the typing rules (Table 2) and developed a proof-of-concept tool that applies the
proposed typing discipline to the mailbox calculus [46]. The fact that each occurrence of
a name might be typed differently calls for a non-trivial amount of type inference as well.
To this aim, we make use of pattern variables to denote unknown patterns, we generate
constraints involving these variables from the structure of the process being analyzed, and
finally we look for a solution of the obtained constraints. This latter phase requires solving
systems of inequations in a commutative Kleene algebra, for which we appeal to a particular
instance of Newtonian program analysis [18] first introduced by Hopkins and Kozen [28].

ECOOP 2018

15:26 Mailbox Types for Unordered Interactions

References
1 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, 1986.
2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-

Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova,
Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral
Types in Programming Languages. Foundations and Trends in Programming Languages,
3:95–230, 2016. doi:10.1561/2500000031.

3 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, 2013.

4 Janusz A. Brzozowski. Derivatives of Regular Expressions. Journal of ACM, 11(4):481–494,
1964. doi:10.1145/321239.321249.

5 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In Proceedings of FORTE’16, LNCS 9688, pages 74–95. Springer, 2016. doi:
10.1007/978-3-319-39570-8_6.

6 Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions. In
Proceedings of CONCUR’10, LNCS 6269, pages 222–236. Springer, 2010. doi:10.1007/
978-3-642-15375-4_16.

7 Minas Charalambides, Peter Dinges, and Gul A. Agha. Parameterized, concurrent session
types for asynchronous multi-actor interactions. Science of Computer Programming, 115-
116:100–126, 2016. doi:10.1016/j.scico.2015.10.006.

8 Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. Revisiting actor pro-
gramming in C++. Computer Languages, Systems & Structures, 45:105–131, 2016. doi:
10.1016/j.cl.2016.01.002.

9 Arghya Chatterjee, Branko Gvoka, Bing Xue, Zoran Budimlic, Shams Imam, and Vivek
Sarkar. A distributed selectors runtime system for java applications. In Proceedings of
PPPJ’16, pages 3:1–3:11. ACM, 2016. doi:10.1145/2972206.2972215.

10 Maria Christakis and Konstantinos Sagonas. Detection of asynchronous message passing
errors using static analysis. In Proceedings of PADL’11, LNCS 6539, pages 5–18. Springer,
2011. doi:10.1007/978-3-642-18378-2_3.

11 John Conway. Regular Algebra and Finite Machines. William Clowes & Sons Ltd, 1971.
12 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.

Global Progress for Dynamically Interleaved Multiparty Sessions. Mathematical Structures
in Computer Science, 26:238–302, 2016. doi:10.1017/S0960129514000188.

13 Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science,
25:95–169, 1983. doi:10.1016/0304-3975(83)90059-2.

14 Silvia Crafa. Behavioural types for actor systems. Technical Report 1206.1687, arXiv, 2012.
URL: http://arxiv.org/abs/1206.1687.

15 Silvia Crafa and Luca Padovani. The Chemical Approach to Typestate-Oriented Program-
ming. ACM Transactions on Programming Languages and Systems, 39:13:1–13:45, 2017.
doi:10.1145/3064849.

16 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Information
and Computation, 256:253–286, 2017. doi:10.1016/j.ic.2017.06.002.

17 Ugo de’Liguoro and Luca Padovani. Mailbox types for unordered interactions. CoRR,
abs/1801.04167, 2018. arXiv:1801.04167.

18 Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Newtonian program analysis.
Journal of the ACM, 57(6):33:1–33:47, 2010. doi:10.1145/1857914.1857917.

19 Simon Fowler. An Erlang implementation of multiparty session actors. In Proceedings of
ICE’16, EPTCS 223, pages 36–50, 2016. doi:10.4204/EPTCS.223.3.

http://dx.doi.org/10.1561/2500000031
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1016/j.scico.2015.10.006
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://dx.doi.org/10.1145/2972206.2972215
http://dx.doi.org/10.1007/978-3-642-18378-2_3
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://arxiv.org/abs/1206.1687
http://dx.doi.org/10.1145/3064849
http://dx.doi.org/10.1016/j.ic.2017.06.002
http://arxiv.org/abs/1801.04167
http://dx.doi.org/10.1145/1857914.1857917
http://dx.doi.org/10.4204/EPTCS.223.3

U. de’Liguoro and L. Padovani 15:27

20 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing metaphors: Actors as channels
and channels as actors. In Proceedings of ECOOP’17, LIPIcs 74, pages 11:1–11:28, 2017.
doi:10.4230/LIPIcs.ECOOP.2017.11.

21 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

22 Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Actors may
synchronize, safely! In Proceedings PPDP’16, pages 118–131. ACM, 2016. doi:10.1145/
2967973.2968599.

23 Philipp Haller. On the integration of the actor model in mainstream technologies: the
scala perspective. In Proceedings of AGERE! 2012, pages 1–6. ACM, 2012. doi:10.1145/
2414639.2414641.

24 Philipp Haller and Frank Sommers. Actors in Scala - concurrent programming for the
multi-core era. Artima, 2011.

25 Jiansen He, Philip Wadler, and Philip Trinder. Typecasting actors: From akka to takka.
In Proceedings of the Fifth Annual Scala Workshop (SCALA’14), pages 23–33. ACM, 2014.
doi:10.1145/2637647.2637651.

26 Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism
for Artificial Intelligence. In Proceedings of IJCAI’73, pages 235–245. William Kaufmann,
1973.

27 Kohei Honda. Types for Dyadic Interaction. In Proceedings of CONCUR’93, volume LNCS
715, pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

28 Mark W. Hopkins and Dexter Kozen. Parikh’s Theorem in Commutative Kleene Algebra.
In Proceedings of LICS’99, pages 394–401. IEEE, 1999. doi:10.1109/LICS.1999.782634.

29 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Computing Surveys, 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

30 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoret-
ical Computer Science, 311(1-3):121–163, 2004. doi:10.1016/S0304-3975(03)00325-6.

31 Shams Mahmood Imam and Vivek Sarkar. Integrating task parallelism with actors. SIG-
PLAN Notices, 47(10):753–772, 2012. doi:10.1145/2398857.2384671.

32 Shams Mahmood Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In Proceedings of AGERE! 2014, pages 67–80. ACM,
2014. doi:10.1145/2687357.2687368.

33 Shams Mahmood Imam and Vivek Sarkar. Selectors: Actors with multiple guarded mail-
boxes. In Proceedings of AGERE! 2014, pages 1–14. ACM, 2014. doi:10.1145/2687357.
2687360.

34 Naoki Kobayashi. A Type System for Lock-Free Processes. Information and Computation,
177(2):122–159, 2002. doi:10.1006/inco.2002.3171.

35 Naoki Kobayashi. Type systems for concurrent programs. Technical report,
Tohoku University, 2007. Short version appeared in 10th Anniversary Collo-
quium of UNU/IIST, 2002. URL: http://www.kb.ecei.tohoku.ac.jp/~koba/papers/
tutorial-type-extended.pdf.

36 Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks.
Information and Computation, 252:48–70, 2017. doi:10.1016/j.ic.2016.03.004.

37 Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for concurrent object-
oriented programming. In Proceedings of OOPSLA’94, pages 31–45. ACM, 1994. doi:
10.1145/191080.191088.

38 Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model based on
linear logic. Formal Aspects of Computing, 7(2):113–149, 1995. doi:10.1007/BF01211602.

ECOOP 2018

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.11
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1145/2967973.2968599
http://dx.doi.org/10.1145/2967973.2968599
http://dx.doi.org/10.1145/2414639.2414641
http://dx.doi.org/10.1145/2414639.2414641
http://dx.doi.org/10.1145/2637647.2637651
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1109/LICS.1999.782634
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1016/S0304-3975(03)00325-6
http://dx.doi.org/10.1145/2398857.2384671
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687360
http://dx.doi.org/10.1145/2687357.2687360
http://dx.doi.org/10.1006/inco.2002.3171
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://dx.doi.org/10.1016/j.ic.2016.03.004
http://dx.doi.org/10.1145/191080.191088
http://dx.doi.org/10.1145/191080.191088
http://dx.doi.org/10.1007/BF01211602

15:28 Mailbox Types for Unordered Interactions

39 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In
Proceedings of ESOP’15, LNCS 9032, pages 560–584. Springer, 2015. doi:10.1007/
978-3-662-46669-8_23.

40 Vincenzo Mastandrea. Deadlock analysis with behavioral types for actors. In Proceedings
of ICTCS’16, volume 1720 of CEUR Workshop Proceedings, pages 257–262, 2016. URL:
http://ceur-ws.org/Vol-1720/short7.pdf.

41 Dimitris Mostrous and Vasco T. Vasconcelos. Session typing for a featherweight Erlang.
In Proceedings of COORDINATION’11, LNCS 6721, pages 95–109. Springer, 2011. doi:
10.1007/978-3-642-21464-6_7.

42 Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaranteeing liveness in an
object calculus through behavioural typing. In Proceedings of FORTE’99, volume 156,
pages 203–221. Kluwer, 1999.

43 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Logical Methods in
Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:17)2017.

44 Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Proceedings of
CSL-LICS’14, pages 72:1–72:10. ACM, 2014. doi:10.1145/2603088.2603116.

45 Luca Padovani. Deadlock-Free Typestate-Oriented Programming. Programming Journal,
2, 2018. doi:10.22152/programming-journal.org/2018/2/15.

46 Luca Padovani. MC2, the Mailbox Calculus Checker, 2018. URL: http://www.di.unito.
it/~padovani/Software/MCC/index.html.

47 Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–453, 1996.

48 Franz Puntigam. Strong types for coordinating active objects. Concurrency and Computa-
tion: Practice and Experience, 13(4):293–326, 2001. doi:10.1002/cpe.570.

49 Franz Puntigam and Christof Peter. Types for active objects with static deadlock preven-
tion. Fundamenta Informaticae, 48(4):315–341, 2001. URL: http://content.iospress.
com/articles/fundamenta-informaticae/fi48-4-02.

50 António Ravara and Vasco T. Vasconcelos. Typing non-uniform concurrent objects. In
Proceedings of CONCUR’00, LNCS 1877, pages 474–488. Springer, 2000. doi:10.1007/
3-540-44618-4_34.

51 Davide Sangiorgi and David Walker. The Pi-Calculus - A theory of mobile processes. Cam-
bridge University Press, 2001.

52 Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for java. In Pro-
ceedings of ECOOP’08, LNCS 5142, pages 104–128. Springer, 2008. doi:10.1007/
978-3-540-70592-5_6.

53 Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why do scala developers mix the
actor model with other concurrency models? In Proceedings of ECOOP’13, LNCS 7920,
pages 302–326. Springer, 2013. doi:10.1007/978-3-642-39038-8_13.

54 Carlos A. Varela and Gul Agha. Programming dynamically reconfigurable open systems
with SALSA. SIGPLAN Notices, 36(12):20–34, 2001. doi:10.1145/583960.583964.

55 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–
418, 2014. doi:10.1017/S095679681400001X.

http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://ceur-ws.org/Vol-1720/short7.pdf
http://dx.doi.org/10.1007/978-3-642-21464-6_7
http://dx.doi.org/10.1007/978-3-642-21464-6_7
http://dx.doi.org/10.23638/LMCS-13(1:17)2017
http://dx.doi.org/10.1145/2603088.2603116
http://dx.doi.org/10.22152/programming-journal.org/2018/2/15
http://www.di.unito.it/~padovani/Software/MCC/index.html
http://www.di.unito.it/~padovani/Software/MCC/index.html
http://dx.doi.org/10.1002/cpe.570
http://content.iospress.com/articles/fundamenta-informaticae/fi48-4-02
http://content.iospress.com/articles/fundamenta-informaticae/fi48-4-02
http://dx.doi.org/10.1007/3-540-44618-4_34
http://dx.doi.org/10.1007/3-540-44618-4_34
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1145/583960.583964
http://dx.doi.org/10.1017/S095679681400001X

Accelerating Dynamically-Typed Languages on
Heterogeneous Platforms Using Guards
Optimization
Mohaned Qunaibit
University of California, Irvine
m.qunaibit@uci.edu

https://orcid.org/0000-0001-6759-7890

Stefan Brunthaler
National Cyber Defense Research Institute CODE, Munich, and SBA Research
brunthaler@unibw.de

Yeoul Na
University of California, Irvine
yeouln@uci.edu

Stijn Volckaert
University of California, Irvine
stijnv@uci.edu

Michael Franz
University of California, Irvine
franz@uci.edu

Abstract
Scientific applications are ideal candidates for the “heterogeneous computing” paradigm, in which
parts of a computation are “offloaded” to available accelerator hardware such as GPUs. However,
when such applications are written in dynamic languages such as Python or R, as they increas-
ingly are, things become less straightforward. The same flexibility that makes these languages so
appealing to programmers also significantly complicates the problem of automatically and trans-
parently partitioning a program’s execution between a CPU and available accelerator hardware
without having to rely on programmer annotations.

A common way of handling the features of dynamic languages is by introducing speculation
in conjunction with guards to ascertain the validity of assumptions made in the speculative com-
putation. Unfortunately, a single guard violation during the execution of “offloaded” code may
result in a huge performance penalty and necessitate the complete re-execution of the offloaded
computation. In the case of dynamic languages, this problem is compounded by the fact that a
full compiler analysis is not always possible ahead of time.

This paper presents MegaGuards, a new approach for speculatively executing dynamic
languages on heterogeneous platforms in a fully automatic and transparent manner. Our method
translates each target loop into a single static region devoid of any dynamic type features. The
dynamic parts are instead handled by a construct that we call a mega guard which checks all
the speculative assumptions ahead of its corresponding static region. Notably, the advantage
of MegaGuards is not limited to heterogeneous computing; because it removes guards from
compute-intensive loops, the approach also improves sequential performance.

We have implemented MegaGuards along with an automatic loop parallelization backend
in ZipPy, a Python Virtual Machine. The results of a careful and detailed evaluation reveal very
significant speedups of an order of magnitude on average with a maximum speedup of up to two
orders of magnitudes when compared to the original ZipPy performance as a baseline. These
results demonstrate the potential for applying heterogeneous computing to dynamic languages.

© Mohaned Qunaibit, Stefan Brunthaler, Yeoul Na, Stijn Volckaert, and Michael Franz;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 16; pp. 16:1–16:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.qunaibit@uci.edu
https://orcid.org/0000-0001-6759-7890
mailto:brunthaler@unibw.de
mailto:yeouln@uci.edu
mailto:stijnv@uci.edu
mailto:franz@uci.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 MegaGuards

2012 ACM Subject Classification Software and its engineering→ Interpreters, Software and its
engineering → Just-in-time compilers, Software and its engineering → Dynamic compilers

Keywords and phrases Type Specialization, Guards Optimization, Automatic Heterogeneous
Computing, Automatic Parallelism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.16

Funding This material is based upon work partially supported by the Defense Advanced Research
Projects Agency (DARPA) under contracts FA8750-15-C-0124 and FA8750-15-C-0085, by the
National Science Foundation under awards CNS-1513837 and CNS-1619211, and by the Office of
Naval Research under award N00014-17-1-2782. The competence center SBA Research (SBA-K1)
is funded within the framework of COMET – Competence Centers for Excellent Technologies by
BMVIT, BMDW, and the federal state of Vienna, managed by the FFG. We also gratefully
acknowledge a gift from Oracle Corporation. Mohaned Qunaibit was supported by MOHE’s
Graduate Studies Scholarship. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA), its Contracting Agents, the National
Science Foundation, the Office for Naval Research, or any other agency of the U.S. Government.

1 Motivation

Heterogeneous computing, in which the execution of a program is shared between a CPU
and other hardware such as a GPU or dedicated accelerator chips, is gaining in importance.
By judiciously “offloading” some of the computations to available acceleration hardware,
performance can in many cases be raised far beyond single threaded CPU capabilities.

Unfortunately, writing programs for heterogeneous computing is difficult. Some researchers
are focusing on “transparent” approaches, in which computations are distributed to hardware
accelerators fully automatically, while others are concentrating on a more manual approach
in which programmers guide this process explicitly through specific programming language
constructs or compiler-directed annotations. As Hager et al. noted in 2015 [26], for the long
term it is still an open question

[...] whether accelerators will be automatically invoked by compilers and runtime
systems, [...] or be explicitly managed by application programmers.

Looking back on decades of successful research on automated compiler optimizations, we
can state that “transparent” approaches that perform optimizations without programmer
intervention and that can automatically adapt to changes in available accelerator hardware
are clearly preferable to manual approaches that might require program re-writing each time
that the hardware is changed. Accordingly, much of the overall research on heterogeneous
computing has focused on this automation aspect. A closer look at this prior work, however,
reveals that most research on automating heterogeneous computing has centered on statically-
typed programming languages.

When looking at existing research on heterogeneous computing for dynamic programming
languages such as Python, we find that the emphases are reversed: most of the work in the
dynamic languages domain focuses on explicit manual management of accelerators through
programmer-directed addition of source code annotations and/or the use of idiosyncratic
libraries. Getting to know these annotations and libraries is a time-consuming obstacle
that may prevent programmers from re-writing their code to benefit from heterogeneous

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:3

programming. In addition, customizing code to adhere to one specific library vs another
naturally inhibits a program’s portability. Moreover, these libraries and annotations often
force programmers to abandon the flexibility afforded by dynamic typing.

Automating heterogeneous computing is challenging for dynamic languages because the
dynamic types of objects may change at any time during program execution. Consider, for
example, an operation that changes from an integer addition to a string concatenation as a
result of a type change in an underlying operand. In a dynamic compilation environment,
such code will probably first be optimized to an integer addition. When then the type
change is captured by a runtime type check, i.e., via a guard, the existing optimization is
invalidated and the execution falls back to the interpreter or a less optimized version of the
code. Eventually, it may then be optimized again for the new type.

Now consider what happens when such mis-speculation happens during the execution
of a piece of code that has been offloaded to a hardware acceleration device; we will call
such pieces of code “kernels” in the remainder of this paper. In case of a mis-speculation,
the existing kernel may become invalid. But because the kernel was executing on a device
external to the CPU, the performance penalties may be much higher than merely dropping
back into an interpreter or a lower level of optimization. In the worst case, it may not even
be possible to salvage the results computed so far, so that re-execution of the whole kernel
will be required.

In general, transparent offloading may require complex static analyses such as points-to
analysis to check dependencies across loop iterations. The additional code required to handle
mis-speculations complicates the program to analyze further, making adoption of such static
analysis techniques to dynamic compilation very difficult.

To overcome these challenges, we propose MegaGuards 1, which removes the obstacles
in dynamic languages that prevent compute-intensive loops to be transparently offloaded to
GPUs or other acceleration devices. MegaGuards translates a loop as a static region in
which type changes or type mis-speculations do not exist. The key insight and novelty of
MegaGuards is how it guarantees that the offloaded code does not encounter type changes
or type mis-speculations. To this end, MegaGuards conducts a type stability analysis for
loops to see if all the guards can be safely moved outside of the loops. If so, MegaGuards
removes all the guards from the loop and constructs a single guard, i.e., a “mega guard,”
which checks all the speculative assumptions ahead of the loop. This way the loop itself can
be seen as the static region. MegaGuards then offloads among the stabilized loops if it
can prove that the loop does not have any cross-iterational dependencies. The advantage of
MegaGuards, however, is not limited to enabling offloading. Since it removes guards from
the loop, MegaGuards also improves performance on a single threaded CPU.

We implemented MegaGuards in ZipPy [61], a modern Python 3 implementation
targeting the Java Virtual Machine (JVM). ZipPy relies on the Truffle framework to optimize
interpreted programs on the CPU [58]. To determine parallelizable loops, we perform a
bounds check optimization and conduct dependence analysis by leveraging the polyhedral
model [25]. MegaGuards dynamically translates parallel loops into OpenCL code, which it
then executes on the fastest acceleration device available on the target system. MegaGuards
significantly improves the performance of data-parallel applications over sequential execution
of Python. Even if we cannot parallelize a loop, we still translate it to a guard-less AST,
which also improves the sequential performance.

1 Our software will be publicly available at https://github.com/securesystemslab/zippy-megaguards

ECOOP 2018

16:4 MegaGuards

In summary, the contribution of this paper are as follows:
We introduce a novel technique, MegaGuards, that eliminates type speculation inside
of loops to efficiently offload speculative code to kernels (Section 3.3.1). Eliminating
speculation inside of loops also improves sequential performance (Section 3.5).
We describe the design and implementation of MegaGuards, a Python-based system
that transparently offloads data-parallel loops to an acceleration device, such as a GPU,
without requiring code rewriting or annotations from the programmer (Section 3).
We report results of a careful and detailed evaluation (Section 4). Specifically, our
experiments indicate that MegaGuards offers:

Performance: Our measurements show that MegaGuards (i) performs within 2.82×
of the average performance of handwritten, native OpenCL C/C++ implementations
on the GPU, and (ii) yields substantial speedups when compared with existing Python
implementations (with average speedups exceeding 84×).
Implementation Efficiency: By way of optimizing pure Python code in an automatic
and transparent manner, MegaGuards removes the necessity for the labor-intensive
task of manually rewriting code. To quantify these gains in implementation efficiency,
we measured reductions in (i) lines of code, and (ii) McCabe’s cyclomatic complexity.
Our results indicate average reductions by about three quarters in both dimensions.

2 Background

2.1 Heterogeneous Programming Frameworks
Programming in a heterogeneous computing environment is highly challenging because
heterogeneous programming frameworks (e.g., CUDA [42] and OpenCL [48]) have steep
learning curves and requiring knowledge of the inner workings of the GPU.

To alleviate this problem for statically-typed languages, researchers have proposed
transformations that map existing parallel paradigms for the CPU to run on the GPU [44, 24,
56]. Others proposed libraries and lambda expressions [22, 28, 46, 47, 36, 7] to automatically
generate GPU code. Some techniques automatically parallelize sequential loops and run them
on GPUs [35, 3]. New languages such as Lime [18, 2] implicitly perform parallel computations
on GPUs.

Dynamically-typed languages have fewer options to simplify GPU programming and
must typically resort to external APIs for generating OpenCL or CUDA code. Python
programmers, for example, can use libraries such as Numba to design kernel code targeting
CUDA. In-depth knowledge of the GPU’s architecture and manual data management remains
necessary to use these libraries.

2.2 Interpreters and Virtual Machines
The fact that variable types can change at any moment in dynamically-typed languages
hinders ahead-of-time optimization. The rate at which variable types change in practice
is, however, usually minimal [16, 57]. This observation has inspired various specialization
approaches that minimize the interpreter’s type-checking overhead [9, 8, 59, 55, 1, 63]. In our
work, we leverage specialized types to eliminate all type-checking in the generated OpenCL
code.

Truffle [58], the self-optimizing runtime system we use in MegaGuards, performs
specialization via automatic node rewriting on an abstract syntax tree (AST). Truffle
speculatively replaces generic AST nodes, which are capable of operating on variables of any

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:5

Python 3
N = 1000
M = 500
a = [[j*2. for j in range(M)] for i in range(N)]
b = [[0. for j in range(M)] for i in range(N)]
def foo(a, b, alpha, n, m):

for i in range(n):
for j in range(m):

b[i][j] += a[i][j] * alpha

for i in range(10):
foo(a, b, .2, N, M)

parse

execute

Generic
Truffle AST=

+
*

alphaa
i j

b
i j

b
i j

GenericAdd

Generic Node Specialized Node

Specialized
Truffle AST=

+

*

alpha

b

i j
b

i j

b

i j

Guard (Int)

Guard (double, double) doubleAdd

doubleMul

Guard (double, double)

doubleAssign

Figure 1 Node specialization in Truffle.

*

alphab

i j

boolean guard(Object left, Object right) {
if (!(left instanceof Double))

return false;
if (!(right instanceof Double))

return false;
return true;
}

double doubleMul(VirtualFrame frame) {
Object left = leftNode.execute(frame)
Object right = rightNode.execute(frame)
if (guard(left, right))

return (double) left * (double) right;
else {
transferToInterpreterAndInvalidate();
return this.replace(GenericMulNode()).execute(left, right);

}

Figure 2 Handling mis-speculation using type guards.

data type, with nodes that are specialized for a specific data type (Figure 1). This speculation
approach facilitates just-in-time compilation of Truffle’s hosted languages, which include
ZipPy, FastR, and TruffleRuby. When a Truffle AST reaches a stable state, the Truffle
framework invokes the Graal just-in-time compiler [19, 60] to further optimize the Truffle
AST through partial evaluation and to compile the AST into highly optimized machine code.

To preserve the correctness of the program execution, Truffle must be able to handle
mis-speculation. Figure 2 shows how Truffle embeds type guards into the specialized AST.
Guards verify that the specialized input types for a node match the expected types, and
trigger deoptimization if they detect a mismatch. When a node’s return type mismatches
the specialized data type, an exception is thrown and Truffle also proceeds to deoptimize
the node. During deoptimization, Truffle discards the specialized node and replaces it by a
generic node.

ZipPy, the Python 3 VM we use in MegaGuards, is built on top of Truffle. ZipPy’s
type system specializes objects based on their content. In Figure 3, we see several examples
of type specialization in ZipPy. At 1 , the program creates a list a containing items of the
same type. ZipPy internally specializes this list to be of type DoubleList. At 2 , one of
the list items is replaced by a value of a different type. Here, ZipPy generalizes the list to
be of type ObjectList. At 3 , the program creates a multi-dimensional list b. In this case,
ZipPy specializes the nested lists to be of type DoubleList. ZipPy stores variables values
in a virtual frame corresponding to the context that variables have been created in. This
virtual frame is usually referred to as the context frame. Each variable in the context frame
maintains its specialized type. This object layout design assists Truffle specialization process
and minimizes node type generalization (i.e., deoptimization).

3 The MegaGuards System

3.1 Overview
Figure 4 shows how MegaGuards fits into the ZipPy ecosystem. Conceptually, Mega-
Guards works as follows. First, whenever the interpreter executes a loop with an identifiable
index expression, such as the for i in range(n) statement in Figure 1, MegaGuards

ECOOP 2018

16:6 MegaGuards

Python 3
a = [i*2. for i in range(10)]
...
a[1] = ’text’
...
b = [[0. for j in range(10)] for i in range(20)]

1

2

3

1

0.0 2.0 4.0 ... 0.0 “text” 4.0

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[] Object[]

double[]

List[]

a = DoubleList 2 3 b = ListLista = ObjectList

Figure 3 ZipPy type specialization.

Python
program

Truffle

Graal

ZipPy

MegaGuards

GPUCPU

parse

Loops

Rest	
 of	
 the	
 code

GPU

CPU

OpenCL

Graal

Partial	

Evaluation

ZipPy AST

Specialized	
 Truffle	
 (Guarded)	
 AST

Generic	
 Node

Specialized	
 Node

Generic	
 Truffle	
 AST

JVM

MegaGuards

When	
 unstable
types	
 detected

Pre-­‐
assessment

Speculation	

Elimination

Kernel	
 Code	

Generation	
 and	

Execution

Parallel	
 Loop	
 Analysis

Kernel	
 Data	

Management

OpenCL

Generate	
 Guard-­‐Optimized	
 Truffle	
 AST

Guard-­‐Optimized	
 Truffle	
 AST

Specialized	

MegaGuards AST

MegaGuards Backends

Bounds	
 Check

Figure 4 ZipPy+MegaGuards System Overview.

determines if the loop is a potential candidate for offloading to an accelerator device (Sec-
tion 3.2). If the loop is a suitable candidate, MegaGuards analyzes if the loop can be
stabilized using our type stability analysis. If so, MegaGuards eliminates all type checks
from the loop and creates a mega guard which checks all the speculative assumptions outside
the loop (Section 3.3). MegaGuards then performs a bounds check optimization analysis
and marks operations that require run-time checks (Section 3.3.3). After that, MegaGuards
performs a dependence analysis to see if the loop iterations are independent of each other
and thus can be safely offloaded (Section 3.4.1). MegaGuards then optimizes the AST of
the parallelizable loop and translates it into OpenCL kernel code (Section 3.4.2). Finally,
MegaGuards compiles the OpenCL kernel and adaptively selects the best acceleration
device to offload (Section 3.4.5). If MegaGuards finds that a loop is not a candidate for
offloading, MegaGuards will force ZipPy to execute that loop on top of Graal, a dynamic
compiler. If the loop is proven to be type stable, however, MegaGuards will still perform
the mega guard optimization.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:7

...

...

a = ListList

frame

b = ListList
alpha = Double
n = Integer
m = Integer

Unbox

b = double[][]

.

.

.

do
ub
le
[]
[] b_size_1 = n

b_size_2 = m...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[]

List[]

b = ListList

Local Array info

...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[]

List[]

Figure 5 MegaGuards unboxing process.

Python 3
a = [i for i in range(5)]
b = [i*1. for i in range(5)]

def qux(x):
return x*2

def baz(a, b, n):
for i in range(n):

b[i] = qux(b[i]) * qux(a[i])

baz(a, b, 5)

Specialized
MegaGuards AST

=
*

a
i

b

i

For

i

Loop
Info

= 0, > n, += 1

𝑓"
qux

b
i

𝑓&
qux

𝑓&
qux

*

x 2

𝑓"
qux

*

x 2

Figure 6 MegaGuards specialized AST with inter-procedural invocations.

3.2 Lightweight Pre-assessment
MegaGuards begins its analysis when the interpreter reaches a loop with an identifiable
index expression that has an explicit number of iterations. MegaGuards considers the loop
a suitable candidate for offloading if its step sizes are constant.

For suitable candidate loops, MegaGuards traverses the AST sub-tree constituting the
loop to ensure that all the instructions in the loop are supported by the OpenCL framework.

3.3 Guards Optimization
Truffle uses type guards and exceptions to handle mis-speculations, as shown in Section 2.2.
MegaGuards hoists type, bounds, and overflow checks out of a loop to translate the loop
into a static region. This way these checks are performed before that loop is executed. To
this end, MegaGuards performs type stability analysis for each AST node, identifies all the
input data to be type-guarded, and generates specialized, strongly-typed ASTs. Moreover,
MegaGuards analyzes array subscripts and arithmetic operations in affine expressions to
optimize bounds and overflow checks. The nodes in a specialized AST do not contain type
checks but may contain bounds and arithmetic overflow checks that MegaGuards is unable
to optimize (see Section 3.3.3).

3.3.1 Type Stability Analysis
MegaGuards now assesses the type stability of the loop. We say a loop is type-stable if we
can deduce a single data type for each node and can guarantee all potential type changes
can only result from outside the loop, not from the inside. MegaGuards performs this
type stability analysis before executing or profiling the loop but it leverages type feedback
information of live-in variables available in the context frame maintained by ZipPy (see

ECOOP 2018

16:8 MegaGuards

ALGORITHM 1: Type Stability Analysis Algorithm.
Function DominantType(left, right)

Result: Return the strongest data type (e.g., (double, long) → double)
if left == None then return right;
else if right == None then return left;
else if left > right then return left;
else return right;

end
Function NodeVisitor(node) /* Depth-First tree traversal */

Result: Return data type of the tree
op← node.getOp()
if op == AssigmentNode then

leftDataType← NodeVisitor(node.getLeftChild())
rightDataType← NodeVisitor(node.getRightChild())
if leftDataType == rightDataType then

return leftDataType
else /* Possible data type change */

Exit MegaGuards and transfer to interpreter
end

else if op == IfElseAssignmentNode then
/* e.g α = (1 if β > 0 else 2) */
leftDataType← NodeVisitor(node.getLeftChild())
thenDataType← NodeVisitor(node.getThenChild())
elseDataType← NodeVisitor(node.getElseChild())
if thenDataType == elseDataType and leftDataType == thenDataType then

return leftDataType
else /* Possible data type change */

Exit MegaGuards and transfer to interpreter
end

else
if node is User-Defined Function Call then

returnDataType← None
Enter new Scope
foreach argument in node.getArguments() do

/* assign argument data types to the function parameter */
parameter ← NodeVisitor(argument)

end
returnDataType← NodeVisitor(node.getFunctionRoot())
/* assert all return sites have the same data type */
Exit Scope
return returnDataType

else /* Other nodes, e.g., binary arithmetic, return, etc. */
currentDataType← None
foreach child in node.getChildren() do

childDataType← NodeVisitor(child)
currentDataType← DominantType(childDataType, currentDataType)

end
return currentDataType

end
end

end

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:9

Generic
Truffle AST

=

+

*

alphaa
i j

b
i j

b
i j

GenericAdd

For

j

Iter

For

i

Iter

0 ... m

0 ... n
Type Stability Algorithm

Build Specialized AST

Guards Optimization:

Generate
mega guard

Generate
specialized AST

...

...

a = ListList

frame

b = ListList
alpha = Double
n = Integer
m = Integer

Generic	
 Node

Specialized	
 Node

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

doubleAdd

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

doubleAssign

boolean megaguard(Object n, Object m, Object alpha, Object a, Object b) {
if (!(n instanceof Integer) && !(m instanceof Integer) && !(alpha instanceof Double))

return false;
if (!(Unbox(a) instanceof Double[][]) && !(Unbox(b) instanceof Double[][]))

return false;
if (!(this.validateBoundsAndOverflowAssumptions()))

return false;
return true;

}

Bounds Check Optimization

Figure 7 MegaGuards specialized AST build process.

Section 2.2). In figure 5, MegaGuards runs an unboxing pass on variables of generic boxed
types (e.g., object lists) to augment the context frame with more precise information. If
MegaGuards finds multiple types within in the same boxed data structure (e.g., a list that
stores both strings and integers), it will mark that structure as type-unstable in the context
frame.

After unboxing, MegaGuards runs Algorithm 1 on each AST node in a loop body
to infer the type of each node, and to verify the type stability of each statement. The
main method in the algorithm, NodeVisitor, traverses the loop’s AST statements in depth-
first order, propagating the data types from the augmented context frame through each
operation. For assignment operations, represented by AssignmentNode nodes in the AST,
our algorithm consults the context frame to check if the source (rightDataType) and target
(leftDataType) data types are the same. If so, the assignment operation itself is given that
data type. If not, the assignment node is considered type-unstable, and MegaGuards
will force the entire loop to be executed by the interpreter. Similarly, MegaGuards tags
IfElseAssignmentNode nodes with the data type of its child nodes unless any of its child
nodes have different data types, or if any child node is marked as type-unstable. In both of
these cases, MegaGuards forces the interpreter to execute the loop instead. MegaGuards
does, however, re-evaluate loops it fails to offload should they ever be executed again. For
operations such as binary arithmetic operations and function calls, the algorithm tags the
operation with the dominant type of the operation’s child nodes using the DominantType
method. If our algorithm determines that all operations in the AST are type-stable, it will
return the inferred data types for each node.

Interprocedural Analysis Support

To support interprocedural type stability analysis, MegaGuards does function cloning:
it creates new variants of functions called within loops and specializes each variant based
on its argument types. Figure 6 shows an example of a loop with two function calls.

ECOOP 2018

16:10 MegaGuards

MegaGuards runs Algorithm 1 on the loop in function baz. While traversing the loop’s
AST, MegaGuards identifies a user-defined function call to qux with one argument, b[i].
MegaGuards creates a specialized version of this function using Algorithm 1. Since b[i]
is of type double, the algorithm can determine that this specialized version of function qux
returns a value of type double. MegaGuards reports this return type back to the call
site in the loop and continues the loop traversal. MegaGuards then identifies another call
to function qux with argument a[i] of type int. Since MegaGuards has only created
a variant of qux specialized for arguments of type double, MegaGuards creates another
variant here specialized for argument type int.

3.3.2 MegaGuards-Specialized AST
MegaGuards translates the original ASTs for type-stable loops into specialized, strongly-
typed ASTs based on the type information inferred during our type stability analysis.
Figure 7 shows an example of such a translation. The figure shows how MegaGuards
converts the generic For node in the ZipPy AST into a specialized For node, which has
a LoopInfo child node. The LoopInfo node stores the loop expression, loop bounds, and step
size. The information in the LoopInfo node is later used for the bounds check optimization
(Section 3.3.3), dependence analysis (Section 3.4.1) and kernel code generation (Section 3.4.2).

Each node in an MegaGuards-specialized AST operates on a specific data type.
doubleAssign, for example, can only assign a double floating-point value to a variable.
The nodes in the ZipPy AST, on the other hand, are generic and can handle any data type.
These ZipPy AST nodes contain type checks and conditional branches. The MegaGuards-
specialized nodes do not.

MegaGuards supports translation of AST operations that operate on generic boxed data
types. The assign operation in the ZipPy AST, for example, writes to b[i][j]. Variable b
is of generic type ListList according to the original context frame generated by ZipPy, but
during type stability analysis, MegaGuards augments the context frame with more precise
type information by unboxing b into a primitive data structure of type double[][]. Based
on feedback from this unboxing pass, MegaGuards establishes that the = operation in
question must be translated into a write operation of type double (i.e., a doubleAssign
node).

The GenericAdd operation has two input types, representing the left and right sides of
the add operation. Our type stability analysis recursively finds the dominant type for this
operation. Since both sides are of type double, MegaGuards can translate this node into
a doubleAdd.

The MegaGuards-specialized AST is considered to be type-stable and, thus, does not
contain any traditional type guards. Once it is translated to OpenCL code or a guard-less
specialized Truffle AST, the loop will only need to handle bounds checks and arithmetic
overflows, resulting in code with significantly fewer conditional branches.

3.3.3 Bounds Check Optimization
Dynamically-typed languages must perform a bounds check for every array access. Mega-
Guards optimizes this bounds check for arrays whose subscripts are affine expressions. The
form of an affine expression is αx + β where x is a loop induction variable, and α and β
are loop-invariant values. Array subscripts in this form allow us to safely determine the
upper and lower bounds for all array accesses before executing the loop. As with guards,
MegaGuards removes bounds checks from the loop body and inserts only checks for the
upper and lower bounds ahead of the loop.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:11

Python 3
a = [i*2. for i in range(5)]
b = [0. for i in range(5)]
c = [2, 1, 4, 0, 3]

def bar(a, b, alpha, n):
for i in range(n):

b[i] *= a[c[i]] * alpha

bar(a, b, .5, 5)

Specialized
MegaGuards AST

=

*

*

alphaa

i

b
i

b

i

For

i

Loop
Info

= 0, > n, += 1

c

Bounds
Check

Safe Unsafe
(0,4)

Specialized
MegaGuards AST

=

*

*

alphaa

i

b
i

b

i

For

i

Loop
Info

= 0, > 5, += 1

c

(0,4)

(0,4)

(-∞,∞)
(-∞,∞)

(-∞,∞)

(-∞,∞)

✓

✓

✓

✘

(.5,.5)

Figure 8 MegaGuards bounds check optimization process.

For array subscripts that are non-affine expressions, MegaGuards cannot validate the
bounds ahead of time. Instead, we convert the existing run-time bounds check into a simple
check that sets a flag whenever an out-of-bounds violation occurs.

Figure 8 shows a program containing both kinds of arrays. The array subscripts for lists
b and c are affine expressions, so MegaGuards hoists the bounds checks out of the loop.
The array subscript for list a, however, is a non-affine expression, so MegaGuards still
requires a run-time bounds check inside the loop. The run-time bounds check compares
the value of the evaluated non-affine expression with the size of the data structure that
we collected in the unboxing pass (Section 3.3). The check sets a boundsViolated flag if
it detects a violation. MegaGuards reads the value of this when the execution of the
offloaded loop finishes. Access to the boundsViolated flag does not have to be thread-safe,
as threads will only write to the flag if they detect a violation, and any thread that detects a
violation will write the same value. If the flag has been set when the loop execution finishes,
MegaGuards discards the results of the loop execution and re-executes the loop in the
interpreter instead. If the flag has not been set, MegaGuards transfers the results of the
loop execution to the host memory.

The size information we generate during the unboxing pass (see Section 3.3.1) also allows
us to optimize and perform the bounds checks for multi-dimensional arrays. MegaGuards
uses this size information to ensure that all dimensions in a multi-dimensional structure
contain the same number of elements. If we detect a multi-dimensional array with different-
sized dimensions (e.g., if the first inner list of a two-dimensional array contains 5 elements
and the second inner list contains 6 elements), our bounds check pass will not be able to
guarantee the safety of all array accesses and it will not optimize the loop.

Similarly, MegaGuards optimizes overflow checks for arithmetic operations. Based on
the data collected during the unboxing pass, MegaGuards can determine the upper and
lower bounds of the arithmetic operations in the loop if the operations are in the form of
affine expressions. If that is the case, MegaGuards hoists overflow checks out of the loop.
If MegaGuards cannot verify the safety of the operations before executing the loop, it
performs run-time overflow checks that set an overflowOccurred flag if an overflow occurs.

3.3.4 Mega Guards Insertion
Finally, MegaGuards creates a mega guard for the MegaGuards-specialized AST.
megaguard() in Figure 7 shows an example mega guard inserted above the specialized
loop. This guard verifies that the effective run-time type of each variable matches the types

ECOOP 2018

16:12 MegaGuards

Python
program

ZipPy

parse
MegaGuards

Pre-­‐assessment

Guards	

Optimization	

GPU

CPU

Kernel	
 Execution

Parallel	
 Loop	

Analysis

Loops

Graal
Rest	
 of	
 the	
 code

Copy	
 Data	
 to	
 Device

Device	
 Selection

Compilation

OpenCL	
 Code	

Generation

Truffle	
 (Guarded)

Parallel	
 Loop	
 Execution	
 (OpenCL)

Guard-­‐Optimized	
 Sequential	
 Execution
Generate	
 Guard-­‐Optimized
Specialized	
 Truffle	
 AST

when	

incompatible

Generic	
 Truffle	
 AST

Figure 9 MegaGuards detailed internal analysis and offloading.

in the MegaGuards-specialized AST. If MegaGuards detects a mismatch, it invalidates
the specialized AST and rebuilds it based on the effective types. The mega guard also
performs bounds and overflow checks hoisted out of the loop.

3.4 Parallel Analysis and Execution
After creating a specialized AST, MegaGuards tests if the loop is eligible to be a OpenCL
kernel as shown in Figure 9. To guarantee the independence of loop iterations, MegaGuards
performs cross-iteration dependence analysis by leveraging a polyhedral model (Section 3.4.1).

3.4.1 Dependence Analysis
MegaGuards runs a dependence analysis to verify that no flow (i.e., read after write),
anti (i.e., write after read), or output (i.e., write after write) dependencies exist between
the different iterations of the loop. MegaGuards does not offload any loops having such
cross-iteration dependencies. MegaGuards performs polyhedral dependence analysis using
the Integer Set Library (ISL) and the Polyhedral Extraction Tool (PET) [53, 52], which
provides a polyhedral compilation API.

On top of the dependence analysis, we also perform alias analysis to ensure that references
between different data structures are completely separate. This alias analysis pass is necessary
since the polyhedral analysis incorrectly treats aliases as references to separate memory
locations, and might, consequently, fail to identify certain loop dependencies. Our alias
analysis scans through data structure references to verify that each data structure does
indeed point to a separate memory location. If we do detect aliases within the same loop,
then we refrain from offloading that loop.

Figure 10 shows how we feed the MegaGuards-specialized AST, generated from the
code in Figure 1, to the polyhedral dependence analysis. MegaGuards is able to verify that
no cross-iteration dependencies exist in either of the loops and can therefore safely optimize
both loops.

MegaGuards supports scalar privatization for temporary scalar variables that are not
referenced outside the loop [10]. This eliminates loop-carried output dependencies resulting
from the temporary scalar variables and, as a result, increases the number of offloading
candidates.

3.4.2 Kernel Code Generation
Once it has fully analyzed a loop, MegaGuards adds the necessary run-time bounds
checks to the loop’s AST (see Section 3.3.3) and then translates the AST into OpenCL code.
MegaGuards then compiles the code into a binary kernel and stores this kernel in a cache.
Keeping this cache allows us to skip analysis and code generation and compilation.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:13

Polyhedral
Dependence
Analysis

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Independent	
 Loop

Figure 10 MegaGuards polyhedral dependence analysis of a MegaGuards-specialized AST.

Thread Mapping

// OpenCL C

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void foo(
int start_i, int step_i,
int start_j, int step_j,
__global double *b,
int b_size_1, int b_size_2,
__global double *a,
int a_size_1, int a_size_2,
double alpha

){
int i = (get_global_id(0) + start_i) * step_i;
int j = (get_global_id(1) + start_j) * step_j;
b[i * b_size_1 +j] += a[i * a_size_1 +j] * alpha;

}

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

j

i
𝑓 kernel

=

=

Gid(0)

Gid(1)

Args

int[] globalWorkSize = new int[2];
globalWorkSize[0] = n;
globalWorkSize[1] = m;

Figure 11 MegaGuards thread mapping and code generation.

3.4.3 Thread Mapping
MegaGuards leverages OpenCL’s multi-dimensional thread range capability, called
NDRange, to maximize the thread-level parallelism (TLP) for kernels with nested loops.
Where possible, MegaGuards attempts to parallelize entire nested loops. Our thread
mapping scheme is compatible with existing concurrency schemes [30, 31].

MegaGuards’s thread mapping follows an outer-loop-first policy to maximize the
parallelized region and, at the same time, minimize the number of kernel invocations.
MegaGuards currently only supports thread mapping of perfectly nested loops. We leave
support for imperfectly nested loops as future work.

NDRange allows us to specify the number of threads we want to create on each computing
device. We map each thread to an N-dimensional index space. As the latest version of
OpenCL supports up to three dimensions, MegaGuards can map nested loops with up to
three nesting levels to SIMT threads.

Figure 11 illustrates MegaGuards’s thread mapping pass. MegaGuards takes the
list of independent loops produced by our dependence analysis as input (see Section 3.4.1),
and searches for a perfectly nested form of loops starting from the outer-most independent
loop. We repeat this process until we get a maximum of 3-D ranges. MegaGuards’s thread
mapping follows the outer-loop-first policy in order to maximize the parallelized region and,
at the same time, minimize the number of kernel invocations.

ECOOP 2018

16:14 MegaGuards

MegaGuards converts for loops into an OpenCL kernel based on the SIMT programming
model by rewriting the specialized AST into a kernel AST, as shown in Figure 11. In this
step, an iteration vector of nested for loops is mapped to a unique thread ID given to
each SIMT thread. For example, an iteration vector of a 2-level nested loop, (i, j), is
mapped to a unique thread ID represented as a 2-D array value which can be accessed by
the getGlobalId(dim) node. Then, the AST of a loop body is mapped to a kernel body
and the For nodes are removed. In this example, n × m threads are created according to
the iteration space range of the nested for loops, (n, m). Instead of iterating loops with
induction variables, the kernel body will be concurrently executed by the SIMT threads with
their unique IDs.

3.4.4 Kernel Data Management

Before the execution of an offloaded loop can start, we need to make sure that all the data
the loop accesses is present on the OpenCL device. This means that MegaGuards might
have to copy data structures from the main memory to the OpenCL device.

To avoid redundant copy operations, MegaGuards manages a cache of data that is
present on each OpenCL device. MegaGuards does not copy any data that is already
present on the device, unless the data is marked as invalid in the cache. This kernel data
management (KDM) optimization allows kernels to share common data. MegaGuards
automatically inserts the code that marks cache entries as invalid during the unboxing pass,
when the associated data is modified.

MegaGuards also optimizes map operations that write their results to a list they never
read from. Instead of copying an empty result list before we offload a map operation, Mega-
Guards simply allocates that list on the device but does not initialize it. MegaGuards
only copies the list from the OpenCL device to the main memory when the offloaded kernel
finishes its execution.

3.4.5 Kernel Execution and Device Selection

MegaGuards proceeds to the kernel execution stage as soon as the interpreter reports the
loop offset. For non-zero loop offsets, we only offload the remaining iterations of the loop.

MegaGuards can execute kernels on a specific acceleration device or select the best
device for each kernel adaptively. With adaptive device selection enabled, we compile kernels
for each available acceleration device and cache the compiled kernels, one for each device.
Then, we pick an accelerator to execute the kernel on and we store the total run-time of the
loop. We configured MegaGuards to always try a CPU device when a loop executes for
the first time. After multiple kernel invocations, sufficient performance data will be available
to select the fastest device for that kernel. A device is selected if it is faster than the others,
and if the kernel has executed at least once on every accelerator. This strategy can cause the
program to miss out on performance benefits for a few runs, but it quickly pays off when the
selection converges. In case of a tie, MegaGuards selects the GPU as the best execution
device.

3.4.6 Execution of A Cached Kernel

Future executions of a kernel can use the cached kernel code if the following conditions are
met:

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:15

the mega guard check passes: The mega guard check reads the loop’s context frame,
unboxes all variables in the frame, and compares their types with the cached copy of the
kernel’s augmented context frame (see Section 3.3).
the loop body does not contain aliases: We conservatively perform alias analysis to make
sure that the program has not introduced new aliases since we performed the original
translation of the loop.
the hoisted bounds and overflow checks are still valid: We re-run part of the bounds and
integer overflow check optimization pass to ensure that no new bounds checks or overflow
checks are required.

If all three conditions hold, we offload the cached copy of the kernel code to the acceleration
device. If not, we re-run the complete analysis and generate a new, specialized kernel.

3.5 Guards-optimized Sequential Execution
MegaGuards translates the MegaGuards-specialized AST to a guards-optimized Truffle
AST if any of the parallel loop analysis fails (see Section 3.4). The resulting Truffle
AST will not have any type checks but may still have bounds and overflow checks that
MegaGuards is unable to optimize (see Section 3.3.3). In order to preserve the integrity of
data, MegaGuards backs up the modifiable data structures and restores them if a bounds
violation or an overflow occurs. MegaGuards then executes this guards-optimized Truffle
AST directly on top of the Truffle/Graal stack.

If the sequential Truffle AST contains any nested loop that can be parallelized, Mega-
Guards offloads the nested loop(s) and optimizes the data transfers within the sequential
execution scope.

3.6 Implementation Capabilities and Limitations
Recursion
MegaGuards constructs a call graph of function calls in the loops to verify that no recursion
exists in any of the loops that can potentially be offloaded. If MegaGuards does detect
recursion in an offloading candidate, then it will execute the loop using the guards-optimized
sequential execution instead.

Built-in Functions
MegaGuards supports reduction throughout Python’s built-in reduce function and the
embarrassingly parallel map operator. MegaGuards specializes map’s and reduce’s apply
functions based on the lists that are passed iteratively to the function.

MegaGuards also supports many of Python’s built-in math functions (e.g., max, sqrt,
cos, ...). MegaGuards translates calls to such functions into calls to their respective
counterparts in the OpenCL framework, and then specializes the translated calls based on
the call arguments.

Non-local Control Constructs
Currently, MegaGuards does not support language features that cause a non-local control
flow, such as exceptions and generator expressions, i.e., suspend/resume. Our lightweight
pre-assessment (see Section 3.2) checks if such a non-local control construct exists in the
loop and if so, it falls back before proceeding to optimize guards.

ECOOP 2018

16:16 MegaGuards

Loop Transformations

MegaGuards supports scalar variable loop privatization to increase the number of paralleliz-
able loops. Other loop transformation techniques such as array variable loop privatization [51],
loop splitting and loop peeling [20] could further enhance the parallelism if applied to Mega-
Guards. Loop peeling, for example, splits any first or last few problematic iterations from
the loop such that the remaining iterations are no longer dependent on each other. As a
future work, MegaGuards can incorporate such loop transformations and parallelize the
transformed loops that become free of a loop-carried dependence.

4 Evaluation

4.1 Experimental Setup

We ran our benchmarks on the following system:
CPU: Intel Core i7-6700K @ 4 GHz Quad-Core CPU with Hyper-Threading representing 8
compute units (CU). 64GB of RAM. Turbo Boost disabled.
GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of RAM and 3584 Stream Processors.
OS: Ubuntu x86_64 16.04.2 LTS using Linux kernel 4.4.0-122. GNU GCC 5.5.0, Oracle
labsjdk1.8.0_151-jvmci-0.39, GraalVM v0.30 and AMD APP SDK v3.0.136.

We compared the performance of MegaGuards with:
Python Systems:

CPython version 3.5.2: The standard Python 3 interpreter.
PyPy 3 version 5.10.0 [6]: Python 3 implementation, uses a meta-tracing JIT compiler
to compile Python code into machine code for CPU.
ZipPy (github revision ff6d067) [49]: Python 3 implementation targeting Graal, uses
the Truffle framework to JIT-compile specialized AST nodes into x86 machine code.

Heterogeneous Computing Frameworks:
OpenCL C/C++ (CPU) Intel driver ver. 1.2.0.25
OpenCL C/C++ (GPU) NVIDIA driver ver. 390.59

We ran each benchmark three times on each system and calculated the geometric mean
of the execution times. We measured the execution times including data transfers from the
CPU memory to the accelerator device memory and vise versa.

We ran the pure Python implementations of each benchmark to measure the Mega-
Guards, ZipPy, PyPy and CPython performance. To properly measure peak performance,
we warmed up the benchmarks to allow ZipPy and PyPy to just-in-time compile the Python
code.

We compared four different backend/device selection configurations for MegaGuards:
MegaGuards-Truffle: running ZipPy sequentially on the CPU with our guards opti-
mization enabled.
MegaGuards-CPU: offloading to CPU OpenCL devices only.
MegaGuards-GPU: offloading to GPU OpenCL devices only.
MegaGuards-Adaptive: using our adaptive device selection we discussed in Sec-
tion 3.4.5.

We carefully chose program inputs that are representative of large, real-world data sets
and simulations.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:17

bfs blackscholes euler3d hotspot lavaMD lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

2

4

8

16

S
p
e
e
d
u
p
 o

v
e
r

Z
ip

P
y

0
.0

6

0
.1

0

0
.1

9

0
.0

2

0
.0

9

0
.0

2 0
.5

3

0
.1

8

0
.1

9

0
.1

2

1
.0

5

0
.1

6

0
.0

2

0
.1

1

1
.1

2

1
.2

9

1
.9

9

0
.5

8

0
.8

5

0
.8

0

0
.8

6

0
.3

0

0
.3

3

4
.6

2

3
.6

8

0
.8

8

0
.1

9

0
.9

11
.3

3

3
.6

4

1
.6

4

1
.7

1

2
.0

1

1
.0

9

2
.1

6

3
.8

2

1
.0

2

4
.7

4

1
4

.1
7

9
.9

7

0
.9

1

2
.5

0

CPython3 PyPy3 MegaGuards-Truffle

Figure 12 Sequential execution speedup of MegaGuards-Truffle compared to CPython, PyPy,
ZipPy normalized to ZipPy on a log2 scale.

Table 1 Sequential execution time (in seconds) for MegaGuards-Truffle, CPython, PyPy and
ZipPy.

bfs blackscholes euler3d hotspot lavaMD lud mandelbrot mm nbody nn particlefilter pathfinder srad

ZipPy 16.913 139.482 40.366 7.205 50.329 148.981 98.069 1018.838 498.037 16.914 61.751 4.78 4.668

MG-­‐Truffle 12.759 38.326 24.617 4.219 25.037 136.91 45.418 266.377 487.023 3.567 4.359 0.48 5.135

PyPy3 15.154 108.412 20.236 12.389 59.004 186.196 113.609 3452.785 1489.154 3.662 16.769 5.454 24.412

CPython 264.321 1462.925 212.529 418.922 546.66 9616.348 185.193 5734.737 2688.715 144.596 58.968 29.221 244.785

Benchmark Selection
We ported a set of benchmarks from the Rodinia benchmark suite [13, 14] to pure Python,
using only Python built-in data types 2. We complemented this extensive set of benchmarks
with the ones from the Numba Benchmark Suite [15] and the NVIDIA OpenCL SDK [43].

The selected benchmark programs (listed in Table 4) have two implementations: (i)
pure Python, and (ii) a native hand-optimized version for OpenCL C/C++. We excluded
bfs, euler3d and lavaMD benchmarks from the table as the existing polyhedral analysis
could not disprove dependence (see Section 3.4.1) and thus the benchmarks only ran using
MegaGuards-Truffle backend.

4.2 Effect of Guards Optimization
In Figure 12, we show the performance impact of our guards optimization by measuring
the sequential performance of ZipPy with the guards optimization enabled (MegaGuards-
Truffle). The performance is normalized to the baseline ZipPy on a logarithmic scale. The
last set of bars represents the geometric mean performance of each system. Standard errors
are also marked in the figure. Table 1 shows the execution time for each benchmark (in
seconds). We measured the performance with the largest data sizes the Rodinia benchmark
suite provides.

Our guards optimization improves the sequential Python performance by up to 62.3×,
12.7×, and 14.1× compared to CPython, PyPy and ZipPy. On average, we achieve a
performance improvement of 22.72×, 2.74× and 2.50× over CPython, PyPy and ZipPy.
particlefilter shows the most substantial performance improvement (14.17× over ZipPy)
because our guards optimization removes most of its overflow checks (see Section 3.3.3).

2 Will be publicly available at https://github.com/securesystemslab/megaguards-benchmarks

ECOOP 2018

16:18 MegaGuards

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

10

100

1000

10000

S
p
e
e
d
u
p
 o

v
e
r

Z
ip

P
y

7
6

.0
7

4
.4

9

1
4

.4
0

1
6

6
.6

9

3
9

.7
6 1

2
9

.5
8

2
5

.2
7

1
3

6
.4

4

2
0

.3
4

3
.9

5

3
2

.1
2

2
1

7
.0

4

2
0

.2
0

3
9

.6
5

4
8

7
.1

0

8
0

2
.6

6

1
5

4
.7

2

2
5

.8
5

4
4

5
.8

0

3
6

.5
0

3
.9

4

8
3

.9
72
1

6
.7

0

2
0

.2
0

3
9

.5
7

4
8

7
.1

0

8
0

1
.8

1

1
5

4
.7

3

2
5

.8
5

5
0

0
.3

9

3
4

.6
6

3
.9

4

8
4

.4
62
3

7
.2

8

4
0

.3
5

6
0

4
.3

9

8
1

4
.7

5

1
1

3
9

6
.4

3

1
6

9
.7

2

6
4

.0
8

8
2

0
.0

7

9
2

.3
4

1
3

.6
8

2
3

8
.9

0

7
7

.5
4

5
.4

2

5
1

.4
4

3
3

1
.3

9 1
3

4
1

.5
5

1
2

9
.2

8

3
7

.7
3

1
9

5
.8

6

4
3

.6
2

5
.6

4

6
8

.4
5

MegaGuards-CPU MegaGuards-GPU MegaGuards-Adaptive OpenCL-GPU C/C++ OpenCL-CPU C/C++

Figure 13 Parallel execution speedup of MegaGuards compared to OpenCL C/C++ (CPU
and GPU) normalized to ZipPy on a log10 scale.

Table 2 Parallel execution time (in seconds) for MegaGuards, OpenCL C/C++ (CPU and
GPU), and sequential ZipPy.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad
ZipPy 139.482 7.205 148.981 98.069 1018.838 498.037 16.914 61.751 4.78 4.668
MG 0.644 0.357 3.765 0.201 1.271 3.219 0.654 0.123 0.138 1.186

MG-­‐GPU 0.643 0.357 3.757 0.201 1.269 3.219 0.654 0.139 0.131 1.185
MG-­‐CPU 1.834 1.606 10.346 0.588 25.626 3.843 0.669 0.453 0.235 1.181

OpenCL-­‐GPU 0.588 0.179 0.246 0.12 0.089 2.934 0.264 0.075 0.052 0.341
OpenCL-­‐CPU 1.799 1.329 2.896 0.296 0.759 3.852 0.448 0.315 0.11 0.828

4.3 Parallel Execution Performance and Complexity Analysis
4.3.1 Characteristics of Kernels
Table 4 shows the following characteristics for each benchmark:

Loops: the number of executed and the number of offloaded loops. Nested loops are
counted separately.
Kernels: the number of generated kernels and the number of kernel invocations for a
single run.
Thread Count: the total number of parallel executions of the kernel(s) body for a single
run.
MegaGuards-Adaptive: the final acceleration device selection on the generated kernels
using our adaptive selection technique (see Section 3.4.5).
LOC: the lines-of-code counts for the Python and OpenCL C/C++ implementations of
the benchmark’s source code.
McCabe Cyclomatic Complexity: the Cyclomatic Complexity [38] of the Python
and OpenCL C/C++ implementations of the benchmark’s source code.

Our analyses of the benchmarks’ source code, i.e., LOC and McCabe Cyclomatic Com-
plexity, show that the plain Python implementations of the benchmarks are significantly less
complex than the OpenCL implementations.

4.3.2 Parallel Execution Performance
Figure 13 shows MegaGuards’s speedups normalized to ZipPy on a logarithmic scale. The
last set of bars represents the geometric mean performance of each system. We measured
the performance with the largest data sizes the Rodinia benchmark suite provides. We

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:19

bl
ac

ks
ch

ol
es

ho
ts

po
t

lu
d

m
an

de
lb

ro
t

m
m

nb
od

y nn

pa
rti

cl
ef

ilt
er

pa
th

fin
de

r
sr

ad

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

C C C C C C C C C CP P P P P P P P P P

Guards Optimization

Unboxing

Dependence Analysis

Bounds Check Optimization

Compilation

Data Transfer

Kernel Execution

C: Cold Run

P: Peak

Figure 14 Breakdown of MegaGuards passes for parallel execution.

Table 3 Time (in milliseconds) for each pass of the parallel execution.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad

Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak

Guards	

Optimization 4 0 4 0 2 0 3 0 2 0 4 0 2 0 9 0 3 0 5 0

Unboxing 0

Dependence	

Analysis 0 0 873 0 21 0 266 0 89 0 125 0 14 0 174 0 21 0 0 0

Bounds	
 Check	

Optimization 1 0 2 2 2 1 2 1 2 0 2 2 2 1 3 4 3 2 1 1

Compilation 2 0 2 0 2 0 2 0 3 0 2 0 2 0 4 0 1 0 1 0

Data	
 Transfer 95 38 573 305 80 31 58 34 36 23 2 1 204 122 10 1 141 108 591 362

Kernel	

Execution 592 563 95 101 2422 2353 187 342 1321 1221 3238 3247 4 3 89 68 9 11 803 808

also marked standard errors in the graph but the errors are too small to be seen except
in the MegaGuards-CPU run of particlefilter. Table 2 shows the execution time for each
benchmark complemented with the sequential execution time of ZipPy.

MegaGuards shows substantial speedups compared to other systems using pure Python
benchmarks. For this set of benchmarks, our system performed up to 802× faster than
ZipPy and 84× on average. MegaGuards approaches the performance of native hand-
optimized OpenCL C/C++ code (CPU and GPU), being only 2.82× slower on average,
without requiring extensive knowledge on heterogeneous computing frameworks. Note that
dynamic languages are typically one or two orders of magnitudes slower than C/C++.

Figure 14 shows the cost of each analysis pass in MegaGuards during a cold run (Cold
Run), and when utilizing pre-evaluated (i.e., cached) kernels (Peak). Table 3 shows the
execution time of each analysis pass for each benchmark (in milliseconds). Noticeably in
Figure 14, our guards optimization and bounds checking stages account for limited overhead
due to their inexpensive computations.

In the black-scholes and nbody benchmarks, MegaGuards approaches the performance

ECOOP 2018

16:20 MegaGuards

Table 4 Benchmark characteristics for parallel execution.

benchmark
Loops Kernels

Thread Count
MegaGuards-Adaptive LOC McCabe Cyclomatic

Complexity

Total Offloaded Gen. Exec. CPU GPU Python OpenCL Python OpenCL

blackscholes 2 1 1 100 8.4 x 108 0 1 51 203 13 41

hotspot 12 2 1 10 1.0 x 109 0 1 146 288 32 99

lud 3 2 2 1024 1.0 x 107 0 2 55 391 44 104

mandelbrot 3 3 1 1 6.7 x 107 0 1 42 183 16 51

mm 3 3 2 2 8.4 x 106 0 2 29 230 15 49

nbody 2 2 1 1 6.6 x 104 0 1 34 192 10 44

nn 3 1 1 1 1.6 x 107 0 1 82 456 24 67

pathfinder 2 1 1 101 3.0 x 107 0 1 63 258 22 92

particlefilter 36 16 10 94 1.2 x 106 0 10 255 719 101 205

srad 9 4 2 4 2.1 x 108 0 2 89 477 27 136

Median 3 2 1 7 3.0 x 107 0 1 59 273 23 79.5

Offloaded: Number of offloaded loops. Gen.: Number of generated kernels. Exec.: Number of kernels’ executions.

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

0

1

2

4

8

16

32

64

128

256
blackscholes

20
48

40
96

61
44

81
92

10
24

0
0
1
2
4
6
8

12
16
20
24
28
32

hotspot

51
2

10
24

15
36

20
48

30
72

0
1
2
4
8

12
16
20
24
28
32
36
40
44

lud

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0
1
2
4
8

16
32
64

128
256
512

mandelbrot

51
2

10
24

15
36

20
48

0
1
2
4
8

16
32
64

128
256
512

1024
mm

40
96

81
92

16
38

4

32
76

8

65
53

6
0

1

2

4

8

16

32

64

128

160
nbody

2M 4M 8M 16
M

32
M

0
1
2
4
6
8

12
16
20
24
28
32

nn

10
24

20
48

40
96

61
44

81
92

10
24

0
0
1
2
4
8

16
32
64

128
256
512

particlefilter

10
0K

20
0K

30
0K

40
0K

50
0K

0
1
2
4
8

12
16
20
24
28
32
36
40
44

pathfinder

20
48

30
72

40
96

61
44

71
68

0
1
2
3
4
5
6
7
8
9

10
srad

Benchmarks input sizes

S
p
e
e
d
u
p
 o

v
e
r

Z
ip

P
y

MegaGuards-CPU MegaGuards-GPU MegaGuards-Adaptive

Figure 15 Peak performance of MegaGuards with different data sizes for parallel execution.

of the OpenCL C/C++ implementations and is able reduce the number of bounds and
overflow checks significantly (see Section 3.3.3). MegaGuards outperformed ZipPy by 217×
and 154×.

The mm and mandelbrot benchmarks had minimal data transfer rates, and have 2-level
nested loops that MegaGuards assigned to a 2-dimensional thread range (see Section 3.4.3).
This resulted in large speedups, especially when executing on GPU acceleration devices. In
the mm benchmark, MegaGuards created two specialized kernels for the same loop, one
for double floating point-typed variables and one for long integer-typed variables. NVIDIA’s
optimized OpenCL implementation of mm outperformed MegaGuards by 14.2×. The
reason is that this hand-optimized OpenCL implementation aggressively exploits data locality
between local threads. Plus, unlike Python, the OpenCL code does not include safety checks
for detecting out-of-bounds array accesses and arithmetic overflows because in a static
language like OpenCL writing a safe code is user’s responsibility. MegaGuards bounds and
overflow checks enforcement value the safety of the kernel operations and guarantees integrity
of the result. Nevertheless, the high performance of the mm benchmark on MegaGuards
demonstrates the flexibility of our system to adapt to type changes at run time without
degrading performance.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:21

1 2 3 4 5 6 7 8
0

1

2

4

8

16

32

64

128

256

512

1024

2048
GeoMean

Running steps

S
p
e
e
d
u
p
 o

v
e
r

Z
ip

P
y

MegaGuards-CPU

MegaGuards-GPU

MegaGuards-Adaptive

OpenCL-GPU C/C++

OpenCL-CPU C/C++

Figure 16 Mean speedup of warming up steps of MegaGuards normalized runs for ZipPy.

The situation in particlefilter, srad, hotspot and lud is similar. MegaGuards generated
ten, two, one and two specialized kernels for these benchmarks respectively. Most kernels were
assigned to a 1-dimensional thread range in particlefilter and lud, and to 2-dimensional thread
ranges in srad and hotspot. In the OpenCL-GPU implementation, the core computation of
particlefilter, srad, hotspot and lud features cooperative local threads that share data through
a local cache. As a result, OpenCL-GPU outperformed MegaGuards using a GPU by 1.6×,
3.4×, 2× and 15.2×, respectively.

Overall, we observed that acceleration-compatible loops experienced speedups by up to
an order of magnitude under MegaGuards.

4.3.3 Peak Performance with Various Input Sizes
To show the scalability of MegaGuards, we measured the peak performance with different
data sizes. The results are normalized to the sequential ZipPy implementation. As shown
in Figure 15, MegaGuards yields performance gains relative to the size of the inputs.
MegaGuards-Adaptive follows the best device performance curves with the varying input
sizes and relieves the user from manually setting a specific accelerator device.

4.3.4 Performance of MegaGuards on Each Run Step
So far, we only measured the peak performance of ZipPy. We gave ZipPy’s underlying
Truffle/Graal stack and PyPy a couple of warm up runs to specialize, optimize and compile
every hot path in ZipPy’s AST into x86 machine code. MegaGuards, by contrast, specializes,
optimizes and compiles the program’s hottest paths (i.e., loops) immediately. MegaGuards
therefore brings even greater performance benefits to end users who do not warm up the
program interpreter.

These performance benefits are illustrated in Figure 16. In this figure, we see the
mean performance of each run of our benchmarks. In the first run, ZipPy is executing the
benchmarks in the interpreter. Through the second to the sixth runs, the JIT compiler

ECOOP 2018

16:22 MegaGuards

1 2 3 4 5 6 7 8
0

1

2

4

8

16

32

64

128

160
GeoMean

Running steps

S
p
e
e
d
u
p
 o

v
e
r

Z
ip

P
y

MegaGuards-CPU (1 CU)

MegaGuards-CPU (2 CUs)

MegaGuards-CPU (4 CUs)

MegaGuards-CPU (6 CUs)

MegaGuards-CPU (8 CUs)

Figure 17 Mean speedup of warming up steps of MegaGuards-CPU with various CU counts
normalized runs for ZipPy.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

2

4

8

16

32

S
p
e
e
d
u
p
 o

v
e
r

M
e
g
a
G

u
a
rd

s-
G

P
U

w
it

h
o
u
t

K
D

M 6.54
8.17

13.55

1.14 1.01 1.00 1.01
1.22

17.16

1.82

2.82

Figure 18 Effect of KDM optimization on MegaGuards.

specializes and optimizes the code. After that, ZipPy reaches a steady state. By contrast,
MegaGuards specializes the loop from the first run, thanks to our type stability analysis
before executing a loop. This leads to large performance benefits instantly. During the
run steps, our MegaGuards-Adaptive execution mode explores acceleration devices and
benchmarks their performance at run time until it settles on the best device.

4.3.5 Scalability

Figure 17 shows how MegaGuards scales with the number of CUs. We scaled the number
of available CUs for the CPU OpenCL device and measured the mean performance of each
run of our benchmarks. MegaGuards shows performance gains as we increase the number
of CUs.

We see the down curve in the middle of the performance graph. This is because the CPU
is shared among other processes such as the Graal compiler’s background analysis. This
also explains MegaGuards-CPU underperforms compared to OpenCL-CPU C/C++ in
Figure 13.

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:23

4.3.6 Effect of Kernel Data Management

In Figure 18, we show the effect of our kernel data management optimization on peak
performance. This optimization yields an average performance gain of 2.82×. The KDM
optimization provides the larger performance gains for the benchmarks with the higher data
transfer rates.

5 Related Work

5.1 Type Inference and Guards Optimization

Several guards optimizations [4, 32, 17] have been proposed to reduce the number of type
checks during executions of a dynamically-typed languages. Bebenita et al. proposed a
profile-based guards optimization that significantly reduces the number of type checks on hot
execution paths [4]. Dot et al. proposed a HW/SW-based profiling mechanism to reduce the
number of guards [17]. The disadvantage of this approach is that the profiling itself incurs
some overhead, and that guards optimization only applies to code paths that execute during
profiling. MegaGuards, by contrast, would also optimize those code paths. Kedlaya et al.
proposed to optimize guards using type inference and type feedback [32]. The type inference
phase has similarities to our approach, but does enforce guards around global variables and
function calls. MegaGuards, on the other hand, propagates global variable types to the
generated mega guard and creates internal specialized variants of functions based on their
argument types. Thus, the MegaGuards-specialized AST contains guards-less regions with
static typing properties and optimized bounds and overflow checks.

5.2 Heterogeneous Programming in Dynamic Languages

Although their popularity resulted from ease of use and high productivity, dynamically-typed
languages are less attractive in terms of performance given their traditional lack of support
for parallelism. PyCUDA and PyOpenCL facilitate native GPU programming in Python to
enable accelerations on parallel hardware for dynamically-typed languages [33]. Harnessing
the full potential of GPU with these platforms, however, requires low-level understanding of
heterogeneous programming models and faces a steep learning curve.

Several programming models have been proposed to ease the exploitation of parallel
hardware for dynamically-typed languages. Numba [34] and unPython [23] proposed an
annotation-based solution to perform vectorized operations on both CPU and GPU. Theano
provides a set of pre-compiled vector operations for GPUs [5]. Copperhead is a Python
programming model that performs GPU parallelization using aggregate operations, called
skeletons, such as map and reduce, that are implicitly parallel [11]. Chakravarty et al. also
proposed a similar skeleton-based aggregate operations to dynamically generate GPU code
for Haskell programs [12]. Jibaja et al. proposed a language extension for JavaScript to
support SIMD vector instructions [29]. This requires users to explicitly specify data types of
program operations. River Trail [27] proposed a programming model for the implicitly parallel
operations targeting OpenCL acceleration devices. To get the full performance benefits,
however, these approaches require code annotations and the use of parallel libraries and
special type definitions such as parallel arrays and NumPy’s type system. The overarching
goal of this paper is, however, to automatically and transparently exploit heterogeneous
parallel hardware without code rewriting and knowledge of underlying system architecture.

ECOOP 2018

16:24 MegaGuards

5.3 Auto-Parallelization for Dynamic Languages
There are previous approaches to automatically vectorize or parallelize vector computations in
dynamically-typed languages [50, 41, 54, 45]. Plangger and Krall introduced a vectorization
technique that uses SIMD vector instructions on the CPU [45]. The technique is employed in
PyPy. Plangger and Krall also applied loop unrolling and array bounds check optimizations
to enhance the vectorization. This solution relies on NumPy’s type system, however, and
only works for loops whose structure matches one of the patterns supported by the tool.
Similarly, Riposte [50] and pqR [41] exploit parallelism on the CPU vector operations for the
R language. Wang et al. vectorize the Apply class of operations targeting multi-core CPUs
and GPUs [54].

Fumero et al. offload the Apply to GPU using the collected type information profile on
Graal’s partial evaluation [21]. Their approach bears some similarities with ours in how they
check input data types before offloading and how they handle mis-speculations occurred while
executing kernels. However, Fumero et al. rely on a language’s parallel semantic, i.e., Apply
and still requires that developers deal with the effects of arithmetic overflows themselves. On
the other hand, MegaGuards is not confined to certain types of operations, such as vector
computations, or specific forms of operations, such as operations in the Apply class, which
is what prior work does. Moreover, MegaGuards ensures the integrity of the computed
results with its in place bounds and overflow checks.

Ma et al. proposed pR that automatically parallelizes loops and independent tasks from
unmodified R code [37]. pR identifies all parallelizable elements including loop iterations and
methods and dispatches them to multiple CPU cores. pR does not incorporate a JIT compiler
but it conducts dependence analysis and parallelization at the interpretation level. With this
feature, pR does not require complicated pointer and type analysis for parallelization because
the language itself does not have pointers and types. However, this approach hardly benefits
from SIMD exection on the GPU because the interpreter has complex control flows and
frequently accesses shared VM state, which must generally be avoided during GPU execution.
MegaGuards’s parallelization is part of the JIT compilation process, and the generated
code does not contain complex control flow instructions or accesses to shared VM state.

Thread-level speculation (TLS) based approaches facilitate automatic parallelization for
dynamically-typed languages at the JIT compilation level [39, 40]. Mehrara et al. proposes
a system that dynamically parallelizes data-parallel loops in JavaScript by handling runtime
type changes based on TLS [39]. In this mechanism, all live-in data is saved before speculative
execution and when there is a speculation failure (e.g., a type change), the program restarts
from the checkpoint with the saved data. Na et al. leverages the property of idempotence
to recompute the mis-speculated loops without side effect [40], instead of checkpoint-and-
recovery which may require handling of large amount of data. However, both of these
TLS-based approaches do not remove speculations in multi-threaded execution. This makes
it hard to move to GPUs because the mis-speculation penalty of the kernel execution is
significant either with checkpointing or recomputing, due to the excessive data transfer and
kernel invocation overhead. Furthermore, the mis-speculation handling code may result in
complex control-flows, which should be avoided in the kernel execution. In this paper, we
separate speculations from the offloaded kernel code based on our type feedback and analysis.
This feature makes MegaGuards effectively accelerate dynamically-typed languages on
GPUs.

Generally, none of these techniques apply to multiple languages since the previous
approaches are either based on single language platforms [37, 39] or rely on language-specific
primitives [54, 21]. MegaGuards, by contrast, parallelizes for loops, which are a near-

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:25

universal language construct, and preserves portability of the programs. Since MegaGuards
is based on Truffle, a multi-language platform, our approach therefore generalizes to other
Truffle languages, such as R, JavaScript, and Ruby.

6 Conclusions

We have presented the design and implementation of MegaGuards, a new system that
automatically and transparently optimizes Python programs by offloading compute-intensive
kernels to accelerator devices. The key component in our system is an a priori type stability
analysis step that overcomes the speculative limitations of type feedback by analyzing
potential, future type changes. Only after this analysis ensures that no unexpected type
changes can occur, we continue to optimize the code for execution on acceleration devices; if
a dependence is detected, we mark the code for sequential execution.

Because our system is built on top of the ZipPy Python 3 virtual machine, which itself
builds on the Truffle framework, MegaGuards generalizes to all other Truffle languages,
such as TruffleRuby and FastR. All the major Truffle languages—JavaScript, R, and Ruby—
can, therefore, directly benefit from the presented techniques and their implementations and
enjoy “free” and significant speedups.

Although MegaGuards is just a first step, our results indicate that this research direction
holds tremendous potential for further investigation. Presently, we are interested in extending
MegaGuards in multiple ways. First, we plan on improving the adaptive device selection
to be able to select the best device for generated kernels ahead-of-time. Second, we plan to
apply our a priori type stability analysis on a complete program to produce a precompiled
and optimized executable form. Moreover, our plan is to add support for heterogeneous
computing to generators [62]. Finally, support for collaborative CPU and GPU parallelism is
also an interesting research direction.

References
1 Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett

Simmers, Edwin Smith, and Owen Yamauchi. The hiphop virtual machine. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 777–790, New York, NY, USA, 2014. ACM.

2 Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink, Rodric
Rabbah, and Sunil Shukla. A compiler and runtime for heterogeneous computing. In
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 271–276.
ACM, 2012.

3 Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-cuda
code generation for affine programs. In Proceedings of the International Conference on
Compiler Construction, CC’10, pages 244–263. Springer-Verlag, 2010.

4 Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram
Schulte, Nikolai Tillmann, and Herman Venter. Spur: A trace-based jit compiler for cil.
In Proceedings of the ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’10, pages 708–725, New York, NY, USA, 2010.
ACM.

5 James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), 2010.

ECOOP 2018

16:26 MegaGuards

6 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Pypy, 2017. URL:
http://pypy.org/.

7 Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De Sa,
Christopher Aberger, and Kunle Olukotun. Have abstraction and eat performance, too:
Optimized heterogeneous computing with parallel patterns. In Proceedings of the 2016
International Symposium on Code Generation and Optimization, CGO 2016, pages 194–
205. ACM, 2016.

8 Stefan Brunthaler. Efficient interpretation using quickening. In Proceedings of the 6th
Symposium on Dynamic Languages, DLS ’10, pages 1–14. ACM, 2010.

9 Stefan Brunthaler. Inline caching meets quickening. In Proceedings of the 24th European
Conference on Object-oriented Programming, ECOOP’10, pages 429–451. Springer-Verlag,
2010.

10 Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. Automatic generation of
nested, fork-join parallelism. The Journal of Supercomputing, 3(2):71–88, 1989.

11 Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an embed-
ded data parallel language. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP ’11, pages 47–56. ACM, 2011.

12 Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod
Grover. Accelerating haskell array codes with multicore gpus. In Proceedings of the Sixth
Workshop on Declarative Aspects of Multicore Programming, DAMP ’11, pages 3–14. ACM,
2011.

13 Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characterization, IISWC
’09, pages 44–54. IEEE Computer Society, 2009.

14 Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang, and
Kevin Skadron. A characterization of the rodinia benchmark suite with comparison to
contemporary cmp workloads. In Proceedings of the IEEE International Symposium on
Workload Characterization, IISWC ’10, pages 1–11. IEEE Computer Society, 2010.

15 Continuum Analytics. Numba benchmark suite, 2017. URL: https://github.com/numba/
numba-benchmark.

16 L Peter Deutsch and Allan M Schiffman. Efficient implementation of the smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 297–302. ACM, 1984.

17 G. Dot, A. Martinez, and A. Gonzalez. Removing checks in dynamically typed languages
through efficient profiling. In 2017 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO), pages 257–268, Feb 2017.

18 Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J. Fink.
Compiling a high-level language for gpus: (via language support for architectures and com-
pilers). In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 1–12. ACM, 2012.

19 Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and
Hanspeter Mössenböck. An intermediate representation for speculative optimizations in
a dynamic compiler. In Proceedings of the 7th ACM Workshop on Virtual Machines and
Intermediate Languages, VMIL ’13, pages 1–10, New York, NY, USA, 2013. ACM. doi:
10.1145/2542142.2542143.

20 Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987.

http://pypy.org/
https://github.com/numba/numba-benchmark
https://github.com/numba/numba-benchmark
http://dx.doi.org/10.1145/2542142.2542143
http://dx.doi.org/10.1145/2542142.2542143

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:27

21 Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-in-time gpu
compilation for interpreted languages with partial evaluation. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’17, pages 60–73, New York, NY, USA, 2017. ACM.

22 Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach. Runtime
code generation and data management for heterogeneous computing in java. In Proceedings
of the Principles and Practices of Programming on The Java Platform, PPPJ ’15, pages
16–26. ACM, 2015.

23 Rahul Garg and José Nelson Amaral. Compiling python to a hybrid execution environ-
ment. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU-3, pages 19–30. ACM, 2010.

24 Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Verdoolaege.
Hybrid hexagonal/classical tiling for gpus. In Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO ’14, pages 66:66–66:75.
ACM, 2014.

25 Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—performing polyhe-
dral optimizations on a low-level intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

26 Gregory D. Hager, Mark D. Hill, and Katherine Yelick. Opportunities and challenges for
next generation computing, 2015.

27 Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth Sreeram. River
trail: A path to parallelism in javascript. In Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, pages 729–744, New York, NY, USA, 2013. ACM.

28 Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. Compiling and opti-
mizing java 8 programs for gpu execution. In Proceedings of the 2015 International Confer-
ence on Parallel Architecture and Compilation, PACT ’15, pages 419–431. IEEE Computer
Society, 2015.

29 Ivan Jibaja, Peter Jensen, Ningxin Hu, Mohammad R. Haghighat, John McCutchan, Dan
Gohman, Stephen M. Blackburn, and Kathryn S. McKinley. Vector parallelism in javascript:
Language and compiler support for simd. In Proceedings of the 2015 International Con-
ference on Parallel Architecture and Compilation, PACT ’15, pages 407–418, Washington,
DC, USA, 2015. IEEE Computer Society.

30 Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. Neither
more nor less: optimizing thread-level parallelism for gpgpus. In Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques, pages 157–
166. IEEE Press, 2013.

31 Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata Ausavarung-
nirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R Das. Managing
gpu concurrency in heterogeneous architectures. In Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on, pages 114–126. IEEE, 2014.

32 Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, and Ben
Hardekopf. Improved type specialization for dynamic scripting languages. In Proceedings
of the 9th Symposium on Dynamic Languages, DLS ’13, pages 37–48, New York, NY, USA,
2013. ACM.

33 Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed
Fasih. Pycuda and pyopencl: A scripting-based approach to gpu run-time code generation.
Parallel Computing, 38(3):157–174, 2012.

ECOOP 2018

16:28 MegaGuards

34 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM.

35 Alan Leung, Ondřej Lhoták, and Ghulam Lashari. Automatic parallelization for graphics
processing units. In Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java, PPPJ ’09, pages 91–100. ACM, 2009.

36 Thibaut Lutz and Vinod Grover. Lambdajit: A dynamic compiler for heterogeneous op-
timizations of stl algorithms. In Proceedings of the 3rd ACM SIGPLAN Workshop on
Functional High-performance Computing, FHPC ’14, pages 99–108. ACM, 2014.

37 X. Ma, J. Li, and N. F. Samatova. Automatic parallelization of scripting languages: Toward
transparent desktop parallel computing. In 21th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2007), Proceedings, 26-30 March 2007, Long Beach, California,
USA, pages 1–6. IEEE, March 2007. doi:10.1109/IPDPS.2007.370488.

38 T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-
2(4):308–320, Dec 1976.

39 Mojtaba Mehrara, Po-Chun Hsu, Mehrzad Samadi, and Scott Mahlke. Dynamic paral-
lelization of javascript applications using an ultra-lightweight speculation mechanism. In
Proceedings of the 2011 IEEE 17th International Symposium on High Performance Com-
puter Architecture, HPCA ’11, pages 87–98. IEEE Computer Society, 2011.

40 Yeoul Na, Seon Wook Kim, and Youngsun Han. Javascript parallelizing compiler for exploit-
ing parallelism from data-parallel html5 applications. ACM Trans. Archit. Code Optim.,
12(4):64:1–64:25, 2016.

41 Radford M. Neal. pqr, 2016. URL: http://www.pqr-project.org/.
42 NVIDIA Corporation. Cuda, 2017. URL: https://developer.nvidia.com/cuda-zone.
43 NVIDIA Corporation. Nvidia opencl sdk code samples, 2017. URL: https://developer.

nvidia.com/opencl.
44 Michael F. P. O’Boyle, Zheng Wang, and Dominik Grewe. Portable mapping of data parallel

programs to opencl for heterogeneous systems. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), CGO ’13, pages
1–10. IEEE Computer Society, 2013.

45 Richard Plangger and Andreas Krall. Vectorization in pypy’s tracing just-in-time compiler.
In Proceedings of the 19th International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’16, pages 67–76, New York, NY, USA, 2016. ACM. doi:10.1145/
2906363.2906384.

46 Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Rootbeer: Seamlessly using
gpus from java. In Proceedings of the 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems, HPCC ’12, pages 375–380. IEEE Computer Society,
2012.

47 Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating per-
formance portable code using rewrite rules: From high-level functional expressions to high-
performance opencl code. In Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, pages 205–217. ACM, 2015.

48 John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard
for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, 2010.

49 Secure Systems and Software Laboratory. Zippy, 2015. URL: https://github.com/
securesystemslab/zippy.

50 Justin Talbot, Zachary DeVito, and Pat Hanrahan. Riposte: A trace-driven compiler and
parallel vm for vector code in r. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, pages 43–52. ACM, 2012.

http://dx.doi.org/10.1109/IPDPS.2007.370488
http://www.pqr-project.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://dx.doi.org/10.1145/2906363.2906384
http://dx.doi.org/10.1145/2906363.2906384
https://github.com/securesystemslab/zippy
https://github.com/securesystemslab/zippy

M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:29

51 Peng Tu and David Padua. Automatic array privatization. In Compiler optimizations for
scalable parallel systems, pages 247–281. Springer, 2001.

52 Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Ten-
llado, and Francky Catthoor. Polyhedral parallel code generation for cuda. ACM Trans.
Archit. Code Optim., pages 54:1–54:23, 2013.

53 Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In In Second Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT ’12), 2012.

54 Haichuan Wang, David Padua, and Peng Wu. Vectorization of apply to reduce interpreta-
tion overhead of r. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 400–415. ACM, 2015.

55 Haichuan Wang, Peng Wu, and David Padua. Optimizing r vm: Allocation removal
and path length reduction via interpreter-level specialization. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’14,
pages 295:295–295:305. ACM, 2014.

56 Zheng Wang, Daniel Powell, Björn Franke, and Michael O’Boyle. Exploitation of GPUs
for the Parallelisation of Probably Parallel Legacy Code, pages 154–173. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

57 Thomas Wurthinger, Christian Wimmer, Christian Humer, Andreas Woss, Lukas Stadler,
Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical partial
evaluation for high-performance dynamic language runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, pages 662–676. ACM, 2017.

58 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One vm to rule
them all. In Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, pages 187–204.
ACM, 2013.

59 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the 8th symposium
on Dynamic languages - DLS ’12, page 73. ACM Press, 2012.

60 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. Self-optimizing ast interpreters. In Proceedings of the 8th Sympo-
sium on Dynamic Languages, DLS ’12, pages 73–82, New York, NY, USA, 2012. ACM.
doi:10.1145/2384577.2384587.

61 Wei Zhang. Efficient Hosted Interpreter for Dynamic Languages. PhD thesis, University
of California Irvine, 2015.

62 Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. Accelerating iterators in
optimizing ast interpreters. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
727–743. ACM, 2014.

63 Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao, Guilherme
Ottoni, Andrew Paroski, Scott MacVicar, Jason Evans, and Stephen Tu. The hiphop
compiler for php. SIGPLAN Not., pages 575–586, 2012.

ECOOP 2018

http://dx.doi.org/10.1145/2384577.2384587

CROCHET: Checkpoint and Rollback via
Lightweight Heap Traversal on Stock JVMs

Jonathan Bell
George Mason University, Fairfax, VA, USA
bellj@gmu.edu

https://orcid.org/0000-0002-1187-9298

Luís Pina
George Mason University, Fairfax, VA, USA
lpina2@gmu.edu

https://orcid.org/0000-0003-4585-5259

Abstract
Checkpoint/rollback (CR) mechanisms create snapshots of the state of a running application,
allowing it to later be restored to that checkpointed snapshot. Support for checkpoint/rollback
enables many program analyses and software engineering techniques, including test generation,
fault tolerance, and speculative execution.

Fully automatic CR support is built into some modern operating systems. However, such
systems perform checkpoints at the coarse granularity of whole pages of virtual memory, which
imposes relatively high overhead to incrementally capture the changing state of a process, and
makes it difficult for applications to checkpoint only some logical portions of their state. CR sys-
tems implemented at the application level and with a finer granularity typically require complex
developer support to identify: (1) where checkpoints can take place, and (2) which program state
needs to be copied. A popular compromise is to implement CR support in managed runtime
environments, e.g. the Java Virtual Machine (JVM), but this typically requires specialized, non-
standard runtime environments, limiting portability and adoption of this approach.

In this paper, we present a novel approach for Checkpoint ROllbaCk via lightweight HEap
Traversal (Crochet), which enables fully automatic fine-grained lightweight checkpoints within
unmodified commodity JVMs (specifically Oracle’s HotSpot and OpenJDK). Leveraging key in-
sights about the internal design common to modern JVMs, Crochet works entirely through
bytecode rewriting and standard debug APIs, utilizing special proxy objects to perform a lazy
heap traversal that starts at the root references and traverses the heap as objects are accessed,
copying or restoring state as needed and removing each proxy immediately after it is used. We
evaluated Crochet on the DaCapo benchmark suite, finding it to have very low runtime over-
head in steady state (ranging from no overhead to 1.29x slowdown), and that it often outperforms
a state-of-the-art system-level checkpoint tool when creating large checkpoints.

2012 ACM Subject Classification Software and its engineering → Frameworks

Keywords and phrases Checkpoint rollback, runtime systems, dynamic analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.17

Supplement Material Code available at https://github.com/gmu-swe/crochet

Acknowledgements We would like to thank the anonymous reviewers for their feedback. Riley
Spahn and Michael Hicks provided many helpful comments on this document as well.

© Jonathan Bell and Luís Pina;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 17; pp. 17:1–17:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bellj@gmu.edu
https://orcid.org/0000-0002-1187-9298
mailto:lpina2@gmu.edu
https://orcid.org/0000-0003-4585-5259
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.17
https://github.com/gmu-swe/crochet
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 Introduction

Checkpoint/rollback (CR) tools capture the state of an application and store it in some
serialized form, allowing the application to later resume execution by returning to that same
state. CR tools have been employed to support many tasks, including fault tolerance [50, 46],
input generation and testing [53, 49], and process migration [44, 48, 38, 16, 26, 9]. For
instance, fault-tolerance tools can checkpoint at critical system decision points, allowing for
automated recovery in the event of an otherwise unrecoverable failure. As another example,
an input fuzzer can run a program unimpeded until the program reaches an interesting
function f , and then perturb f ’s input, using checkpoint and rollback to re-execute f many
times soundly (i.e. while holding all other state constant). Similarly, most tools that perform
code synthesis or automated program repair [31, 28, 40, 45] benefit greatly from speculative
execution – testing whether the generated code meets the correct post-conditions, and, if
not, resetting the program state to generate a more suitable replacement.

Typically, these CR tools rely on support from the operating system (OS), such as POSIX
fork and various memory management functions. To perform a checkpoint, a CR tool
write-protects all pages that the application uses. When the application modifies its memory,
the OS notifies the CR tool, which copies the application’s data as needed. Alternatively,
an application can perform checkpoints by forking and resuming execution on the child
process. Due to the copy-on-write nature of the fork system call, the parent process holds a
checkpoint of the heap. Later, to rollback, the child terminates, effectively discarding its
changes to the program state; and the parent forks again, resuming execution on a new child
with the program state at the time of the original checkpoint (i.e. fork).

Although both of these approaches impose no overhead in the steady state (when no
checkpoint is performed), they are inefficient when checkpointing many sparsely populated
pages [18]. That is, even though an application may overwrite only 4KB in total, such a
CR tool may need to copy up to 16MB if the application overwrites a single byte on 4,000
different pages. Furthermore, mapping the state of an OS-level checkpoint back to the JVM
(e.g., for comparing two different executions) is a complex problem in itself [12]. Rather than
rely on OS support for lightweight checkpoints, we examine the case of checkpointing in
managed language runtime environments, specifically, the Java Virtual Machine (JVM).

Prior work in JVM checkpointing required a specialized, custom JVM [18, 26, 9], or
developer support [55]. Our goal is to provide efficient, fine-grained, and incremental
checkpoint support within the JVM, using only commercial, stock, off-the-shelf, state-of-
the-art JVMs (e.g., Oracle HotSpot and OpenJDK). Guided by key insights into the JVM
Just-In-Time (JIT) compiler behavior and the typical object memory layout, we present
Crochet: Checkpoint ROllbaCk with lightweight HEap Traversal for the JVM. Crochet
is a system for in-JVM checkpoint and rollback, providing copy-on-access semantics for
individual variables (on the heap and stack) that imposes very low steady-state overhead
and requires no modifications to the JVM. Crochet allows developers to checkpoint either:
(1) the state reachable from all current heap roots (i.e. static fields, stack pointers, even
objects held by the garbage collector for finalization), or (2) an object graph encapsulated
by a few well identified roots (e.g., a list encapsulated by its head as root). Crochet also
can manipulate active stack frames, allowing it both to checkpoint values on the stack and
to resume execution from a rollback (restoring the entire stack, creating and destroying
frames as necessary). Moreover, Crochet is thread-safe, and fully automatic. It allows
developers to checkpoint or rollback dynamically at any time in execution, without requiring
any advance annotations or restrictions on what data to include in that checkpoint.

J. Bell and L. Pina 17:3

At its core, Crochet uses a novel lazy heap traversal algorithm that provides a general-
purpose page-fault-like mechanism within the JVM, generating traps at the granularity of
individual objects which can be enabled/disabled dynamically to checkpoint very large object
graphs in parallel with the program’s execution and without pausing all threads while the
checkpoint takes place. We demonstrate that Crochet shows negligible runtime overhead
in a steady state on both Oracle’s HotSpot JVM and OpenJDK, and reasonable performance
to checkpoint and rollback an application.

We describe the design and implementation of a prototype of Crochet that does not
require any Java-specific features, and is thus directly applicable to any JVM-based language.
Through bytecode rewriting, Crochet leverages a novel deployment of automated proxy
types, allowing it to checkpoint and rollback individual objects very efficiently and with
very little steady state overhead (ranging from no overhead to 1.29x slowdown on the
DaCapo benchmark suite [7]). By paying this marginal steady state overhead, Crochet can
create fine-grained checkpoints very efficiently (average overhead of 1.49x to checkpoint each
benchmark state), often outperforming a state-of-the-art process-level checkpoint system
(CRIU [16], average overhead of 2.25x to perform the same checkpoint).

In summary, the main contributions of this paper are:
A general purpose approach to modify the runtime behavior of live objects in a JVM with
very low overhead. This approach could be used to enable general ‘run-once’ dynamic
analyses that are enabled infrequently and impose very low overhead when disabled.
A general and efficient approach to checkpoint and restore the heap and stack state of a
running application in a JVM.
A detailed description and an extensive evaluation of our open-source implementation of
this technique, Crochet.
Several case studies on possible applications that benefit directly from our approach.

2 Design

We set out to design Crochet with several key goals in mind:
Goal 1 Require no modifications to the JVM itself;
Goal 2 Provide very low runtime overhead when a checkpoint/rollback is not in progress,

and only a minimal slowdown when doing so;
Goal 3 Provide efficient checkpoints (i.e. copy only the data needed);
Goal 4 Allow developers to request a checkpoint or rollback at any arbitrary time.
With Crochet, developers decide (dynamically) to checkpoint all heap and stack structures,
only heap roots, or only a specified set of objects using the following high level interface (re-
spectively): checkpointAllRoots(), checkpointHeapRoots(), and checkpoint(Object...
objects); and matching rollback functions. We expect that checkpoints and rollbacks will
all occur within a single, continuously running JVM. We could imagine Crochet being
extended to asynchronously flush its checkpoints to disk, allowing rollbacks to occur in a
separate process. We do not intend to directly support checkpointing state outside of the
JVM (e.g. files and network connections), since if such behavior were desired, we could easily
integrate existing systems (e.g., versioning filesystems).

Crochet’s design is heavily influenced by our primary self-imposed constraint (Goal 1):
it must operate entirely within the bounds of the API exposed by the JVM, without requiring
any modifications to the JVM itself. Before presenting Crochet, we first present three
strawman approaches for implementing checkpoint and rollback within the JVM that fail to
reach all of these goals. The simplest approach – Strawman 1 – is to pause execution of

ECOOP 2018

17:4 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

all threads immediately upon call to checkpoint, collect all variables, copy them, and then
resume execution. Upon rollback, pause all threads again, and replace all variables with the
previously collected copies. This simple approach trivially satisfies Goals 1, 2 and 4: from the
time that checkpoint is called, all writes are subject to being replaced by their original values.
However, this approach is inefficient, copying every single variable in the JVM, including
those that may not ever be changed. Moreover, Strawman 1 pauses all threads in the JVM
for the duration of an arbitrarily large checkpoint, which clearly defeats Goal 3.

Strawman 2 provides a lazier approach: Guard all data accesses (i.e. field reads/writes,
array reads/writes, local variable reads/writes), checking at the time-of-access if the variable
needs to be saved or restored, and then doing so. The lazy Strawman 2 likely requires far
less storage, as it copies only the minimum set of variables that change after the checkpoint.
Similarly, Strawman 2 can be implemented with per-object locking, allowing other threads
to make progress while they are not touching the same objects being checkpointed. However,
Strawman 2 introduces prohibitive runtime: before any read or write, Strawman 2 needs to
check if a checkpoint or rollback is taking place, and, if so, if the variable being accessed
should be copied. Intercepting all field accesses this way can introduce up to 50% overhead on
steady-state [42]. Therefore, Strawman 2 defeats Goal 2 by imposing a constant performance
overhead, even when no checkpoint or rollback is occurring.

The copy-on-access semantics of Strawman 2 are similar to those that an Operating
System (OS) uses when executing the fork system call: After fork is called, the child process
shares its memory pages with the parent process (albeit with copy-on-write semantics). If
the child attempts to write to any of those pages, a page fault is trapped and the page
is copied and mapped to the child. For an OS, page access checks already occur as part
of the memory address translation process, regardless of whether fork has been called or
not. Strawman 3 improves on Strawman 2 by using OS-level fork support to provide
inexpensive CR. However, fork does not duplicate all parent threads (only the forking thread
is alive in the child); and all kernel state about a process, which results in some state being
shared between parent and child (e.g., epoll descriptors).1 Furthermore, mapping OS-level
page fault handlers to variables in the JVM is not trivial. Dealing with these two issues
would surely require modifications to the JVM, and likely to the OS, thus defeating Goal 1
(some JVM migration techniques do exactly this [9]). Moreover, if the objects that need to
be saved populate many pages sparsely, this approach copies much more data than strictly
necessary [18], thus defeating Goal 3.

Crochet leverages an observation that the JVM already performs various checks before
accessing data, and that we can exploit these checks. When performing dynamic dispatch
for methods and fields overridden by several different classes, the JVM must decide which
concrete implementation of the method/field to choose. For instance, the JVM selects
different methods on the same callsite for method toString, depending on the type of the
receiver object (e.g., Integer versus LinkedList versus Object). Even if the JVM can
prove that a call site is monomorphic, it relies on profiling data to predict the likely receiver
type. Further, monomorphic call sites can become polymorphic due to class loading. Hence,
when the JVM optimizes a (non-static) call site or field access, rather than directly linking a
specific method to call or field to access, it maintains instead a small lookup table, to point
from class types to the specific code to be invoked.2

1 https://lkml.org/lkml/2007/10/27/25
2 https://wiki.openjdk.java.net/display/HotSpot/PerformanceTechniques provides a nice sum-

mary of JVM method optimization techniques

https://lkml.org/lkml/2007/10/27/25
https://wiki.openjdk.java.net/display/HotSpot/PerformanceTechniques

J. Bell and L. Pina 17:5

Normal, no snapshot n Proxy (Checkpoint or Rollback) n Normal, with snapshot

t=1
Root.checkpoint()

t=2
Root.readWrite()

t=3
B.readWrite(),
C.readWrite()

t=5
Root.rollback()

t=6
Root.readWrite(),

C.readWrite()

1

A B C

D E F

Root

1 1

1

1
A B C

D E F

Root

1 1

1

1

1 1

A B C

D E F

Root

1 1

2

1

1 1

A B C

D E F

Root

2 2

2

2

1 2

A B C

D E F

Root

1 1

1

1

1 1

A B C

D E F

Root

t=4
F.readWrite()

Figure 1 High-level operation of Crochet, showing the lazy traversal and propagation algorithm
in six steps, as objects are manipulated after a checkpoint and a rollback.

Importantly, this means that the JVM already issues checks at every field and method ac-
cess – and Crochet exploits these checks3. Crochet adds an empty method, onReadWrite,
to each class and instruments all field accesses to call that method first. This empty
onReadWrite method is then inlined by the JVM, effectively optimizing away any invocation
overhead. This results in negligible steady-state overhead (often no overhead on DaCapo,
ranging up to at worst, 1.13x steady-state slowdown). Later, when performing checkpoints,
Crochet generates proxy classes that extend the original classes and override the empty
onReadWrite method with specific behavior (copying the object and propagating the tra-
versal). Crochet can then turn an object into a proxy simply by changing its type from
its normal class C to the corresponding proxy class Cp (we explain the surprisingly simple
mechanism to change the type of an object in §4.2).

Rather than change every object into a proxy object when checkpoint or rollback are
invoked (which would require pausing all threads in order to do soundly), Crochet performs
a lazy heap traversal, as shown in Figure 1. During this traversal, every object is in one of
three states: Normal, Checkpoint or Rollback. To start a traversal, Crochet first transforms
all heap roots into their proxy types by calling Checkpoint (transforming to Checkpoint) or
Rollback (transforming to Rollback) on each root. Proxied objects have a special behavior
when they are read or written (as shown in the right half of Figure 1): first, the object
checkpoints (or rolls back) itself, and then it transforms all objects directly reachable by it
into their corresponding proxy type.

Figure 1 shows how this lazy traversal propagates in a heap with one root object (root)
and six other objects (A – F). A checkpoint takes place at instant t = 1, followed by
manipulating (i.e. reading and/or writing) the root at t = 2, then objects B and C at t = 3,
and F at t = 4. A rollback takes place at t = 5, followed by manipulating the root and C at
t = 6. The background denotes the state of each object: white for regular objects without a
snapshot present, purple for proxies, and green for objects with a snapshot present. Besides
its state, each object O keeps a version counter with the number of the most recent traversal
that reached O. Note that after each checkpoint/rollback there is always at least one proxy
between the root and each object not yet reached by the traversal. This is in fact one of
three invariants that are key for Crochet’s correctness, as we elaborate in §3.

Crochet uses a wait-free traversal algorithm to propagate checkpoint proxies, allowing
it to safely and efficiently perform its operations in multi-threaded code; rollback operations
are blocking, but due to the locality of Java objects, often experience little to no contention

3 Notable exceptions are private or static field/method accesses.

ECOOP 2018

17:6 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

(§6). Further, since these proxy objects remove themselves from the object graph, most of
the steady-state overhead that such proxies would otherwise introduce is eliminated, often
resulting in zero runtime overhead in the absence of checkpoint or rollback operations (§5.2).

3 Lazy Heap Traversal

We now describe the algorithm that Crochet uses to lazily checkpoint and rollback the
heap. Crochet provides simple, flat-nested checkpoints: When performing two checkpoints
in a row, Crochet discards the object graph copy of the first checkpoint and keeps the copy
of the second checkpoint. Hence, when an application calls checkpoint several times, and
then eventually calls rollback, such a rollback restores values captured by the last checkpoint
only. We leave supporting arbitrarily nested checkpoints to future work. While Crochet
requires pausing all application threads to collect all root references, the remainder of the
algorithm is mostly non-blocking.

3.1 Invariants
Throughout the entirety of program execution, Crochet maintains the following invariants:

1. Identity: Version numbers are not reused between different checkpoints and rollbacks;
2. Total order: New checkpoints and rollbacks introduce higher version numbers;
3. Continuity: For every object O, either (1) O has been reached by the current traversal,

or (2) there is at least one proxy object (i.e. object with status CHECKPOINT or ROLLBACK)
with the highest version on every path that reaches O.

Invariant 1 (Identity) identifies each checkpoint and rollback uniquely. Invariant 2
(Total order) provides a simple total order of all the checkpoints and rollbacks that is
easy to check when propagating proxies throughout the object graph. Finally, Invariant 3
(Continuity) ensures that proxies will mediate every first interaction with objects during
a checkpoint or rollback. Crochet maintains these invariants even in the presence of
multi-threading. The continuity invariant is especially important in multi-threading, as it
ensures that two threads which might be racing to checkpoint or rollback the same object will
be racing to perform the exact same operation. An important consequence of these invariants
is that a proxy object can never access objects with a version higher than itself.

Tracking the status of heap traversal. To support its lazy heap traversal, Crochet
needs to track three facts about each object: (1) its version (the current version of the
object), (2) its snapshot (a copy of the object, if it has been checkpointed), and (3) its
status (representing its status in the traversal: either CHECKPOINT or ROLLBACK, or NONE
to indicate the object is not proxied). The checkpoint and rollback algorithms are imple-
mented by automatically generated methods for each class: onReadWrite, onCheckpoint,
onRollback, copyFieldsTo and copyFieldsFrom. Crochet rewrites all field accesses to
first call onReadWrite. onReadWrite is used to trigger checkpointing or rolling back (by
calling onCheckpoint or onRollback respectively). copyFieldsTo and copyFieldsFrom are
utility methods that allow Crochet to copy the fields of each object; propogateCheckpoint
and propagateRollback are the key methods used to advance the frontier of a heap traversal
that we will now describe.

These methods behave differently depending on the status of the object that they are
invoked on. Throughout this paper, we use dynamic dispatch notation in our examples. For

J. Bell and L. Pina 17:7

instance: Invoking onReadWrite on object obj results in method CHECKPOINT.onReadWrite
being called when obj.status is CHECKPOINT. We make wide use of the CompareAndSwap
(CAS) primitive, with the notation CAS(f, vo, vn), which atomically updates field f to value
vn if f ’s current value is vo. CAS operations do not succeed if another thread updated field
f from the previously observed value vo. Finally, we omit similar methods for the sake of
brevity; a complete reference containing all of the methods appears in Appendix A.

3.2 Algorithm for checkpointing
Figure 1 provides a high-level outline of how Crochet’s lazy traversal works, we will refer
again to it in order to describe the checkpoint algorithm in detail. For simplicity, we first
present the algorithm assuming a single-threaded execution (in which all compare-and-swap
operations succeed); we will later provide a thorough argument about thread-safety in §3.4.
To checkpoint the heap, the applications calls method onCheckpoint on all root references
(§4.5 describes how those roots are found): object root in our example, which is in the NORMAL
state at this point. Listing 1 shows the pseudo-code for method NORMAL.onCheckpoint. This
is a fast operation that simply turns objects into proxies by changing their state (line 8),
thus deferring the snapshot until it is needed.

In terms of the three invariants described above: Crochet automatically manages version
counters, based on how many times checkpoint or rollback operations have been started (on
a global count), making Invariant 1 (Identity) and 2 (Total order) easy to enforce. Line 7
updates the version before updating the state, which does not violate Invariant 3, as objects
only become proxies with the correct version. The opposite order would create a window
during which a proxy would have a version lower than the highest, thus violating Invariant 3.

Once all root references are turned into proxies this way, Invariant 3 is established and
the program can resume execution (t = 1). Next, the program manipulates the root object
(t = 2), which triggers the invocation of method CHECKPOINT.onReadWrite. This method
creates a snapshot of the object (lines 19–22); then propagates the checkpoint to all fields
(line 26), effectively pushing the frontier of proxies one level forward in the object graph; and,
finally, makes the object not a proxy (line 28). The last step does not violate Invariant 3
because all objects referred to by fields are now proxies themselves.

The program keeps executing, propagating proxies as it manipulates more objects. In
our example (Figure 1) the program manipulates objects B and C in that order at t =
3; and object F at t = 4. Note that manipulating object B leads to invoking method
CHECKPOINT.onCheckpoint on object C, which already is a proxy. This method is a fast
operation that simply updates the version number when needed. In this case, it simply exits
on line 33. However, consider if the example instead issued another checkpoint at t = 2, and
then manipulated the root object. In that case, Crochet would propagate new proxies to
outdated proxies (object A – C), simply updating their version on line 35. Finally, note that
manipulating object F turns the root back into a proxy at t = 4, as the check on line 4 fails.
This behavior is correct but inefficient; we present an optimization to avoid this case in §3.5.

3.3 Algorithm for rolling-back
Performing a rollback is the dual of performing a checkpoint. At time t = 5, the program
uses Crochet to rollback to the earlier checkpoint. Similarly to the checkpoint, Crochet
starts the rollback by calling method NORMAL.onRollback on the root reference; which is the
same as method NORMAL.onCheckpoint, but replaces CHECKPOINT with ROLLBACK. Again,
Invariant 3 is established once all root references are turned into proxies.

ECOOP 2018

17:8 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 NORMAL . onCheckpoint (int version){
2 int curV = this. version ;
3 if (curV == version &&
4 this. status == CHECKPOINT)
5 return ;
6
7 CAS(this.version ,curV , version);
8 CAS(this.status ,NONE , CHECKPOINT);
9 }

10
11 CHECKPOINT . onReadWrite () {
12 int curV = this. version ;
13
14 Object snap = this. snapshot ;
15 if (snap == NULL ||
16 snap.version <curV) {
17 // Allocates empty object
18 // Without running constructor
19 Object newSnap = ...
20 this. copyFieldsTo (newSnap);
21 newSnap . version = curV;
22 CAS(this.snapshot ,snap , newSnap);
23 }
24
25 for (Field f in this)
26 f. onCheckpoint (curV);
27
28 CAS(this.status , CHECKPOINT ,

NORMAL);
29 }
30
31 CHECKPOINT . onCheckpoint (int vers) {
32 int curV = this. version ;
33 if (curV == vers) return ;
34
35 CAS(this.version ,curV ,vers);
36 }

Listing 1 Pseudo-code for checkpoint
algorithm.

37 ROLLBACK . onReadWrite () {
38 int curV = this. version ;
39
40 Object snap = this. snapshot ;
41 if (snap != NULL &&
42 snap.version <curV) {
43 synchronized (snap) {
44 snap = this. snapshot ;
45 if (snap != NULL &&
46 snap.version <curV) {
47 this. copyFieldsFrom (snap);
48 snap. version = curV;
49 }
50 }
51 }
52
53 for (Field f in this)
54 f. onRollback (curV);
55
56 CAS(this.status , ROLLBACK , NORMAL

);
57 }
58
59 ROLLBACK . onCheckpoint (int vers) {
60 int curV = this. version ;
61 if (curV == vers &&
62 this. status == CHECKPOINT)
63 return ;
64
65 this. onReadWrite ();
66
67 CAS(this.version ,curV ,vers);
68 CAS(this.status ,ROLLBACK ,

CHECKPOINT);
69 }

Listing 2 Pseudo-code for rollback algorithm.

After this invocation, the program manipulates the root object at t = 6, thus invoking
method ROLLBACK.onReadWrite. At this time, Crochet reverts the state of the root object
to the snapshot saved at t = 1 (lines 40 – 51). Then, Crochet propagates proxies one
level into the object graph (lines 53–54). Finally, the algorithm makes the root object not a
proxy (line 56), which, as before, does not violate Invariant 3. Continuing the example, the
program then manipulates object C, thus causing it to be rolled back to the saved version
and propagating the proxies one more level in.

To understand the need for line 65, consider the case of the program issuing another
checkpoint, at t = 6; and manipulating the root object. This results in Crochet invoking
method ROLLBACK.onCheckpoint for proxied object B, which must be rolled back to the
snapshot taken at t = 3. Line 65 thus performs the needed rollback; the rest of the method
is similar to method NORMAL.onCheckpoint.

Some methods are very similar and are thus omitted: method NORMAL.onRollback
is similar to NORMAL.onCheckpoint as explained above, method ROLLBACK.onRollback is
similar to to CHECKPOINT.onCheckpoint, and method CHECKPOINT.onRollback is the same
as method NORMAL.onRollback. A complete reference containing all of these methods
appears in Appendix A.

J. Bell and L. Pina 17:9

3.4 Thread safety

Before scanning for root references, Crochet pauses all threads to call checkpoint/rollback
on each root, and then resumes all threads. Thereafter, multiple threads may race to perform
the same checkpoint or rollback of the same (non-root) object, but it is impossible for different
checkpoints and rollbacks to race with each other, or for the underlying program to race with
the checkpoint/rollback of root references. We outline here a brief argument for Crochet’s
thread safety, but leave a formal proof to future work. For additional support, our evaluation
(§5) extensively tested checkpoint/rollback on multi-threaded applications.

Crochet uses atomic compare-and-swap (CAS) operations to update values that
are visible to other threads. For instance, when checkpointing a non proxied object in
NORMAL.onCheckpoint, the algorithm first checks if there is any work left to do (line 3). If
the check fails, the algorithm uses two CAS operations to update the version and the status
from their expected values. A failed CAS just means that another thread performed that
CAS; no recovery operation needs to take place, and no CAS’ need to be retried.

Note that it is possible that another thread manipulates the same object between the
check on line 3 and the first CAS at line 7 more than just performing the two CAS operations.
For instance, the other thread may have already created a snapshot of this object by
calling onReadWrite immediately after onCheckpoint, setting the status back to NONE. This
interleaving is safe as the CAS operation on onCheckpoint that updates the version at line 7
will always fail, thus preventing the object from reaching an inconsistent state in violation of
an invariant. Unfortunately, the object may cycle between states CHECKPOINT and NORMAL,
which results in wasted work and increased overhead; §3.5 presents an optimization that
addresses this problem.

The same argument for thread safety applies to CHECKPOINT.onCheckpoint, CHECKPOINT
.onRollback, NORMAL.onRollback, ROLLBACK.onCheckpoint and ROLLBACK.onRollback.
The argument for thread-safety when performing a checkpoint is straightforward. First, the
algorithm creates a snapshot, which is private to each thread (line 19). Then, all threads
race to update the object snapshot to their private copy with a CAS operation (line 22). One
thread wins and keeps its snapshot, all the other threads discard their (equivalent) snapshots.

If an object is arbitrarily changed during the snapshotting process (which results in an
invalid snapshot), Crochet discards that snapshot. Consider two threads racing to update
an object’s fields: both threads may race through CHECKPOINT.onReadWrite. Neither thread
will be able to update the object’s fields until CHECKPOINT.onReadWrite returns. For one
thread to mutate that object’s fields during the other thread’s snapshot stage, the first
thread must have completed CHECKPOINT.onReadWrite, and recorded its snapshot. Hence,
the second (invalid) snapshot is discarded, since it failed its CAS operation at line 22.

Then, the algorithm propagates the checkpoint to all the objects obj refers to (line 26).
Invariants 1 and 2 ensure that all operations are idempotent, so it is safe for several threads to
propagate the checkpoint, even if the object changes as explained in the previous paragraph.
Finally, the checkpoint algorithm can revert the status back to NORMAL (line 28), because
the previous loop ensures that Invariant 3 is not broken by doing so: the frontier of proxy
objects has advanced on level forward in the object graph.

The argument for thread-safety when performing a rollback is more complex. It is similar
to performing a checkpoint, but overwriting the object with its snapshot is not idempotent:
Consider two threads T1 and T2 racing to rollback the same object. T1 performs the rollback
to completion and then executes application code that writes to a field of the object. Then,
T2 is scheduled and erroneously overwrites the object once again.

ECOOP 2018

17:10 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 NORMAL . onCheckpoint (int v) {
2 int curV = this. version ;
3 if (curV == version) return ;
4 // realV =(curV < 0) ? curV *-1 : curV;
5 CAS(this.version ,curV ,v*-1);
6 CAS(this.status ,NORMAL , CHECKPOINT);
7 CAS(this.version ,v*-1,v);
8 }

Listing 3 Optimization to avoid redundant proxy propagation.

The algorithm avoids such erroneous executions by acquiring a monitor on the snapshot
(line 43). This allows the first thread to overwrite the object with its snapshot and set the
snapshot to null in one atomic step. Contending threads, after acquiring the monitor, realize
that the object is already rolled back (line 46) and proceed without changing anything.

The rest of the rollback algorithm is similar to the checkpoint algorithm and the same
argument for thread-safety applies. Note that the progress condition of the checkpoint
algorithm is wait-freedom because, regardless of scheduling, there is always a finite bound on
the number of steps for a snapshot to be created and, therefore, for the algorithm to make
progress. The algorithm for rollback is, of course, blocking due to the use of monitors. In the
future, we plan to remove monitors from the algorithm and we speculate that the resulting
algorithm will be lock-free, and not wait-free, due to the non idempotent nature of rollback.

3.5 Optimizations

The algorithm presented in Listings 1 and 2 is correct, but not efficient. In particular, the
condition that detects if any work is needed for an object on line 3 fails to detect the case
in which an object is re-discovered when propagating a checkpoint. Consider the following
example, again from Figure 1: At t = 4, the program manipulates a field of Object F, calling
NORMAL.onCheckpoint on the root object. At this point, there is no more work to be done
for the root object. Yet, the early return on line 4 fails to detect this case, and proxies the
root object, which will repeat the whole sequence of proxy propagations from t = 1 until
t = 4. Our early experiments showed that this case happens frequently in practice and we
added an optimization to improve the efficiency for this common case.

Ideally, checking the version of an object should be enough to decide if there is work to
be done. However, removing the second check on line 4 is not safe. Suppose thread T1 is
scheduled out of execution after updating the version of an object o on line 7 but before
updating its status on line 8. Thread T2 now reads the updated version and decides that o

does not require more work to be done. The objects that o refers to are now accessible to
thread T2 without a proxy between them and a root reference, i.e. Invariant 3 does not hold.

This problem can be solved trivially by updating both status and version in one atomic
step (i.e. double-CAS). Given that support for such an atomic operation is not common,
our algorithm uses the optimization shown in Listing 3 instead. The idea is to update the
version with an intermediate value first, then update the status, then update the version
to the correct value. Any thread that sees the intermediate version can extract the correct
version from it. We applied the same optimization to all early return checks on the algorithm
(lines 5, 33, and 63). When the actual version is needed (i.e. further uses of variable curV
outside of a CAS), the pseudo-code on Listing 3 shows how to extract it into variable realV.

J. Bell and L. Pina 17:11

1 class OriginalClass { // Original class
2 OriginalClass f1; int f2;
3 int sum () { return f1.sum () + f2; }
4 }
5 class OriginalClass { // Generated NORMAL class
6 OriginalClass f1; int f2;
7 int sum () { f1. onReadWrite (); return f1.sum () + f2; }
8
9 int \[version ; OriginalClass \] snapshot ;

10
11 void \[onReadWrite () { /* empty */ }
12 void \] onCheckpoint (int v) { NORMAL . onCheckpoint (v); }
13 void \[onRollback (int v) { NORMAL . onRollback (v); }
14 }
15 class OriginalClass \] PROXY extends OriginalClass {
16 // Generated PROXY class , extends the generated NORMAL class above
17 void \[onReadWrite (){ if (version % 0) ROLLBACK . onReadWrite (this);
18 else CHECKPOINT . onReadWrite (this); }
19 void \] onCheckpoint (int v); // Similar to onReadWrite
20 void \[onRollback (int v); // Similar to onReadWrite
21 }

Listing 4 An example class OriginalClass, shown before (top) and after (bottom) processing
by Crochet, including generated classes. Receivers NORMAL, CHECKPOINT, and ROLLBACK refer to the
algorithms that will follow in Listings 1 and 2.

4 Implementation

Crochet is implemented entirely within the confines of the JVM. Most of Crochet is
implemented through bytecode instrumentation using ASM [8], but some small components
are written in C (mostly for stack introspection and manipulation), using the standard
JVMTI [36] interface. While Crochet can dynamically instrument bytecode on-the-fly
(as it is loaded into the JVM), it is necessary to bootstrap the system by (automatically)
instrumenting a complete copy of the JVM offline.

4.1 Class modifications and instrumentation

Listing 4 shows how Crochet modifies the original bytecode of a Java program (shown as
source code for the sake of clarity). Crochet adds two fields to every class: (1) version,
(2) and snapshot. To track the status of each object, Crochet generates a proxy class
that extends the original class and overrides the methods onReadWrite, onCheckpoint, and
onRollback with the appropriate behavior. To update the value of field status of an object,
Crochet changes the class to which that object belongs. As an implementation optimization,
Crochet generates a just single proxy class for both CHECKPOINT and ROLLBACK and then
uses the version to decide which state the object is in: Even numbered versions are ROLLBACK,
odd numbered versions are CHECKPOINT. This reduces the overall number of classes that
Crochet needs to generate, which improves performance by minimizing the number of
invocation targets that the JVM needs to consider at each call site.

Crochet uses sun.misc.Unsafe.defineAnonymousClass, which loads classes quicker
than regular classloaders4, performing load-time patching of a class’s constant pool to

4 Java 8 implements lambda routines through defineAnonymousClass: https://blogs.oracle.com/
jrose/entry/anonymous_classes_in_the_vm

ECOOP 2018

https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm

17:12 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

efficiently define proxy classes at run time. Crochet uses a single definition for its proxy
class and patches it to load proxy classes that extend different host classes without requiring
any additional class generation. Crochet rewrites the bytecode of the reflection layer and
sun.misc.Unsafe to intercept field accesses and insert calls to onReadWrite dynamically,
as required for the algorithm to operate correctly. Similarly, Crochet’s runtime library
intercepts reflective calls that inspect various classes to hide its presence (e.g. masking the
extra fields and methods that it creates).

4.2 Changing object types

Crochet is able to change the class of an existing object by leveraging an observation about
the JVM object layout, building on our recent work in Dynamic Software Update systems
for Java. Rubah [43] found that the type of an object could be changed at runtime by
overwriting the header of that object, replacing the value stored in the klass sector. To ensure
compatibility, the new class type must have an identical number and layout of fields to the
old, but there are otherwise effectively no other restrictions [41]. This change can be made
at any point, subject to the limitation that the code that modifies the object cannot become
inlined with other code that needs to know its type (which is easily avoided by ensuring
that the code making the swap is a sufficiently large method). Hence, Crochet transitions
objects from their regular definition into their proxy type using sun.misc.Unsafe’s putInt
function. The klass value is stored 8 bytes into the object header: Crochet simply replaces
the klass on each object with the desired klass. The format of the object header is well
documented [35], and represents the tightest coupling of Crochet to the JVM, although
we expect Crochet to be adjustable to eventual object layout changes. Crochet caches
instances of both normal objects and their corresponding proxy object to allow it to always
be able to map between the desired Java Class and the corresponding klass value. Crochet
does not cache klass values, as they are subject to change as classes are loaded and unloaded.
In addition to the evaluation performed by Rubah [43] of this mechanism, we validated it
empirically on the most common JVMs (Oracle and OpenJDK), and found it to hold.

4.3 Static Fields

Static fields are heap roots and pose a unique challenge as they are accessed directly without
a receiver object that can be proxied. Crochet must detect when a static field is first
dereferenced (which would then cause it to be copied, either through checkpointing or
rolling back). A naïve solution immediately checkpoints or rollbacks all static fields, which
does not require Crochet to monitor static fields. However, to do so safely, Crochet
would perform these copies while the entire application execution is paused, likely creating
significant performance overhead. Instead, Crochet wraps accesses to static fields using
a special helper class, a StaticFieldHelper, which allows it to lazily detect when static
fields are accessed. There is one StaticFieldHelper generated for each class, which has
slots for all of the original class’ static fields to store them as regular instance fields. The
StaticFieldHelper thus allows Crochet to treat static fields as any other field: the
StaticFieldHelper implements all of the methods (e.g., onCheckpoint, onRollback, etc.)
that any other class would, and maintains its own proxy state (Normal, Checkpoint or
Rollback). Crochet generates these helper classes on-the-fly, storing the instance of the
class in a static member field of each class for efficient retrieval, and rewrites all bytecode to
use the instance fields of static helpers instead of the original static fields.

J. Bell and L. Pina 17:13

4.4 Wrapping arrays and non-instrumentable types
Crochet relies on adding fields and methods to classes in order to modify the behavior of
all of the various references that can exist in the JVM to perform its lazy heap traversal.
Unfortunately, it is not possible to modify the behavior of all possible references directly; in
particular, references from an array to its elements, or from an object that Crochet was
unable to modify for other reasons. Arrays in the JVM are lists of contiguous references and
have an associated class to represent their type, but that class cannot be modified, and there
is no lightweight mechanism to directly apply the proxy concept outlined above. Similarly,
there are a small number of classes that cannot be modified due to tight coupling from the
JVM internals to the class layouts (e.g., native code accessing hard-coded field offsets in
java.lang.Double, java.lang.Object) [4].

For all non-modifiable types (objects or arrays), Crochet: (1) creates wrappers that
track the state of that reference type, and (2) checkpoints and rollbacks these instances
eagerly when they are discovered in a traversal. Crochet maintains a relatively performant
(and thread-safe) lookup table between the non-modifiable instance and its corresponding
wrapper using JVMTI’s object tagging. Typically in our traversal, accessing a proxied object
O1 with field f pointing to object O2 would cause O1 to be copied, and O2 to become a proxy.
However, if O2 is actually an instance of a non-modifiable type, then O2 is copied immediately,
and anything that O2 points to is transitioned into a proxy. By eagerly propagating proxies
into these types, Crochet accesses the wrapper only during a checkpoint or rollback traversal.
These eager checkpoints and rollbacks are implemented using the same algorithm as for other
types, and the same thread safety argument applies to them.

4.5 Finding the Root References
To perform a complete heap traversal in the JVM, Crochet needs to first identify all of
the various roots that point into the heap. Crochet considers as roots: (1) static fields of
loaded classes, (2) objects in finalizer queues, (3) live instances of java.lang.Thread, and
(4) objects referenced in, values held by, and monitors held by stack frames. The simplest
type of root to collect are static fields: Crochet simply enumerates all initialized classes,
collecting their static field helpers and transitioning them into proxies. Crochet performs
its traversal of objects in finalizer queues by special-casing the finalizer queue itself, causing
it to propagate proxies directly to its referees when they are accessed (rather than only
when checkpoint is called). This way, Crochet can correctly traverse objects as they are
removed from the finalizer queue, regardless of what had been previously held a reference to
these objects. Each live thread in the JVM has a corresponding java.lang.Thread object:
Crochet transitions them all into proxies. Stack references are handled as described below.

4.6 Stack references
Crochet supports three configurations for handling stack state: (1) capture complete stack
state of all threads (the variables in each stack frame, plus the complete stack trace), allowing
for execution to be rolled back to that same exact instruction; (2) capture complete state
for the current stack frame only, allowing execution to be rolled back only within this same
method execution; or (3) capture only (developer-specified) stack variables of the current
stack frame. In the Configuration 1, Crochet checkpoints stack variables and the stack
trace of each thread, and can roll the application back to an identical state (reproducing the
same exact stack trace). Crochet also captures all active monitors held by each thread,
and at rollback ensures that those threads hold exactly the same monitors. Configuration 2

ECOOP 2018

17:14 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

1 // Original Code
2 void someFunc (int i, int [] ar)
3 {
4 int j = i + 1;
5 ar[i] = ar[i] - j;
6 j--;
7 otherFunc (j, ar); // Checkpoint

is called by otherFunc
8 ar[i] = 10;
9 }

Listing 5 An example function, someFunc
that will be in the stack trace when a checkpoint
and is called (somewhere deeper in the stack,
within the invocation of otherFunc.

1 // Checkpoint code
2 void someFunc (int i, int [] ar)
3 {
4 boolean captureStack = false;
5 int j = i + 1;
6 ar[i] = ar[i] - j;
7 j--;
8 otherFunc (j, ar);
9 if(captureStack)

10 Checkpointer . captureStack ();
11 ar[i] = 10;
12 }

Listing 6 The same code from Listing 5,
but with the checkpoint code added. When
checkpoint is called, Crochet sets the
captureStack boolean variable in each method
active to true, causing it to capture stack
variables. Not shown: code to capture active
values on the operand stack.

1 // Rollback code
2 void someFunc (int i, int [] ar)
3 {
4 int j;
5 boolean captureStack = false;
6 if(Rollbacker . doRollback ())
7 {
8 i = Rollbacker . localInt ();
9 ar = Rollbacker . localIntArray ();

10 j = Rollbacker . localInt ();
11 Rollbacker . removeRollbackCode ();
12 }
13 else
14 {
15 j = i + 1;
16 ar[i] = ar[i] - j;
17 j--;
18 otherFunc (j, ar);
19 if(captureStack)
20 Checkpointer . captureStack ();
21 }
22 ar[i] = 10;
23 }

Listing 7 The same code as shown in Listing
5, with dynamically generated rollback instru-
mentation. doRollback dynamically decides if
the current invocation of this function someFunc
should jump-forwards; removeRollbackCode
determines dynamically if this method body has
no more rollbacks to perform, and if so, removes
the specialized rollback code using bytecode
HotSwap. Not shown: code to restore active
values on the operand stack.

is a relaxation of Configuration 1: rather than capture all stack variables, only the variables
of the method that calls Checkpoint need to be captured. Configuration 3 is a further
relaxation: Crochet only calls Checkpoint on a pre-defined set of variables.

The call stack holds method invocations and their frames; the JVMTI tooling interface [36]
allows Crochet to manipulate (non-native) call stack frames (i.e. read and write local
variables, method arguments, and held monitors; and pop frames; similar to how a debugger
would do the same). Each stack frame includes an operand stack, which is used to pass
arguments to JVM instructions and read their results. The operand stack is not accessible by
any JVM debugging or reflection interface, so Crochet accesses and manipulates it through
bytecode instrumentation.

Checkpointing: Crochet pauses all threads and creates a copy of the local variables
and operand stack on every call stack frame, calling the normal onCheckpoint function for
reference types. Crochet also records each monitor (lock) held in each stack frame. In
Configuration 2 (checkpointing only the calling frame), Crochet makes these transformations
only in the calling frame; in the case of the Configuration 3 (checkpointing only selected
variables), Crochet makes none of these transformations. Listings 5 and 6 show an example
of how Crochet modifies the program to support stack checkpoints. Crochet inserts an
extra flag per method as a local variable and checks it after every method invocation. If

J. Bell and L. Pina 17:15

the flag is set, the injected code will capture the current operand stack to local variables,
checkpoint all local variables (which now includes the operand stack), reset the flag, and
restore the operand stack as needed. To checkpoint the stack, Crochet pauses all threads,
toggles this flag for all active frames, and resumes all threads. Each active method will now
see the flag set, checkpoint the relevant data, and then continue to execute. If the flag is set
in a stack frame that is never re-activated before rollback (e.g. it is deep in the call stack
and not returned to), then it would never be possible for those stack variables to have been
modified, and hence Crochet will never checkpoint it. Crochet thus records the complete
stack trace of each thread along with the variables in each stack frame.

Rolling back. In configurations 2 and 3 (which only involve checkpointing in the stack frame
that called checkpoint), rolling back is straightforward: Crochet calls rollback on each
of the previously checkpointed objects and resets their values. To support Configuration 1
(capturing the complete stack), Crochet pauses all threads and pops all stack frames
so that they can be overwritten by the checkpointed stack. Crochet then transforms
the code for each method on the checkpointed stack trace (using Java’s ReTransformClass
functionality [37]), adding “roll-forward” code to skip all instructions until reaching the
correct method invocation (active at the time of the checkpoint), and then restore all local
variables and the operand stack with the values on the checkpointed frame. Listing 7 shows
an example of this transformation (without locks or operand stack values). Then, Crochet
resumes each thread in sequence, guiding it to the correct point in execution, through calls
of method onRollback on objects that are replaced on the stack, and then pauses it again.
Once the rollback is complete (and all threads have stack frames equivalent to the checkpoint
state), Crochet removes the generated roll-forward code from the active methods and
resumes all threads.

4.7 Limitations

Our implementation of Crochet does not capture native code behavior through JNI.
Native code that reads and writes fields does not trigger those references to be traversed,
checkpointed, or rolled back. Similarly, root references held by native code are not considered
during traversal. During the evaluation we present in §5, we did not find these limitations
to be a concern. Still, these limitations can be removed by replacing JNI functions with
wrappers (similarly to how Crochet handles reflection). Crochet’s stack checkpointing
does not handle JVM-internal threads that are invisible from Java code (e.g., compiler
threads), although it does consider JVM-managed threads (e.g., finalizer threads). Crochet’s
approach is fully compatible with the JVM’s garbage collector, and functions correctly even
while a garbage collection occurs.

Crochet does not checkpoint state kept in Java class loaders. That is, if an application:
(1) performs a checkpoint, (2) loads class Foo, and (3) performs a rollback; then class Foo
will still be loaded. This limitation is due to tight coupling between class loaders and JVM
internals. We believe that this is not a significant limitation of Crochet, and, if desired,
classes could easily be re-initialized between checkpoints using a system like VMVM [5].

Checkpoints also impact the garbage collection and finalization of objects. As expected,
Crochet must ensure that all objects reachable at the start of a checkpoint remain reachable
until the matching rollback happens, by keeping a reference to each such object. Allowing
these objects to be garbage collected (before a rollback) would defeat the correctness of the
checkpoint/rollback semantics of Crochet, and hence, Crochet retains references to them.

ECOOP 2018

17:16 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Crochet’s implementation relies on the “unsupported” sun.misc.Unsafe library. While
exposed for public use, its use is discouraged by the developers of the JVM, and none of
its functionality is guaranteed to continue to exist in future versions of Java. While there
has been much controversy around the JDK’s support for sun.misc.Unsafe [32], it is still
included in Java 9, and there do not appear to be immediate plans to remove or deprecate
the specific functionality used by Crochet.5

Our eager handling of arrays and non-modifiable types requires more copies than strictly
necessary – an entire array will be copied even if only one element is overwritten. However,
given the constraints imposed by the JVM, we found this to be the most efficient approach
to capturing references through arrays.

Finally, as discussed in the context of our design goals (§2), we do not consider the state
of a system outside of the JVM (leaked through, for instance, file descriptors or network
sockets). We envision that Crochet could be integrated directly with versioning file systems
and other low level approaches to capture this state.

5 Experimental Evaluation

We have conducted a thorough evaluation of Crochet’s performance, using both micro
benchmarks that we have crafted to expose specific performance scenarios, and macro
benchmarks that simulate realistic workloads on large-scale apps (such as Apache Tomcat).
We set out to answer five primary research questions:
RQ1: What is the steady state overhead imposed by the tooling to enable Crochet’s

lightweight heap traversal?
RQ2: What is the cost of performing a checkpoint with Crochet?
RQ3: What is the cost of performing a complete checkpoint and rollback of a real application?
RQ4: Does Crochet correctly checkpoint and rollback complicated data structures in the

JVM?
RQ5: How does Crochet compare to state-of-the-art software approaches that provide

support for checkpoint/rollback?

We conducted all of our evaluations on a machine equipped with two Intel(R) Xeon(R)
CPU E5-2650L v3 (each with 12 physical cores, 24 logical) running Ubuntu 16.04 (Linux
4.4.0-121-generic) and 128GB of RAM. We used Oracle’s HotSpot JVM version 1.8.0_66, as
it is the latest version that macro benchmarks tomcat and eclipse run with.6 On all JVM
configurations we used a max heap size (-Xmx) of 10GB and no other JVM options.

5.1 Microbenchmarks
We used several of the collections classes provided by the Java runtime environment to
measure the steady-state overhead that Crochet introduces, the cost of performing check-
points, Crochet’s correctness, and how it compares to CRIU and DeepClone (RQ1, RQ2,
RQ4, and RQ5, respectively). We used the following data-structures: HashMap (HM in
Table 1), TreeMap (TM), and LinkedHashMap (LHM) from the java.util package; and
ConcurrentHashMap (CHM) from the java.util.concurrent package.

Each benchmark execution consists of 3 steps. First, the benchmark fills the data-structure
with SIZE entries that map random integers, keys, to newly created objects with no fields,

5 http://openjdk.java.net/jeps/260
6 https://bugzilla.redhat.com/show_bug.cgi?id=1337940

https://bugzilla.redhat.com/show_bug.cgi?id=1337940

J. Bell and L. Pina 17:17

Table 1 Microbenchmark results showing run time comparison between a baseline Java 8 JVM
(shown as runtime in msec with a 95% confidence interval) and the relative slowdowns imposed by
Crochet without checkpoints, and checkpoint/rollback using Crochet (Crochet CP), DeepClone,
and CRIU. The last row shows the average, minimum, and maximum overhead for each configuration.

Relative Slowdown
Structure Hotspot 8 (ms) CROCHET CROCHETCP DeepClone CRIU
CHM 10 65.84 (64.30, 67.39) 1.06 (1.03, 1.08) 1.35 (1.31, 1.38) 1.96 (1.90, 2.02) 1.74 (1.70, 1.79)
CHM 25 64.72 (64.34, 65.10) 1.10 (1.09, 1.11) 1.41 (1.40, 1.42) 2.03 (1.99, 2.08) 1.82 (1.80, 1.84)
CHM 50 65.18 (64.82, 65.55) 1.09 (1.08, 1.10) 1.44 (1.44, 1.45) 2.05 (2.00, 2.10) 1.83 (1.82, 1.85)
CHM 100 65.36 (64.99, 65.73) 1.11 (1.10, 1.12) 1.50 (1.49, 1.51) 1.98 (1.94, 2.03) 1.85 (1.84, 1.86)
HM 10 62.11 (61.70, 62.53) 1.08 (1.07, 1.10) 1.31 (1.30, 1.32) 1.92 (1.89, 1.94) 1.51 (1.50, 1.53)
HM 25 64.23 (63.86, 64.60) 1.04 (1.02, 1.06) 1.31 (1.30, 1.31) 1.88 (1.86, 1.90) 1.50 (1.48, 1.51)
HM 50 64.94 (64.59, 65.29) 1.04 (1.01, 1.06) 1.30 (1.29, 1.31) 1.88 (1.86, 1.89) 1.50 (1.49, 1.52)
HM 100 67.14 (66.22, 68.06) 1.01 (0.98, 1.05) 1.29 (1.27, 1.31) 1.83 (1.80, 1.86) 1.49 (1.47, 1.52)
LHM 10 51.70 (51.24, 52.16) 1.12 (1.10, 1.13) 1.54 (1.52, 1.55) 2.25 (2.22, 2.28) 2.04 (1.97, 2.11)
LHM 25 54.39 (53.86, 54.93) 1.09 (1.08, 1.11) 1.53 (1.51, 1.55) 2.15 (2.12, 2.18) 1.62 (1.57, 1.66)
LHM 50 56.54 (56.13, 56.94) 1.08 (1.07, 1.09) 1.48 (1.47, 1.50) 2.10 (2.07, 2.12) 1.62 (1.54, 1.71)
LHM 100 58.49 (57.97, 59.01) 1.07 (1.06, 1.08) 1.49 (1.48, 1.51) 2.07 (2.04, 2.10) 1.56 (1.54, 1.58)
TM 10 151.55 (149.93, 153.17) 1.03 (1.01, 1.04) 1.09 (1.07, 1.10) 1.45 (1.43, 1.48) 1.35 (1.33, 1.37)
TM 25 153.20 (151.34, 155.06) 1.02 (1.01, 1.04) 1.12 (1.10, 1.14) 1.45 (1.43, 1.48) 1.36 (1.34, 1.38)
TM 50 157.10 (154.43, 159.77) 1.03 (1.01, 1.05) 1.17 (1.14, 1.19) 1.45 (1.42, 1.48) 1.36 (1.34, 1.39)
TM 100 161.23 (159.11, 163.36) 1.06 (1.05, 1.08) 1.22 (1.21, 1.24) 1.44 (1.41, 1.47) 1.35 (1.33, 1.37)
Average 1.06 (0.98, 1.13) 1.35 (1.07, 1.55) 1.87 (1.41, 2.28) 1.59 (1.33, 2.11)

values. The range of the keys is SPACE = [0, SIZE × 2]. Second, the benchmark creates
a checksum by XOR-ring all the hash-codes of the keys (as defined in Integer.hashCode)
with the values (identity hash-code). Third, the main loop performs SIZE operations on
the map, chosen randomly between get, put, delete, and replace. Note that, by construction,
the hit-rate of each operation is 50%. We used the the microbenchmark framework Caliper7
to vary SIZE to measure the execution time of a single execution of work. Caliper monitors
the JVM and discards individual runs that involve garbage-collection and all runs with
non-optimized JIT code, thus reporting execution times with a nanosecond accuracy. It
performs warm-up runs to ensure the code is JITed, and then takes 10 trials for each SIZE

it selects. We used Crochet to perform a checkpoint between steps 2 and 3, and a rollback
after step 3. On a separate execution, we computed another checksum of the resulting
data-structure and compared it with the original checksum, to ensure that the rollback
mechanism is working correctly.

To measure the performance when the workload requires only a subset of the data-
structure, we configured step 3 to use a subset of SPACE: 10%, 25%, 50%, or 100%.

We compare Crochet with the popular Java DeepClone library,8 used by other Java tools
that would benefit from our approach [13, 12]. This library immediately copies every field
of every object using automatically-generated code. Note that, in this case, the checksums
do not match because the cloning mechanism does not maintain the identity hash-code of
the serialized objects. We also compare Crochet with the state-of-the-art process-level
checkpoint and rollback tool, CRIU [16]. Since the task is to simply serialize the data structure
under test, we use Crochet’s checkpointObjects(...) routine to checkpoint only the

7 https://docs.google.com/document/d/1M0e2UNf1ZxixotjBO9r4FKzJGO7VyhrXxbKqwX1LAzo/pub
8 https://github.com/kostaskougios/cloning

ECOOP 2018

https://docs.google.com/document/d/1M0e2UNf1ZxixotjBO9r4FKzJGO7VyhrXxbKqwX1LAzo/pub
https://github.com/kostaskougios/cloning

17:18 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

data structures under test (and not collect all roots). Note that CRIU is, by definition,
doing more work than Crochet and the DeepClone library, since it is checkpointing the
entire process. In the macrobenchmark evaluations that follow (§5.2), we compare it with
Crochet also configured to checkpoint entire applications, but here we want to intentionally
demonstrate the overhead of a process-level checkpoint technique when only one portion of
an application needs to be checkpointed.

We executed this entire process 20 times for each configuration (on top of the 10 runs
that Caliper does for each SIZE it selects). Table 1 shows the results of our microbench-
mark evaluation, showing the average raw time to run the benchmark (for the baseline,
HotSpot 8 configuration) as well as the average slowdown imposed by each configuration
(Timeconfiguration/T imeHotSpot8 with 95% confidence intervals). Each row represents a
different data structure paired with a different SPACE value (e.g. CHM 25 represents the
ConcurrentHashMap benchmark at SPACE=25%). When not using checkpoint/rollback,
Crochet imposes a very modest overhead, with a maximum slowdown of 1.11x, averaging
1.06x (RQ1). Crochet performs checkpoint and rollback at a moderate cost (from 1.09x to
1.54x slowdown) (RQ2) for correct checkpoints, i.e. matching checksums (RQ4). Moreover,
Crochet beats the direct competition, often by a wide margin.

5.2 Macrobenchmarks
Our synthetic microbenchmarks shed light on the raw performance of Crochet on data
structures. To measure Crochet’s performance in realistic workloads, we also evaluated
it using the DaCapo benchmark suite, version 9.12-bach [7]. We followed the benchmark
authors’ best practices: We ran a warmup phase before collecting results, repeating the
benchmark execution until the measured time reaches a coefficient of variation of 2.0 at most
over a sliding window of three executions. We repeated this process 20 times per benchmark
and present 95% confidence intervals for timings.

We measured the performance of four configurations: (1) baseline JVM without Crochet,
(2) Crochet without performing checkpoints, (3) Crochet calling checkpointHeapRoots
at the start of the benchmark, and (4) using the system-level checkpoint/restart tool CRIU
[16] to perform a checkpoint at the start of the benchmark. We excluded the benchmark
tradesoap because it failed to converge on a stable time even for the normal execution. We
did not use the DeepClone library since it was incompatible with most of the benchmarks.

Table 2 shows the results of our macrobenchmark evaluation. We report a 95% confidence
interval for the average benchmark execution time in the baseline (HotSpot 8) configuration,
and 95% confidence intervals for the average slowdown factor. In the steady-state (not
performing any checkpoints), the results mostly mirror the microbenchmark results reported
in §5.1, with a maximum slowdown of 1.29x. Note that Crochet imposes a slowdown
higher than 1.07 only on two benchmarks (jython and tomcat), which can be explained by
the common use of reflection in these benchmarks (which Crochet needs to intercept). On
average, over all the benchmarks, Crochet imposes a slowdown of just 1.06x. Crochet
performs checkpoints at a modest cost, with an overhead ranging from 1.01x–3.45x (RQ2).
Note that Crochet imposes a relatively constant overhead when each class is loaded, which
results in a higher slowdown for short benchmarks: fop and xalan. Overall, Crochet
performs checkpoints at an average cost of 1.49x.

In comparison, CRIU’s checkpoints imposed a slowdown ranging from 1.08x–5.36x, always
higher than Crochet. CRIU does not impose any steady-state overhead, and only becomes
active during the call to checkpoint. However, CRIU dumps the entire resident heap of
the JVM, which causes its performance to vary widely with (1) the size of that resident

J. Bell and L. Pina 17:19

Table 2Macrobenchmark results showing slowdown (newTime/originalTime) comparison between
a baseline Java 8 JVM, the Crochet system (without checkpoint ever called), the Crochet system
(with checkpoint called on all heap roots at the start of the benchmark), and CRIU (with checkpoint
called just at the start of the benchmark). For CRIU, we report the size of the dump file. We show
95% confidence intervals for all timings. The last row shows the average, minimum, and maximum
overhead for each configuration.

Relative Slowdown
Benchmark HotSpot 8 Crochet CRIU

Run time (ms) No checkpoint Checkpoint Dump
avrora 4, 274 (4, 208, 4, 341) 1.01 (0.98, 1.03) 1.01 (0.98, 1.04) 1.08 (1.06, 1.11) 192.8 MB
batik 1, 256 (1, 242, 1, 270) 1.03 (1.01, 1.04) 1.23 (1.21, 1.26) 1.33 (1.31, 1.35) 420.2 MB
eclipse 18, 658 (18, 523, 18, 794) 1.01 (1.00, 1.02) 1.26 (1.24, 1.27) 1.17 (1.16, 1.18) 3.3 GB
fop 223 (214, 233) 1.07 (1.02, 1.12) 2.06 (1.94, 2.19) 2.85 (2.73, 2.98) 385.5 MB
h2 6, 451 (6, 413, 6, 489) 1.04 (1.03, 1.05) 1.15 (1.14, 1.17) 1.21 (1.20, 1.22) 1.8 GB
jython 3, 285 (3, 060, 3, 510) 1.21 (1.09, 1.34) 1.60 (1.49, 1.72) 1.57 (1.45, 1.71) 1.5 GB
luindex 761 (749, 773) 1.01 (0.99, 1.04) 1.10 (1.08, 1.12) 1.31 (1.28, 1.33) 176.5 MB
lusearch 605 (601, 610) 1.01 (1.00, 1.01) 1.11 (1.09, 1.13) 5.36 (5.31, 5.40) 3.7 GB
pmd 1, 417 (1, 402, 1, 432) 1.04 (1.02, 1.05) 1.12 (1.10, 1.13) 1.63 (1.61, 1.65) 1.0 GB
sunflow 944 (929, 959) 1.02 (0.99, 1.04) 1.13 (1.10, 1.15) 3.37 (3.27, 3.47) 3.0 GB
tomcat 988 (979, 996) 1.29 (1.27, 1.30) 1.88 (1.86, 1.91) 2.27 (2.15, 2.40) 1.2 GB
tradebeans 6, 618 (6, 535, 6, 701) 1.03 (1.01, 1.05) 1.21 (1.19, 1.22) 1.29 (1.26, 1.33) 2.2 GB
xalan 288 (276, 300) 1.02 (0.97, 1.07) 3.45 (3.28, 3.63) 4.75 (4.55, 4.96) 1.2 GB
Average 1.06 (0.97, 1.34) 1.49 (0.98, 3.63) 2.25 (1.06, 5.40)

heap (which may include lots of garbage), and (2) the duration of the benchmark. For
instance, in the case of lusearch (5.36x slowdown), CRIU had to dump 3.66GB of data, and
the underlying benchmark took only 605 msec in the baseline configuration. Compare this
to CRIU’s performance on eclipse (1.17x slowdown), where CRIU dumped a similar amount
of data (3.25GB), but where the dump time was hidden in the significantly longer native
benchmark execution time (18,658 msec). Note that Crochet imposed a slowdown of just
1.11x for lusearch.

5.3 Transactional benchmarks

State-of-the-art Software Transactional Memories (STMs) intercept all data accesses (i.e.
field/arrays/local variables reads/writes) to provide each thread executing a transaction a
consistent view of the program state, and to isolate the changes that each thread performs
in its separate transaction. Changes made by a transaction T become globally visible to new
transactions when T finishes and commits successfully. Depending on the changes made by
other transactions that commit between T ’s start and finish, T may fail to commit; in which
case the STM reverts all changes made by T . Transactions may finish by a voluntary abort,
with the same outcome of an unsuccessful commit.

Assuming a single-threaded application, STMs can be used as an implementation of
Strawman 2, described in §2, as follows: To checkpoint, start a new transaction; to rollback,
abort the current transaction. We used the STMBench7 benchmark [24] to evaluate the
feasibility of such an approach in comparison to Crochet.

STMBench7 creates a realistic object graph that resembles the heap of a Computer
Assisted Drawing (CAD) application, and then issues several concurrent operations that
manipulate different regions of the object graph. Table 3 shows the results for this experiment,
the following text explains each column in detail (higher is better).

ECOOP 2018

17:20 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Table 3 STM comparison results, showing the baseline number of operations/sec completed
without any concurrency control strategy (HotSpot Ops/Sec), the fraction (relative to that baseline)
of operations completed with a transaction manager enabled but issuing no transactions (No TX), the
fraction of operations completed with a single transaction issued to implement checkpoint/rollback
(One TX), and the fraction of operations completed using the STMs to enforce atomicity (Many
TX). The first row shows the results with Crochet used to perform checkpoint/rollback (One TX),
and without performing any checkpoint/rollback (No TX). More operations is better.

% of baseline operations/sec
Configuration HotSpot Ops/Sec No TX One TX Many TX
crochet 243 (242, 244) 0.96 (0.96, 0.97) 0.91 (0.91, 0.91)
deuce-lsa 237 (237, 238) 1.01 (1.00, 1.01) 0.06 (0.06, 0.06) 0.15 (0.15, 0.16)
deuce-tl2 237 (237, 238) 1.00 (1.00, 1.01) 0.01 (0.01, 0.01) 0.13 (0.13, 0.13)
jvstm 237 (237, 238) 0.34 (0.34, 0.35) 0.45 (0.45, 0.45) 0.45 (0.45, 0.45)

The STMBench7 workload consists of different operations that read and write several
different parts of the object graph, and should be atomic. STMBench7 ships with a backend
that uses no concurrency control to ensure such atomicity – no_lock. This is our baseline,
executed on a native JVM and with a single thread: Column HotSpot Ops/Sec.

STMBench7 also ships with backends to isolate concurrent operations with transactions
using existing STMs: Deuce [21] and JVSTM [10]. Deuce is an STM framework that supports
several synchronization algorithms, we used the two it ships with: LSA [47] and TL2 [19]. We
used each STM backend as the concurrency control mechanism to ensure that each workload
operation is atomic: Column Many TX. As before, we used a single thread. Note that this
is the typical way to compare STM implementations with STMBench7, but since Crochet
does not (out of the box) enforce atomicity, we cannot use it as a point of comparison.

To perform checkpoint/rollback, we modified STMBench7 to checkpoint the object graph
at the start of the workload, and to roll it back at the end: Column One TX. We used
Crochet to perform such checkpoint/rollback with the no_lock backend. We also used
each STM to checkpoint the object graph by issuing a single transaction at the start of the
workload, and keeping that transaction active throughout the whole workload. When the
workload finishes, we rollback by aborting that single transaction. Again, we used a single
thread. Note that we also added a checksum before and after the workload, and used it to
ensure that the checkpoint/rollback mechanism worked as intended. Finally, we ran all the
STMs experiments without creating any transactions, and Crochet without performing
any checkpoint/rollback, to measure the cost of the ability to perform checkpoint/rollback
when not used: Column No TX.

We ran Deuce and JVSTM on Java 7 (Oracle HotSpot 1.7.0_80, the latest version),
and Crochet on the same Java 1.8.0_66 from the previous experiments (Crochet is
not backwards compatible with Java 7). We configured STMBench7 to run the read-write
workload during 30 seconds with structural modifications disabled, as they slow down all
STMs excessively. We repeated all runs 20 times and present 95% confidence intervals for
all results. Table 3 shows the results for this experiment, showing the baseline number of
operations performed with no locking under each baseline JVM and the relative fraction of
those operations performed under each configuration (higher is better).

We also compared Crochet to the recent XJ hybrid software transactional memory sys-
tem [14]. XJ requires a custom-patched version of OpenJDK (specifically, OpenJDK1.7u40)
to leverage hardware transactional memory features. We were not able to successfully
run XJ outside of the VM that the authors provided (the custom version of OpenJDK

J. Bell and L. Pina 17:21

Table 4 Results of the synchroBench benchmark, with checkpoint/rollback provided by Crochet
and XJ; compared against JDK 1.8.0 without checkpoints. More operations/sec is better.

% of baseline ops/sec performed
Datastructure HotSpot (ops/sec) Crochet XJ
SequentialHashIntSet 11.60 (11.52, 11.67) 0.91 (0.90, 0.92)
ClosedHashIntSet 1.31 (1.31, 1.32) 0.91 (0.90, 0.92) 0.52 (0.50, 0.54)

does not build on recent versions of the Linux kernel, ignoring the build error generates
a JVM that consumes all available memory for any Java program we tried). Further-
more, XJ requires all programs run with it to be pre-processed, and the pre-processor
fails to process STMBench7 our micro-benchmarks and Caliper. Therefore, we were able
to conduct an evaluation only inside of the provided VirtualBox VM and only with the
provided synchroBench benchmark. XJ requires that data-structures be hand-annotated
in order to be checkpointed, and hence was not easily amenable to the STMBench7 work-
loads that we used. We used two data-structures with synchroBench, both hash-sets that
hold integers: hashtables.sequential.SequentialHashIntSet, a sequential hash-set; and
hashtables.xj.ClosedHashIntSet, a hash-set that supports closed transactions (i.e. the
same type of transactions as JVSTM and Deuce, explained earlier). SequentialHashIntSet
represents a typical data structure that would be used with Crochet, while
ClosedHashIntSet represents a data structure provided by the XJ authors with the correct
annotations. We provide both data structures to demonstrate both the performance difference
between Crochet and XJ on a shared data structure, and baseline performance within this
configuration. The workload initialized the data-structure with 65, 536 elements and issued
95% read, 5% write operations during 5 seconds. We modified it to perform a checkpoint
and checksum before the workload, rollback and another checksum after the workload, and
ensure the two checksums match. To checkpoint/rollback, we used Crochet and the single
transaction technique described above for STMBench7. We allowed the benchmark to warm
up during 60 seconds, and repeated the timed workload 100 times. Table 4 shows the average
and 95% confidence interval for each configuration.

This experiment shows the prohibitive performance cost of using STMs to support
checkpoint/rollback. Besides the performance penalty, using STMs for this purpose has further
limitations: it does not support checkpointing state shared between threads (transactions
naturally isolate it), and it requires manual modification of the target application (i.e.
identifying transactions and transactional data, or even using different/slower data-structures).
Crochet, on the other hand, has a much lower performance cost, does not require manual
changes to the application using it, and supports multi-threaded checkpoints.

6 Case Studies

At its core, Crochet provides the ability to dynamically change the behavior of any object
or code in the JVM, with negligible steady-state overhead, and requiring only a minimal
pause to perform the initial update. Whereas the JVM provides a hotswap code functionality
to redefine methods of all objects of a given class, Crochet is able to redefine methods
on a per-object basis. In particular, Crochet uses this technique to provide lightweight
checkpoint and rollback functionality. However, the technique we present in this paper
is more general and, in this section, we describe several of the various applications that
immediately stand to benefit from Crochet, as well as several that stand to benefit from
its high level instrumentation approach.

ECOOP 2018

17:22 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Table 5 Execution time (and relative overhead) of four different fuzzing strategies: native (no
isolation between runs), crochet-baseline (no isolation between runs, but with Crochet running),
crochet (with Crochet providing isolation), and restart (restarting the server between each run).

Configuration Exec Time (ms) Rel Overhead
native 41.52 (41.37, 41.66)
crochet-baseline 42.69 (40.32, 45.07) 1.03 (0.97, 1.09)
crochet 43.77 (43.65, 43.89) 1.05 (1.05, 1.06)
restart 78.33 (78.20, 78.46) 1.89 (1.88, 1.89)

6.1 Fuzzing and Test Generation

There are a wide range of approaches toward generating inputs to test program behavior.
For instance, symbolic analysis tools, such as KLEE [11], JPF [53] and CUTE/JCUTE [49]
generate new inputs systematically to explore different program behavior based on path
constraints. Other tools are search-based, turning input generation into an optimization
problem that maximizes code coverage [22]. Yet other tools take a simpler approach: fuzzers
perturb known inputs to generate new ones [39, 27]. A key challenge for these tools is
scalability: there can be an immense input space to search.

All of these tools typically re-execute a program many times from a given point in
execution, for instance, to explore different inputs to a function, or to force a program to
follow a different branch. Prior approaches either re-execute the program from the beginning
each time, or maintain a symbolic heap. EvoSuite generates entire test stubs, and re-executes
those test stubs, changing them between executions to expose new behavior. KLEE, JPF,
CUTE and JCUTE all maintain a symbolic heap – a map from variables to a collection
of values, one per different program state. Both approaches are inefficient: Re-running a
program implies the cost of running that execution, and redirecting all heap accesses through
a map adds a significant performance penalty (100x is common [54]).

Crochet allows these approaches to explore different inputs to the same function much
more efficiently: Perform a checkpoint when reaching the function to explore for the first
time, explore one point in the input space by calling the function once, observe the results,
then rollback to the previous checkpoint, and call the function again with another input.
Note that Crochet is also useful if the function is easy to reach (e.g., request handling loop
on a server): Typical black-box fuzzers (i.e. based on the format of the requests accepted
by the server) assume that each request is independent from all that precede it. If this
assumption does not hold, the fuzzer may discover some input that crashes the server on
a fuzzing run, but not in isolation; thus limiting the usefulness of such techniques. Using
Crochet to perform a checkpoint just after the server starts, and rolling back to that
pristine program state after each fuzzed command, ensures that all errors found will be
reproducible in isolation from just the fuzzed command.

As a case study, we modified an existing FTP black-box fuzzer9 to perform the same
fuzzing run on three scenarios: (1) fuzz all commands on the same server, (2) restart the
server after each fuzzed command, and (3) checkpoint the initial server state and rollback
after each command. We modified an FTP server written in Java10 to checkpoint its heap
on startup, and to rollback when signaled by the fuzzer. Table 5 shows the results for a
short fuzzing run, with 122 total FTP commands sent, as the average of 100 runs and the

9 ftp_pre_post shipped with MetaSploit 4.16.31: https://github.com/rapid7/metasploit-framework
10CrossFTP version 1.07: https://sourceforge.net/projects/crossftpserver/

https://github.com/rapid7/metasploit-framework
https://sourceforge.net/projects/crossftpserver/

J. Bell and L. Pina 17:23

respective 95% confidence interval. The fuzzing run takes takes 41.52 seconds to execute
under Scenario 1, 78.33 under Scenario 2 (an increase of 89%), and just 43.77 seconds under
Scenario 3. The results are encouraging, showing that that Crochet imposes no measurable
overhead to ensure proper input isolation.

6.2 Checkpoint/Rollback as an Application Service

Transactional applications may benefit from system-provided checkpoint and rollback ab-
stractions. Database applications naturally fit this format. As a case study, we considered
the H2 database, which is an in-memory SQL database written in Java.

The DaCapo benchmark suite contains an H2 benchmark, in which the benchmark
driver: (1) creates an in-memory database, (2) populates it with test data from the TPC-C
benchmark, (3) performs a number of TPC-C operations using multiple threads, (4) computes
a checksum of the database and compare it with the expected value, and, finally, (5) restores
the initial state of the database after 2. Each iteration of the benchmark repeats steps 3–5.

To reset the state of the benchmark, DaCapo’s H2 benchmark duplicates a number of
columns on each table to hold the original data. The benchmark workload does not use those
columns. At step 5, the benchmark resets the original columns by copying the data from
their duplicate columns. Step 5 is developer-provided customized code to checkpoint and
reset the state of the database. Therefore, it provides a perfect opportunity to test Crochet.
We wrote our own version of the H2 benchmark that uses Crochet’s generic support to
checkpoint and rollback in-memory data (i.e. the database tables) instead of the customized
code that adds the duplicated columns.

We ran this benchmark in the same environment as specified in the previous section.
It completed correctly (passing all checks) averaging 8, 256± 91ms, adding a slowdown of
around 1600ms (1.3x). In doing so, Crochet proxied a total of 4, 185, 705 objects and
copied 1, 009, 321 objects totaling just over 88MB, yielding a throughput of 90MB/sec copied.
Crochet was not able to beat the performance of the custom, efficient SQL queries that
reset the state in bulk, which is not surprising. However, Crochet’s approach for supporting
efficient lightweight checkpoints is general enough for supporting any other in-memory Java
implementation of the same TPC-C benchmark, even if it is not a SQL database (i.e. a
key-value store).

6.3 Other Applications

There are also a variety of other potential applications for Crochet which would require
additional development, but could be very promising.

Time Travel Debugging. Time travel debuggers [2, 52, 3, 20, 30] allow developers to “step
backward” (in execution) while debugging, which is accomplished through a combination of
checkpoint-rollback and deterministic replay techniques: checkpoints are taken at regular
intervals, and deterministic replay is used to fast-forward from the nearest checkpoint to
the desired point of execution. While there are time travel debuggers for other VM-based
languages (e.g. TARDIS for .NET [2]; JARDIS and ReJS for JS [3, 52]), there is currently
no time travel debugger for the JVM. Crochet could be used as the underlying checkpoint
mechanism for a new time travel debugger for the JVM, without requiring changes to the
JVM like these other systems.

ECOOP 2018

17:24 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Fault Tolerance. Existing high-level approaches for fault tolerance can also benefit from
Crochet’s approach. For instance, systems like ASSURE [50], Rx [46],ARMOR [13], and
Mx [25] provide fault tolerance by performing regular checkpoints and detecting when the
app fails. When a failure is detected, these systems tolerate it by reverting back to the most
recent checkpoint and generating error recovery code.

A main limitation in these approaches is the regularity of checkpoints, which are based at
the OS or VM level and, as explained in §2, do not map well to managed language and runtime
environments, such as the JVM. Using Crochet could lead to increased performance, and
increased precision in the recovery procedure stemming from the fine-grained object-level
information available about the data being restored.

Existing tools that are specialized to the JVM employ Java serialization to make frequent
snapshots of specific variables that are considered important. ReCrashJ [1] makes a complete
copy of method parameters as functions are called, providing developers with a log of the
values of each parameter passed to each function if the application crashes. Capturing the
complete object graph of each parameter to each function is quite expensive, imposing a
slowdown of over 1,000x. Instead of eagerly capturing each parameter, Crochet could be
used to lazily capture them, only just before they are modified.

Smalltalk become:. The Smalltalk language provides a unique method, become:, that
swaps the identities of its receiver and its argument. become: is a powerful global operation
that updates all variables that refer to the receiver so that now they refer to the argument, and
vice-versa. For instance, the Smalltalk implementation uses the become: method to increase
the capacity of fixed-size of data-structures (e.g., array-lists and hash-maps): it simply
allocates a new, larger, data-structure, copies all objects from the smaller data-structure,
and then invokes large become: small [23]. All references to the original collection are
replaced transparently by references to the new one.

Unfortunately, implementing become: is costly. Early implementations of Smalltalk keep
a global object table, and represent references as indexes into such a table. become: was
implemented as a simple pointer swap on the object table. However, modern high-level
language VMs do not use such a global object table, relying on a garbage-collected heap
instead. Instead, we might need to wrap every single object in a proxy object, and correct
all references to that object to reference through the proxy. Or perhaps, we could modify
the garbage collector to swap all references on the heap to an object become:’ing another
through a full GC cycle.

Instead, Crochet allows for an efficient become: through a lazy heap traversal that
simply compares each object traversed with the receiver of become: and replaces it with the
argument, and the same for replacing the argument with the receiver. Unlike the traditional
approach, this approach does not require a pause that is proportional to the size of the heap.

7 Related Work

There has been a considerable body of research investigating the implementation and
application of checkpoint and recovery tools. The tools can generally be divided into those
that operate with operating system (and memory management unit) support, and those that
operate primarily with developer support. Notable system-level tools include libpkt [44],
Jockey [48], ZAP [38] and CRIU [16]. libpkt [44] and Jockey [48] create a fork of the process
being checkpointed and use page faults to detect memory writes as they occur, performing
incremental checkpoints. Crochet is similar in spirit to these systems, as it also takes

J. Bell and L. Pina 17:25

incremental checkpoints, but checkpoints at the granularity of individual objects in the JVM,
rather than entire pages of memory. ZAP [38] and CRIU [16] focus on checkpointing for
process migration, while Crochet’s goal is to enable recovery within the same process as
the checkpoint. We compared Crochet with CRIU in §5.2.

Specifically targeting the JVM, Cunei and Vitek proposed an approach to checkpointing
that is optimized for latency, utilizing a mirror of memory contents to satisfy both checkpoints
and write requests concurrently [18]. While this approach required that the source-code of
the JVM was modified, Crochet requires no modifications to the JVM. Cunei and Vitek
argued that checkpointing at the granularity of pages could impose higher than expected
overheads when (relatively small) objects were sparsely distributed among (relatively larger)
pages [18]. We make the same argument, and checkpoint at the granularity of individual
objects, rather than memory pages.

Bringing developers into the loop, Xu et al. requires them to specify checkpoint and
rollback locations statically for their Java CheckPoint system (JCP) [55]. JCP then performs
an offline static analysis to determine which variables need to be included in each checkpoint.
JCP also only supports single threaded applications. On the other hand, Crochet supports
multithreaded applications and does not require static specification of checkpoint and rollback
sites. Upon rollback, JCP replays the (as computed) minimal slice of code needed to get the
execution back to the same point where the checkpoint was called, while Crochet generates
custom code to bring the execution back to the same point, requiring for a stack depth of n

only n method calls.
TARDIS [2] supports efficient time-travel debugging (i.e. ‘step backwards’) in the .NET

CLR by piggybacking opportunistically on the garbage collector to create regular checkpoints.
TARDIS requires modifications to the runtime (equivalent to modifying the JVM) to achieve
its efficient checkpoints. Similarly, JARDIS [3] and ReJS [52] support time travel debugging in
JS (ChakraCore), and collect snapshots very similarly to TARDIS. We believe that Crochet
could be extended (perhaps in combination with some deterministic record-and-replay tool
such as Chronicler [6]) to support efficient time travel debugging in the JVM, without
requiring modifications to the JVM.

There are also several systems targeting JVM migration, such as JAVMM [26] and
ALMA [9], which bring insights from generic VM migration [51] into the JVM. These systems
create a complete checkpoint of a running JVM, transfer that checkpoint to another JVM
(perhaps on another machine) and then resume execution from that checkpoint. On the one
hand, these systems also consider file and network state, and Crochet does not. On the
other, Crochet works on stock JVMs, whereas both of these systems require modifications
to the JVM.

There are also a variety of related systems that capture partial execution information in
order to reproduce crashing executions, either capturing partial checkpoints [34, 15] or partial
trace information [17, 56, 29, 15]. Crochet could be used to support fault reproduction
tools in the JVM as well.

Crochet is also related (in implementation and design) to several non-checkpoint JVM-
based systems. For instance, Rubah [43] provides dynamic software update in unmodified
JVMs, and employs a lazy-heap traversal that inspired Crochet’s approach. Crochet
explores the notion of proxies far more widely and generically, focusing on the general
performance and application of proxies to implement object-level page faults. Instant pickles
[33] is an approach for pickling (serializing) objects in Scala. Instant pickles uses statically
generated code to serialize and deserialize objects in the JVM faster than the JVM’s dynamic
serialization can. Crochet uses a similar approach for copying objects.

ECOOP 2018

17:26 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

8 Conclusion

The ability to perform fast, lightweight, fine-grained checkpoints on the JVM is not only
useful to provide rich semantics to application developers, but also instrumental to support
sophisticated automatic tools for applications such as fuzzing and fault tolerance. In this
paper, we presented Crochet, which significantly improves the state-of-the-art on this
topic: Crochet works on existing stock JVMs through bytecode rewriting and standard
debug APIs, and the cost of running Crochet when not using its checkpoint/rollback
capabilities is very low. Crochet automatically identifies the minimal state to be copied in a
checkpoint fully automatically and works correctly with multi-threaded programs. Crochet
enjoys good performance with minimal pauses when performing checkpoints due to its lazy
heap traversal algorithm. We believe Crochet provides an adequate solution to a pressing
problem that, in turn, will enable the realistic deployment of other tools that require efficient
checkpoint/rollback support on an unmodified JVM.

References

1 Shay Artzi, Sunghun Kim, and Michael D. Ernst. Recrash: Making software failures
reproducible by preserving object states. In Proceedings of the 22Nd European Conference
on Object-Oriented Programming, ECOOP ’08, pages 542–565, Berlin, Heidelberg, 2008.
Springer-Verlag. doi:10.1007/978-3-540-70592-5_23.

2 Earl T. Barr and Mark Marron. Tardis: Affordable time-travel debugging in managed
runtimes. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 67–82, New York,
NY, USA, 2014. ACM. doi:10.1145/2660193.2660209.

3 Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. Time-travel
debugging for javascript/node.js. In Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, pages 1003–1007,
New York, NY, USA, 2016. ACM. doi:10.1145/2950290.2983933.

4 Jonathan Bell and Gail Kaiser. Phosphor: Illuminating Dynamic Data Flow in Commodity
JVMs. In ACM International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, pages 83–101, New York, NY, USA, October 2014.
ACM. doi:10.1145/2660193.2660212.

5 Jonathan Bell and Gail Kaiser. Unit Test Virtualization with VMVM. In 36th International
Conference on Software Engineering, ICSE 2014, pages 550–561, New York, NY, USA, June
2014. ACM. ACM SIGSOFT Distinguished Paper Award. doi:10.1145/2568225.2568248.

6 Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight recording to re-
produce field failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 362–371, Piscataway, NJ, USA, 2013. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2486788.2486836.

7 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-
mann. The dacapo benchmarks: Java benchmarking development and analysis. In OOPSLA
’06, pages 169–190, New York, NY, USA, 2006. ACM. doi:10.1145/1167473.1167488.

8 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to
implement adaptable systems. In In Adaptable and extensible component systems, 2002.

http://dx.doi.org/10.1007/978-3-540-70592-5_23
http://dx.doi.org/10.1145/2660193.2660209
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2660193.2660212
http://dx.doi.org/10.1145/2568225.2568248
http://dl.acm.org/citation.cfm?id=2486788.2486836
http://dx.doi.org/10.1145/1167473.1167488

J. Bell and L. Pina 17:27

9 Rodrigo Bruno and Paulo Ferreira. Alma: Gc-assisted jvm live migration for java server
applications. In Proceedings of the 17th International Middleware Conference, Middleware
’16, pages 5:1–5:14, New York, NY, USA, 2016. ACM. doi:10.1145/2988336.2988341.

10 João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory transactions.
Sci. Comput. Program., 63(2):172–185, 2006. doi:10.1016/j.scico.2006.05.009.

11 Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
209–224, Berkeley, CA, USA, 2008. USENIX Association. URL: http://dl.acm.org/
citation.cfm?id=1855741.1855756.

12 Antonio Carzaniga, Alessandra Gorla, Alberto Goffi, Andrea Mattavelli, and Mauro Pezzè.
Cross-checking Oracles from Intrinsic Software Redundancy. In Proceedings of the 36th
International Conference on Software Engineering, ICSE ’14, pages 931–942, 2014.

13 Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Mauro Pezzè, and Nicolò Perino.
Automatic Recovery from Runtime Failures. In Proceedings of the 35th International Con-
ference on Software Engineering, ICSE ’13, pages 782–791, 2013.

14 Keith Chapman, Antony L. Hosking, and J. Eliot B. Moss. Hybrid stm/htm for nested
transactions on openjdk. In Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, pages 660–676, New York, NY, USA, 2016. ACM. doi:10.1145/2983990.2984029.

15 Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial replay of long-running
applications. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, ESEC/FSE ’11, pages 135–145. ACM,
2011. doi:10.1145/2025113.2025135.

16 Jonathan Corbet. Checkpoint/restart (mostly) in user space. LWN.Net, 2011.
17 Olivier Crameri, Ricardo Bianchini, and Willy Zwaenepoel. Striking a new balance between

program instrumentation and debugging time. In Proceedings of the sixth conference
on Computer systems, EuroSys ’11, pages 199–214. ACM, 2011. doi:10.1145/1966445.
1966464.

18 Antonio Cunei and Jan Vitek. A new approach to real-time checkpointing. In Proceedings
of the 2nd International Conference on Virtual Execution Environments, VEE ’06, pages
68–77, New York, NY, USA, 2006. ACM. doi:10.1145/1134760.1134771.

19 Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the
20th International Conference on Distributed Computing, DISC’06, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag. doi:10.1007/11864219_14.

20 George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging and replay. In Pro-
ceedings of the 5th symposium on Operating systems design and implementation, OSDI ’02,
pages 211–224. ACM, 2002. doi:10.1145/1060289.1060309.

21 P. Felber, G. Korland, and N. Shavit. Deuce: Noninvasive concurrency with a java stm.
In Electronic Proceedings of the workshop on Programmability Issues for Multi-Core Com-
puters (MULTIPROG), 2010.

22 Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages 416–
419, New York, NY, USA, 2011. ACM. doi:10.1145/2025113.2025179.

23 Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

24 Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A benchmark for soft-
ware transactional memory. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European

ECOOP 2018

http://dx.doi.org/10.1145/2988336.2988341
http://dx.doi.org/10.1016/j.scico.2006.05.009
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/2983990.2984029
http://dx.doi.org/10.1145/2025113.2025135
http://dx.doi.org/10.1145/1966445.1966464
http://dx.doi.org/10.1145/1966445.1966464
http://dx.doi.org/10.1145/1134760.1134771
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1060289.1060309
http://dx.doi.org/10.1145/2025113.2025179

17:28 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

Conference on Computer Systems 2007, EuroSys ’07, pages 315–324, New York, NY, USA,
2007. ACM. doi:10.1145/1272996.1273029.

25 Petr Hosek and Cristian Cadar. Safe software updates via multi-version execution. In
International Conference on Software Engineering (ICSE 2013), pages 612–621, 5 2013.

26 Kai-Yuan Hou, Kang G. Shin, and Jan-Lung Sung. Application-assisted live migration of
virtual machines with java applications. In Proceedings of the Tenth European Conference
on Computer Systems, EuroSys ’15, pages 15:1–15:15, New York, NY, USA, 2015. ACM.
doi:10.1145/2741948.2741950.

27 Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. Ocat: object capture-based
automated testing. In Proceedings of the 19th international symposium on Software testing
and analysis, ISSTA ’10, pages 159–170. ACM, 2010. doi:10.1145/1831708.1831729.

28 Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated atomicity-
violation fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 389–400, New York, NY, USA,
2011. ACM. doi:10.1145/1993498.1993544.

29 Wei Jin and Alessandro Orso. Bugredux: reproducing field failures for in-house de-
bugging. In Proceedings of the 2012 International Conference on Software Engineer-
ing, ICSE 2012, pages 474–484, Piscataway, NJ, USA, 2012. IEEE Press. URL: http:
//dl.acm.org/citation.cfm?id=2337223.2337279.

30 Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, pages 1–1, Berkeley, CA, USA, 2005. USENIX
Association. URL: http://dl.acm.org/citation.cfm?id=1247360.1247361.

31 Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A sys-
tematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages
3–13, Piscataway, NJ, USA, 2012. IEEE Press. URL: http://dl.acm.org/citation.cfm?
id=2337223.2337225.

32 Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. Use at your own risk: The java unsafe api in the wild. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, pages 695–710, New York,
NY, USA, 2015. ACM. doi:10.1145/2814270.2814313.

33 Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
Generating object-oriented pickler combinators for fast and extensible serialization. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA ’13, pages 183–202, New York, NY,
USA, 2013. ACM. doi:10.1145/2509136.2509547.

34 Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Recording application-
level execution for deterministic replay debugging. IEEE Micro, 26(1):100–109, 2006. doi:
2006-02-1702:00:03.800.

35 OpenJDK Team. CompressedOOPS. https://wiki.openjdk.java.net/display/
HotSpot/CompressedOops.

36 Oracle. Jvm tool interface. http://docs.oracle.com/javase/8/docs/platform/jvmti/
jvmti.html, 2013.

37 Oracle Corporation. Instrumentation API for the Java Platform SE 7. https:
//docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.
html#retransformClasses(java.lang.Class...). Accessed on 2018/01/11.

http://dx.doi.org/10.1145/1272996.1273029
http://dx.doi.org/10.1145/2741948.2741950
http://dx.doi.org/10.1145/1831708.1831729
http://dx.doi.org/10.1145/1993498.1993544
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=1247360.1247361
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dx.doi.org/10.1145/2814270.2814313
http://dx.doi.org/10.1145/2509136.2509547
http://dx.doi.org/2006-02-17 02:00:03.800
http://dx.doi.org/2006-02-17 02:00:03.800
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html#retransformClasses(java.lang.Class...)

J. Bell and L. Pina 17:29

38 Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and implement-
ation of zap: A system for migrating computing environments. SIGOPS Oper. Syst. Rev.,
36(SI):361–376, dec 2002. doi:10.1145/844128.844162.

39 Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random testing for java.
In Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, OOPSLA ’07, pages 815–816. ACM, 2007. doi:10.
1145/1297846.1297902.

40 Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller.
Automated fixing of programs with contracts. IEEE Trans. Softw. Eng., 40(5):427–449,
2014. doi:10.1109/TSE.2014.2312918.

41 Luís Pina. Practical Dynamic Software Updating. PhD thesis, Instituto Superior Técnico,
University of Lisbon, 2016.

42 Luís Pina and João Cachopo. Atomic dynamic upgrades using software transactional
memory. In Proceedings of the 4th International Workshop on Hot Topics in Software
Upgrades, HotSWUp. IEEE, 2012.

43 Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for Java on a Stock JVM. In
OOPSLA, 2014. doi:10.1145/2660193.2660220.

44 James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent check-
pointing under unix. In Proceedings of the USENIX 1995 Technical Conference Pro-
ceedings, TCON’95, pages 18–18, Berkeley, CA, USA, 1995. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1267411.1267429.

45 Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program repair through fault-
recorded testing prioritization. In Proceedings of the 2013 IEEE International Conference
on Software Maintenance, ICSM ’13, pages 180–189, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/ICSM.2013.29.

46 Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failures. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, pages 235–248, New York,
NY, USA, 2005. ACM. doi:10.1145/1095810.1095833.

47 Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with
eager validation. In Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pages 284–298, Berlin, Heidelberg, 2006. Springer-Verlag. doi:
10.1007/11864219_20.

48 Yasushi Saito. Jockey: A user-space library for record-replay debugging. In Proceedings
of the Sixth International Symposium on Automated Analysis-driven Debugging, AADE-
BUG’05, pages 69–76, New York, NY, USA, 2005. ACM. doi:10.1145/1085130.1085139.

49 Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for c.
In Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. ACM. doi:10.1145/1081706.
1081750.

50 Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and Angelos D.
Keromytis. Assure: Automatic software self-healing using rescue points. SIGARCH Com-
put. Archit. News, 37(1):37–48, 2009. doi:10.1145/2528521.1508250.

51 Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evaluation of delta
compression techniques for efficient live migration of large virtual machines. In Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE ’11, pages 111–120, New York, NY, USA, 2011. ACM. doi:
10.1145/1952682.1952698.

ECOOP 2018

http://dx.doi.org/10.1145/844128.844162
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1109/TSE.2014.2312918
http://dx.doi.org/10.1145/2660193.2660220
http://dl.acm.org/citation.cfm?id=1267411.1267429
http://dx.doi.org/10.1109/ICSM.2013.29
http://dx.doi.org/10.1145/1095810.1095833
http://dx.doi.org/10.1007/11864219_20
http://dx.doi.org/10.1007/11864219_20
http://dx.doi.org/10.1145/1085130.1085139
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/2528521.1508250
http://dx.doi.org/10.1145/1952682.1952698
http://dx.doi.org/10.1145/1952682.1952698

17:30 CROCHET: Checkpoint/Rollback via Lightweight Heap Traversal on Stock JVMs

52 John Vilk, James Mickens, and Mark Marron. A gray box approach for
high-fidelity, high-speed time-travel debugging. Technical report, Microsoft Re-
search, June 2016. URL: https://www.microsoft.com/en-us/research/publication/
gray-box-approach-high-fidelity-high-speed-time-travel-debugging/.

53 Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. Model
checking programs. Automated Software Engg., 10(2):203–232, apr 2003. doi:10.1023/A:
1022920129859.

54 Matej Vitásek, Walter Binder, and Matthias Hauswirth. Shadowdata: Shadowing heap
objects in java. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’13, pages 17–24, New York, NY, USA,
2013. ACM. doi:10.1145/2462029.2462032.

55 Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC-FSE ’07, pages 85–94, New
York, NY, USA, 2007. ACM. doi:10.1145/1287624.1287638.

56 Cristian Zamfir and George Candea. Execution synthesis: a technique for automated
software debugging. In Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 321–334. ACM, 2010. doi:10.1145/1755913.1755946.

https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/
https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1145/2462029.2462032
http://dx.doi.org/10.1145/1287624.1287638
http://dx.doi.org/10.1145/1755913.1755946

J. Bell and L. Pina 17:31

A Full pseudo-code for the checkpoint/rollback algorithm

1 NORMAL . onReadWrite () { /* empty */ }
2
3 NORMAL . onCheckpoint (int version){
4 int curV = this. version ;
5 if (curV == version &&
6 this. status == CHECKPOINT)
7 return ;
8
9 CAS(this.version ,curV , version);

10 CAS(this.status ,NONE , CHECKPOINT);
11 }
12
13 CHECKPOINT . onReadWrite () {
14 int curV = this. version ;
15
16 Object snap = this. snapshot ;
17 if (snap == NULL ||
18 snap.version <curV) {
19 // Allocates empty object
20 // Without running constructor
21 Object newSnap = ...
22 this. copyFieldsTo (newSnap);
23 newSnap . version = curV;
24 CAS(this.snapshot ,snap , newSnap);
25 }
26
27
28
29 for (Field f in this)
30 f. onCheckpoint (curV);
31
32 CAS(this.status , CHECKPOINT ,

NORMAL);
33 }
34
35 CHECKPOINT . onCheckpoint (int vers) {
36 int curV = this. version ;
37 if (curV == vers) return ;
38
39 CAS(this.version ,curV ,vers);
40 }
41
42 ROLLBACK . onCheckpoint (int vers) {
43 int curV = this. version ;
44 if (curV == vers &&
45 this. status == CHECKPOINT)
46 return ;
47
48 ROLLBACK . onReadWrite ();
49
50 CAS(this.version ,curV ,vers);
51 CAS(this.status ,ROLLBACK ,

CHECKPOINT);
52 }

53
54
55 NORMAL . onRollback (int version){
56 int curV = this. version ;
57 if (curV == version &&
58 this. status == ROLLBACK)
59 return ;
60
61 CAS(this.version ,curV , version);
62 CAS(this.status ,NONE , ROLLBACK);
63 }
64
65 ROLLBACK . onReadWrite () {
66 int curV = this. version ;
67
68 Object snap = this. snapshot ;
69 if (snap != NULL &&
70 snap.version <curV) {
71 synchronized (snap) {
72 snap = this. snapshot ;
73 if (snap != NULL &&
74 snap.version <curV) {
75 this. copyFieldsFrom (snap);
76 snap. version = curV;
77 }
78 }
79 }
80
81 for (Field f in this)
82 f. onRollback (curV);
83
84 CAS(this.status , ROLLBACK , NORMAL

);
85 }
86
87 ROLLBACK . onRollback (int vers) {
88 int curV = this. version ;
89 if (curV == vers) return ;
90
91 CAS(this.version ,curV ,vers);
92 }
93
94 CHECKPOINT . onRollback (int vers) {
95 int curV = this. version ;
96 if (curV == vers &&
97 this. status == ROLLBACK)
98 return ;
99

100
101
102 CAS(this.version ,curV ,vers);
103 CAS(this.status ,CHECKPOINT ,

ROLLBACK);
104 }

ECOOP 2018

ThingsMigrate: Platform-Independent Migration
of Stateful JavaScript IoT Applications
Julien Gascon-Samson
Electrical and Computer Engineering Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4
julien.gascon-samson@ece.ubc.ca

Kumseok Jung
Electrical and Computer Engineering Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4
kumseok@ece.ubc.ca

Shivanshu Goyal
Electrical and Computer Engineering Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4
shivanshu3@gmail.com

Armin Rezaiean-Asel
Electrical and Computer Engineering Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4
armin.rezaiean.asel@gmail.com

Karthik Pattabiraman
Electrical and Computer Engineering Department, University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4
karthikp@ece.ubc.ca

Abstract
The Internet of Things (IoT) has gained wide popularity both in academic and industrial contexts.
As IoT devices become increasingly powerful, they can run more and more complex applications
written in higher-level languages, such as JavaScript. However, by their nature, IoT devices are
subject to resource constraints, which require applications to be dynamically migrated between
devices (and the cloud). Further, IoT applications are also becoming more stateful, and hence
we need to save their state during migration transparently to the programmer.

In this paper, we present ThingsMigrate, a middleware providing VM-independent migration
of stateful JavaScript applications across IoT devices. ThingsMigrate captures and reconstructs
the internal JavaScript program state by instrumenting application code before run time, without
modifying the underlying Virtual Machine (VM), thus providing platform and VM-independence.
We evaluated ThingsMigrate against standard benchmarks, and over two IoT platforms and a
cloud-like environment. We show that it can successfully migrate even highly CPU-intensive
applications, with acceptable overheads (about 30%), and supports multiple migrations.

2012 ACM Subject Classification Computer systems organization → Distributed architectures,
Computer systems organization → Embedded and cyber-physical systems, Computer systems
organization → Dependable and fault-tolerant systems and networks, Software and its engineering
→ Middleware, Software and its engineering → Process management, Software and its engineering
→ Functional languages, Software and its engineering → Language features, Software and its
engineering → Publish-subscribe / event-based architectures

Keywords and phrases JavaScript, Code Migration, Closures, IoT, Node.js

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.18

© Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel, and Karthik
Pattabiraman;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 18; pp. 18:1–18:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julien.gascon-samson@ece.ubc.ca
mailto:kumseok@ece.ubc.ca
mailto:shivanshu3@gmail.com
mailto:armin.rezaiean.asel@gmail.com
mailto:karthikp@ece.ubc.ca
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 ThingsMigrate

Funding This work is supported by a research gift from Intel, a Discovery grant and Post-
Doctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada
(NSERC), and funding from the Institute for Computing, Information and Cognitive Systems
(ICICS) at the University of British Columbia (UBC).

1 Introduction

The Internet of Things (IoT) involves multiple devices across many domains that are inter-
connected to provide and exchange data. Over the last few years, the IoT market has
grown considerably with some estimates putting the number of IoT devices in the tens of
billions [28]. IoT devices are becoming more and more powerful, and in many cases they
can run full-fledged real-time operating systems (e.g., the popular Raspberry Pi can run
full Linux distributions). As a result, future IoT devices will be able to execute stateful,
distributed applications written in high-level languages, which provide greater abstraction
and portability than those written using platform-specific APIs.

In this paper, we focus on the use of JavaScript for programming IoT devices. While
JavaScript has enjoyed wide popularity in the web context for a long time, it is now a
mature and rich language in its own right. It has also become more and more prevalent
in the world of IoT due to its portability across a wide range of devices [27, 10], as well
as its large installed base of libraries and developers who know the language. Further, the
language’s asynchronous nature makes it a prime candidate for IoT applications, which are
often event-driven, and hence need to be highly reactive.

At the same time, placing more complex applications and long-running tasks on the
end-devices themselves, close to the physical data (i.e., edge computing [38]) can incur
lower latencies as opposed to running such applications in the cloud. However, as IoT
devices are more resource-constrained, IoT applications have to be migrated between devices,
and between devices and the cloud, for performance and security reasons. Thus, there is
a compelling need to enable automated migration of stateful JavaScript devices between
different IoT devices, and to/from the cloud, without requiring programmers to use platform
specific APIs or runtimes. This is the main focus of this paper.

Migrating JavaScript applications poses several challenges, due to certain features of the
language (i.e., closures) and its event-based nature. Further, due to the heterogeneity of
IoT, we need to come up with a solution that does not involve accessing the internal states
of the JavaScript Virtual Machine (VM), thus allowing portability across different devices.
We tackle these challenges by proposing ThingsMigrate, a comprehensive middleware for
the dynamic migration of IoT-based JavaScript applications across heterogeneous devices.
ThingsMigrate automatically instruments the code at runtime to avoid modification of the
VM while supporting advanced features of JavaScript, serializes its state, and reconstructs it
on the target device after migration without any intervention from the programmer.

Other work has attempted to migrate browser-based JavaScript-based applications; how-
ever, they either do not fully address some important JavaScript features, such as nested
closures ([32]), or they rely on VM-instrumentation [29] – thereby making their approach
dependent on a specific VM/browser implementation. To the best of our knowledge, Things-
Migrate is the first comprehensive high-level framework for migrating stateful JavaScript-based
IoT applications, which addresses the aforementioned challenges, and without requiring any
modifications to the JavaScript VM, thereby allowing platform-independent migrations.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:3

In summary, this paper provides the following contributions:
A comprehensive JavaScript migration approach (Section 4) that is based on high-level
code instrumentation and reconstruction, and that does not require VM modification,
thereby allowing cross-platform migrations of JavaScript-based IoT applications.
System implementation (Section 5) that handles many advanced features of the language
and environment, such as arbitrarily nested closures, event queues, timers and MQTT-
based communication interfaces, and support for multiple migrations.
Evaluation through the execution of benchmarks across IoT and cloud-based devices
(Section 6). Results indicate that ThingsMigrate can instrument arbitrary JavaScript
programs, serialize their state and reconstruct them in a reasonable amount of time,
while incurring an execution time penalty of 30%. Further, ThingsMigrate was capable
of supporting multiple migrations with minimal memory usage increase.
A case study (Section 7) which describes the experience of applying our approach in
a real-world IoT context (motion detection over a video stream), predominantly using
third-party libraries developed for server applications.

2 Motivation

Use of JavaScript. We assume that the various software components to be executed on
the IoT nodes are written in JavaScript. JavaScript is one of the most popular languages
today (in 2018), and ranks sixth in the TIOBE programming languages index [13]. It has
also been ranked as the top language on both GitHub and Stack Overflow for the last five
years. While the predominant use of JavaScript is for the web, JavaScript also maps well
to the asynchronous, event-based nature of IoT applications [39], which in turn simplifies
the development of asynchronous and concurrent applications. Further, similar to other
high-level languages, JavaScript runs over a VM and is platform-independent, which allows
for run-time code portability. In fact, the use of JavaScript also opens the possibility of
easily sharing code, data and development resources between the different components of
the IoT and web software stacks (e.g., the client-side and server-side portions of end-user
web applications in a Web of Things (WoT) setting could both be written in JavaScript)
[26, 21, 31]. Further, as many IoT devices nowadays provide a browser-based interface, it is
fair to assume that they will integrate a JavaScript VM.

IoT Devices are Resource-Constrained. As mentioned, there have been many attempts
at either adapting existing JavaScript VMs (e.g., Node.js [42] for IoT devices), or developing
new JavaScript VMs [27, 10, 3, 12] for the IoT. However, given the resource-constrained
nature of IoT devices and the fluid nature of the resource constraints, applications running
on such devices might have to be frequently migrated from one device to another. For
example, when a device runs low in memory, then the application running on it should
be migrated to another device with more available memory to avoid the application from
running out of memory and crashing. Similarly, any change to the available bandwidth or
to the computational load of a given IoT device might require network and delay-sensitive
applications to be migrated to a different device. Migration may also be needed when
there are external factors causing device failures (e.g., device gets overheated or physically
damaged), or due to security attacks on IoT devices.

Further, while resource management and code migration is a well understood problem in
classical and cloud-based distributed systems, we believe that these techniques are not directly
applicable to the IoT landscape, as they do not take into account IoT-specific constraints such

ECOOP 2018

18:4 ThingsMigrate

as the wide heterogeneity of hardware and software platforms, the highly resource-limited
nature of the devices which makes it impractical to introduce additional virtualization layers,
and the limited ability to provision resources on demand [41]. In addition, as the compute
capacity of IoT devices is dictated by energy efficiency [30], we believe that a great deal
of flexibility is required in scheduling. Therefore, given these considerations, we believe a
static deployment of IoT applications to devices is insufficient, and that there is a need for
applications to be migratable.

Preserving the State. As IoT devices and applications become more complex, they in-
herently generate more elements of state (i.e., variables, arrays, objects) as part of their
execution. For instance, for an application which detects motion patterns in a video stream
(Section 7), elements of state would include the pixels of the currently processed video frames
(arrays), as well as any intermediate results produced as part of the computation. Considering
that migration may be triggered at any time during the application’s execution in response
to changing resource conditions or external events such as failures, it is important that there
be a transparent mechanism to serialize and deserialize the state of an executing application.
This mechanism should be efficient and support general JavaScript applications for IoT
with only minimal modifications. Otherwise, developers would be required to implement
application-specific serialization and deserialization logic, and for any arbitrary point in the
execution, which would complicate the application logic.

Migration support in the VM. While migration support could ultimately be implemented
in the VM, we believe that this is unlikely in the near future given the vast heterogeneity in
IoT platform ecosystems. Unlike in the web browser space where there are only a handful of
dominant players, the JavaScript IoT landscape is much more fragmented, with the availability
of a wide variety of JavaScript engines (e.g., [27, 10, 3, 12]). Further, migration support
would be required at both ends of the migration process; i.e., at the source device/VM, and
at the target device/VM, which may be different from each other. Some of the VMs may
be closed-source and hence not easily modifiable. That being said, should full or partial
support for migration be provided in the VM or as part of the ECMAScript standard (i.e., by
enabling special APIs to access the state of closures), then our technique could be adapted
accordingly.

Applicability to other Languages. In this paper, we focus on the migration of JavaScript
code for IoT. While our solution is specifically tailored for the challenges raised in migrating
JavaScript applications (closures, objects, timers, events, etc.), we believe that some of the
techniques that we propose could be adapted to support the migration of code written in
other high-level languages. For instance, Python also provides support for closures and hence,
we believe that our closure serialization and reconstruction approach could be adapted to
Python. However, we do not consider applications written using low-level languages such as
C or assembly. We also assume that developers do not use low-level APIs to directly access
hardware state of IoT devices (e.g., by reading the pins of a device in a platform-specific
manner) as such code would be difficult to migrate.

3 System Model

The system architecture of ThingsMigrate is presented in Figure 1. It is derived from the
architecture of ThingsJS, a comprehensive IoT middleware that we presented as a vision

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:5

Figure 1 High-Level Architecture of ThingsMigrate.

paper in [26]1 (more details are given in appendix A). Our system model assumes a set of
IoT devices, which are in charge of executing the various components of a distributed IoT
application. We describe the systems components in this section.

3.1 ThingsMigrate Manager
The central piece of our architecture, namely the ThingsMigrate Manager, manages the
execution of distributed IoT applications across the set of available devices. In our model, all
communications between the components of the system use the topic-based publish-subscribe
(pub/sub) paradigm (also referred to as MQTT) [24], which enjoys widespread usage in the
IoT world [25, 40]. This is because it allows decoupling content producers (publishers) from
content consumers (subscribers), and allows for abstracting network considerations. Overall,
the Manager component has three components:

(1) Scheduler. This component schedules the execution of all IoT components across all
devices. For the Scheduler to operate efficiently, developers are encouraged to modularize
their IoT applications into a set of components, and to follow the best practices of JavaScript
(Section 4.1). Taking into consideration the capabilities of each device, the requirements
of the components, and a set of developer-specified constraints, the scheduler assigns the
execution of each component onto a specific device. Upon the conditions changing, the
scheduler can decide to dynamically move some of the components between devices. The
migration takes place dynamically, and preserves the state of JavaScript IoT applications, so
that the execution can be transparently transferred from one device to another - this is our
main contribution. Note that the details of the Scheduler are outside the scope of this paper.

(2) Instrumentor. This component is in charge of instrumenting the JavaScript source code
of the IoT components, which is the code that is executed by the devices. This is executed
at the beginning before running a component on ThingsMigrate.

1 While ThingsJS proposes migration as part of an integrated system, it does not specifically address
migration challenges.

ECOOP 2018

18:6 ThingsMigrate

1 function CreateCounters (n) {
2 var t o t a l = 0 ;
3 function Counter () {
4 var value = 0 ;
5
6 return function () {
7 value += 1 ;
8 t o t a l += 1 ;
9
10 // Can access parent variables
11 conso l e . l og (" val = " + val + " value = " + value + " total = " + to t a l) ;
12 return value ;
13 }
14 } ;
15
16 var counter s = [] ;
17 for (var i =0; i<n ; i++)
18 counter s . push (Counter ()) ;
19 return counter s ;
20 }
21
22 var counter s = CreateCounters (2) ;
23 s e t I n t e r v a l (function () { counter s [0] } , 1 0 00) ;
24 s e t I n t e r v a l (function () { counter s [1] } , 5 0 0) ;

Figure 2 Counters JavaScript Example.

Figure 3 Counters JavaScript Example Closures and Scopes.

(3) Migrator. The Migrator is in charge of transparently migrating the execution of
each component from the original to the target device. To migrate a given component
(e.g., component regulator1 on device 2), the migrator issues a migrate command to the
ThingsMigrate Runtime running on the target device (Section 3.2), with the name of the
component to migrate. This then triggers the migration.

3.2 ThingsMigrate Runtime

The ThingsMigrate Runtime is a thin JavaScript middleware that executes on each IoT
device and manages the local execution of all the components running on the device. It
receives and executes the instrumented source code of the various components that it needs
to execute from the Instrumentor, and awaits migration commands from the Migrator over
a pub/sub interface. Upon a migrate command being received for a component (e.g., for
component regulator1 on device 2), the Runtime first freezes the execution of the component,
serializes its state (Section 4.6) and sends it to the target device over the pub/sub interface
(e.g., device1). When the Runtime on the target device (e.g., device1) receives the serialized
state for a component, it restores the serialized state by generating appropriate restoration
code (Section 4.7), which allows the execution to be resumed with the pre-migration state.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:7

4 Approach

As mentioned, our code migration approach works entirely at the JavaScript layer through
code instrumentation and does not depend on the underlying VM (unlike prior work by
Kwon et. al. [29]). Thus, to support code migration, we need to instrument the code to
expose the internal states (i.e., closures) that are not directly accessible using the JavaScript
primitives and reflection APIs (Section 4.5). Code migration works in three phases. First,
the component’s code is instrumented to support migration. Second, upon the Migrator
service triggering a migration, a snapshot of the current state is taken (Section 4.6) and
transmitted to the target device. Finally, the target device reconstructs the component state
based on the snapshot, and resumes execution (Section 4.7).

4.1 Assumptions

We assume that the JavaScript code is compliant with strict-mode ES5 (ECMAScript 5)
[5], which has been the de facto standard for many years. Although ES6 ([4]) is gaining
momentum, it mostly adds syntactic sugar over ES5. Support for ES6 can easily be provided
by leveraging transpilers (e.g., Babel.js [1]) to convert to ES5.

Because JavaScript is event-driven and single-threaded, we assume that developers will
avoid blocking the main thread for long periods of time, as this would prevent the migration
from being scheduled. Note that this assumption is not specific to ThingsMigrate – in
fact, a long-running operation that never yields the control would inhibit the dispatching
of any asynchronous event (e.g., timers, messages, I/O). To use ThingsMigrate, developers
should follow the best practices and write their code in an event-driven manner, or break
long-running operations to yield control (e.g., setImmediate) at periodic intervals, so that
event processing can take place.

Finally, we assume that the program uses publish-subscribe (pub/sub) for communication,
and does not perform write operations to the local file system. The former assumption is
common in the IoT world, while the latter assumption requires the programmer to send file
system operations over the network (Section 4.8 has more details).

4.2 Motivating Example

The JavaScript language treats functions as data, and provides support for closures, which
allows for functions to be defined in other functions and to be bound to variables. As such,
like any other object, functions can be passed as parameters and can be returned within
other functions. JavaScript closures can also access the variables defined in parent functions
in addition to their own variables, even if a parent function goes out of scope.

Figure 2 presents a motivating example of using JavaScript closures to implement a
simple counter Counter (lines 3-14) which returns a function (lines 6-13) that increments
the counter’s value by 1 (line 7) and prints it (line 11). In addition, there is a global variable
total that holds the sum of all counters (line 8). Further, we wrap the Counter function
and the total variable in another function, CreateCounters, which allows for creating and
returning an array of n counters. More precisely, n nested closures are returned, which upon
being called, increment the corresponding counter; therefore, the variable counters holds an
array of n = 2 counters (line 20). Note that after line 20, some variables become out of scope
(e.g., total, and all the copies of value for each counter), but they are not garbage-collected
as the nested counter incrementation functions (i.e., counters) still access them.

ECOOP 2018

18:8 ThingsMigrate

Figure 3 visually illustrates the scopes of the various closures and their relationship. As
can be observed, there are two independent copies of variable value each defined in their own
scope, but only one copy of total, which is defined in the parent scope and is hence shared
with the two child scopes. Finally, there are two recurrent timers (set using the setInterval
JavaScript function) which increment the two counters at a regular interval i.e., by invoking
nested functions counters[0] and counter[1] respectively every 1000 ms and 500 ms.

4.3 Challenges
Migrating the execution of a JavaScript program from one VM to another VM on to a
different device poses many challenges when it comes to capturing and reconstructing the
state. We discuss the challenges below in the context of the motivating example. To support
migration, the current state of the application must be serialized. A naive approach to
serialization would be to dump the process space of the application, which comprises the heap
and the stack. However, such an approach would require serializing the entire memory space
of the process, which would be platform-dependent and inefficient. Rather, ThingsMigrate
provides a JavaScript-based approach that exploits the specifics of the language. For instance,
as mentioned, a JavaScript application is made of objects and closures. More specifically,
there is one root object that contains a set of properties, which are in fact objects themselves.
As JavaScript treats functions as data, it allows functions to be bound to and stored within
objects (i.e., closures). However, as shown in the motivating example above, functions can
also contain other objects stored in variables.

(1) Closures. While JavaScript includes APIs to recursively and dynamically walk through
the properties of objects and serialize them, the state of closures is hidden and thus cannot
be accessed by means of user code. Thus, we need mechanisms to dynamically expose these
hidden parts of the state during program execution.

(2) Migrating Events. We also need mechanisms to seamlessly transfer the state of pub/sub
interfaces (i.e., subscribers and publications) during a migration. In addition, IoT systems
often perform delayed executions (i.e., using timers); therefore, we need to support the
seamless migration of timer-based events.

(3) Handling the Call Context. As JavaScript is mostly single-threaded and asynchronous
(i.e., event-driven), there is no easy way to interrupt the current execution to perform a
migration. In addition, as the call stack is not exposed, it is not directly accessible. Therefore,
we need to come up with a mechanism to trigger the migration at certain points in the
execution of the program.

(4) Reconstructing the state. After migrating the state, the execution must be restored
given the serialized state. This is non-trivial, as an equivalent reconstructed program must
be generated from the original code and the serialized state, and the execution must resume
exactly at that state without any side effects (i.e., without re-executing code that can
potentially lead to a different outcome).

(5) Enabling Multiple Migrations. As a given program might be migrated multiple times,
we need to support multiple migrations. To reach that goal, the reconstructed program must
be generated in such a way that it can be migrated again, with low overheads. For example,

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:9

the reconstructed program should not incur significantly higher memory or performance
overheads than the original program, as such overheads would quickly add up when performing
multiple migrations.

4.4 Problem Statement
As mentioned, in order to capture the state of a JavaScript program, one needs to capture
the hierarchy of scopes, starting from the global scope, as well the data elements (variables
and functions) contained within each scope. In other words, ThingsMigrate captures the
structure and the values of the different state elements. More formally, we denote the state
of a JavaScript application as S = 〈S, F, V, R〉, where S is the set of scopes, F is the set of
functions, V is the set of variables (i.e., a tuple of 〈name, value〉) and R is the set of relations
between scopes and other entities (i.e., a tuple of 〈scope, entity〉).

Taking the code snippet shown in Figure 2 as an example, and assuming that a snap-
shot of the state is taken after 3250ms, then two instances of the Counter function (and
their associated scopes) are defined, due to the timer invocations (i.e., Counter_1 and
Counter_2). Also, there are two instances of the anonymous function defined inside
Counter (i.e., Counter_1_anon and Counter_2_anon). However, there is only one copy
of the CreateCounters function (i.e., CreateCounters_1). Further, there are two copies of
variable value, each within its own scope (Counter_1_value and Counter_2_value), and
one copy of variable total (CreateCounters_1_total). The resulting state of the snapshot
object S = 〈S, F, V, R〉 would respectively contain states S, functions and their definition F

(omitted for brevity), variables and their value V , and the set of relationships R between
each variable/function and its associated scope:

S ={global, CreateCounters_1, Counter_1, Counter_2}
V ={(global_counters[0], Counter_1_anon), (global_counters[1], Counter_2_anon)},

{(CreateCounters_1_total, 9), (CreateCounters_1_counters[0], Counter_1_anon)},

{(CreateCounters_1_counters[1], Counter_2_anon), (Counter_1_value, 3)},

{(Counter_2_value, 6)}
F ={(global_CreateCounters, ...), (CreateCounters_1_Counter, ...), (Counter_1_anon, ...)},

{(Counter_2_anon, ...)}
R ={(global, CreateCounters_1), (global, global_counters), (global, global_CreateCounters)},

{(CreateCounters_1, Counter_1), (CreateCounters_1, Counter_2)},

{(CreateCounters_1, CreateCounters_1_total), (CreateCounters_1, CreateCounters_1_counters)},

{(CreateCounters_1, CreateCounters_1_Counter), (Counter_1, Counter_1_value)},

{(Counter_1, Counter_1_anon), (Counter_2, Counter_2_value), (Counter_2, Counter_2_anon)}

For more details, we refer the reader to Section 4.7 (Phase 3: Code Restoration), which
describes in more detail our algorithmic approach to generating reconstruction code, and
which gives an example of the restored code of the same code sample (Figure 2), migrated
after the same delay (3250ms). As can be observed, the same functions, scopes and variables,
as well as their relationships, are depicted in the restored code sample (Figure 5).

The next sections describe the algorithmic process followed by ThingsMigrate to (1)
instrument the code to expose the hidden states, (2) take a snapshot and (3) reconstruct the
code at the serialized state.

4.5 Phase 1: Code Instrumentation
In the code instrumentation phase, the ThingsMigrate Runtime augments the input JavaScript
source file to allow the state to be dynamically captured (challenge 1), corresponding to
the formal model defined in Section 4.4. Our code instrumentation approach is inspired

ECOOP 2018

18:10 ThingsMigrate

Algorithm 1: Code Instrumentation.
1 function instrumentCode (sourceCode)
2 begin
3 rootNode ← ASTParse(sourceCode)
4 <setupMigrationListener()>
5 <globalScope ← Scope(rootNode.name, null)>
6 instrumentNode(rootNode, null)
7 return ASTGenerate(rootNode)
8 end
9 function instrumentNode (parentNode, parentScope)

10 begin
11 foreach node in parentNode do
12 if node is Function then
13 <scope ← Scope(node.name, parentScope)>
14 instrumentNode(node, scope)
15 <parentScope.addFunction(node)>
16 <scope.checkAndDestroy()>
17 end
18 else if node is VariableDeclaration then
19 <parentScope.addVar(node.name, node.value)>
20 end
21 else if node is VariableAssignment then
22 varScope ← findScope(parentScope, node.name)
23 <varScope.setVar(node.name, node.value)>
24 end
25 end
26 end

by the work in Lo et. al. [32], but differs significantly as Lo et. al. [32] only offers limited
support for capturing and restoring complex closures. In the example shown in Figure 2,
Lo et. al. [32] would be able to capture and restore the scope of the two internal counter
closures, but would not accurately model the relationship between said scopes in the restored
output, so that two instances of the CreateCounters scope would be generated rather than
one, ending with two distinct total variables after restoration. Each nested scope would
then update its own total variable, which would be inaccurate.

The main aspects of our technique are illustrated in Algorithm 1. To fully capture the
state of closures, the Instrumentor Service exposes the scope hierarchy by injecting code at
relevant locations that will mirror the chaining of scopes and their contents (i.e., functions
and variables) in a parallel tree-like data structure, in order to expose and capture the state.

Upon requesting the instrumentation of a given JavaScript source file (lines 1-8), an
Abstract Syntax Tree (AST) representation of the code is first generated. The algorithm
starts at the root node of the AST tree (line 3) and recursively iterates over the child nodes.
Note that as a convention, throughout this algorithm, lines that start with the symbol <
and end with > represent code that is injected in the form of AST nodes at that particular
location in the AST tree processing, to augment the input code.

The general idea of the algorithm is that for each function, a Scope object is instantiated
in the output code, and linked to the parent scope, so that an exposed scope tree can be built
dynamically at the time of execution. Upon the algorithm starting, a Scope referring to the
global scope is generated (line 5), without any parent scope. Processing then starts from that
root node (first invocation of instrumentNode at line 9). Then, for each child node in the
AST tree, if the child node is a function, we generate a new Scope linking back to the parent
scope (line 13), and we recursively invoke instrumentNode again for that node. We also
register the function in its parent scope, which will allow us to dynamically retrieve it at the

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:11

1 var global = new Scope("global");
2 function CreateCounters (n) {
3 var createcounters = new Scope(global, "CreateCounters");
4 var t o t a l = 0 ;
5 createcounters.addVar("total", total);
6 function Counter () {
7 counter. = new Scope(createcounters, "Counter");
8 var value = 0 ;
9 counter.addVar("value", value);

10
11 var anon1 = function () {
12 anon1 = new Scope(createcounters, "anon1");
13 value += 1 ;
14 anon1.setVar("value", value);
15 t o t a l += 1 ;
16 anon1.setVar("total", value);
17
18 // Can access parent local variables
19 conso l e . l og (" val = " + val + " , value = " + value + " total = " + to t a l) ;
20
21 return value ;
22 }
23 counter.addFunction("anon1", anon1);
24 return anon1 ;
25 } ;
26 createcounters.addFunction("Counter", Counter);
27
28 var counter s = [] ;
29 CreateCounters.addVar("counters", counters);
30 for (var i =0; i<n ; i++) {
31 counter s . push (Counter ()) ;
32 CreateCounters.setVar("counters", counters);
33 }
34 return counter s ;
35 }
36 global.addFunction("CreateCounters", CreateCounters);
37
38 var counter s = CreateCounters (2) ;
39 CreateCounters.setVar("counters", counters);
40 ThingsMigrate . s e t I n t e r v a l (function () { counter s [0] } , 1000) ;
41 ThingsMigrate . s e t I n t e r v a l (function () { counter s [1] } , 500) ;

Figure 4 Counters JavaScript Example - Instrumented.

serialization phase (Section 4.6), as otherwise, there would be no way to dynamically access
it (as the JavaScript reflection API does not allow access to functions, variables and scopes).

For similar reasons, if the current node being parsed corresponds to the declaration of a
new variable, the corresponding variable must be added to the node’s current scope (line
19). For an operation that would set the contents of a variable (assignment, incrementation,
etc.), we must also refresh the corresponding variable in the scope in which it was declared,
to make sure that its content is mirrored in the tree (lines 22-23). Note that this operation
first requires finding the scope in which the variable was declared, due to the JavaScript
execution model in which a variable defined in any parent scope can be accessed by any child
scope (e.g., variable total in Figure 2). To that end, the findScope function (line 22) walks
the tree upwards until it encounters the most recent declaration of the variable (up to the
global scope). The value of the variable is then updated in that scope.

Figure 4 shows a simplified instrumented version of the original source code shown in
Figure 2 (note that in our implementation, many more details are included, which are omitted
here for the sake of brevity). The lines of code that are added by the code instrumentation
process are shown in grey. As can be observed, all defined scopes (the global scope, then
the scopes corresponding to each function definition) are mirrored through an instance of a
ThingsMigrate Scope object (lines 1, 3, 7 and 12). In addition, each variable definition or
assignment gets mirrored in the tree, in the scope at which it is defined (lines 5, 9, 14, 16,
29, 32 and 39). Similarly, functions are also registered (lines 23, 26 and 36).

ECOOP 2018

18:12 ThingsMigrate

Instrumenting Timers. Following a similar algorithmic approach as in Lo et. al. [32],
ThingsMigrate provides support for saving the state of timer functions, namely setInterval
and setTimeout (challenge 2). This is accomplished in the instrumentation phase by replacing
standard timer calls by invocations of our own functions, which expose the state of the
timers at serialization time. Thus, at restoration time, the timers resume at the state when
serialization took place. For instance, considering our code example, if snapshotting occurs
after 250ms, then the first timer (line 23) will first trigger after 750ms, then every second,
while the second timer (line 24) will first trigger after 250ms, then every 500ms.

Pub/Sub Interfaces. ThingsMigrate provides support for capturing the state of pub/sub
interfaces (challenge 2). Similar to how we handle timers, ThingsMigrate wraps calls to the
pub/sub interface (MQTT library) at the instrumentation phase, so that upon a migration
being requested, the list of each topic previously subscribed by the application gets serialized
as part of the snapshot. Then, at the restoration phase, prior to resuming the execution, a
subscription is transparently reestablished to each of the previously subscribed topics. To
ensure that no publications are lost during the migration, we assume that reliable pub/sub is
provided by the service [44, 20], so that the latter can retransmit any missed publication
sent during the migration.

In addition, as the migration is triggered by a pub/sub publication, the Instrumentor
Service injects code in the header to setup a pub/sub listener for the migration, when the
instrumented program is executed. Upon the specific publication arriving, the framework
starts the state serialization process.

Classes and Prototypes. JavaScript ES5 does not support classes per se unlike object-
oriented languages (e.g., Java). Instead, it provides high-level abstractions that emulate
classes by means of prototypal inheritance [23]. ThingsMigrate provides support for serializing
JavaScript-like ES5 classes by serializing each object’s prototype object, so that upon restoring
the code, the correct prototypal chain can be recreated along with the objects.

Cleaning Orphaned Scopes. During the life cycle of a JavaScript application, scopes are
dynamically created, and can sometimes become orphaned. Orphaned scopes are scopes
for which there are no single remaining reference to them or to one of their child scopes.
In the example shown in Figure 2, at each timer iteration (lines 23-24), the function scope
that is created on the fly (first argument) becomes orphaned and is therefore destroyed,
as its serialization will not be required. Therefore, we need to destroy the scope objects
corresponding to orphaned scopes, as they can lead to memory size increase – this problem
is exacerbated on multiple migrations (challenge 5).

As a novel contribution, ThingsMigrate provides support for automatically destroying
orphaned scopes, to support multiple migrations (challenge 5) on the same application
without increasing the snapshot size and incurring additional overhead in the restored code
(i.e., scope explosion). In the instrumentation phase, prior to any given function ending or
returning, an API call to scope.checkAndDestroy() (line 16 of Algorithm 1) is injected, for
the current scope object. At execution time, this function will check whether any other scope
or variable depend on this scope. If there are no dependencies, then the scope is destroyed,
and therefore it will not be serialized in the snapshotting phase (Section 4.6).

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:13

4.6 Phase 2: Snapshotting and Migrating
To trigger a migration, the component that is being executed receives a migrate pub/sub
command from the Migrator Service. Recall that the code instrumentation phase sets up a
listener, which initiates the migration (Section 4.5).

Serializing the State. The migration process first involves serializing the state to the JSON
format. To do so, the scope tree is recursively walked in a top-down approach, from the
global scope. The serialized output includes, for each scope, the variables and parameters, as
well as nested scopes and functions. In JavaScript, functions cannot be serialized as-is. Thus,
upon encountering a function when walking the scope tree, the function is assigned a unique
ID, and the function’s source code is added to a table of functions, which is appended at the
end of the serialized state. Note that the serialized output also contains the state for special
objects that ThingsMigrate addresses, such as timers and pub/sub interfaces.

Handling the Stack. We address the challenge of handling the stack (challenge 3) by ex-
ploiting the asynchronous, event-driven nature of JavaScript. Because JavaScript applications
are single-threaded and are event-based, the runtime maintains an event queue. We schedule
code migrations as events so that they get pushed at the end of the event queue and get
executed over an empty stack. More precisely, as migration requests are sent through the
form of pub/sub publications, they are treated as events and pushed to the event queue.
Note that we could also accomplish the same behavior by scheduling the migration as a
timer-based event.

Sending the Serialized State. Once the snapshot is generated, it is sent over the pub/sub
interface to the target IoT node, which will regenerate the code considering the state of the
snapshot, and resume execution.

4.7 Phase 3: Code Restoration
Upon a given IoT node receiving a snapshot, it needs to reconstruct the original program at
the exact state where migration took place (challenge 4). The code restoration process must
retain the original program structure, while reassigning the values for constructs holding
state, such as variables, parameters and closures, without directly restoring the memory
regions - this is important for platform independence and portability.

Reconstructing Closures and Scopes. As in the code instrumentation phase, closures pose
unique challenges when it comes to generating restoration code, as they wrap state elements.
Because functions can be return values of functions in JavaScript (e.g., as seen in Figure
2), there can exist multiple copies of a function sharing the same code, but corresponding
to different states (i.e., holding different values). The code restoration process needs to
generate multiple copies of some of the function trees, as state can be held not only in the
functions themselves, but anywhere in parent functions as well, and bind such copies; i.e., to
variables or parameters. For instance, in Figure 3, two counters are defined (i.e., counter[0]
and counter[1]), which both point to a function having the same source code (i.e., the
anonymous function at lines to 13), but holding different states, as the value of value defined
in the parent function (Counter) is different. Thus, in the reconstructed code, two copies
of Counter and its inner function (i.e., the chain of functions) will need to be defined to
expose the different scopes of the two counter closures.

ECOOP 2018

18:14 ThingsMigrate

Algorithm 2: Code Generation.
1 function generateScope (scope, parentScope)
2 begin
3 < (function(){ >
4 <var {scope.name} ← Scope(scope.name, parentScope)>
5 foreach param in scope.params do
6 <var {param.name} ← param.value>
7 end
8 foreach function in scope.functions do
9 <functionTables[scope].code>

10 end
11 foreach variable in scope.variables do
12 if scopeDefinitionExists(variable.value) then
13 <var {variable.name} ← variable.value>
14 end
15 else
16 stage2Variables.add(variable)
17 end
18 end
19 foreach child in scope.children do
20 generateCode(child, scope);
21 end
22 foreach variable in stage2Variables do
23 <var {variable.name} ← variable.value>
24 end
25 < }()) >
26 end

Code Generation Algorithm. A simplified version of the code generation algorithm is shown
in Algorithm 2. In an nutshell, the algorithm starts with the global scope (function), and
recursively reconstructs the scopes in a hierarchical manner. For a given scope, it first injects
the parameters defined in that scope with their values at snapshot time (lines 5-7), then
injects the full source code for the functions defined in that scope, including the function
headers (lines 8-10). Then, the variables defined or redefined in that scope are injected and
set to their value at snapshot time (lines 11-18). In some corner cases involving JavaScript
objects and their prototypes, it might happen that some scopes cannot be resolved for some
of the variables, at the first (i.e., top-down) phase. An example would be a case where
an object instance is constructed, but the constructor function is defined in a child scope
that is not yet generated (i.e., invoked) at the time of assigning the variable. Our approach
addresses these situations by placing such variables in a queue, to process them in a later
stage (i.e., at stage 2, after the generation of the child scopes - lines 22-24). After generating
the variables, the generateScope function is recursively called for all child scopes of the
current scope (lines 19-21).

Each scope definition is wrapped in an enclosed (function() {...} ()) call, which
means the scope definition code (i.e., the output of the algorithm) will be invoked when the
restored code is executed (lines 3, 25). In other words, the nested scope generation portions
of code will be invoked recursively, thereby recreating the scope hierarchy. Note that the
functions themselves corresponding to each scope are not executed upon restoration, as this
could lead to side effects (i.e., non-determinism). It is nevertheless necessary to include their
definitions, as they might be invoked later in the code after restoration.

Code Restoration Example. Assume that a snapshot was taken after executing the code
shown in Figure 2 for 3.25 seconds. Figure 5 illustrates the restored code. Note that while
this example has been derived from the output of a real invocation of the code restoration

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:15

1 /* Original code comes before */
2 function () {
3 function CreateCounters (n) {
4 var n = 2 ;
5 function Counter_1 () {
6 var anon1 = function () { /* ... */ }
7 ThingsMigrate . addFunction (" Global / C r e a t e C o u n t e r s / Counter_1 / anon1 " ,

anon1) ;
8 var value = 3 ;
9 return anon1 ;

10 }() ;
11
12 function Counter_2 () {
13 var anon1 = function () { /* ... */ }
14 ThingsMigrate . addFunction (" Global / C r e a t e C o u n t e r s / Counter_2 / anon1 " ,

anon1) ;
15 var value = 6 ;
16 return anon1 ;
17 }() ;
18
19 var t o t a l = 9 ;
20 var counter s = [Counter_1 , Counter_2] ;
21 }(2) ;
22 }() ;
23
24 ThingsMigrate . s e t I n t e r v a l (ThingsMigrate . f indFunct ion (" Global / C r e a t e C o u n t e r s /

Counter_1 / anon1 " , 1000 , 250) ;
25 ThingsMigrate . s e t I n t e r v a l (ThingsMigrate . f indFunct ion (" Global / C r e a t e C o u n t e r s /

Counter_2 / anon1 " , 500 , 250) ;

Figure 5 Counters JavaScript Example - Restored Code.

procedure of ThingsMigrate, some simplifications and adjustments were made for clarity.
Also, the names of the various entities within this snippet (i.e., variables, functions, scopes),
as well as their relationships, correspond to the state example shown in Section 4.4.

As can be observed, two copies of the Counter closures have been generated: Counter_1
and Counter_2 (lines 5-10 and 12-17), which both wrap the values for variable value: 3 and
6 (as the timers triggering the closure incrementation functions were invoked respectively
3 and 6 times - the former every second, and the latter every 500 ms). Similarly, there is
only one instance of the CreateCounters closure, which is the parent of the two Counter
functions (line 3). It holds the total variable (total = 3 + 6, line 19). Upon executing the
restored code, the CreateCounters, Counter_1 and Counter_2 functions are re-executed,
thereby recreating the closures as before.

Note that upon restoring a function, we add it to a function table, which will allow us to
refer to it later (not shown in Algorithm 2). As an example, at lines 7 and 14, we add the
restored closures that correspond to the anonymous counter incrementation functions to the
function table, and we then retrieve them from the table when we restore the timers (i.e.,
lines 24-25), as the timers periodically invoke these functions.

Multiple Migrations. ThingsMigrate supports transparent multiple migrations without
introducing additional overhead (challenge 5). This is accomplished at the code restoration
phase by maintaining a unique scope tree structure that is accessed by all the generated
closures and scopes, and by re-injecting scope definitions (i.e., variables, parameters, nested
functions, etc.) across the regenerated code, following an approach derived from Algorithm 1.
Further, relevant pub/sub code is re-injected to support receiving migrate messages again. In
other words, the output of the code restoration phase is an alternate code segment equivalent
to the output of the code instrumentation phase, which can hence support further migrations.

ECOOP 2018

18:16 ThingsMigrate

4.8 Limitations
Handling External Libraries. ThingsMigrate does not yet provide full support for imported
libraries (i.e., the require statement). A simple solution would be to directly import the
code in the main JavaScript module itself prior to instrumentation. This approach may be
inefficient however, if there are multiple levels of nested library imports. Another solution
would be for ThingsMigrate to provide a migration interface, and for module developers to
implement the interface for either a more optimized migration of the nested libraries, or for
supporting libraries exposing native I/O resources, such as file system access. Despite this
limitation, we find that ThingsMigrate can support many third-party libraries as we show
in Section 7.

Scope Explosion. If programs make use of several levels of nested closures, then the resulting
snapshot and restored code can become quite large, due to the phenomenon of scope explosion,
in which multiple scopes might have to be maintained. However, this problem is symptomatic
of bad programming practices and is not specific to ThingsMigrate, as the JavaScript VM
itself will have to retain a large amount of scope structures in-memory.

Redirecting I/O Operations. As mentioned in Section 4.1, ThingsMigrate assumes that
all communications are done over the pub/sub interface. Further, in the current state,
ThingsMigrate does not support file I/O operations, which is non-trivial, as reads and writes
must occur where the corresponding files are located. For instance, assume there is a file on
device A which is read by an application on the same device that gets migrated to device B.
In order to guarantee consistent reads, one has to migrate not only the current position in
the file, which is trivial, but also to guarantee (1) the availability of the file on B, or (2) to
provide some redirection mechanism.

As JavaScript I/O operations are typically handled through streams, we plan on trans-
parently redirecting streams over the pub/sub interface (solution 2 above), by wrapping
the base JavaScript stream API (similar to wrapping timer-based or pub/sub-based APIs).
A stream-level solution can support arbitrary stream-based I/O operations, such as files,
network, and even HTTP requests. Upon device A receiving a migration request to migrate
a given app to device B, the ThingsMigrate Runtime will generate a unique ID for each
currently active stream, and will setup a transparent forwarding mechanism over a pub/sub
bridge (i.e., by creating a topic corresponding to that ID that both devices A and B will
subscribe to). Then, upon a read operation being requested by the app on device B, for
a given stream, the request will be transparently forwarded by the Runtime to device A,
who will perform the read and send back the results to the Runtime on B, who will deliver
them to the stream at the application layer. Likewise, any write operation will simply be
forwarded from the Runtime on B to the Runtime on A, who will complete the write.

Nested Timers. A limitation of ThingsMigrate occurs in the handling of some deeply
nested timer-related calls (i.e., setTimeout, setImmediate). Should a snapshot command
be received while a timer is in a pending state – i.e., before the callback function is invoked –
then the timer gets cleared, the remaining time and the reference to the callback function
are serialized, and migration happens normally. However, should the snapshot command be
received after the callback function is invoked, then a race condition occurs between any
asynchronous calls made inside the body of the callback and the snapshot function. Race
conditions are sometimes problematic in JavaScript, as the ordering of events can’t always be
predicted [16, 33]. For instance, should the JavaScript VM event loop process the snapshot

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:17

function before the asynchronous calls, then the resulting snapshot will not contain the
scopes created by the asynchronous calls, producing an incorrect snapshot. Handling nested
timers would require that the snapshot function be delayed until all callbacks have been
resolved, which is a non-trivial problem. As a potential solution, we propose to inject, at the
instrumentation phase, specific code into the function scope that will signal the function’s
completion, which would allow us to detect the resolution of nested asynchronous calls.

5 Implementation

ThingsMigrate is implemented in the form of a JavaScript library2 that can be included by
the application. Its implementation is built over ThingsJS [26] (more details in appendix A).
It provides APIs that can be invoked to perform code instrumentation, snapshotting and
code restoration. From a higher-level perspective, it also provides an execution environment
that replicates the architecture shown in Figure 1. More specifically, it provides a Runtime
environment that can be run on IoT devices supporting an appropriate VM (e.g., Node.js
on Raspberry PIs Models 3 and 0), as well as a Manager component, which is used to
transparently instrument JavaScript programs, launch them on specific IoT nodes (decided
by a scheduler), monitor them, and trigger a serialization/migration. Internally, our imple-
mentation uses the popular esprima library [7] to parse JavaScript code into an AST, and
the escodegen [6] to convert back an AST into JavaScript code.

We also provide a web dashboard to monitor the execution of the application on different
devices, and trigger the migration at runtime (more details in appendix B).

6 Experimental Validation

We perform three experiments to validate ThingsMigrate. Experiment 1 (Section 6.2)
benchmarks the performance of our code instrumentation algorithm against a set of bench-
marks. Experiment 2 (Section 6.3) measures the performance overhead of ThingsMigrate for
benchmarks running on different devices. Finally, Experiment 3 (Section 6.4) evaluates the
multi-migration capabilities of ThingsMigrate by migrating a benchmark application several
times, across several devices.

6.1 Experimental Setup
ThingsMigrate provides JavaScript migration between IoT devices, and between devices and
the cloud. To emulate different scenarios, we ran our experiments on two IoT platforms,
namely a Raspberry Pi model 3B (quad-core 1.2 Ghz ARM7, 1 GB memory), and a Raspberry
Pi model 0W (single-core 1 Ghz ARM6, 512 MB memory), both running the Raspbian Jessie
operating system (a Debian Linux variant). We also included a cloud server (Xeon E3-1220
v3, quad-core 3.10Ghz, 32 GB memory). All nodes were running the Node.js VM version
6, which is ES-5 compliant. While we did not test other VMs due to stability issues or to
their lack of compliance with the ES-5 standard, the Node.js VMs we used were all compiled
differently for each target platform.

Despite an extensive search, we did not find publicly-available sets of IoT-specific JavaS-
cript benchmarks to evaluate our system. Prior work ([39]) has built their own IoT-specific

2 http://www.github.com/karthikp-ubc/thingsjs

ECOOP 2018

http://www.github.com/karthikp-ubc/thingsjs

18:18 ThingsMigrate

JavaScript benchmarks3. We followed a similar approach and built two IoT-specific bench-
marks: (1) a factorial application, which computes the factorial of a very large number and
uses closures to store the computed digits (i.e., in a very large expanding array), and (2),
a regulator application, which models an IoT edge component which receives temperature
measurement data from different sensors4 over a pub/sub interface, keeps the previous n

values for m sensors, and periodically computes an optimal power adjustment to be sent to
an actuator. factorial models a CPU and memory-intensive application of a finite duration
(experiment 2), while regulator models a less intensive (i.e., low CPU and memory usage)
application that runs for a long time. We note that the memory usage of the regulator is
similar to the memory usage of the IoT-specific benchmarks described in [39].

In addition, for experiments 1 and 2, we also used some benchmarks from the Chromium
Octane [2] suite, which were originally designed to stress-test the performance of the V8
JavaScript engine in the Chrome web browser. While they are not representative of IoT
applications, we nevertheless use them to assess the universality of our framework, and for
performance testing of ThingsMigrate under extreme conditions.

6.2 Experiment 1: Code Instrumentation
In this experiment, we consider all the benchmark programs from the Chromium Octane
suite that do not depend on a web browser (i.e., accessing the DOM or any other in-browser
object), as ThingsMigrate migrates IoT applications rather than in-browser applications.
We measure the time it takes to instrument the code for these benchmarks5, as well as
for our factorial and regulator applications. In addition, we compare the size of the
uninstrumented (raw) code, and the size of the instrumented code. Results are shown in
Table 1. As one can observe, the instrumentation algorithm executes quickly (in under 1
second), even for the complex benchmark applications with large code sizes. Further, code
instrumentation is a one-time process for any given program.

The increases in the code size due to instrumentation range from 26.9% to 7382.7%, with
an average of 1174.1%. This is because the instrumentor assigns human-readable variable
and function names in the generated code for debugging purposes - this can be reduced by
using a minifier [14]. We do not deploy these techniques. However, the code size has minimal
impact on the runtime performance as JavaScript is compiled just-in-time.

6.3 Experiment 2: Performance Overhead
In this experiment, we analyze the performance impact of ThingsMigrate over a set of highly
resource-intensive benchmarks. The goal of this experiment is to model the execution of
a resource-intensive task of a finite duration (i.e, eventually returns a result) that would
be executed over different IoT devices and the cloud server. We selected benchmarks
navier-stokes and splay from the Octane suite, as they respectively model extreme
conditions, in terms of CPU usage and memory utilization. Further, we were successful in
running these benchmarks on all test devices, unlike most other benchmarks in the suite
(even without our instrumentation, most of the benchmarks in the Octane suite were unable
to run on the Rapsberry Pi 0 due to its limited capabilities). We also used our factorial
application.

3 The source code is not publicly available, and hence we cannot use them.
4 We fed the application with random values, as the computed result itself is not part of the experiment.
5 Measurements were taken on our cloud server.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:19

Table 1 Code Instrumentation Results (with a confidence interval of 95%).

Benchmark Program Size (kb) Instrumented Size (kb) Instr. Time (ms)
navier-stokes 9.985 122.263 135.67 ± 4.5
splay 6.573 45.984 86.18 ± 2.7
deltablue 1.5452 115.623 120.65 ± 0.6
crypto 39.028 276.763 194.05 ± 1.6
box2d 357.169 2773.027 821.95 ± 3.0
earley-boyer 159.794 574.463 301.9 ± 0.8
raytrace 24.998 31.720 64.2 ± 0.5
richards 8.302 59.922 87.4 ± 0.5
typescript 2.138 10.541 31.75 ± 0.2
factorial 0.952 5.526 28.21 ± 0.2
regulator 1.855 15.594 42.1 ± 0.4

 0

 5

 10

 15

 20

navier

splay

fact

(A) raw
(B) instrumented
(C) restored

(a) Cloud Server (Xeon)

 0

 50

 100

 150

 200

 250

 300

navier

splay

fact

(A) raw
(B) instrumented
(C) restored

(b) Raspberry Pi 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

navier

splay

fact

(A) raw
(B) instrumented
(C) restored

(c) Raspberry Pi 0

Figure 6 Execution Time (in seconds). Margins of errors were below 1.5% for most of our results,
and up to 6% for some of our results on the Pi 0, for a confidence interval of 95%.

For each benchmark program, we measure and compare the time to complete its execution.
For each benchmark, and for our 3 target devices (Raspberry Pi 3, Pi 0 and our cloud server),
we run (A) the non-instrumented (raw) code, (B) the instrumented code, and (C) the
code generated after migration6. Further, we measure the average memory usage of each
application for the same three versions of the benchmark (raw, instrumented and generated)
to determine memory overheads. Finally, we report the time taken to serialize and generate
restoration code. We ran each benchmark until 50% of its execution time, took a snapshot,
generated restoration code from the snapshot, and then resumed the execution with the
restored code. Each benchmark was executed multiple times on each platform, and the times
averaged over the executions were reported.

Execution Time. Execution time results are shown in Figure 6. For both navier-stokes
and factorial, we observe an execution time overhead ranging from 5% and up to 40%
compared with the raw code (A), for all devices, which is due to the overhead of our injected
instrumentation code. This is because these applications have a significant amount of state.

6 As results for the restored code (C) were only available after completing a migration (i.e., at a given time
t during execution), results for (A) and (B) were considered also only after time t in their respective
runs, for a fair comparison.

ECOOP 2018

18:20 ThingsMigrate

 0

 20

 40

 60

 80

 100

 120

 140

 160

navier

splay

fact
navier

splay

fact
navier

splay

fact

M
e
m

o
ry

 U
s
a
g
e
 (

m
b
) (A) raw

(B) instrumented
(C) restored

Raspberry Pi 0Raspberry Pi 3Cloud Server (Xeon)

Figure 7 Memory Usage (mb). Margins of errors are not shown, as the results show the averaged
memory usage for all runs, averaged over the duration of the experiment.

As for the splay benchmark, the performance of the instrumented (B) and the restored
code (C) was significantly degraded. This is due to the extreme amount of memory operations
that the benchmark performs, which significantly slows down the execution. This slowdown
is amplified by the mirroring of the scope tree, which consumes even more memory. Further,
as our Pi devices have much slower memory, compared to our cloud server, the performance
overhead is higher. We stress however that these benchmarks were specifically designed to
model extreme conditions on desktop computers, and are not typical applications to be run
on IoT end nodes, which are much more resource constrained.

We also observe that the performance of the instrumented code (B) and the restored
code (C) is roughly similar across all benchmarks. As the restored code is semantically
equivalent to the original code, but with instrumentation to enable further migrations, we
obtain similar performance as the instrumented non-migrated code. These results indicate
that the performance (i.e., execution time) will not degrade after migration (Section 6.4).

Unfortunately, we cannot perform direct comparisons with prior work in terms of execution
time overhead, as Lo et. al. [32] measured such overheads for web applications on desktop
computers, which do not exhibit the same workload characteristics as our benchmarks, and
Kwon et. al. [29] did not report the execution time overheads of their programs at all.

Memory Usage. Our memory overhead results are depicted in Figure 7. For each benchmark
and device, we averaged the memory usage over time across the duration of each execution,
and we report averaged results for all experimental runs. Overall, our results reveal that
executing the instrumented code (B) significantly increases the memory usage compared to
the non-instrumented code (up to 6 times). This is expected, as we do not rely on JavaScript
VM instrumentation at runtime (unlike Kwon et. al. [29]), therefore many more elements
of state must be captured during execution and mirrored. In addition to maintaining the
scope hierarchy that mirrors the closures, the instrumented code also maintains a copy of
every variable, parameter and function, which increases the memory usage. The results for
factorial exhibit a similar trend across all devices, with the restored code (C) having a
slightly lower memory footprint compared to the instrumented code (B). After restoration
(C), we start with a fresh instrumented copy of the code (at snapshot time), without the
past states that potentially contain portions that were not yet garbage collected.

On the other end, navier-stokes and splay exhibit much higher memory usage for
the restored code (C) compared to the instrumented code (B). As these benchmarks are
more aggressive in stressing the memory (i.e., by allocating and deallocating scopes), the
resulting reconstruction code is very verbose (i.e., due to the explicit definition/duplication

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:21

 0

 0.2

 0.4

 0.6

 0.8

 1

navier

splay

fact

(A) Serialize
(B) CodeGen

(a) Cloud Server (Xeon)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

navier

splay

fact

(A) Serialize
(B) CodeGen

(b) Raspberry Pi 3

 0

 5

 10

 15

 20

 25

 30

 35

navier

splay

fact

(A) Serialize
(B) CodeGen

(c) Raspberry Pi 0

Figure 8 Serialization / Code Generation Time (in seconds). Margins of errors were between
0.5% and 5% for all results, for a confidence interval of 95%.

 0

 5

 10

 15

 20

 25

 30

 35

 0 3 6 9 12 15 18 21 24 27 30
 0

 5

 10

 15

 20

 25

 30

 35

M
e

m
o

ry
 (

R
A

M
)

(m
b

)

C
P

U
 U

ti
lis

a
ti
o

n
 (

%
)

Time (minutes)

Cloud Mem
Pi3 Mem
Pi0 Mem
Pi0 CPU

Figure 9 Multi-Hop Migration Analysis (regulator application).

of nested closures as shown in Figure 5). Therefore, despite being semantically equivalent as
the instrumented code at snapshot time, the reconstructed code may be harder to optimize
by the VM. The execution of the JavaScript Garbage Collector (GC) can also be a cause
of the overhead. Experiment 6.4 discusses the effects of the GC on the live execution of
JavaScript applications. We stress again that such benchmarks represent extreme, non-typical
conditions. Nevertheless, they could run even on low-end devices (e.g., the Raspberry Pi 0),
and the average memory footprint remained under 30 MB.

We also note that the memory usage for both Raspberry Pi devices are much lower than
the cloud server. This is attributable to the bitness of the devices; i.e., our cloud server has a
64 bit processor, while the other Pi devices are 32 bits, and a more aggressive GC execution
on the Pi devices, as they are more memory-constrained.

Finally, prior work (i.e., [32, 29]) did not evaluate the runtime memory overhead of their
approach and hence, we cannot compare our results against them.

Serialization and Code Reconstruction Time. Considering the same experimental setup
(i.e., same devices and same benchmarks as above), we measured the time it took to serialize
the state at mid-experiment, and to generate restoration code from the state. Results are
shown in Figure 8. The results exhibit the same trend across all platforms, and vary based on
the size and complexity of the application. Overall, the serialization and snapshot times are
reasonable, albeit slightly higher on the Raspberry Pi 0 and for the two Octane benchmarks.
We stress that the Raspberry Pi 3 device is roughly 7 times slower than our cloud device,
while the Pi 0 device is roughly 90 times slower than our cloud server.

ECOOP 2018

18:22 ThingsMigrate

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 3 6 9 12 15 18 21 24 27 30

S
n
a
p
s
h
o
t
S

iz
e
 (

k
b
)

Time (minutes)

Snapshot

Figure 10 Snapshot Size over Time (regulator application).

6.4 Experiment 3: Multiple Migrations

In this experiment, we analyze the global behavior and performance over time of Things-
Migrate, when multiple migrations are performed between the edge and the cloud. More
precisely, we analyze the effects of migrating a long-running task that is not computationally
expensive from one device to another. None of the benchmarks used in Experiment 2 fit
this description, nor could we find publicly available JavaScript-based IoT benchmarks that
satisfy this criteria (Section 6.1). Therefore, we developed and used our own benchmark –
the regulator application that satisfies this criteria (by design). We first deploy the regulator
application on our cloud server, then we migrate it to the edge devices (i.e., the Raspberry Pi
3 device, after one minute, and then to the Pi 0 device, after one minute). The application is
then pushed back to the cloud server. This cycle is repeated 10 times (30 migrations over 30
minutes), and the CPU and memory utilization are measured in each instance.

The memory utilization results are shown in Figure 9, for the duration of the experiment
(30 min). The migration cycles are denoted by a vertical bar (every minute), and an oscillating
variation pattern can be observed during the time periods for which each device was executing
the regulator application. As can be observed, the memory usage fluctuates, for all devices,
but remains overall stable, as each successive code restoration does not consume additional
memory (assuming the memory needs of the application do not increase). The step-like
appearance of the memory curves are explained by the JavaScript garbage collector (GC),
which regularly claims small amounts of memory (i.e., during execution of the regulator –
small pikes), and which periodically runs a more through collection (bigger drops). However,
we also observe that the memory tends to very slowly increase over time, but this is not due
to the multiple migrations – rather, this is an artifact of the experimental data collection
process, which logs memory and CPU usage at a frequent interval (every 200ms) and keeps
the data in memory. This is supported by Figure 10, which plots the snapshot size at each
successive migration, which remains constant at 83kb. Finally, as in Experiment 2 (Section
6.3), the memory usage on the cloud server is higher than on the pi devices.

The CPU usage is shown on the same Figure (9). For simplicity, we show CPU usage
results only for one device (i.e., Pi 0, which is the most resource constrained), but the trend
is similar on the others. As can be observed, the CPU usage peaks at about 4%-5% when the
Pi 0 device is executing the application, and is close to 0% otherwise. The CPU usage during
execution remains constant across the different executions. The short spike before execution
corresponds to the code reconstruction, and the short spike after execution corresponds to
the serialization process, for which a small memory surge can also be observed.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:23

Figure 11 Case study setup.

6.5 Summary
Overall, our results demonstrate that ThingsMigrate can enable the cross-platform migration
of IoT JavaScript-based applications with acceptable performance overhead (~30% for normal
cases), and without any modifications to the underlying VM. While the memory overheads
are more significant, we believe that this is an acceptable tradeoff given the goal of our
approach to rely purely on code instrumentation. We also believe that memory gains could
be achieved by optimization techniques such as storing references to variables rather than
copying them within the scope tree. However, this is a subject for future exploration. Further,
our results show that ThingsMigrate was able to handle multiple-hops migrations while
keeping the CPU and memory usage almost constant.

7 Case Study: Motion Detector

In this section, we describe our experience with using ThingsMigrate to build a realistic IoT
application for video surveillance by adapting third-party JavaScript components developed
for standalone node.js applications. These components were not designed with ThingsMigrate
in mind, and as a result, we had to make (minor) modifications to make them work with our
system. We also evaluate this application using application-specific metrics that are more
likely to be of interest to end users rather than CPU/memory usage (unlike Section 6).

7.1 Experimental Setup
We set up an IoT network with four devices to build a surveillance system. Figure 11 shows
the setup. The application logic is modularized into two components: a video streamer
component that captures images from a video source such as a webcam, and a motion
detector component that processes the images to detect motion. Unlike the video streamer,
which is bound to a single device by the peripheral from which it needs to capture video, the
motion detector can be run on any device as it performs computations on the image data.
We measured the behavior of the system over a series of migrations of the motion detector
across the three systems (Raspberry Pi 3, Pi 0, and the cloud server from Section 6).

Video-streamer: We used FFmpeg [8], a popular open-source software for handling multi-
media, to capture individual frames from a video stream. For the purpose of the experiment,
the component was configured to stream from a video file instead of a peripheral such as a
webcam, so that we have a deterministic and reproducible sequence of frames. To interface
with the FFmpeg process from the JavaScript layer, we adapted a third-party NPM library
called fluent-ffmpeg [9], that we use to capture individual frames and publish them over
the pub/sub interface. The capture-and-publish routine was written as a single JavaScript

ECOOP 2018

18:24 ThingsMigrate

Figure 12 CPU Usage over time – Motion Detector component.

function captureFrame that was passed into a setInterval call with interval set to 200ms
(i.e., a rate of 5 frames per second). We used the cloud server to serve as a surveillance
camera and run the video streamer component.

Motion Detector: This component was written entirely in JavaScript without having to
interface with any external software. We integrated a third-party NPM module called jimp
[11], which provides an API to read Buffer objects (i.e., received from the pub/sub overlay)
and perform image processing tasks. The component stores binary frame data for the n

latest frames.
The motion detection logic (i.e., function detectMotion) iterates through the array of

images and computes the difference between subsequent frames by calling jimp.diff(). The
binary difference between the frames is published over the pub/sub interface. In addition, if
more than 10% of the pixels are altered, a motion detected message is also published. The
detectMotion function is passed to a setInterval call with the interval set to 500ms - this
is lower than the frame rate of the video streamer (Section 7.2 explains why). Since the
detectMotion works by retrospective inspection of past frames, the array of Buffer objects
containing the image data needs to be migrated. Otherwise, the restored component would
need to wait for the buffer of past frames to be filled again – thereby skipping the motion
detection process for a given time window, and missing potentially important motion.

Although we do not fully support the migration of external libraries (Section 4.8), it
was possible to integrate the third-party NPM libraries as the objects they created were
native JavaScript objects and the API calls were limited to stateless operations. For instance,
since the Buffer objects are native objects, they could be easily serialized and migrated. The
function call to jimp.diff() is a stateless operation, since it does not create any additional
scopes and its execution context is destroyed after it returns. Such stateless operations do
not affect the migration process because we do not need to serialize their scopes.

Finally, we collected performance statistics by subscribing to a pub/sub topic at which
each ThingsMigrate runtime publishes its CPU and memory usage. To monitor and verify
that the motion detection was working correctly, we used our web dashboard, which displays
the images by converting the data into a base64 encoded PNG image.

7.2 Results
To automate our migration test in a controlled fashion, we wrote a Node.js script to send
commands to the IoT devices over the pub/sub interface. We sent a migrate command every
1 minute to the Cloud Server, Pi 3, and Pi 0, and back. We repeated the cycle 3 times.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:25

Figure 13 FPS over time – Motion Detector component.

Figure 12 shows the CPU usage over time as the application is migrated between the
devices. The collected data for CPU and memory usage across the three devices exhibit a
similar pattern to the regulator component discussed in Section 6.4. The CPU usage on a
device has a spike upon receiving a snapshot and just before sending a snapshot, remains
high while it is running a component, and stays near 0 during the idle state. The memory
consumption stays within a narrow range, with the garbage collector being triggered more
frequently while a device is running a component, and occasionally while it is idle.

However, on the Raspberry Pi 0’s console, we observed error messages showing that the
process failed at regular intervals. This is because the asynchronous call to detectMotion
took much longer than the set interval of 500ms, due to the limited computational capacity
of the Pi0, which led to the event queue accumulating faster than the JavaScript VM could
consume, which eventually led to overflowing and halting of the program.

Figure 13 shows the frame rate measured in Frames Per Second (FPS) on each device over
time. The FPS was calculated using the formula 1

∆t where ∆t is the time taken to execute
the detectMotion function. The figure shows the FPS dropping below the required FPS of 2
over the periods between 120 and 180, 300 and 360, and 480 and 540 seconds, during which
the Pi 0 was running the motion detector component. We can also observe the detectMotion
function blocking the thread at 180 seconds and 360 seconds, preventing the migration from
being triggered. The FPS drops below 2 occasionally during Pi 3’s execution, but for most
frames it is able to process within the time interval, compensating for the delay overall.

In summary, this case study shows that we were able to successfully migrate a third-party
application with minimal modifications between different devices. We also found the frame
rate measured in FPS was acceptable in most cases for the application. However, special
considerations might have to be taken for low-end devices, as migration requests can be
delayed due to delays in running more intensive tasks. These issues should be considered
when designing a system-level solution as discussed in Section 3.1.

8 Related Work

There has been some prior work in the area of migrating the execution of JavaScript code.
However, they focus on migrating web applications between web browsers [18, 32, 36, 29], and
hence have very different constraints from IoT devices. Imagen [32] migrates web applications
across heterogeneous browsers without altering the VM, and address some of the challenges
specific to web applications (e.g., the DOM, HTML5 media elements, timers). However, their
handling of nested closures is limited (Section 4.5). In [29], extending their prior work in [36],
the authors provide deeper support for serializing and reconstructing closures for migrating

ECOOP 2018

18:26 ThingsMigrate

web applications, but they require VM instrumentation to access the internal scope tree,
which makes their approach less portable as it is bound to a specific browser version of an
open-source Webkit browser. In contrast, our approach does not require any modifications
to the JavaScript VM, and is hence platform neutral. Further, we provide explicit support
for multiple migrations, which prior work does not.

As an alternative to capturing and restoring the state of the web application, deterministic
replay techniques can be used to replay an exact sequence of actions leading to the current
state [17, 34, 37, 19, 15]. However, these approaches focus on capturing and replaying web
browser events, and are not directly applicable to IoT environments. Further, they may even
be impractical for IoT environments which have limited resources, as the sequence of events
to be captured and replayed often grows rapidly over time [32].

There have been many attempts at providing low-level code migration techniques that
directly save and restore the process memory space, and are hence programming language
independent [35, 45, 46]. Such techniques could be applied for migrating JavaScript code,
but they would require serializing the state of the JavaScript virtual machine (VM) itself,
which can incur significant overheads on IoT devices. Further, considering as per our model
that one VM might host several components, this would make it difficult to separate the per-
component state. Finally, providing platform independent migration would not be possible,
as even the same version of a given VM might have different cross-platform implementations
and memory layouts due to hardware differences. Note that similar challenges can be found
in migrating virtualized OSes across devices [22, 43].

9 Conclusion and Future Work

In this paper, we presented ThingsMigrate, a middleware layer that provides VM-independent
migration of stateful JavaScript applications across IoT devices. ThingsMigrate uses code
instrumentation to expose the hidden states of a JavaScript application, thereby allowing its
state to be captured and serialized, without requiring VM instrumentation. ThingsMigrate
then generates a reconstructed version of the same application at the serialized state, allowing
its execution to continue on a different device. We built an implementation of ThingsMigrate
and evaluated it on three different devices, and against both standard benchmarks and
custom applications. Our results show that ThingsMigrate can instrument, serialize and
reconstruct JavaScript applications within reasonable time bounds, depending on the state
and complexity of the input application. Further, we find that ThingsMigrate imposes
an average 30% execution time overlay at runtime, which is reasonable given the non-
reliance on VM-dependant low-level techniques (i.e., VM instrumentation). Finally, we show
that ThingsMigrate supports multiple migrations across different devices without incurring
additional overheads.

As future work, we intend on improving support for more complex cases of classes and
prototypes, as well as supporting the features of the newer ECMA standards. We would also
like to accomplish migration without interrupting the execution flow (i.e., seamless migration).
Another interesting area would be to adapt our approach to provide fault tolerance in an IoT
setting. While this could be provided by periodically saving the state to a reliable entity, we
would like to explore the problem of dynamically serializing the state to persistent storage
during execution.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:27

References
1 Babel.js JavaScript Compiler, 2017. URL: https://babeljs.io/.
2 Chromium octane benchmark suite, 2017. URL: https://github.com/chromium/octane.
3 DukTape, 2017. URL: http://www.duktape.org/.
4 ECMAScript 2015 Language Specification, 2017. URL: http://www.ecma-international.

org/ecma-262/6.0/.
5 ECMAScript 5.1 Language Specification, 2017. URL: http://www.ecma-international.

org/ecma-262/5.1/.
6 escodegen: ECMAScript code generator, 2017. URL: https://github.com/estools/

escodegen.
7 esprima: ECMAScript parsing infrastructure for multipurpose analysis, 2017. URL: http:

//esprima.org/.
8 FFmpeg Website, 2017. URL: https://www.ffmpeg.org.
9 Fluent ffmpeg-API for node.js, 2017. URL: https://github.com/fluent-ffmpeg/

node-fluent-ffmpeg.
10 Intel XDK, 2017. URL: https://software.intel.com/en-us/xdk.
11 Jimp: JavaScript Image Manipulation Program, 2017. URL: https://github.com/

oliver-moran/jimp.
12 mjs, 2017. URL: https://github.com/cesanta/mjs.
13 TIOBE Index, 2017. URL: https://www.tiobe.com/tiobe-index/.
14 node-minify - npm, 2018. URL: https://www.npmjs.com/package/node-minify.
15 Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Understanding

javascript event-based interactions. In Proceedings of the 36th International Conference on
Software Engineering, pages 367–377. ACM, 2014.

16 Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic, Koushik
Sen, and Cristian-Alexandru Staicu. A survey of dynamic analysis and test generation for
javascript. ACM Computing Surveys (CSUR), 50(5):66, 2017.

17 Silviu Andrica and George Candea. Warr: A tool for high-fidelity web application record
and replay. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on, pages 403–410. IEEE, 2011.

18 Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. Engineering javas-
cript state persistence of web applications migrating across multiple devices. In Proceedings
of the 3rd ACM SIGCHI symposium on Engineering interactive computing systems, pages
105–110. ACM, 2011.

19 Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. Interactive record/replay
for web application debugging. In Proceedings of the 26th annual ACM symposium on User
interface software and technology, pages 473–484. ACM, 2013.

20 Tiancheng Chang and Hein Meling. Byzantine fault-tolerant publish/subscribe: A cloud
computing infrastructure. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st Sym-
posium on, pages 454–456. IEEE, 2012.

21 Ioannis K Chaniotis, Kyriakos-Ioannis D Kyriakou, and Nikolaos D Tselikas. Is node. js
a viable option for building modern web applications? a performance evaluation study.
Computing, 97(10):1023–1044, 2015.

22 Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceed-
ings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-
Volume 2, pages 273–286. USENIX Association, 2005.

23 Douglas Crockford. JavaScript: The Good Parts: The Good Parts. " O’Reilly Media, Inc.",
2008.

ECOOP 2018

https://babeljs.io/
https://github.com/chromium/octane
http://www.duktape.org/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/
https://github.com/estools/escodegen
https://github.com/estools/escodegen
http://esprima.org/
http://esprima.org/
https://www.ffmpeg.org
https://github.com/fluent-ffmpeg/node-fluent-ffmpeg
https://github.com/fluent-ffmpeg/node-fluent-ffmpeg
https://software.intel.com/en-us/xdk
https://github.com/oliver-moran/jimp
https://github.com/oliver-moran/jimp
https://github.com/cesanta/mjs
https://www.tiobe.com/tiobe-index/
https://www.npmjs.com/package/node-minify

18:28 ThingsMigrate

24 Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003. doi:
10.1145/857076.857078.

25 Paul Fremantle, Benjamin Aziz, Jacek Kopeckỳ, and Philip Scott. Federated identity and
access management for the internet of things. In Secure Internet of Things (SIoT), 2014
International Workshop on, pages 10–17. IEEE, 2014.

26 Julien Gascon-Samson, Mohammad Rafiuzzaman, and Karthik Pattabiraman. Thingsjs:
Towards a flexible and self-adaptable middleware for dynamic and heterogeneous iot en-
vironments. In Proceedings of the 4th Workshop on Middleware and Applications for the
Internet of Things, M4IoT ’17, pages 11–16, 2017.

27 Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. Ultra lightweight
javascript engine for internet of things. In SPLASH Companion 2015, pages 19–20, New
York, NY, USA, 2015. ACM.

28 Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. In-
ternet of things (iot): A vision, architectural elements, and future directions. Future gen-
eration computer systems, 29(7):1645–1660, 2013.

29 Jin-woo Kwon and Soo-Mook Moon. Web application migration with closure reconstruction.
In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages
133–142, Geneva, Switzerland, 2017.

30 Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Prabal
Dutta, and Philip Levis. Multiprogramming a 64kb computer safely and efficiently. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 234–251. ACM,
2017.

31 Jimmy Lin and Kareem El Gebaly. The future of big data is... javascript? IEEE Internet
Computing, 20(5):82–88, 2016.

32 James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. Imagen: Runtime migration of
browser sessions for javascript web applications. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, pages 815–826, New York, NY, USA, 2013.
ACM.

33 Magnus Madsen, Ondřej Lhoták, and Frank Tip. A model for reasoning about javascript
promises. Proceedings of the ACM on Programming Languages, 1(OOPSLA):86, 2017.

34 James W Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deterministic capture and
replay for javascript applications. In NSDI, volume 10, pages 159–174, 2010.

35 Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou.
Process migration. ACM Comput. Surv., 32(3):241–299, 2000. doi:10.1145/367701.
367728.

36 JinSeok Oh, Jin-woo Kwon, Hyukwoo Park, and Soo-Mook Moon. Migration of web ap-
plications with seamless execution. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’15, pages 173–185,
New York, NY, USA, 2015. ACM. doi:10.1145/2731186.2731197.

37 Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for javascript. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pages 488–498. ACM, 2013.

38 Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

39 Dongig Sin and Dongkun Shin. Performance and resource analysis on the javascript runtime
for iot devices. In International Conference on Computational Science and Its Applications,
pages 602–609. Springer, 2016.

http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/367701.367728
http://dx.doi.org/10.1145/367701.367728
http://dx.doi.org/10.1145/2731186.2731197

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:29

40 Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar. Secure mqtt for internet of
things (iot). In Communication Systems and Network Technologies (CSNT), 2015 Fifth
International Conference on, pages 746–751. IEEE, 2015.

41 A. Taivalsaari and T. Mikkonen. A roadmap to the programmable world: Software chal-
lenges in the iot era. IEEE Software, 34(1):72–80, Jan 2017. doi:10.1109/MS.2017.26.

42 Stefan Tilkov and Steve Vinoski. Node. js: Using javascript to build high-performance
network programs. IEEE Internet Computing, 14(6):80–83, 2010.

43 Timothy Wood, Prashant J Shenoy, Arun Venkataramani, Mazin S Yousif, et al. Black-box
and gray-box strategies for virtual machine migration. In NSDI, volume 7, pages 17–17,
2007.

44 Young Yoon, Vinod Muthusamy, and Hans-Arno Jacobsen. Foundations for highly available
content-based publish/subscribe overlays. In Distributed Computing Systems (ICDCS),
2011 31st International Conference on, pages 800–811. IEEE, 2011.

45 Amirreza Zarrabi. A generic process migration algorithm. International Journal of Dis-
tributed and Parallel Systems, 3(5):29, 2012.

46 S. Zhongyuan, Q. Jianzhong, L. Shukuan, and Z. Qiang. Use pre-record algorithm to
improve process migration efficiency. In 2015 14th International Symposium on Distributed
Computing and Applications for Business Engineering and Science (DCABES), pages 50–
53, Aug 2015. doi:10.1109/DCABES.2015.20.

A ThingsJS and ThingsMigrate

As mentioned previously, the implementation of our system (ThingsMigrate) was realized over
ThingsJS [26], our general-purpose framework for executing high-level edge applications on IoT
devices. In this appendix, we provide a brief summary of ThingsJS below, and its relationship
with ThingsMigrate. We then give some details on our open-source implementation of
ThingsMigrate/ThingsJS.

A.1 Architecture
The high-level architecture of the ThingsJS Framework consists of several distributed com-
ponents and is presented in Figure 14. From a holistic point of view, a ThingsJS environment
comprises a highly-distributed ThingsJS Application, and dynamically manages its execution
over a set of heterogeneous devices through the ThingsJS Framework. More details on
ThingsJS are available in our vision paper [26].

ThingsJS Manager. The ThingsJS Manager is the center-piece of our system architecture,
and manages the execution of all components across all devices. It takes as input a ThingsJS
application, written in JavaScript, and schedules and monitors its distributed execution
across all participating ThingsJS devices. The Manager can decide to trigger the migration
of a given application towards another device – to accomplish this, it uses the ThingsMigrate
APIs.

ThingsJS Runtime. An instance of the ThingsJS Runtime is present on every device and
acts as a thin hypervisor layer. It locally manages the execution of all components on the
device, and gathers detailed statistics during execution (CPU, memory and bandwidth usage)
which are fed to the Manager. Upon the migration of a given application being requested,
ThingsMigrate coordinates the migration through the Runtime components on both devices
involved.

ECOOP 2018

http://dx.doi.org/10.1109/MS.2017.26
http://dx.doi.org/10.1109/DCABES.2015.20

18:30 ThingsMigrate

Figure 14 High-Level Architecture of ThingsJS.

Inter-Component Communications. ThingsJS provides a pub/sub-based communication
substrate (MQTT), and requires that all inter-component communications follow that
model. The choice of this model was primarily motivated by the logical decoupling of content
producers from content consumers that it provides. Like any other component, ThingsMigrate
makes use of the pub/sub communication substrate for all communications (i.e., migration
commands and snapshots are transferred directly between relevant Runtime nodes through
the pub/sub interface).

ThingsMigrate. As a subcomponent of ThingsJS, ThingsMigrate provides support for
dynamically migrating JavaScript IoT applications between devices, and is the focus of
this paper. More details on the architecture on ThingsMigrate and its components are
given in Section 3 and Figure 1 of this paper. In our specific implementation, as scheduling
considerations are outside the scope of our paper, we let the user deploy applications manually,
monitor their state and trigger migrations, through a web dashboard interface (appendix B).

A.2 Implementation as an Open-Source Project
As mentioned, we implemented ThingsMigrate as an open-source project (built over ThingsJS).
The version of ThingsMigrate/ThingsJS that correspond to this paper has been tagged
as ecoop2018 in our GitHub repository and can be accessed at: https://github.com/
karthikp-ubc/ThingsJS/tree/ecoop2018. Given the availability of similar hardware and
software configurations, it can be used to reproduce the results that we obtained.

As ThingsJS provides a IoT-based middleware, it needs be installed and run on every
device. Each device then executes a worker node (corresponding to the ThingsMigrate/Th-
ingsJS Runtime in our architecture) that hosts one or more JavaScript applications. Worker
nodes listen for appropriate start and stop commands over the pub/sub interface to re-
spectively start and stop the execution of applications, as well as migrate commands to
trigger the migration between two nodes.

https://github.com/karthikp-ubc/ThingsJS/tree/ecoop2018
https://github.com/karthikp-ubc/ThingsJS/tree/ecoop2018

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:31

Detailed installation and usage instructions can be found at our project page7 and in our
wiki8. In addition, we also provide a video demo of ThingsMigrate9, as well as a ready-to-use
VirtualBox Virtual Machine image10 that can be used to try ThingsMigrate and our web
dashboard (appendix B).

We encourage the reader to try out our system – using either IoT-like devices (i.e.,
Rapsberry Pi, Beaglebone, etc.), or regular computers (multiple worker instances can be
launched on the same machine to emulate additional devices).

B Web Dashboard

In addition to implementing the ThingsMigrate system over ThingsJS, as well as the code
instrumentation, snapshotting and code generation algorithms as a set of command-line
tools, we also implemented a Web Dashboard as a user-friendly interface to interact with
ThingsMigrate. This appendix highlight the main features of our dashboard.

B.1 Interface Overview
Our web dashboard can be used to view the status of the currently available devices and
applications, and can also launch, migrate and stop the execution of applications across
devices. Given that the scheduling infrastructure is not yet implemented, the dashboard plays
the role of the ThingsMigrate Manager by allowing the the user to control the deployment
and the migration of applications to IoT devices manually.

Screenshots of the dashboard are shown in Figure 15. The dashboard provides three
different views, which can be selected through the menu:
1. Main (default) view (Figure 15a): this view provides a holistic view of all the nodes

(devices – IoT or cloud-based), their detailed status, performance (CPU and memory
usage) and console output. In addition, specific to the video streaming / motion detection
case-study application (Section 7), this view allows one to observe the raw video stream
as well as the detected motion patterns.

2. Codes view (Figure 15b): this view provides a code viewer and editor to view and edit
the source code of the IoT apps to be run on the devices. Developers can write their apps
there directly, or cut-and-paste from their favorite editor / IDE into the code editor.

3. Debug view: this view provides network debugging support by showing the flow of
pub/sub messages across the pub/sub substrate.

B.2 Main Features
In a nutshell, our dashboard provides the following features:

Viewing the state of worker nodes (Main view, similar to Figure 15a): in the top-left
portion of the main view, a list of all registered worker nodes is shown, with their status:

Green: the node is currently available and idle (i.e., not executing any application)11
Grey: the node is currently available, but busy (i.e., executing another application)
Red: the node is currently unavailable

7 https://github.com/karthikp-ubc/ThingsJS
8 https://github.com/karthikp-ubc/ThingsJS/wiki
9 http://ece.ubc.ca/~karthikp/ThingsMigrate/ecoop2018.html
10 Idem.
11Although our framework supports executing several applications on a given worker node, our web

dashboard currently allows for only one application to be mapped to a given worker node.

ECOOP 2018

https://github.com/karthikp-ubc/ThingsJS
https://github.com/karthikp-ubc/ThingsJS/wiki
http://ece.ubc.ca/~karthikp/ThingsMigrate/ecoop2018.html

18:32 ThingsMigrate

(a) Overview.

(b) IoT Apps Source Code.

Figure 15 ThingsMigrate Dashboard.

Viewing detailed worker status (Main view): on the right side, the interface provides
three panes that can be used to show detailed information on a given worker (IoT/cloud)
node. Each status pane provides three different views:

Status: shows the status of the node
Graph: shows a graph of the memory or CPU usage of the node
Console: shows the output of the application that the node is currently executing

Launching applications on devices (Main view): the dashboard can be used to launch
any application defined in the Codes section of the dashboard. The code is instrumented
on-the-fly by ThingsMigrate (Section 4.5) in order to support migration, and is launched
through the Runtime on the target device.

Stopping applications (Main view): the execution dashboard can instruct the Runtime
on any target device to stop the execution of a given application.

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pattabiraman 18:33

Migrating applications between nodes (Main view): the dashboard can trigger the
migration of an application from one device to another. When doing so, it instructs the
Runtime on the first device to initiate the migration. The Runtime will then pause the
execution, take a snapshot of the current state, send the state to the Runtime of the
second device, and instruct the second device to resume the execution (Figure 1).

ECOOP 2018

Automating Object Transformations for Dynamic
Software Updating via Online Execution Synthesis
Tianxiao Gu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
tianxiao.gu@gmail.com

Xiaoxing Ma1

State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
xxm@nju.edu.cn

Chang Xu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
changxu@nju.edu.cn

Yanyan Jiang
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
jyy@nju.edu.cn

Chun Cao
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
caochun@nju.edu.cn

Jian Lu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
lj@nju.edu.cn

Abstract
Dynamic software updating (DSU) is a technique to upgrade a running software system on the fly
without stopping the system. During updating, the runtime state of the modified components of
the system needs to be properly transformed into a new state, so that the modified components
can still correctly interact with the rest of the system. However, the transformation is non-trivial
to realize due to the gap between the low-level implementations of two versions of a program.
This paper presents AOTES, a novel approach to automating object transformations for dynamic
updating of Java programs. AOTES bridges the gap by abstracting the old state of an object to
a history of method invocations, and re-invoking the new version of all methods in the history to
get the desired new state. AOTES requires no instrumentation to record any data and thus has
no overhead during normal execution. We propose and implement a novel technique that can
synthesize an equivalent history of method invocations based on the current object state only.
We evaluated AOTES on software updates taken from Apache Commons Collections, Tomcat,
FTP Server and SSHD Server. Experimental results show that AOTES successfully handled 51
of 61 object transformations of 21 updated classes, while two state-of-the-art approaches only
handled 11 and 6 of 61, respectively.

2012 ACM Subject Classification Software and its engineering → Software evolution

Keywords and phrases Dynamic Software Update, Program Synthesis, Execution Synthesis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.19

1 Corresponding author.

© Tianxiao Gu, Xiaoxing Ma, Chang Xu, Yanyan Jiang, Chun Cao, and Jian Lu;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 19; pp. 19:1–19:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tianxiao.gu@gmail.com
mailto:xxm@nju.edu.cn
mailto:changxu@nju.edu.cn
mailto:jyy@nju.edu.cn
mailto:caochun@nju.edu.cn
mailto:lj@nju.edu.cn
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Automating Object Transformations via Online Execution Synthesis

Acknowledgements We are grateful to the anonymous reviewers for their insightful comments.
This work was supported by the National Natural Science Foundation of China (Grant Nos.
61690204, 61472177), the 973 Program of China (Grant No. 2015CB352202), and the Collabora-
tive Innovation Center of Novel Software Technology and Industrialization.

1 Introduction

Today’s industry definitely requires high availability of software systems. One of the major
losses of availability is caused by system shutdowns for installing software updates that fix
bugs and security vulnerabilities. Dynamic Software Updating (DSU) can eliminate this loss
by updating running software systems without stopping them.

Modern operating systems and programming language virtual machines provide powerful
runtime code manipulation facilities such as dynamic linking [8], dynamic class loading [28],
on stack replacement [37] and live patch [2]. With these facilities, it is not difficult to update
the code of a running program. In addition to code replacement, DSU also needs to ensure
that the new loaded code can execute properly with the existing runtime state in the memory
(e.g., heap objects) after the dynamic update.

Existing DSU supporting systems, e.g., Ginseng [33], Jvolve [41] and Javelus [15], ensure
only syntactical correctness, i.e., no type error would be caused by the update. To preserve
semantics correctness, the DSU system should apply an additional state transformation that
maps the runtime state left by the old code to a proper state with which the new code
continues. To realize the state transformation, developers usually specify a manually-prepared
state transformation function, i.e., state transformer.

However, it is difficult and error-prone to develop and test state transformers. Software is
seldom developed with DSU in mind but is assumed to start from scratch. The internal states
between different versions of a program can be incompatible, although the external behavior
of the two versions is similar. For example, the internal representation of a container may
be an array in the old version but a linked list in the new version. As a result, transformer
programming not only requires a thorough understanding of implementation details in both
versions, but also has to break the principle of information hiding and manipulate low-level
data representations.

In this paper we aim at automating the state transformations for DSU. In theory, it is
not possible to automatically generate correct transformers for dynamic updates of arbitrary
programs [17]. Nevertheless, in many practical cases, for particular software patches and
particular dynamic update points, state transformations can be automatically derived with
sophisticated program analysis under some proper assumptions. This kind of techniques can
help reduce service disruption caused by software updates, and are useful for application
domains where high availability is the major concern and occasional errors are tolerable or
compensable.

Our approach, named AOTES, is designed for DSU of object-oriented programs, or more
specifically, Java programs. In object-oriented programming, an important principle is to
use information hiding and encapsulation. An object should be interacted with only via
its methods, where methods are closely related to the behavior of the object. Based on
this principle, we have the following observations. First, the current state of an object is a
conclusion of its past method invocations. Second, the current state is also the basis of the
future method invocations. Third, the behavior of an object, or specifically the history of
method invocations, is mostly unchanged during updating, especially when the patch does
not include new behaviors. Thereby, the new state of a stale object (i.e., an instance of an

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:3

updated class) can be synthesized by replaying its past method invocations with the new
version of methods. In this way we can avoid direct mapping of concrete states between two
program versions with different implementations.

Specifically, AOTES abstracts the runtime state of a stale object as a history of method
invocations (i.e., invocation history for short) that can produce the current state from an
initial (object) state. For example, suppose that an array based container object with three
elements e1, e2 and e3 is created by a history of add(e1), add(e2), remove(e2), add(e3)
and add(1,e2). Now a dynamic update requires transforming the array based container into
a linked list based one. We can easily know that the new linked list based container can be
naturally acquired by applying the invocation history with the new version of methods on an
empty linked list based container.

The main challenge of this approach is to obtain the invocation history for a stale object.
Recording every method invocation on every potentially updated object is prohibitively
expensive. Moreover, the actual history may contain redundant elements, e.g., remove(e2)
and add(1,e2). To address these problems, we try to synthesize an equivalent but more
compact invocation history from the current state. For the previous example, we can
synthesize a history of add(e1), add(e2) and add(e3) instead of the actual one.

Unfortunately, it is hardly feasible to synthesize an invocation history using methods
of real world programs. First, synthesizing a single method invocation is difficult because
a method invocation generally requires arguments, which usually lie within a large value
space (e.g., [−231, 231 − 1] for int in Java). Second, searching for a valid invocation history
is time-consuming because method invocations need to be ordered properly to form a valid
invocation history. In the scenario of dynamic updating, an additional challenge is that the
synthesis is performed online and must be completed very quickly.

AOTES addresses these challenges by combining the power of symbolic execution, program
synthesis and execution synthesis. Specifically, AOTES first distills a set of promising execution
paths for each method by an offline symbolic execution technique. During dynamic updating,
AOTES uses the selected execution paths only to realize a backward online execution synthesis
technique. To reuse techniques of forward execution synthesis, AOTES synthesizes an inverse
method for each selected execution path. We tried out AOTES on 21 real updates of widely
used open source software. AOTES correctly handled 51 of 61 different transformations, while
two state-of-the-art methods handled 11 and 6 of 61, respectively.

The paper makes the following primary contributions:
We propose a mechanism to synthesize method invocation histories that can be used to
recreate objects.
We use the object recreating mechanism to automate object transformations for DSU.
We implement the mechanism and evaluate it with updates taken from widely used open
source systems.2

The rest of this paper is organized as follows. We first give an introduction to DSU and
AOTES using an illustrative example in Section 2 and then a detailed overview of AOTES in
Section 3. Next, we describe the offline analysis in Section 4 and online synthesis in Section 5.
Then, we illustrate the implementation of AOTES in Section 6 and evaluate AOTES with
updates from real-world software in Section 7. We summarize related work in Section 8 and
conclude in Section 9.

2 All source code and tests are publicly available at http://moon.nju.edu.cn/dse/aotes.

ECOOP 2018

http://moon.nju.edu.cn/dse/aotes

19:4 Automating Object Transformations via Online Execution Synthesis

1 class DefaultSshFuture {
2 SshFutureListener firstListener;
3 List otherListeners;
4 void addListener (SshFutureListener listener) {
5 if (firstListener == null) {
6 firstListener = listener ;
7 } else {
8 if (otherListeners == null) {
9 otherListeners = new ArrayList (1);

10 }
11 otherListeners.add(listener);
12 }
13 }
14 }

(a) The old version of DefaultSshFuture.
1 class DefaultSshFuture {
2 Object listeners;
3 void addListener (SshFutureListener listener) {
4 if (listeners == null) {
5 listeners = listener ;
6 } else if (listeners instanceof SshFutureListener) {
7 listeners = new Object []{listeners,listener };
8 } else {
9 // Check the array bound

10 // Expand the array if necessary
11 // Append the listener
12 }
13 }
14 }

(b) The new version of DefaultSshFuture.

Figure 1 An update (rev. b98694) of class DefaultSshFuture of Apache SSHD Server.

2 Illustrative Example

In this section, we present an introduction to DSU and AOTES using an illustrative example.

2.1 Dynamic Software Updating and Its Challenges
Software is subject to changes and evolution: Bugs are fixed and new features are introduced
by applying software updates. Figure 1 shows a real-world motivating example of software
update, which will be discussed throughout the paper. The update is from the Apache
SSHD Server. Class DefaultSshFuture provides a method addListener to add listeners
(Figure 1a). For most cases, there is only one or two listeners but the implementation should
support adding more. To save memory, the old version saves the first-added listener to
firstListener and others into otherListeners, which is an auto-expanding list container
(ArrayList). The new version (Figure 1b) only uses a single field listeners and a raw
array to handle all situations.

To allow long-running programs to receive timely updates without restart, dynamic
software updating migrates the running program from the old version to a new version.
Specifically, a DSU system takes over the execution of a running program, transforms the
runtime state at a properly determined update point (e.g., when no updated method is
active) to a new state conforming to the new version, and then continues executing with the
new version [23, 41].

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:5

1 void update (DefaultSshFuture1 o, DefaultSshFuture2 n) {
2 if (o.firstListener != null) {
3 if (o.otherListeners == null) {
4 n.listeners = new Object [] {o.firstListener};
5 } else if (o.otherListeners.size () > 0) {
6 int length = o.otherListeners.size () + 1;
7 n.listeners = new Object [length];
8 n.listeners[0] = o.firstListener;
9 for (int i = 0; i < o.otherListeners.size (); i++) {

10 n.listeners[i + 1] = o.otherListener.get(i);
11 }
12 }
13 }
14 }

Figure 2 A user-defined transformer for the example in Figure 1.

A major challenge in DSU is the state transformation at the update point. A runtime
system’s state consists of the code, the stacks and the heap. As new code can be easily
dynamically re-loaded and stacks mostly remain unchanged at the update point, the main
challenge is the state transformation of the heap. We restrict our discussions to object-
oriented programming languages (e.g., Java) and thus the heap state transformation is
particularly referred to as the object transformation.

An object transformation takes the current state of a stale object as input and produces
the new state as output. The transformation must be consistent: The future execution must
be able to continue from the transformed state and take over the ongoing business smoothly.
None of existing approaches [41, 42, 31, 38] is capable of automatically conducting object
transformations beyond trivial cases. Most state-of-the-art DSU systems [41, 42, 38] provide
default transformations that simply copy the values of unchanged fields from a stale object
to its corresponding new object, and initialize all new fields with type-specific default values,
e.g., 0 for int.

TOS [31] is the only known approach to automating object transformations, which
embodies the idea of learning-by-example. A transformation example consists of an old-
version object, which is collected during running a test over the old version of the program,
and a new-version object, which is collected during running the same test over the new version
of the program at the corresponding time point [31]. After collecting sufficient examples,
TOS inductively composes a function following a set of predefined rules until the composed
function can realize the transformations between all examples. However, TOS relies on
the high quality tests in terms of covering transformations not only in testing but also in
production. Even though there are sufficient good examples, TOS may easily fail due to its
poor predefined rules.

Both default transformations and TOS do not work for our motivating example because
they only use matched fields (i.e., fields with the exactly same name and type) to transfer
information from the stale state to the new state. In other words, neither of them can find the
relation between unmatched fields, i.e., old fields (e.g., firstListener and otherListeners
and new fields (e.g., listeners) that have different names or types. The only solution before
this paper is to ask the developer to provide an object state transformer, which is a non-trivial
procedure tightly coupled with program semantics and low-level implementations. Figure 2
presents a manually prepared transformer for the update in Figure 1. Even though there
may be only a single stale state at the updating point, the transformer has to handle various
stale object states and produces the new object states accordingly by directly manipulating
the data structure of the object.

ECOOP 2018

19:6 Automating Object Transformations via Online Execution Synthesis

firstListener
otherListeners

listeners

firstListener
otherListeners

l1

listeners l1

firstListener
otherListeners

l1
l2

listeners l1 l2

firstListener
otherListeners

l1
l2 l3

listeners l1 l2 l3

addListener1(l3)addListener1(l2)addListener1(l1)

addListener2(l3)addListener2(l2)addListener2(l1)

s1
3s1

2s1
1s1

0

s2
3s2

2s2
1s2

0

Legend: firstListener l1
addListener1(l3)

field listener ArrayList array reference invocation

Figure 3 Object state evolution of DefaultSshFuture. svi denotes the i-th state of the object in
version v. Each state is depicted with a graphical representation of its data structure.

2.2 Object Transformation Using Method Invocation History
Object transformations will be easy if the method invocation histories of objects are available.
A method invocation consists of a method and a sequence of arguments, which may be empty
if the method requires no arguments. A method invocation usually accepts some specific
input state of the receiver object and produces an output state accordingly.

A method invocation history (invocation history for short) is a sequence of method
invocations. Similarly, an invocation history accepts some specific initial state, i.e., the input
state of the first invocation, and produces the final state, i.e., the output state of the last
invocation. During replaying an invocation history, every method invocation must produce a
valid output state as the input state for the consecutive method invocation in the history.

Two invocation histories are equivalent if they can yield the same final state when applied
to the same initial state. For every object, there is a unique actual invocation history, including
all method invocations applied to the object in the chronological order. An invocation history
is complete if it can yield the current state of an object from the empty state, e.g., the actual
history. Note that nested methods are not included in an invocation history. For example,
method add in Figure 4 can be included in an invocation history but nested methods such as
ensureCapacityInternal cannot.

We have the following two assumptions for our approach:
1. The current state of an object is a summary of its past past method invocations. We

can also recreate the current state of an object from its past method invocations, i.e.,
replaying every method invocation on an object from the initial state.

2. The “role” or the behavior of an object is not changed during update [31]. The method
invocation history usually keeps unchanged for such objects during updates that introduce
no new functionalities, e.g., bug fixes or performance improvements. Hence, the invocation
history of the new state can be easily derived form the invocation history of the stale
state.

Now, the idea can be explained in Figure 3 by an update of DefaultSshFuture. The
program invokes addListener1 (In this paper superscripts denote program versions). with
l1, l2 and l3, respectively, and the update point (s1

3) is reached. The transformed new-
version object is synthesized by applying the invocation history, i.e., invoking the new-version
addListener2 with l1, l2 and l3 on a newly allocated new-version object (s2

0). State s2
3

contains exactly the same sequence of listeners as s1
3, indicating that this is a semantically

correct state transformation. In contrast to default transformations and TOS, which cannot
connect unmatched fields, AOTES finds the relations between them by matching arguments
of matched methods.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:7

One limitation of our approach is that methods in the invocation history should be
available in both versions. There is always a method with the same name and signature in the
new version of an object whose interface is not changed. These methods are named matched
methods for later discussion. AOTES does not insist that every changed class should preserve
the binary compatibility. If some changed classes are binary incompatible, their callers must
fix the incompatibility. In practice, there must be a direct or an indirect binary-compatible
caller within a small scope, including one or two callers, since dynamic updating is often used
for evolutionary changes (e.g., build-to-build) rather than revolutionary changes (e.g., release-
to-release), and build-to-build changes usually do not introduce large patches. Suppose that
a stale object’s interface is changed. The invocation of an unmatched method on the object
must be eventually enclosed in an invocation of a matched caller. We can enlarge the scope
of the state being transformed to include all objects subject to the invocation of the matched
caller and use the matched caller for history synthesis.

2.3 Synthesizing the Equivalent Invocation History
Recording method invocation histories for object transformations is impractical for long-
running programs, because (1) we could not predict which objects were to be updated, thereby
all method invocations on all objects would have to be recorded, which would introduce
significant runtime overhead; (2) the log would be prohibitively expensive to store; and (3)
replaying a long history could lead to a large service disruption during updating.

Alternatively, we try to find an equivalent invocation history that yields the same object
state as the actual invocation history when applied to an object in the initial state, but is more
compact, in terms of as few as possible redundant method invocations. For example, listeners
can be added and removed for millions of times for a DefaultSshFuture object. However,
at a specific execution point, only limited listeners are expected in the data structure. Any
invocation history that yields exactly the same set of listeners suffices for a consistent object
transformation.

AOTES synthesizes an object’s equivalent invocation history from its current state without
any logging. No history data need to be kept at runtime and no overhead is introduced
when the program is not being updated. However, the synthesis of an invocation history is
non-trivial because we need to first derive the arguments for a single method invocation and
then find a valid history of method invocations. That means each method invocation must
produce a valid output state as the input state for its consecutive method invocation in the
synthesized history and the final state must be the current state of the object.

A naïve approach would enumerate all possible combinations of methods and arguments to
determine the set of all possible method invocations. Since this searching space of invocation
histories is huge, it is expensive to find an invocation history that can realize the state
transition from the empty state to the current state of a given object. To narrow down the
searching space for arguments [44, 5], execution synthesis techniques leverage on symbolic
execution and constraint solvers. However, these approaches aim at searching for an execution
path that reaches a particular statement, while AOTES aims at searching for an execution
path that produces the given output state on a given input state of the receiver. In addition,
these approaches are used for offline scenarios such as crash reproduction and search in the
space of all execution paths, which may lead to a potentially unbounded searching time for
real-world programs.

We observed that multiple execution paths of a method actually have the same purpose.
To derive arguments of a method invocation, AOTES applies an offline analysis to populate a
set of promising execution paths before dynamic updating, and during dynamic updating

ECOOP 2018

19:8 Automating Object Transformations via Online Execution Synthesis

1 class ArrayList <E> {
2 int size; E[] elements = {};
3 public boolean add(E e) {
4 ensureCapacityInternal (size + 1);
5 elements [size ++] = e;
6 return true;
7 }
8 private void ensureCapacityInternal (int minCapacity) {
9 if (minCapacity - elements . length > 0)

10 grow(minCapacity);
11 }
12 private void grow(int capacity) {. . .}
13 public boolean addAll (Collection <? extends E> c) {. . .}
14 }

Figure 4 A simplified version of class ArrayList in JDK.

1 public boolean add(E e) {
2 if (size + 1 < elements . length)
3 elements [size ++] = e;
4 return true;
5 }

Figure 5 The simplified equivalent version of method add.

applies an online execution synthesis that considers these execution paths only. Typically, a
method with multiple paths usually has a fast path that handles the most common situation
and many slow paths that handle the rest cases. Moreover, the length of the execution path is
usually guided by some input. We found that first the fast path is sufficient during execution
synthesis for some methods, and second a long execution path guided by a large input can
be replaced by many short execution paths guided by a small input.

Take the program in Figure 4 as an example. Method add has a fast path that appends
the added element directly into the array (at line 5) and many slow paths that need to
additionally calculate the new array size and expand the array (at line 10). AOTES can use
the fast path only to synthesize the invocation history as if the array is initially allocated
in the current size without any expansion. By this way, we can exclude the slow path (i.e.,
the call to grow) during execution synthesis. The fast path of add can be expressed by the
method in Figure 5. Besides, an invocation of addAll with a large input collection in the
actual history can be replaced by many invocations of addAll with a small input collection,
or even many invocations of add with a single element.

To avoid backtracking, AOTES conducts a greedy backward searching starting from the
current state instead of a forward searching starting from the initial state. Instead of every
step searching for a method invocation that is applicable to a given input state, AOTES
searches for a method invocation that can produce a given output state. This is because
the initial input state (i.e., the empty state) has zero information to guide the search, while
the final output state (i.e., the current state) has fruitful information. For example, if we
synthesize a history for an array list from the empty state, we may include many method
invocations that add or remove irrelevant elements. But if we synthesize the history backward
from the current state, we can require that every method invocation must at least contribute
to a field with a non-default value in the current output state.

To facilitate the backward searching, AOTES converts each execution path into a separated
inverse method by the offline analysis. The benefit is that we can simply make use of existing

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:9

1 Object [] add() {
2 size --;
3 assert (size + 1 < elements . length);
4 return new Object [] { elements [size] };
5 }

Figure 6 The inverse method of add shown in Figure 5.

P 1 P 2

diff

Matched methods M

Symbolic execution

Inverse method synthesis

Inverse methods M

Output

m ∈ M

e3e2e1 . . . e5

e3e2e1 . . . e5

Mm

Mm

m2 . . . m5

Mm

s1
0

Old initial state

s2
0

New initial state

Actual history

1. Synthesize

3. Replay

Offline Analysis Online Synthesis

M1

sc

Current state

sn

New state

2. Revert

Figure 7 System overview.

symbolic execution techniques to realize backward execution synthesis. Figure 6 shows an
inverse method add of the method add shown in Figure 5. Here, an inverse method generally
takes no arguments but only the receiver as input, reverts the receiver to a previous state
(e.g., line 2 in Figure 6), and finally returns an array of values (e.g., line 4 in Figure 6).
The return values can be used as the arguments to replay the invocation history of original
methods. For example, suppose that an object of ArrayList is in state o, which contains
two elements e1 and e2. After invoking add on the object, the state o becomes o′, which
contains only a single element e1, and the return value of add is e2. If we invoke add (in
Figure 4) on o′ with e2, the state will be updated from o′ to o again. Here, the input of a
method consists of both the arguments and the state of the receiver, and the output of a
method consists of both the return value and the final state of the receiver.

3 Approach Overview

Figure 7 presents an overview of our approach. AOTES aims at automatically constructing
the new state sn based on the current state sc only. There must be an actual history H1

a

that leads to sc. Instead of recording H1
a from scratch, AOTES tries to synthesize a history

H1
s that can also lead to sc. As the state of an object is a summary of its past method

invocations, H1
a and H1

s should encode the same behavior accordingly. We assume that the
role and the behavior of an object is unchanged during updating. Therefore, H1

s can be used
to recreate the new state sn.

AOTES first conducts an offline analysis, which takes two versions of a program (P 1 and
P 2) as input, and tries to produce the following output:

A number of execution summaries (em) for each matched methodm in P 1. Using symbolic
execution, AOTES builds a mapMm : S × P → S from the symbolic pre-state Σpre ∈ S,
i.e., symbolic object state before applying this method, and the symbolic arguments
Ψ ∈ P, to the symbolic post-state Σpost ∈ S, i.e., symbolic object state after applying
this method.

ECOOP 2018

19:10 Automating Object Transformations via Online Execution Synthesis

A number of inverse execution summaries em ∈ Mm : S → S × P, each of which
corresponds to an execution summary inMm. An inverse execution summary takes a
concrete state s aligned with the symbolic post-state Σpost and computes a concrete state
s′ aligned with the symbolic pre-state Σpre and concrete arguments p such that applying
m with p on an object in state s′ will change its state to s.

To facilitate the online searching, AOTES serializes an inverse execution summary into an
inverse method. An inverse method m takes only the receiver as input and reverts the state of
the receiver to the state just before invoking the original method m. Moreover, it also returns
all arguments required by the invocation of the original method m. For example, suppose
that addListener1 is an inverse method of addListener1. We can obtain s1

2 if we apply
addListener with l2 to s1

1. Conversely, we can obtain s1
1 and l2 if we apply addListener1

on s1
2.
Next, AOTES attempts to synthesize an inverse method invocation history (inverse

invocation history for short) for the object and revert the object to the initial state. An
inverse invocation history is a sequence of inverse methods and return values (i.e., the
corresponding reverted arguments). For example, 〈addListener1/l2, addListener1/l1〉 is
a synthesized inverse invocation history for s1

2. The inverse invocation history can be
synthesized by concatenating inverse methods as all inverse methods only take the object as
input. Specifically, the inverse invocation historyH1

s is synthesized by searching for a sequence
of inverse execution summaries emi , emi−1 , · · · , em1 , such that em1(em2(· · · (emi(sc)))) = s0
and as well emi(emi−1(· · · (em1(s0)))) = sc.

Finally, AOTES constructs a new invocation history by inverting the inverse invocation
history, substituting every inverse method with the new version of its original method, and
using the return value of each inverse method as the arguments. The new state can be reified
by applying the new invocation history on the new initial state. For example, an invocation
history 〈addListener2(l1), addListener2(l2)〉 can be constructed by reverting the inverse
invocation history 〈addListener1/l2, addListener1/l1〉.

If the input of the original method cannot be derived by executing the inverse method,
AOTES introduces a fresh symbolic variable for the input and leverages symbolic execution
techniques to derive its value during online execution synthesis. AOTES considers a set of
short execution paths as the promising candidates for execution synthesis. This is because
long execution paths generally produce long path constraints that may not be solved by a
constraint solver. Moreover, short paths can also help to mitigate the problem of long-running
loop and deep recursive methods whose executions are guided by some input [43]. A long
execution path guided by a very large input is replaced by many short execution paths, each
of which is guided by a small input. An example about loop and recursion with detailed
explanation is available in Section 4.4.

Figure 8 shows three inverse methods of addListener1 (in Figure 1a) generated by
AOTES. Note that the generated code has been simplified for brevity. We can obtain s1

0
and l1 when applying addListener11 to s1

1. Specifically, addListener11 first loads l1 from
firstListener at line 2 and returns it at line 5, and then updates firstListener with a
fresh symbolic value (denoted by a wild-card *) at line 3. The assertion at line 4 restricts
the fresh symbolic value to be null, which can be derived by a constraint solver. Thereby,
firstListener is null and the state becomes s1

0 if the previous state is s1
1.

Similarly, we can obtain s1
1 and l2 by applying addListener21 to s1

2. Let’s first analyze
the original execution trace, i.e., lines 5, 8, 9, and 11 in Figure 1a. Specifically, the
argument listerner is l2, and the input state is s1

1, in which firstListener references
l1 and otherListeners is null. Then, otherListeners is assigned to a newly allocated

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:11

1 Object [] addListener11 () {
2 v0 = firstListener;
3 v1 = firstListener = *;
4 assert (v1 == null);
5 return { v0 };
6 }
7 Object [] addListener21 () {
8 v0 = firstListener;
9 v1 = otherListeners;

10 v2 = v1.size;
11 v3 = v1.elements;
12 v4 = v3.length;
13 v5 = v3 [0];
14 v3 [0] = *;
15 assert (v4 == 1);
16 assert (v2 == 1);
17 v6 = otherListeners = *;

18 assert (v0 != null);
19 assert (v6 == null);
20 return { v5 };
21 }
22 Object [] addListener31 () {
23 v0 = otherListeners;
24 v1 = v0.size;
25 v2 = v0.elements;
26 v3 = firstListener;
27 v4 = v1 - 1;
28 v0.size = v4;
29 v5 = v2[v4];
30 v2[v4] = *;
31 assert (v0 != null);
32 assert (v3 != null);
33 return { v5 };
34 }

Figure 8 Inverse methods of addListener in Figure 1a generated by AOTES. The execution
traces of lines 5 and 6, lines 5, 8, 9, and 11, and lines 5, 8, and 11 in Figure 1a are postfixed with 1,
2 and 3, respectively. Note here we have simplified the generated code for brevity.

ArrayList, in which size is initialized to 0 and elements is assigned to an empty array.
After executing otherListeners.add, elements is expanded to an array of length 1, size
is updated to 1, and the argument l2 is placed at the first (index 0) slot of elements. Note
that the ArrayList is the simplified implementation shown in Figure 4. Now we analyze the
inverse method addListener21 shown in Figure 8. Lines 8 and 18 assert that firstListener
should not be null. Line 17 reverts otherListeners to a fresh symbolic value, which is
further assigned to null by the assertion at line 19. Line 13 retrieves l2 from elements by
index 0 and line 20 returns l2. We can easily verify that the state of the receiver is updated
to s1

1 at last, where firstListener still references l1 and otherListeners is null. The
third inverse method addListener31 is similar, where the return value l3 is retrieved from
elements by index size - 1.

AOTES can sacrifice the completeness because it does not aim at synthesizing all possible
transformations. The objects that AOTES cannot handle may be disposed at a later
update point. On the other hand, a fixed number of inverse methods are sufficient for all
transformations in practice. In Section 5.1, we will show that three inverse methods are
sufficient for all transformations of DefaultSshFuture.

4 Inverse Program Synthesis

The insight of AOTES is to synthesize an inverse method from a symbolic execution trace
not from all traces. We first give a high level overview of the symbolic execution technique
of AOTES followed by a detailed description before illustrating the details.

4.1 Symbolic Execution of AOTES

In general, symbolic execution [25] is a technique to interpret a program with symbolic values
instead of concrete values. A symbolic value is a formula over a set of symbolic inputs, and
can be evaluated to a concrete value by substituting symbolic inputs with concrete values
and then evaluating the formula.

ECOOP 2018

19:12 Automating Object Transformations via Online Execution Synthesis

AOTES populates a certain number of symbolic execution traces from a matched method
to generate inverse methods. The symbolic execution technique of AOTES needs to allocate
objects with explicit types, because dynamic method dispatching should know the type of
each object. This requirement makes it non-trivial to symbolically execute an arbitrary
method of an object, because the heap, or at least the receiver, must be instantiated in to a
proper shape before execution. We name this heap pre-heap (Πpre).

For example, suppose that a symbolic execution trace of addListener in Figure 1a
explores lines 5, 8 and 11. Invoking add at line 11 should trigger a NullPointerException
(NPE) if otherListeners does not reference an object. Otherwise, we have no idea about
exploring which add method. To avoid the NPE and continue the execution, one can allocate
an object in the pre-heap for otherListeners before the execution. However, we have no
idea about the type for object allocation as there may be numerous subclasses of List. The
type for object allocation should be as exact as possible. Here, the type must be ArrayList
not any other type.

During the symbolic execution, an object is either pre-allocated in the pre-heap before
execution or newly allocated during execution. The type of a newly allocated object is known
at its allocation site. For pre-allocated objects, AOTES maintains a shared dictionary S that
maps an access path (e.g., this.otherListeners) to a set of types. A type is randomly
picked out for the pre-allocated object if there are multiple types for an entry. AOTES will
produce inverse methods for each randomly chosen type. During runtime execution synthesis,
only inverse methods that match the actual type are applicable.

The dictionary S is empty at first and updated by traversing the heap at the end of every
successful symbolic execution, which is named post-heap (Πpost). Note that at any time, only
live objects in a heap are of interest. The execution trace that explores lines 5, 8 and 11
depends on the type at this.otherListeners in S. Hence, the execution should be first
suspended at line 11 and resumed until some other symbolic execution trace updates the
entry. Fortunately, the execution that explores lines 5, 8, 9 and 11 can update the entry.
Line 9 allocates an ArrayList for otherListeners. The entry at this.otherListeners in
S is updated by ArrayList.

To update missing entries in S, AOTES dynamically collects extra methods to execute.
If the missing entry is rooted at the receiver, all methods of the receiver are added. If the
missing entry is rooted at an argument of the entry method of the symbolic execution, all
callers of the entry method are added. Callers of a method are determined by a call graph.
AOTES constructs a static call graph at first and refines it when invoking a method during
symbolic execution.

4.2 Program and Execution Definitions
This subsection gives a detailed description of the symbolic execution technique of AOTES.
A program in AOTES is a set of classes. A class C is a set of fields F and a set of methods M,
which also include those inherited from super classes. Every method has a receiver and an
optional sequence of parameters. A method is a sequence of Java virtual machine bytecode
instructions [29]. A bytecode instruction may allocate new objects, create new values, copy
or move existing values, and evaluate branch conditions and change control flow accordingly.

We group all bytecode instructions into seven groups, which are shown in Table 1. A
bytecode instruction may have one operand encoded with it. In a nutshell, this kind of
operand may be an array index i, a field f , a method m, a class C, a constant c, or an
offset ρ of instruction index. AOTES can handle almost all bytecode instructions, except
invokedynamic. This is because invokedynamic usually needs to execute a piece of custom

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:13

Table 1 Bytecode instructions.

Type Instructions
Stack & Local ldc c, load i, store i
Array Access aload, astore
Field Access getfield f , putfield f
Allocation new C, newarray

Binary Operator add, sub, mul, div, rem
Branch ifgt ρ, ifeq ρ, iflt ρ, goto ρ

Invoke & Return invoke m, return

code to resolve the callee. We list a single invoke instruction only without showing various
method dispatching semantics (e.g., invokevirtual and invokespecial), because AOTES
tracks the type of every object and method dispatching for these invoke instructions is
straightforward if we know the receiver type.

An object, i.e., an instance of a class or an array, is defined as a tuple of (C,L), in which
C is its type and L is its heap locations. C is either the class of the instance, or a generic
array type, which means that we do not distinguish array element types. A variable that can
appear in symbolic input and output (actually as a fresh symbolic value) is represented by a
location θ, which may be a named location or a heap location of an object. A named location
is either the receiver or a method parameter of the entry method of the symbolic execution.
A heap location is either an object field or array element and denoted by (o, α), in which o is
the reference of the object, α is either a field f or a symbolic value i representing the array
index.

AOTES organizes symbolic values into a value graph. A node in the value graph represents
a symbolic value, and is a tuple of (t, P, a), in which t is the type of the node, P is a set of
predecessors, and a is an optional type-specific attribute associated with this node. There
are six types of nodes.

1. Constant: (Const,∅, c), where c is the constant literal in an ldc instruction.
2. Reference: (Ref,∅). The heap is a mapping between reference values and objects. A

new or newarray instruction allocates a new object and creates a reference value for the
object to retrieve the object from the heap,

3. Expression: (Expr, {v1, v2}, op), where v1 and v2 are two operand values and op is a
binary operator, i.e., one of +, -, *, /, and %.

4. Assertion: (Assert, {v1, v2}, op), where v1 and v2 are two operand values and op is a
relational operator, i.e., one of >, >=, ==, !=, < and <=. An opposite operator (e.g., <= for
ifgt) is used when a false branch is taken.

5. Input: (Input,∅, θ), where θ is a location in the pre-heap or a method parameter.
6. Output: (Output, {vθ}, θ), where θ is a location in the post-heap and vθ is the value of

θ.

Figure 9 summarizes the effects of each bytecode instructions in terms of the modification
of a configuration. A configuration is a refection of the runtime of a running Java program,
and is composed of the following components, denoted as (F ,Π,Φ,Σ) for brevity.
F , the stack for method frames.
Π, the symbolic heap, a mapping from values to objects.
Φ, the path condition, actually a sequence of Assert.
Σ, the symbolic state, a mapping from variable (locations) to values (nodes).

ECOOP 2018

19:14 Automating Object Transformations via Online Execution Synthesis

Table 2 Symbols used in the rules.

Symbol Description

σ, σ′ a configuration (F ,Π,Φ,Σ)
〈ldc c, σ〉 ⇒ σ′ a rule for the instruction ldc c

v, o, i a generic value, a reference value and an index value, respectively
ΠJoK obtain the object referenced by o

ΠJo=(C,L)K update the heap and make o reference the object (C,L)
ΣJ(o, i)K read the value of the location (o, i)

ΣJ(o, i)=vK update the value of the location (o, i)
F · (m, pc,L, E) push a frame (m, pc,L, E) to the method frame stack F

E · v push a value v into the expression stack

A method frame is denoted by a tuple (m, pc,L, E) of the method m, the current bytecode
index pc, the local variables array L, and the expression stack E for bytecode instructions [29].
Since most instructions are intra-procedure, we ignore the method m and a configuration is
also denoted by a sextuple (pc,L, E ,Π,Φ,Σ).

Rules in Figure 9 actually define an structural operational semantics [35] of each bytecode
instruction over the node (t, P, a). The detailed semantics of each bytecode instruction can
be found in [29]. Table 2 summarizes the symbols used in describing every rule.

Not all bytecode instructions produce values, e.g., an invoke only copies arguments from
the caller to the callee. For the entry method, AOTES creates a Const and allocates a
pre-allocated object for its receiver, and creates an Input for each method parameter of
it. Input in pre-allocated objects are created when first used. At the end of a normally
terminated execution, AOTES creates an Output for every heap location in objects reachable
from the receiver. Exceptional executions are abandoned.

Note that in symbolic execution, which branch (i.e., true or false) is taken is not
determined by evaluating the condition to a concrete value but by a strategy. AOTES takes
a random strategy to explore branches and collect path conditions. First, it randomly takes
an unvisited branch. After all branches have been visited, it then randomly takes a visited
branch. For any method, we only collect a path condition of a limited length. Loop and
recursion are discussed in detail in Section 4.4.

Finally, we create a value graph to summarize an execution. There are two kinds of
edges between nodes, representing value dependency or location dependency. The location
dependency tracks values in heap locations of Input and Output (e.g., object reference and
array index), and is used to align the symbolic post-heap to a concrete heap. The value graph
is constructed as follows. Initially, the value graph is empty. Then, all Input, Output,
Assert are first added to the value graph. Other nodes are recursively added by following
the two kinds of dependency edges.

Figure 10 depicts three value graphs of addListener in Figure 1a. Note that we simplify
the implementation of method add of class ArrayList for brevity but AOTES can handle
the actual one. Lets take the left-most graph as an example to illustrate the semantics of a
value graph. The value graph contains the following nodes and edges.

Two Const nodes w.r.t. this and null.
Two Input nodes w.r.t. firstListener and the parameter.
An Output w.r.t. firstListener. This Output has a location dependency edge from
this (Const) and a value dependency edge from the parameter (Input).

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:15

〈ldc c, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · (Const,∅, c),Π,Φ,Σ)
〈load i, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · LJiK,Π,Φ,Σ)

〈store i, (pc,L, E · v,Π,Φ,Σ)〉 ⇒ (pc + 1,LJi=vK, E,Π,Φ,Σ)

Stack & Locals

〈aload, (pc,L, E · o · i,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · ΣJ(o, i)K,Π,Φ,Σ)
〈astore, (pc,L, E · o · i · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ,ΣJ(o, i)=vK)

Array Access

〈getfield f, (pc,L, E · o,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · ΣJ(o, f)K,Π,Φ,Σ)
〈putfield f, (pc,L, E · o · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ,ΣJ(o, f)=vK)

Field Access

〈new C, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · o,ΠJo=(C,L)K,Φ,Σ) ∧ o← (Ref,∅)
〈newarray, (pc,L, E · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · o,ΠJo=(A,L)K,Φ,ΣJ(o, ι)=vK) ∧ o← (Ref,∅)

Allocation

〈add, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · (Expr, {v1, v2}, +),Π,Φ,Σ)

Binary Operator

〈ifgt ρ, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + ρ,L, E,Π,Φ ∪ (Assert, {v1, v2}, >),Σ), if true

〈ifgt ρ, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ ∪ (Assert, {v1, v2}, <=),Σ), if false

〈goto ρ, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + ρ,L, E,Π,Φ,Σ)

Branch

〈invoke m, (F · (m′, pc′,L′, E′ · o · v1 · · · vn),Π,Φ,Σ)〉 ⇒ (F · (m, 0,LJ0=oKJ1=v1K · · · Jn=vnK,∅),Π,Φ,Σ)

〈return, (F · (m′, pc′,L′, E′ · o · v1 · · · vn) · (m, pc,L, E · v),Π,Φ,Σ)〉 ⇒ (F · (m′, pc′,L′, E′ · v),Π,Φ,Σ)

Invoke & Return

Figure 9 Rules describing effects of bytecode instructions. Each rule is in the format 〈inst, σ〉 ⇒
σ′, where inst is a bytecode instruction, σ and σ′ are the configurations before and after execution
the instruction, respectively.

An Assert w.r.t. the if statement at line 5 in Figure 1a. This Assert has value
dependency edges from firstListener (Input) and null (Const).

AOTES aims at deriving values for the two Input nodes from a given concrete object. The
derivation is conducted by traversing the graph. First, AOTES derives the concrete value
for Output by loading firstListener after aligning this to the concrete object. Next,
AOTES derives the value for the parameter (Input) using the value of firstListener
(Output) directly. Note that we need to check whether the Assert satisfies. The Input
(w.r.t. firstListener) has been overridden during forward execution. We then create a
fresh symbolic value for the Input and try to use the constraint solver to derive a value for
it. All deriving steps are serialized into a method to facilitate the online execution synthesis,
which will be discussed in the next subsection.

4.3 Inverse Method Synthesis

We say that a node is resolved if its concrete value has been derived. An inverse method is
created by resolving all Input. An Output can be directly resolved if its symbolic location
can be aligned to a concrete location. this can be directly aligned to the receiver. An object
field can be aligned if its object reference is resolved. Thus, all fields accessed from this
can be aligned. An array element can be aligned if both the object reference and index are
resolved. AOTES translates every resolution and alignment into a statement. All statements
finally make up the inverse method. AOTES supports four kinds of resolution methods.

ECOOP 2018

19:16 Automating Object Transformations via Online Execution Synthesis

1 lines 5 and 6 2 lines 5, 8, 9 and 11 3 lines 5, 8, and 11
firstListenerparameter

this

firstListener

==

null

otherListeners

thisnull

firstListener

!=

==

ArrayList

elements

Object[1]

elements[0] parameter

0

size

1

length

otherListeners

thisnull

firstListener

!=

!=

elements

elements elements[size]

parameter

size

size

+

1

Input Output Const Expr Assert Ref predecessor location

Figure 10 Value graphs of three execution traces of addListener in Figure 1a. Their inverse
methods are in Figure 8.

1. Direct Resolution: All Const and aligned Output can be directly resolved.
2. Forward Resolution: A node is resolved if all predecessors are resolved. For example, if

a = b× c, and b and c are resolved, then a can also be resolved by evaluating b× c again.
3. Backward Resolution: If an Expr and one of its predecessors are resolved, we can resolve

the other predecessor by these two nodes. For example, if a = b − c, and a and b are
resolved, then c can be resolved by evaluating b− a. We treat +, -, *, and / invertible
due to the aggressive nature of AOTES.

4. Aggressive Resolution: As an inverse method is used for execution synthesis, we can
aggressively guess a value for an Input by assigning a fresh symbolic value to it. Besides,
we can guess an index for an array element if its object reference has been resolved.

Algorithm 1 aims at resolving all nodes of a value graph. The algorithm maintains a
sequence of statements m, and two sets of nodes, R and U , i.e., the sets of resolved and
unresolved nodes, respectively. At first, R and m are empty, and U contains all nodes in
the value graph. The four resolution methods try to apply rules defined in Figure 11 and
return true if there is an applicable rule, which means some nodes have been resolved. Every
successful resolution appends a statement to m (denoted by]). In theory, we can continue
to apply aggressive resolution to resolve every Input and then use forward resolution to
resolve all unresolved nodes in the value graph. The algorithm can finally terminate when R
is fixed, since a value can never be moved from R to U . m is successfully generated only if U
is empty. We then decorate m into a valid Java method. This method has no parameter and
returns all reverted arguments.

Every node is indeed converted into a variable with a unique name. Every resolved Input
must be aligned first and its concrete location is also updated with the resolved value. For
presentation, this requirement is not expressed in the rules. A fresh symbolic value is denoted
by * but in fact produced by a runtime method. We also provide a runtime method guess
that chooses an index in a given array.

Figure 11 presents rules that are used to resolve a node. A rule takes a node from the
value graph and the currently visiting status (i.e., the tuple (R,U,m)) as input to update
the visiting status for next visiting and produce a statement for the inverse method m as
output. Each rule has a precondition that should be checked first. Basically, the precondition
at least ensures that each node is resolved once by a rule. Take rules of direct resolution as
an example. To resolve a Const, the rule only checks whether the node being resolved has
been resolved. To resolve an Output, the two rules further check whether the location has
been aligned.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:17

Algorithm 1: Resolution of a value graph.
Input: (V,E), the value graph.
Output: (R,U,m), where R is the set of resolved nodes, U is the set of unresolved nodes, and m

is the inverse method.
1 (R,U,m)← (∅, V,∅) foreach v ∈ U do Direct(v, (R,U,m))
2 repeat
3 repeat
4 foreach v ∈ U do Forward(v, (R,U,m))
5 foreach v ∈ R do Backward(v, (R,U,m))
6 until R is fixed
7 foreach v ∈ U do
8 if Aggressive(v, (R,U,m)) then break
9 until R is fixed

10 return (R,U,m)

Figure 8 shows the inverse methods created by resolving nodes from value graphs in
Figure 10. We have simplified the output, e.g., remove redundant variables for Const.
Algorithm 1 and rules in Figure 11 ensure that a node is only resolved once. We randomly
visit nodes and thereby, a node can be resolved via different rules and nodes. For consistency,
AOTES attempts to resolve every node using a different method at last and adds assertions
to ensure that all resolved concrete values must be equal, e.g., lines 15 and 16.

4.4 Loop and Recursion
AOTES takes a single-path symbolic execution and limits the length of the path condition.
Hence, the loop and recursive method invocations are unrolled for a limited length. A
set of short execution paths is considered as the promising candidates for online execution
synthesis. Obviously, there do exist long-running loops and deep recursions. Thus, the
symbolic execution trace may be infeasible for some inputs (pre-heaps).

Actually, the problem of loop and recursion may not be as critical as it seems to be. Recall
that AOTES has no need to synthesize an inverse method for all execution traces. Besides, a
fixed number of inverse methods are sufficient sometimes. In comparison with existing whole
program execution techniques [44, 5], the insight of invocation history synthesis is that it
infers the sequence from the state only and requires no complete control flow and call graph.
Moreover, many loops and recursive methods are guided by some input [43]. AOTES can
split a loop with a very large input in the actual history into many loops with a small input
in the synthesized history.

Take the class in Figure 12 as an example. Method addN has a loop and also recursively
calls itself. AOTES can easily populate the execution trace where n is 1 and also synthesize an
inverse method for it, because addN(a,1) is equivalent to elements.add(a). We have shown
that AOTES can easily handle ArrayList. Hence, no matter how divergent the actual history
is, AOTES can always guarantee to synthesize a history addN(e0,1), . . . , addN(ei,1), . . . ,
addN(ek−1,1), where ei is the i-th element in elements and k is the size of the list elements.
For example, an actual history composed of an addN([a,b],2) would be replaced by the
following synthesized history: addN(a,1), addN(a,1), addN(b,1), addN(b,1), where both of
them fill the ArrayList referred to by elements with the sequence [a, a, b, b].

5 Execution Synthesis

This section depicts the online synthesis and replaying of invocation histories.

ECOOP 2018

19:18 Automating Object Transformations via Online Execution Synthesis

v 6∈ R
〈v = (Const,∅, c), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = c;)

v 6∈ R ∧ θ = (o, i) ∧ o ∈ R ∧ i ∈ R
〈v = (Output, {vθ}, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o[i];)

v 6∈ R ∧ θ = (o, f) ∧ o ∈ R
〈v = (Output, {vθ}, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o.f;)

Direct Resolution

v 6∈ R ∧ v1 ∈ R ∧ v2 ∈ R
〈v = (Expr, v1, v2, +), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = v1 + v2;)

v 6∈ R ∧ v1 ∈ R ∧ v2 ∈ R
〈v = (Assert, v1, v2, >), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] assert(v1 > v2);)

Forward Resolution

v1 6∈ R ∧ v ∈ R
〈v = (Output, {v1}, θ), (R,U,m)〉 ⇒ (R ∪ {v1}, U \ {v1},m] v1 = v;)

v2 6∈ R ∧ v ∈ R ∧ v1 ∈ R
〈v = (Expr, v1, v2, +), (R,U,m)〉 ⇒ (R ∪ {v2}, U \ {v2},m] v2 = v - v1)

Backward Resolution

θ = (o, i) ∧ o ∈ R ∧ i 6∈ R
〈i, (R,U,m)〉 ⇒ (R ∪ {i}, U \ {i},m] i = guess(o);)
v 6∈ R ∧ ΠpreJvK = ∅ ∧ θ = (o, i) ∧ o ∈ R ∧ i ∈ R

〈v = (Input,∅, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o[i] = *;)
v 6∈ R ∧ ΠpreJvK = ∅ ∧ θ = (o, f) ∧ o ∈ R

〈v = (Input,∅, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o.f = *;)

Aggressive Resolution

Figure 11 Rules for resolving nodes and generating statements. Each rule is in the format
P

〈v,(R,U,m)〉⇒(R′,U′,m′) , where P is the precondition of applying the rule, v is the node that we
attempt to resolve, R is the set of resolved nodes, U is the set of unresolved nodes, m is the sequence
of generated statements, and P ′, U ′ and m′ are new versions after applying the rule.

5.1 Online Synthesis of Invocation Histories

AOTES uses a greedy strategy to search for an inverse invocation history. As shown in
Algorithm 2, AOTES first collects all applicable inverse method invocation (T), and uses a
heuristic method to rank them (by function Rank). Intuitively, a better inverse method
should revert more Input in the Πpre from non-default values to default values and preserve
more locations in the Πpre, which is the Πpost for the next step. Hence, AOTES prefers
the inverse method with no aggressively resolved Input first, then more live locations after
execution, and finally more reverted Input. The searching stops when the object is in the
empty state or there is no applicable inverse method. AOTES executes an inverse method
in two ways, i.e., TestApply, which will restore the object state for applying next inverse
method, and Apply, which will retain the modification.

For example, suppose that an object of DefaultSshFuture is in state s1
3. addListener21

is not applicable as line 16 in Figure 8 fails, i.e., the size is not 2. Both addListener11

and addListener31 are applicable, but we prefer addListener31 over addListener11 as it
reverts more locations and also preserves otherListeners. The object state then becomes s1

2.
addListener21 is still not applicable on s1

2 as line 15 fails, i.e., the array has been expanded
and its length is not 1. We then prefer addListener31 for the same reason and apply it to
obtain s1

1. Now, only addListener11 is applicable on s1
1. addListener31 is inapplicable on

s1
1 as line 28 attempts to revert size from 0 to -1. At last, there is no applicable inverse
method and the synthesis terminates.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:19

1 class LoopAndRecursion {
2 List elements = new ArrayList ();
3 void addN(Object o, int n) {
4 if (n < 1) {
5 return ;
6 } else if (o instanceof Object []) {
7 for (Object e : (Object []) o) {
8 addN(e, n);
9 }

10 } else {
11 elements .add(o);
12 addN(o, n -1);
13 }}}

Figure 12 An example of loop and recursion.

Algorithm 2: History synthesis.
Input: o, the receiver object for history synthesis, M, the set of inverse methods.
Output: H, the invocation history for o.

1 H ← ∅
2 while isNotEmptyState(o) do .Stop once the object is reverted into the empty state.
3 T ← ∅ .The set of applicable inverse method invocation at this step.
4 foreach m ∈ M do
5 a← TestApply(m, o) .Apply m to o and restore o afterwards.
6 T ← T ∪ {(m,a)}
7 if T = ∅ then
8 break .Stop when there is no applicable inverse method.
9 (m,a)← Rank(T) .Heuristic-based ranking.

10 H ← H∪ {(m,Apply(m, o))} .Apply m to o without restore.
11 return Revert(H) .Revert H and replace every m by its original method m.

5.2 Realizing Object Transformations

AOTES realizes object transformations as follows. Given a stale object, we first try to
synthesize an inverse invocation history for it. If the history is empty, then we fall back
to default transformations. Otherwise, we apply a default transformation to the object
after reverting its state by applying the inverse invocation history. Finally, we invert the
inverse invocation history to build a new history and apply it to the object. Note that the
synthesized history is not necessarily to be complete.

6 Implementation

We implemented AOTES, including the symbolic execution engine, inverse method synthesizer
and invocation history synthesizer, in about 25K lines of Java code. AOTES is fully automated
and only takes binary class files as input and thus requires no source code, no test case and
no human specified update points.

We implemented a trivial single-variable solver. For example, a fresh symbolic value for
int includes all integers in [MIN_INT, MAX_INT]. As such a symbolic value is mostly used
in assertions and pre-states. Therefore, it narrows its range towards passing the assertion
and to the default value during evaluation. For example, suppose that a variable v1 has a
fresh symbolic value for int. After evaluating the assertion assert(v1 == 0), its range is
narrowed to [0, 0], which means that this symbolic value can only be 0. Currently, we are
working on integrating Z3 [9] as the solver to further improve the effectiveness of AOTES.

ECOOP 2018

19:20 Automating Object Transformations via Online Execution Synthesis

The main limitation of AOTES in analyzing real-world applications is uninterpreted
native methods. The current implementation of AOTES only handles a small part of native
methods that we have encountered during evaluation, among which some are re-implemented
using Java, e.g., arraycopy, and others are manually marked as operators, e.g., sin and
identityHashCode. Operator methods are not interpreted during symbolic execution and
their effects are recorded like an operator (i.e., creating an Expr). During synthesis, they
can be executed as all arguments are available at present. We allocate a phantom object for
every class as the container for static fields. The reference of the phantom object is treated
as a Const and thus a static field can be easily aligned.

7 Experiments

We evaluated AOTES’s effectiveness with real-world updates and performance in synthesizing
long histories using a micro benchmark, respectively. All experiments were conducted on an
Intel Core i7 3.4GHz machine with 20 GB memory running 64-bit Windows 10. The offline
synthesis was conducted on JDK 1.8.0_65 and the dynamic updating was carried out on
Javelus. We forced AOTES to only explore at most 20 different traces for a method and 1000
branches for a trace.

7.1 Real-world Updates

We collected 21 updated classes from Apache Commons Collections, Apache FTP Server,
Apache SSHD Server and Apache Tomcat, which are all widely used common libraries and
server applications under years of active development. These updates were chosen for the
following reasons. First, the two versions of all updates must be successfully compiled.
Second, all updates must involve field changes otherwise would require no transformation.
We classified these fields changes into the following four types:
1. Value Change: with no field added, but the values of some fields need to be updated.
2. Name Change: with a field renamed only.3

3. Type Change: with a type-changed field only.
4. Complex Change: any other changes.
Third, an updated class must not invoke uninterpreted native methods beyond those handled
by the current implementation of AOTES. Finally, we also excluded rare cases in which
the stale state does not contain sufficient information to determine the new state. In this
situation, even a programmer may not be able to provide a transformer based on the stale
state without additional information, not to mention TOS or AOTES.

In addition to existing test cases, we additionally wrote a few test cases for some updated
classes under our test frame work designed for DSU, because most updated classes have no test
case and some existing test cases were insufficient to detect improper object transformations.
Every test created an object with one or a few method invocations before dynamic updating.
Then, we triggered the dynamic updating and applied the transformation to the object.
Every dynamic update was verified as follows [33, 30]. That is, the state after dynamic
updating of the old version must be equivalent to a state that can be achieved by executing
the same methods on the new version.

3 Note that if either the name or type of a field is changed, it is considered as deleted and a new field
with the new name or type is added.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:21

Table 3 Results of real-world updates.

Type Update Tests AOTES Default TOS

Value Change tomcat-dd741c 6 4α) 4 N.A.

Name Change
ftp-5d5592 4 3α) 0 N.A.
sshd-6f8507 2 2 1 N.A.

tomcat-951e08 2 2 1 N.A.
tomcat-b75f5c 2 2 1 N.A.

Type Change

collections-0e1140 1 1 0 N.A.
collections-cdacd4 1 1 0 N.A.

ftp-f8110b 5 5 0 N.A.
sshd-054334 3 3 1 N.A.

tomcat-480edc 3 3 0 N.A.

Complex Change

collections-b7327a 2 2 0 N.A.
ftp-43ff5f 4 2β) 0 N.A.
ftp-4907aa 4 2β) 0 N.A.
ftp-5df186 4 2β) 0 N.A.
sshd-009d83 5 5 0 N.A.
sshd-1487b0 1 1 0 1
sshd-2297b2 1 1 0 1
sshd-b98694 7 7 2 2
sshd-eeeec6 1 0α) 0 1

tomcat-24bc4d 2 2 1 1
tomcat-2db0f7 1 1 0 N.A

Total 61 51/83.6% 11/18.3% 6/9.8%
a) α and β indicates inconsistent and incomplete synthesized history, respectively.

We ran all tests with dynamic updating for both AOTES and default transformations on
Javelus. All results are shown in Table 3. AOTES succeeded in 51 (83.6%) updates and failed
in other 10 updates due to incomplete or inconsistent synthesized histories. An incomplete
history cannot update all fields as the searching also stops when no applicable inverse method
is found. This is mainly because many native methods prevent AOTES from generating
sufficient inverse methods. We plan to model more native methods in future. An inconsistent
history leads to the same state as the actual history in the old version but different states in
the new version. We will discuss this limitation with examples in the following paragraphs.

We did not run TOS with dynamic updating as TOS is not fully automated and requires
extra training tests and manually specified update points. Instead, we used our validation
tests to train TOS and hope that it could synthesize a conditional transformer for each
update that can realize transformations for all test cases. TOS failed to synthesize a function
for 16 of 21 updates (marked with N.A. in Table 3). For the rest 5 updates with 12 tests in
total, TOS even failed in validating its output against 6 training tests.

As shown in Table 3, almost all updates have field name changes or type changes. These
updates are the majority of updates that require transformations in practice. Default
transformations and TOS failed to derive a valid transformation/transformer even for
many name and type changes because they cannot find the relations between fields with
different names or types. AOTES can infer their relations when changed fields used the same
arguments in matched methods. Moreover, both default transformations and TOS used a
set of predefined simple rules, and cannot handle transformations involving custom type
conversions (e.g., ArrayList to ConcurrentHashMap). AOTES leveraged program code to
infer custom type conversions when objects of different types used the same arguments in
matched methods for initialization.

ECOOP 2018

19:22 Automating Object Transformations via Online Execution Synthesis

We discuss the limitation and effectiveness of AOTES with the following four examples.
AOTES failed in the first two examples and succeeded in the last two examples.

7.1.1 Value Change: Tomcat dd741c

1 - private String jmxNameBase = "pool";
2 + private String jmxNameBase = null;

This update only changes the initial value of jmxNameBase in the constructor. If the setter
of jmxNameBase is not invoked, the transformation should update the value to null. AOTES
failed in two test cases due to inconsistent histories. That is, both the constructor and the
setter method can assign "pool" to jmxNameBase in the old version but null and "pool"
in the new version. In fact, even a programmer cannot write a general transformer here
because using the current state only cannot distinguish different actual histories that lead to
the same current state.

7.1.2 Name Change: FTP 5d5592

1 - private int maxIdleTimeMillis = 10000;
2 + private int idleTime = 300;
3 public void setIdleTime (int idleTime) {
4 - maxIdleTimeMillis = idleTime * 1000;
5 + this.idleTime = idleTime;
6 }

Except this update, we can just copy the value from a new field to the old field for all Name
Change updates. AOTES failed in the only test for the same reason as Tomcat dd741c.
maxIdleTimeMillis was set to 10000 by the constructor in the old version but in the new
version idleTime should be 300.

7.1.3 Type Change: FTP f8110b

1 class DefaultFtpletContainer {
2 - private List ftplets = new ArrayList();
3 - class FtpletEntry { String name; Ftplet ftplet; }
4 + private Map ftplets = new ConcurrentHashMap();
5 public void addFtplet (String name , Ftplet ftplet) {
6 - ftplets.add(new FtpletEntry(name, ftplet));
7 + ftplets.put(name, ftplet);
8 }
9 }

Type conversions between built-in types are easy, e.g., int to long. However, for this update,
we need the key to convert an ArrayList to a ConcurrentHashMap. AOTES can synthesize
inverse methods for addFtplet and the constructor and also a history using them. The key
can be inferred from the parameter name of the new version of addFtplet.

7.1.4 Complex Change: SSHD 009d83

1 class AgentImpl {
2 private List keys = new ArrayList ();
3 - private boolean closed;
4 + private AtomicBoolean open = new AtomicBoolean(true);
5 public void close () throws IOException {
6 - closed = true;

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:23

7 - keys.clear();
8 + if (open.getAndSet(false)) {
9 + keys.clear();

10 + }
11 }
12 public void addIdentity (KeyPair key , String comment) {
13 keys.add(new Pair(key , comment));
14 }
15 }

This update changes both the type and the name of a field. Method close removes all
elements in keys. Hence, the synthesized history is a constructor and a close if the last
method in the actual history is a close. For example, suppose that the actual history
includes a constructor of AgentImpl, an addIdentity, and a close. However, a critical field
modCount in ArrayList, which is used to avoid concurrent modification during iterating the
list, prevents AOTES from applying the inverse constructor of AgentImpl if its value cannot
be reverted to 0. Fortunately, the inverse method of clear decrements modCount. As a
result, the synthesized history is a constructor followed by two invocations of close.

7.2 Micro Benchmark

We selected five classes of commonly used collections and designed a micro benchmark to
evaluate the synthesizing time of AOTES. Theoretically, the synthesizing time only directly
depends on the current object state and the number of inverse methods but not the actual
history. Thereby, we first conducted experiments with all synthesized inverse methods and
then repeated the experiments with a small set of inverse methods. The results help us to
reveal solutions that can optimize the synthesizing time of AOTES.

The micro benchmark created an object of each class, filled it with a number of elements
(ranged from 0, 10, . . . , 90), and finally synthesized a history for it. We also repeated the
procedure for 10 times first to warm up the JVM. Figure 13a shows the distribution of
inverse methods generated by AOTES for all public methods of every class. We first ran the
benchmark on all inverse methods and then repeated the benchmark with only previously
used inverse methods.

The synthesizing time using all inverse methods is shown in Figure 13b. The time depends
on the size of elements in a collection. AOTES spent more than 5s in the worst case for
Vector. This is mainly because our implementation heavily uses reflections and exceptions.
Besides, most of the inverse methods of these classes were indeed redundant.

The number of inverse method candidates has an impact to the searching time. Figure 13c
shows the number of different inverse methods (not different inverse method invocations)
appeared in each history. No more than four inverse methods were actually used for all
histories. That means the online synthesis wasted a certain amount of time on trying out
redundant inverse methods. Note that here an inverse method may be invoked for many
times. The actual number of method invocations in total were mostly the same as the number
of elements.

Pruning redundant inverse methods can speed up the online history synthesis. In practice,
we can prune redundant inverse methods using an automatic random testing tool [36].
Figure 13d shows the synthesizing time using only previously used inverse methods. AOTES
only spent 35ms in the worst case for LinkedList and only 12ms for Vector. We believe
that this synthesizing time is acceptable for practical usage and can also be further reduced
with a more efficient implementation of AOTES.

ECOOP 2018

19:24 Automating Object Transformations via Online Execution Synthesis

Arr
ayL

ist

Has
hM

ap

Link
edL

ist
Vec

tor

Has
hta

ble

89

120

44

97

57

In
ve

rs
e

M
et

ho
ds

(#
)

0 10 20 30 40 50 60 70 80 90
0

1K

2K

3K

4K

5K

Size (#)

T
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

Size (#)

In
ve

rs
e

M
et

ho
ds

(#
)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

Size (#)

T
im

e
(m

s)

(a) (b)

(c) (d)

ArrayList HashMap LinkedList Vector Hashtable

Figure 13 Results of micro benchmark.

7.3 Discussion

AOTES can be used as a complement to existing techniques such as default transformations,
TOS, and manual approaches, especially for name changes, type changes and complex changes.
While both default transformations and TOS cannot find the relations between old fields
and new fields that have different names or types, AOTES can find the relations by matching
the arguments in matched methods. Different from TOS, which requires test cases and
manual efforts during collecting transformation examples, AOTES is fully automated and
works purely on binaries without source code and test cases. AOTES is the only approach
that can leverage the program code to infer powerful transformations. Moreover, it is an
on-demand dynamic approach and can avoid synthesizing transformation that are hard to be
automated but may not be encountered during dynamic updating.

The two assumptions of AOTES (Section 2.2) may be a threat. Techniques such as
random testing [36] can help to reveal the violation of assumptions before updating. The
time of online execution synthesis may be another threat to AOTES, particularly when
there are many stale objects. AOTES tackles this challenge by adopting a lazy updating
mechanism and sharing searching strategies across different transformations. Specifically,
AOTES first mitigates the disruption caused by synthesis using a lazy updating technique,
which is naturally supported by Javelus. Second, AOTES can try out methods that have
already been used only. The effectiveness has been demonstrated in the micro benchmark.
In other words, AOTES shares the searching strategy across different transformations, while
TOS and manual approaches share the transformer.

8 Related Work

We survey related work in this section, including dynamic software updating, and program
and execution synthesis.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:25

8.1 Dynamic Software Updating

In general, DSU systems can be divided in two types, intra-process state transformation and
inter-process state transfer. Many challenges in implementing inter-process state transfer have
made it not so popular in building DSU systems [21, 12]. Not all programs can run multiple
instances of multiple versions simultaneously, particularly in a production environment [21],
e.g., the Linux kernel. In contrast, this approach has been extensively studied in live migration
of virtual machines [6].

The majority of DSU systems apply transformations to the intra-process states. These
approaches can generate default transformations and support programmers specified trans-
formations as well [41, 13, 15]. Besides, they also provide a safety guarantee, e.g. type safety,
to facilitate developing transformers [23, 34, 4, 32, 41, 14]. The transformations can be taken
eagerly [41, 42], or lazily [14, 15], or both [38]. Although the size of a valid transformer may
not be great [2], it should be delivered with extremely timing constraints, e.g., for security
patches.

Automated approaches such as TOS [31] and TTST [12] require a pair of matched objects
as example and infer transformations from these examples. AOTES requires no example
as it uses matched methods, which makes it able to handle non-trivial cases that TTST
and TOS cannot handle. Other approaches for debugging prefer no user intervention by
sacrificing the flexibility or validity [11, 24]. Gupta et al. have proved that the validity of
general dynamic updating is undecidable [17]. Besides, existing programming techniques
can also help transformer programming, e.g., formalization and verification [20, 26, 45] and
software testing [19, 22].

8.2 Program and Execution Synthesis

Program Synthesis and Execution Synthesis [44] have been extensively studied for years.
Among them most related to AOTES are inverse program generation [10, 40] and data
transformations [16, 18, 27, 39]. AOTES combines the program synthesis and execution
synthesis. AOTES indeed makes use of reverse execution [3, 7, 1] over symbolic execution
traces to generate an inverse program.

9 Conclusion

AOTES is an experimental approach to automating object transformations for dynamic
software updating. It preserves the continuity of stateful behavior of objects whose classes
are changed at runtime. The novelty of AOTES is to synthesize a method invocation history
that can produce the current object state in the old version, and replay the history to get
the desired state for the new version. Our preliminary evaluation shows that AOTES has
the promising ability to handle software updates taken from real-world software systems.
Although the current implementation of AOTES is for Java only, we believe that the general
idea of AOTES can also apply to other object-oriented programming languages. In the future,
we plan to improve AOTES by supporting more native methods and searching strategies, and
also conduct a thorough evaluation of AOTES with more real-world updates.

ECOOP 2018

19:26 Automating Object Transformations via Online Execution Synthesis

References
1 Tankut Akgul and Vincent J. Mooney III. Assembly instruction level reverse execution for

debugging. ACM Transaction Software Engineering Methodology, 13(2):149–198, 2004.
2 Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless kernel updates. In

Proceedings of the 4th ACM European Conference on Computer Systems, pages 187–198,
2009.

3 Bitan Biswas and R. Mall. Reverse execution of programs. SIGPLAN Notices, 34(4):61–69,
1999.

4 Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS: A powerful
live updating system. In Proceedings of the 29th International Conference on Software
Engineering, pages 271–281, 2007.

5 N. Chen and S. Kim. STAR: Stack Trace Based Automatic Crash Reproduction via Sym-
bolic Execution. IEEE Transactions on Software Engineering, 41(2):198–220, 2015.

6 Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceed-
ings of the 2nd Conference on Symposium on Networked Systems Design & Implementation
- Volume 2, pages 273–286, 2005.

7 Jonathan J. Cook. Reverse execution of Java bytecode. The Computer Journal, 45(6):608–
619, 2002.

8 Robert C. Daley and Jack B. Dennis. Virtual memory, processes, and sharing in MULTICS.
Communications of the ACM, 11(5):306–312, 1968.

9 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.

10 Edsger W. Dijkstra. Program inversion. In Program Construction, volume 69, pages 54–57.
Springer-Verlag, 1979.

11 Mikhail Dmitriev. Towards flexible and safe technology for runtime evolution of Java
language applications. In Proceedings of the Workshop on Engineering Complex Object-
Oriented Systems for Evolution, 2001.

12 Cristiano Giuffrida, Calin Iorgulescu, Anton Kuijsten, and Andrew S. Tanenbaum. Back
to the future: Fault-tolerant live update with time-traveling state transfer. In Proceedings
of the 27th Large Installation System Administration Conference, pages 89–104, 2013.

13 Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and automatic live
update for operating systems. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 279–292,
2013.

14 Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lu. Javelus:
A low disruptive approach to dynamic software updates. In Proceedings of 19th the Asia-
Pacific Software Engineering Conference, pages 527–536, 2012.

15 Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lü. Low-
disruptive dynamic updating of Java applications. Information and Software Technology,
56(9):1086–1098, 2014.

16 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 317–330, 2011.

17 Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for on-line software
version change. IEEE Transactions on Software Engineering, 22(2):120–131, 1996.

18 William R. Harris and Sumit Gulwani. Spreadsheet table transformations from examples.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 317–328, 2011.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:27

19 Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. Efficient
systematic testing for dynamically updatable software. In Proceedings of the 2nd Interna-
tional Workshop on Hot Topics in Software Upgrades, pages 9:1–9:5, 2009.

20 Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jeffrey S. Foster.
Specifying and verifying the correctness of dynamic software updates. In Proceedings of
the 4th International Conference on Verified Software: Theories, Tools, Experiments, pages
278–293, 2012.

21 Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State
transfer for clear and efficient runtime updates. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering Workshops, pages 179–184, 2011.

22 C.M. Hayden, E.K. Smith, E.A. Hardisty, M. Hicks, and J.S. Foster. Evaluating dynamic
software update safety using systematic testing. IEEE Transactions on Software Engineer-
ing, 38(6):1340–1354, 2012.

23 Michael Hicks and Scott Nettles. Dynamic software updating. ACM Transactions on
Programming Languages and Systems, 27(6):1049–1096, 2005.

24 Jevgeni Kabanov and Varmo Vene. A thousand years of productivity: the JRebel story.
Software: Practice and Experience, 2012.

25 James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

26 V.P. La Manna, J. Greenyer, C. Ghezzi, and C. Brenner. Formalizing correctness criteria
of dynamic updates derived from specification changes. In Proceedings of the 2013 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, pages 63–72,
2013.

27 Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 542–553, 2014.

28 Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual machine. In
Proceedings of the ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, pages 36–44, 1998.

29 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

30 Xiaoxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna, and Jian Lu.
Version-consistent dynamic reconfiguration of component-based distributed systems. In
Proceedings of the ACM SIGSOFT Symposium and the European Conference on Founda-
tions of Software Engineering, pages 245–255, 2011.

31 Stephen Magill, Michael Hicks, Suriya Subramanian, and Kathryn S. McKinley. Automat-
ing object transformations for dynamic software updating. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Appli-
cations, pages 265–280, 2012.

32 Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic software updates
using stack reconstruction. In Proceedings of the Conference on USENIX Annual Technical
Conference, 2009.

33 Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-threaded programs.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 13–24, 2009.

34 Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic soft-
ware updating for c. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 72–83, 2006.

35 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal Intro-
duction. Wiley, 1 edition, 1992.

ECOOP 2018

19:28 Automating Object Transformations via Online Execution Synthesis

36 Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In Proceedings of the 29th International Conference on
Software Engineering, pages 75–84, 2007.

37 Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot™ server compiler.
In Proceedings of the 2001 Symposium on Java™ Virtual Machine Research and Technology
Symposium - Volume 1, pages 1–12, 2001.

38 Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for Java on a stock JVM. In
Proceedings of the 2014 International Conference on Object Oriented Programming Systems
Languages Applications, pages 103–119, 2014.

39 Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International Conference on Computer Aided
Verification, pages 634–651, 2012.

40 Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. Path-based
inductive synthesis for program inversion. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 492–503, 2011.

41 Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates:
A VM-centric approach. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, 2009.

42 Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code evolution for
Java. In Proceedings of the International Conference on the Principles and Practice of
Programming in Java, pages 10–19, 2010.

43 Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteristic studies of loop
problems for structural test generation via symbolic execution. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, pages 246–256,
2013.

44 Cristian Zamfir and George Candea. Execution synthesis: A technique for automated
software debugging. In Proceedings of the 5th European Conference on Computer Systems,
pages 321–334, 2010.

45 Min Zhang, Kazuhiro Ogata, and Kokichi Futatsugi. Formalization and verification of be-
havioral correctness of dynamic software updates. Electronic Notes in Theoretical Computer
Science, 294(0):12–23, 2013.

FHJ: A Formal Model for Hierarchical Dispatching
and Overriding

Yanlin Wang1

The University of Hong Kong, China
ylwang@cs.hku.hk

Haoyuan Zhang1

The University of Hong Kong, China
hyzhang@cs.hku.hk

Bruno C. d. S. Oliveira1

The University of Hong Kong, China
bruno@cs.hku.hk

Marco Servetto
Victoria University of Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

Abstract
Multiple inheritance is a valuable feature for Object-Oriented Programming. However, it is also
tricky to get right, as illustrated by the extensive literature on the topic. A key issue is the am-
biguity arising from inheriting multiple parents, which can have conflicting methods. Numerous
existing work provides solutions for conflicts which arise from diamond inheritance: i.e. conflicts
that arise from implementations sharing a common ancestor. However, most mechanisms are
inadequate to deal with unintentional method conflicts: conflicts which arise from two unrelated
methods that happen to share the same name and signature.

This paper presents a new model called Featherweight Hierarchical Java (FHJ) that deals
with unintentional method conflicts. In our new model, which is partly inspired by C++, con-
flicting methods arising from unrelated methods can coexist in the same class, and hierarchical
dispatching supports unambiguous lookups in the presence of such conflicting methods. To avoid
ambiguity, hierarchical information is employed in method dispatching, which uses a combination
of static and dynamic type information to choose the implementation of a method at run-time.
Furthermore, unlike all existing inheritance models, our model supports hierarchical method
overriding: that is, methods can be independently overridden along the multiple inheritance hi-
erarchy. We give illustrative examples of our language and features and formalize FHJ as a
minimal Featherweight-Java style calculus.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases multiple inheritance, hierarchical dispatching, OOP, language design

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.20

Acknowledgements We thank the anonymous reviewers for their valuable comments.

1 Funded by Hong Kong Research Grant Council projects number 17210617 and 17258816

© Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 20; pp. 20:1–20:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ylwang@cs.hku.hk
mailto:hyzhang@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:marco.servetto@ecs.vuw.ac.nz
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

1 Introduction

Inheritance in Object-Oriented Programming (OOP) offers a mechanism for code reuse.
However many OOP languages are restricted to single inheritance, which is less expressive
and flexible than multiple inheritance. Nevertheless, different flavours of multiple inheritance
have been adopted in some popular OOP languages. C++ has had multiple inheritance from
the start. Scala adapts the ideas from traits [28, 9, 16] and mixins [5, 11, 32, 2, 13] to offer a
disciplined form of multiple inheritance. Java 8 offers a simple variant of traits, disguised as
interfaces with default methods [12].

A reason why programming languages have resisted to multiple inheritance in the past
is that, as Cook [7] puts it, “multiple inheritance is good but there is no good way to do it”.
One of the most sensitive and critical issues is perhaps the ambiguity introduced by multiple
inheritance. One case is the famous diamond problem [27, 29] (also known as the fork-join
inheritance [27]). In the diamond problem, inheritance allows one feature to be inherited
from multiple parent classes that share a common ancestor. Hence conflicts arise. The variety
of strategies for resolving such conflicts urges the occurrence of different multiple inheritance
models, including traits, mixins, CZ [17], and many others. Existing languages and research
have addressed the issue of diamond inheritance extensively. Other issues including how
multiple inheritance deals with state, have also been discussed quite extensively [33, 17, 31].

In contrast to diamond inheritance, the second case of ambiguity is unintentional method
conflicts [28]. In this case, conflicting methods do not actually refer to the same feature. In
a nominal system, methods can be designed for different functionality but happen to have
the same names (and signatures). A simple example of this situation is two draw methods
that are inherited from a deck of cards and a drawable widget, respectively. In such context,
the two draw methods have very different meanings, but they happen to share the same
name. When inheritance is used to compose these classes, a compilation error happens
due to conflicts. However, unlike the diamond problem, the conflicting methods have very
different meanings and do not share a common parent. We call such a case fork inheritance,
in analogy to diamond inheritance.

When unintentional method conflicts happen, they can have severe effects in practice if
no appropriate mechanisms to deal with them are available. In practice, existing languages
only provide limited support for the issue. In most languages, the mechanisms available
to deal with this problem are the same as the diamond inheritance. However, this is often
inadequate and can lead to tricky problems in practice. This is especially the case when it
is necessary to combine two large modules and their features, but the inheritance is simply
prohibited by a small conflict. As a workaround from the diamond inheritance side, it is
possible to define a new method in the child class to override those conflicting methods.
However, using one method to fuse two unrelated features is clearly unsatisfactory. Therefore
we need a better solution to keep both features separately during inheritance, so as not to
break independent extensibility [36].

C++ and C# do allow for two unintentionally conflicting methods to coexist in a class.
C# allows this by interface multiple inheritance and explicit method implementations. But
since C# is a single inheritance language, it is only possible to implement multiple interfaces
(but not multiple classes). C++ accepts fork inheritance and resolves the ambiguity by
specifying the expected path by upcasts. However, neither the C# nor C++ approaches allow
such conflicting methods to be further overridden. Some other workarounds or approaches
include delegation and renaming/exclusion in the trait model. However, renaming/exclusion
can break the subtyping relation between a subclass and its parent. This is not adequate for
the class model commonly used in mainstream OOP languages, where the subclass is always
expected to be a subtype of the parent class.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:3

Figure 1 DrawableSafeDeck: an illustration of hierarchical overriding.

This paper proposes two mechanisms to deal with unintentional method conflicts: hi-
erarchical dispatching and hierarchical overriding. Hierarchical dispatching is inspired by
the mechanisms in C++ and provides an approach to method dispatching, which combines
static and dynamic information. Using hierarchical dispatching, the method binder will
look at both the static type and the dynamic type of the receiver during runtime. When
there are multiple branches that cause unintentional conflicts, the static type can specify one
branch among them for unambiguity, and the dynamic type helps to find the most specific
implementation. In that case, both unambiguity and extensibility are preserved. The main
novelty over existing work is the formalization of the essence of a hierarchical dispatching
algorithm, which (as far as we know) has not been formalized before.

Hierarchical overriding is a novel language mechanism that allows method overriding to
be applied only to one branch of the class hierarchy. Hierarchical overriding adds expressive
power that is not available in languages such as C++ or C#. In particular, it allows overriding
to work for classes with multiple (conflicting) methods sharing the same names and signatures.
An example is presented in Figure 1. In this example, there are 4 classes/interfaces. Two
classes Deck and Drawable model a deck of cards and a drawable widget, respectively. The
class SafeDeck adds functionality to check whether the deck is empty so as to prevent drawing
a card from an empty deck. The interesting class is DrawableSafeDeck, which inherits from
both SafeDeck and Drawable. Hierarchical overriding is used in DrawableSafeDeck to keep
two separate draw methods for each parent, but override only the draw method coming from
Drawable, in order to draw a widget with a deck of cards. Note that hierarchical overriding
is denoted in the UML diagram with the notation draw()↑Drawable, expressing that the draw
method from Drawable is overridden. Although in this example only one of the draw methods
is overridden (and the other is simply inherited), hierarchical overriding supports multiple
conflicting methods to be independently overridden as well.

To present hierarchical overriding and dispatching, we introduce a formalized model FHJ
in Section 3 based on Featherweight Java [14], together with theorems and proofs for type
soundness. We also have a prototype implementation of an FHJ interpreter written in Scala.
The implementation validates all the examples presented in the paper. One nice feature of
the implementation is that it can show the detailed step-by-step evaluation of the program,
which is convenient for understanding and debugging programs & semantics.

In summary, our contributions are:
A formalization of the hierarchical dispatching algorithm that integrates both
the static type and dynamic type for method dispatch, and ensures unambiguity as well
as extensibility in the presence of unintentional method conflicts.
Hierarchical overriding: a novel notion that allows methods to override individual
branches of the class hierarchy.

ECOOP 2018

20:4 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

FHJ: a formalized model based on Featherweight Java, supporting the above features.
We provide the static and dynamic semantics and prove the type soundness of the model.
Prototype implementation2: a simple implementation of FHJ interpreter in Scala.
The implementation can type-check and run variants of all the examples shown in this
paper.

2 A Running Example: Drawable Deck

This section illustrates the problem of unintentional method conflicts, together with the
features of our model for addressing this issue, by a simple running example. In the
following text, we will introduce three problems one by one and have a discussion on possible
workarounds and our solutions. Problems 1 and 2 are related to hierarchical dispatching, and
in C++ it is possible to have similar solutions to both problems. Hence it is important to
emphasize that, with respect to hierarchical dispatching, our model is not a novel mechanism.
Instead, inspired by the C++ solutions, our contribution is formalizing a minimal calculus of
this feature together with a proof of type soundness. However, for the final problem, there
is no satisfactory approach in existing languages, thus what we propose is a novel feature
(hierarchical overriding) with the corresponding formalization of that feature.

In the rest of the paper, we use a Java-like syntax for programs. All types are defined
with the keyword interface ; the concept is closely related to Java 8 interfaces with default
methods [4] and traits. In short, an interface in our model has the following characteristics:

It allows multiple inheritance.
Every method is either abstract or implemented with a body (like Java 8 default methods).
The new keyword is used to instantiate an interface.
It cannot have state.

2.1 Problem 1: Basic Unintentional Method Conflicts
Suppose that two components Deck and Drawable have been developed in a system. Deck
represents a deck of cards and defines a method draw for drawing a card from the deck.
Drawable is an interface for graphics that can be drawn and also includes a method called
draw for visual display. For simple illustration, the default implementation of the draw in
Drawable only creates a blank canvas on the screen, while the draw method in Deck simply
prints out a message "Draw a card.".
interface Deck {
void draw() { // draws a card from the Deck

println("Draw a card.");
}

}
interface Drawable {
void draw() { // create a blank canvas

JFrame frame = new JFrame();
frame.setVisible(true);

}
}

In Deck, draw uses println, which is a library function. The two draw methods can have
different return types, but for simplicity, the return types are both void here. Note that,

2 The implementation is available at https://github.com/YanlinWang/MIM/tree/master/Calculus

https://github.com/YanlinWang/MIM/tree/master/Calculus

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:5

similarly to Featherweight Java [14], void is unsupported in our formalization. We could have
also defined an interface called Void and return an object of that type instead. To be concise,
however, we use void in our examples. In interface Drawable, the draw method creates a blank
canvas.

Now, suppose that a programmer is designing a card game with a GUI. He may want to
draw a deck on the screen, so he first defines a drawable deck using multiple inheritance:

interface DrawableDeck extends Drawable, Deck {}

The point of using multiple inheritance is to compose the features from various components
and to achieve code reuse, as supported by many mainstream OO languages. Nevertheless,
at this point, languages like Java simply treat the two draw methods as the same, hence the
compiler fails to compile the program and reports an error.

This case is an example of a so-called unintentional method conflict. It arises when two
inherited methods happen to have the same name and parameter types, but they are designed
for different functionalities with different semantics. Now one may quickly come up with a
workaround, which is to manually merge the two methods by creating a new draw method in
DrawableDeck to override the old ones. However, merging two methods with totally different
functionalities does not make any sense. This non-solution would hide the old methods and
break independent extensibility.

2.1.1 Problem and Possible Workarounds
The essential problem is how to resolve unintentional method conflicts and invoke the
conflicting methods separately without ambiguity. To tackle this problem, there are several
other workarounds that come to our mind. We briefly discuss those potential fixes and
workarounds next:

I. Delegation. As an alternative to multiple inheritance, delegation can be used by
introducing two fields (or field methods) with the Drawable type and Deck type, respectively.
Although it avoids method conflicts, it is known that using delegation makes it hard to
correctly maintain self-references in an extensible system and also introduces a lot of
boilerplate code.
II. Refactor Drawable and/or Deck to rename the methods. If the source code for Drawable
or Deck is available then it may be possible to rename one of the draw methods. How-
ever, this approach is non-modular, as it requires modifying existing code and becomes
impossible if the code is unavailable.
III. Method exclusion/renaming. Eiffel [18] and some trait models support method
exclusion/renaming. Those features can eliminate conflicts, although most programming
languages do not support them. In a traditional OO system, they can break the subtyping
relationship. Moreover, in contrast with exclusion, renaming can indeed preserve both
conflicting behaviours. However, it is cumbersome in practice, as introducing new names
can affect other code blocks.

2.1.2 FHJ’s solution
To solve this problem it is important to preserve both conflicting methods during inheritance
instead of merging them into a single method. Therefore FHJ accepts the definition of
DrawableDeck. To disambiguate method calls, we can use upcasts in FHJ to specify the
“branch” in the inheritance hierarchy that should be called. The following code illustrates
the use of upcasts for disambiguation:

ECOOP 2018

20:6 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

interface Deck { void draw() {...} }
interface Drawable { void draw() {...} }
interface DrawableDeck extends Drawable, Deck {}
// main program
((Deck) new DrawableDeck()).draw() // calls Deck.draw
// new DrawableDeck().draw() // this call is ambiguous and rejected

In our language, a program consists of interfaces declarations and a main an expression which
produces the final result. In the above main expression ((Deck)new DrawableDeck()).draw(),
the cast indicates that we expect to invoke the draw method from the branch Deck. Similarly,
we could have used an upcast to Drawable to call the draw method from Drawable. Without
the cast, the call would be ambiguous and FHJ’s type system would reject it.

This example illustrates the basic form of fork inheritance, where two unintentionally
conflicting methods are accepted by multiple inheritance. Note that C++ supports this
feature and also addresses the ambiguity by upcasts. The code for the above example in
C++ is similar.

2.2 Problem 2: Dynamic Dispatching
Using explicit upcasts for disambiguation helps when making calls to classes with conflicting
methods, but things become more complicated with dynamic dispatching. Dynamic dispatch-
ing is very common in OO programming for code reuse. Let us expand the previous example
a bit, by redefining those interfaces with more features:
interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}

Here shuffleAndDraw invokes draw from its own enclosing type. In FHJ, this invocation is
dynamically dispatched. This is important, because a programmer may define a subtype of
Deck and override the method draw:
interface SafeDeck extends Deck {
boolean isEmpty() {...}
void draw() { // overriding

if (isEmpty()) println("The deck is empty.");
else println("Draw a card");

}
}

Without dynamic dispatching, we may have to copy the shuffleAndDraw code into SafeDeck
, so that shuffleAndDraw calls the new draw defined in SafeDeck. Dynamic dispatching
immediately saves us from the duplication work, since the method becomes automatically
dispatched to the most specific one. Nevertheless, as seen before, dynamic dispatch would
potentially introduce ambiguity. For instance, when we have the class hierarchy structure
shown in Figure 2(left) with the following code:
interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw()

Indeed, using reduction steps following the reduction rules in FJ [14]-like languages, where
no static types are tracked, the reduction steps would roughly be:

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:7

Figure 2 UML diagrams for 3 variants of DrawableSafeDeck.

new DrawableSafeDeck().shuffleAndDraw()
-> new DrawableSafeDeck().shuffle(); new DrawableSafeDeck().draw()
-> ...
-> new DrawableSafeDeck().draw()
-> <<error: ambiguous call!!!>>

When the DrawableSafeDeck object calls shuffleAndDraw, the implementation in Deck is
dispatched. But then shuffleAndDraw invokes “ this.draw()”, and at this point, the receiver is
replaced by the object new DrawableSafeDeck(). From the perspective of DrawableSafeDeck,
the draw method seems to be ambiguous since DrawableSafeDeck inherits two draw methods
from both SafeDeck and Drawable. But ideally we would like shuffleAndDraw to invoke
SafeDeck.draw because they belong to the same class hierarchy branch.

2.2.1 FHJ’s solution
The essential problem is how to ensure that the correct method is invoked. To solve this
problem, FHJ uses a variant of method dispatching that we call hierarchical dispatching. In
hierarchical dispatching, both the static and dynamic type information are used to select
the right method implementation. During runtime, a method call makes use of both the
static type and the dynamic type of the receiver, so it is a combination of static and dynamic
dispatching. Intuitively, the static type specifies one branch to avoid ambiguity, and the
dynamic type finds the most specific implementation on that branch. To be specific, the
following code is accepted by FHJ:
interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}
interface Drawable {...}
interface SafeDeck extends Deck {...}
interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw() // SafeDeck.draw is called

The computation performed in FHJ is as follows:
new DrawableSafeDeck().shuffleAndDraw()

-> ((DrawableSafeDeck) new DrawableSafeDeck()).shuffleAndDraw()
-> ((Deck) new

DrawableSafeDeck()).shuffle(); ((Deck) new DrawableSafeDeck()).draw()
-> ...
-> ((Deck) new DrawableSafeDeck()).draw()
-> ... // SafeDeck.draw

ECOOP 2018

20:8 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

Notably, we track the static types by adding upcasts during reduction. In contrast
to FJ, where new C() is a value, in FHJ such an expression is not a value. Instead,
an expression of the form new C() is reduced to (C) new C(), which is a value in FHJ
and the cast denotes the static type of the expression. This rule is applied in the first
reduction step. In the second reduction step, when shuffleAndDraw is dispatched, the receiver
(DrawableSafeDeck)new DrawableSafeDeck() replaces the special variable this by (Deck)new

DrawableSafeDeck(). Here, the static type used in the cast (Deck) denotes the origin of the
shuffleAndDraw method, which is discovered during method lookup. Later, in the fourth step,
((Deck)new DrawableSafeDeck()).draw() is an instance of hierarchical invocation, which can
be read as “finding the most specific draw above DrawableSafeDeck and along path Deck”.
The meaning of “above DrawableSafeDeck” implies its supertypes, and “along path Deck”
specifies the branch. Finally, in the last reduction step, we find the most specific version
of draw in SafeDeck. In this sequence of reduction steps, the cast that tracks the origin of
shuffleAndDraw is crucial to unambiguously find the correct implementation of draw. The
formal procedure will be introduced in Section 3 and Section 4.

2.3 Problem 3: Overriding on Individual Branches
Method overriding is common in Object-Oriented Programming. With diamond inheritance,
where conflicting methods are intended to have the same semantics, method overriding is
not a problem. If conflicting methods arise from multiple parents, we can override all those
methods in a single unified (or merged) method in the subclass. Therefore further overriding
is simple, because there is only one method that can be overridden.

With unintentional method conflicts, however, the situation is more complicated because
different, separate, conflicting methods can coexist in one class. Ideally, we would like to
support overriding for those methods too, in exactly the same way that overriding is available
for other (non-conflicting) methods. However, we need to be able to override the individual
conflicting methods, rather than overriding all conflicting methods into a single merged one.

We illustrate the problem and the need for a more refined overriding mechanism with
an example. Suppose that the programmer defines a new interface DrawableSafeDeck (based
on the code in Section 2.2 without the old DrawableSafeDeck), but he needs to override
Drawable.draw and give a new implementation of drawing so that the deck can indeed be
visualized on the canvas.

2.3.1 Potential solutions/workarounds in existing languages
Unfortunately in all languages we know of (including C++), the existing approaches are
unsatisfactory. One direction is to simply avoid this issue, by putting overriding before
inheritance. For example, as shown in Figure 2(middle), we define a new component
DrawableRect that extends Drawable, which simply draws the deck as a rectangle, and
modifies the hierarchy:
interface DrawableRect extends Drawable {
void draw() {

JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
interface DrawableSafeDeck extends DrawableRect, SafeDeck {}

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:9

This workaround seems to work, but there are severe issues:
It changes the hierarchy and existing code, hence breaks the modularity.
Separate overriding is required to come after the fork inheritance, especially when the
implementation needs functionality from both parents. In the above code, we have
assumed that the overriding is unrelated to Deck. But when the drawing relies on some
information of the Deck object, we have to either introduce field methods for delegation
or change the signature of draw to take a parameter. Either way introduces unnecessary
complexity and affects extensibility.

There are more involved workarounds in C++ using templates and complex patterns,
but such patterns are complex to use and there are still issues. A more detailed discussion of
such an approach is presented in Section 6.2.

2.3.2 FHJ’s solution

An additional feature of our model is hierarchical overriding. It allows conflicting methods
to be overridden on individual branches, hence offers independent extensibility. The above
example can be easily realized by:
interface DrawableSafeDeck extends Drawable, SafeDeck {
void draw() override Drawable {

JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
((Drawable)new DrawableSafeDeck()).draw(); //calls the draw in DrawableSafeDeck

The UML graph is shown in Figure 2(right), where the up-arrow ↑ is short for “override”.
Here the idea is that only Drawable.draw is overridden. This is accomplished by specifying,
in the method definition, that the method only overrides the draw from Drawable. The
individual overriding allows us to make use of the methods from SafeDeck as well. In the
formalization, the hierarchical overriding feature is an important feature, involved in the
algorithm of hierarchical dispatch.

Note that, although the example here only shows one conflicting method being overridden,
hierarchical overriding allows (as expected) multiple conflicting methods to be overridden in
the same class.

2.3.3 Terminology

In Drawable, Deck, and SafeDeck, the draw methods are called original methods in this paper,
because they are originally defined by the interfaces. In contrast, DrawableSafeDeck defines a
hierarchical overriding method. The difference is that traditional method overriding overrides
all branches by defining another original method, whereas hierarchical overriding only refines
one branch.

A special rule for hierarchical overriding is: it can only refine original methods, and cannot
jump over original methods with the same signature. For instance, writing "void draw()
override Deck {...}" is disallowed in DrawableSafeDeck, because the existing two branches
are Drawable.draw and SafeDeck.draw, while Deck.draw is already covered. It does not really
make sense to refine the old branch Deck.

ECOOP 2018

20:10 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

(a) mbody(m,C,A) = (A, ...) (b) mbody(m,C,A) = (C, ...) (c) mbody(m,C,A) = (C, ...)

mbody(m,C,B) = (B, ...) mbody(m,C,B) = (C, ...) mbody(m,C,B) = (B, ...)

mbody(m,C,C) = undefined mbody(m,C,C) = (C, ...) mbody(m,C,C) = undefined

(d) mbody(m, T, T) = (T, ...) (e) mbody(m, T, T) = (T, ...) (f) mbody(m,C, T) = (C, ...)

mbody(m,C, T) = undefined mbody(m,C, T) = undefined mbody(m,C,A) = (C, ...)

C rejected by type-check C rejected by type-check mbody(m,C,B) = (C, ...)

mbody(m,C,C) = (C, ...)

Figure 3 Examples in FHJ. “m ↑ A” stands for hierarchical overriding “m override A”.

2.3.4 A peek at the hierarchical dispatching algorithm
In FHJ, fork inheritance allows several original methods (branches) to coexist, and hierar-
chical dispatch first finds the most specific original method (branch), then it finds the most
specific hierarchical overriding on that branch.

Before the formalized algorithm, Figure 3 gives a peek at the behavior using a few examples.
The UML diagrams present the hierarchy. In (d) and (e), a cross mark indicates that the
interface fails to type-check. Generally, FHJ rejects the definition of an interface during
compilation if it reaches a diamond with ambiguity. mbody is the method lookup function for
hierarchical dispatch, formally defined in Section 4.1. In general, mbody(m,X, Y) = (Z, ...)

reflects that the source code ((Y) new X()).m() calls Z.m at runtime. It is undefined when
method dispatch is ambiguous.

In Figure 3, (a) is the base case for unintentional conflicts, namely the fork inheritance.
(b) uses overriding to explicitly merge the conflicting methods. (c) represents hierarchical
overriding.

Furthermore, our model supports diamond inheritance and can deal with diamond
problems. For example, (d) and (e) are two base cases of diamond inheritance in FHJ and
the definition of each C is rejected because T is an ambiguous parent to C. One solution for
diamond inheritance is to merge methods coming from different parents. (f) gives a common
solution to the diamond as in Java or traits, which is to explicitly override A.m and B.m
in C. And our calculus supports this kind of merging methods. In the last three examples,
conflicting methods A.m and B.m should be viewed as intentional conflicts, as they come
from the same source T .

3 Formalization

In this section, we present a formal model called FHJ (Featherweight Hierarchical Java),
following a similar style as Featherweight Java [14]. FHJ is a minimal core calculus that
formalizes the core concept of hierarchical dispatching and overriding. The syntax, typing
rules and small-step semantics are presented.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:11

3.1 Syntax

The abstract syntax of FHJ interface declarations, method declarations, and expressions is
given in Figure 4. The multiple inheritance feature of FHJ is inspired by Java 8 interfaces,
which supports method implementations via default methods. This feature is closely related
to traits. To demonstrate how unintentional method conflicts are untangled in FHJ, we only
focus on a small subset of the interface model. For example, all methods declared in an
interface are either default methods or abstract methods. Default methods provide default
implementations for methods. Abstract methods do not have a method body. Abstract
methods can be overridden with future implementations.

3.1.1 Notations

The metavariables I, J, K range over interface names; x ranges over variables; m ranges over
method names; e ranges over expressions; andM ranges over method declarations. Following
Featherweight Java, we assume that the set of variables includes the special variable this,
which cannot be used as the name of an argument to a method. We use the same conventions
as FJ; we write I as shorthand for a possibly empty sequence I1, ..., In, which may be indexed
by Ii; and write M as shorthand for M1...Mn (with no commas). We also abbreviate
operations on pairs of sequences in an obvious way, writing I x for I1 x1, ..., In xn, where n
is the length of I and x.

3.1.2 Interfaces

In order to achieve multiple inheritance, an interface can have a set of parent interfaces, where
such a set can be empty. Moreover, as usual in class-based languages, the extension relation
over interfaces is acyclic. The interface declaration interface I extends I {M} introduces
an interface named I with parent interfaces I and a suite of methods M. The methods of I
may either override methods that are already defined in I or add new functionality special to
I, we will illustrate this in more detail later.

3.1.3 Methods

Original methods and hierarchically overriding methods share the same syntax in our model
for simplicity. The concrete method declaration I m(Ix x) override J {return e; } introduces
a method named m with result type I, parameters x of type Ix and the overriding target
J. The body of the method simply includes the returned expression e. Notably, we have
introduced the override keyword for two cases. Firstly, if the overridden interface is exactly
the enclosing interface itself, then such a method is seen as originally defined. Note that the
case of merging methods from different branches, also counts as originally defined. Secondly,
for all other cases the method is considered a hierarchical overriding method. Note that in
an interface J, I m(Ix x) {return e; } is syntactic sugar for I m(Ix x) override J {return e; },
which is the standard way to define methods in Java-like languages. The definition of abstract
methods is written as I m(Ix x) override J ;, which is similar to a concrete method but
without the method body. For simplicity, overloading is not modelled for methods, which
implies that we can uniquely identify a method by its name.

ECOOP 2018

20:12 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

Interfaces IL ::= interface I extends I {M}

Methods M ::= I m(Ix x) override J {return e; } | I m(Ix x) override J ;
Expressions e ::= x | e.m(e) | new I() | (I)e

Context Γ ::= x : I

Values v ::= (I)new J()

Figure 4 Syntax of FHJ.

3.1.4 Expressions & Values
Expressions can be standard constructs such as variables, method invocation, object creation,
together with cast expressions. Object creation is represented by new I()3. Fields and
primitive types are not modelled in FHJ. The casts are merely safe upcasts, and in fact,
they can be viewed as annotated expressions, where the annotation indicates its static type.
The coexistence of static and dynamic types is the key to hierarchical dispatch. A value
“(I)new J()” is the final result of multiple reduction steps for evaluating an expression.

For simplicity, FHJ does not formalize statements like assignments and so on because
they are orthogonal features to the hierarchical dispatching and overriding feature. A program
in FHJ consists of a list of interface declarations, plus a single expression.

3.2 Subtyping and Typing Rules

3.2.1 Subtyping
The subtyping of FHJ consists of only a few rules shown at the top of Figure 5. In short,
subtyping relations are built from the inheritance in interface declarations. Subtyping is
both reflexive and transitive.

3.2.2 Type-checking
Details of type-checking rules are displayed at the bottom of Figure 5, including expression
typing, well-formedness of methods and interfaces. As a convention, an environment Γ is
maintained to store the types of variables, together with the self-reference this.

(T-Invk) is the typing rule for method invocation. Naturally, the receiver and the
arguments are required to be well-typed. mbody is our key function for method lookup that
implements the hierarchical dispatching algorithm. The formal definition will be introduced
in Section 4. Here mbody(m, I0, I0) finds the most specific m above I0. “Above I0” specifies
the search space, namely the supertypes of I0 including itself. For the general case, however,
the hierarchical invocation mbody(m, I, J) finds “the most specific m above I and along
path/branch J”. “Along path J” additionally requires the result to relate to J, that is to say,
the most specific interface that has a subtyping relationship with J.

In (T-Invk), as the compilation should not be aware of the dynamic type, it only requires
that invoking m is valid for the static type of the receiver. The result of mbody contains
the interface that provides the most specific implementation, the parameters and the return
type. We use underscore for the return expression, matching both implemented and abstract
methods.

3 In Java the corresponding syntax is new I(){}.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:13

I <: J I <: I

I <: J J <: K

I <: K

interface I extends I1, I2, ..., In {M}

I <: I1, I <: I2, ..., I <: In

Γ ` e : I (T-Var) Γ ` x : Γ(x)

(T-Invk)
Γ ` e0 : I0 mbody(m, I0, I0) = (K, J x, I _) Γ ` e : I I <: J

Γ ` e0.m(e) : I

(T-New)
interface I extends I {M} canInstantiate(I)

Γ ` new I() : I

(T-Anno)
Γ ` e : I I <: J

Γ ` (J)e : J

(T-Method)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _) x : Ix, this : I ` e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

(T-AbsMethod)
I <: J findOrigin(m, I, J) = {J} mbody(m, J, J) = (K, Ix x, Ie _)

Ie m(Ix x) override J ; OK IN I

(T-Intf)

M OK IN I ∀J :> I and m, mbody(m, J, J) is defined⇒ mbody(m, I, J) is defined
∀J :> I and m, I[m override I] and J[m override J] defined⇒ canOverride(m, I, J)

interface I extends I {M} OK

Figure 5 Subtyping and Typing Rules of FHJ.

(T-New) is the typing rule for object creation new I(). The auxiliary function
canInstantiate(I) (see definition in Section 4.4) checks whether an interface I can be
instantiated or not. Since fork inheritance accepts conflicting branches to coexist, the check
requires that the most specific method is concrete for each method on each branch.

(T-Method) is more interesting since a method can either be an original method
or a hierarchical overriding, though they share the same syntax and method typing rule.
findOrigin(m, I, J) is a fundamental function, used to find “the most specific interfaces that
are above I and along path J, and originally defines m” (see Section 4 for full definition).
By “most specific interfaces”, it implies that the inherited supertypes are excluded. Thus
the condition findOrigin(m, I, J) = {J} indicates a characteristic of a hierarchical overriding:
it must override an original method; the overriding is direct and there does not exist any
other original method m in between. Then mbody(m, J, J) provides the type of the original
method, so hierarchical overriding has to preserve the type. Finally the return expression is
type-checked to be a subtype of the declared return type. For the definition of an original
method, I equals J and the rule is straightforward. (T-AbsMethod) is a similar rule but
works on abstract method declarations.

(T-Intf) defines the typing rule on interfaces. The first condition is obvious, namely, its
methods need to be well checked. The third condition checks whether the overriding between
original methods preserves typing. In this condition we again use some helper functions defined

ECOOP 2018

20:14 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

in Section 4. I[m override I] is defined if I originally defines m, and canOverride(m, I, J)
checks whether I.m has the same type as J.m. Generally the preservation of method type is
required for any supertype J and any method m.

The second condition of (T-Intf) is more complex and is the key to type soundness.
Unlike C++ which rejects on ambiguous calls, FHJ rejects on the definition of interfaces when
they form a diamond. Consider the case when the second condition is broken: mbody(m, J, J)
is defined but mbody(m, I, J) is undefined for some J and m. This indicates that m is available
and unambiguous from the perspective of J, but is ambiguous to I on branch J. It means
that there are multiple overriding paths of m from J to I, which form a diamond. Hence
rejecting that case meets our expectation. Below is an example (Figure 3 (e)) that illustrates
the reason why this condition is needed:
interface T { T m() override T { return new T(); } }
interface A extends T { T m() override T { return new A(); } }
interface B extends T { T m() override T { return new B(); } }
interface C extends A, B {}
((T) new C()).m()

This program does not compile on interface C, because of the second condition in (T-Intf),
where I equals C and J equals T . By the algorithm, mbody(m, T, T) will refer to T.m, but
mbody(m,C, T) is undefined, since both A.m and B.m are most specific to C along path
T , which forms a diamond. The expression ((T) new C()).m() is one example of triggering
ambiguity, but FHJ simply rejects the definition of C. To resolve the issue, the programmer
needs to have an overriding method in C, to explicitly merge the conflicting ones.

Finally, rule (T-Anno) is the typing rule for a cast expression. By the rule, only upcasts
are valid.

3.3 Small-step Semantics and Propagation
Figure 6 defines the small-step semantics and propagation rules of FHJ. When evaluating
an expression, they are invoked and produce a single value in the end.

3.3.1 Semantic Rules
(S-Invk) is the only computation rule we need for method invocation. As a small-step
rule and by congruence, it assumes that the receiver and the arguments are already values.
Specifically, the receiver (J)new I() indicates the dynamic type I together with the static
type J. Therefore mbody(m, I, J) carries out hierarchical dispatching, acquires the types, the
return expression e0 and the interface I0 which provides the most specific method. Here we
use e0 to imply that the return expression is forced to be non-empty because it requires a
concrete implementation. Now the rule reduces method invocation to e0 with substitution.
Parameters are substituted with arguments, and the this reference is substituted with the
receiver, and in the meanwhile the static types are recorded via annotations. Finally, the
return type Ie is put in the front as an annotation.

3.3.2 Propagation Rules
(C-Receiver), (C-Args) and (C-FReduce) are natural propagation rules on receivers,
arguments, and cast-expressions, respectively. (C-StaticType) automatically adds an
annotation I to the new object new I(). (C-AnnoReduce) merges nested upcasts into a
single upcast with the outermost type.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:15

4 Key Algorithms and Type-Soundness

In this section, we present the fundamental algorithms and auxiliary definitions used in our
formalization and show that the resulting calculus is type sound. The functions presented in
this section are the key components that implement our algorithm for method lookup.

4.1 The Method Lookup Algorithm in mbody
mbody(m, Id, Is) denotes the method body lookup function. We use Id, Is, since mbody is
usually invoked by a receiver of a method m, with its dynamic type Id and static type
Is. Such a function returns the most specific method implementation. More accurately,
mbody returns (J, Ix x, Ie e0) where J is the found interface that contains the desired method;
Ix x are the parameters and its types, e0 is the returned expression (empty for abstract
methods). It considers both originally-defined methods and hierarchical overriding methods,
so findOrigin and findOverride (see the definition in Section 4.2 and Section 4.3) are
both invoked. The formal definition gives the expected results for the earlier examples in
Figure 3.

BDefinition of mbody(m, Id, Is) :

• mbody(m, Id, Is) = (J, Ix x, Ie e0)

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I {return e0; }
• mbody(m, Id, Is) = (J, Ix x, Ie ø)

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I ;

To calculate mbody(m, Id, Is), the invocation of findOrigin looks for the most specific
original methods and their interfaces, and expects a singleton set, so as to achieve unambiguity.
Furthermore, the invocation of findOverride also expects a unique and most specific
hierarchical override. And finally the target method is returned.

4.2 Finding the Most Specific Origin: findOrigin
We proceed to give the definitions of two core functions that support method lookup, namely,
findOrigin and findOverride. Generally, findOrigin(m, I, J) finds the set of most specific
interfaces where m is originally defined. Interfaces in this set should be above interface I
and along path J. Finally with prune (defined in Section 4.4) the overridden interfaces will
be filtered out.

BDefinition of findOrigin(m, I, J) :

• findOrigin(m, I, J) = prune(origins)

with: origins = {K | I <: K, and K <: J ∨ J <: K,

and K[m override K] is defined}

By the definition, an interface belongs to findOrigin(m, I, J) if and only if:

ECOOP 2018

20:16 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

(S-Invk)
mbody(m, I, J) = (I0, Ix x, Ie e0)

((J)new I()) .m(v)→ (Ie)[(Ix)v/x, (I0)new I()/this]e0

(C-Receiver)
e0 → e ′0

e0.m(e)→ e ′0.m(e)
(C-Args)

e→ e ′

e0.m(. . . , e, . . .)→ e0.m(. . . , e ′, . . .)

(C-StaticType)
new I()→ (I)new I()

(C-FReduce)
e→ e ′ e 6= new J()

(I)e→ (I)e ′

(C-AnnoReduce) (I)((J)new K())→ (I)new K()

Figure 6 Small-step semantics.

It originally defines m;

It is a supertype of I (including I);

It is either a supertype or a subtype of J (including J);

Any subtype of it does not belong to the same result set because of prune.

4.3 Finding the Most Specific Overriding: findOverride

The findOrigin function only focuses on original method implementations, where all
the hierarchical overriding methods are omitted during that step. On the other hand,
findOverride(m, I, J) has the assumption that J defines an original m, and this function
tries to find the interfaces with the most specific implementations that hierarchically overrides
such an m. Formally,

BDefinition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] is defined

By the definition, an interface belongs to findOverride(m, I, J) if and only if:

it is between I and J (including I, J);

it hierarchically overrides J.m;

any subtype of it does not belong to the same set.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:17

4.4 Other Auxiliaries
Below we give other minor definitions of the auxiliary functions that are used in previous
sections.

BDefinition of I[m override J] :

• I[m override J] = Ie m(Ix x) override J {return e0; }
with: interface I extends I {Ie m(Ix x) override J {return e0; } . . .}

• I[m override J] = Ie m(Ix x) override J ;
with: interface I extends I {Ie m(Ix x) override J ; . . .}

Here I[m override J] is basically a direct lookup for method m in the body of I, where
such a method overrides J (like static dispatch). The method can be either concrete or
abstract, and the body of definition is returned. Notice that by our syntax, I[m override I]
is looking for the originally-defined method m in I.

BDefinition of prune(set) :

• prune(set) = {I ∈ set | @J ∈ set \ I, J <: I}

The prune function takes a set of types, and filters out those that have subtypes in the
same set. In the returned set, none of them has subtyping relation to one another, since all
supertypes have been removed.

BDefinition of canOverride(m, I, J) :

• canOverride(m, I, J) holds
iff: I[m override I] = Ie m(Ix x) override I . . .

J[m override J] = Ie m(Ix y) override J . . .

canOverride just checks that two original m in I and J have the same type.

BDefinition of canInstantiate(I) :

• canInstantiate(I) holds
iff: ∀m, ∀J ∈ findOrigin(m, I, I), findOverride(m, I, J) = {K},

and K[m override J] = Ie m(Ix x) override J {return e0; }

canInstantiate(I) checks whether interface I can be instantiated by the keyword new.
findOrigin(m, I, I) represents the set of branches that I inherits on method m. I can be
instantiated if and only if for every branch, the most specific implementation is non-abstract.

4.5 Properties
We present the type soundness of the model by a few theorems below, following the standard
technique of subject reduction and progress proposed by Wright and Felleisen [35]. The
proof, together with some lemmas, is presented in Appendix. Type soundness states that if
an expression is well-typed, then after many reduction steps it must reduce to a value, and
its annotation is the same as the static type of the original expression.

I Theorem 1 (Subject Reduction). If Γ ` e : I and e→ e ′, then Γ ` e ′ : I.

Proof. See Appendix A.1. J

ECOOP 2018

20:18 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

I Theorem 2 (Progress). Suppose e is a well-typed expression, if e includes ((J)new I()) .m(v)

as a sub-expression, then mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0, Ix,
x, Ie and e0.

Proof. See Appendix A.1. J

I Theorem 3 (Type Soundness). If ø ` e : I and e→∗ e ′ with e ′ a normal form, then e ′ is
a value v with ø ` v : I.

Proof. Immediate from Theorem 1 and Theorem 2. J

Note that in Theorem 2, “#(x)” denotes the length of x.
Our theorems are stricter than those of Featherweight Java [14]. In FJ, the subject

reduction theorem states that after a step of reduction, the type of an expression may change
to a subtype due to subtyping. However, in FHJ, the type remains unchanged because we
keep track of the static types and use them for casting during reduction.

Finally we show that one-step evaluation is deterministic. This theorem is helpful to
show that our model of multiple inheritance is not ambiguous (or non-deterministic).

I Theorem 4 (Determinacy of One-Step Evaluation). If t→ t ′ and t→ t ′′, then t ′ = t ′′.

Proof. See Appendix A.1. J

5 Discussion

In this section, we will discuss the design space and reflect about some of the design decisions
of our work. We relate our language to traits, Java interfaces as well as other languages.
Furthermore, we discuss ways to improve our work.

5.1 Abstract Methods
Abstract methods are one of the key features in most general OO languages. For example,
Java interfaces (prior to Java 8) were designed to include only method declarations, and
those abstract methods can be implemented in a class body. The formal Featherweight
Java model [14] does not include abstract methods because of the orthogonality to the core
calculus. In traits, a similar idea is to use keywords like “require” for abstract method
declarations [28]. Abstract methods provide a way to delay the implementations to future
subtypes. Using overriding, they also help to “exclude” existing implementations.

In our formalized calculus, however, abstract methods are not a completely orthogonal
feature. The canInstantiate function has to check whether an interface can be instantiated
by looking at all the inherited branches and checking if each most specific method is concrete
or not.

Our formalization has a simple form of abstract methods, which behave similarly to
conventional methods with respect to conflicts. Other languages may behave differently.
For instance, in Java 8 when putting two identical abstract methods together by multiple
inheritance, there is no conflict error. In Figure 7, we use italic m to denote abstract methods.
In both cases, the Java compiler accepts the definition of C and automatically merges the
two inherited methods m into a single one. FHJ behaves differently from Java in both cases.
In the fork inheritance case (left), C will have two distinct abstract methods corresponding
to A.m and B.m. In the diamond inheritance case, the definition of C is rejected. There are
two reasons for this difference in behaviour. Firstly, our formalization just treats abstract

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:19

Figure 7 Fork inheritance (left) and diamond inheritance (right) on abstract methods.

methods as concrete methods with an empty body, and that simplifies the rules and proofs a
lot. Secondly, and more importantly, we distinguish and treat differently conflicting methods,
since they may represent different operations, even if they are abstract. Thus our model
adopts a very conservative behavior rather than automatically merging methods by default
(as done in many languages). Arguably, the diamond case it is actually an intentional conflict
due to the same source T . Therefore our model conservatively rejects this case. It is possible
to change our model to account for other behaviors for abstract methods, but we view this
as a mostly orthogonal change to our work, and should not affect the essence of the model
presented here.

5.2 Orthogonal & Non-Orthogonal Extensions
Our model is designed as a minimal calculus that focuses on resolving unintentional conflicts.
Therefore, we have omitted a number of common orthogonal features including primitive
types, assignments, method overloading, covariant method return types, static dispatch, and
so on. Those features can, in principle, be modularly added to the model without breaking
type soundness. For example, we present the additional syntax, typing and semantic rules of
static invocation below as an extension:

Expressions e ::= . . . | e.J0@J1 :: m(e)

(T-StaticInvk)

J0[m override J1] = I m(J x) override J1 {return e; }
Γ ` e0 : I0 I0 <: J0 Γ ` e : I I <: J

Γ ` e0.J0@J1 :: m(e) : I

(S-StaticInvk)
J0[m override J1] = Ie m(Ix x) override J1 {return e0; }

((J)new I()) .J0@J1 :: m(v)→ (Ie)[(Ix)v/x, (J0)new I()/this]e0

A static invocation e.J0@J1 :: m(e) aims at finding the method m in J0 that hierarchically
overrides J1, thus J0[m override J1] is invoked. As shown in (S-StaticInvk), static dispatch
needs a receiver for the substitution of the “this” reference, so as to provide the latest
implementations. In fact, static dispatch is common in OO programming, as it provides
a shortcut to the reuse of old implementation easily, and super calls can also rely on this
feature. For convenience we just make it simple above, whereas in languages like C++ or
Java, the static or super invocations are more flexible, as they can climb the class hierarchy.

One non-orthogonal extension to FHJ could be to generalize the model to allow multiple
hierarchical method overriding, meaning that, we allow overriding methods to update multiple
branches instead of only one branch. This feature offers a more fine-grained mechanism for
merging and can be helpful to easily understand the structure of the hierarchy. Multiple
overriding would be useful in the following situation, for example:

ECOOP 2018

20:20 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

interface A { void m() {...} }
interface B { void m() {...} }
interface C { void m() {...} }
interface D extends A, B, C {
void m() override A,B {...} // overrides branches A and B only
void m() override C {...} // overrides branch C

}

Here D inherits from three interfaces A, B, C with conflicting methods m, but only merges
two of those methods. While we can simulate D without multiple overriding in our calculus
(by introducing an intermediate class), a better approach would be to support multiple
overriding natively.

We present the modification of syntax, typing and semantic rules below (abstract methods
omitted):

Methods M ::= . . . | I m(Ix x) override J {return e; }

(T-MoMethod)

∀Ji ∈ J, I <: Ji findOrigin(m, I, Ji) = {Ji}

mbody(m, Ji, Ji) = (K, Ix x, Ie _) x : Ix, this : I ` e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

Semantic rules themselves remain unchanged, however, we need to change slightly the
definition of findOverride in mbody:

BDefinition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] where J ∈ J

With this approach, branches A and B are merged in the sense that they share the same
code, which can be separately updated in future interfaces. Another approach would be to
deeply merge the branches, with similar effect as introducing an intermediate interface AB to
explicitly merge the two branches. However, this approach is problematic because there is
no clear mechanism for identifying and further updating the merged branches. This could be
an interesting future work to explore.

Other typical non-orthogonal extensions to FHJ could be to have fields. The design of
FHJ can be viewed as a variant of Java 8 with default methods which allows for unintentional
method conflicts. Like Java interfaces and traits, state is forbidden in FHJ. There are some
inheritance models that also account for fields, such as C++ that uses virtual inheritance [10].
In our model, however, we can perhaps borrow the idea of interface-based programming [33],
which models state with abstract state operations. This can be realized by extending our
current model with static methods and anonymous classes from Java. However such an
extension requires more thought, so we leave it to future work.

5.3 Loosening the Model: Reject Early or Reject Later?
FHJ rejects the following case of diamond inheritance:
interface A { void m() {...} }
interface B extends A { void m() {...} }
interface C extends A { void m() {...} }
interface D extends B, C {}

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:21

Here both B.m and C.m override A.m, and D inherits both conflicting methods without an
explicit override. In this case, automatically merging the two methods (to achieve diamond
inheritance) is not possible, which is why many models (like traits and Java 8) reject such
programs. Moreover, keeping the two method implementations in D is problematic. In essence,
hierarchical information is not helpful to disambiguate later method calls, since the two
methods share the same origin (A.m). Our calculus rejects such conflicts by the (T-Intf)
rule, where D is considered to be ill-formed. We believe that rejecting D follows the principle
of models like traits and Java 8 interfaces, where the language/type-system is meant to alert
the programmer for a possible conflict early.

Nonetheless, C++ accepts the definition of D, but forbids later upcasts from D to A because
of ambiguity. Our language is more conservative on definitions of interfaces compared to
C++, but on the upside, upcasts are not rejected. We could also loosen the model to accept
definitions such as D, and perform ambiguity check on upcasts and other expressions. Then,
we would need to handle more cases than C++ because of the complication caused by the
hierarchical overriding feature.

6 Related Work

We describe related work in four parts. We first discuss mainstream popular multiple
inheritance models and then some specific models (e.g., C++ and C#) which are closest
to our work. Then we discuss related techniques used in SELF. Finally, we discuss the
foundation and related work of our formalization.

6.1 Mainstream Multiple Inheritance Models
Multiple inheritance is a useful feature in object-oriented programming, although it is difficult
to model and can cause various problems (e.g. the diamond problem [27, 29]). There are many
existing languages/models that support multiple inheritance [10, 22, 5, 28, 17, 19, 20, 11, 2].
The mixin models [5, 11, 32, 2, 13] allow naming components that can be applied to various
classes as reusable functionality units. However, the linearization (total ordering) of mixin
inheritance cannot provide a satisfactory resolution in some cases and restricts the flexibility
of mixin composition. Scala traits [22] are in fact linearized mixins and hence have the same
problem as mixins.

Simplifying the mixins approach, traits [28, 9] draw a strong line between units of reuse
and object factories. Traits act as units of reuse, containing functionality code. Classes, on the
other hand, are assembled from traits and act as object factories. Java 8 interfaces are closely
related to traits: concrete method implementations are allowed (via the default keyword)
inside interfaces, thus allowing for a restricted form of multiple inheritance. There are also
proposals such as FeatherTrait Java [16] for extending Java with traits. Extensions [25, 26]
to the original trait model exists with various advanced features, such as renaming. As
discussed in Section 2, the renaming feature gives a workaround to the unintentional method
conflicts problem. However, it breaks structural subtyping.

Malayeri and Aldrich proposed a model CZ [17] which aims to do multiple inheritance
without the diamond problem. Inheritance is divided into two concepts: inheritance depen-
dency and implementation inheritance. Using a combination of requires and extends, a
program with diamond inheritance is transformed to one without diamonds. Moreover, fields
and multiple inheritance can coexist. However untangling inheritance also untangles the
class structure. In CZ, not only the number of classes but also the class hierarchy complexity
increases.

ECOOP 2018

20:22 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

The above-mentioned models/languages support multiple inheritance, focusing on dia-
mond inheritance. They handle method conflicts in the same way, by simply disallowing two
methods with the same signature from two different units to coexist. In contrast, our work
provides mechanisms that allow methods with the same signatures, but different parents
to coexist in a class. Disambiguation is possible in many cases by using both static and
dynamic type information during method dispatching. In the cases where real ambiguity
exists, FHJ’s type system can reject interface definitions and/or method calls statically.

6.2 Resolving Unintentional Method Conflicts
A few language implementations have realized the problem of unintentional conflicts and
provide some support for it.

C++ model. C++ supports a very flexible inheritance model. C++ allows the existence of
unintentional conflicts and users may specify a hierarchical path via casts for disambiguation,
as discussed in Section 2. With virtual methods, dynamic dispatch is used and the method
lookup algorithm will find the most specific method definition. A contribution of our work is
to provide a minimal formal model of hierarchical dispatching, whereas C++ can be viewed
as a real-world implementation. There are several formalizations [34, 24, 23] in the literature
modeling various C++ features. However, as far as we know, there is no formal model that
captures this aspect of the C++ method dispatching model. Apart from this, as discussed in
Section 5.3, FHJ conservatively rejects some interface/class definitions that C++ accepts,
and upcasts are never rejected since the ambiguity is prevented beforehand.

Although C++ supports hierarchical dispatching, it does not support hierarchical over-
riding. However, there are some possible workarounds that can mimic hierarchical overriding,
including the MiddleMan approach4, the interface classes pattern as described in Section
25.6 of [31], the LotterySimulation discussion in [30]. Since these workarounds share the same
spirit, we will discuss in detail the MiddleMan approach, with the code shown in Figure 8.
In this example, classes A and B are two classes that both define a method with the same
name m unintentionally.

Class MiddleMan, as its name suggests, acts as a middleman between its class C and its
parents A, B. MiddleMan defines a virtual method m that overrides a parent method m and
delegates the implementation to another method m_impl that takes this as a parameter. C++
supports method overloading, so that multiple m_impl methods with different parameter
types can coexist. When defining class C, we specify the parents to be MiddleMan<A>,
MiddleMan instead of A, B. In this way, programmers may define new versions of A.m
and B.m in class C by providing the corresponding m_impl methods. Then in the client
code, the method call ((A*)c)->m() will print out the string "MA2", as expected. Although
this workaround can help us defining partial method overrides to a certain extent, the
drawbacks are obvious. Firstly, the approach is complex and requires the programmer to fully
understand this approach. Moreover, the lack of direct syntax support makes MiddleMan
code cumbersome to write. Finally, the approach is ad-hoc, meaning that the class MiddleMan
shown in Figure 8 is not general enough to be used in other cases: more middlemen are
needed if partial method overrides happen in other classes; and it is even worse when return
types differ.

4 https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial
-override-in-c

https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial-override-in-c
https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial-override-in-c

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:23

class A { public: virtual void m() {cout << "MA" << endl;}};
class B { public: virtual void m() {cout << "MB" << endl;}};
template<class C>
class MiddleMan : public C {

void m() override final { m_impl(this); }
protected:

virtual void m_impl(MiddleMan*) { return this->C::m(); }
};
class C : public MiddleMan<A>, public MiddleMan {
private:

void m_impl (MiddleMan<A>*) override {cout << "MA2" << endl;}
void m_impl (MiddleMan*) override {cout << "MB2" << endl;}

};
int main()
{

C* c = new C();
((A*)c)->m(); //print "MA2"
return 0;

}

Figure 8 The MiddleMan approach.

C# explicit method implementations. Explicit method implementations is a special fea-
ture supported by C#. As described in C# documentation [19], a class that implements an
interface can explicitly implement a member of that interface. When a member is explicitly
implemented, it can only be accessed through an instance of the interface. Explicit interface
implementations allow an interface to inherit multiple interfaces that share the same member
names and give each interface member a separate implementation.

Explicit interface member implementations have two advantages. Firstly, they allow
interface implementations to be excluded from the public interface of a class. This is
particularly useful when a class implements an internal interface that is of no interest
to a consumer of that class or struct. Secondly, they allow disambiguation of interface
members with the same signature. However, there are two critical differences to FHJ: (1)
default method implementations are not allowed in C# interfaces; (2) there is only one
level of conflicting method implementations at the class that implements the multiple parent
interfaces. Further overriding of those methods is not possible in subclasses.

Languages using hygienicity. In NextGen/MixGen [1], HygJava [15] and Magda [3], hy-
gienicity is proposed to deal with unintentional method conflicts. The idea is to give a method
a unique identifier by prefixing the name with an unambiguous path. As shown in Figure 9,
the prefix HelloWorld in the method call (new HelloWorld []).HelloWorld.MainMatter() is
mandatory. So writing programs in these languages is tedious if not supported by a specialized
IDE, that aids filling prefix/method information. The advantage of this approach, compared
to ours, is that it does not require any additional notion for method dispatching. Indeed the
compilation strategy is simple, just by generating conventional code (say in Java or C++)
with method names attached with prefixes. Unfortunately, the disadvantage is that some
expressive power is lost. In particular merging methods arising from diamond inheritance is
not possible because the methods have different prefixes. As shown in Figure 10, two methods
m from different branches A and B cannot be overridden by the method m in C because they are
regarded as unrelated methods, and m in C is just another new method that has nothing to
do with A.m or B.m. The reason is that in these hygienic approaches, path names are used to

ECOOP 2018

20:24 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

mixin HelloWorld of Object =
new Object MainMatter()
begin

"Hello world".String.print();
end;

end;
(new HelloWorld []).HelloWorld.MainMatter();

Figure 9 Full-qualified name of method calls in Magda.

mixin A of Object =
new String m()
begin
return "A";

end;
end;
mixin B of Object =
new String m()
begin
return "B";

end;
end;
mixin C of A, B =
new String m()
begin
return "C";

end;
end;

Figure 10 Code in Magda.

distinguish different methods. In contrast, our model can deal with unintentional conflicts, as
well as merged methods because our semantics is not simply based on prefixing. Instead, our
model keeps the names of methods unchanged, and our direct operational semantics takes
static and dynamic type information into account at runtime when doing method dispatching.
Finally, the multiple inheritance model in Magda is based on Mixins, whereas FHJ is based
on traits. Thus, Magda inherits all limitations of Mixins (such as the linearization problem,
etc).

6.3 Hierarchical Dispatch in SELF
As we have discussed before, although the mix of static and dynamic dispatch is particularly
useful under certain circumstances, it has received little research attention. In the prototype-
based language SELF [6], inheritance is a basic feature. SELF does not include classes but
instead allows individual objects to inherit from (or delegate to) other objects. Although it
is different from class-based languages, the multiple inheritance model is somewhat similar.
The SELF language supports multiple (object) inheritance in a clever way. It not only
develops the new inheritance relation with prioritized parents but also adopts sender path
tiebreaker rule for method lookup. In SELF “if two slots with the same name are defined in
equal-priority parents of the receiver, but only one of the parents is an ancestor or descendant
of the object containing the method that is sending the message, then that parent’s slot takes
precedence over the over parent’s slot”. Similarly to our model, this sender path tiebreaker
rule resolves ambiguities between unrelated slots. However, it is used in a prototype-based
language setting and it does not support method hierarchical overriding as FHJ does.

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:25

6.4 Formalization Based on Featherweight Java
Featherweight Java (FJ) [14] is a minimal core calculus of the Java language, proposed by
Igarashi et. al. There are many models built on Featherweight Java, including Feather-
Trait [16], Featherweight defenders [12], Jx [21], Featherweight Scala [8], and so on. FJ
provides the standard model of formalizing Java-like object-oriented languages and is easily
extensible. In terms of formalization, the key novelty of our model is making use of various
types (such as parameter types, method return types, etc) to track the static types as well as
the dynamic types during reduction. As far as we know, this technique has not appeared in
the literature before. This notion is of vital importance in our hierarchical dispatch algorithm,
and it allows for a more precise subject-reduction theorem as discussed in Section 3.

7 Conclusion

This paper proposes FHJ as a formalized multiple inheritance model for unintentional method
conflicts. Previous approaches either do not support unintentional method conflicts, thus have
to compromise between code reuse and type safety, or do not fully support overriding in the
presence of unintentional conflicts. To deal with unintentional method conflicts we introduce
two key mechanisms: hierarchical dispatching and hierarchical overriding. Hierarchical
dispatching is inspired by the mechanisms in C++. We provide a minimal formal model
of hierarchical dispatching in FHJ. Such an algorithm makes use of both dynamic type
information and static information from either upcasts or parameters’ information. It not only
offers code reuse and dynamic dispatch, but also ensures unambiguity using our hierarchical
dispatching algorithm for method resolution. Additionally we introduce hierarchical overriding
to allow conflicting methods in different branches to be individually overridden.

FHJ is formalized following the style of Featherweight Java and proved to be sound.
A prototype interpreter is implemented in Scala. We believe that the formalization of
hierarchical dispatching features is general and can be safely embedded in other OO models,
so as to have support for the fork inheritance.

Our model can certainly be improved in some aspects. As discussed in Section 5, there
are orthogonal and non-orthogonal features that can potentially be added to the design space.
The future work relates to loosening the model without giving up its soundness, together
with more exploration on supporting fields in the multiple inheritance setting.

References
1 Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class approach to genericity.

In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Program-
ing, Systems, Languages, and Applications, OOPSLA ’03, pages 96–114, New York, NY,
USA, 2003. ACM. doi:10.1145/949305.949316.

2 Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam—designing a java extension with
mixins. ACM Trans. Program. Lang. Syst., 25(5):641–712, 2003.

3 Viviana Bono, Jarek Kuśmierek, and Mauro Mulatero. Magda: A new language for
modularity. In Proceedings of the 26th European Conference on Object-Oriented Pro-
gramming, ECOOP’12, pages 560–588, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-31057-7_25.

4 Viviana Bono, Enrico Mensa, and Marco Naddeo. Trait-oriented programming in java 8.
In PPPJ ’14, 2014.

5 Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA/ECOOP ’90, 1990.

ECOOP 2018

http://dx.doi.org/10.1145/949305.949316
http://dx.doi.org/10.1007/978-3-642-31057-7_25
http://dx.doi.org/10.1007/978-3-642-31057-7_25

20:26 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

6 Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are shared parts
of objects: Inheritance and encapsulation in self. Lisp Symb. Comput., 4(3), 1991.

7 Steve Cook. Varieties of inheritance. In OOPSLA ’87 Panel P2, 1987.
8 Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A core calculus

for scala type checking. In MFCS ’06, 2006.
9 Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.

Traits: A mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–
388, 2006.

10 Margaret A Ellis and Bjarne Stroustrup. The annotated C++ reference manual. Addison-
Wesley, 1990.

11 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
POPL ’98, 1998.

12 Brian Goetz and Robert Field. Featherweight defenders: A formal model for vir-
tual extension methods in java. http://cr.openjdk.java.net/~briangoetz/lambda/
featherweight-defenders.pdf, 2012.

13 James Hendler. Enhancement for multiple-inheritance. In OOPWORK ’86, 1986.
14 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: A minimal

core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
15 Jaroslaw DM Kusmierek and Viviana Bono. Hygienic methods - introducing hygjava. Jour-

nal of Object Technology, 6(9):209–229, 2007.
16 Luigi Liquori and Arnaud Spiwack. Feathertrait: A modest extension of featherweight java.

ACM Trans. Program. Lang. Syst., 30(2):11, 2008.
17 Donna Malayeri and Jonathan Aldrich. Cz: Multiple inheritance without diamonds. In

OOPSLA ’09, 2009.
18 B Meyer. Eiffel: Programming for reusability and extendibility. SIGPLAN Not., 22(2),

1987.
19 Microsoft. Csharp explicit interface member implementations document. https://msdn.

microsoft.com/en-us/library/aa664591(v=vs.71).aspx, 2003.
20 David A. Moon. Object-oriented programming with flavors. In OOPSLA ’86, 1986.
21 Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via

nested inheritance. In OOPSLA ’04, 2004.
22 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An overview of the scala programming language. Technical report, École Polytechnique
Fédérale de Lausanne 1015 Lausanne, Switzerland, 2004.

23 G. Ramalingam and Harini Srinivasan. A member lookup algorithm for c++. In PLDI ’97,
1997.

24 Tahina Ramananandro. Mechanized Formal Semantics and Verified Compilation for C++
Objects. PhD thesis, Université Paris-Diderot-Paris VII, 2012.

25 John Reppy and Aaron Turon. A foundation for trait-based metaprogramming. In FOOL/-
WOOD ’06, 2006.

26 John Reppy and Aaron Turon. Metaprogramming with traits. In ECOOP ’07, 2007.
27 Markku Sakkinen. Disciplined inheritance. In ECOOP ’89, 1989.
28 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits:

Composable units of behaviour. In ECOOP ’03, 2003.
29 Ghan Bir Singh. Single versus multiple inheritance in object oriented programming. SIG-

PLAN OOPS Mess., 1995.
30 Bjarne Stroustrup. The design and evolution of C++. Pearson Education India, 1994.
31 Bjarne Stroustrup. The C++ programming language. Pearson Education India, 1995.

http://cr.openjdk.java.net/~briangoetz/lambda/featherweight-defenders.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/featherweight-defenders.pdf
https://msdn.microsoft.com/en-us/library/aa664591(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa664591(v=vs.71).aspx

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:27

32 Marc Van Limberghen and Tom Mens. Encapsulation and composition as orthogonal
operators on mixins: A solution to multiple inheritance problems. Object Oriented Systems,
3(1):1–30, 1996.

33 Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto. Classless java.
In GPCE ’16, 2016.

34 Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An operational seman-
tics and type safety prooffor multiple inheritance in c++. In OOPSLA ’06, 2006.

35 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, 1994.

36 Matthias Zenger and Martin Odersky. Independently extensible solutions to the expression
problem. In FOOL ’05, 2005.

A Appendix

A.1 Proofs
I Lemma 5. If mbody(m, Id, Is) = (J, Ix x, Ie e0), then x : Ix, this : J ` e0 : I0 for some
I0 <: Ie.

Proof. By the definition of mbody, the target method m is found in J. By the method typing
rule (T-Method), there exists some I0 <: Ie such that x : Ix, this : J ` e0 : I0. J

I Lemma 6 (Weakening). If Γ ` e : I, then Γ, x : J ` e : I.

Proof. Straightforward induction. J

I Lemma 7 (Method Type Preservation). If mbody(m, J, J) = (K, Ix _, Ie _), then for any
I <: J, mbody(m, I, J) = (K ′, Ix _, Ie _).

Proof. Since mbody(m, J, J) is defined, by (T-Intf) we derive that mbody(m, I, J) is also
defined. Suppose that

findOrigin(m, J, J) = {I0}

findOverride(m, J, I0) = {K}

findOrigin(m, I, J) = {I ′0}

findOverride(m, I, I ′0) = {K ′}

Below we use I[m ↑ J] to denote the type of method m defined in I that overrides J. We
have to prove that K ′[m ↑ I ′0] = K[m ↑ I0]. Two facts:

A. By (T-Intf), canOverride ensures that an override between any two original methods
preserves the method type. Formally,

I1 <: I2 ⇒ I1[m ↑ I1] = I2[m ↑ I2]

B. By (T-Method) and (T-AbsMethod), any partial override also preserves method
type. Formally,

I1 <: I2 ⇒ I1[m ↑ I2] = I2[m ↑ I2]

ECOOP 2018

20:28 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

By definition of findOverride, K <: I0, K ′ <: I ′0. By Fact B,

K[m ↑ I0] = I0[m ↑ I0] K ′[m ↑ I ′0] = I ′0[m ↑ I ′0]

Hence it suffices to prove that I ′0[m ↑ I ′0] = I0[m ↑ I0]. Actually when calculating
findOrigin(m, J, J), by the definition of findOrigin we know that I0 <: J and
I0[m override I0] is defined. So when calculating findOrigin(m, I, J) with I <: J, I0
should also appear in the set before pruned, since the conditions are again satisfied. But
after pruning, only I ′0 is obtained, by definition of prune it implies I ′0 <: I0. By Fact A, the
proof is done. J

I Lemma 8 (Term Substitution Preserves Typing). If Γ, x : Ix ` e : I, and Γ ` y : Ix, then
Γ ` [y/x]e : I.

Proof. We prove by induction. The expression e has the following cases:
Case Var. Let e = x. If x /∈ x, then the substitution does not change anything.

Otherwise, since y have the same types as x, it immediately finishes the case.
Case Invk. Let e = e0.m(e). By (T-Invk) we can suppose that

Γ, x : Ix ` e0 : I0 mbody(m, I0, I0) = (_, J _, I _)

Γ, x : Ix ` e : Ie Ie <: J Γ, x : Ix ` e : I

By induction hypothesis,

Γ ` [y/x]e0 : I0 Γ ` [y/x]e : Ie

Again by (T-Invk), Γ ` [y/x]e : I.
Case New. Straightforward.
Case Anno. Straightforward by induction hypothesis and (T-Anno). J

A.1.1 Proof for Theorem 1
Proof.

Case S-Invk. Let

e = ((J)new I()).m(v) Γ ` e : Ie

e ′ = (Ie0
)[(Ix)v/x, (I0)new I()/this]e0

mbody(m, I, J) = (I0, Ix x, Ie0
e0)

Since mbody(m, I, J) is defined, the definition of mbody ensures that I <: J. And since e is
well-typed, by (T-Invk),

Γ ` v : Iv Iv <: Ix

By the rules (T-Anno) and (T-New),

Γ ` (Ix)v : Ix Γ ` (I0)new I() : I0

On the other hand, by Lemma 5,

x : Ix, this : I0 ` e0 : I ′e0
I ′e0

<: Ie0

Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:29

By Lemma 6,

Γ, x : Ix, this : I0 ` e0 : I ′e0

Hence by Lemma 8, the substitution preserves typing, thus

Γ ` [(Ix)v/x, (I0)new I()/this]e0 : I ′e0

Since I ′e0
<: Ie0

, the conditions of (T-Anno) are satisfied, hence Γ ` e ′ : Ie0
. Now

we only need to prove that Ie0
= Ie. Since Ie0

is from mbody(m, I, J), whereas Ie is from
mbody(m, J, J), by the rule (T-Invk) on e. Since I <: J, by Lemma 7, Ie0

= Ie.
Case C-Receiver. Straightforward induction.
Case C-Args. Straightforward induction.
Case C-StaticType. Immediate by (T-Anno).
Case C-FReduce. Immediate by (T-Anno) and induction.
Case C-AnnoReduce. Immediate by (T-Anno) and transitivity of <:. J

A.1.2 Proof for Theorem 2
Proof. Since e is well-typed, by (T-Invk) and (T-Anno) we know that

I <: J, and mbody(m, J, J) is defined

By (T-Intf), mbody(m, I, J) is also defined, and the type checker ensures the expected
number of arguments.

On the other hand, since I <: J, by the definition of findOrigin,

findOrigin(m, I, J) ⊆ findOrigin(m, I, I)

By (T-New), canInstantiate(I) = True. By the definition of canInstantiate, any
J0 ∈ findOrigin(m, I, I) satisfies that findOverride(m, I, J0) contains only one interface,
in which the m that overrides J0 is a concrete method. Therefore mbody(m, I, J) also provides
a concrete method, which finishes the proof. J

A.1.3 Proof for Theorem 4
Proof. The Proof is done by induction on a derivation of t→ t ′, following the book TAPL.

If the last rule used in the derivation of t→ t ′ is (S-Invk), then we know that t has the
form ((J)new I()) .m(v) with I, J,m determined. Now it is obvious that the last rule in the
derivation of t→ t ′′ should also be (S-Invk) with the same I, J,m. Since mbody(m, I, J)
is a function that given the same input will calculate the same result, we know the two
induction results are the same, thus t ′ = t ′′ is immediately proved.
If the last rule used in the derivation of t→ t ′ is (C-Receiver), then t has the form
e0.m(e) and e0 → e ′0. Since e0 is not a value, the last rule used in t → t ′′ has to be
(C-Receiver) (other rules do not match) too. Assume in the reduction t→ t ′′, e0 → e ′′0 ,
thus e ′0.m(e) = e ′′0 .m(e). Thus, t ′ = t ′′ proved.
If the last rule used in the derivation of t → t ′ is (C-StaticType), then t is fixed to
be new I(). The last rule used in t → t ′′ has to be (C-StaticType), and obviously,
t ′ = t ′′ = (I)new I().

ECOOP 2018

20:30 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

If the last rule used in the derivation of t → t ′ is (C-FReduce), then t has the form
(I)e and e → e ′. The last rule used in t → t ′′ cannot be (C-StaticType) because it
requires t to be new I(); it can neither be (C-AnnoReduce) because it requires t to
be (I)((J)new K()) where (J)new K() is already a value. So the last rule used in t → t ′′

can only be (C-FReduce) (other rules do not match). Assume in the reduction t→ t ′′,
e→ e ′′, and (I)e→ (I)e ′′. By induction hypothesis, e ′ = e ′′, thus t ′ = t ′′ proved.
If the last rule used in the derivation of t → t ′ is (C-AnnoReduce), then the form
of t is fixed to be (I)((J)new K()). Since (I)((J)new K()) is not reducible, the rule (C-
FReduce) does not apply. The only rule applies in t→ t ′′ is (C-AnnoReduce). Thus
t ′ = t ′′ = (I)new K() proved.
If the last rule used in the derivation of t → t ′ is (C-Args), then t has the form
v.m(..., e, ...) and e → e ′. The last rule used in t → t ′′ cannot be (S-Invk) because it
requires all arguments to be values. Thus only (C-Args) applies to t→ t ′′. Assume in
the reduction t→ t ′′, e→ e ′′. By induction hypothesis, e ′ = e ′′, thus v.m(..., e ′, ...) =

v.m(..., e ′′, ...), thus t ′ = t ′′ proved. J

Modeling Infinite Behaviour by Corules
Davide Ancona1

DIBRIS, University of Genova, Italy
davide.ancona@unige.it

https://orcid.org/0000-0002-6297-2011

Francesco Dagnino
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it

https://orcid.org/0000-0003-3599-3535

Elena Zucca
DIBRIS, University of Genova, Italy
elena.zucca@unige.it

https://orcid.org/0000-0002-6833-6470

Abstract
Generalized inference systems have been recently introduced, and used, among other applications,
to define semantic judgments which uniformly model terminating computations and divergence.
We show that the approach can be successfully extended to more sophisticated notions of infinite
behaviour, that is, to express that a diverging computation produces some possibly infinite result.
This also provides a motivation to smoothly extend the theory of generalized inference systems
to include, besides coaxioms, also corules, a more general notion for which significant examples
were missing until now. We first illustrate the approach on a λ-calculus with output effects, for
which we also provide an alternative semantics based on standard notions, and a complete proof
of the equivalence of the two semantics. Then, we consider a more involved example, that is, an
imperative Java-like language with I/O primitives.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Operational semantics, coinduction, trace semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.21

1 Introduction

In semantic definitions of programming languages or systems, finite behaviour can be easily
modeled by inductive techniques. For instance, both in small-step and big-step operational
semantics, the fact that evaluation of an expression e terminates producing a final result
r can be formally expressed as a judgment e ⇒ r defined by an inference system2, so that
each valid judgment has a finite proof tree.

However, modeling infinite behaviour is not so easy. The simplest infinite behaviour we
may want to model is divergence in itself, that is, the fact that evaluation of e does not
terminate, as can be formally expressed by introducing a special result ∞. Traditionally, this
is modeled at the meta-level in small-step definitions: the inference system does not define
the judgment e ⇒∞, but only single steps, and then we formalize divergence simply as “an

1 Member of GNCS (Gruppo Nazionale per il Calcolo Scientifico), INdAM (Istituto Nazionale di Alta
Matematica "F. Severi")

2 In small-step style this judgment can be inductively defined on top of the one-step reduction relation.

© Davide Ancona, Francesco Dagnino, and Elena Zucca;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 21; pp. 21:1–21:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.ancona@unige.it
https://orcid.org/0000-0002-6297-2011
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:elena.zucca@unige.it
https://orcid.org/0000-0002-6833-6470
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Modeling Infinite Behaviour by Corules

infinite sequence of steps”. In big-step semantics the situation is even worse: non terminating
and stuck computations are identified, since in both cases it is not possible to construct a
finite proof tree showing that the computation returns a result.

A simple solution, in both approaches, is to define e ⇒∞ by a separate inference system,
where inference rules are interpreted coinductively [8, 13]. However, in this way there are
two stratified systems with overlapping rules, and there is no unique formal definition of
the behaviour. The possibility of providing such unique definition has been investigated
in previous work [13, 3], by interpreting coinductively the standard rules for the big-step
operational semantics (coevaluation). Unfortunately, this approach is not satisfactory; for
instance, coevaluation is non-deterministic in some cases: for a diverging term such as
Ω = (λx.x x)(λx.x x), Ω⇒ r can be derived for any r , instead of the unique valid judgment
Ω⇒∞. Moreover, for some other diverging term, e.g., Ω (0 0), no judgment can be derived,
since there is no valid judgment for the subterm 0 0. This happens because in an application
e1 e2, if we follow a left-to-right strategy, then divergence of e1 should be propagated regardless
of e2, but this cannot be properly modeled due to the presence of spurious judgments Ω⇒ r .
In some recent work [6], it has been shown that both problems can be solved by defining
the judgment e ⇒ r by a generalized inference system [5]. This semantics can be seen as a
filtered coevaluation. Indeed, infinite proof trees are allowed, but appropriate coaxioms are
introduced to filter out spurious judgments Ω⇒ r , so that, for all terms expected to diverge,
it is only possible to derive ∞ as result. In this way, it is also possible to provide rules for
propagation of divergence, solving the second problem.

In the present paper, we face the problem of expressing more sophisticated notions of
infinite behaviour. That is, we want to model not only that evaluation of an expression e
could not terminate, but also that this diverging computation could produce some possibly
infinite result. For instance, if computations can have output effects because of expression
out e, then the result of a diverging computation could be a possibly infinite stream of output
values. More in general, the behaviour of a non terminating program is a possibly infinite
trace of observable events. As discussed above for pure divergence, this is modeled at the
meta-level in small-step definitions: the inference system does not define the judgment e ⇒ r
where r is an infinite result, but only single labelled steps, and then we define divergent
results as infinite sequences of labelled steps. On the other hand, again analogously to the
pure divergence case, big-step rules interpreted simply coinductively allow derivation of
spurious results. Hence, we investigate whether the approach of [6] could be effectively used
also in this more general case to filter out such judgments.

Our conclusion, illustrated in the body of the paper, is that the approach based on
filtered coevaluation works very well indeed for modeling trace semantics, or, more in general,
infinite behaviour of divergent programs. Moreover, an interesting result is that, to filter
out spurious judgments, we need to use not only coaxioms, but also corules. Corules were
not considered in the original definition of generalized inference systems [5], even though
formal definitions trivially extend to include them, simply for the lack of significant examples.
Modeling infinite behaviour offers exactly such a significant example: notably, corules are
needed to ensure that a diverging computation yields a possibly infinite result. For instance,
if expression out e is reached infinitely many times during the non terminating evaluation of
another expression, then the latter actually produces the effects of out e, providing that e
converges. Similar corules are needed for other constructs having other kinds of observable
behavior. Motivated by this important application, we present in this paper a slight variation
of generalized inference systems [5] which also includes corules; we will use “generalized
inference system” and “inference system with corules” as synonyms.

D. Ancona, F. Dagnino, and E. Zucca 21:3

Summarizing the above discussion, the novel contribution of this paper w.r.t. previous
work is not the general framework, which is the same of [5, 6] (except for the immediate
generalization from coaxioms to corules), including, e.g., the fixpoint theory, not reported
here. The novel, non trivial problem faced here is how to obtain, starting from an inductive
judgment defining the result of finite computations, an extended one defining the (possibly
infinite) result of infinite computations as well. We show that the problem can be solved by
adding suitable corules and considering the resulting generalized inference system. This has
been done in [6] only in the very special case where the only observable result is divergence.
The general case is more challenging and requires more complex corules.

The paper is structured as follows. Sect. 2 introduces inference systems with corules,
briefly recalling/extending the notions and results from [5]. In Sect. 3 we illustrate the
approach on a lambda calculus enriched with output effects. That is, we show that, by using
corules, we can directly define a unique judgment e ⇒ r where r is either a finite result (final
value and finite output stream) or an infinite result (∞ and possibly infinite output stream).
In Sect. 4 we show that, by only using standard techniques, namely, labeled transition
systems, coinduction, and observational equivalence, we can provide an alternative semantics
which, however, requires much more work. In Sect. 5 we formally prove the equivalence
of such two semantics. In Sect. 6 we consider a more involved example, that is, a simple
imperative Java-like language with I/O primitives. Finally, the most relevant related work is
surveyed in Sect. 7, and Sect. 8 concludes and outlines directions for further investigation.
The Appendix contains an algebraic presentation of the observational equivalence, some of
the proofs and additional examples.

2 Inference systems with corules

In this section, we provide a short introduction to inference systems with corules, needed to
make the paper self-contained. The material is largely taken from [5], apart that we consider,
besides coaxioms, corules with an analogous meaning. Here we focus on the proof-theoretic
view, which is essential for our aims.

First of all we recall standard notions about inference systems [1, 13]. Assume a set U
called the universe, whose elements are called judgments. An inference system I consists of
a set of (inference) rules, which are pairs Pr

c , with Pr ⊆ U the set of premises, c ∈ U the
consequence (a.k.a. conclusion). A rule with an empty set of premises is also called an axiom.
A proof tree is a tree whose nodes are (labeled with) judgments in U , and there is a node c
with set of children Pr only if there exists a rule Pr

c .
The inductive interpretation of I, denoted JIKind, is the set of judgments which are the

root of a finite3 proof tree, whereas the coinductive interpretation of I, denoted JIKcoind, is
the set of judgments which are the root of an arbitrary (finite or infinite) proof tree.

Both interpretations can also be characterized set-theoretically as follows. We define the
(one step) inference operator FI : ℘(U)→ ℘(U) by FI(S) = {c | Pr ⊆ S, Prc ∈ I}. A set S is
closed if FI(S) ⊆ S, and consistent if S ⊆ FI(S). That is, no new judgments can be inferred
from a closed set, and all judgments in a consistent set can be inferred from the set itself.
Then, it can be proved that JIKind is the smallest closed set, that is, the intersection of all
closed sets, and JIKcoind is the largest consistent set, that is, the union of all consistent sets.

3 Under the common assumption that sets of premises are finite, otherwise we should say a well-founded
tree, that is, a tree with no infinite paths.

ECOOP 2018

21:4 Modeling Infinite Behaviour by Corules

We describe now the notion of inference system with corules.

I Definition 1 (Inference system with corules). An inference system with corules, or generalized
inference system, is a pair (I, Ico) where I and Ico are inference systems, whose elements
are called rules and corules, respectively.

Analogously to rules, the meaning of corules is to derive a consequence from the premises.
However, they can only be used in a special way, described in the following.

Given two inference systems I and Ico, I ∪ Ico is the (standard) inference system whose
rules are the union of those in I and Ico. Moreover, given a subset S of the universe, I|S
denotes the inference system obtained from I by keeping only rules with consequence in S.
Then, the interpretation of an inference system with corules (I, Ico) is defined as follows.
1. First, we consider the inference system I ∪ Ico where corules can be used as rules as well,

and we take its inductive interpretation JI ∪ IcoKind.
2. Then, we take the coinductive interpretation of the inference system obtained from I by

keeping only rules with consequence in JI ∪ IcoKind.
Altogether, we get the following definition.

I Definition 2 (Interpretation of a generalized inference system). Let (I, Ico) be a generalized
inference system. Then, its interpretation JI, IcoK is defined by

JI, IcoK = JI|JI∪IcoKindKcoind

In proof-theoretic terms, JI, IcoK is the set of judgments which have an arbitrary (finite
or infinite) proof tree in I, whose nodes all have a finite proof tree in I ∪ Ico. Note that
a finite proof tree in I is a finite proof tree in I ∪ Ico as well, hence the condition is only
significant for nodes which are roots of an infinite path in the proof tree.

We report now some examples from [5] which illustrate the expressive power of generalized
inference systems. Both examples only use corules with no premises (coaxioms). Examples
which need corules with premises will be shown in the following section.
As usual, sets of rules can be expressed by a metarule with side conditions, and analogously
sets of corules can be expressed by a metacorule with side conditions. In the examples,

(meta)corules will be written
Pr

c
, that is, with thicker lines, to be distinguished from

(meta)rules.
The first example computes the judgment n ?→N meaning that N is the set of nodes

reachable from a node n of a given graph. Let us represent a graph by its set of nodes V
and a function adj which returns all the adjacents of a node. The judgment is defined by
the generalized inference system (I, Ico) where I and Ico are all the instances of (adj) and
(co-empty) below, respectively.

(adj)
n1

?→N1 . . . nk
?→Nk

n ?→{n} ∪ N1 ∪ . . . ∪Nk
adj(n) = {n1, . . . ,nk} (co-empty)

n ?→∅
n∈V

Consider, for instance, a graph with nodes a, b, c, with an arc from a into b and conversely,
and c isolated. To show the aim of corules, let us first consider what happens if we only
consider metarule (adj), disregarding the corules. We have in this way a (standard) inference
system, which, as described above, can be interpreted either inductively or coinductively.
However, neither interpretation provides the desired meaning. Indeed, if we interpret (adj)

inductively, then we get only the judgment c ?→{c}. On the other hand, if we interpret the
rules coinductively, then we get the correct judgments a ?→{a, b} and b ?→{a, b}, but we also

D. Ancona, F. Dagnino, and E. Zucca 21:5

get the wrong judgments a ?→{a, b, c} and b ?→{a, b, c}. For instance, the judgment a ?→{a, b, c}
has the infinite proof tree shown below.

(adj)

(adj)

(adj)

...
a
?→{a, b, c}

b
?→{a, b, c}

a
?→{a, b, c}

If we take into account corules, instead, then the interpretation of the resulting generalized
inference system provides the desired meaning. For instance, in the example, the judgment
a
?→{a, b} has an infinite proof tree in I where each node has a finite proof tree in I ∪ Ico, as

shown below:

(adj)

(adj)

(adj)

...
a
?→{a, b}

b
?→{a, b}

a
?→{a, b}

(adj)

(adj)

(co-empty)
a
?→∅

b
?→{b}

a
?→{a, b}

(adj)

(adj)

(co-empty)
b
?→∅

a
?→{a}

b
?→{a, b}

whereas this is not the case for the judgment a ?→{a, b, c}. In other words, corules filter out
undesired infinite proof trees.

Note that the inductive and coinductive interpretation of I are special cases, notably:
the inductive interpretation of I is the interpretation of (I, ∅)

the coinductive interpretation of I is the interpretation of (I, {∅c | c ∈ U}).

In [5] it is shown that this corresponds to taking a fixed point of FI which is, in general,
neither the least, nor the greatest.

We show now how the recursive definition of a function can be expressed as an inference
system with corules. Let Z denote the set of integers, L the set of (finite and infinite) lists of
integers, Λ the empty list and x:l the list with head x and tail l.

The function which returns the greatest element contained in a (non empty) list is
expressed by judgments of shape max(l, x), with l ∈ L and x ∈ Z.

max(x:Λ, x)
max(l, y)

max(x:l, z)z = max(x, y)
max(x:l, x)

Without coaxioms the coinductive interpretation fails to be a function (for instance, for l
the infinite list of 1s, any judgment max(l, x) with x ≥ 1 can be derived), and the coaxioms
“filter out” the wrong results. We refer to related work [5, 6] for other examples.

Several proof techniques have been proposed for generalized inference systems with
coaxioms [5]. For the aim of this paper, we only need the bounded coinduction principle
reported below, which is a generalization of the standard coinduction principle.

Let (I, Ico) be a generalized inference system, and S (for “specification”) an intended set
of judgments, called valid in the following. Completeness, that is, the property that each
valid judgment can be derived (S ⊆ JI, IcoK), can be proved as follows:

I Theorem 3 (Bounded coinduction principle). If the following two conditions hold:
1. S ⊆ JI ∪ IcoKind, that is, each valid judgment has a finite proof tree in I ∪ Ico;
2. S ⊆ FI(S), that is, each valid judgment is the consequence of an inference rule in I

where all premises are in S
then S ⊆ JI, IcoK.

ECOOP 2018

21:6 Modeling Infinite Behaviour by Corules

e ::= v | x | e1 e2 | out e expression
v ::= i | λx.e value
` ::= v | τ label

E [] ::= � | E [] e | v E [] | out E [] evaluation context

(β)
(λx.e) v τ−→ e[x ← v]

(out)
out v v−→ v

(ctx)
e `−→ e′

E [e] `−→ E [e′]
E [] 6= �

Figure 1 λ-calculus with output effects: syntax and labeled transition system.

The standard coinduction principle can be obtained when Ico = {∅c | c ∈ U}; for this
particular case the first condition trivially holds.

3 Infinite behaviour by corules

As mentioned in the Introduction, in this paper we are interested in modeling infinite
behaviour. That is, in addition to explicitly model divergent computations, we would like
to also model their possibly infinite result. This infinite result can be thought of as what
an external observer can see during the infinite computation. In this section we show how
corules can be used to define such a semantics.

We illustrate the technique by an extension of the call-by-value lambda calculus with
output effects. The syntax is given in Fig. 1, together with a labeled transition system meant
to provide the reader with a simple formal account of the intended meaning.

We assume infinite sets of variables x and integer constants i. Values are defined in the
standard way, as either integer literals or lambda abstractions. Beyond standard constructs,
we added expressions of shape out e, which output the result of the evaluation of e.

As it is common practice, the reduction relation is decorated by a label ` representing
the observable effect of a single step. A label v represents an output effect, and can be
generated by rule (out), while a label τ represents the absence of observable output and can
be generated by the β-rule. The rule (ctx) is the usual contextual closure and defines the
standard (call-by-value and left-to-right) evaluation strategy.

As discussed in the Introduction, the labelled transition system in Fig. 1 models a single
evaluation step, and infinite behaviour is only obtained at the meta-level by considering
infinite sequences of labelled steps.

We show now a generalized inference system defining a judgment e ⇒ r which directly
models both finite and infinite behaviour of expressions.

The top section of Fig. 2 defines results r of (finite and infinite) computations. If the
evaluation of an expression terminates, then the result of the computation is of shape (v, o)
where v is the final value, and o is the (necessarily finite) output stream produced during the
evaluation. If the evaluation of an expression diverges, hence there is no final value, then
the result is of shape (∞, o∞) where o∞ is the (possibly infinite) output stream produced
during the evaluation. Output streams are sequences of values delimited by square brackets
for readability. Streams grow left-to-right; hence, the rightmost element in a finite stream
corresponds to the most recent output value. Concatenation of two streams o · o∞ is defined
in the usual way, under the assumption that the left-hand side operand must be finite.

The second section of Fig. 2 contains the generalized inference system defining the
judgment e ⇒ r , meaning that r is the (finite or infinite) result of the evaluation of e.

D. Ancona, F. Dagnino, and E. Zucca 21:7

r ::= (v, o) | (∞, o∞) result
o ::= [v1 . . . vn] finite output

o∞ ::= o | [v1 . . . vn . . .] finite/infinite output
D[] ::= � e | � � | out� (divergence) propagation context

(val) v ⇒ (v, []) (app)
e1 ⇒ (λx.e, o1) e2 ⇒ (v, o2) e[x← v]⇒ r

e1 e2 ⇒ o1 · o2 · r

(out)
e⇒ (v, o)

out e⇒ (v, o · [v]) (div)
∀ i = 1..n.ei ⇒ (vi, oi) e ⇒ (∞, o∞)
D[en, e]⇒ (∞, o1 · . . . · on · o∞)

(co-empty)
e⇒ (∞, [])

(co-out)
e⇒ (v, o)

out e⇒ (∞, o · [v] · o∞)

Figure 2 λ-calculus with output effects: inference system with corules.

Propagation contexts can have one or two holes (all at fixed depth 1) and allow a more
concise treatment of divergence propagation with a single rule, see comments below for (div).

We recall that in rules thicker lines distinguish corules from rules.
Rule (val) is straightforward: the evaluation of a value always converges to itself and

produces no output.
Rule (app) is an extension of the usual big-step rule for application. First, the two

subexpressions are evaluated; if they both converge, then the body of the function is
evaluated after the formal parameter has been substituted with its argument. As usual,
e[x← v] denotes capture-avoiding substitution modulo α-renaming. The evaluation of the
body returns a general result, meaning that the evaluation may either converge or diverge.
The final result is obtained by suitably concatenating the output streams generated by the
evaluations of e1 and e2 with that generated by the evaluation of the body. If r = (v∞, o∞),
then o · r denotes (v∞, o · o∞), where v∞ is either a value v or ∞.

In rule (out), if the evaluation of e converges to a value v, then the whole expression
converges to the same value; moreover, the value v is added to the output stream o generated
by the evaluation of e.

The remaining rule (div) deals with propagation of non termination and composition of the
corresponding output streams. Evaluation of the subexpressions in the holes of the context
proceeds from left to right and the subexpression corresponding to the rightmost hole is the
first one which diverges. In this simple language (divergence) propagation contexts have no
more than two holes, therefore the number n of subexpressions that converge can be either 0
or 1. More in detail, the context � e corresponds to the case where application diverges
because the left-hand side expression does not terminate, whereas the context � � to the
case where the left-hand side expression terminates, whereas the right-hand side does not.
Finally, out� propagates non termination of the unique subexpression of out e.

As explained in the previous section, corules are used to filter out spurious results of
divergent computations.

Corule (co-empty) deals with divergent computations which produce a finite output stream,
hence do not produce any output (we will also say that the infinite computation is “non-
productive”) from a certain point. In this case, as shown in the first two examples below,
(co-empty) prevents derivation of judgments with arbitrary output streams, similarly to the
examples shown in the previous section. In all such cases the only correct option is non-
termination with the empty output stream [].

ECOOP 2018

21:8 Modeling Infinite Behaviour by Corules

∇1 = (app)

(val)
λx.x x ⇒ (λx.x x, [])

(val)
λx.x x ⇒ (λx.x x, [])

(app)

...

Ω1 ≡ (x x)[x ← λx.x x]⇒ r

Ω1 ⇒ [] · [] · r ≡ r

(out)

∇1

Ω1 ⇒ (v, o)
out Ω1 ⇒ (v, o · [v])

(div)

∇1

Ω1 ⇒ (∞, o∞)
out Ω1 ⇒ (∞, o∞)

Figure 3 Infinite proof trees for Example 1.

Corule (co-out) deals with non terminating terms which produce an infinite number of
values; this happens if expressions of shape out e are evaluated an infinite number of times.
The premise requires the subexpression e to converge to a value v, ensuring that the output
expression is actually evaluated, adding v to the output stream. In this way we guarantee
productivity, that may not hold if e diverges (see the difference between examples 2 and 3
below).

Example 1. As a first example, we consider the term out Ω1, where Ω1 = (λx.x x) (λx.x x);
the only derivable judgment is out Ω1 ⇒ (∞, []), corresponding to the expected semantics:
the evaluation of out Ω1 diverges and generates an empty output stream.

Indeed, a judgment out Ω1 ⇒ r is derivable if:
it has a possibly infinite proof tree with no corules
such proof tree is valid according to the corules, that is, each node has a finite proof tree
with corules.

The first condition is illustrated in Fig. 3. The top part of the figure shows the infinite proof
tree for the judgment Ω1 ⇒ r , for all possible r , where the vertical dots indicate that the
proof continues with the same repeated pattern. Here and in the following examples, we add
to the proof tree some comments (with a grey background) showing an equivalent expression,
as a help for the reader. No other finite or infinite proof trees can be built for such judgment.
In such a simple case the proof tree is regular; however, there exist examples of divergent
computations with non regular proof trees.

For the evaluation of out Ω1 we can apply two different rules, depending on the shape of
r . If r is a converged result (v, o), then the only applicable rule is (out), and we derive the
judgment out Ω1 ⇒ (v, o · [v]); otherwise, r is a diverged result (∞, o∞), and the judgment
out Ω1 ⇒ (∞, o∞) can be derived by rule (div).

Among all judgments derivable with an infinite tree built with only the rules as shown
above, the only one that is valid according to the corules is out Ω1 ⇒ (∞, []); in this case it
suffices to exhibit a finite proof tree for Ω1 ⇒ (∞, []) which can be built by applying also
the corules. Such a tree is trivial, thanks to coaxiom (co-empty):

(co-empty) Ω1 ⇒ (∞, [])

By rule (div), and from the trivial finite tree above, it is possible to derive a finite tree
also for the judgment out Ω1 ⇒ (∞, []).

It is easy to see that instead, for r 6= (∞, []), it is not possible to derive a finite tree,
built by also the corules, for the judgment Ω1 ⇒ r .

D. Ancona, F. Dagnino, and E. Zucca 21:9

∇2 = (app)

(val)
ω2 ⇒ (ω2, [])

(val)
ω2 ⇒ (ω2, [])

(div)

(app)

...
Ω2 ⇒ (∞, o∞)

out Ω2 ≡ (out (x x))[x ← ω2]⇒ (∞, o∞)

Ω2 ⇒ [] · [] · (∞, o∞) ≡ (∞, o∞)

Figure 4 Infinite proof trees for Example 2.

∇3 = (app)

(val)
ω3 ⇒ (ω3, [])

(out)

(val)
ω3 ⇒ (ω3, [])

outω3 ⇒ (ω3, [ω3])
(app)

...

ω3 (outω3) ≡ (x (out x))[x ← ω3]⇒ (∞, o∞)

ω3 (outω3) ≡ (x (out x))[x ← ω3]⇒ [] · [ω3] · (∞, o∞)

(app)

(val)
ω3 ⇒ (ω3, [])

(val)
ω3 ⇒ (ω3, []) ∇3

Ω3 ⇒ [] · [] · (∞, o∞) ≡ (∞, o∞)

Figure 5 Infinite proof tree for Example 3.

Example 2. As a second example, we consider the term Ω2 = ω2 ω2 =(λx.out (x x))
(λx.out (x x)) and show that, as in the previous case, the only derivable judgment is
Ω2 ⇒ (∞, []), as expected: the evaluation of Ω2 does not terminate and does not output
any value.

By applying only the rules, the infinite proof tree shown in Fig. 4 can be built for the
judgment Ω2 ⇒ (∞, o∞), for any possible o∞. No judgments of shape Ω2 ⇒ (v, o) can be
derived, because this could be achieved only with an infinite proof tree containing infinite
applications of rule (out) for the judgment out Ω2 ⇒ (v, o). This is not possible because
such a rule is applicable only for finite output streams, whereas the infinite applications
of (out) would force o to be infinite. Among all judgments derivable with an infinite tree
built with the rules as shown above, the only one that is valid according to the corules is
out Ω2 ⇒ (∞, []); in this case it is sufficient to exhibit a finite proof tree which uses also the
corules for the judgment out Ω2 ⇒ (∞, []). Again, this can be simply obtained by corule
(co-empty):

(co-empty)
out Ω2 ⇒ (∞, [])

By rule (app), and from the simple finite tree above, it is possible to derive a finite tree for
the judgment Ω2 ⇒ (∞, []) as well.

No finite proof tree can be derived for out Ω2 ⇒ (∞, o∞) for any o∞ 6= [], because corule
(co-out) can be used only if Ω2 ⇒ (v, o) can be derived (by using also the corules) with a
finite tree, but this is not possible, because the only possible derivable trees are infinite, as
shown above.

Example 3. As a final example, we show that the only judgment derivable for Ω3 = ω3 ω3 =
(λx.(x (out x))) (λx.(x (out x))) is Ω3 ⇒ (∞, [ω3 . . . ω3 . . .]), corresponding to the expected
semantics: the evaluation of Ω3 diverges and generates the output stream consisting of
infinite occurrences of the value ω3.

ECOOP 2018

21:10 Modeling Infinite Behaviour by Corules

In the system without corules it is possible to build only one proof tree, shown in Fig. 5,
which is infinite and forces the equation o∞ = [ω3] · o∞, which admits a unique solution;
hence, the judgment Ω3 ⇒ (∞, o∞) is derivable only for o∞ = [ω3 . . . ω3 . . .]. Then, we have
to show that by considering also the corules we can derive finite proof trees for all judgments
involved in the proof tree for Ω3 ⇒ (∞, o∞); to this aim, it is sufficient to exhibit a finite
derivation just for the judgment (x (out x))[x ← ω3]⇒ (∞, o∞) at the root of proof tree ∇3.

(div)

(val)
ω3 ⇒ (ω3, [])

(co-out)

(val)
ω3 ⇒ (ω3, [])

out (ω3)⇒ (∞, o∞)

(x (out x))[x ← ω3]⇒ [] · (∞, o∞) ≡ (∞, o∞)

By rule (app) and from the finite tree above, it is possible to derive a finite tree as well for
Ω3 ⇒ (∞, o∞).

We conclude this section by proving a conservativity property [6] which we always
expect to hold for an operational semantics modeling also divergence, given through corules.
Namely, we require that the introduction of divergence does not affect standard convergent
computations, as formally stated in the following theorem. This property is important since
it implies that, for convergent judgments, we can reason by standard inductive techniques.

I Theorem 4 (Conservativity of e ⇒ r). If e ⇒ r holds, then r = (v, o) if and only if the
judgment has a finite proof tree.

Proof. Let us denote by (I, Ico) the generalized inference system defining the judgment
e ⇒ r in Fig. 2, and by I ∪ Ico the (standard) inference system that is the union of I and
Ico. If e ⇒ r is derivable in (I, Ico), then by definition all judgments in the proof tree have a
finite derivation in I ∪ Ico, including the judgment itself. Noting that a rule’s conclusion is a
divergent judgment iff at least one of the premises is also divergent (see rules (div) and (app)),
it can be shown by induction on the depth of the tree that r = (∞, o∞) iff we use either
(co-empty) or (co-out) in the tree. It follows that r = (v, o) iff we do not use (co-empty) and
(co-out) in the finite proof tree in I ∪ Ico, hence it is a finite proof tree in I as needed. J

4 Infinite behaviour by standard techniques

In this section we show that, by only using standard techniques, namely, labeled transition
systems (LTSs from now on), coinduction, and observational equivalence, we can provide an
alternative semantics for lambda calculus with output effects, which, however, is much more
involved than the direct definition provided in the previous section.

The starting point is the LTS introduced in Fig. 1. This (inductive) inference system
provides a very simple and intuitive model, which, however, is not abstract enough for
reasoning about the observable behaviour of programs. Namely, two expressions having
different sequences of labeled steps could be equivalent in terms of their observable behaviour.

To obtain, starting from the LTS, the same level of abstraction of the semantics defined
in the previous section, some additional work is needed.

First of all, as discussed in the Introduction, the overall result of a computation is only
modeled at the meta-level in the labeled transition system: that is, this inference system only
defines single steps, and then we say that there is “a possibly infinite sequence of labeled
steps”. To express this statement, instead, in a formal way, we can define, of top of the LTS,
another judgment e r̃ which associates with each expression e its result, consisting of
the final value, if any, or ∞ if diverging, and the possibly infinite stream of labels produced
during the computation. This judgment can be defined by standard coinduction, as detailed
below.

D. Ancona, F. Dagnino, and E. Zucca 21:11

r̃ ::= (v, õ) | (∞, õ∞) (rough) result
õ, s̃ ::= [`1 . . . `n] finite stream

õ∞, s̃∞ ::= õ | [`1 . . . `n . . .] finite/infinite stream

v (v, [])
e′ r̃

e [`] · r̃ e `−→ e′
e r̃

Figure 6 λ-calculus with output effects: coinductive inference system.

However, not even this judgment is abstract enough, since, as mentioned above, different
sequences of labels could be equivalent in terms of observable behaviour, that is, roughly, τ
steps should be not relevant. In other words, results r̃ obtained in this judgment need a further
abstraction step, consisting in the definition of an appropriate observational equivalence:
in the following, we will call them rough results, and we will call observable results those
obtained in the judgment defined in the previous section. We describe now in details the two
steps.

Computing rough results. The definition of the judgment e r̃ is given in Fig. 6.
The top section of the figure defines (rough) results r̃ of (finite and infinite) computations.

The definition is analogous to that of (observable) results r in Fig. 2. However, here the
second component of a result is, rather than an output stream (a stream of values), a stream
of labels (called simply a stream from now on), corresponding to the fact that a computation
step can be silent (no output). Concatenation of two streams õ · õ∞ is also defined analogously
to that of output streams, hence requires that õ is finite.

The second section of the figure contains the coinductive inference system defining the
judgment e r̃ , meaning that r̃ is the (rough) finite or infinite result of the evaluation of e.

Again analogously to output streams and (observable) results, we can extend concatenation
of streams to (rough) results by setting õ · (v∞, õ∞) = (v∞, õ · õ∞), where v∞ is either a
value v or ∞.

A very important point to be noted and discussed is that the definition of the judgment
e r̃ is purely coinductive. Indeed, in Fig. 6, we used the notation of generalized inference
systems for uniformity, but, as mentioned on page 5, a generalized inference system with a
unique (meta)coaxiom where the consequence is any judgment exactly corresponds to the
inference system consisting of only the rules, interpreted coinductively.

In this case it is possible to give a purely coinductive definition, without incurring in
the problem of spurious judgment discussed in the Introduction for coevaluation, since the
definition is productive. That is, each time we apply the inference rule, we add a label ` to
the previously computed result, thus also infinite derivations admit a unique result. In order
to guarantee productivity, the presence of labels τ is essential, even though they are not
interesting semantically, since they represent non-observable steps. This motivates the fact
that, as mentioned above, by using standard techniques we need two additional steps on top
of the labeled transition system: indeed, to be able to use pure coinduction we need rough
results, and then we need to identify rough results which are observationally equivalent. By
using corules, instead, as shown in the previous section, we are able to directly define the
(observable) behaviour by a unique judgment.

ECOOP 2018

21:12 Modeling Infinite Behaviour by Corules

(tau)
τα ≈ τβ

α, β ∈ N∪{ω} (val)
õ∞ ≈ õ′∞

τn · [v] · õ∞ ≈ τm · [v] · õ′∞
n,m ∈ N (co)

õ∞ ≈ õ′∞

Figure 7 Observational equivalence: coinductive inference system.

Also for the judgment e r̃ we can state a conservativity result analogous to Theorem 4,
implying that, for convergent judgments, we can reason by standard inductive techniques. In
this case, we have a one-to-one correspondence between finite proof trees and convergent
computations, and between infinite proof trees and divergent computations.

I Theorem 5 (Conservativity of e r̃). If e r̃ holds, then r̃ = (v, õ) if and only if the
judgment has a finite proof tree.

Proof. A finite proof tree for e r̃ needs to start from the axiom v (v, []), hence
r̃ = (v, õ). On the other hand, an infinite proof tree for e r̃ , since it adds a label to the
result at each level, requires the output stream in the result to be infinite, therefore, thanks
to the way we defined results, we get r̃ = (∞, õ∞). J

Observational equivalence. We discuss now how to define observational equivalence on
streams. Intuitively, since τ labels represent non-observable actions, they should be ignored
when comparing two streams: for instance, streams [v1 τ v2] and [v1 v2] should be equivalent.
Therefore we need to relax equality to another equivalence relation, denoted by ≈, coinduct-
ively defined by the inference system shown in Fig. 7, where τn is the stream of length n
made of only τs and τω is the infinite stream of τs.

The intuition behind this definition is that sequences of τ of arbitrary length are equivalent
to [] (as stated in rule (tau)), hence they can be removed or added without changing the
observable view (non-τ elements) of the stream. Note that the two rules are disjoint, since
the consequence of the second rule requires an element of the stream to be different from
τ on both sides, hence it may not happen that a stream made of only τs is equivalent to
a stream that contains non-τ elements. As in Fig. 6, the unique (meta)coaxiom where the
consequence is any judgment corresponds to take the coinductive interpretation of the two
rules.

This relation is indeed an equivalence, as formally stated below (the proof is in the
Appendix).

I Proposition 6. The relation ≈ is an equivalence relation over (finite or infinite) streams.

A more abstract view of the relation ≈ can be given in categorical terms, namely as
a bisimulation on a coalgebra structure carried by the set of streams. For the interested
reader, this alternative definition is reported, and shown to be equivalent to the previous
one, in the Appendix, Sect. A. To follow the next section, it is important to know that,
following this definition, two streams are identified if and only if they are mapped to the
same output stream by a function ετ that removes τs from a stream, which can be described
by the following equations:{

ετ (τα) = []
ετ (τn · [v] · x) = [v] · ετ (x)

Function ετ is employed in the next section to prove Theorem 7.

D. Ancona, F. Dagnino, and E. Zucca 21:13

Now we have to extend this relation to results. Intuitively, two results are equivalent if
they represent either both convergence with the same value, or both divergence, and the
observable output streams are equivalent. More formally, we set

(v∞, õ∞) ≈ (v′∞, õ′∞)⇐⇒ v∞ = v′∞ and õ∞ ≈ õ′∞

It is immediate to check that this relation is also an equivalence. Note also that this extension
can be defined by an inference system (interpreted coinductively) obtained from the definition
of ≈ on streams, by decorating each stream with the same (extended) value v∞, hence to
prove r̃ ≈ r̃ ′ we can reason by coinduction.

Having introduced all this machinery, we can define that two expressions e and e′ are
observationally equivalent if e r̃ implies e′ r̃ ′, for some r̃ ′ ≈ r̃ , and conversely.

Consider, for instance, the value id = λx.x and the expressions e1 = out (id id) and
e2 = (out id) id. It is easy to see that the judgments e1 (id, [τ id]) and e2 (id, [id τ])
hold, and [τ id] ≈ [id τ], hence e1 and e2 are observationally equivalent.

Note that, considering the judgment e ⇒ r defined in the previous section by using
corules, the definition of observational equivalence reduces to semantic equivalence, that is,
expressions e and e′ are equivalent iff e ⇒ r implies e′ ⇒ r , and conversely. In other words,
the judgment e ⇒ r directly models the observable behaviour of programs. For instance,
again it is easy to see that e1 ⇒ (id, [id]) and e2 ⇒ (id, [id]), hence e1 and e2 are equivalent
also with respect to this semantics. Actually, as we will see in the next section, the two
semantics can be shown to be equivalent.

5 Equivalence between the two semantics

In this section we will provide a complete4 proof of the equivalence between the semantics
defined in Fig. 2 by using corules and that defined in Fig. 6 on top of the LTS in Fig. 1.
We will briefly call them semantics by corules and LTS semantics, respectively. The main
theorem is stated below.

I Theorem 7 (Equivalence).
1. If e ⇒ r, then there exists r̃ such that e r̃ and r ≈ r̃ .
2. If e r̃ , then there exists r such that e ⇒ r and r̃ ≈ r.

We will prove separately the two parts of the theorem. Before providing such proofs we
need to consider some properties relating the two semantics.

I Lemma 8 (Progress). If e ⇒ r and e is not a value, then there exists e′ and ` such that
e `−→ e′.

Proof. Straightforward induction on the definition of e. J

I Lemma 9 (Subject reduction). If e ⇒ r and e `−→ e′, then e′ ⇒ r ′ and r ≈ [`] · r ′.

Proof. Straightforward induction on the rules defining e `−→ e′. J

The following lemma states that, if an expression converges in the semantics by corules
and produces a (rough) result in the LTS semantics, then the LTS semantics converges as
well with the same value.

4 Proofs of some auxiliary results are in the Appendix.

ECOOP 2018

21:14 Modeling Infinite Behaviour by Corules

I Lemma 10. If e ⇒ (v, o) and e r̃ , then r̃ = (v, õ).

Proof. Thanks to Theorem 4, we can reason by induction on the rules defining e ⇒ (v, o),
hence the proof is routine. J

In the next theorem, starting from a judgment e0 ⇒ r0 in the semantics by corules, we
construct a sequence of reduction steps in the LTS, which can be either finite or infinite:

e0
`0−−→ e1

`1−−→ . . .
`n−1−−−→ en ≡ v

e0
`0−−→ e1

`1−−→ . . . en
`n−−→ en+1

`n+1−−−→ . . .

(for uniformity, a finite reduction sequence is represented by a reduction sequence until
en ≡ v and then an infinite sequence of v). For each n, we also construct a result rn and a
rough result r̃n such that en ⇒ rn, en r̃n, and the first component (value or divergence)
in rn and r̃n is the same. Thus, in particular, there exists r̃0 so that e0 r̃0 and the first
component (value or divergence) in r0 and r̃0 is the same.

I Theorem 11. If e0 ⇒ r0, then there exist sequences (en)n∈N of expressions, (rn)n∈N of
results, and (r̃n)n∈N of rough results, such that, for all n ∈ N
1. en ⇒ rn and

if en = v, then en+1 = v and rn = rn+1 = r̃n = r̃n+1 = (v, []),
otherwise en

`−→ en+1 and rn ≈ [`] · rn+1 and r̃n = [`] · r̃n+1
2. en r̃n
3. if rn = (v∞, on∞), then r̃n = (v∞, õn∞).

Note that, by combining point 1 and point 3, we get that all the results in both (rn)n∈N
and (r̃n)n∈N have the same first component (final value or divergence), since they are related
by an equivalence that on the first component is the equality.

In order to state the next lemma, we introduce the auxiliary judgment e õ−→? e′, stating
that e reduces to e′ in finitely many steps producing the (finite) stream õ. The judgment is
inductively defined as follows:

e []−−→? e

e′ õ−→? e′′

e [`]·̃o−−−→? e′′
e `−→ e′

It is easy to check that e õ · r̃ holds if and only if e õ−→? e′ and e′ r̃ for some e′.

I Lemma 12. If e ⇒ [v] · r, then there is a finite stream õ such that e õ−→? E [out v].

Intuitively, the above lemma ensures that, if in the semantics by corules we produce an
output, then in the LTS semantics we will reduce in finitely many steps to (an expression
which contains) a corresponding output expression.

We are now ready to prove the first part of Theorem 7.

Proof. (Theorem 7 (1))
By Theorem 11 (points 1 and 2) we know that there are sequences (en)n∈N, (rn)n∈N

and (r̃n)n∈N such that e0 = e, r0 = r and e0 r̃0. Therefore we have only to prove that
r0 ≈ r̃0. To this aim, we prove by coinduction that, for all n ∈ N, rn ≈ r̃n. By Theorem 11
(point 3) we already know that on the first component r̃n and rn are equal, hence we have
only to reason on the stream part. Again by Theorem 11 (point 1) we also know that for
all n ∈ N, either rn ≈ [`n] · rn+1 and r̃n = [`n] · r̃n+1, or rn = r̃n = (v, []). So, considering
rn = (v∞, on∞) and r̃n = (v∞, õn∞), we have three cases.

D. Ancona, F. Dagnino, and E. Zucca 21:15

If r̃n = (v, []), then en = v, hence r̃n = rn = (v, []) by Theorem 11 (1), thus they are
equivalent by axiom (tau) in Fig. 7.
If r̃n = (v∞, τα) for α ∈ N ∪ {ω} with α 6= 0, then for all n ≤ k < n + α we have that
`k exists (by Theorem 11 (1) we have ek

`k−−→ ek+1) and `k = τ . We have to prove that
rn = (v∞, []). Let us assume that rn = [v] · r ′, hence, since by Theorem 11 (1) en ⇒ rn
holds, by Lemma 12 we get that there is a finite stream õ such that en

õ−→? E [out v] and
by the determinism of `−→ we get that there is m ≥ n such that em = E [out v]. Therefore
we get that em

v−→ em+1 = E [v] (rules (out) and (ctx) in Fig. 1), hence `m = v 6= τ that is
a contradiction; thus rn = (v∞, []). Therefore we get the thesis by the first axiom.
If r̃n = τk · [v] · r̃n+k+1, then `n+k = v and for all n ≤ l < n + k we have `l = τ .
Therefore we get by Theorem 11 (1) that rn ≈ τk · [v] · rn+k+1, hence rn = [v] · rn+k+1.
Finally by coinductive hypothesis we know that rn+k+1 ≈ r̃n+k+1 ad thus we get the
thesis by the following rule:

rn+k+1 ≈ r̃n+k+1

rn ≡ [v] · rn+k+1 ≈ τk · [v] · r̃n+k+1 ≡ r̃n
J

In order to prove the point 2 of Theorem 7 we treat separately the cases of convergence
and divergence. To prove the theorem we will show that if e r̃ holds, then e ⇒ ετ (r̃)
holds too, where ετ (v∞, õ∞) = (v∞, ετ (õ∞)). This immediately proves the theorem, since
ετ (r̃) is the witness we need to prove the existential quantification, and by definition of ≈
we have r̃ ≈ ετ (r̃).

Denoting by (I, Ico) the generalized inference system defining the judgment e ⇒ r in
Fig. 2, in the following we will call “extended system” the inference system I ∪ Ico, that is,
the (standard) inference system that is the union of rules and corules.

First of all, recall from the previous section conservativity for e r̃ (Theorem 5), that is,
if e r̃ holds, then r̃ = (v, õ) if and only if e r̃ has a finite proof tree. This result allows
us to reason by induction on rules defining convergence.

I Lemma 13 (Subject expansion). If e `−→ e′ and e′ ⇒ r ′ has a finite derivation in the
extended system, then e ⇒ r has a finite derivation in the extended system and r ≈ [`] · r ′.

Proof. Straightforward induction on rules defining `−→. J

I Theorem 14. If e (v, õ), then e ⇒ (v, ετ (õ)).

Proof. By induction on the rules defining e r̃ .
If v (v, []), then the thesis follows from rule (val).
If e [`] · r̃ , e `−→ e′ and e′ r̃ , then by inductive hypothesis we get e′ ⇒ ετ (r̃), hence
by Lemma 13 we get e ⇒ r with r ≈ [`]·ετ (r̃) and this implies, by definition of ≈, that
r = ετ ([`] · r̃). J

Now let us consider the case of divergence.

I Lemma 15. E [out v]⇒ (∞, [v] · o∞) has a finite derivation in the extended system.

Proof. By induction on the definition of contexts.
� We get the thesis by rules (val) and (co-out).
out E[out v] We get the thesis by inductive hypothesis and rule (div).
E[out v] e We get the thesis by inductive hypothesis and rule (div).
v′ E[out v] We get the thesis by rule (val), inductive hypothesis and rule (div). J

ECOOP 2018

21:16 Modeling Infinite Behaviour by Corules

I Theorem 16. If e (∞, õ∞), then e ⇒ (∞, ετ (õ∞)) has a finite derivation in the
extended system.

Proof. We have two cases:
if õ∞ = τα with α ∈ N ∪ {ω}, then ετ (õ∞) = [], hence the thesis follows from the rule
(co-empty);
otherwise, we have õ∞ = τn · [v] · õ′∞, hence by definition of e r̃ , we get that
e τn−−→? E [out v] and E [out v] (∞, [v] · õ′∞); therefore, by Lemma 15 we get that
E [out v] ⇒ (∞, [v] · ετ (õ′∞)) is derivable by a finite proof tree in the extended system,
then by a transitive closure of Lemma 13 we get the thesis, since ετ (õ∞) = [v]·ετ (õ′∞). J

Proof. (Theorem 7 (2)) We show by bounded coinduction (Theorem 3) that if e r̃ , then
e ⇒ ετ (r̃). The boundedness condition immediately follows from Theorem 14, Theorem 4
and Theorem 16. Let us proceed with the coinductive step: if r̃ = (v, õ), then the thesis
follows from Theorem 14, hence we assume that r̃ = (∞, õ∞) and proceed by case analysis
on e.
v Empty case.
x Empty case.
out e Since out e (∞, õ∞) holds, we get that e (∞, õ∞) holds, hence by coinductive

hypothesis e ⇒ (∞, ετ (õ∞)) and by rule (div) we get the thesis.
e1 e2 We have three cases:

If e1 (∞, õ∞), then by coinductive hypothesis we get e1 ⇒ (∞, ετ (õ∞)), hence we
get the thesis by rule (div).
If e1 (v, õ) and e2 (∞, õ′∞), then õ∞ = õ · õ′∞, by Theorem 14 and coinductive
hypothesis we get that e1 ⇒ (v, ετ (õ)) and e2 ⇒ (∞, ετ (õ′∞)), hence we get the thesis
by rule (div) since ετ (õ∞) = ετ (õ) · ετ (õ′∞).

If e1 (λx.e, õ1) and e2 (v2, õ2), then we have that e1 e2
õ1−−→? λx.e e2

õ2−−→?

λx.e v2
τ−→ e[x ← v2] = e′ with e′ (∞, õ′∞), and õ∞ = õ1 · õ2 · õ′∞. Therefore by

Theorem 14 and coinductive hypothesis we get e1 ⇒ (λx.e, ετ (õ1)), e2 ⇒ (v2, ετ (õ2))
and e′ ⇒ (∞, ετ (õ′∞)), hence we get the thesis by rule (app) since we have ετ (õ∞) =
ετ (õ1) · ετ (õ2) · ετ (õ′∞). J

6 A simple imperative Java-like language

In this section we provide the semantics by corules of an imperative Java-like language with
in and out statements for reading and writing values, respectively. Our motivations for
studying this language are the following.

To check the approach on a (slightly) more realistic example than in Sect. 3. Notably, the
language considered in this section is imperative and allows update of both local variables
(in this simple calculus, just method parameters) and object fields, hence, stack frames
and the heap need to be modeled. Moreover, since object values are heap references, they
are read and written in a serialized format, and the serialization function needs to be
coinductively defined.
To investigate input as well. Managing both input and output requires deeper insights,
since several approaches are possible; the one we propose, where I/O operations are
treated as “events”, seems to be simpler and is easily extensible to other kinds of significant
interactions of the program with the outside, as acquisition and release of resources.

D. Ancona, F. Dagnino, and E. Zucca 21:17

p ::= cd e
cd ::= class c1 extends c2 { fd md }
fd ::= f ;

md ::= m(x) {e}
e ::= new c(e) | x | false | true | e.f | e0.m(e) | x =e | e1.f =e2 | in | out e

| if (e) e1 else e2

Figure 8 Java-like language: syntax.

v, u ::= false | true | ι (internal) value
v ::= false | true | obj(c, f n 7→ vn) serialized value
e ::= in v | out v event
θ ::= [e1 . . . en] | [e1 . . . en . . .] event trace
r ::= (v, θ); Π;H | (∞, θ) result

D[] ::= new c(�n, e) | �.f | �.m(�k, e) (n > 0, k ≥ 0) propagation context
| x =� | �.f =e | �.f =� | out� | if (�) e1 else e2

Figure 9 Java-like language: values, results and propagation contexts.

The syntax of the language is defined in Fig. 8. We write cdn, or simply cd , for the
sequence cd1 . . . cdn, and analogously for other sequences. With abused notation f n 7→ vn
stands for f1 7→ v1, . . . , fn 7→ vn. We assume sets of variables (parameters) x, including this,
class names c, including Object, field names f , and method names m.

The calculus is an imperative untyped Java-like language, where variables and fields can
be updated; since the work is focused on the dynamic semantics, we have simplified the
language by omitting type annotations.

For simplicity, statements are expressions with side effects; assignments to variables
and fields return the value of the right-hand side expression, the in statement returns the
deserialized value that has been acquired from the input, while the out e statement returns
the value obtained from the evaluation of e, which is also output.

We assume standard syntactic restrictions: inheritance is acyclic, names are distinct in
class, method, field, and parameter declarations, Object cannot be declared, class names
other than Object that are referred in expressions must be declared.

A program consists of a sequence of class declarations and a main expression; class
declarations contain field and method definitions, whereas a single constructor is implicitly
defined, with parameters corresponding to the inherited and defined fields, with precedence
to the inherited ones. In a method body the target object is accessed via the implicit
read-only parameter this, which is assumed to differ from all explicitly declared parameters.
Statement expressions include instance creation, variable, boolean literals, field selection,
method invocation, variable and field update, input/output operations, and conditional
expression.

We define now the semantics by corules of the language; as for the λ-calculus in Sect. 3, we
provide a semantics with the fully deterministic left-to-right call-by-value evaluation strategy.
Internal and serialized values, events, event traces, results and (divergence) propagation
contexts are defined in Fig. 9. As for the λ-calculus, propagation contexts can contain many
holes, all at fixed depth 1, and allow a more compact definition of propagation of diverging
results (see rule (div) in Fig. 10). We assume an infinite set of object references ι. Internal

ECOOP 2018

21:18 Modeling Infinite Behaviour by Corules

values are either boolean constants or object references; for boolean values the serialized
form is the same, whereas object references are serialized to values of shape obj(c, f n 7→ vn),
with c the class of the object, and fn its fields associated with their corresponding serialized
values vn; serialized objects are allowed to be regular terms, to allow serialization of cyclic
objects.

Events that are tracked by the semantics are input/output operations, hence, they have
shape in v (input of serialized value v) and out v (output of serialized value v). Traces are
finite or infinite sequences of tracked events.

Results of converging computations are triples (v, θ); Π;H where the first component
is a pair (v, θ) consisting of a returned value, and a produced finite event trace, while the
second and third ones are the stack frame Π and the heap H yielded by the computation,
respectively. Results model also diverging computations with pairs of shape (∞, θ), where
the event trace θ is allowed to be infinite; in case of diverging computations, neither returned
value is defined, nor stack frame and heap are yielded. The stack frame of the method under
execution is a finite partial map Π from variables (this and the explicit parameters of the
method) to values. The heap H is a finite partial map from references to objects. Objects
are pairs obj(c, ρ), where c is the object’s class and ρ is a finite partial map from field names
to values. We use the usual set-theoretic representation for finite maps, in particular for
heaps H, maps ρ from fields to values, and maps from fields to serialized values in serialized
objects; the operator] denotes union of maps with disjoint domains. We assume that
heaps cannot contain dangling references: for all references ι, if H(ι) = obj(c, ρ), then for
all f ∈ dom(ρ), ρ(f) ∈ dom(H)] {false, true}; indeed, in the language object references
cannot be explicitly deallocated.

The semantics is formalized by the judgment Π;H; e ⇒ r , where r is either (v, θ); Π′;H′
or (∞, θ). In the former case, the judgment means that, in stack frame Π and heap H,
expression e converges to value v, with finitely generated event trace θ, and yielded stack
frame Π′ and heap H′; in the latter, expression e diverges with possibly infinite event trace θ.

The semantic rules are defined in Fig. 10; for brevity, we leave implicit the index of the
judgment that should consist of the class declarations contained in the program.

The definitions of all auxiliary functions used in the side conditions of the rules can be
found in the Appendix.

As in Fig. 2, rule (div) propagates diverging computations: if the evaluation of a subex-
pression diverges before all remaining subexpressions are evaluated, then the control flow of
the program has to be modified; this happens in all situations captured by the propagation
contexts defined in Fig. 9.

Rules (var) and (bool) are straightforward: the computation always converges and returns
an empty trace.

Rules (new) and (fld) are standard; in (new) the generated trace is obtained by concatenating
in the same order the traces returned by the evaluation of the argument expressions; the
disjoint union] ensures that ι is a fresh reference in the current heap Hn, the side condition
requires that the arguments match all fields inherited and declared by class c. In (fld)

the generated trace corresponds to that obtained from the evaluation of the subexpression
denoting the target object; the side condition ensures that such an evaluation returns an
object reference defined in the heap and containing the accessed field.

Similarly to rule (app) for function application in Fig. 2, rule (inv) deals with method
invocation when the evaluation of the target and all arguments converges; the auxiliary
function restore (see the comments to Fig. 12 in the Appendix) is used for restoring the
current stack frame Πn+1 of the caller yielded after the evaluation of the target and the

D. Ancona, F. Dagnino, and E. Zucca 21:19

(div)
∀ i = 1..n.Πi−1;Hi−1; ei ⇒ (vi, θi); Πi;Hi Πn;Hn; e ⇒ (∞, θ)

Π0;H0;D[en, e]⇒ (∞, θ1 · . . . · θn · θ)

(var) Π;H; x ⇒ (v, []); Π;H Π(x) = v (bool) Π;H; e ⇒ (e, []); Π;H e ∈ {false, true}

(new)
∀ i = 1..n.Πi−1;Hi−1; ei ⇒ (vi, θi); Πi;Hi

Π0;H0; new c(en)⇒ (ι, θ1 · . . . · θn); Πn;Hn] {ι 7→ obj(c, f n 7→ vn)}
fields(c) = f n

(fld)
Π0;H0; e ⇒ (ι, θ); Π1;H1

Π0;H0; e.f ⇒ (v, θ); Π1;H1
H1(ι) = obj(c, ρ] {f 7→ v})

(inv)

∀ i = 0..n.Πi;Hi; ei ⇒ (vi, θi); Πi+1;Hi+1

{this 7→ v0, xn 7→ vn};Hn+1; e ⇒ r
Π0;H0; e0.m(e)⇒ r ′

H1(v0) = obj(c, ρ)
meth(c,m) = xn.e
r ′ = restore(Πn+1, (θ0 · . . . · θn) · r)

(vas)
Π0;H0; e ⇒ (v, θ); Π1] {x 7→ u};H1

Π0;H0; x =e ⇒ (v, θ); Π1] {x 7→ v};H1

(fas)
Π0;H0; e1 ⇒ (ι, θ1); Π1;H1 Π1;H1; e2 ⇒ (v, θ2); Π2;H] {ι 7→ obj(c, ρ] {f 7→ u})}

Π0;H0; e1.f =e2 ⇒ (v, θ1 · θ2); Π2;H] {ι 7→ obj(c, ρ] {f 7→ v})}

(in) Π;H0; in⇒ (v, [in v]); Π;H1
deser(H0, v) = (H1, v)

(out)
Π0;H0; e ⇒ (v, θ); Π1;H1

Π0;H0; out e ⇒ (v, θ · [out v]); Π1;H1
ser(H1, v) = v

(if)
Π0;H0; e ⇒ (v, θ); Π1;H1 Π1;H1; ei ⇒ r

Π0;H0; if (e) e1 else e2 ⇒ θ · r v = true ∧ i = 1 ∨ v = false ∧ i = 2

(co-empty)

Π;H; e ⇒ (∞, [])
(co-in)

Π;H; in⇒ (∞, [in v] · θ)

(co-out)

Π;H; e ⇒ (v, θ′); Π′;H′

Π;H; out e ⇒ (∞, θ′ · [out v] · θ)
v=ser(H′,v)

Figure 10 Java-like language: inference system with corules.

arguments of the method invocation. The body of the method is evaluated in the new
stack frame {this 7→ v0, xn 7→ vn} defining this, and the formal parameters; its result can
correspond to either a converging or a diverging computation. In the latter case, r has
shape (∞, θ), with θ possibly infinite, the stack frame is not restored, but divergence is
simply propagated to the conclusion of the rule, after concatenating to the left of θ, in the
same evaluation order, the finite traces obtained from the evaluation of the target and the
arguments; hence restore(Πn+1, (θ0 · . . . · θn) · (∞, θ)) = (∞, θ0 · . . . · θn · θ). The other side
conditions are standard and ensure that the target of the invocation is an object whose class
has method m with n parameters.

ECOOP 2018

21:20 Modeling Infinite Behaviour by Corules

Rules (vas) and (fas) manage variable and field updates, respectively; the former changes5
the stack frame, the latter the heap. Rule (vas) is applicable only when the variable to update
is defined in the current stack frame; the trace generated from the assignment corresponds
to that obtained from the evaluation of the right-hand side subexpression. Rule (fas) is
applicable only when the target evaluates to a reference to an object containing the field to
be updated; the trace generated from the assignment corresponds to the concatenation, in
the same order, of the traces obtained from the evaluation of the target and right-hand side
subexpression.

In rule (in) a trace with the single event in v is generated, where v is allowed to be any
possible serialized value that can be obtained from the input. The corresponding returned
inner value v is the deserialization of v (see the comments to Fig. 12 in the Appendix); such
an operation can extend the heap if v corresponds to an object. In this case a new internal
object has to be allocated.

In rule (out) the trace is obtained by concatenating that returned by the evaluation of the
subexpression with the singleton trace containing the event out v, where v is the serialization
of the value v (see the comments to Fig. 12 in the Appendix) to be output.

Rule (if) is standard; it is applicable only if the evaluation of the condition converges to
a boolean value. However, the overall result is allowed to diverge; this happens when the
evaluation of the selected branch does not terminate. In any case, the generated trace is
obtained by concatenating the traces, in the same evaluation order, yielded by the evaluation
of the condition and the selected branch.

As for the semantics of the λ-calculus in Sect. 3, corules filter out undesired behavior
in case of non termination: results can only have shape (∞, θ), with θ possibly infinite;
diverging computations which do not involve input/output operations give rise to proof trees
where the definition of the yielded trace is non productive, hence corule (co-empty) forces
the returned trace to be empty. The remaining corules (in) and (out) relax the constraint of
corule (co-empty) by allowing traces of arbitrary length (including infinity) when infinitely
many input or output operations are performed, respectively; indeed, in both corules no
constraint is imposed on the rest of the yielded trace, represented by the metavariable θ.
As in Fig. 2, the premise of corule (co-out) ensures that the evaluation of the subexpression
denoting the value to output converges, to ensure that the corresponding serialized value is
actually output.

We consider now an example program (other two examples are provided in the Appendix).

Example 1

Let us consider the program consisting of the following class declaration

class C extends Object {m(x){ this.m(out in)}}

and the main expression e = new C().m(true); such a program diverges and produces an
infinite trace with alternating input and output events s.t. each event in v is immediately
followed by the event out v; this is formalized by the derivable judgment ∅; ∅; e ⇒ (∞, θ0),
where θ0 = [in v0 out v0 in v1 out v1 . . .].

Fig. 11 shows how an infinite tree can be derived with the standard rules of Fig. 10; for
simplicity the figure considers only the cases where input values are just primitive boolean

5 Of course, stack frame and heap can also be indirectly changed by the evaluation of the subexpressions
of the statements.

D. Ancona, F. Dagnino, and E. Zucca 21:21

∇i = (inv)

(var) Πi;H; this⇒ (ι, []); Πi;H
(out)

(in) Πi;H; in⇒ (vi, [in vi]); Πi;H
Πi;H; out in⇒ (vi, [in vi out vi]); Πi;H ∇i+1

Πi;H; this.m(out in)⇒ (∞, [in vi out vi] · θi+1)

(inv)

(new)∅; ∅; new C()⇒ (ι, []); ∅;H (bool)∅;H; true⇒ (true, []); ∅;H ∇0

∅; ∅; new C().m(true)⇒ (∞, θ0)

where ∀ i ∈ N.θi = [in vi out vi] · θi+1,H = {ι 7→ obj(C, ∅)},Π0 = {this 7→ ι,x 7→ true},
Πi+1 = {this 7→ ι,x 7→ vi}, vi ∈ {false, true}

Figure 11 Infinite derivation for ∅; ∅; new C().m(true)⇒ (∞, θ0) in Example 1.

values and, hence, no heap memory is allocated when deserialization occurs every time a new
value is read from the input through the in instruction. Hence, after the allocation triggered
by the execution of new C(), the heap H remains unchanged; in case infinite serialized objects
are read from the input, the heaps in the derived judgments of the proof tree grow indefinitely
with the depth of the tree.

Although in Fig. 11 only primitive input values are considered, in general the derived
infinite proof tree is not regular and consists of an infinite set of subtrees ∇0,∇1, . . ., each one
depending from the particular input values v0, v1, . . .; since at each call a value is input and
then output, the definition for the trace θ0 in the finally derived judgment is fully productive
and no trace other than [in v0 out v0 in v1 out v1 . . .] can be derived; since such a trace is
infinite, it is not possible to derive judgments of shape ∅; ∅; new C().m(true)⇒ (v, θ0); ∅;H′.

For each occurrence of rule (inv) in the infinite proof tree, only finite trees can be built
for the evaluation of the target and argument of the method invocation, therefore for the
corresponding premises only judgments for converging computations can be derived, and
rule (div) cannot be applied in place of rule (inv).

Finally, to show that the proof tree in Fig. 11 is valid, we need to prove that by using also
the corules we can derive finite proof trees for all judgments of the proof. To this aim, we
can prove that for all judgments Πi;H; this.m(out in) ⇒ (∞, [in vi out vi] · θi+1) derived
with ∇i, it is possible to build the following finite tree:

(div)

(var) Πi;H; this⇒ (ι, []); Πi;H
(co-out)

(in) Πi;H; in⇒ (vi, [in vi]); Πi;H
Πi;H; out in⇒ (∞, [in vi out vi] · θi+1)

Πi;H; this.m(out in)⇒ (∞, [in vi out vi] · θi+1)

Additional examples can be found in the Appendix.
We illustrate now by a simple example how to use the bounded coinduction technique

(Theorem 3) to reason about concrete programs. Consider the following Java-like program:

class T extends Object { hasNext (){ true }}
class F extends Object { hasNext (){ false }}
class Main extends Object {

loop (){ if(in. hasNext ()) this.loop () else false}
}

and abbreviate by F and T, respectively, the two input events in obj(F, ∅) and in obj(T, ∅).
Intuitively, there are two possible valid results of the program e =new Main().loop().

If the input provides infinitely many T’s, e loops forever, producing the corresponding
infinite trace [T . . . T . . .], abbreviated T∞ in the following. If, after n T’s, an F is eventually

ECOOP 2018

21:22 Modeling Infinite Behaviour by Corules

read, then the program terminates returning false, and producing a finite trace [T . . . T F],
abbreviated Tn in the following. Note that, if any other kind of (serialized) value is read,
then the program execution is stuck, that is, there is no (either infinite or finite) result. In
our formalization, differently from what happens in standard big-step semantics, this case is
nicely distinguished from divergence, since in the former case there is no proof tree.

More precisely, valid judgments for e have one of the following shapes:
1. (a) ∅; ∅; e ⇒ (∞, T∞)

(b) ∅; ∅; e ⇒ (false, Tn); ∅; {ι 7→ obj(Main, ∅)}] Hn
with Hn = {ιi 7→ obj(T, ∅) | i ∈ 1..n}] {ι′ 7→ obj(F, ∅)}.

In order to formally prove that such judgments are derivable, as it is customary in
(co)induction proofs, we have to extend the set of valid judgments, including all those which
are needed for the coinductive hypothesis:
2. ∅; ∅; new Main()⇒ (ι, []); ∅; {ι 7→ obj(Main, ∅)}
3. (a) Π;H; if(in.hasNext()) this.loop() else false⇒ (∞, T∞)

(b) Π;H; if(in.hasNext()) this.loop() else false⇒ (false, Tn); Π;H]Hn

4. (a) Π;H; in.hasNext()⇒ (true, [T]); Π;H] {ι 7→ obj(T, ∅)}
(b) Π;H; in.hasNext()⇒ (false, [F]); Π;H] {ι 7→ obj(F, ∅)}

5. (a) Π;H; in⇒ (ι, [T]); Π;H] {ι 7→ obj(T, ∅)}
(b) Π;H; in⇒ (ι, [F]); Π;H] {ι 7→ obj(F, ∅)}

6. (a) Π;H; true⇒ (true, []); Π;H (b) Π;H; false⇒ (false, []); Π;H
7. Π;H; this⇒ ι; Π;H
8. (a) Π;H; this.loop()⇒ (∞, T∞)

(b) Π;H; this.loop()⇒ (false, Tn); Π;H]Hn
where Π = {this 7→ ι}, H(ι) = obj(Main, ∅).

Set S the set of judgments of shape 1-8, (I, Ico) the generalized inference system defining
the judgment Π;H; e ⇒ r in Fig. 10, and I ∪ Ico the (standard) inference system that is the
union of I and Ico. To prove by bounded coinduction (Theorem 3) that each judgment in S
can be derived, we have to show:
Boundedness. Each judgment in S has a finite proof tree in I ∪ Ico.

For convergent judgments (all cases except 1a, 3a, 8a) it is easy to show that they have a
finite proof tree in I, hence in I ∪ Ico as well. In particular, for cases 3b, 8b this finite
proof tree can be constructed by arithmetic induction on n.
For cases 1a, 3a, 8a it is enough to show that a finite proof tree for Π;H; in⇒ (∞, T∞) in
I ∪Ico can be obtained by corule (co-in), analogously to what we have shown for Example
3 in Sect. 3.

Coinductive step. Each judgment in S is the consequence of an inference rule in I where
all premises are in S.
The proof can be done by cases. For instance, for case 3b, the judgment is the consequence
of rule (if) with first premise of shape 4 and second premise of shape either 8b or 6b.
We conclude this section with a comment on the proof technique outlined above. Here we

have added in the set S of valid judgments exactly those strictly needed for the coinductive
hypothesis. This is a minimal choice. A different approach, which we used in [6] under the
name divergence consistency principle, is to add to S all the judgments which are derivable
in I. With this approach, it is enough to prove conservativity (the analogous of Theorem 4),
and that each valid diverging judgment (cases 1a, 3a, 8a in our example) is the consequence
of a rule where all diverging premises are valid as well, and all converging premises are
derivable. This technique makes the proof schema simpler, but here we preferred the explicit
approach for illustrating better the specific example.

D. Ancona, F. Dagnino, and E. Zucca 21:23

7 Related work

One of the first approaches to model divergence with operational semantic rules was proposed
by Cousot and Cousot [8] for the call-by-value λ-calculus by means of two different judgments
defined in a stratified way: the former with inductive rules to model termination, the latter
with coinductive rules and depending from the former, to capture divergence. In a followup
work [9] they proposed a more sophisticated framework based on bi-inductive definitions, an
order-theoretic approach to inductive definitions which allows the simultaneous definition
of finite and infinite behaviors in operational semantics; however, such a solution has been
adopted only for the standard call-by-value λ-calculus, and no uses of it can be found in
literature for expressing the semantics of other languages.

Leroy and Grall [13] have investigated several operational semantics of the call-by-value
λ-calculus for capturing divergence, their equivalence, and suitability to formally prove type
soundness and compiler correctness; they are all defined in terms of inductive and coinductive
judgments defined in a stratified way.

Coinductive big-step semantics has been proposed by Ancona to proof soundness for a
Java-like language [3].

An operational semantics modeling divergence with an ad hoc coinductive judgment has
been investigated also by Chargueraud with the notion [7] of pretty-big step semantics.

Flag-based big-step semantics [18] is a recent approach able to capture divergence by
interpreting the same semantic rules both inductively and coinductively; flags represent
termination or divergence and are part of the result of the computation. In case of non
termination, values (or other semantic details exclusively used for terminating computations)
are non deterministically returned.

We are planning to investigate the relationship between corules and conditional coinduction
[10] employed by Danielsson to combine induction and coinduction in definitions of total
parser combinators. Followup work [11], inspired by the paper of Leroy and Grall [13],
shows how the use the coinductive partiality monad allow the definition of big/small-step
semantics for lambda-calculi and virtual machines as total, computable functions able to
capture divergence.

Several approaches to divergence with operational semantics [17, 2, 4] have been inspired
by the notion of definitional interpreter [19]. All semantic definitions depend on a counter
which limits the number of steps a computation can take; if the value of the counter is not
sufficient to complete the computation, then a timeout is returned. In this way divergence
can be modeled by induction.

Owens et al. [17] investigate functional big-step semantics for proving by induction
compiler correction, including divergence preservation. Amin and Rompf [2] explore inductive
proof strategies for type soundness properties for the polymorphic type systems F<:, and
equivalence with small-step semantics. Ancona [4] proposes an inductive proof of type
soundness for the big-step semantics of a Java-like language.

More recently, Ancona et al. [6] have shown that with coaxioms it is possible to mix
together induction and coinduction in a single inference system to define a big-step operational
semantics able to capture divergence with just one judgment. The call-by-value λ-calculus is
considered, and a proof of equivalence with the standard small-step semantics is provided.
Then the semantics of an imperative Java-like language is defined, and a corresponding type
soundness result is proved.

All papers surveyed so far limit their investigation to semantics which capture divergence,
but, differently to the contribution of this paper, do not provide any support for reasoning

ECOOP 2018

21:24 Modeling Infinite Behaviour by Corules

on the behavior of non terminating programs, because in case of non termination the only
information that is conveyed is divergence.

Nakata and Uustalu [14, 15, 16] have investigated on coinductive trace semantics in
big-step style; they started with the semantics of an imperative While language with no I/O
[14] where traces are possibly infinite sequences of states; semantic rules are all coinductive
and define two mutually dependent judgments. Based on such a semantics, they define a
Hoare logic [15]; differently to our approach, weak trace equivalence is required for proving
that programs exhibit equivalent observable behaviors. A constructive theory and metatheory
and a Coq formalization are provided.

The semantics has been subsequently extended with interactive I/O [16], by exploiting
the notion of resumption: a tree representing possible runs of a program to model its non-
deterministic behavior due to input values. Also in this case a big-step trace semantics is
defined with two mutually recursive coinductive judgments, and weak bisimilarity is needed;
however, the definition of the observational equivalence is more involved, since it requires
nesting inductive definitions in coinductive ones.

In both papers [14, 15] equivalence of the big-step and small-step semantics is proved; also,
in the considered languages [14, 15] expressions and statements are distinct, and expressions
cannot diverge (divergence is not obtained through infinite recursion, but rather through
infinite while loops). This is a significant difference with the languages we have considered in
this paper; under the assumption that the evaluation of e cannot diverge, the semantics of
out e becomes simpler, indeed, the corresponding corule could be turned into a coaxiom.

8 Conclusion

We have shown how generalized inference systems can be employed for formalizing in a
convenient way non trivial operational semantics suitable for reasoning on the behavior of
possibly diverging programs.

The two examples of semantics we have provided suggest that by using corules with a
similar pattern, other notions of interesting infinite behaviour can be modeled to reason on
properties of diverging programs, to prove, for instance, that a server program uses a finite
amount of system resources, even when expected to never stop.

As a byproduct, we have extended the theory of generalized inference systems with the
more general notion of corule, for which significant examples were missing until now.

We briefly discuss now advantages, drawbacks, and limitations of the approach. While
we do not claim that our approach is easier than the standard formulation using labeled
small-step semantics, an important advantage is that the whole system is directly based on a
unique judgment, thus allowing more direct reasoning (proofs).

A difficulty in adopting the approach could be how to define the right corules, which
requires new expertise in comparison with the well established inductive reasoning (essentially
based on case analysis). For this reason, we are currently working on the definition of
“canonical” corule patterns. Notably, the two examples in this paper should become instances
of a general transformation from an inductive inference system modeling finite behaviour to
an inference system with corules modeling infinite behaviour as well.

Of course, inference systems with corules are not a silver bullet for expressing any kind
of recursive definition. The main limitation we have found until now is in modeling, roughly,
recursive functions where the result can be an infinite set. For instance, the inference system
with corules for the graph example at page 4 is not complete when the set of nodes is infinite.
A similar example (the infinite carrier of a list) is mentioned in [5]. We plan to investigate
and possibly address this limitation.

D. Ancona, F. Dagnino, and E. Zucca 21:25

For the first simpler example of semantics we have fully proved that our approach is
equivalent to a semantics based on the standard notion of LTS and observational equivalence;
we leave for future work a proof of equivalence for the imperative Java-like language. Although
in this case the technical details are more complex, we do not expect any surprise in the
proofs of equivalence.

Besides the already mentioned directions, it would be of great interest to try to test our
approach with the support of a proof assistant.

References

1 Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of
Mathematical logic, pages 739–782. North Holland, 1977.

2 Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In
Giuseppe Castagna and Andrew D. Gordon, editors, ACM Symp. on Principles of Pro-
gramming Languages 2017, pages 666–679. ACM Press, 2017. doi:10.1145/3009837.

3 Davide Ancona. Soundness of object-oriented languages with coinductive big-step se-
mantics. In James Noble, editor, ECOOP’12 - Object-Oriented Programming, volume
7313 of Lecture Notes in Computer Science, pages 459–483. Springer, 2012. doi:10.1007/
978-3-642-31057-7_21.

4 Davide Ancona. How to prove type soundness of Java-like languages without forgoing big-
step semantics. In David J. Pearce, editor, FTfJP’14 - Formal Techniques for Java-like
Programs, pages 1:1–1:6. ACM Press, 2014. doi:10.1145/2635631.2635846.

5 Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, ESOP 2017 - European Symposium on Programming,
volume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017. doi:
10.1007/978-3-662-54434-1_2.

6 Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computa-
tions with coaxioms. PACMPL, 1(OOPSLA):81:1–81:26, 2017. doi:10.1145/3133905.

7 Arthur Charguéraud. Pretty-big-step semantics. In Matthias Felleisen and Philippa
Gardner, editors, ESOP 2013 - European Symposium on Programming, volume 7792
of Lecture Notes in Computer Science, pages 41–60. Springer, 2013. doi:10.1007/
978-3-642-37036-6_3.

8 Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and abstract interpret-
ations. In Ravi Sethi, editor, ACM Symp. on Principles of Programming Languages 1992,
pages 83–94. ACM Press, 1992. doi:10.1145/143165.143184.

9 Patrick Cousot and Radhia Cousot. Bi-inductive structural semantics. Information and
Computation, 207(2):258–283, 2009. doi:10.1016/j.ic.2008.03.025.

10 Nils Anders Danielsson. Total parser combinators. In Intl. Conf. on Functional Program-
ming 2010, pages 285–296. ACM Press, 2010.

11 Nils Anders Danielsson. Operational semantics using the partiality monad. In Peter
Thiemann and Robby Bruce Findler, editors, Intl. Conf. on Functional Programming 2012,
pages 127–138. ACM Press, 2012. doi:10.1145/2364527.2364546.

12 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016. doi:10.1017/CBO9781316823187.

13 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information
and Computation, 207(2):284–304, 2009. doi:10.1016/j.ic.2007.12.004.

14 Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for while.
In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, The-

ECOOP 2018

http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1007/978-3-642-31057-7_21
http://dx.doi.org/10.1007/978-3-642-31057-7_21
http://dx.doi.org/10.1145/2635631.2635846
http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.1145/3133905
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1145/143165.143184
http://dx.doi.org/10.1016/j.ic.2008.03.025
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1017/CBO9781316823187
http://dx.doi.org/10.1016/j.ic.2007.12.004

21:26 Modeling Infinite Behaviour by Corules

orem Proving in Higher Order Logics - TPHOLs 2009, volume 5674 of Lecture Notes in
Computer Science, pages 375–390. Springer, 2009. doi:10.1007/978-3-642-03359-9_26.

15 Keiko Nakata and Tarmo Uustalu. A Hoare logic for the coinductive trace-based big-step
semantics of while. In Andrew D. Gordon, editor, ESOP 2010 - European Symposium on
Programming, volume 6012 of Lecture Notes in Computer Science, pages 488–506. Springer,
2010. doi:10.1007/978-3-642-11957-6_26.

16 Keiko Nakata and Tarmo Uustalu. Resumptions, weak bisimilarity and big-step semantics
for while with interactive I/O: an exercise in mixed induction-coinduction. In Luca Aceto
and Pawel Sobocinski, editors, SOS’10 - Structural Operational Semantics, volume 32 of
Electronic Proceedings in Theoretical Computer Science, pages 57–75, 2010. doi:10.4204/
EPTCS.32.5.

17 Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Functional big-
step semantics. In Peter Thiemann, editor, ESOP 2016 - European Symposium on Pro-
gramming, volume 9632 of Lecture Notes in Computer Science, pages 589–615. Springer,
2016. doi:10.1007/978-3-662-49498-1_23.

18 C. B. Poulsen and P. D. Mosses. Flag-based big-step semantics. Journal of Logical and
Algebraic Methods in Programming, 2016.

19 John C. Reynolds. Definitional interpreters for higher-order programming languages. In
ACM ’72, Proceedings of the ACM annual conference, volume 2, pages 717—-740. ACM
Press, 1972.

20 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

A A coalgebraic view

We recall some basic notions about coalgebras, see for instance [12, 20]. Given a category
C and an endofunctor F : C → C, an F-coalgebra is a pair (C, γ) where C is an object of C
and γ : C → FC is an arrow in C. An F-coalgebra homomorphism between two F-coalgebras
(C, γ) and (C ′, γ′) is an arrow f : C → C ′ in C such that γ′ · f = Ff · γ, where · denotes the
arrow composition in C. It is easy to check that the composition of coalgebra homomorphisms
is again an homomorphism and that the identity arrow on the carrier of an F-coalgebra is an
homomorphism, hence F-coalgebras and homomorphisms form a category and the terminal
object in this category, if any, is named terminal F-coalgebra.

We now fix C = Set, that is, we work in the category of sets and functions. Given two
F-coalgebras (C, γ) and (C ′, γ′), a bisimulation between them is a relation R ⊆ C × C ′
that carries an F-coalgebra structure such that the canonical projections π1 : R→ C and
π2 : R→ C ′ are F-coalgebra homomorphisms. In other words, a bisimulation is a relation
that agrees with the coalgebraic structure of its components.

Let us now introduce some notations. If A is a set, A∞ is the set of finite and infinite
streams over A. We denote by V the set of values, and by Vτ the set V + {τ}, where +
denotes the coproduct in the category Set of sets and functions.

It is well-known that V∞ is the carrier of the terminal coalgebra of F : Set→ Set, the
functor defined by FX = 1 + V ×X, with the map ζ : V∞ → FV∞ defined by

ζ(x) =
{

(v, x′) if x = [v] · x′
? otherwise (x = [])

where ? ∈ 1 is the unique element of the terminal object 1 in Set, However, we can give an

http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-642-11957-6_26
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1007/978-3-662-49498-1_23
http://dx.doi.org/10.1016/S0304-3975(00)00056-6

D. Ancona, F. Dagnino, and E. Zucca 21:27

F-coalgebra structure also to V∞τ , considering the function γτ : V∞τ → FV∞τ defined by

γτ (x) =
{

(v, x′) if x = τn · [v] · x′
? otherwise (x = τα)

Since (V∞, ζ) is terminal, there is a unique F-coalgebra homomorphism ετ : V∞τ → V∞, in
other words ετ is the unique map making the following diagram commute:

V∞τ V∞

FV∞τ FV∞
γτ

ετ

ζ

Fετ

Intuitively, this diagram forces ετ to satisfy the equations mentioned in the beginning, hence
to be the function that removes τs from a stream.

In order to construct ≈, we consider the set R≈ defined as the pullback in Set of the pair
of functions (ετ , ετ), hence, since ετ is an F-coalgebra homomorphism, we get the following
commutative diagram:

R≈ V∞τ

V∞τ V∞ FV∞τ

FV∞τ FV∞

y
π1

π2

ετ
γτ

ετ

γτ ζ
Fετ

Fετ

More explicitly, R≈ is the set {(x, y) ∈ V∞τ × V∞τ | ετ (x) = ετ (y)}, thus it is an equivalence
relation on V∞τ .

It is easy to check that F preserves pullbacks in Set, hence we get the following commutative
diagram:

R≈

FR≈ FV∞τ

FV∞τ FV∞

γ≈

γτ ·π2

γτ ·π1
y

Fπ2

Fπ1 Fετ
Fετ

Therefore (R≈, γ≈) is an F-coalgebra, π1 and π2 are F-coalgebra homomorphisms and hence
R≈ is a bisimulation equivalence on (V∞τ , γτ).

We now show that ≈ and R≈ are indeed the same relation.

I Proposition 17. õ∞ ≈ õ′∞ if and only if (õ∞, õ′∞) ∈ R≈.

B Proofs

Proof of Prop. 6 (≈ is an equivalence) We show that ≈ is reflexive, symmetric and transitive.

Reflexivity We have to prove that, for each stream õ∞, õ∞ ≈ õ∞ holds; we proceed by
coinduction. We distinguish two cases:

if õ∞ = τα for some α ∈ N ∪ {ω}, then the thesis follows by the first rule, taking β
equal to α;

ECOOP 2018

21:28 Modeling Infinite Behaviour by Corules

otherwise, there is a value v such that õ∞ = τn ·[v]·õ′∞, hence by coinductive hypothesis
we get õ′∞ ≈ õ′∞, and the thesis follows from the second rule, taking m equal to n.

Symmetry Assume õ∞ ≈ õ′∞, we have to prove that õ′∞ ≈ õ∞; we proceed by coinduction.
We distinguish two cases:

if both õ∞ and õ′∞ are made of only τs, then the thesis follows from the first rule (it
is enough to swap the two exponents);
otherwise, we have õ∞ = τn · [v] · s̃∞ and õ′∞ = τm · [v] · s̃′∞ with s̃∞ ≈ s̃′∞; hence by
coinductive hypothesis we get s̃′∞ ≈ s̃∞, and the thesis follows by applying the rule

s̃′∞ ≈ s̃∞
õ′∞ = τm · [v] · s̃′∞ ≈ τn · [v] · s̃∞ = õ∞

Transitivity Let us assume õ∞ ≈ õ′∞ and õ′∞ ≈ õ′′∞. We proceed by coinduction. We
distinguish two cases:

if õ′∞ = τα for some α ∈ N ∪ {ω}, then also õ∞ and õ′′∞ are made of only τs, hence
the thesis follows from the first rule;
otherwise, we have õ∞ = τp · [v] · s̃∞, õ′∞ = τ q · [v] · s̃′∞ and õ′′∞ = τ r · [v] · s̃′′∞, with
s̃∞ ≈ s̃′∞ and s̃′∞ ≈ s̃′′∞. Therefore by coinductive hypothesis we get s̃∞ ≈ s̃′′∞, and
the thesis follows by applying the rule

s̃∞ ≈ s̃′′∞
õ∞ = τp · [v] · s̃∞ ≈ τ r · [v] · s̃′′∞ = õ′′∞

Proof of Prop. 17 (≈ and R≈ coincide) For the implication ⇐ we proceed by coinduction,
considering two cases:

if ετ (õ∞) = ετ (õ′∞) = [], then õ∞ = τα and õ′∞ = τβ , hence we get the thesis by the
first rule;
otherwise we have õ∞ = τn · [v] · s̃∞, õ′∞ = τm · [v] · s̃′∞ and ετ (s̃∞) = ετ (s̃′∞). Hence by
coinductive hypothesis we get s̃∞ ≈ s̃′∞ and then we get the thesis by the second rule.

To show the other implication, we have to prove that the set E = {(ετ (õ∞), ετ (õ′∞)) | õ∞ ≈
õ′∞} is included in the diagonal relation on V∞. To this aim, thanks to the (coalgebraic)
coinduction principle, it is enough to show that E is a bisimulation, that is, that E is an
F-coalgebra. Consider the following function defined on E:{

γE([], []) = ?

γE([v] · ετ (s̃∞), [v] · ετ (s̃′∞)) = (v, (ετ (s̃∞), ετ (s̃′∞)))

and note that by definition of ≈ we have s̃∞ ≈ s̃′∞, hence (ετ (s̃∞), ετ (s̃′∞)) ∈ E, and so
γE : E → FE is well-defined, and (E, γE) is an F-coalgebra, and this concludes the proof.
Proof of Lemma 12 We relax the hypothesis, only requiring that e ⇒ [v] · r is derivable by a
finite proof tree using also corules. Indeed, by definition, if e ⇒ [v] · r is derivable, then it
has a finite proof tree using also corules. We proceed by induction on the definition.
(co-empty) Empty case.
(co-out) We know that out e ⇒ [v] · o∞ and e ⇒ (v′, o). We have two cases:

if o = [v] · o′, then, by inductive hypothesis, e õ−→? E [out v], hence out e õ−→?

out E [out v];

if o = [], then v′ = v and by Lemma 10 we get that e (v, õ), hence e õ−→? v; hence

we get that out e õ−→? out v as needed.
(val) Empty case.
(out) Analogous to case (co-out).

D. Ancona, F. Dagnino, and E. Zucca 21:29

(app) We know that e1 e2 ⇒ [v] · r , e1 ⇒ (λx.e, o1), e2 ⇒ (v2, o2) and e[x ← v2] ⇒ r ′. We
distinguish three cases:

if o1 = [v] · o′1, then by inductive hypothesis we get that e1
õ−→? E [out v], hence

e1 e2
õ−→? E [out v] e2 as needed;

if o1 = [] and o2 = [v] ·o′2, then by Lemma 10 e1 (λx.e, õ1), hence e1
õ1−−→? λx.e, and

by inductive hypothesis e2
õ−→? E [out v], therefore we get that e1 e2

õ1−−→? λx.e e2
õ−→?

λx.e E [out v] as needed;
if o1 = o2 = [], then r ′ = [v] · r , hence by Lemma 10 we get that e1 (λx.e, õ1)

and e2 (v2, õ2), hence e1
õ1−−→? λx.e and e2

õ2−−→? v2 , and by inductive hypothesis

e[x ← v2] õ−→? E [out v]; therefore we get that e1 e2
õ1−−→? λx.e e2

õ2−−→? λx.e v2
τ−→

e[x ← v2] õ−→? E [out v] as needed.
(div) Analogous to case (app).

Proof of Theorem 11 We prove separately the three points.
1. We start by constructing inductively the sequences (en)n∈N and (rn)n∈N. The case n = 0

is given by the hypothesis. If we assume en and rn to satisfy en ⇒ rn, then we have two
cases:

if en = v, then we set en+1 = v and rn+1 = (v, []);

otherwise, by Lemma 8 there are e′ and ` such that en
`−→ e′, and by Lemma 9 there

is r ′ such that e′ ⇒ r ′ and rn ≈ [`] · r ′; therefore we set en+1 = e′ and rn+1 = r ′.
In this way, by construction (en)n∈N and (rn)n∈N satisfy the requirements.
In order to construct the sequence (r̃n)n∈N we need some more effort. First of all, we
have to find an infinite sequence of streams satisfying the requirements of point 1, that is,
a function s : N→ V∞τ such that, for all n ∈ N, if en is a value, then s(n) = [], and if
en

`−→ en+1, then s(n) = [`] · s(n+ 1). To do this, we give a coalgebra structure on N for
the functor FX = 1 + Vτ ×X, given by the map γ : N→ FN defined by

γ(n) =
{

? en = v
(`, n+ 1) en

`−→ en+1

Now, since V∞τ carries a terminal F-coalgebra, and requirements of point 1 impose that s
is a homomorphism, it is uniquely determined. Therefore we set r̃n = (v, s(n)) if there is
k ≥ n such that ek = v, otherwise r̃n = (∞, s(n)).

2. We proceed by coinduction, distinguishing two cases:
if en is a value v, then, by point 1, r̃n = (v, []), hence en r̃n holds by the first axiom;

otherwise, by point 1, en
`−→ en+1, en+1 ⇒ rn+1 and r̃n = [`] · r̃n+1, therefore by

coinductive hypothesis we get en+1 r̃n+1 and so by the second rule we get the thesis.
3. We distinguish two cases:

if v∞ = v, then, since for all n ∈ N by points 1 and 2 we have en ⇒ (v, on) and
en r̃n, by Lemma 10 we get the thesis;
consider a result rn in the sequence, and assume v∞ =∞, then for all k ≥ n we have
ek 6= v, since otherwise we would get v∞ = v, because rn ≈ o · rk, by point 1; therefore
by construction (point 1) we get r̃n = (∞, õn∞).

ECOOP 2018

21:30 Modeling Infinite Behaviour by Corules

fields(Object) = ε

fields(c′) = f
class c extends c′ { g ; md}

f ∩ g = ∅
fields(c) = f , g

class c extends c′ { fd md m(x) {e} md ′}
meth(c,m) = x .e

meth(c′,m) = x .e
class c extends c′ { fd md}

m not declared in md
meth(c,m) = x .e

restore(Π, r) =

{
r if r = (∞, θ)
(v, θ); Π;H if r = (v, θ); Π′;H

θ · ((v, θ′); Π;H) = (v, θ · θ′); Π;H

θ · (∞, θ′) = (∞, θ · θ′)

ser(H, v) = v v ∈ {false, true} ∀ i = 1..n.ser(H, vi) = vi
ser(H, ι) = obj(c, f n 7→ vn)

H(ι) = obj(c, f n 7→ vn)

ser(H, v) = v

deser(H, v, ∅) = (H′, v)
deser(H, v) = (H′, v) deser(H, v,M) = (H, v) v ∈ {false, true}

deser(H, v,M] {v 7→ ι}) = (H, ι)

∀ i = 1..n.deser(Hi−1, vi,M ∪ {v 7→ ι}) = (Hi, vi)
deser(H0, v,M) = (Hn ∪ {ι 7→ obj(c, f n 7→ vn}), ι)

v 6∈ dom(M)
v = obj(c, f n 7→ vn)
ι 6∈ dom(H0) ∪ img(M)

Figure 12 Definition of auxiliary functions and operators

C Auxiliary definitions and additional examples for the imperative
Java-like language

Auxiliary definitions. Fig. 12 shows the definition of all auxiliary functions and operators
used in the rules.

Functions fields and meth are standard. Function restore replaces the stack frame of the
callee with that of the caller after the computation returns from a method invocation (rule
(inv)).
The operation θ · r updates the result r by appending the finite trace θ to the left of the
possibly infinite trace θ′ of r .
Function ser corresponds to built-in serialization of an internal value v into a corresponding
serialized value v; because object values are heap references, the function depends also on the
heap. Serialization of primitive values is trivial, and serialization of objects does not yield
a sequence (as happens in practice), but rather preserves the tree structure of the original
object, allowed to be infinite, but still regular because heaps have finite domains. For this
reason, we provide a standard coinductive definition of ser .
The inverse function deser depends on heaps as well, since deserialization of objects requires
object allocation; for the same reason, the function returns a pair consisting of a new heap
and a value. Deserialization of cyclic objects requires particular care, because one has to
avoid infinite unfolding which would lead to a heap with an infinite domain; our choice is to

D. Ancona, F. Dagnino, and E. Zucca 21:31

minimize unfolding, therefore recursive deserialization stops as soon as a loop is detected in
the structure of the serialized object, and no redundant cycles are introduced in the heap.
To this aim, the definition of deser is based on an overloaded function deser taking a third
argument M , which is a finite map from serialized objects to their associated reference, to
keep track of cycles. If a serialized object v is already in the domain of M , then a cycle
has been detected, and the associated reference in M and the unchanged heap are returned.
Otherwise, deserialization is propagated to the fields of v with an updated map M where a
fresh reference ι is associated with v. Finally, an updated heap and the new reference ι are
returned. Because of the use of the third argument M , the definition of deser(H, v,M) is
inductive.

Example 2. This example is a simple variation of Example 1, where method m does not
output the input value.

class C extends Object {m(x){ this.m(in)}}

In this case the only derivable judgments have shape ∅; ∅; e ⇒ (∞, θ0), where the event trace
θ0 is defined by θ0 = [in v0 in v1 . . .]. The corresponding infinite proof is obtained from that
of Example 1 by slightly changing the trees ∇i (with the same simplifying assumption that
only primitive input values are considered); in this case we have

∇i = (inv)

(var) Πi;H; this⇒ (ι, []); Πi;H
(in) Πi;H; in⇒ (vi, [in vi]); Πi;H ∇i+1

Πi;H; this.m(in)⇒ (∞, [in vi] · θi+1)

where for all i ∈ N, θi = [in vi] · θi+1, whereas H, and Πi are defined as before. The following
finite trees built with corules show that the infinite trees ∇i are valid:

(div)

(var) Πi;H; this⇒ (ι, []); Πi;H
(co-in) Πi;H; in⇒ (∞, [in vi] · θi+1); Πi;H

Πi;H; this.m(in)⇒ (∞, [in vi] · θi+1)

Example 3. This example is a more elaborated variation of Example 1, where some com-
putation is performed on input values before they are output, and a simple cache object is
employed. To simplify the code we employ the primitive operator ==, together with integer
literals and addition.
class H extends Object { // simple cache objects

// fields store the last input and its associated output
input; output ;
get(i){

if(i== this.input) this. output
else this. output =this.calc(this.input=i)

}
/* performs some computation on i and returns the result */
calc(i){ i+1 }

}
class C extends Object {cache; m(x){ this.m(out cache.get(in))}}

If we consider the main expression e = new C(new H(0,0)).m(true), and restrict the ob-
servation to positive integers as input, then the only derivable judgments have shape
∅; ∅; e ⇒ (∞, θ0), where θ0 = [in v0 out v0 + 1 in v1 out v1 + 1 . . .], with vi a posit-
ive integer for all i ∈ N.

ECOOP 2018

The Essence of Nested Composition
Xuan Bi1

The University of Hong Kong, Hong Kong, China
xbi@cs.hku.hk

Bruno C. d. S. Oliveira1

The University of Hong Kong, Hong Kong, China
bruno@cs.hku.hk

Tom Schrijvers2

KU Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract
Calculi with disjoint intersection types support an introduction form for intersections called the
merge operator, while retaining a coherent semantics. Disjoint intersections types have great
potential to serve as a foundation for powerful, flexible and yet type-safe and easy to reason
OO languages. This paper shows how to significantly increase the expressive power of disjoint
intersection types by adding support for nested subtyping and composition, which enables simple
forms of family polymorphism to be expressed in the calculus. The extension with nested sub-
typing and composition is challenging, for two different reasons. Firstly, the subtyping relation
that supports these features is non-trivial, especially when it comes to obtaining an algorithmic
version. Secondly, the syntactic method used to prove coherence for previous calculi with disjoint
intersection types is too inflexible, making it hard to extend those calculi with new features (such
as nested subtyping). We show how to address the first problem by adapting and extending the
Barendregt, Coppo and Dezani (BCD) subtyping rules for intersections with records and coer-
cions. A sound and complete algorithmic system is obtained by using an approach inspired by
Pierce’s work. To address the second problem we replace the syntactic method to prove coher-
ence, by a semantic proof method based on logical relations. Our work has been fully formalized
in Coq, and we have an implementation of our calculus.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases nested composition, family polymorphism, intersection types, coherence

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.22

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.5

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Intersection types [49, 18] have a long history in programming languages. They were
originally introduced to characterize exactly all strongly normalizing lambda terms. Since
then, starting with Reynolds’s work on Forsythe [54], they have also been employed to express

1 Funded by Hong Kong Research Grant Council projects number 17210617 and 17258816
2 Funded by The Research Foundation - Flanders

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 22; pp. 22:1–22:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xbi@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:tom.schrijvers@cs.kuleuven.be
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.22
http://dx.doi.org/10.4230/DARTS.4.3.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 The Essence of Nested Composition

useful programming language constructs, such as key aspects of multiple inheritance [17] in
Object-Oriented Programming (OOP). One notable example is the Scala language [44] and its
DOT calculus [3], which make fundamental use of intersection types to express a class/trait
that extends multiple other traits. Other modern languages, such as TypeScript [39], Flow [28]
and Ceylon [51], also adopt some form of intersection types.

Intersection types come in different varieties in the literature. Some calculi provide an
explicit introduction form for intersections, called the merge operator. This operator was
introduced by Reynolds in Forsythe [54] and adopted by a few other calculi [15, 23, 46, 2].
Unfortunately, while the merge operator is powerful, it also makes it hard to get a coherent
(or unambiguous) semantics. Unrestricted uses of the merge operator can be ambiguous,
leading to an incoherent semantics where the same program can evaluate to different values.
A far more common form of intersection types are the so-called refinement types [30, 21, 24].
Refinement types restrict the formation of intersection types so that the two types in an
intersection are refinements of the same simple (unrefined) type. Refinement intersection
increases only the expressiveness of types and not of terms. For this reason, Dunfield [23]
argues that refinement intersection is unsuited for encoding various useful language features
that require the merge operator (or an equivalent term-level operator).

Disjoint Intersection Types. λi is a recent calculus with a variant of intersection types
called disjoint intersection types [46]. Calculi with disjoint intersection types feature the
merge operator, with restrictions that all expressions in a merge operator must have disjoint
types and all well-formed intersections are also disjoint. A bidirectional type system and the
disjointness restrictions ensure that the semantics of the resulting calculi remains coherent.

Disjoint intersection types have great potential to serve as a foundation for powerful,
flexible and yet type-safe OO languages that are easy to reason about. As shown by Alpuim
et al. [2], calculi with disjoint intersection types are very expressive and can be used to
statically type-check JavaScript-style programs using mixins. Yet they retain both type
safety and coherence. While coherence may seem at first of mostly theoretical relevance, it
turns out to be very relevant for OOP. Multiple inheritance is renowned for being tricky to
get right, largely because of the possible ambiguity issues caused by the same field/method
names inherited from different parents [9, 58]. Disjoint intersection types enforce that the
types of parents are disjoint and thus that no conflicts exist. Any violations are statically
detected and can be manually resolved by the programmer. This is very similar to existing
trait models [29, 22]. Therefore in an OO language modelled on top of disjoint intersection
types, coherence implies that no ambiguity arises from multiple inheritance. This makes
reasoning a lot simpler.

Family Polymorphism. One powerful and long-standing idea in OOP is family polymorph-
ism [25]. In family polymorphism inheritance is extended to work on a whole family of
classes, rather than just a single class. This enables high degrees of modularity and reuse,
including simple solutions to hard programming language problems, like the Expression
Problem [64]. An essential feature of family polymorphism is nested composition [19, 27, 42],
which allows the automatic inheritance/composition of nested (or inner) classes when the
top-level classes containing them are composed. Designing a sound type system that fully
supports family polymorphism and nested composition is notoriously hard; there are only a
few, quite sophisticated, languages that manage this [27, 42, 16, 57].

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:3

NeColus. This paper presents an improved variant of λi called NeColus3 (or λ+
i): a simple

calculus with records and disjoint intersection types that supports nested composition. Nested
composition enables encoding simple forms of family polymorphism. More complex forms of
family polymorphism, involving binary methods [11] and mutable state are not yet supported,
but are interesting avenues for future work. Nevertheless, in NeColus, it is possible, for
example, to encode Ernst’s elegant family-polymorphism solution [25] to the Expression
Problem. Compared to λi the essential novelty of NeColus are distributivity rules between
function/record types and intersection types. These rules are the delta that enable extending
the simple forms of multiple inheritance/composition supported by λi into a more powerful
form supporting nested composition. The distributivity rule between function types and
intersections is common in calculi with intersection types aimed at capturing the set of all
strongly normalizable terms, and was first proposed by Barendregt et al. [4] (BCD). However
the distributivity rule is not common in calculi or languages with intersection types aimed at
programming. For example the rules employed in languages that support intersection types
(such as Scala, TypeScript, Flow or Ceylon) lack distributivity rules. Moreover distributivity
is also missing from several calculi with a merge operator. This includes all calculi with disjoint
intersection types and Dunfield’s work on elaborating intersection types, which was the
original foundation for λi. A possible reason for this omission in the past is that distributivity
adds substantial complexity (both algorithmically and metatheoretically), without having
any obvious practical applications. This paper shows how to deal with the complications of
BCD subtyping, while identifying a major reason to include it in a programming language:
BCD enables nested composition and subtyping, which is of significant practical interest.

NeColus differs significantly from previous BCD-based calculi in that it has to deal with
the possibility of incoherence, introduced by the merge operator. Incoherence is a non-issue
in the previous BCD-based calculi because they do not feature this merge operator or any
other source of incoherence. Although previous work on disjoint intersection types proposes
a solution to coherence, the solution imposes several ad-hoc restrictions to guarantee the
uniqueness of the elaboration and thus allow for a simple syntactic proof of coherence. Most
importantly, it makes it hard or impossible to adapt the proof to extensions of the calculus,
such as the new subtyping rules required by the BCD system.

In this work we remove the brittleness of the previous syntactic method to prove coherence,
by employing a more semantic proof method based on logical relations [63, 48, 61]. This new
proof method has several advantages. Firstly, with the new proof method, several restrictions
that were enforced by λi to enable the syntactic proof method are removed. For example
the work on λi has to carefully distinguish between so-called top-like types and other types.
In NeColus this distinction is not necessary; top-like types are handled like all other types.
Secondly, the method based on logical relations is more powerful because it is based on
semantic rather than syntactic equality. Finally, the removal of the ad-hoc side-conditions
makes adding new extensions, such as support for BCD-style subtyping, easier. In order to
deal with the complexity of the elaboration semantics of NeColus, we employ binary logical
relations that are heterogeneous, parameterized by two types; the fundamental property is
also reformulated to account for bidirectional type-checking.

In summary the contributions of this paper are:
NeColus: a calculus with (disjoint) intersection types that features both BCD-style
subtyping and the merge operator. This calculus is both type-safe and coherent, and
supports nested composition.

3 NeColus stands for Nested Composition calculus.

ECOOP 2018

22:4 The Essence of Nested Composition

A more flexible notion of disjoint intersection types where only merges need to be checked
for disjointness. This removes the need for enforcing disjointness for all well-formed types,
making the calculus more easily extensible.
An extension of BCD subtyping with both records and elaboration into coercions, and
algorithmic subtyping rules with coercions, inspired by Pierce’s decision procedure [47].
A more powerful proof strategy for coherence of disjoint intersection types based on
logical relations.
Illustrations of how the calculus can encode essential features of family polymorphism
through nested composition.
A comprehensive Coq mechanization of all meta-theory. This has notably revealed
several missing lemmas and oversights in Pierce’s manual proof [47] of BCD’s algorithmic
subtyping. We also have an implementation of a language built on top of NeColus; it
runs and type-checks all examples shown in the paper.4

2 Overview

This section illustrates NeColus with an encoding of a family polymorphism solution to the
Expression Problem, and informally presents its salient features.

2.1 Motivation: Family Polymorphism

In OOP family polymorphism is the ability to simultaneously refine a family of related classes
through inheritance. This is motivated by a need to not only refine individual classes, but
also to preserve and refine their mutual relationships. Nystrom et al. [42] call this scalable
extensibility: “the ability to extend a body of code while writing new code proportional to
the differences in functionality”. A well-studied mechanism to achieve family inheritance is
nested inheritance [42]. Nested inheritance combines two aspects. Firstly, a class can have
nested class members; the outer class is then a family of (inner) classes. Secondly, when one
family extends another, it inherits (and can override) all the class members, as well as the
relationships within the family (including subtyping) between the class members. However,
the members of the new family do not become subtypes of those in the parent family.

The Expression Problem, Scandinavian Style. Ernst [25] illustrates the benefits of nested
inheritance for modularity and extensibility with one of the most elegant and concise solutions
to the Expression Problem [64]. The objective of the Expression Problem is to extend a
datatype, consisting of several cases, together with several associated operations in two
dimensions: by adding more cases to the datatype and by adding new operations for the
datatype. Ernst solves the Expression Problem in the gbeta language, which he adorns with
a Java-like syntax for presentation purposes, for a small abstract syntax tree (AST) example.
His starting point is the code shown in Fig. 1a. The outer class Lang contains a family of
related AST classes: the common superclass Exp and two cases, Lit for literals and Add for
addition. The AST comes equipped with one operation, toString, which is implemented by
both cases.

4 The Coq formalization and implementation are available at https://goo.gl/R5hUAp.

https://goo.gl/R5hUAp

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:5

class Lang {
virtual class Exp {

String toString() {}
}
virtual class Lit extends Exp {
int value;
Lit(int value) {
this.value = value;

}
String toString() {
return value;

}
}
virtual class Add extends Exp {

Exp left,right;
Add(Exp left, Exp right) {
this.left = left;
this.right = right;

}
String toString() {
return left + "+" + right;

}
}

}

(a) Base family: the language Lang.

// Adding a new operation
class LangEval extends Lang {
refine class Exp {
int eval() {}

}
refine class Lit {
int eval { return value; }

}
refine class Add {
int eval { return

left.eval() + right.eval();
}

}
}
// Adding a new case
class LangNeg extends Lang {
virtual class Neg extends Exp {

Neg(Exp exp) { this.exp = exp; }
String toString() {
return "-(" + exp + ")";

}
Exp exp;

}
}

(b) Extending in two dimensions.

Figure 1 The Expression Problem, Scandinavian Style.

Adding a New Operation. One way to extend the family is to add an additional evaluation
operation, as shown in the top half of Fig. 1b. This is done by subclassing the Lang class
and refining all the contained classes by implementing the additional eval method. Note
that the inheritance between, e.g., Lang.Exp and Lang.Lit is transferred to LangEval.Exp
and LangEval.Lit. Similarly, the Lang.Exp type of the left and right fields in Lang.Add is
automatically refined to LangEval.Exp in LangEval.Add.

Adding a New Case. A second dimension to extend the family is to add a case for negation,
shown in the bottom half of Fig. 1b. This is similarly achieved by subclassing Lang, and now
adding a new contained class Neg, for negation, that implements the toString operation.

Finally, the two extensions are naturally combined by means of multiple inheritance,
closing the diamond.

class LangNegEval extends LangEval & LangNeg {
refine class Neg {
int eval() { return -exp.eval(); }

}
}

The only effort required is to implement the one missing operation case, evaluation of negated
expressions.

2.2 The Expression Problem, NeColus Style
The NeColus calculus allows us to solve the Expression Problem in a way that is very similar
to Ernst’s gbeta solution. However, the underlying mechanisms of NeColus are quite different

ECOOP 2018

22:6 The Essence of Nested Composition

from those of gbeta. In particular, NeColus features a structural type system in which we
can model objects with records, and object types with record types. For instance, we model
the interface of Lang.Exp with the singleton record type { print : String }. For the sake of
conciseness, we use type aliases to abbreviate types.

type IPrint = { print : String };

Similarly, we capture the interface of the Lang family in a record, with one field for each
case’s constructor.

type Lang = { lit : Int → IPrint, add : IPrint → IPrint → IPrint };

Here is the implementation of Lang.

implLang : Lang = {
lit (value : Int) = { print = value.toString },
add (left : IPrint) (right : IPrint) = {

print = left.print ++ "+" ++ right.print
}

};

Adding Evaluation. We obtain IPrint & IEval, which is the corresponding type for
LangEval.Exp, by intersecting IPrint with IEval where

type IEval = { eval : Int };

The type for LangEval is then:

type LangEval = {
lit : Int → IPrint & IEval,
add : IPrint & IEval → IPrint & IEval → IPrint & IEval

};

We obtain an implementation for LangEval by merging the existing Lang implementation
implLang with the new evaluation functionality implEval using the merge operator ,,.

implEval = {
lit (value : Int) = { eval = value },
add (left : IEval) (right : IEval) = {

eval = left.eval + right.eval
}

};
implLangEval : LangEval = implLang ,, implEval;

Adding Negation. Adding negation to Lang works similarly.

type NegPrint = { neg : IPrint → IPrint };
type LangNeg = Lang & NegPrint;

implNegPrint : NegPrint = {
neg (exp : IPrint) = { print = "-" ++ exp.print }

};
implLangNeg : LangNeg = implLang ,, implNegPrint;

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:7

Putting Everything Together. Finally, we can combine the two extensions and provide the
missing implementation of evaluation for the negation case.

type NegEval = { neg : IEval → IEval};
implNegEval : NegEval = {

neg (exp : IEval) = { eval = 0 - exp.eval }
};

type NegEvalExt = { neg : IPrint & IEval → IPrint & IEval };
type LangNegEval = LangEval & NegEvalExt;
implLangNegEval : LangNegEval = implLangEval ,, implNegPrint ,, implNegEval;

We can test implLangNegEval by creating an object e of expression −2 + 3 that is able to
print and evaluate at the same time.

fac = implLangNegEval;
e = fac.add (fac.neg (fac.lit 2)) (fac.lit 3);
main = e.print ++ " = " ++ e.eval.toString -- Output: "-2+3 = 1"

Multi-Field Records. One relevant remark is that NeColus does not have multi-field record
types built in. They are merely syntactic sugar for intersections of single-field record types.
Hence, the following is an equivalent definition of Lang:

type Lang = {lit : Int → IPrint} & {add : IPrint → IPrint → IPrint};

Similarly, the multi-field record expression in the definition of implLang is syntactic sugar for
the explicit merge of two single-field records.

implLang : Lang = { lit = ... } ,, { add = ... };

Subtyping. A big difference compared to gbeta is that many more NeColus types are related
through subtyping. Indeed, gbeta is unnecessarily conservative [26]: none of the families is
related through subtyping, nor is any of the class members of one family related to any of
the class members in another family. For instance, LangEval is not a subtype of Lang, nor is
LangNeg.Lit a subtype of Lang.Lit.

In contrast, subtyping in NeColus is much more nuanced and depends entirely on the
structure of types. The primary source of subtyping are intersection types: any intersection
type is a subtype of its components. For instance, IPrint & IEval is a subtype of both IPrint
and IEval. Similarly LangNeg = Lang & NegPrint is a subtype of Lang. Compare this to gbeta
where LangEval.Expr is not a subtype of Lang.Expr, nor is the family LangNeg a subtype of
the family Lang.

However, gbeta and NeColus agree that LangEval is not a subtype of Lang. The NeColus-
side of this may seem contradictory at first, as we have seen that intersection types arise from
the use of the merge operator, and we have created an implementation for LangEval with
implLang ,, implEval where implLang : Lang. That suggests that LangEval is a subtype of
Lang. Yet, there is a flaw in our reasoning: strictly speaking, implLang ,, implEval is not of
type LangEval but instead of type Lang & EvalExt, where EvalExt is the type of implEval:

type EvalExt = { lit : Int → IEval, add : IEval → IEval → IEval };

Nevertheless, the definition of implLangEval is valid because Lang & EvalExt is a subtype of
LangEval. Indeed, if we consider for the sake of simplicity only the lit field, we have that
(Int → IPrint) & (Int → IEval) is a subtype of Int → IPrint & IEval. This follows from

ECOOP 2018

22:8 The Essence of Nested Composition

Interface
LEGEND:

implmentation subtype-of#

composition

impl-of#

implLang

Lang EvalExt

implEval

LangEval

NegPrint

implNegPrint

NegEval

implNegEval

NegEvalExt

LangNeg Lang & EvalExt

LangNegEval

implLangNegEval

implLangNeg implLangEval

NegEval & NegPrint

implNegEval
,,

implNegPrint

Figure 2 Summary diagram of the relationships between language components.

a standard subtyping axiom for distributivity of functions and intersections in the BCD
system inherited by NeColus. In conclusion, Lang & EvalExt is a subtype of both Lang and of
LangEval. However, neither of the latter two types is a subtype of the other. Indeed, LangEval
is not a subtype of Lang as the type of add is not covariantly refined and thus admitting the
subtyping is unsound. For the same reason Lang is not a subtype of LangEval.

Figure 2 shows the various relationships between the language components. Admittedly,
the figure looks quite complex because our calculus features a structural type system (as
often more foundational calculi do), whereas mainstream OO languages have nominal type
systems. This is part of the reason why we have so many subtyping relations in Fig. 2.

Stand-Alone Extensions. Unlike in gbeta and other class-based inheritance systems, in
NeColus the extension implEval is not tied to LangEval. In that sense, it resembles trait and
mixin systems that can apply the same extension to different classes. However, unlike those
systems, implEval can also exist as a value on its own, i.e., it is not an extension per se.

2.3 Disjoint Intersection Types and Ambiguity
The above example shows that intersection types and the merge operator are closely related
to multiple inheritance. Indeed, they share a major concern with multiple inheritance,
namely ambiguity. When a subclass inherits an implementation of the same method from
two different parent classes, it is unclear which of the two methods is to be adopted by the
subclass. In the case where the two parent classes have a common superclass, this is known
as the diamond problem. The ambiguity problem also appears in NeColus, e.g., if we merge
two numbers to obtain 1 , , 2 of type Nat & Nat. Is the result of 1 , , 2 + 3 either 4 or 5?

Disjoint intersection types offer to statically detect potential ambiguity and to ask the
programmer to explicitly resolve the ambiguity by rejecting the program in its ambiguous
form. In the previous work on λi, ambiguity is avoided by dictating that all intersection

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:9

types have to be disjoint, i.e., Nat & Nat is ill-formed because the first component has the
same type as the second.

Duplication is Harmless. While requiring that all intersections are disjoint is sufficient to
guarantee coherence, it is not necessary. In fact, such requirement unnecessarily encumbers
the subtyping definition with disjointness constraints and an ad-hoc treatment of “top-like”
types. Indeed, the value 1 , , 1 of the non-disjoint type Nat & Nat is entirely unambiguous, and
(1 , , 1) + 3 can obviously only result in 4. More generally, when the overlapping components
of an intersection type have the same value, there is no ambiguity problem. NeColus uses this
idea to relax λi’s enforcement of disjointness. In the case of a merge, it is hard to statically
decide whether the two arguments have the same value, and thus NeColus still requires
disjointness. This is why in Fig. 2 we cannot define implLangNegEval by directly composing
the two existing implLangEval and implLangNeg, even though the latter two both contain
the same implLang. Yet, disjointness is no longer required for the well-formedness of types
and overlapping intersections can be created implicitly through subtyping, which results
in duplicating values at runtime. For instance, while 1 , , 1 is not expressible 1 : Nat & Nat
creates the equivalent value implicitly. In short, duplication is harmless and subtyping only
generates duplicated values for non-disjoint types.

2.4 Logical Relations for Coherence
Coherence is easy to establish for λi as its rigid rules mean that there is at most one possible
subtyping derivation between any two types. As a consequence there is only one possible
elaboration and thus one possible behavior for any program.

Two factors make establishing coherence for NeColus much more difficult: the relaxation
of disjointness and the adoption of the more expressive subtyping rules from the BCD system
(for which λi lacks). These two factors mean that subtyping proofs are no longer unique
and hence that there are multiple elaborations of the same source program. For instance,
Nat & Nat is a subtype of Nat in two ways: by projection on either the first or second
component. Hence the fact that all elaborations yield the same result when evaluated has
become a much more subtle property that requires sophisticated reasoning. For instance, in
the example, we can see that coherence holds because at runtime any value of type Nat & Nat
has identical components, and thus both projections yield the same result.

For NeColus in general, we show coherence by capturing the non-ambiguity invariant in a
logical relation and showing that it is preserved by the operational semantics. A complicating
factor is that not one, but two languages are involved: the source language NeColus and the
target language, essentially the simply-typed lambda calculus extended with coercions and
records. The logical relation does not hold for target programs and program contexts in
general, but only for those that are the image of a corresponding source program or program
context. Thus we must view everything through the lens of elaboration.

3 NeColus: Syntax and Semantics

In this section we formally present the syntax and semantics of NeColus. Compared to
prior work [2, 46], NeColus has a more powerful subtyping relation. The new subtyping
relation is inspired by BCD-style subtyping, but with two noteworthy differences: subtyping
is coercive (in contrast to traditional formulations of BCD); and it is extended with records.
We also have a new target language with explicit coercions inspired by the coercion calculus
of Henglein [32]. A full technical comparison between λ+

i and λi can be found in Section 3.5.

ECOOP 2018

22:10 The Essence of Nested Composition

Types A,B, C ::= Nat | > | A→ B | A & B | {l : A}
Expressions E ::= x | i | > | λx. E | E1 E2 | E1 , , E2 | E : A | {l = E} | E.l
Typing contexts Γ ::= • | Γ, x : A

Figure 3 Syntax of NeColus.

A <: B c (Declarative subtyping)

S-refl

A <: A id

S-trans
A2 <: A3 c1 A1 <: A2 c2

A1 <: A3 c1 ◦ c2

S-top

A <: > top

S-rcd
A <: B c

{l : A} <: {l : B} {l : c}

S-arr
B1 <: A1 c1 A2 <: B2 c2

A1 → A2 <: B1 → B2 c1 → c2

S-andl

A1 & A2 <: A1 π1

S-andr

A1 & A2 <: A2 π2

S-and
A1 <: A2 c1 A1 <: A3 c2

A1 <: A2 & A3 〈c1, c2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3 dist→

S-topArr

> <: > → > top→

S-distRcd

{l : A}& {l : B} <: {l : A & B} dist{l}

S-topRcd

> <: {l : >} top{l}

Figure 4 Declarative specification of subtyping.

3.1 Syntax
Figure 3 shows the syntax of NeColus. For brevity of the meta-theoretic study, we do
not consider primitive operations on natural numbers, or other primitive types. They can
be easily added to the language, and our prototype implementation is indeed equipped
with common primitive types and their operations. Metavariables A,B, C range over types.
Types include naturals Nat, a top type >, function types A→ B, intersection types A & B,
and singleton record types {l : A}. Metavariable E ranges over expressions. Expressions
include variables x, natural numbers i, a canonical top value >, lambda abstractions λx. E,
applications E1 E2, merges E1 , , E2, annotated terms E : A, singleton records {l = E}, and
record selections E.l.

3.2 Declarative Subtyping
Figure 4 presents the subtyping relation. We ignore the highlighted parts, and explain
them later in Section 3.4.

BCD-Style Subtyping. The subtyping rules are essentially those of the BCD type system [4],
extended with subtyping for singleton records. Rules S-top and S-rcd for top types and
record types are straightforward. Rule S-arr for function subtyping is standard. Rules S-
andl, S-andr, and S-and for intersection types axiomatize that A & B is the greatest
lower bound of A and B. Rule S-distArr is perhaps the most interesting rule. This,
so-called “distributivity” rule, describes the interaction between the subtyping relations for

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:11

Γ ` E ⇒ A e (Inference)

T-top

Γ ` > ⇒ > 〈〉

T-lit

Γ ` i ⇒ Nat i

T-var
x : A ∈ Γ

Γ ` x ⇒ A x

T-app
Γ ` E1 ⇒ A1 → A2 e1

Γ ` E2 ⇐ A1 e2

Γ ` E1 E2 ⇒ A2 e1 e2

T-anno
Γ ` E ⇐ A e

Γ ` E : A⇒ A e

T-proj
Γ ` E ⇒ {l : A} e
Γ ` E.l ⇒ A e.l

T-merge
Γ ` E1 ⇒ A1 e1

Γ ` E2 ⇒ A2 e2 A1 ∗A2

Γ ` E1 , , E2 ⇒ A1 & A2 〈e1, e2〉

T-rcd
Γ ` E ⇒ A e

Γ ` {l = E} ⇒ {l : A} {l = e}

Γ ` E ⇐ A e (Checking)

T-abs
Γ, x : A ` E ⇐ B e

Γ ` λx. E ⇐ A→ B λx. e

T-sub
Γ ` E ⇒ B e B <: A c

Γ ` E ⇐ A c e

Figure 5 Bidirectional type system of NeColus.

function types and those for intersection types. It can be shown5 that the other direction
(A1 → A2 & A3 <: (A1 → A2) & (A1 → A3)) and the contravariant distribution ((A1 →
A2) & (A3 → A2) <: A1 & A3 → A2) are both derivable from the existing subtyping rules.
Rule S-distRcd, which is not found in the original BCD system, prescribes the distribution
of records over intersection types. The two distributivity rules are the key to enable nested
composition. The rule S-topArr is standard in BCD subtyping, and the new rule S-topRcd
plays a similar role for record types.

Non-Algorithmic. The subtyping relation in Fig. 4 is clearly no more than a specification
due to the two subtyping axioms: rules S-refl and S-trans. A sound and complete
algorithmic version is discussed in Section 5. Nevertheless, for the sake of establishing
coherence, the declarative subtyping relation is sufficient.

3.3 Typing of NeColus
The bidirectional type system for NeColus is shown in Fig. 5. Again we ignore the highlighted
parts for now.

Typing Rules and Disjointness. As with traditional bidirectional type systems, we employ
two modes: the inference mode (⇒) and the checking mode (⇐). The inference judgement
Γ ` E ⇒ A says that we can synthesize a type A for expression E in the context Γ. The

5 The full derivations are found in the appendix.

ECOOP 2018

22:12 The Essence of Nested Composition

A ∗ B (Disjointness)

D-topL

> ∗A

D-topR

A ∗ >

D-arr
A2 ∗ B2

A1 → A2 ∗ B1 → B2

D-andL
A1 ∗ B A2 ∗ B

A1 & A2 ∗ B

D-andR
A ∗ B1 A ∗ B2

A ∗ B1 & B2

D-rcdEq
A ∗ B

{l : A} ∗ {l : B}

D-rcdNeq
l1 6= l2

{l1 : A} ∗ {l2 : B}

D-axNatArr

Nat ∗A1 → A2

D-axArrNat

A1 → A2 ∗ Nat

D-axNatRcd

Nat ∗ {l : A}

D-axRcdNat

{l : A} ∗ Nat

D-axArrRcd

A1 → A2 ∗ {l : A}

D-axRcdArr

{l : A} ∗A1 → A2

Figure 6 Disjointness.

Target types τ ::= Nat | 〈〉 | τ1 × τ2 | τ1 → τ2 | {l : τ}
Typing contexts ∆ ::= • | ∆, x : τ
Target terms e ::= x | i | 〈〉 | λx. e | e1 e2 | 〈e1, e2〉 | {l = e} | e.l | c e
Coercions c ::= id | c1 ◦ c2 | top | top→ | top{l} | c1 → c2 | 〈c1, c2〉

| π1 | π2 | {l : c} | dist{l} | dist→
Target values v ::= λx. e | 〈〉 | i | 〈v1, v2〉 | (c1 → c2) v | dist→ v | top→ v

Figure 7 λc types, terms and coercions.

checking judgement Γ ` E ⇐ A checks E against A in the context Γ. The disjointness
judgement A ∗B used in rule T-merge is shown in Fig. 6, which states that the types A and
B are disjoint. The intuition of two types being disjoint is that their least upper bound is
(isomorphic to) >. The disjointness judgement is important in order to rule out ambiguous
expressions such as 1 , , 2. Most of the typing and disjointness rules are standard and are
explained in detail in previous work [46, 2].

3.4 Elaboration Semantics
The operational semantics of NeColus is given by elaborating source expressions E into
target terms e. Our target language λc is the standard simply-typed call-by-value λ-calculus
extended with singleton records, products and coercions. The syntax of λc is shown in Fig. 7.
The meta-function | · | transforms NeColus types to λc types, and extends naturally to typing
contexts. Its definition is in the appendix.

Explicit Coercions and Coercive Subtyping. The separate syntactic category for explicit
coercions is a distinct difference from the prior works (in which they are regular terms).
Our coercions are based on those of Henglein [32], and we add more forms due to our extra
subtyping rules. Metavariable c ranges over coercions.6 Coercions express the conversion of
a term from one type to another. Because of the addition of coercions, the grammar contains
explicit coercion applications c e as a term, and various unsaturated coercion applications as
values. The use of explicit coercions is useful for the new semantic proof of coherence based

6 Coercions π1 and π2 subsume the first and second projection of pairs, respectively.

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:13

c ` τ1 . τ2 (Coercion typing)

cotyp-refl

id ` τ . τ

cotyp-trans
c1 ` τ2 . τ3 c2 ` τ1 . τ2

c1 ◦ c2 ` τ1 . τ3

cotyp-top

top ` τ . 〈〉

cotyp-topArr

top→ ` 〈〉 . 〈〉 → 〈〉

cotyp-topRcd

top{l} ` 〈〉 . {l : 〈〉}

cotyp-arr
c1 ` τ ′1 . τ1 c2 ` τ2 . τ

′
2

c1 → c2 ` τ1 → τ2 . τ
′
1 → τ ′2

cotyp-pair
c1 ` τ1 . τ2 c2 ` τ1 . τ3

〈c1, c2〉 ` τ1 . τ2 × τ3

cotyp-projl

π1 ` τ1 × τ2 . τ1

cotyp-projr

π2 ` τ1 × τ2 . τ2

cotyp-rcd
c ` τ1 . τ2

{l : c} ` {l : τ1} . {l : τ2}

cotyp-distRcd

dist{l} ` {l : τ1} × {l : τ2} . {l : τ1 × τ2}

cotyp-distArr

dist→ ` (τ1 → τ2)× (τ1 → τ3) . τ1 → τ2 × τ3

Figure 8 Coercion typing.

on logical relations. The subtyping judgement in Fig. 4 has the form A <: B c, which
says that the subtyping derivation of A <: B produces a coercion c that converts terms of
type |A| to type |B|. Each subtyping rule has its own specific form of coercion.

Target Typing. The typing of λc has the form ∆ ` e : τ , which is entirely standard. Only
the typing of coercion applications, shown below, deserves attention:

∆ ` e : τ c ` τ . τ ′

∆ ` c e : τ ′
typ-capp

Here the judgement c ` τ1 . τ2 expresses the typing of coercions, which are essentially
functions from τ1 to τ2. Their typing rules correspond exactly to the subtyping rules of
NeColus, as shown in Fig. 8.

Target Operational Semantics and Type Safety. The operational semantics of λc is mostly
unremarkable. What may be interesting is the operational semantics of coercions. Figure 9
shows the single-step (−→) reduction rules for coercions. Our coercion reduction rules are
quite standard but not efficient in terms of space. Nevertheless, there is existing work on
space-efficient coercions [60, 33], which should be applicable to our work as well. As standard,
−→∗ is the reflexive, transitive closure of −→. We show that λc is type safe:

I Theorem 1 (Preservation). If • ` e : τ and e −→ e′, then • ` e′ : τ .

I Theorem 2 (Progress). If • ` e : τ , then either e is a value, or ∃e′ such that e −→ e′.

Elaboration. We are now in a position to explain the elaboration judgements Γ ` E ⇒
A e and Γ ` E ⇐ A e in Fig. 5. The only interesting rule is rule T-sub, which applies
the coercion c produced by subtyping to the target term e to form a coercion application c e.
All the other rules do straightforward translations between source and target expressions.

To conclude, we show two lemmas that relate NeColus expressions to λc terms.

I Lemma 3 (Coercions preserve types). If A <: B c, then c ` |A| . |B|.

ECOOP 2018

22:14 The Essence of Nested Composition

e −→ e′ (Coercion reduction)

step-id

id v −→ v

step-trans

(c1 ◦ c2) v −→ c1 (c2 v)

step-top

top v −→ 〈〉

step-topArr

(top→ 〈〉) 〈〉 −→ 〈〉

step-topRcd

top{l} 〈〉 −→ {l = 〈〉}

step-pair

〈c1, c2〉 v −→ 〈c1 v, c2 v〉

step-arr

((c1 → c2) v1) v2 −→ c2 (v1 (c1 v2))

step-distArr

(dist→ 〈v1, v2〉) v3 −→ 〈v1 v3, v2 v3〉

step-projl

π1 〈v1, v2〉 −→ v1

step-projr

π2 〈v1, v2〉 −→ v2

step-crcd

{l : c} {l = v} −→ {l = c v}

step-distRcd

dist{l} 〈{l = v1}, {l = v2}〉 −→ {l = 〈v1, v2〉}

Figure 9 Coercion reduction.

Proof. By structural induction on the derivation of subtyping. J

I Lemma 4 (Elaboration soundness). We have that:
If Γ ` E ⇒ A e, then |Γ| ` e : |A|.
If Γ ` E ⇐ A e, then |Γ| ` e : |A|.

Proof. By structural induction on the derivation of typing. J

3.5 Comparison with λi
Below we identify major differences between λ+

i and λi, which, when taken together, yield
a simpler and more elegant system. The differences may seem superficial, but they have
far-reaching impacts on the semantics, especially on coherence, our major topic in Section 4.

No Ordinary Types. Apart from the extra subtyping rules, there is an important difference
from the λi subtyping relation. The subtyping relation of λi employs an auxiliary unary
relation called ordinary, which plays a fundamental role for ensuring coherence and obtaining
an algorithm [21]. The NeColus calculus discards the notion of ordinary types completely; this
yields a clean and elegant formulation of the subtyping relation. Another minor difference is
that due to the addition of the transitivity axiom (rule S-trans), rules S-andl and S-andr
are simplified: an intersection type A & B is a subtype of both A and B, instead of the more
general form A & B <: C.

No Top-Like Types. There is a notable difference from the coercive subtyping of λi. Because
of their syntactic proof method, they have special treatment for coercions of top-like types in
order to retain coherence. For NeColus, as with ordinary types, we do not need this kind of
ad-hoc treatment, thanks to the adoption of a more powerful proof method (cf. Section 4).

No Well-Formedness Judgement. A key difference from the type system of λi is the
complete omission of the well-formedness judgement. In λi, the well-formedness judgement

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:15

Γ ` A appears in both rules T-abs and T-sub. The sole purpose of this judgement is to
enforce the invariant that all intersection types are disjoint. However, as Section 4 will
explain, the syntactic restriction is unnecessary for coherence, and merely complicates the
type system. The NeColus calculus discards this well-formedness judgement altogether in
favour of a simpler design that is still coherent. An important implication is that even
without adding BCD subtyping, NeColus is already more expressive than λi: an expression
such as 1 : Nat & Nat is accepted in NeColus but rejected in λi. This simplification is based on
an important observation: incoherence can only originate in merges. Therefore disjointness
checking is only necessary in rule T-merge.

4 Coherence

This section constructs logical relations to establish the coherence of NeColus. Finding a
suitable definition of coherence for NeColus is already challenging in its own right. In what
follows we reproduce the steps of finding a definition for coherence that is both intuitive and
applicable. Then we present the construction of logical (equivalence) relations tailored to
this definition, and the connection between logical equivalence and coherence.

4.1 In Search of Coherence
In λi the definition of coherence is based on α-equivalence. More specifically, their coherence
property states that any two target terms that a source expression elaborates into must be
exactly the same (up to α-equivalence). Unfortunately this syntactic notion of coherence
is very fragile with respect to extensions. For example, it is not obvious how to retain this
notion of coherence when adding more subtyping rules such as those in Fig. 4.

If we permit ourselves to consider only the syntactic aspects of expressions, then very few
expressions can be considered equal. The syntactic view also conflicts with the intuition that
the significance of an expression lies in its contribution to the outcome of a computation [31].
Drawing inspiration from a wide range of literature on contextual equivalence [41], we want a
context-based notion of coherence. It is helpful to consider several examples before presenting
the formal definition of our new semantically founded notion of coherence.

I Example 5. The same NeColus expression 3 can be typed Nat in many ways: for instance,
by rule T-lit; by rules T-sub and S-refl; or by rules T-sub, S-trans, and S-refl,
resulting in λc terms 3, id 3 and (id ◦ id) 3, respectively. It is apparent that these three λc

terms are “equal” in the sense that all reduce to the same numeral 3.

Expression Contexts and Contextual Equivalence. To formalize the intuition, we introduce
the notion of expression contexts. An expression context D is a term with a single hole [·]
(possibly under some binders) in it. The syntax of λc expression contexts can be found in
Fig. 10. The typing judgement for expression contexts has the form D : (∆ ` τ) (∆′ ` τ ′)
where (∆ ` τ) indicates the type of the hole. This judgement essentially says that plugging
a well-typed term ∆ ` e : τ into the context D gives another well-typed term ∆′ ` D{e} : τ ′.
We define a complete program to mean any closed term of type Nat. The following two
definitions capture the notion of contextual equivalence.

I Definition 6 (Kleene Equality). Two complete programs, e and e′, are Kleene equal, written
e w e′, iff there exists i such that e −→∗ i and e′ −→∗ i.

I Definition 7 (λc Contextual Equivalence).

ECOOP 2018

22:16 The Essence of Nested Composition

λc contexts D ::= [·] | λx.D | D e2 | e1D | 〈D, e2〉 | 〈e1,D〉 | cD | {l = D} | D.l
NeColus contexts C ::= [·] | λx. C | C E2 | E1 C | E1 , , C | C , , E2 | C : A | {l = C} | C.l

Figure 10 Expression contexts of NeColus and λc.

∆ ` e1 wctx e2 : τ , ∆ ` e1 : τ ∧∆ ` e2 : τ ∧
∀D. D : (∆ ` τ) (• ` Nat) =⇒ D{e1} w D{e2}

Regarding Example 5, it seems adequate to say that 3 and id 3 are contextually equivalent.
Does this imply that coherence can be based on Definition 7? Unfortunately it cannot, as
demonstrated by the following example.

I Example 8. It may be counter-intuitive that two λc terms λx. π1 x and λx. π2 x should
also be considered equal. To see why, first note that they are both translations of the
same NeColus expression: (λx. x) : Nat & Nat → Nat. What can we do with this lambda
abstraction? We can apply it to 1 : Nat & Nat for example. In that case, we get two
translations (λx. π1 x) 〈1, 1〉 and (λx. π2 x) 〈1, 1〉, which both reduce to the same numeral 1.
However, λx. π1 x and λx. π2 x are definitely not equal according to Definition 7, as one can
find a context [·] 〈1, 2〉 where the two terms reduce to two different numerals. The problem
is that not every well-typed λc term can be obtained from a well-typed NeColus expression
through the elaboration semantics. For example, [·] 〈1, 2〉 should not be considered because
the (non-disjoint) source expression 1 , , 2 is rejected by the type system of the source calculus
NeColus and thus never gets elaborated into 〈1, 2〉.

NeColus Contexts and Refined Contextual Equivalence. Example 8 hints at a shift from
λc contexts to NeColus contexts C, whose syntax is shown in Fig. 10. Due to the bidirectional
nature of the type system, the typing judgement of C features 4 different forms:

C : (Γ ⇒ A) 7→ (Γ′ ⇒ A′) D C : (Γ ⇐ A) 7→ (Γ′ ⇒ A′) D

C : (Γ ⇒ A) 7→ (Γ′ ⇐ A′) D C : (Γ ⇐ A) 7→ (Γ′ ⇐ A′) D

We write C : (Γ ⇔ A) 7→ (Γ′ ⇔′ A′) D to abbreviate the above 4 different forms. Take
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A′) D for example, it reads given a well-typed NeColus expression
Γ ` E ⇒ A, we have Γ′ ` C{E} ⇒ A′. The judgement also generates a λc context D such
that D : (|Γ| ` |A|) (|Γ′| ` |A′|) holds by construction. The typing rules appear in the
appendix. Now we are ready to refine Definition 7’s contextual equivalence to take into
consideration both NeColus and λc contexts.

I Definition 9 (NeColus Contextual Equivalence).

Γ ` E1 wctx E2 : A , ∀e1, e2, C,D. Γ ` E1 ⇒ A e1 ∧ Γ ` E2 ⇒ A e2 ∧
C : (Γ ⇒ A) 7→ (• ⇒ Nat) D =⇒ D{e1} w D{e2}

I Remark. For brevity we only consider expressions in the inference mode. Our Coq
formalization is complete with two modes.
Regarding Example 8, a possible NeColus context is [·] 1 : (• ⇒ Nat & Nat→ Nat) 7→ (• ⇒
Nat) [·] 〈1, 1〉. We can verify that both λx. π1 x and λx. π2 x produce 1 in the context
[·] 〈1, 1〉. Of course we should consider all possible contexts to be certain they are truly equal.
From now on, we use the symbol wctx to refer to contextual equivalence in Definition 9.
With Definition 9 we can formally state that NeColus is coherent in the following theorem:

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:17

(v1, v2) ∈ VJNat; NatK , ∃i, v1 = v2 = i

(v1, v2) ∈ VJτ1 → τ2; τ ′1 → τ ′2K , ∀(v, v′) ∈ VJτ1; τ ′1K, (v1 v, v2 v′) ∈ EJτ2; τ ′2K

({l = v1}, {l = v2}) ∈ VJ{l : τ1}; {l : τ2}K , (v1, v2) ∈ VJτ1; τ2K

(〈v1, v2〉, v3) ∈ VJτ1 × τ2; τ3K , (v1, v3) ∈ VJτ1; τ3K ∧ (v2, v3) ∈ VJτ2; τ3K

(v3, 〈v1, v2〉) ∈ VJτ3; τ1 × τ2K , (v3, v1) ∈ VJτ3; τ1K ∧ (v3, v2) ∈ VJτ3; τ2K

(v1, v2) ∈ VJτ1; τ2K , true otherwise

(e1, e2) ∈ EJτ1; τ2K , ∃v1v2, e1 −→∗ v1 ∧ e2 −→∗ v2 ∧ (v1, v2) ∈ VJτ1; τ2K

Figure 11 Logical relations for λc.

I Theorem 10 (Coherence). If Γ ` E ⇒ A then Γ ` E wctx E : A.

For the same reason as in Definition 9, we only consider expressions in the inference mode.
The rest of the section is devoted to proving that Theorem 10 holds.

4.2 Logical Relations
Intuitive as Definition 9 may seem, it is generally very hard to prove contextual equivalence
directly, since it involves quantification over all possible contexts. Worse still, two kinds of
contexts are involved in Theorem 10, which makes reasoning even more tedious. The key to
simplifying the reasoning is to exploit types by using logical relations [63, 61, 48].

In Search of a Logical Relation. It is worth pausing to ponder what kind of relation we are
looking for. The high-level intuition behind the relation is to capture the notion of “coherent”
values. These values are unambiguous in every context. A moment of thought leads us to
the following important observations:
I Observation 1 (Disjoint values are unambiguous). The relation should relate values originating
from disjoint intersection types. Those values are essentially translated from merges, and
since rule T-merge ensures disjointness, they are unambiguous. For example, 〈1, {l = 1}〉
corresponds to the type Nat & {l : Nat}. It is always clear which one to choose (1 or {l = 1})
no matter how this pair is used in certain contexts.
I Observation 2 (Duplication is unambiguous). The relation should relate values originating
from non-disjoint intersection types, only if the values are duplicates. This may sound baffling
since the whole point of disjointness is to rule out (ambiguous) expressions such as 1 , , 2.
However, 1 , , 2 never gets elaborated, and the only values corresponding to Nat & Nat are
those pairs such as 〈1, 1〉, 〈2, 2〉, etc. Those values are essentially generated from rule T-sub
and are also unambiguous.

To formalize values being “coherent” based on the above observations, Figure 11 defines
two (binary) logical relations for λc, one for values (VJτ1; τ2K) and one for terms (EJτ1; τ2K).
We require that any two values (v1, v2) ∈ VJτ1; τ2K are closed and well-typed. For succinctness,
we write VJτK to mean VJτ ; τK, and similarly for EJτK.
I Remark. The logical relations are heterogeneous, parameterized by two types, one for each
argument. This is intended to relate values of different types.
I Remark. The logical relations resemble those given by Biernacki and Polesiuk [8], as both
are heterogeneous. However, two important differences are worth pointing out. Firstly, our

ECOOP 2018

22:18 The Essence of Nested Composition

value relation for product types (VJτ1× τ2; τ3K and VJτ3; τ1× τ2K) is unusual. Secondly, their
value relation disallows relating functions with natural numbers, while ours does not. As we
explain shortly, both points are related to disjointness.

First let us consider VJτ1; τ2K. The first three cases are standard: Two natural numbers
are related iff they are the same numeral. Two functions are related iff they map related
arguments to related results. Two singleton records are related iff they have the same label
and their fields are related. These cases reflect Observation 2: the same type corresponds to
the same value.

In the next two cases one of the parameterized types is a product type. In those cases,
the relation distributes over the product constructor ×. This may look strange at first, since
the traditional way of relating pairs is by relating their components pairwise. That is, 〈v1, v2〉
and 〈v′1, v′2〉 are related iff (1) v1 and v′1 are related and (2) v2 and v′2 are related. According
to our definition, we also require that (3) v1 and v′2 are related and (4) v2 and v′1 are related.
The design of these two cases is influenced by the disjointness of intersection types. Below
are two rules dealing with intersection types:

A1 ∗ B A2 ∗ B
A1 & A2 ∗ B

D-andL
A ∗ B1 A ∗ B2

A ∗ B1 & B2
D-andR

Notice the structural similarity between these two rules and the two cases. Now it is clear that
the cases for products manifests disjointness of intersection types, reflecting Observation 1.
Together with the last case, we can show that disjointness and the value relation are connected
by the following lemma:

I Lemma 11 (Disjoint values are in a value relation). If A1 ∗A2 and v1 : |A1| and v2 : |A2|,
then (v1, v2) ∈ VJ|A1|; |A2|K.

Proof. By induction on the derivation of disjointness. J

Next we consider EJτ1; τ2K, which is standard. Informally it expresses that two closed
terms e1 and e2 are related iff they evaluate to two values v1 and v2 that are related.

Logical Equivalence. The logical relations can be lifted to open terms in the usual way.
First we give the semantic interpretation of typing contexts:

I Definition 12 (Interpretation of Typing Contexts). (γ1, γ2) ∈ GJ∆1; ∆2K is defined as follows:

(∅, ∅) ∈ GJ•; •K

(v1, v2) ∈ VJτ1; τ2K
(γ1, γ2) ∈ GJ∆1; ∆2K freshx

(γ1[x 7→ v1], γ2[x 7→ v2]) ∈ GJ∆1, x : τ1; ∆2, x : τ2K

Two open terms are related if every pair of related closing substitutions makes them related:

I Definition 13 (Logical equivalence). Let ∆1 ` e1 : τ1 and ∆2 ` e2 : τ2.

∆1; ∆2 ` e1 wlog e2 : τ1; τ2 , ∀γ1, γ2. (γ1, γ2) ∈ GJ∆1; ∆2K =⇒ (γ1 e1, γ2 e2) ∈ EJτ1; τ2K

For succinctness, we write ∆ ` e1 wlog e2 : τ to mean ∆; ∆ ` e1 wlog e2 : τ ; τ .

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:19

4.3 Establishing Coherence
With all the machinery in place, we are now ready to prove Theorem 10. But we need several
lemmas to set the stage.

First we show compatibility lemmas, which state that logical equivalence is preserved
by every language construct. Most are standard and thus are omitted. We show only one
compatibility lemma that is specific to our relations:

I Lemma 14 (Coercion Compatibility). Suppose that c ` τ1 . τ2,
If ∆1; ∆2 ` e1 wlog e2 : τ1; τ0 then ∆1; ∆2 ` c e1 wlog e2 : τ2; τ0.
If ∆1; ∆2 ` e1 wlog e2 : τ0; τ1 then ∆1; ∆2 ` e1 wlog c e2 : τ0; τ2.

Proof. By induction on the typing derivation of the coercion c. J

The “Fundamental Property” states that any well-typed expression is related to itself
by the logical relation. In our elaboration setting, we rephrase it so that any two λc terms
elaborated from the same NeColus expression are related by the logical relation. To prove it,
we require Theorem 15.

I Theorem 15 (Inference Uniqueness). If Γ ` E ⇒ A1 and Γ ` E ⇒ A2, then A1 ≡ A2.

I Theorem 16 (Fundamental Property). We have that:
If Γ ` E ⇒ A e and Γ ` E ⇒ A e′, then |Γ| ` e wlog e′ : |A|.
If Γ ` E ⇐ A e and Γ ` E ⇐ A e′, then |Γ| ` e wlog e′ : |A|.

Proof. The proof follows by induction on the first derivation. The most interesting case is
rule T-sub where we need Theorem 15 to be able to apply the induction hypothesis. Then
we apply Lemma 14 to say that the coercion generated preserves the relation between terms.
For the other cases we use the appropriate compatibility lemmas. J

I Remark. It is interesting to ask whether the Fundamental Property holds in the target
language. That is, if ∆ ` e : τ then ∆ ` e wlog e : τ . Clearly this does not hold for every
well-typed λc term. However, as we have emphasized, we do not need to consider every λc

term. Our logical relation is carefully formulated so that the Fundamental Property holds in
the source language.

We show that logical equivalence is preserved by NeColus contexts:

I Lemma 17 (Congruence). If C : (Γ ⇔ A) 7→ (Γ′ ⇔′ A′) D, Γ ` E1 ⇔ A e1,
Γ ` E2 ⇔ A e2 and |Γ| ` e1 wlog e2 : |A|, then |Γ′| ` D{e1} wlog D{e2} : |A′|.

Proof. By induction on the typing derivation of the context C, and applying the compatibility
lemmas where appropriate. J

I Lemma 18 (Adequacy). If • ` e1 wlog e2 : Nat then e1 w e2.

Proof. Adequacy follows easily from the definition of the logical relation. J

Next up is the proof that logical relation is sound with respect to contextual equivalence:

I Theorem 19 (Soundness w.r.t. Contextual Equivalence). If Γ ` E1 ⇒ A e1 and
Γ ` E2 ⇒ A e2 and |Γ| ` e1 wlog e2 : |A| then Γ ` E1 wctx E2 : A.

Proof. From Definition 9, we are given a context C : (Γ ⇒ A) 7→ (• ⇒ Nat) D. By
Lemma 17 we have • ` D{e1} wlog D{e2} : Nat, thus D{e1} w D{e2} by Lemma 18. J

ECOOP 2018

22:20 The Essence of Nested Composition

Armed with Theorem 16 and Theorem 19, coherence follows directly.

I Theorem 10 (Coherence). If Γ ` E ⇒ A then Γ ` E wctx E : A.

Proof. Immediate from Theorem 16 and Theorem 19. J

4.4 Some Interesting Corollaries
To showcase the strength of the new proof method, we can derive some interesting corollaries.
For the most part, they are direct consequences of logical equivalence which carry over to
contextual equivalence.

Corollary 20 says that merging a term of some type with something else does not
affect its semantics. Corollary 21 and Corollary 22 express that merges are commutative
and associative, respectively. Corollary 23 states that coercions from the same types are
“coherent”.

I Corollary 20 (Merge is Neutral). If Γ ` E1 ⇒ A and Γ ` E1 , , E2 ⇒ A, then Γ ` E1 wctx

E1 , , E2 : A

I Corollary 21 (Merge is Commutative). If Γ ` E1 , , E2 ⇒ A and Γ ` E2 , , E1 ⇒ A, then
Γ ` E1 , , E2 wctx E2 , , E1 : A.

I Corollary 22 (Merge is Associative). If Γ ` (E1 , , E2) , , E3 ⇒ A and Γ ` E1 , , (E2 , , E3) ⇒
A, then Γ ` (E1 , , E2) , , E3 wctx E1 , , (E2 , , E3) : A.

I Corollary 23 (Coercions Preserve Semantics). If A <: B c1 and A <: B c2, then
∆ ` λx. c1 x wlog λx. c2 x : |A| → |B|.

5 Algorithmic Subtyping

This section presents an algorithm that implements the subtyping relation in Fig. 4. While
BCD subtyping is well-known, the presence of a transitivity axiom in the rules means that
the system is not algorithmic. This raises an obvious question: how to obtain an algorithm
for this subtyping relation? Laurent [37] has shown that simply dropping the transitivity
rule from the BCD system is not possible without losing expressivity. Hence, this avenue for
obtaining an algorithm is not available. Instead, we adapt Pierce’s decision procedure [47]
for a subtyping system (closely related to BCD) to obtain a sound and complete algorithm
for our BCD extension. Our algorithm extends Pierce’s decision procedure with subtyping of
singleton records and coercion generation. We prove in Coq that the algorithm is sound and
complete with respect to the declarative version. At the same time we find some errors and
missing lemmas in Pierce’s original manual proofs.

5.1 The Subtyping Algorithm
Figure 12 shows the algorithmic subtyping judgement L ` A ≺: B c. This judgement
is the algorithmic counterpart of the declarative judgement A <: L → B c, where the
symbol L stands for a queue of types and labels. Definition 24 converts a queue to a type:

I Definition 24. L → A is inductively defined as follows:

[]→ A = A (L,B)→ A = L → (B → A) (L, {l})→ A = L → {l : A}

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:21

L ` A ≺: B c (Algorithmic subtyping)

A-and
L ` A ≺: B1 c1 L ` A ≺: B2 c2

L ` A ≺: B1 & B2 JLK& ◦ 〈c1, c2〉

A-arr
L,B1 ` A ≺: B2 c
L ` A ≺: B1 → B2 c

A-rcd
L, {l} ` A ≺: B c
L ` A ≺: {l : B} c

A-top

L ` A ≺: > JLK> ◦ top

A-arrNat
[] ` A ≺: A1 c1 L ` A2 ≺: Nat c2

A,L ` A1 → A2 ≺: Nat c1 → c2

A-rcdNat
L ` A ≺: Nat c

{l},L ` {l : A} ≺: Nat {l : c}

A-andN1
L ` A1 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π1

A-andN2
L ` A2 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π2

A-nat

[] ` Nat ≺: Nat id

Figure 12 Algorithmic subtyping of NeColus.

For instance, if L = A,B, {l}, then L → C abbreviates A→ B → {l : C}.
The basic idea of L ` A ≺: B c is to first perform a structural analysis of B, which

descends into both sides of & ’s (rule A-and), into the right side of →’s (rule A-arr), and
into the fields of records (rule A-rcd) until it reaches one of the two base cases, Nat or >. If
the base case is >, then the subtyping holds trivially (rule A-top). If the base case is Nat,
the algorithm performs a structural analysis of A, in which L plays an important role. The
left sides of →’s are pushed onto L as they are encountered in B and popped off again later,
left to right, as →’s are encountered in A (rule A-arrNat). Similarly, the labels are pushed
onto L as they are encountered in B and popped off again later, left to right, as records are
encountered in A (rule A-rcdNat). The remaining rules are similar to their declarative
counterparts. Let us illustrate the algorithm with an example derivation (for space reasons
we use N and S to denote Nat and String respectively), which is essentially the one used by
the add field in Section 2. The readers can try to give a corresponding derivation using the
declarative subtyping and see how rule S-trans plays an essential role there.

D D′

{l},N & S,N & S ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N & S
A-and

{l} ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N & S→ N & S→ N & S
A-arr(twice)

{l : N→ N→ N}& {l : S→ S→ S} ≺: {l : N & S→ N & S→ N & S}
A-rcd

where the sub-derivation D is shown below (D′ is similar):

. . .

N & S ≺: N
. . .

N & S ` N→ N ≺: N
N & S,N & S ` N→ N→ N ≺: N

A-arrNat

{l},N & S,N & S ` {l : N→ N→ N} ≺: N
A-rcdNat

{l},N & S,N & S ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N
A-andN1

Now consider the coercions. Algorithmic subtyping uses the same set of coercions as
declarative subtyping. However, because algorithmic subtyping has a different structure, the
rules generate slightly more complicated coercions. Two meta-functions J·K> and J·K& used
in rules A-top and A-and respectively, are meant to generate correct forms of coercions.
They are defined recursively on L and are shown in Fig. 13.

ECOOP 2018

22:22 The Essence of Nested Composition

J[]K> = top
J{l},LK> = {l : JLK>} ◦ top{l}
JA,LK> = (top→ JLK>) ◦ (top→ ◦ top)

J[]K& = id
J{l},LK& = {l : JLK&} ◦ dist{l}
JA,LK& = (id→ JLK&) ◦ dist→

Figure 13 Meta-functions of coercions.

5.2 Correctness of the Algorithm
To establish the correctness of the algorithm, we must show that the algorithm is both sound
and complete with respect to the declarative specification. While soundness follows quite
easily, completeness is much harder. The proof of completeness essentially follows that of
Pierce [47] in that we need to show the algorithmic subtyping is reflexive and transitive.

Soundness of the Algorithm. The proof of soundness is straightforward.

I Theorem 25 (Soundness). If L ` A ≺: B c then A <: L → B c.

Proof. By induction on the derivation of the algorithmic subtyping. J

Completeness of the Algorithm. Completeness, however, is much harder. The reason is
that, due to the use of L, reflexivity and transitivity are not entirely obvious. We need to
strengthen the induction hypothesis by introducing the notion of a set, U(A), of “reflexive
supertypes” of A, as defined below:

U(>) , {>} U(Nat) , {Nat} U({l : A}) , {{l : B} | B ∈ U(A)}

U(A & B) , U(A) ∪ U(B) ∪ {A & B} U(A→ B) , {A→ C | C ∈ U(B)}

We show two lemmas about U(A) that are crucial in the subsequent proofs.

I Lemma 26. A ∈ U(A)

Proof. By induction on the structure of A. J

I Lemma 27. If A ∈ U(B) and B ∈ U(C), then A ∈ U(C).

Proof. By induction on the structure of B. J

I Remark. Lemma 27 is not found in Pierce’s proofs [47], which is crucial in Lemma 28,
from which reflexivity (Lemma 29) follows immediately.

I Lemma 28. If L → B ∈ U(A) then there exists c such that L ` A ≺: B c.

Proof. By induction on size(A) + size(B) + size(L). J

Now it immediately follows that the algorithmic subtyping is reflexive.

I Lemma 29 (Reflexivity). For every A there exists c such that [] ` A ≺: A c.

Proof. Immediate from Lemma 26 and Lemma 28. J

We omit the details of the proof of transitivity.

I Lemma 30 (Transitivity). If [] ` A1 ≺: A2 c1 and [] ` A2 ≺: A3 c2, then there exists
c such that [] ` A1 ≺: A3 c.

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:23

With reflexivity and transitivity in position, we show the main theorem.

I Theorem 31 (Completeness). If A <: B c then there exists c′ such that [] ` A ≺: B c′.

Proof. By induction on the derivation of the declarative subtyping and applying Lemmas 29
and 30 where appropriate. J

I Remark. Pierce’s proof is wrong [47, pp. 20, Case F] in the case

B1 <: A1 c1 A2 <: B2 c2

A1 → A2 <: B1 → B2 c1 → c2
S-arr

where he concludes from the inductive hypotheses [] ` B1 ≺: A1 and [] ` A2 ≺: B2 that
[] ` A1 → A2 ≺: B1 → B2 (rules 6a and 3). However his rule 6a (our rule A-arrNat) only
works for primitive types, and is thus not applicable in this case. Instead we need a few
technical lemmas to support the argument.
I Remark. It is worth pointing out that the two coercions c and c′ in Theorem 31 are
contextually equivalent, which follows from Theorem 25 and Corollary 23.

6 Related Work

Coherence. In calculi that feature coercive subtyping, a semantics that interprets the
subtyping judgement by introducing explicit coercions is typically defined on typing deriv-
ations rather than on typing judgements. A natural question that arises for such systems
is whether the semantics is coherent, i.e., distinct typing derivations of the same typing
judgement possess the same meaning. Since Reynolds [55] proved the coherence of a calculus
with intersection types, based on the denotational semantics for intersection types, many
researchers have studied the problem of coherence in a variety of typed calculi. Below we
summarize two commonly-found approaches in the literature.

Breazu-Tannen et al. [10] proved the coherence of a coercion translation from Fun [13]
extended with recursive types to System F by showing that any two typing derivations of
the same judgement are normalizable to a unique normal derivation. Ghelli [20] presented
a translation of System F≤ into a calculus with explicit coercions and showed that any
derivations of the same judgement are translated to terms that are normalizable to a unique
normal form. Following the same approach, Schwinghammer [59] proved the coherence of
coercion translation from Moggi’s computational lambda calculus [40] with subtyping.

Central to the first approach is to find a normal form for a representation of the derivation
and show that normal forms are unique for a given typing judgement. However, this approach
cannot be directly applied to Curry-style calculi, i.e, where the lambda abstractions are not
type annotated. Also this line of reasoning cannot be used when the calculus has general
recursion. Biernacki and Polesiuk [8] considered the coherence problem of coercion semantics.
Their criterion for coherence of the translation is contextual equivalence in the target calculus.
They presented a construction of logical relations for establishing so constructed coherence
for coercion semantics, applicable in a variety of calculi, including delimited continuations
and control-effect subtyping.

As far as we know, our work is the first to use logical relations to show the coherence
for intersection types and the merge operator. The BCD subtyping in our setting poses a
non-trivial complication over Biernacki and Polesiuk’s simple structural subtyping. Indeed,
because any two coercions between given types are behaviorally equivalent in the target
language, their coherence reasoning can all take place in the target language. This is not

ECOOP 2018

22:24 The Essence of Nested Composition

true in our setting, where coercions can be distinguished by arbitrary target programs, but
not those that are elaborations of source programs. Hence, we have to restrict our reasoning
to the latter class, which is reflected in a more complicated notion of contextual equivalence
and our logical relation’s non-trivial treatment of pairs.

Intersection Types and the Merge Operator. Forsythe [54] has intersection types and
a merge-like operator. However to ensure coherence, various restrictions were added to
limit the use of merges. For example, in Forsythe merges cannot contain more than one
function. Castagna et al. [15] proposed a coherent calculus with a special merge operator
that works on functions only. More recently, Dunfield [23] shows significant expressiveness
of type systems with intersection types and a merge operator. However his calculus lacks
coherence. The limitation was addressed by Oliveira et al. [46], who introduced disjointness
to ensure coherence. The combination of intersection types, a merge operator and parametric
polymorphism, while achieving coherence was first studied in the Fi calculus [2]. Compared
to prior work, NeColus simplifies type systems with disjoint intersection types by removing
several restrictions. Furthermore, NeColus adopts a more powerful subtyping relation based
on BCD subtyping, which in turn requires the use of a more powerful logical relations based
method for proving coherence.

BCD Type System and Decidability. The BCD type system was first introduced by
Barendregt et al. [4]. It is derived from a filter lambda model in order to characterize exactly
the strongly normalizing terms. The BCD type system features a powerful subtyping relation,
which serves as a base for our subtyping relation. Bessai el at. [5] showed how to type classes
and mixins in a BCD-style record calculus with Bracha-Cook’s merge operator [9]. Their
merge can only operate on records, and they only study a type assignment system. The
decidability of BCD subtyping has been shown in several works [47, 35, 52, 62]. Laurent [36]
has formalized the relation in Coq in order to eliminate transitivity cuts from it, but his
formalization does not deliver an algorithm. Based on Statman’s work [62], Bessai et al. [6]
show a formally verified subtyping algorithm in Coq. Our Coq formalization follows a
different idea based on Pierce’s decision procedure [47], which is shown to be easily extensible
to coercions and records. In the course of our mechanization we identified several mistakes
in Pierce’s proofs, as well as some important missing lemmas.

Family Polymorphism. There has been much work on family polymorphism since Ernst’s
original proposal [25]. Family polymorphism provides an elegant solution to the Expression
Problem. Although a simple Scala solution does exist without requiring family polymorphism
(e.g., see Wang and Oliveira [65]), Scala does not support nested composition: programmers
need to manually compose all the classes from multiple extensions. Generally speaking,
systems that support family polymorphism usually require quite sophisticated mechanisms
such as dependent types.

There are two approaches to family polymorphism: the original object family approach
of Beta (e.g., virtual classes [38]) treats nested classes as attributes of objects of the family
classes. Path-dependent types are used to ensure type safety for virtual types and virtual
classes in the calculus vc [27]. As for conflicts, vc follows the mixin-style by allowing the
rightmost class to take precedence. This is in contrast to NeColus where conflicts are detected
statically and resolved explicitly. In the class family approach of Concord [34], Jx and
J& [42, 43], nested classes and types are attributes of the family classes directly. Jx supports
nested inheritance, a class family mechanism that allows nesting of arbitrary depth. J&
is a language that supports nested intersection, building on top of Jx. Similar to NeColus,

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:25

intersection types play an important role in J&, which are used to compose packages/classes.
Unlike NeColus, J& does not have a merge-like operator. When conflicts arise, prefix types
can be exploited to resolve the ambiguity. J&s [50] is an extension of the Java language
that adds class sharing to J&. Saito et al. [57] identified a minimal, lightweight set of
language features to enable family polymorphism, Corradi et al. [19] present a language
design that integrates modular composition and nesting of Java-like classes. It features a
set of composition operators that allow to manipulate nested classes at any depth level.
More recently, a Java-like language called Familia [66] were proposed to combine subtyping
polymorphism, parametric polymorphism and family polymorphism. The object and class
family approaches have even been combined by the work on Tribe [16].

Compared with those systems, which usually focus on getting a relatively complex Java-
like language with family polymorphism, NeColus focuses on a minimal calculus that supports
nested composition. NeColus shows that a calculus with the merge operator and a variant of
BCD captures the essence of nested composition. Moreover NeColus enables new insights on
the subtyping relations of families. NeColus’s goal is not to support full family polymorphism
which, besides nested composition, also requires dealing with other features such as self
types [12, 56] and mutable state. Supporting these features is not the focus of this paper,
but we expect to investigate those features in the future.

7 Conclusions and Future Work

We have proposed NeColus, a type-safe and coherent calculus with disjoint intersection types,
and support for nested composition/subtyping. It improves upon earlier work with a more
flexible notion of disjoint intersection types, which leads to a clean and elegant formulation
of the type system. Due to the added flexibility we have had to employ a more powerful
proof method based on logical relations to rigorously prove coherence. We also show how
NeColus supports essential features of family polymorphism, such as nested composition. We
believe NeColus provides insights into family polymorphism, and has potential for practical
applications for extensible software designs.

A natural direction for future work is to enrich NeColus with parametric polymorphism.
There is abundant literature on logical relations for parametric polymorphism [53]. The
main challenge in the definition of the logical relation is the clause that relates type variables
with arbitrary types. Careful measures are to be taken to avoid potential circularity due to
impredicativity.7 With the combination of parametric polymorphism and nested composition,
an interesting application that we intend to investigate is native support for a highly modular
form of Object Algebras [45, 7] and Visitors (or the finally tagless approach [14]).

Another direction for future work is to add mutable references, which would affect two
aspects of our metatheory: type safety and coherence. For type safety, we expect that lessons
learned from previous work on family polymorphism and mutability on OO apply to our
work. For example, it is well-known that subtyping in the presence of mutable state often
needs restrictions. Given such suitable restrictions we expect that type-safety in the presence
of mutability still holds. For coherence, it would be a major technical challenge to adjust our
coherence proof and its Coq mechanization: logical relations that account for mutable state
(e.g., see Ahmed’s thesis [1]) introduce significant complexity.

7 Our prototype implementation already supports polymorphism, but we are still in the process of
extending our Coq development with polymorphism.

ECOOP 2018

22:26 The Essence of Nested Composition

References
1 Amal Jamil Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University,

2004.
2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In

European Symposium on Programming, 2017.
3 Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In Workshop

on Foundations of Object-Oriented Languages, 2012.
4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda

model and the completeness of type assignment. The journal of symbolic logic, 48(04):931–
940, 1983.

5 Jan Bessai, Boris Düdder, Andrej Dudenhefner, Tzu-Chun Chen, and Ugo de’Liguoro. Typ-
ing classes and mixins with intersection types. In Workshop on Intersection Types and
Related Systems (ITRS), 2014.

6 Jan Bessai, Andrej Dudenhefner, Boris Düdder, and Jakob Rehof. Extracting a formally
verified subtyping algorithm for intersection types from ideals and filters. In TYPES, 2016.

7 Xuan Bi and Bruno C. d. S. Oliveira. Typed first-class traits. In European Conference on
Object-Oriented Programming, 2018.

8 Dariusz Biernacki and Piotr Polesiuk. Logical relations for coherence of effect subtyping.
In LIPIcs, 2015.

9 Gilad Bracha and William R. Cook. Mixin-based inheritance. In International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, 1990.

10 Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93(1):172–221, 1991.

11 Kim Bruce, Luca Cardelli, Giuseppe Castagna, Gary T Leavens, Benjamin Pierce, et al.
On binary methods. In Theory and Practice of Object Systems, 1996.

12 Kim B. Bruce, Angela Schuett, and Robert van Gent. Polytoil: A type-safe polymorphic
object-oriented language. In European Conference on Object-Oriented Programming, 1995.

13 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471–523, 1985.

14 Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(05):509, 2009.

15 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded func-
tions with subtyping. In LFP, 1992.

16 David Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe: More
Types for Virtual Classes. In AOSD, 2007.

17 Adriana B Compagnoni and Benjamin C Pierce. Higher-order intersection types and mul-
tiple inheritance. MSCS, 6(5):469–501, 1996.

18 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Mathematical Logic Quarterly, 1981.

19 Andrea Corradi, Marco Servetto, and Elena Zucca. DeepFJig — modular composition of
nested classes. The Journal of Object Technology, 11(2):1:1, 2012.

20 Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in f ≤. MSCS, 2(01):55, 1992.

21 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Inter-
national Conference on Functional Programming, 2000.

22 Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Programming Languages
and Systems (TOPLAS), 28(2):331–388, 2006.

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:27

23 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Program-
ming, 24:133–165, 2014.

24 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in
call-by-value languages. In Foundations of Software Science and Computation Structure
(FoSSaCS), 2003.

25 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Program-
ming, 2001.

26 Erik Ernst. Higher-order hierarchies. In European Conference on Object-Oriented Program-
ming, 2003.

27 Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In Symposium
on Principles of Programming Languages, 2006.

28 Facebook. Flow. https://flow.org/, 2014.
29 Kathleen Fisher and John Reppy. A typed calculus of traits. In Workshop on Foundations

of Object-Oriented Languages, 2004.
30 Tim Freeman and Frank Pfenning. Refinement types for ML. In Conference on Program-

ming Language Design and Implementation, 1991.
31 Robert Harper. Practical Foundations for Programming Languages. Cambridge University

Press, 2016.
32 Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Computer Program-

ming, 22(3):197–230, jun 1994.
33 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-

Order and Symbolic Computation, 23(2):167, 2010.
34 Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus Ostermann. Simple de-

pendent types: Concord. In European Conference on Object-Oriented Programming Work-
shop on Formal Techniques for Java Programs (FTfJP), 2004.

35 Toshihiko Kurata and Masako Takahashi. Decidable properties of intersection type systems.
Typed Lambda Calculi and Applications, pages 297–311, 1995.

36 Olivier Laurent. Intersection types with subtyping by means of cut elimination. Funda-
menta Informaticae, 121(1-4):203–226, 2012.

37 Olivier Laurent. A syntactic introduction to intersection types. Unpublished note, 2012.
38 O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mechanism in object-

oriented programming. In International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, 1989.

39 Microsoft. Typescript. https://www.typescriptlang.org/, 2012.
40 Eugenio Moggi. Notions of computation and monads. Information and Computation,

93(1):55–92, 1991.
41 James Hiram Morris Jr. Lambda-calculus models of programming languages. PhD thesis,

Massachusetts Institute of Technology, 1969.
42 Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via

nested inheritance. In International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.

43 Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested Intersection for Scal-
able Software Composition. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2006.

44 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An overview of the scala programming language. Technical report, EPFL, 2004.

45 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses. In European
Conference on Object-Oriented Programming, 2012.

ECOOP 2018

https://flow.org/
https://www.typescriptlang.org/

22:28 The Essence of Nested Composition

46 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming, 2016.

47 Benjamin C Pierce. A decision procedure for the subtype relation on intersection types
with bounded variables. Technical report, Carnegie Mellon University, 1989.

48 Gordon Plotkin. Lambda-definability and logical relations. Edinburgh University, 1973.

49 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 1980.

50 Xin Qi and Andrew C. Myers. Sharing classes between families. In Conference on Pro-
gramming Language Design and Implementation, 2009.

51 Redhat. Ceylon. https://ceylon-lang.org/, 2011.

52 Jakob Rehof and Paweł Urzyczyn. Finite combinatory logic with intersection types. In
International Conference on Typed Lambda Calculi and Applications, 2011.

53 John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP, 1983.

54 John C Reynolds. Preliminary design of the programming language forsythe. Technical
report, Carnegie Mellon University, 1988.

55 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes
in Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

56 Chieri Saito and Atsushi Igarashi. Matching ThisType to subtyping. In Symposium on
Applied Computing (SAC), 2009.

57 Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family polymorphism. Journal
of Functional Programming, 18(03), 2007.

58 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. Traits:
Composable units of behaviour. In European Conference on Object-Oriented Programming,
2003.

59 Jan Schwinghammer. Coherence of subsumption for monadic types. Journal of Functional
Programming, 19(02):157, 2008.

60 Jeremy Siek, Peter Thiemann, and Philip Wadler. Blame and coercion: together again for
the first time. In Conference on Programming Language Design and Implementation, 2015.

61 Richard Statman. Logical relations and the typed λ-calculus. Information and Control,
65(2-3):85–97, 1985.

62 Rick Statman. A finite model property for intersection types. Electronic Proceedings in
Theoretical Computer Science, 177:1–9, 2015.

63 W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of
symbolic logic, 32(2):198–212, 1967.

64 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.

65 Yanlin Wang and Bruno C d S Oliveira. The expression problem, trivially! In Proceedings
of the 15th International Conference on Modularity, 2016.

66 Yizhou Zhang and Andrew C. Myers. Familia: unifying interfaces, type classes, and family
polymorphism. In International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2017.

https://ceylon-lang.org/

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:29

A Some Definitions

I Definition 32 (Type translation).

|Nat| = Nat
|>| = 〈〉

|A→ B| = |A| → |B|
|A&B| = |A| × |B|
|{l : A}| = {l : |A|}

I Example 33 (Derivation of other direction of distribution).

A1 <: A1 A2 & A3 <: A2

A1 → A2 & A3 <: A1 → A2
S-arr

A1 <: A1 A2 & A3 <: A3

A1 → A2 & A3 → A1 → A3
S-arr

A1 → A2 & A3 <: (A1 → A2) & (A1 → A3)
S-and

I Example 34 (Derivation of contravariant distribution).

(A1 → A2) & (A3 → A2) <: A1 → A2
S-andl

A1 & A3 <: A1 A2 <: A2

A1 → A2 <: A1 & A3 → A2
S-arr

(A1 → A2) & (A3 → A2) <: A1 & A3 → A2
S-trans

B Full Type System of NeColus

A <: B c (Declarative subtyping)

S-refl

A <: A id

S-trans
A2 <: A3 c1 A1 <: A2 c2

A1 <: A3 c1 ◦ c2

S-top

A <: > top

S-rcd
A <: B c

{l : A} <: {l : B} {l : c}

S-arr
B1 <: A1 c1 A2 <: B2 c2

A1 → A2 <: B1 → B2 c1 → c2

S-andl

A1 & A2 <: A1 π1

S-andr

A1 & A2 <: A2 π2

S-and
A1 <: A2 c1 A1 <: A3 c2

A1 <: A2 & A3 〈c1, c2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3 dist→

S-distRcd

{l : A}& {l : B} <: {l : A & B} dist{l}

S-topArr

> <: > → > top→

S-topRcd

> <: {l : >} top{l}

ECOOP 2018

22:30 The Essence of Nested Composition

Γ ` E ⇒ A e (Inference)

T-top

Γ ` > ⇒ > 〈〉

T-lit

Γ ` i ⇒ Nat i

T-var
x : A ∈ Γ

Γ ` x ⇒ A x

T-app
Γ ` E1 ⇒ A1 → A2 e1

Γ ` E2 ⇐ A1 e2

Γ ` E1 E2 ⇒ A2 e1 e2

T-anno
Γ ` E ⇐ A e

Γ ` E : A⇒ A e

T-merge
Γ ` E1 ⇒ A1 e1

Γ ` E2 ⇒ A2 e2 A1 ∗A2

Γ ` E1 , , E2 ⇒ A1 & A2 〈e1, e2〉

T-rcd
Γ ` E ⇒ A e

Γ ` {l = E} ⇒ {l : A} {l = e}

T-proj
Γ ` E ⇒ {l : A} e
Γ ` E.l ⇒ A e.l

Γ ` E ⇐ A e (Checking)

T-abs
Γ, x : A ` E ⇐ B e

Γ ` λx. E ⇐ A→ B λx. e

T-sub
Γ ` E ⇒ B e B <: A c

Γ ` E ⇐ A c e

A ∗ B (Disjointness)

D-topL

> ∗A

D-topR

A ∗ >

D-arr
A2 ∗ B2

A1 → A2 ∗ B1 → B2

D-andL
A1 ∗ B A2 ∗ B

A1 & A2 ∗ B

D-andR
A ∗ B1 A ∗ B2

A ∗ B1 & B2

D-rcdEq
A ∗ B

{l : A} ∗ {l : B}

D-rcdNeq
l1 6= l2

{l1 : A} ∗ {l2 : B}

D-axNatArr

Nat ∗A1 → A2

D-axArrNat

A1 → A2 ∗ Nat

D-axNatRcd

Nat ∗ {l : A}

D-axRcdNat

{l : A} ∗ Nat

D-axArrRcd

A1 → A2 ∗ {l : A}

D-axRcdArr

{l : A} ∗A1 → A2

C : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D (Context typing I)

CTyp-empty1

[·] : (Γ ⇒ A) 7→ (Γ ⇒ A) [·]

CTyp-appL1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 → A2) D

Γ′ ` E2 ⇐ A1 e
C E2 : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) D e

CTyp-appR1
Γ′ ` E1 ⇒ A1 → A2 e

C : (Γ ⇒ A) 7→ (Γ′ ⇐ A1) D
E1 C : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) eD

CTyp-mergeL1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1) D
Γ′ ` E2 ⇒ A2 e A1 ∗A2

C , , E2 : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 & A2) 〈D, e〉

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:31

CTyp-mergeR1
Γ′ ` E1 ⇒ A1 e

C : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) D
A1 ∗A2

E1 , , C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D

{l = C} : (Γ ⇒ A) 7→ (Γ′ ⇒ {l : B}) {l = D}

CTyp-proj1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ {l : B}) D
C.l : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D.l

CTyp-anno1
C : (Γ ⇒ B) 7→ (Γ′ ⇐ A) D
C : A : (Γ ⇒ B) 7→ (Γ′ ⇒ A) D

C : (Γ ⇐ A) 7→ (Γ′ ⇐ B) D (Context typing II)

CTyp-empty2

[·] : (Γ ⇐ A) 7→ (Γ ⇐ A) [·]

CTyp-abs2
C : (Γ ⇐ A) 7→ (Γ′, x : A1 ⇐ A2) D

x /∈ Γ′

λx. C : (Γ ⇐ A) 7→ (Γ′ ⇐ A1 → A2) λx.D

C : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D (Context typing III)

CTyp-appL2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 → A2) D

Γ′ ` E2 ⇐ A1 e
C E2 : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) D e

CTyp-appR2
Γ′ ` E1 ⇒ A1 → A2 e

C : (Γ ⇐ A) 7→ (Γ′ ⇐ A1) D
E1 C : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) eD

CTyp-mergeL2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1) D
Γ′ ` E2 ⇒ A2 e A1 ∗A2

C , , E2 : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 & A2) 〈D, e〉

CTyp-mergeR2
Γ′ ` E1 ⇒ A1 e

C : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) D
A1 ∗A2

E1 , , C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D

{l = C} : (Γ ⇐ A) 7→ (Γ′ ⇒ {l : B}) {l = D}

CTyp-proj2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ {l : B}) D
C.l : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D.l

CTyp-anno2
C : (Γ ⇐ B) 7→ (Γ′ ⇐ A) D
C : A : (Γ ⇐ B) 7→ (Γ′ ⇒ A) D

ECOOP 2018

22:32 The Essence of Nested Composition

C : (Γ ⇒ A) 7→ (Γ′ ⇐ B) D (Context typing IV)

CTyp-abs1
C : (Γ ⇒ A) 7→ (Γ′, x : A1 ⇐ A2) D

x /∈ Γ′

λx. C : (Γ ⇒ A) 7→ (Γ′ ⇐ A1 → A2) λx.D

L ` A ≺: B c (Algorithmic subtyping)

A-and
L ` A ≺: B1 c1 L ` A ≺: B2 c2

L ` A ≺: B1 & B2 JLK& ◦ 〈c1, c2〉

A-arr
L,B1 ` A ≺: B2 c
L ` A ≺: B1 → B2 c

A-rcd
L, {l} ` A ≺: B c
L ` A ≺: {l : B} c

A-top

L ` A ≺: > JLK> ◦ top

A-arrNat
[] ` A ≺: A1 c1 L ` A2 ≺: Nat c2

A,L ` A1 → A2 ≺: Nat c1 → c2

A-rcdNat
L ` A ≺: Nat c

{l},L ` {l : A} ≺: Nat {l : c}

A-nat

[] ` Nat ≺: Nat id

A-andN1
L ` A1 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π1

A-andN2
L ` A2 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π2

C Full Type System of λc

∆ ` e : τ (Target typing)

typ-unit

∆ ` 〈〉 : 〈〉

typ-lit

∆ ` i : Nat

typ-var
x : τ ∈ ∆

∆ ` x : τ

typ-abs
∆, x : τ1 ` e : τ2

∆ ` λx. e : τ1 → τ2

typ-app
∆ ` e1 : τ1 → τ2 ∆ ` e2 : τ1

∆ ` e1 e2 : τ2

typ-pair
∆ ` e1 : τ1 ∆ ` e2 : τ2

∆ ` 〈e1, e2〉 : τ1 × τ2

typ-capp
∆ ` e : τ c ` τ . τ ′

∆ ` c e : τ ′

typ-rcd
∆ ` e : τ

∆ ` {l = e} : {l : τ}

typ-proj
∆ ` e : {l : τ}

∆ ` e.l : τ

c ` τ1 . τ2 (Coercion typing)

cotyp-refl

id ` τ . τ

cotyp-trans
c1 ` τ2 . τ3 c2 ` τ1 . τ2

c1 ◦ c2 ` τ1 . τ3

cotyp-top

top ` τ . 〈〉

cotyp-topArr

top→ ` 〈〉 . 〈〉 → 〈〉

cotyp-topRcd

top{l} ` 〈〉 . {l : 〈〉}

cotyp-arr
c1 ` τ ′1 . τ1 c2 ` τ2 . τ

′
2

c1 → c2 ` τ1 → τ2 . τ
′
1 → τ ′2

cotyp-pair
c1 ` τ1 . τ2 c2 ` τ1 . τ3

〈c1, c2〉 ` τ1 . τ2 × τ3

X.Bi, B. C. d. S. Oliveira, and T. Schrijvers 22:33

cotyp-projl

π1 ` τ1 × τ2 . τ1

cotyp-projr

π2 ` τ1 × τ2 . τ2

cotyp-rcd
c ` τ1 . τ2

{l : c} ` {l : τ1} . {l : τ2}

cotyp-distRcd

dist{l} ` {l : τ1} × {l : τ2} . {l : τ1 × τ2}

cotyp-distArr

dist→ ` (τ1 → τ2)× (τ1 → τ3) . τ1 → τ2 × τ3

e −→ e′ (Small-step reduction)

step-id

id v −→ v

step-trans

(c1 ◦ c2) v −→ c1 (c2 v)

step-top

top v −→ 〈〉

step-topArr

(top→ 〈〉) 〈〉 −→ 〈〉

step-topRcd

top{l} 〈〉 −→ {l = 〈〉}

step-arr

((c1 → c2) v1) v2 −→ c2 (v1 (c1 v2))

step-pair

〈c1, c2〉 v −→ 〈c1 v, c2 v〉

step-distArr

(dist→ 〈v1, v2〉) v3 −→ 〈v1 v3, v2 v3〉

step-distRcd

dist{l} 〈{l = v1}, {l = v2}〉 −→ {l = 〈v1, v2〉}

step-projl

π1 〈v1, v2〉 −→ v1

step-projr

π2 〈v1, v2〉 −→ v2

step-crcd

{l : c} {l = v} −→ {l = c v}

step-beta

(λx. e) v −→ e[x 7→ v]

step-projRcd

{l = v}.l −→ v

step-app1
e1 −→ e′1

e1 e2 −→ e′1 e2

step-app2
e2 −→ e′2

v1 e2 −→ v1 e′2

step-pair1
e1 −→ e′1

〈e1, e2〉 −→ 〈e′1, e2〉

step-pair2
e2 −→ e′2

〈v1, e2〉 −→ 〈v1, e′2〉

step-capp
e −→ e′

c e −→ c e′

step-rcd1
e −→ e′

{l = e} −→ {l = e′}

step-rcd2
e −→ e′

e.l −→ e′.l

ECOOP 2018

Defensive Points-To Analysis: Effective Soundness
via Laziness
Yannis Smaragdakis
Dept. of Informatics and Telecommunications, University of Athens, Greece
yannis@smaragd.org

George Kastrinis
Dept. of Informatics and Telecommunications, University of Athens, Greece
gkastrinis@di.uoa.gr

Abstract
We present a defensive may-point-to analysis approach, which offers soundness even in the pres-
ence of arbitrary opaque code: all non-empty points-to sets computed are guaranteed to be
over-approximations of the sets of values arising at run time. A key design tenet of the analysis
is laziness: the analysis computes points-to relationships only for variables or objects that are
guaranteed to never escape into opaque code. This means that the analysis misses some valid
inferences, yet it also never wastes work to compute sets of values that are not “complete”, i.e.,
that may be missing elements due to opaque code. Laziness enables great efficiency, allowing a
highly precise points-to analysis (such as a 5-call-site-sensitive, flow-sensitive analysis).

Despite its conservative nature, our analysis yields sound, actionable results for a large subset
of the program code, achieving (under worst-case assumptions) 34-74% of the program coverage
of an unsound state-of-the-art analysis for real-world programs.

2012 ACM Subject Classification Software and its engineering→ Compilers, Theory of compu-
tation → Program analysis, Software and its engineering → General programming languages

Keywords and phrases static analysis, soundness, defensive analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.23

Acknowledgements We gratefully acknowledge funding by the European Research Council,
grant 307334 (SPADE), a Facebook Research and Academic Relations award, and an Oracle
Labs collaborative research grant. We thank Anders Møller for helpful presentation suggestions.

1 Introduction

Soundness is a coveted property of static analyses, to the extent that the term is often
colloquially used as a synonym for “correctness”. For a may-analysis, soundness means that
the analysis abstraction overapproximates all concrete executions. A sound value-flow or
points-to analysis is one that computes, per program point or per variable, value sets that
represent (at least) all values that could possibly arise at the respective point during any
possible execution.

Full soundness is hard to achieve in practice due to code that cannot be analyzed (e.g.,
dynamically generated/loaded code, binary/native code) or dynamic language features (e.g.,
reflection, eval, invokedynamic). We collectively refer to such features as opaque code. For
instance, the Java code below invokes an unknown method, identified by string methodName,
over an object, obj.

Method m = obj.getClass ().getMethod(methodName);
m.invoke(obj);

© Yannis Smaragdakis and George Kastrinis;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannis@smaragd.org
mailto:gkastrinis@di.uoa.gr
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Defensive Points-To Analysis: Effective Soundness via Laziness

String methodName could be a true run-time value – e.g., read from a file or external resource.
Object obj could itself be of a type not available during analysis – e.g., obj could be obtained
through the network and statically typed using a vague interface or root-of-hierarchy type.

Faced with such complications, all past analyses that claim soundness have done so under
a priori qualifications. Prominently, abstract-interpretation-based [8] approaches, such as
Astrée [10], have long emphasized soundness. The conceptual form of such a soundness result
is as follows:1

An Analysis of programs in language Lang is sound relative to language subset Lang′

and executions set Exec′ iff:
∀ program P ∈ Lang: P ∈ Lang′ ∧ e ∈ Exec′ =⇒ e ∈ γ(Analysis(P))

(where γ is the concretization function that maps abstractions in the output domain
of Analysis to concrete executions in a universe Exec, superset of Exec′).

The problem with this formulation of soundness is that, although it yields provable
theorems, the a priori qualification excludes virtually all realistic programs. The Lang′ or
Exec′ of published proofs disqualify the vast majority of modern programs “in the wild”.
Language subset Lang′ will typically exclude all dynamic features (e.g., reflection) and/or
executions subset Exec′ will disqualify all behaviors that are deemed too-dynamic (e.g.,
invoking dynamically-loaded code). Reflection alone disqualifies ∼80% of Java programs in
the 461-program corpus of the recent Landman et al. study [16].

The above issues have led several members of the static analysis community to proclaim
that “all published whole-program analyses are unsound” [21], i.e., their soundness guarantee
does not apply to realistic programs, and similarly that “[there is not] a single realistic
whole-program analysis tool [...] that does not purposely make unsound choices”. The problem
is, therefore, both theoretical and practical. Soundness theorems do not give guarantees
for realistic programs. Implementations of analyses in tools happily perpetuate the illusion:
they handle soundly the language features one can prove theorems about, while cutting
corners in the sound handling of all other features, in order to demonstrate greater scalability
or precision. For instance, in our earlier Java code fragment, even if the type of obj is
known, many implemented static analyses will not consider all its methods (which now form
a small finite set) as possible values of m, but will instead ignore the code altogether. This
phenomenon has led to the introduction of the term soundy [21] to characterize such analyses.
Despite the derogatory tone, “soundy” analyses are the current good case of static analyses!
They are realistic analyses that handle all “normal” language features soundly.

In this work, we propose defensive analysis: a static analysis architecture that addresses
the above soundness shortcomings. The basis of defensive analysis can be seen as a different
conceptual formulation of soundness.

An Analysis of program P in language Lang computes results, Analysis(P), together
with soundness marker sets, Claim(P). The Analysis is sound iff:
∀ program P ∈ Lang, execution e: e[Claim(P)] ∈ γ(Analysis(P))[Claim(P)]

(where γ is as before, and e[Claim(p)] is the restriction of an execution e to program
points with soundness claims, and the definition is similarly lifted to sets of executions).

In other words, the analysis imposes no (or very liberal) a priori restrictions to its soundness
claims, but instead computes the claimed domain of its soundness: the program parts for
which the analysis result is sound. The soundness theorem applies to all (or most) programs,

1 This formulation is due to Xavier Rival of the Astrée project (e.g., [25]).

Y. Smaragdakis and G. Kastrinis 23:3

under all execution conditions – instead of eagerly disqualifying the vast majority of real-world
programs. The extent of soundness is now defined over program points and becomes an
experimentally measurable quantity: the size of Claim(P) (which we term the coverage of
the analysis) can be measured to quantify for which percentage of a program’s points the
analysis is guaranteed to produce sound results.

The challenge of defensive analysis is, thus, to distinguish parts of the program that
are certain to not be affected by opaque code. Delineating “safe” from “unsafe” parts of
the program is an ambitious goal, since opaque code can do virtually anything: it can add
dynamically-generated subclasses with never-seen methods that get called (via dynamic
dispatch or first-class functions) at unsuspecting program points; it can call any existing
method or alter any field via reflection; it can interpose its own implementations at every
place where the program uses a reflective lookup; worst of all, it can wreak havoc on all parts
of the heap reachable from any reference that escapes into opaque code.

We designed and implemented a defensive may-point-to (henceforth just “points-to”)
analysis for Java. The analysis follows the above form, explicitly designating points-to
sets that are sound, i.e., that contain at least all the values that may ever arise in actual
executions. Soundness guarantees carry over to the implementation: the soundness proof
explicitly models all other language features as <unknown> instructions and makes only weak,
semantically-justified assumptions (e.g., a type-safe heap) about them. Soundness reasoning
is defensive in that it establishes when the analysis can be certain to know the full contents
of a points-to set, no matter what opaque code can do (within the stated weak assumptions).

In our effort to implement defensive analysis in a realistic package, we found laziness
to be an essential feature – the analysis cannot scale without it for real-world programs.
Laziness means that the analysis does not compute points-to sets unless it can also claim
their soundness. That is, program points outside of the Claim(P) set do not get populated
at any point – they remain empty throughout the analysis. Consequently, all points-to sets
with a potentially unbounded number of objects (e.g., sets that depend on reflection or
dynamic loading) are represented as the empty set: the analysis never computes any contents
for them. An empty analysis result merely means “I don’t know”, which could signify that
the points-to set is affected by opaque code, or simply that the analysis cannot establish that
it is not affected by opaque code. Laziness yields high efficiency: the analysis can fall-back to
an empty set (i.e., implicitly unbounded) without performing any computation or occupying
space.

The defensive nature of the analysis combined with laziness result in a very simple
specification. The analysis does not need to integrate complex escape or alias reasoning (i.e.,
“can this object ever escape into opaque code?”), but only best-effort logic (i.e., “here are
simple, safe cases, when the object cannot possibly be affected by opaque code”). Failure
to establish non-escaping merely means that the points-to set remains empty, to denote “I
don’t know” or “potentially unbounded”.
Concretely, the work makes the following contributions:

We offer a general static may-point-to analysis that yields sound results for realistic
programs in the presence of opaque code.

The analysis is efficient, leveraging its lazy representation of points-to sets. As a result, it
can be made precise, beyond the limits of standard whole-program points-to analyses –
e.g., for a 5-call-site-sensitive and flow-sensitive analysis. The analysis is also modular: it
can be applied to any subset of the program, and will merely leave more points-to sets
empty if other parts are unknown.

We show that the analysis, though quite defensive, yields useful coverage. In measurements
over large Java benchmarks, our analysis computes guaranteed over-approximate points-to

ECOOP 2018

23:4 Defensive Points-To Analysis: Effective Soundness via Laziness

sets (Claim(P)) for 34-74% of the local variables of a conventional unsound analysis. (This
number is much higher than that of a conventional sound but intra-procedural analysis.)
Similar effectiveness is achieved for other metrics (e.g., number of calls de-virtualized),
again with actionable, guaranteed-sound outcomes.

2 Analysis Illustration

We next describe the setting of defensive analysis and illustrate its principles and behavior.

2.1 Soundness and Design Decisions Overview

Defensive analysis is a may-point-to analysis based on access paths, i.e., expressions of the
form “var(.fld)*”. That is, the analysis computes the abstract objects (i.e., allocation sites in
the program text) that an access path may point to. The analysis is flow-sensitive, hence we
will be computing separate points-to information per program point. Both of these design
decisions are integral elements of the analysis, as we will justify in Section 2.2.

Soundness in this setting means that the analysis computes an over-approximation of
any points-to set – i.e., the analysis computes (abstractions of) all objects that may occur
in an actual execution. However, since not all allocation sites are statically known (due to
dynamically loaded code), such an over-approximation cannot be explicit: not all possible
values in a points-to set can be listed. Thus, there needs to be a special value, >, to denote
“unknown”, i.e., that the analysis cannot bound the contents of a points-to set.

Defensive analysis takes the above observation one step further, by employing a lazy
approach: it never populates a points-to set if it cannot guarantee that it is bounded. Thus,
an empty points-to set for an access path signifies that (as far as the analysis knows) the
access path can point to anything.2

In other words, an empty set can be thought to represent a bottom (⊥) value during
the analysis computation: it just marks a set as having no known values (yet). A set stops
being empty only when all the possible ways (in known or unknown code) to contribute
values to it have been examined and are found to have bounded contents. At the end of the
analysis, all sets that have remained empty signify that the analysis could not bound their
contents, i.e., they do not belong in the set Claim(P) of program points with soundness
claims. Therefore an empty set after termination of the analysis is conceptually equivalent to
a top (>) value: the set could contain anything. This is consistent with the defensive nature
of the analysis: not knowing all the values of a set is considered just as bad as knowing it
can point to anything.

With this representation choice, the analysis does not need to expend effort in order to
be sound. All points-to sets (for any valid access path, of any length) start off empty, i.e., if
the analysis were to stop at that point it would report them as having > values, meaning
“the set can contain anything”. This is a sound answer, and is only subsequently refined.

This lazy evaluation means that defensive analysis does not need to employ sophisticated
mechanisms to simply be sound. For instance, instead of a precise over-approximate escape
analysis, defensive analysis can use a simple analysis (including none at all) to compute
straightforward cases when an object is guaranteed to never escape into opaque code.

2 We use an explicit abstract value for null, therefore a points-to set that only contains null is not empty.
This is standard in flow-sensitive analyses, anyway. (In flow-insensitive analyses, null is typically a
member of every points-to set, so it is profitable to not represent it, and hence have an empty set mean
a null-only reference. No such benefit would arise in our flow-sensitive setting.)

Y. Smaragdakis and G. Kastrinis 23:5

2.2 Background and Illustrating Design Decisions
We can see the rationale behind our design decisions through simple examples.

Baseline intra-procedural resoning. It is easy for an analysis to be sound locally, in an
intra-procedural setting. For instance, when a variable is freshly assigned with a newly
allocated object, we are guaranteed to soundly know its points-to set:

x = new A(); // abstract object a1, x points -to set is {a1}

We can also propagate such information transitively through local assignments (a.k.a.
“move” instructions), as long as no opaque code can interfere. In the case of local variables,
standard concurrency models (for Java, C++, etc.) do not allow interference from other
threads, hence points-to sets remain sound, as long as the code itself does not call out to
opaque code:

x = new A(); // abstract object a1, x points -to set is {a1}
y = x; // y points -to set is {a1}
z = y; // z points -to set is {a1}

This approach is one often taken by traditional compilers (ahead-of-time or just-in-time
alike) in order to perform intra-procedural optimizations, such as those based on traditional
data-flow analysis. (Later, in our experimental evaluation, we compare against such a baseline
“intra-procedural sound” analysis.)

However, the challenge is to also reason soundly about inter-procedural behavior. This
includes reasoning about the heap (i.e., reading fields of objects) and about method calls and
returns, whose resolution may be dynamic. This will be the focus of the defensive analysis
specification.

Inter-procedural elements. The large potential for opaque code to affect inter-procedural
analysis results has prevented past analyses from being sound. For instance, consider a
simple heap load instruction:

x = y.fld;

Imagine that the analysis has (somehow) soundly computed all the objects that y may point
to. It may also know all the places in the code where field fld is assigned and what is assigned
to it. However, the analysis still cannot compute soundly the points-to set of x unless it
also knows that all objects referenced by y can never escape to opaque code. This is hard to
establish: not only do all sites of opaque code (reflection, unknown instructions, potential
dynamic code generation sites, and more) need to be marked, but the analysis needs to
know an over-approximation of which objects these sites can reach. This requires to have
pre-computed an over-approximate (i.e., sound) points-to analysis, which is the problem we
are trying to solve in the first place. Past work has dealt with this problem with unrealistic
assumptions. For instance, Sreedhar et al. [33] present a call-specialization analysis that can
handle dynamic class loading, but only if given the results of a sound may-point-to analysis
as input.

Instead, defensive analysis pessimistically computes that a points-to set is > (i.e., can
contain anything) unless it is certain that its contents are bounded. When can the analysis
know this, however? Such a guarantee of bounded contents typically comes from having
precisely tracked the contents of a variable or field all the way from its last assignment, and
having established that no other code could have interfered. For instance, let us expand our
earlier example:

ECOOP 2018

23:6 Defensive Points-To Analysis: Effective Soundness via Laziness

1 y.fld = new A(); // abstract object a1, y.fld points -to set is {a1}
2 ... // analyzable , non -interfering code
3 x = y.fld;

The analysis can now know that the points-to set of x is {a1}, i.e., the singleton containing
the allocation site for A objects on line 1. For this to be true, the analysis has to establish that
all code between the store instruction to y.fld and the subsequent load does not interfere
with the value of y.fld. For example, we can be certain of such non-interference if the code
does not contain a store to field fld of any object, does not call any methods, and no other
thread can change the heap at that segment of the program.These are simple, local conditions
that the analysis may well be able to establish.

In practice, our defensive analysis will do a lot more: it will track method calls, up to a
maximum context depth, to ascertain when they can interfere with points-to sets. (If any
interference is detected, the points-to set propagated forward is empty.) For instance, in the
example code below, the analysis can know with certainty the points-to set of x on line 6,
whenever method foo is called from line 3 of the program fragment.

1 y.fld = new A(); // abstract object a1, y.fld points -to set is {a1}
2 z.otherFld = new B();
3 foo(y);
4

5 void foo(W w) {
6 x = w.fld; // x-for -call -site -3 points -to set is {a1}
7 }

Note the elements that contribute to such reasoning: The result holds soundly only when
foo is called from the specific call site. This result is established only by tracking the value of
y.fld (renamed to w.fld inside method foo) instruction-by-instruction all the way to line 6.
The heap store instruction on line 2 is guaranteed to not affect y.fld (regardless of whether
z and y alias or not), since Java guarantees object isolation and the reference is to a different
field. (More on language model assumptions in Section 2.3.)

The above example helps illustrate the design choices of defensive analysis: it is a flow-
sensitive, context-sensitive analysis because it needs to track all points-to information that is
guaranteed to hold, per-instruction, following closely all possible control-flow of the program,
even across calls. It is also an analysis computing points-to information on access paths
because this gives significantly more ability to reason about the heap locally. For instance,
in the above program fragment, we may not know which objects y may point to.3 However,
we do know that y.fld certainly points to abstract object a1 after line 1!

Laziness. Finally, consider the design choice of representing unbounded points-to sets as
empty, i.e., to lazily compute the contents of points-to sets only if they can be proven to be
finite. Defensive analysis requires laziness for scalability. (Experimentally, a non-lazy analysis
does not scale for any non-zero context depth, i.e., cannot be effective inter-procedurally.)

Laziness means skipping an explicit representation of >, in favor of keeping points-to sets
empy (⊥ in the usual lattice of sets) as long as possible. (As mentioned earlier, at the end
of the analysis, all sets that stayed ⊥ become implicitly >.) This has the minor benefit of
avoiding storage of > values, since empty sets are represented without consuming memory.
More majorly, however, it enables the analysis to give a convenient meaning to any finite

3 In fact, even if we did know, these would be abstract objects. Static analysis would almost never be
able to establish soundly what their fld field points to, because this information needs to capture the
fld values of all concrete objects (not just the latest one) represented by the same abstract object.

Y. Smaragdakis and G. Kastrinis 23:7

points-to sets that arise. Instead of “this set currently has bounded contents, but may become
> during the course of the analysis”, a non-empty set of values implies “this set has bounded
contents and is guaranteed to always have bounded contents”. By making this distinction, the
analysis never wastes effort computing points-to sets with explicit (non->) contents only to
later discover that the points-to set is >. For an example of how much wasted effort can be
saved by being lazy, consider an example program involving a heap load and a virtual call:

1 y.fld = new A(); // abstract object a1
2 while (...) {
3 x = y.fld;
4 x.foo(y);
5 }

An analysis may have computed all the abstract objects that y.fld may point to at line 3.
One of these computed objects may induce a different resolution of the call instruction (line
4), which can suddenly lead to the discovery that a y.fld-aliased object can enter opaque
code (while this was not true based on what the analysis had computed earlier). Since the
object referenced by y.fld can change in code that is not analyzed, the points-to set of
x at the load instruction will need to be augmented with the implicit over-approximation
special value, >. This means that all previously computed values for the points-to sets of x
and y.fld are subsumed by the single > value. Computing these values and all others that
depend on them constitutes wasted effort. To make matters worse, this is more likely to
happen for large points-to sets, i.e., the more work the analysis has performed on computing
an explicit points-to set, the larger (and less precise) the set will be, and the more likely it is
that the work will be wasted because the set will revert to >.

The design principle of “laziness in order to avoid wasted effort” is responsible for the
scalability of defensive analysis. As we show in our experiments, defensive analysis scales to be
flow-sensitive, 5-call-site sensitive over large Java benchmarks and the full JDK. (In standard
past literature for all-program-points analyses, even a flow-insensitive, 2-call-site-sensitive
analysis has been infeasible over these benchmarks [31].4)

2.3 Soundness Assumptions
The soundness claims of defensive analysis are predicated on assumptions about the environ-
ment. These assumptions reflect well the setting of safe languages, such as Java:

Object isolation. Objects can only be accessed via high-level references. This means
that objects and fields are isolated: an object can be referenced outside the dynamic
scope of a method or by a different thread only if a reference to the object has escaped the
method or current thread. (This restriction also implies that objects are not contained
in one another, though they can contain references to each other.) A field can only be
accessed via a base object pointer and a unique field signature.
Stack frame isolation. Local variables are isolated from each other, thread-private and
private to their allocating method. No external code can access the local variables of a
method, even if the code is executed (i.e., is a callee) under the dynamic scope of the
method.

4 It is worth emphasizing that, although defensive analysis is lazy, this is a very different form of laziness
than that of on-demand points-to analysis (e.g., [32, 2]). An on-demand analysis only computes points-to
information for program points that may affect a particular site of interest, instead of the entire program.
The defensive analysis we describe is an all-program-points analysis: it computes points-to information
for the entire program, i.e., for all possible points-to queries, including ones potentially devised in the
future. Yet the analysis is lazy in that it only computes values for points-to sets that it can prove to
have bounded contents.

ECOOP 2018

23:8 Defensive Points-To Analysis: Effective Soundness via Laziness

Concurrency model. In the simplified model of the paper, soundness is predicated on
the assumption that standard mutexes (or operations on volatile variables) are used to
protect all shared memory data. We later discuss how our implementation removes this
assumption.5

Thus, our setting is clearly that of a safe language with near-unlimited potential for
dynamic behavior. Notably, we can have unknown instructions; calls to native code with
arbitrary behavior (over a well-typed, isolated heap); generation and loading of unknown code
(which may also be called, via dynamic dispatch, by unsuspecting known code); arbitrary
access to existing or unknown objects (both field read/writes and method calls) via reflection,
i.e., without such access being identifiable in the program text; and more.

3 Defensive Analysis, Informally

The discussion of analysis principles in the previous sections gives the main tenets of defensive
analysis. However, these need to be concretely applied over all complex language features
affecting points-to information: control-flow merging, heap manipulation, and method calls.
We give informal examples next. Following these examples should significantly facilitate
understanding the formal specification of the analysis, in later sections.

Control-flow merging. Consider a branching example:
1 if (complexCondition ()) {
2 x = new A(); // abstract object a1
3 // x points -to set is {a1}
4 } else {
5 x = notFullyAnalyzed ();
6 // x points -to set is {}
7 } // x points -to set is {}

The first branch of the above if expression establishes that the points-to set of variable x
is {a1}. For a conventional analysis, this would result in adding a1 to the points-to set of x
at the merge point (after line 7). The defensive analysis, however, has to be conservative and
not compute values that may later become >. Therefore, it will add a1 to the final points-to
set of x only if it can also prove that the points-to set of x in the second branch is bounded,
i.e., non-empty. If the analysis is not certain of this, the points-to sets of x, both in the
second branch and at the merge point, stay empty. Inability to bound the points to set of x
in the second branch can be due a variety of reasons: e.g., there can be opaque code inside
notFullyAnalyzed, or the analysis may reach its maximum context depth, so that the return
value of the method is not tracked precisely.

Heap manipulation. Similar treatment applies to all cases of points-to sets (e.g., for complex
access paths) when information is merged: the analysis yields a non-empty result only if it is
certain that the result could not have been invalidated by any other code, available or not.
For instance, consider the following example of heap store instructions:

5 The reason for the simplified concurrency model in the paper is that it allows presenting the analysis in its
purest form, dealing with core language features such as heap loads/stores and calls, but unencumbered
by auxiliary considerations (e.g., computing objects that do not escape into other threads).

Y. Smaragdakis and G. Kastrinis 23:9

1 x.fld = new A(); // abstract object a1
2 // x.fld points -to set is {a1}
3 y.fld = notFullyAnalyzed ();
4 // x.fld points -to set is {}

After the first instruction, the points-to set of access path x.fld is computed to be {a1}.
However, in most cases, the analysis will not be able to ascertain that x and y are not aliased.
Therefore, after the second instruction, the points-to set of x.fld will be empty, i.e., unknown.
This reflects well the defensive nature of the analysis: whenever uncertain, points-to sets will
default to empty, i.e., undetermined.

Generally, since the analysis is flow-sensitive and access-path based, store instructions
certain to operate on the same object perform strong updates, while store instructions that
possibly operate on the same object perform weak updates:

1 x.fld = new A(); // abstract object a1
2 // x.fld points -to set is {a1}
3 x.fld = new B(); // abstract object b1
4 // x.fld points -to set is {b1}
5 y.fld = new B(); // abstract object b2
6 // x.fld points -to set is {b1 ,b2}

In this case, the points-to information of access path x.fld is set to {b1} after the second
store instruction, ignoring the previous contents. (The example assumes that types A and B
are both compatible with the static type of x.fld.) After the third store instruction, however,
a new element is added to the points-to set – again, under the assumption that the analysis
cannot determine whether x and y are aliased.

The different element in defensive analysis is that if any of the involved points-to sets is
empty, both strong and weak updates yield an empty points-to set. For instance, replacing
either of the last two allocations (new B()) above with a call to opaque (or not fully analyzed)
code would make all subsequent points-to sets of x.fld be empty.

Method calls. Defensive analysis computes sound may-point-to information simultaneously
with sound call-graph information. The analysis employs the same principles for the call-
graph representation as for points-to: a finite set of method call targets means that the set
is guaranteed bounded, while an empty set of method call targets means that the analysis
cannot (yet) establish that all target methods are known.

To compute a sound over-approximation of method call targets, one needs a bounded
may-point-to set for the receiver. Otherwise, the receiver object could be unknown – e.g., an
instance of a dynamically loaded class – resulting in an unsound call-graph.

When the set of method call targets is not bounded, dynamic calls cannot be resolved
and the analysis has to be conservative. For instance, in the example below, a conventional
unsound analysis would resolve the virtual call x.foo() to, at least, the method A::foo, i.e.,
foo in class A.

1 if (complexCondition ()) {
2 x = new A(); // abstract object a1
3 } else {
4 x = notFullyAnalyzed ();
5 }
6 x.foo();

In contrast, recall that for a defensive analysis the points-to set of x at the point of the
call to foo is empty. Accordingly, the defensive analysis does not resolve the virtual call
at all: per the lazy evaluation principle, there is no point of computing what one target
of the call will do, when other targets are unknown and full soundness (i.e., guaranteed

ECOOP 2018

23:10 Defensive Points-To Analysis: Effective Soundness via Laziness

over-approximation) is required. This means that all heap information (i.e., all access-path
points-to information, except for trivial access paths consisting of a single local variable
and no fields) that held before the method call ceases to hold after it! (There are notable
exceptions – e.g., for access paths with final fields, or for cases when an escape analysis
can establish that some part of the heap does not escape into the called method. Section 5
discusses such intricacies.)

When method calls can be resolved, the target methods have to be analyzed under a
context uniquely identifying the callee. A defensive analysis may know all methods that
can get called at a certain point, but it cannot know all callers of a method. Consider the
following example:

1 void caller () {
2 A x = new A(); // abstract object a1
3 callee(x); // call to callee
4 }
5

6 void callee(A y) {
7 ...
8 }

Assume that there is no other discernible call to callee anywhere in the program. An
unsound analysis would establish that variable y in callee (i.e., immediately after line 6) points
to abstract object a1. A defensive analysis, however, cannot do the same unconditionally.
The points-to set of y without context information has to be the empty set! The reason is
that there may be completely unknown callers of callee – e.g., in existing code, via reflection,
or in dynamically loaded code. Such callers could pass different objects as arguments to
callee and the analysis cannot upper-bound the set of such arguments. Thus, the only safe
answer for a defensive analysis is “undetermined” – i.e., an empty set.

Thus, in order to propagate analysis results inter-procedurally, a defensive analysis has
to leverage context information. In the above example, what the analysis will establish is
that y points to a1 conditionally, under context 3, signifying the call-site instruction (line 3
in our listing).

The above implies that the use of context in a defensive analysis is rather different than
in a traditional unsound points-to analysis. Contexts in standard points-to analysis can be
summarizing: a single context can merge arbitrary concrete (dynamic) executions, as long as
any single concrete execution maps uniquely to a context. For instance, a 1-object-sensitive
analysis [23] merges all calls to a method as long as they have the same abstract receiver
object, independently of call sites.

Context in a conventional analysis only adds precision, relative to a context-insensitive
analysis. In contrast, context in a defensive analysis is necessary for correctness: since
information is collected per-program-point, propagating points-to sets from a call site to a
callee can only be done under a context that identifies the call-site program point. Contexts
cannot freely summarize multiple invocation instructions, because there may be others, yet
unknown, invocations that would result in the same context.

Therefore, a context-sensitive defensive analysis has to be, at a minimum, call-site
sensitive [27, 28]: the call site of an analyzed method has to be part of the context (as will,
for deeper context, the call site of the caller, the call site of the caller’s caller, etc.). Other
kinds of context (e.g., object-sensitive context [23, 30]) can be added for extra precision.

Y. Smaragdakis and G. Kastrinis 23:11

Instruction Operand Types Description

i : v = new T () I×V ×T Heap Allocations
i : v = u I×V ×V Assignments
i : v = u . f I×V ×V ×F Field Loads
i : v . f = u I×V ×F ×V Field Stores
i : v . meth(∗) I×V ×M ×V n Virtual Calls
i : return I Method Returns
i : <unknown> I Unknown instruction (i.e., any other)

Figure 1 Intermediate Representation instruction Set.

4 A Model of Defensive Analysis

We next present a rigorous model of our defensive analysis. The model uses a minimal
intermediate language that captures the essence of the approach. The language can be
straightforwardly enhanced with features such as arrays, static members and calls, exceptions,
etc.

4.1 Preliminaries
Figure 1 shows the form of the input language. The domains of the analysis (and meta-
variables used subsequently, plain or primed) comprise:

v, u ∈ V , a set of variables,
T, S ∈ T , a set of types,
f, g ∈ F , a set of fields,
meth ∈M , a set of methods,
i, j ∈ I, a set of instruction labels,
c, d ∈ C, a set of contexts,
ô, ôi ∈ O, a set of abstract objects, potentially identifying their allocation instruction,
p ∈ P , a set of access paths (i.e., the set V (.F)∗),
n ∈ N, the set of natural numbers.

The analysis input consists of a set of instructions, linked into a control-flow graph,
via relation i next−−−→ j (over I×I). The input program is assumed to be in a single-return-
per-method form. We employ type information as well as other symbol table information,
accessed through some auxiliary functions and predicates:

methT is the result of looking up method signature meth in type T.
meth(n) is the n-th instruction of method meth.
We overload the ∈ operator to more than set membership, in unambiguous contexts,
namely: i ∈ meth (instruction is in method), f ∈ p (field is in access path), ô ∈ T (abstract
object is of type), v ∈ T (variable is of type).
argmeth

n and argi
n denote the n-th formal or actual arg of a method and invocation

instruction, respectively. (By convention, the this/base variable of a method invocation
is assumed to be the 0-th argument.)
p[v/u] is the access path resulting from changing the base of access path p from v to u (if
applicable).

ECOOP 2018

23:12 Defensive Points-To Analysis: Effective Soundness via Laziness

4.2 Analysis Structure
Figure 2 shows the analysis specification, in terms of constraints. Any solution satisfying
these constraints has the desired soundness property and in Section 4.3 we discuss extra
considerations so that the constraints can also be used to compute a solution. We recommend
following the figure together with our text explaining the rules: although the rules are
precise (transcribed from a mechanized logical specification) some are hard to follow without
explanation of their intent beforehand.
The analysis constraints define the following relations:

The “access path points-to” relation, in two varieties, before and after an instruction:
i : p IN−→c ô and i : p OUT−−−→c ô (p may point to ô before/after instruction i executed under
context c). This is our sound may-point-to relation: if, at the end of the analysis, the set
of ôs for given i, p, c is not empty, it will be a superset of the abstract objects ô pointed
by p at the given program point and context during any dynamic execution.6

The “may-call” relation, i.e., our sound call-graph representation: i calls−−−→
c

c′ meth (instruc-
tion i executed under context c may call method meth and the resulting context will be
c′).
The “reachable” relation, methc, denoting that method meth is reachable under context
c, and should, thus, be analyzed. This relation is partially populated when the analysis
starts: it holds an initial set of methods, under the empty context Init, that should be
analyzed.

Alloc, Move, Load, Store-1. The first four rules of the analysis are rather straightforward.
The Alloc rule is the only one with some minimal subtlety: if an object is freshly allocated,
we know that the variable it is directly assigned to points to it. This inference is valid in
any reachable context, even the initial, making-no-assumptions, Init context. Therefore this
rule is responsible for kickstarting the analysis, producing the first points-to inferences (valid
locally) that will then propagate.

Store-2. The Store-2 rule is the first one exhibiting the defensive and lazy features of the
analysis. The rule performs a “weak update” on points-to sets of possibly affected access
paths, as long as they are guaranteed to be bounded, i.e., they are non-empty. At a store
instruction, u . f = v , if an access path w.f has a base explicitly different from u (with f being
the same), then its points-to set is augmented with any element (ô) of the points-to set of v,
while maintaining its original elements (ô′). This rule defensively adds more information to
guarantee an over-approximation in the case of access paths that may be aliases for the same
object. The subtlety of the rule lies in its handling of empty points-to sets. If either of the
points-to sets (of v or of w.f) is empty before the instruction, the rule does not match, hence
the points-to set of w.f after the instruction does not acquire any contents. This is consistent
with our sound handling: if the earlier contents or the update cannot be upper-bounded,
then the resulting points-to set cannot be, either.

Note the contrast between rules Store-1 and Store-2. We do not need to determine
precisely the aliasing relationship between base variables u and w. If there is a chance that the
variables are aliased, it is safe to conservatively add more possible values to the points-to set
of w.f. In the case of Store-1, however, we could do better than the conservative treatment
and perform a strong update.

6 To be precise, concrete objects arise during execution but we are considering their standard mapping to
abstract objects, per allocation site.

Y. Smaragdakis and G. Kastrinis 23:13

(Alloc)
i : v = new T () i ∈ meth methc

i : v OUT−−−→c ôi

(Move)
i : v = u i : p IN−→c ô

i : p[u/v] OUT−−−→c ô

(Load)
i : u = v . f i : v.f IN−→c ô

i : u OUT−−−→c ô
(Store-1)

i : u . f = v i : v IN−→c ô

i : u.f OUT−−−→c ô

(Store-2)
i : u . f = v i : v IN−→c ô i : w.f IN−→c ô′ w 6= u

i : w.f OUT−−−→c ô i : w.f OUT−−−→c ô′

(CFG-join)
j

next−−−→ i j : p OUT−−−→c ô ∀k : (k next−−−→ i) =⇒ (k : p OUT−−−→c ∗)

i : p IN−→c ô

(Frame-1)
i : v IN−→c ô ¬(i : v = ∗) ¬(i : <unknown>)

i : v OUT−−−→c ô

(Frame-2)

i : p IN−→c ô p = v.∗
¬(i : * . meth(∗)) ¬(i : * . g = *) ¬(i : v = ∗) ¬(i : <unknown>)

i : p OUT−−−→c ô

(Frame-3)
i : * . f = * i : p IN−→c ô f /∈ p

i : p OUT−−−→c ô

(Call)
i : v . meth(∗) i : v IN−→c ô ô ∈ T c′ = NC(i, c, ô)

methT
c′

i
calls−−−→

c

c′ methT

(Args)
i

calls−−−→
c

c′ meth i : p IN−→c ô j = meth(0)

j : p[argi
n/argmeth

n] IN−→c′ ô

(Ret)

j : return j ∈ meth i
calls−−−→

c

d meth j : p IN−→d ô p = v.∗{
∀meth’, c′ : (i calls−−−→

c

c′ meth’) =⇒

(∃j′, q’ : (j′ : return) ∧ (j′ ∈ meth’) ∧ (p = q’[argmeth’
n /argi

n]) ∧ (j′ : q’ IN−→c′ ∗))
}

i : p[argmeth
n /argi

n] OUT−−−→c ô

Figure 2 Inference Rules for Defensive Points-to Analysis.

CFG-Join. The next rule deals with merging information from an instruction’s predecessors
(or merely propagating it, in the case of a single predecessor).

Informally, the rule states that if some predecessor instruction, j, has established that
p can point to ô, and if all other predecessors, k, establish that p points to something (so
that its points-to set is non-empty, i.e., bounded) then the information is propagated to the
points-to relation of the successor instruction. (We use * to mean “any value”, throughout

ECOOP 2018

23:14 Defensive Points-To Analysis: Effective Soundness via Laziness

the rules.) Note the defensive handling: if even a single predecessor has an unbounded (i.e.,
empty) points-to set for p, then the rule is not triggered and the resulting points-to set
remains empty.

Frame-1, Frame-2, Frame-3. The next three rules are frame rules, responsible for the
propagation of unchanged information.

Informally, the first rule merely says that points-to information for local variables (i.e.,
an access path consisting of just “v”) is maintained after an instruction, if it existed before it,
as long as the instruction does not directly assign the local variable (as is the case for a load,
move, or allocation directly into this local variable). The soundness of this rule is predicated
on our earlier assumption of stack frame isolation: local variables are isolated from each
other, thread-private, and private to their allocating method. Therefore their points-to set
cannot change, except with instruction such as the above.

This is the first time we see a treatment of <unknown> instructions, which can encode
any richer instruction set than our basic intermediate language. The analysis conservatively
avoids propagating any points-to information over an unknown instruction. This is also
used to handle concurrency, under our simplified model: both monitorenter/monitorexit
instructions and all accesses to volatile variables in the input program are represented
simply as <unknown> instructions in our intermediate language. (The treatment of <unknown>
collectively by the analysis rules ensures that all heap information is dropped at that program
point, i.e., points-to sets are empty after the instruction.)

The next two rules apply in the case of complex access paths, i.e., of length 2 or more.
(Actually rule Frame-3 also applies to variable-only access paths, but not meaningfully:
that case is subsumed by Frame-1.) First, similarly to the earlier rule, points-to information
for the access path is maintained after an instruction (assuming it held before it) unless the
instruction assigns the same base variable (again via a load, move, or allocation), or is a call,
store, or unknown. Second, points-to information for complex access paths is propagated
over all store instructions that affect fields not participating in the access path.

The soundness of these rules is predicated on the object isolation and concurrency model
assumptions of Section 2.3. Under these assumptions, the only way to change the points-to
set of an access path is via store instructions (on the same field), changing the base of the
access path, invoking (potentially opaque) methods, and executing unknown instructions
(including monitorenter/monitorexit). The rules have strong preconditions to preclude these
cases. At the level of the model, we only care about soundness under the given assumptions,
no matter how strict. In Section 5 we will discuss practical enhancements – e.g., when
method calls are fine because the analysis has computed the full potential of their effects on
the heap.

Call. The next rule uses points-to information to establish a sound call-graph. The i calls−−−→
c

c′

meth relation over-approximates information using the same approach as points-to sets:
for a given invocation site, i, and context, c, the relation holds either an empty set (i.e.,
no matching values exist for (i, ctx) – denoting an unbounded set of destinations – or an
over-approximation (i.e., a superset) of all possible targets of the invocation at i under c.

The rule is mostly a straightforward lookup of the target method, based on the receiver
object’s type. There are a couple of subtleties, however. The receiver object needs to have an
upper-bounded (i.e., non-empty) points-to set, a new context is constructed using function
NC, and the target method is considered reachable under the new context. The exact
definition of NC will determine the context-sensitivity of the analysis. (We will return to
this point promptly.)

Y. Smaragdakis and G. Kastrinis 23:15

Args. The Args rule handles points-to information propagation over calls, from caller to
callee. Points-to information for rebased access paths is established for the first instruction
(j = meth(0)) of a called method, under the callee’s established context. The rule examines
all access paths whose base variable is an actual argument of the call, as long as they have
some points-to information (before the invocation).

Recall our discussion of Section 3 regarding method calls and the use of context. The
points-to information established at a callee cannot be conflating different callers – there
may be unknown callers for the same method, either in existing code (e.g., via reflection)
or in dynamically loaded code. Therefore, if we might mix callers, the only sound inference
for local points-to sets is >: we cannot bound the values that all callers may pass. Instead,
we need to have contexts that uniquely identify the caller, so that we can safely propagate
bounded points-to sets.

A straightforward way to ensure that the pair (meth, c′) uniquely identifies invocation
instruction i and context c is to use call-site sensitivity [27, 28]: c′ is formed by combining
i and c – that is, NC(i, c, ô) = cons(i, c). (Contexts can typically grow only up to a pre-
determined depth, at which point the NC function will not return anything, the Call rule
will fail to make a calls−−−→ inference, hence the current rule will not fire, leaving points-to
sets at the callee empty, i.e., undetermined.)

Ret. The final rule perform a similar propagation of values, this time from callee to caller.
The rule is significantly complicated by its last condition (the forall-exists implication), which
is key for soundness. The rule states that if some callee has points-to information for complex
access path p at a return point, then this information is propagated to the caller, provided
that all other callees for the same instruction, i, and caller context, c, also have some (i.e.,
non-empty) points-to information for the same access path p at their return point. A further
complication is that access path p will appear rebased differently for each one of the callees –
e.g., access path actual.field may appear as formalA.field and formalB.field in two callees
A and B. The rule has to also account for such rebasing.

Note also the earlier condition that access path p be complex, i.e., to have length greater
than 1. This reflects call-by-value semantics for references: for a call foo(actual) to a method
with signature foo(F formal), the points-to information of access path formal is not reflected
back to the caller, yet the points-to information of longer access paths, e.g., formal.fld, is.

The handling of a method return is the only point where a context can become stronger.
Facts that were inferred to hold under the more specific context, c′, are now established,
modulo rebasing, under c. Since c′ has to uniquely identify c, typically c will be shorter by
one context element.

4.3 Reasoning
We prove the soundness of the analysis under an informal language model. We do not
attempt to formalize the full effects of opaque code (e.g., what reflection or native code can
or cannot do). Such a formalization would be tedious and partial, as new capabilities are
added to reflection or dynamic loading APIs with every JDK version. Instead, we establish
that the analysis rules always compute over-approximate finite points-to sets (or empty
sets), and that this property cannot be affected by opaque code under the common informal
understanding of the assumptions of Section 2.3. For instance, it is clear from the “stack
frame isolation” assumption that local variables cannot change values except by action of
the current instruction, i.e., that rule Frame-1 is alone responsible for soundly transfering
such points-to information from the program point before an instruction to after.

ECOOP 2018

23:16 Defensive Points-To Analysis: Effective Soundness via Laziness

There are two main properties of the defensive analysis:
Soundness: the analysis computes an over-approximation of points-to sets that may arise
during any program execution. Any non-empty set contains a superset of its dynamic
contents under any possible execution. Any empty set is considered trivially “over-
approximate”, to avoid special-casing all our statements. In effect, the analysis produces
a set of soundness markers, Claim(P), which coincide with the non-empty points-to sets.
No claims are made about empty points-to sets.
Laziness: the analysis does not waste work; elements that enter a points-to set are never
removed.

I Theorem 1. There exists an evaluation order of the rules, such that the defensive analysis
model is sound: all points-to sets computed are over-approximate, i.e., are either empty
or contain all possible values arising during program execution, under the assumptions of
Section 2.3.

Proof. The proof is inductive. Initially, all points-to/call-target sets encoded in relations
i : p IN−→c, i : p OUT−−−→c, i

calls−−−→
c

c′ are empty. (We treat relation i : p IN−→c ô as encoding a set
of ôs for given i, p, c; relation i calls−−−→

c

c′ meth as encoding a set of meths for given i, c, c′, etc.)
Therefore, we start from a trivially over-approximate state.
Importantly, the inductive step does not hold for a single application of a rule. Intermediate

states of evaluation may not be over-approximate: an element may enter a set before the
rest of its contents. (For instance, consider a statement v = u and prior points-to set {ô1, ô2}
for u. A single application of the Move rule for ô1 will leave the points-to set of v in a
non-over-approximate state: the set will be missing the ô2 value.)

Thus, the inductive step applies to states after past rules have been evaluated fully.
Consider a rule R as a monotonic update to a set of values d. That is, R(d) ⊇ d. A rule has
been fully evaluated at fixpoint, i.e., when R(d) = d. The next inductive step considers the
state after a full evaluation of any rule.

The inductive step of the proof is captured in a lemma:

I Lemma 2. The analysis rules preserve soundness under full single-rule evaluation. That
is, if relations i : p

IN−−→c, i : p
OUT−−−→c, and i

calls−−−→
c

c′ encode over-approximate points-to/call-
target sets before a full evaluation of a rule, they will encode over-approximate sets after a
full evaluation.

Proof sketch of lemma 2. The lemma is established by exhaustive examination of the rules.
We mentioned key parts of the reasoning in our earlier presentation of the rules. All rules over
complex access paths (i.e., of length ≥ 2) affect the heap and require the “concurrency model”
and “object isolation” assumptions of Section 2.3. Rules on plain-variable access paths use
the “stack-frame isolation” assumption. Every rule is careful to produce values for points-
to/call-target sets only if all input sets are non-empty (i.e., guaranteed over-approximate
and bounded), and to consider all possible such values. For rules Call, Args, and Ret
the lemma holds only under the previously-stated assumption on the NC constructor: the
pair (meth, c′) needs to uniquely identify invocation instruction i and context c. Consider,
for example, rule Args. We need to establish that the points-to set j : p[argi

n/argmeth
n] IN−→c′

is over-approximate given that i : p IN−→c is. (The rule form makes the former be a superset
of the latter, we need to reason that they are actually the same set.) Instruction j uniquely
identifies method meth and actual-to-formal access-path rebasing can never merge access
paths (since different formal variables cannot have the same names). If c′ and meth arise for
only a single call-site and caller-context pair, (i, c), then the property holds. J

Y. Smaragdakis and G. Kastrinis 23:17

The lemma establishes the inductive step of our proof. The sets computed by the analysis
are initially over-approximate and remain over-approximate after every full evaluation of a
single rule. At fixpoint, when full evaluation of any rule no longer changes the output sets,
the property holds, concluding the theorem’s proof. J

An interesting question is whether any evaluation order of the rules is guaranteed to yield
sound points-to sets at fixpoint. The answer is “almost yes”. All but one of the analysis
rules are monotonic (in the usual domain of sets, i.e., with the empty set at the bottom),
therefore yield a confluent evaluation: any order will yield the same result at fixpoint. (We
have a machine-checked proof of the latter property, by encoding the rules in the Datalog
language, which allows only recursion through monotonic inferences.) The single exception
is the Ret rule. There is hidden non-monotonicity in the ∀ iteration over call-graph edges,
which contains an implication. If the Call rule is not fully evaluated when the Ret rule
applies, it is possible to produce points-to sets that will later be invalidated, because more
callees will be discovered (for whom the points-to relationship does not hold for the given
access path). Therefore, for soundness to hold, the analysis rules have to always apply in
such a fashion that the Call rule is fully evaluated (not globally but on its own, per the
earlier definition) before the Ret rule is considered. This evaluation order should be enforced
by any sound implementation of the rules of Figure 2.

Based on the above observation on the rules’ monotonicity, we also establish our laziness
result.

I Theorem 3. A points-to set encoded in our analysis relations grows monotonically, as
long as the Ret rule is applied only during local fixpoints (i.e., after full evaluation) of the
Call rule.

5 Implementation and Discussion

We have implemented defensive analysis in the Datalog language and integrated it with
the Doop Datalog framework for may-point-to analysis of Java bytecode [5]. The full
implementation consists of over 400 logical rules, yet the minimal model of Section 4 captures
well its essential features. We also completed a second, largely equivalent, implementation
on the Soufflé Datalog engine [26]. Both implementations are publicly available at https:
//bitbucket.org/yanniss/doop.

The defensive analysis model admits several enhancements and refinements, as well as
gives rise to observations. We discuss such topics next, especially noting those that pertain
to our full-fledged implementation of the analysis.

Observations. A defensive analysis is naturally modular, yet the question is whether it
can produce useful results. The analysis can be applied to any subset of the code of an
application or library and it will produce sound inferences. Omitting code merely means
that more points-to sets will end up being empty: the analysis only infers points-to sets
when an upper-bound of their contents is known based on the current code under analysis.
This defensive approach, however, may end up computing too many empty points-to sets.
Therefore, the key quality metric is that of the analysis’s coverage: for how many program
elements (e.g., local variables) can the analysis produce non-empty points-to information?
Coverage has similarly been used as a key metric in other work that infers specifications
modularly [6].

Additionally, a defensive analysis is not in competition with a conventional, unsound
analysis, but instead complements it. The defensive analysis computes which of the points-to

ECOOP 2018

https://bitbucket.org/yanniss/doop
https://bitbucket.org/yanniss/doop

23:18 Defensive Points-To Analysis: Effective Soundness via Laziness

sets have known upper bounds and which are potentially undetermined. If, instead of
an empty set, a client desires to receive the (incomplete) subset of known contents for
non-bounded points-to sets, the results of the two analyses can be trivially combined.

Pragmatics. With minor adaptation, the analysis logic can work on static single assignment
(SSA) input. Our implementation is indeed based on an SSA intermediate language. The
benefit is that for trivial access paths (just a single variable) points-to information does not
need to be kept per-instruction: the points-to set remains unchanged, since the variable is
not re-assigned.

A full-fledged analysis should cover more language features than the model of Section 4.
Our implementation handles, in a manner similar to the earlier rules, features such as
static and special method invocations, static fields, final fields, constructors (also implicitly
initializing fields to null), and more.

Expanding the Analysis Reach. Defensive analysis is naturally pessimistic. Its key feature
is that it will populate points-to sets only when it can establish that they are bounded.
However, the analysis uses simplistic techniques to establish such boundedness, i.e., it
recognizes guaranteed-safe cases.

There are several sound inferences that the analysis could make but the model of Section 4
does not. Although defensive analysis will never reach the inferences of an unsound analysis
(even without any opaque code), it can be enhanced to approach it. Arbitrarily complex
mechanisms can be added to increase the coverage of the analysis (i.e., the true properties it
can infer precisely):

The rule shown earlier for control-flow merge points is conservative. Information propa-
gates at control-flow merge points if all of the predecessors have some points-to information
for the access path in question. This condition is too strict: several predecessors will not
have points-to information for an access path simply because the access path is not even
assigned in the predecessor branch (e.g., it is based on a local variable that is set on a
different branch only). Consider a program fragment:

1 x.f = new A();
2 while (...) {
3 y = x.f;
4 }

The head of the loop has two control-flow predecessors: one due to linear control flow
and one due to the loop back-edge. However, the loop itself does not change the points-to
set of x.f. It is too conservative to demand that the back-edge also have a bounded
points-to set for x.f before considering the linear control-flow edge.
In our implementation we have special support for detecting that a program path does
not affect an access path. We use this to limit the ∀ quantification of the rule to range
over “relevant” predecessors. We note that this scenario only applies to complex access
paths in practice, due to the SSA form of our input.
When an unknown method call is encountered, the analysis assumes worst-case behavior
with respect to its heap information. This can be relaxed arbitrarily by modeling
system methods and annotating them appropriately. Possible information about calls
includes “this library call does not affect user-level objects”, “this method only affects
its arguments”, “this method does not affect static variables”, etc. Additional manual
modeling includes library collections (including arrays) which can be represented as
abstract objects.

Y. Smaragdakis and G. Kastrinis 23:19

Our current implementation does some minimal modeling of library collections and anno-
tates only a handful of methods, as a proof-of-concept. A representative example is that of
method Float.floatToRawIntBits. This native method is called by the implementation of
the put operation in Java HashMaps and, since it is opaque, would prevent all propagation
of points-to information beyond a put call.
The analysis coverage can be expanded by employing it jointly with a must-alias anal-
ysis [15, 7, 35], an escape analysis [4, 11], and a thread-escape analysis. A must-alias
analysis will increase the applicability of the rule for heap loads, and can be combined
with the rule for heap stores to enable more strong updates. An escape analysis will
result in less conservativeness in the propagation of information to further instructions
(i.e., in frame rules). A thread-escape analysis can help relax our concurrency model. We
currently support simple, conservative versions of all three analyses in our implementation,
but do not enable them by default.

Context depth. As seen earlier, a defensive analysis may compute empty (undetermined)
points-to sets because it has reached its maximum context depth. It is worth pointing out,
however, that method calls further away than the maximum context depth can influence the
points-to inferences of a method. For an easy example, consider the case of a large number,
N , of methods that form a call chain and unconditionally return to their callers what their
callee returns to them. If the final (N -th) method returns a new object, then that object will
propagate all the way back to the first method of the call chain, regardless of the maximum
context depth, D. The limitation of context depth only concerns properties that depend on
conditions established more than D calls back in the call-stack.

6 Evaluation

There are five research questions that our evaluation seeks to answer:
RQ1: Does defensive analysis produce coverage for large parts of realistic programs? Or
do points-to sets overwhelmingly stay empty?
RQ2: Does the coverage of defensive analysis benefit from its advanced features (i.e.,
inter-procedural handling, as well as handling of control-flow merging)?
RQ3: Does defensive analysis have an acceptable running time, given that it is flow-
sensitive and context-sensitive?
RQ4: Does defensive analysis yield results that can benefit a client that requires soundness,
such as an optimization?
RQ5: Can benefits be obtained for a fully relaxed concurrency model, as opposed to the
model of Section 2.3?

Setup. Since defensive analysis is a unique beast, it is indeed an interesting question to
ask what it can be compared against. As closest comparable (though still a very dissimilar
analysis) we chose to compare to a highly-precise conventional analysis with state-of-the-art
best-effort soundness: a 2-object-sensitive/heap-sensitive analysis (2objH) with reflection
support. This is the most precise analysis in the Doop framework that still manages to scale
to the majority of the DaCapo benchmarks. We use static best-effort reflection handling
(–enable-reflection-classic flag), i.e., the analysis tries to statically resolve all reflection
calls based on string matching.

We analyze, under JDK 1.7.0_75, the DaCapo benchmark programs [3] v.2006-10-MR2
as well as v.9.12-Bach. The 9.12-Bach version contains several different programs, as well
as more recent versions of some of the same programs. (We show results for all of the

ECOOP 2018

23:20 Defensive Points-To Analysis: Effective Soundness via Laziness

v.2006-10-MR2 benchmarks and for those of the v.9.12-Bach benchmarks that could be
analyzed by the Doop framework in under 3 hours.) We also use the two non-Android
benchmarks (NTI, jFlex) from the Julia set by Nikolić and Spoto [24].

We use the LogicBlox Datalog engine, v.3.10.14, on a Xeon E5-2667 v.2 3.3GHz machine
with only one thread running at a time and 256GB of RAM.

Defensive analysis is run with a 5-call-site-sensitive context (5def for short). 3 instances
(of 44 total) did not finish with the default precision in 3hrs: the 2objH baseline did not
finish for jython and h2; xalan did not finish for the 5def analysis. In these cases we used
lower precision: context-insensitive for the unsound analysis and 4-call-site-sensitive (4def)
for defensive. We use diacritical marks (* and ˆ) in the figures to remind the reader of the
different analysis setting for these benchmarks.

Coverage. Figure 3 shows the coverage of defensive analysis, i.e., the number of non-empty
points-to sets (for local variables) computed for all benchmarks. The input program is
in SSA form, therefore the points-to sets for variables are a normalized representation of
all points-to information in the program: they reflect the analysis-computed values for all
program expressions, separately for each control-flow point.

The analysis yields non-empty points-to sets for a significant portion of each program –
the median benchmark has 45.6% of variables with points-to information for some context,
while 35.5% have points-to information for a context Init (i.e., unconditionally).7 It is
worth emphasizing that conditional points-to guarantees (under some context) are valuable
in a defensive analysis: they are often the best any analysis can ever do! Recall our earlier
discussion of Section 3: many of the useful inferences of a defensive analysis will be under
some context even when the inference holds under all known contexts in existing code. No
analysis can preclude the existence of other callers in opaque, and possibly not yet existing,
code. Such callers can arise in dynamically generated code and can invoke existing methods,
e.g., using reflection.

Thus, the defensive analysis achieves a large proportion of the benefits of an unsound
analysis, while guaranteeing these results against uses of opaque code. We can answer RQ1
affirmatively: defensive analysis covers a large part of realistic programs (over one-third
unconditionally; close to one half under specific calling conditions), despite its conservative
nature.

Comparison with intra-procedural. We have earlier referred to the “easy”, intra-procedural
parts of the analysis reasoning: what a compiler or VM would likely do to perform sound
local data-flow analysis. This is the subject of RQ2, also answered by Figure 3. The figure
includes results for an intra-procedural baseline analysis that captures the low-hanging fruit
of sound reasoning: local variables that directly or transitively (via “move” instructions) get
assigned an allocated object. That is, the “Intra-proc Sound” analysis is otherwise the same
as the full “defensive” logic, with the exception of the new “interesting” cases (control-flow
merging, heap manipulation, and inter-procedural propagation).

The result answers RQ2 affirmatively: defensive analysis has significantly higher coverage
than the baseline intra-procedural analysis. (And the difference only grows when considering
an actual client, in later experiments.) Although the benefit is not broken down further in the

7 If a variable has a points-to value for context Init, then it also has that value under every specific
context that arises for the variable. Therefore, points-to sizes for Init are always lower than conditional,
context-specific sizes.

Y. Smaragdakis and G. Kastrinis 23:21

Figure 3 Percentage of application variables (deemed reachable by baseline 2objH analysis)
that have non-empty points-to sets for defensive analysis under some context and Init context (no
assumptions). Intra-procedural sound points-to analysis (defensive minus the complex cases) shown
as baseline. Arithmetic means are plotted as lines.

figure, the handling of method calls alone (i.e., rules Call, Args and Ret) is responsible for
the lion’s share of the difference between the full defensive analysis and the intra-procedural
sound analysis.

Running time. Figure 4 shows the running times of the analysis, plotted next to that of
2objH, for reference. Although the two analyses are dissimilar, 2objH is qualitatively the
closest one can get to defensive analysis with the current state of the art: it is an analysis
with high precision, run with best-effort soundness support. Therefore, 2objH can serve as
a realistic point of reference. As can be seen, the running times of defensive analysis are
realistically low, although its flow-sensitive and 5-call-site-sensitive nature suggests it would
be a prohibitively heavy analysis. This answers RQ3 and confirms the benefits of laziness:
a defensive analysis that only populates points-to sets once they are definitely bounded,
achieves scalability for deep context.

Client analysis: devirtualization. Our baseline analysis, 2objH, is highly precise and ef-
fective in challenges such as devirtualizing calls (resolving virtual calls to a single target
method). On average, it can devirtualize 89.3% of the calls in the benchmarks studied (min:
78.5%, max: 95.2%). However, these results are unsound and a compiler cannot act upon
them. For optimization clients, such as devirtualization, soundness is essential. Using sound
results, a JIT compiler can skip dynamic tests (of the inline caching optimization) for all
calls that the analysis soundly covers.

Figure 5 shows the virtual calls that defensive analysis devirtualizes, as a percentage of
those devirtualized by the unsound analysis.

As can be seen, defensive analysis manages to recover a large part of the benefit of
an unsound analysis (median 44.8% for optimization under a context guard, 38.7% for
unconditional, Init context, optimization), performing much better than the baseline intra-
procedural must-analysis (at 14.6%). This answers RQ4 affirmatively: the coverage of
defensive analysis translates into real benefit for realistic clients.

ECOOP 2018

23:22 Defensive Points-To Analysis: Effective Soundness via Laziness

Figure 4 Running time (sec) of defensive analysis, with running time of 2objH (with unsound
reflection handling) shown as a baseline. Labels are shown for defensive analysis only to avoid
crowding the plot.

Concurrency model. A compiler (JIT or AOT) author may (rightly) remark that the
concurrency model of Section 2.3 is not appropriate for automatic optimizations. The Java
concurrency model permits a lot more relaxed behaviors, so the analysis is not sound for full
Java as stated. However, the benefit of defensive analysis is that it starts from a sound basis
and can add to it conservatively, only when it is certain that soundness cannot possibly be
violated. Accordingly, we can remove the assumption that all shared data are accessed while
holding mutexes, by applying the load/store rules only when objects trivially do not escape
their allocating thread. We show the updated numbers for the devirtualization client (now
fully sound for Java!) in Figure 6. The difference in impact is minimal: 43% of virtual call
sites can be devirtualized conditionally, under some context, while 36% can be devirtualized
unconditionally. This helps answer RQ5: defensive analysis can yield actionable results for
a well-known optimization, under the Java memory model, for a large portion of realistic
programs.

Points-to set sizes. Finally, it is interesting to quantify the precision of the defensive
analysis, for the points-to sets it covers. This precision is expected to be high, since defensive
analysis is flow- and context-sensitive, but exact figures help put it in perspective.

Figure 7 shows average points-to set sizes for the defensive analysis vs. the 2objH
analysis. The sets (excluding null values) are computed over variables covered by both
analyses, for non-empty defensive analysis sets and under context Init of the defensive
analysis, i.e., unconditionally. (The numbers are for the simplistic concurrency model, but
remain unchanged to two significant digits for the relaxed concurrency model.)

As can be seen, the defensive analysis is highly precise when it produces non-empty
points-to sets, typically yielding points-to set sizes very close to 1. 2objH is also a very
precise analysis (for variables with bounded points-to sets), so it remains competitive, yet
clearly less precise. Notably, points-to set sizes close to 1 are the Holy Grail of points-to
analysis: such precision is actionable for nearly all conceivable clients of a points-to analysis.

Y. Smaragdakis and G. Kastrinis 23:23

Figure 5 Virtual call sites that are found to have receiver objects of a single type. These call
sites can be soundly devirtualized. Numbers are shown as percentages of devirtualization achieved
by unsound 2objH analysis.

7 Related Work

There is certainly past work that attempt to ensure a sound whole-program analysis, but none
matches the generality and applicability of our approach. We selectively discuss representative
approaches.

The standard past approach to soundness for a careful static analysis has been to “bail
out”: the analysis detects whether there are program features that it does not handle
soundly, and issues warnings, or refuses to produce answers. This is a common pattern in
abstract-interpretation [8] analyses, such as Astrée [10], which have traditionally emphasized
sound handling of conventional language features. However, this is far from a solution to the
problem of being sound for opaque code: refusing to handle the vast majority of realistic
programs can be argued to be sound, but is not usefully so. In contrast, our work handles all
realistic programs, but returns partial (but sound) results, i.e., produces non-empty points-to
sets for a subset of the variables. It is an experimental question to determine whether this
subset is usefully large, as we do in our evaluation.

Hirzel et al. [13, 14] use an online pointer analysis to deal with reflection and dynamic
loading by monitoring their run-time occurrence, recording their results, and running the
analysis again, incrementally. However, this is hardly a static analysis and its cost is
prohibitive for precise (context-sensitive) analyses, if applied to all reflection actions.

Lattner et al. [17] offer an algorithm that can apply to incomplete programs, but it
assumes that the linker can know all callers (i.e., there is no reflection – the analysis is for
C/C++) and the approach is closely tied to a specific flow-insensitive, unification-based
analysis logic [34], necessary for simultaneously computing inter-related points-to, may-alias,
and may-escape information.

Sreedhar et al. [33] present the only past approach to explicitly target dynamic class
loading, although only for a specific client analysis (call specialization). Still, that work ends
up making many statically unsound assumptions (requiring, at the very least, programmer
intervention), illustrating well the difficulty of the problem, if not addressed defensively. The
approach assumes that only the public API of a “closed world” is callable, thus ignoring

ECOOP 2018

23:24 Defensive Points-To Analysis: Effective Soundness via Laziness

Figure 6 Virtual call sites (percentage of 2objH) that are found to have receiver objects of a
single type. Updates Figure 5, this time with soundness under a relaxed memory model.

many uses of reflection. (With reflection, any method is callable from unknown code, and
any field is accessible.) It “[does] not address the Java features of reloading and the Java
Native Interface”. It “optimistically assumes” that “[the extant state of statically known
objects] remains unchanged when they become reachable from static reference variables”.
It is not clear whether the technique is conservative relative to adversarial native code (in
system libraries, since the JNI is ignored). Finally, the approach assumes the existence of a
sound may-point-to analysis, even though none exists in practice!

Traditional conservative call-graph construction (Class Hierarchy Analysis (CHA) [9]
or Rapid Type Analysis (RTA) [1]) is unsound. Such algorithms explore the entire class
hierarchy for matching (overriding) methods and consider all of them to be potential virtual
call targets. However, even this is not sufficient for a sound static analysis of opaque code:
classes can be generated and loaded dynamically during program execution. CHA cannot
find target methods that do not even exist statically, yet modeling them is precisely what is
needed for soundness in real-world conditions. For instance, Java applications, especially
in the enterprise (server-side) space, employ dynamic loading heavily, and patterns such as
dynamic proxies have been standardized and used widely since the early Java days.

Furthermore, such heuristic “best-effort” over-approximation is detrimental to analysis
precision and performance. CHA is an example of a loose over-approximation in an effort to
capture most dynamic behaviors. Loose over-approximations compute many more possible
targets than those that realistically arise. This yields vast points-to sets that render the
analysis heavyweight and useless due to imprecision. (Avoiding such costs is exactly why past
analyses have often opted for glaringly unsound handling of opaque code features.) Our lazy
representation of “don’t know”/”cannot bound” values as empty sets addresses the problem,
by keeping all points-to sets compact.

The conventional handling of reflection in may-point-to analysis algorithms for Java [12,
18, 22, 20, 29, 19] is unsound, instead relying on a “best-effort” approach. Such past analyses
attempt to statically model the result of reflection operations, e.g., by computing a superset
of the strings that can be used as arguments to a Class.forName operation (which accepts
a name string and returns a reflection object representing the class with that name). The
analyses are unsound when faced with a completely unknown string: instead of assuming

Y. Smaragdakis and G. Kastrinis 23:25

Benchmark Average points-to over same vars
defensive 2objH

D
aC

ap
o
20

06
-1
0-
M
R
2

antlr 1.01 1.10
bloat 1.02 2.12
chart 1.09 1.09
eclipse 1.06 1.31
fop 1.00 1.03
hsqldb 1.01 1.04
jython* 1.01 6.05
luindex 1.02 1.02
lusearch 1.04 1.06
pmd 1.01 1.05
xalan 1.05 1.12

jFlex 1.01 1.02
NTI 1.03 1.03

D
aC

ap
o
9.
12

-B
ac
h

avrora 1.05 3.04
batik 1.04 1.05
eclipse 1.07 1.53
h2* 1.04 2.07
luindex 1.01 1.04
lusearch 1.03 1.08
pmd 1.01 1.04
sunflow 1.05 1.08
xalanˆ 1.04 1.19

mean 1.03 1.51

Figure 7 Average number of abstract objects per variable, for variables for which both analyses
compute results.

that any class object can be returned, the analysis assumes that none can. The reason is that
over-approximation (assuming any object is returned) would be detrimental to the analysis
performance and precision. Even with an unsound approach, current algorithms are heavily
burdened by the use of reflection analysis. For instance, the documentation of the Wala
library directly blames reflection analysis for scalability shortcomings [12],8 and enabling
reflection on the Doop framework slows it down by an order of magnitude on standard
benchmarks [29]. Furthermore, none of these approaches attempt to model dynamic loading
– a ubiquitous feature in Java enterprise applications.

8 Conclusions

Static analysis has long suffered from unsoundness for perfectly realistic language features,
such as reflection, native code, or dynamic loading. We presented a new analysis architecture
that achieves soundness by being defensive. Despite its conservative nature, the analysis

8 The Wala documentation is explicit: “Reflection usage and the size of modern libraries/frameworks
make it very difficult to scale flow-insensitive points-to analysis to modern Java programs. For example,
with default settings, WALA’s pointer analyses cannot handle any program linked against the Java 6
standard libraries, due to extensive reflection in the libraries.” [12]

ECOOP 2018

23:26 Defensive Points-To Analysis: Effective Soundness via Laziness

manages to yield useful results for a large subset of the code in realistic Java programs, while
being efficient and scalable. Additionally, the analysis is modular, as it can be applied to any
subset of a program and will yield sound results.

We expect this approach to open significant avenues for further work. The analysis
architecture can serve as the basis of other sound analysis designs. The defensive analysis
itself can be combined with several other analyses (may-escape, must-alias) that have so far
been hindered by the lack of a sound substrate.

References
1 David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls. In

Proc. of the 11th Annual ACM SIGPLAN Conf. on Object Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’96, pages 324–341, New York, NY, USA, 1996.
ACM.

2 Sandip K. Biswas. A demand-driven set-based analysis. In POPL ’97: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
372–385, 1997.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.
doi:10.1145/1167473.1167488.

4 Bruno Blanchet. Escape analysis: Correctness proof, implementation and experimental
results. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 25–37, 1998.

5 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In Proc. of the 24th Annual ACM SIGPLAN Conf. on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’09, New York,
NY, USA, 2009. ACM.

6 Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Composi-
tional shape analysis by means of bi-abduction. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09, pages
289–300, New York, NY, USA, 2009. ACM. doi:10.1145/1480881.1480917.

7 Jong D. Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In POPL ’93: Proceedings of the
20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
232–245, 1993.

8 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM. doi:10.1145/512950.
512973.

9 Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In ECOOP’95 - Object-Oriented Programming, 9th
European Conference, Århus, Denmark, August 7-11, 1995, Proceedings, ECOOP ’95, pages
77–101. Springer, 1995. doi:10.1007/3-540-49538-X_5.

http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1480881.1480917
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/3-540-49538-X_5

Y. Smaragdakis and G. Kastrinis 23:27

10 David Delmas and Jean Souyris. Astrée: From Research to Industry, pages 437–451.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-74061-2_
27.

11 Alain Deutsch. On the complexity of escape analysis. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97, pages
358–371, New York, NY, USA, 1997. ACM. doi:10.1145/263699.263750.

12 Stephen J. Fink et al. WALA UserGuide: PointerAnalysis. http://wala.sourceforge.
net/wiki/index.php/UserGuide:PointerAnalysis, 2013.

13 Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence of dynamic
class loading. In ECOOP 2004 - Object-Oriented Programming, 18th European Conference,
Oslo, Norway, June 14-18, 2004, Proceedings, ECOOP ’04, pages 96–122. Springer, 2004.
doi:10.1007/978-3-540-24851-4_5.

14 Martin Hirzel, Daniel von Dincklage, Amer Diwan, and Michael Hind. Fast online pointer
analysis. ACM Trans. Program. Lang. Syst., 29(2), 2007. doi:10.1145/1216374.1216379.

15 Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and
loving it: must-alias analysis for higher-order languages. In POPL ’98: Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 329–341, 1998.

16 Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for static analysis
of Java reflection – literature review and empirical study. In Proceedings of the 39th Inter-
national Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017.

17 Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-Sensitive Points-to
Analysis with Heap Cloning Practical For The Real World. In Proc. of the 2007 ACM
SIGPLAN Conf. on Programming Language Design and Implementation, PLDI ’07, New
York, NY, USA, 2007. ACM.

18 Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection resolution for
Java. In Proc. of the 28th European Conf. on Object-Oriented Programming, ECOOP ’14,
pages 27–53. Springer, 2014. doi:10.1007/978-3-662-44202-9.

19 Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis. In
Sandrine Blazy and Thomas Jensen, editors, Static Analysis - 22nd International Sympo-
sium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings, volume 9291
of Lecture Notes in Computer Science, pages 162–180. Springer, 2015. doi:10.1007/
978-3-662-48288-9_10.

20 Benjamin Livshits. Improving Software Security with Precise Static and Runtime Analysis.
PhD thesis, Stanford University, December 2006.

21 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Ama-
ral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dim-
itrios Vardoulakis. In defense of soundiness: A manifesto. Commun. ACM, 58(2):44–46,
2015. doi:10.1145/2644805.

22 Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for Java. In Proc.
of the 3rd Asian Symp. on Programming Languages and Systems, pages 139–160. Springer,
2005. doi:10.1007/11575467_11.

23 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005. doi:
10.1145/1044834.1044835.

24 Durica Nikolić and Fausto Spoto. Definite expression aliasing analysis for Java bytecode.
In Theoretical Aspects of Computing - ICTAC 2012 - 9th International Colloquium, Banga-
lore, India, September 24-27, 2012. Proceedings, volume 7521 of ICTAC ’12, pages 74–89.
Springer, 2012. doi:10.1007/978-3-642-32943-2_6.

ECOOP 2018

http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1145/263699.263750
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://dx.doi.org/10.1007/978-3-540-24851-4_5
http://dx.doi.org/10.1145/1216374.1216379
http://dx.doi.org/10.1007/978-3-662-44202-9
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1145/2644805
http://dx.doi.org/10.1007/11575467_11
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1007/978-3-642-32943-2_6

23:28 Defensive Points-To Analysis: Effective Soundness via Laziness

25 Xavier Rival. Comment on “what is soundness in static analysis post”,
in the PL Enthusiast blog. http://www.pl-enthusiast.net/2017/10/23/
what-is-soundness-in-static-analysis/#comment-1265, 2017.

26 Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. On fast large-scale
program analysis in datalog. In Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages 196–206, 2016.
doi:10.1145/2892208.2892226.

27 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
In Steven S. Muchnick and Neil D. Jones, editors, Program flow analysis: theory and
applications, chapter 7, pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

28 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, may 1991.

29 Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
sound static handling of Java reflection. In Proc. of the Asian Symp. on Programming
Languages and Systems, APLAS ’15. Springer, 2015.

30 Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your contexts well:
Understanding object-sensitivity. In Proc. of the 38th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL ’11, pages 17–30, New York, NY, USA, 2011.
ACM.

31 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
Context-sensitivity, across the board. In Proc. of the 2014 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’14, pages 485–495, New York,
NY, USA, 2014. ACM. doi:10.1145/2594291.2594320.

32 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow- and context-sensitive pointer analysis for java. In Shriram Krish-
namurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages
22:1–22:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://www.
dagstuhl.de/dagpub/978-3-95977-014-9, doi:10.4230/LIPIcs.ECOOP.2016.22.

33 Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for interpro-
cedural optimization in the presence of dynamic class loading. In Proc. of the 2000 ACM
SIGPLAN Conf. on Programming Language Design and Implementation, PLDI ’00, pages
196–207, New York, NY, USA, 2000. ACM.

34 Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96: Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 32–41, 1996.

35 Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, POPL ’08, pages 197–
208, New York, NY, USA, 2008. ACM. doi:10.1145/1328438.1328464.

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/#comment-1265
http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/#comment-1265
http://dx.doi.org/10.1145/2892208.2892226
http://dx.doi.org/10.1145/2594291.2594320
http://www.dagstuhl.de/dagpub/978-3-95977-014-9
http://www.dagstuhl.de/dagpub/978-3-95977-014-9
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22
http://dx.doi.org/10.1145/1328438.1328464

Legato: An At-Most-Once Analysis with
Applications to Dynamic Configuration Updates
John Toman
Paul G. Allen School of Computer Science & Engineering, University of Washington, USA
jtoman@cs.washington.edu

Dan Grossman
Paul G. Allen School of Computer Science & Engineering, University of Washington, USA
djg@cs.washington.edu

Abstract
Modern software increasingly relies on external resources whose location or content can change
during program execution. Examples of such resources include remote network hosts, database
entries, dynamically updated configuration options, etc. Long running, adaptable programs must
handle these changes gracefully and correctly. Dealing with all possible resource update scenarios
is difficult to get right, especially if, as is common, external resources can be modified without
prior warning by code and/or users outside of the application’s direct control. If a resource
unexpectedly changes during a computation, an application may observe multiple, inconsistent
states of the resource, leading to incorrect program behavior.

This paper presents a sound and precise static analysis, Legato, that verifies programs cor-
rectly handle changes in external resources. Our analysis ensures that every value computed by
an application reflects a single, consistent version of every external resource’s state. Although
consistent computation in the presence of concurrent resource updates is fundamentally a concur-
rency issue, our analysis relies on the novel at-most-once condition to avoid explicitly reasoning
about concurrency. The at-most-once condition requires that all values depend on at most one
access of each resource. Our analysis is flow-, field-, and context-sensitive. It scales to real-world
Java programs while producing a moderate number of false positives. We applied Legato to 10
applications with dynamically updated configurations, and found several non-trivial consistency
bugs.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Static Analysis, Dynamic Configuration Updates

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.24

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.2

Funding This paper is based upon work sponsored in part by DARPA under agreement number
FA8750-16-2-0032.

Acknowledgements The authors would like to thank Doug Woos, Chandrakana Nandi, Emina
Torlak, Manuel Fahndrich, Francesco Logozzo, and Christian Kästner for their comments on early
drafts of this work. We would also like to thank the anonymous reviewers for their feedback.

1 Introduction

Programs are no longer monolithic collections of code. In addition to source code, modern
applications consist of configuration files, databases, network resources, and more. Treating
these external resources as static inputs to the program is infeasible for adaptable, long

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© John Toman and Dan Grossman;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 24; pp. 24:1–24:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jtoman@cs.washington.edu
mailto:djg@cs.washington.edu
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.24
http://dx.doi.org/10.4230/DARTS.4.3.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Legato

1 if(hasReadPermission (" harmless_file ")) {
2 open(" harmless_file "). read ();
3 }

Figure 1 Example time-of-check-to-time-of-use bug caused by a dynamic resource update: if
"harmless_file" is replaced with a symlink to another user’s file after the permissions check but
before the open() call, a leak of another user’s private information will occur.

running programs. Remote hosts may become unavailable or change their APIs, database
entries may be changed by other threads or programs, the filesystem may be changed by other
tenants on the program’s host, and users may update the configuration options of the program.
We refer to these changing, evolving resources as dynamic external resources; together, these
dynamic external resources form an application’s view of the dynamic environment in which
it executes.

Correctly handling changes in these external resources is challenging. If a dynamic
resource is changed between two accesses used in the same computation, a program can
observe two or more inconsistent versions of the resource state, which can lead to arbitrary
and often incorrect behavior. For example, Figure 1 contains a program fragment exhibiting
a well-known time-of-check-to-time-of-use defect [36, 6, 31] that can lead to a malicious user
circumventing filesystem permissions. The attack is possible precisely because the code in
question can observe two versions of the filesystem state: specifically, two different versions
of the read permission. Such issues are not restricted to filesystems; similar problems can be
found in applications that interact with databases with multiple users [1] or that support
instantaneous configuration updates [43].

Further complicating matters, unlike state under sole control of the program, external
resources are often mutated by other programs or users of the system without warning and
it is often impossible for the application to prevent such changes. Errors due to dynamic
resource updates are difficult to anticipate ahead of time, and (like concurrency errors) require
difficult-to-write functional tests to manually uncover. Further, although the example shown
in Figure 1 can be detected with a simple syntactic analysis, the dynamic resource errors
we have found in practice often involve multiple levels of indirection through the heap and
flows through multiple method calls. There has been extensive work to help programmers
contend with and correctly handle these changes [4, 31, 9, 5]. However, existing techniques
take a piecemeal approach tailored to a specific resource type (e.g., files [36, 6], configuration
options [43], etc.).

This paper presents a unified approach to verify that programs always observe consistent
versions of external resource state. Key to our approach is the at-most-once condition. The
at-most-once condition states that a value may depend on at most one access of each external
resource. Intuitively, programs observe inconsistent resource states when a resource changes
between two or more related accesses of a resource. By restricting all computations to at
most one access per resource, the condition guarantees that every value computed by the
program always reflects some consistent snapshot of each resource’s state.

We efficiently check this condition for complex, real-world programs using a novel static
analysis. Conceptually, our analysis versions the external resources accessed by a program
so that each read of a resource is assigned a unique version. Our analysis tracks these
versioned values as they flow through the program and reports when two or more distinct
versions flow to the same value. Although our analysis focuses on errors caused by concurrent
changes it does not explicitly reason about concurrency involving external updates. Our

J. Toman and D. Grossman 24:3

1 int getDoubled () {
2 return Config .get(" number ") +
3 Config .get(" number ");
4 }

Figure 2 Example of inconsistency due to
dynamically updated configuration options. If
the "number" configuration option changes be-
tween the two calls to Config.get(), a non-even
number may be returned.

1 int a = Config .get(" number ");
2 int b = 0;
3 while(?) {
4 b += a;
5 }

Figure 3 Example of a resource used multiple
times after being read. ? represents a side-effect
free, uninterpreted loop condition. This use pat-
tern is correct because the "number" resource is
accessed only once in computing b.

analysis is interprocedural and scales to large programs. The analysis is flow-, field-, and
context-sensitive, and can accurately model dynamic dispatch.

We implemented the Legato1 analysis as a prototype tool for Java programs. We
evaluated Legato on 10 real-world Java applications that use dynamic resources. These
applications were non-trivial: one application in our evaluation contains over 10,000 methods.
Legato found 65 bugs, some of which caused serious errors in these applications. Further,
we found that the at-most-once condition is a good fit for real applications that use external
resources: violations of the at-most-once condition reported by our analysis often corresponded
to bugs in the program. Legato had a manageable ratio of true and false positives. Our
tool is also efficient: it has moderate memory requirements, and completed in less than one
minute for 6 out the of 10 applications in our benchmark suite.

In summary, this paper makes the following contributions:
We define the at-most-once condition, a novel condition to ensure consistent usage of
external resources (Section 2).
We present a novel static analysis for efficiently checking the at-most-once condition
(Sections 3 and 4).
We describe Legato, an implementation of this analysis for Java programs (Section 5).
We show that Legato can find real bugs in applications that use dynamic resources
(Section 6).

2 At-Most-Once Problems

Legato targets programs that use dynamic external resources. Unlike static program re-
sources (e.g., program code, constant pools, etc.) dynamic resources are statically identifiable
entities that may be changed without warning by code or programs outside of an application’s
control. In the presence of external changes, programs may observe inconsistent versions of
an external resource’s state.

For example, Figure 2 shows a (contrived) example of an error due to dynamically
updated configuration options. Although callers of getDoubled() would reasonably expect
the function to always produce an even number, an update of the "number" option between
the two calls to Config.get() may result in an odd number being returned. This unexpected
behavior occurs because the application observes inconsistent versions of "number". The
time-of-check-to-time-of-use error in Figure 1 from the introduction is another example.

One possible technique for detecting these errors is to concretely model dynamic resource
updates and reason explicitly about update/access interleavings. Unfortunately, explicitly

1 Legato is open-source, available at https://github.com/uwplse/legato

ECOOP 2018

https://github.com/uwplse/legato

24:4 Legato

modeling concurrency, e.g., [11, 3, 10], is intractably expensive on large programs or requires
specific access patterns [25, 27].

Legato instead verifies consistent usage of dynamic resources without explicitly reasoning
about concurrent updates and reads. In the worst case, a resource may change between
every access; i.e., every access may yield a unique version of the resource. For example,
suppose that the configuration accessed in Figure 2 is updated by another thread in response
to user input. In the presence of non-deterministic thread scheduling and without prior
synchronization between the two accesses of "number" on lines 2 and 3, the option may be
updated some arbitrary number of times. The current implementation of getDoubled correctly
handles updates that occur before or after the two accesses: only interleaved updates are
problematic.

A key insight of Legato is that a program that is correct under the worst-case resource
update pattern described above will necessarily be correct under any update pattern. Further,
under the assumption that every access yields a distinct version of the underlying resource,
values from two or more different accesses of the same resource can never be combined
without potentially yielding an inconsistent result. It is therefore sufficient to verify that a
value depends on at most one access to each resource. Verifying this condition for all values
in a program is the at-most-once problem.

The at-most-once problem places no restrictions on the number of times a resource may
be used once read, nor how many times a resource may be accessed, only on how many times
the resource may be accessed in computing a single value. For example, the code in Figure 3
is correct according to our definition of at-most-once. When the "number" option is read
on line 1 it reflect a single, consistent version of the option at the time of read. Although
"number" may be updated an arbitrary number of times as the loop executes, the value of a is
unaffected by these updates and remains consistent as it is used multiple times during the
execution of the loop. As a result, after the loop finishes, the value of b will reflect a consistent
version of the "number" option. If the body of the loop was b += Config.get("number"), the
at-most-once requirement would be violated.

3 The Legato Analysis

Legato is a whole-program dataflow analysis for detecting at-most-once violations in
programs that use dynamic resources. For ease of presentation, throughout the rest of this
paper, we assume that there is only one resource of interest that is accessed with the function
get(). The analysis described here naturally extends pointwise to handle multi-resource
scenarios. Conceptually, the analysis operates by assigning a globally unique, abstract version
to the values returned from each resource access. If two or more unique versions flow to
the same value, this indicates that a resource was accessed multiple times, thus violating
at-most-once.

In a dynamic setting, every read of a resource can be tagged with an automatically
incrementing version number. With this approach, detecting violations of at-most-once is
straightforward: when two or more different version numbers reach the same value, at-most-
once must have been violated. This is the approach taken by Staccato [43], which finds
inconsistent usage of dynamic configuration options. However, concrete version numbers do
not translate to the static setting.

In place of concrete numbers, resource versions can be abstractly represented by the site
at which a resource was accessed and the point in the program execution that the resource
occurred. The presence of uninterpreted branch and loop conditions makes it impossible

J. Toman and D. Grossman 24:5

to determine the absolute point in a program execution at which a resource access occurs.
Instead, Legato uses abstract resource versions (ARVs) to encode accesses relative to the
current point in the program execution. For example, an ARV can represent “the value
returned from the 2nd most recent execution of the statement s”, which precisely identifies a
single access while remaining agnostic about the absolute point in the program execution the
access occurred.

The Legato analysis combines a reachability analysis with the abstract domain of ARVs
to discover which resource versions flow to a value. The ARV lattice is designed such that
the meet of two ARV representing different accesses (and therefore versions) yields ⊥, which
indicates a possible violation of at-most-once.

We first present a simple intraprocedural analysis that does not support loops, heap
accesses, or method calls (Section 3.2). We then extend the approach to handle loops
(Section 3.3). The transformers defined by these two sections illustrate the core Legato
analysis. In principle, this basic analysis could be extended to extremely conservatively
handle language features, such as the heap or methods. However, in practice, doing so would
result in enormous precision loss. We therefore show how we extend the analysis to field-
and flow-sensitively handle information flow through the heap (Section 3.5). Extending the
analysis to precisely handle method calls is non-trivial, and is discussed in Section 4. Other
program features (e.g., exceptions, arrays, etc.) are straightforward extensions of the ideas
presented here.

Abstract Resource Versions. As mentioned above, an abstract resource version (ARV)
represents a resource version by the access site and the point in time at which the access
was performed. To ensure soundness, values returned from different resource accesses must
be assigned unique ARVs (we expand on this point further in Section 3.4). In a simple
language with no loops or methods, ARVs are simply expression labels: each label represents
the unique value produced by the execution of the labeled expression. In the presence of
loops, we augment these labels with a priming mechanism to differentiate between multiple
executions of the same expression. To precisely handle methods, in Section 4.1 we generalize
to strings of primed labels, which identify an access by the sequence of method calls taken to
reach an access site (similar to the approach taken by [48]). Finally, in Section 4.2, we further
generalize ARVs to sets of strings (represented as tries) to encode multiple possible accesses
that may reach a program value. However, even with this representation, our analysis always
maintains the invariant that each ARV abstracts a single, unique resource access.

3.1 Preliminaries

Before describing the analysis, we first briefly review some relevant background information.

IDE. The Legato analysis uses the IDE (Interprocedural Distributive Environment) pro-
gram analysis framework [40]. The IDE framework can efficiently solve program analysis
problems stated in terms of environment transformers. An environment is a mapping from
dataflow symbols (e.g., variables) to values. The domain of symbols must be finite, but
the domain of values may be infinite, provided the values form a finite-height, complete
lattice. The meet of environments is performed pointwise by symbol. IDE analyses assign
environment transformers to edges in the program control-flow graph. However, to aid
exposition, throughout the remainder of this section we will instead denote statements into

ECOOP 2018

24:6 Legato

(const) c ::= 0 | 1 | . . .
(var) v ::= a | b | . . .
(atom) a ::= c | v
(expr) e ::= a+ a | a | get`()

(stmt) s ::= v = e | s; s | skip

| if a then s1 else s2

Figure 4 Grammar for the loop-, and method-free language.

Statement Transformer
Jv1 = v2K , λe.e[v1 7→ e(v2)]

Jv = cK , λe.e[v 7→ >]
Jv1 = v2 + v3K , λe.e[v1 7→ e(v2) u e(v3)]

Jv = get`()K , λe.e[v 7→ ̂̀]
J skip K , λe.e

J if a then s1 else s2K , λe.(Js1Ke) u (Js2Ke)
Js1; s2K , λe.Js2K(Js1Ke)

Figure 5 Environment transformers of the basic analysis.

environment transformers.2
The IDE framework targets a specific subclass of analyses where the environment trans-

formers distribute over the meet operator on environments. That is, for all transformers
t : Env → Env and all environments e1, e2, . . . , en,

d
i t(ei) = t(

d
i ei), where equality on

environments is defined pointwise. Given a set of distributive environment transformers,
the IDE framework produces a flow and context-sensitive analysis with polynomial time
complexity.

Access Paths. An access path [15, 19] is an abstract description of a heap location. An
access path consists of a local variable v, and a (potentially empty) sequence of field names
f.g.h . . . Together, these two elements name the location reachable from v through fields
f, g, h, . . . We will write ε to represent and empty sequence of fields, π to refer to an arbitrary
(potentially empty) sequence of fields, and v.π to denote an arbitrary access path.

3.2 The Basic Analysis
We first present our analysis on a limited language described by the grammar in Figure 4.
Every call to get() is uniquely labeled with `: we will write concrete labels as 1, 2, etc. Our
basic language contains no looping constructs, as a result every get() expression is executed
at most once. Thus, every access can be uniquely identified by the label of a get() expression.
For this language, the abstract resource versions are get() expression labels: ̂̀ represents the
2 This change in presentation does not change the behavior of the analysis; the denotation of a statement

is a simplification of the meet of the composition of the edge transformers for all paths through a
statement.

J. Toman and D. Grossman 24:7

unique version of the resource returned by the corresponding get`() expression. Further, at
this point the analysis operates on access-paths with no field sequences: we abbreviate v.ε
as v.

The basic Legato analysis is expressed using the environment transformers in Figure 5.
Conceptually, for a program s, the analysis applies the empty environment (i.e., all facts
map to >) to the transformer associated with statement s. Thus, the analysis result is
given by JsK (λ_.>). The analysis is standard in its handling of several language features.
For instance, sequential composition of statements is modeled by composing environment
transformers, and conditional statements are modeled by taking the meet of the environments
yielded from both branches.

The interesting portion of the analysis lies in the handling of variable assignments.
Assignments overwrite previous mappings in the environment of the left-hand side with the
abstract value of the right-hand side. Integer constants are never derived from resources, and
therefore have the abstract value >, which represents any value not derived from a resource.
The statement v1 = v2 associates v1 with the abstract version contained in v2. Resource
accesses have the abstract value ̂̀which, as discussed above, is sufficient to uniquely identify
the value returned from the access get`(). This simplified version of the Legato analysis is
very similar in style to a constant propagation analysis, where in place of integers or booleans,
the constants of interest are abstract resource versions.

Values may become inconsistent for two reasons. The first is due to the addition operator.
The expression v1 + v2 is given the abstract value e(v1) u e(v2). The meet operator for these
ARVs is derived from a flat lattice:

> u x = x x u ⊥ = ⊥ î u î = î î u ĵ = ⊥, if i 6= j

where i and j are two arbitrary labels. If e(v1) = î and e(v2) = î, then the result of the
addition still depends only on the resource accessed at geti(). In this case, at-most-once is
not violated, and the meet yields î as the abstract value of the overall expression. However,
if e(v1) = î and e(v2) = ĵ then the program is combining two unique versions of the resource,
which violates at-most-once. The meet of these two incompatible versions yields ⊥, which is
the “inconsistent” value in the lattice.

Finally, a variable may be assigned ⊥ due to Legato’s conservative handling of conditional
statements. Recall that the environments produced by the two branches of a if statement
are met at the control-flow join point of the conditional. Thus, if a variable x is mapped to
two distinct, non-⊥ values in environments produced by different branches of a conditional,
those values will be met yielding ⊥. In this case, the result of ⊥ does not correspond to a
violation of at-most-once, and is a false positive. The alternative, full path-sensitivity, is
unacceptably expensive. We do support a limited form of path-sensitivity to precisely model
dynamic dispatch (Section 4.2).

3.3 Loops
The simple analysis presented so far is no longer sound if we extend the language with loop
statements:

stmt ::= . . . | while a do s end

If a get`() expression is in a loop, each evaluation of get`() must be treated as returning
a unique version. However, the transformers presented in the previous section effectively
assume get`() always returns the same version. We therefore extend the transformers and
lattice to distinguish resource accesses from distinct iterations of an enclosing loop.

ECOOP 2018

24:8 Legato

1 a = 1; // a: >
2 b = get1(); // b: 1̂
3 c = get2(); // c: 2̂
4 d = a + b; // d: 1̂
5 e = c + d; // e: ⊥

Figure 6 Results of the basic analysis. The
comments on each line show the abstract value
assigned to the variable assigned on that line.

1 while ? do
2 b = a; // a: 1̂, b: 1̂
3 a = get1() // a: 1̂, b: 1̂′

4 end
5 c = a + b; // c: ⊥

Figure 7 Example of priming due to loops.
The abstract values shown in comments are de-
rived after executing the loop once. On line 3
Legato primes the abstract value of b to distin-
guish it from the fresh value returned by get1().

In a dynamic setting, we could associate every resource access get`() with a concrete
counter c` incremented on every execution of get`(). In this (hypothetical) scenario, get`()

yields the abstract version, 〈`, c`〉: by auto-incrementing c` the analysis ensures executions
of get`() from different iterations are given unique abstract versions.

This straightforward approach fails in the static setting: without a priori knowledge
about how many times each loop executes, the analysis would fail to terminate. We introduce
priming to address this issue. A primed get() label ̂̀n represents the n+1th most recent access
of the resource at get`(). For example, 1̂′′ (i.e., 1̂2) represents the unique value produced by
the third most recent evaluation of get1(), and 2̂ (i.e., 2̂0) is the value returned from the most
recent evaluation of get2(). Abstract versions with the same base label but differing primes
are considered unique from one another in the lattice, i.e., în u ĵm = ⊥ ⇐⇒ i 6= j ∨m 6= n.
Thus, this domain distinguishes between accesses due to different get() expressions as well
as different invocations of the same get() expression.

The syntactic structure of loops are handled using a standard fixpoint technique. The
addition of loops changes how v = get`() statements are handled in the analysis. As before,
the variable v is assigned the abstract value ̂̀. In addition, a prime is added to all existing
abstract values with the base label `. We extend the environment transformer for the
v = get`() case in Figure 5 as follows:

λe.λv′.


̂̀ if v ≡ v′ (1)̂̀n+1 if e(v′) ≡ ̂̀n (2)
e(v′) o.w. (3)

In other words, the v = get`() statement creates a new environment3 such that:
1. v maps to ̂̀, i.e., the most recent version returned from get`()

2. Variables besides v that map to the base label ` have a prime added, indicating these
values originate one more invocation of get`() in the past

3. All other variables retain their value from env

A program illustrating this behavior is shown in Figure 7.

Termination. It is not obvious that the above environment transformer will not add primes
forever. We therefore informally argue for termination.

Let us consider the simple case with a single loop and one call to get() labeled `. Variables
that are definitely not assigned a value from get`() will not be primed and therefore do not

3 Recall that an environment is a mapping of symbols (in this case, variables) to abstract values: the
function term λv′. · · · is such an environment.

J. Toman and D. Grossman 24:9

affect achieving fixpoint. For variables to which get`() may flow, the flow occurs along some
single chain of assignments, e.g. a = get`(); b = a; c = b; ... If instead the assignment
occurred along multiple possible chains, the conservative handling of conditionals will yield
⊥, ensuring the analysis achieves fixpoint.

Consider now the case where some assignments in the chain occur conditionally, e.g.:
1 while ? do
2 if ? then b = a else skip;
3 a = get1()
4 end

where ? represents uninterpreted loop and branch conditions. In this example, b receives
the value of some arbitrary previous invocation of get1(). Our domain of primed labels
cannot precisely represent this value, but the analysis will conservatively derive ⊥ for b, again
ensuring the analysis achieves fixpoint. After two iterations of the analysis, two possible
values for b, 1̂ and 1̂′, will flow to line 3 from the two branches of the conditional on the
previous line. The meet of these two values is ⊥.

The last case to consider in the single loop case is a chain of definite assignments from
get`() to some variable v. For some chain of length k, it is easy to show that the resource will
propagate along the chain in at most k analysis iterations. Thus, the resource will flow over
the get() expression at most k times, and receive at most k primes. After fully propagating
along the chain, the value in v will not receive further primes: on further iterations of the
analysis the value in v is killed by the previous definite assignment in the chain.

Finally, we consider nested loops. As a representative case, consider the following scenario:
1 while ? do
2 b = a;
3 while ? do a = get1() end
4 end

Other possible combinations of assignments and nesting generalize straightforwardly from
this example. After the first pass through the outer-loop, the environment produced is
[a 7→ 1̂]. On the second pass, the environment that reaches line 3 is [a 7→ 1̂, b 7→ 1̂]. One
further iteration of the inner-loop produces [a 7→ 1̂, b 7→ 1̂′]. The meet of this environment
with the previous input environment on line 3 assigns b the value ⊥, ensuring a fixpoint is
reached.

An alternative approach would be to artificially limit the number of primes on a label
to some small constant k. However, we decided against choosing an a priori bound for the
number of primes lest this bound introduce false positives. However, we found in practice we
needed at most 2 primes for the programs in our evaluation set. This finding is consistent
with Naik’s experience with abstract loop vectors [35], which are similar to our priming
approach.

3.4 Soundness
We have proved that the core analysis presented is sound. We first defined an instrumented
concrete semantics that: 1) assigns to each value returned from get() a unique, concrete
version number, and 2) for each value, collects the set of concrete resource versions used to
construct that value. The concrete semantics only considers direct data dependencies when
collecting the versions used to construct a given value. We define soundness in relation to
these concrete semantics. The Legato analysis is sound if, whenever variable is derived
from multiple concrete versions in any execution of the instrumented semantics, the analysis
derives ⊥ for that variable. As our concrete semantics uses only direct dependencies for

ECOOP 2018

24:10 Legato

Statement Transformer
Jv.f = c | null K , λenv.env[pref(v.f) 7→ >]

Jv = null | new T | cK , λenv.env[pref (v) 7→ >]
Jv1 = v2.fK , λenv.env[pref (v1) 7→ >, v1.π 7→ env(v2.f.π)]

Jv1 = v2K , λenv[pref (v1) 7→ >, v1.π 7→ env(v2.π)]

Figure 8 New environment transformers for the heap. The pref (x) function yield the set of all
access paths in e with x as a prefix. In addition, all references π are implicitly universally quantified.

collecting version numbers, our soundness claim is only with respect to such dependencies
and ignores information propagated via control-flow. We discuss this reasons for this choice
further in Section 5.4.

Our proof of soundness relies on a distinctness invariant: two variables have different
abstract resource versions if they have different concrete version numbers under the concrete
semantics. In other words, when two variables have the same abstract version, they must be
derived from the same resource access in all possible program executions. Thus, the invariant
ensures that when values derived from different concrete resource versions are combined by a
program, the analysis will take the meet of distinct abstract resource versions yielding ⊥.
The converse is also true: if two values with the same abstract resource version are combined,
then no program execution will combine two values derived from distinct resource accesses.

The justifications given above for the environment transformers and analysis domain
provide intuitive arguments for why this invariant is maintained. The full proofs and concrete
semantics are omitted for space reasons: they are included in the appendix of the paper.
Although our proof is stated only for the simple intraprocedural analysis presented so far,
when we extend the analysis to support methods in Section 4 we provide an argument for
the preservation of the distinctness invariant.

3.5 Fields and the Heap

We now consider a language with objects and fields.

expr ::= . . . | new T | v.f
atom ::= . . . | null

stmt ::= . . . | v.f = a

A subset of the new environment transformers for the heap language are given in Figure 8.
In this version of the language, our transformers operate on access paths with non-empty
field sequences as opposed to plain variables. These environment transformers encode the
effect of each statement on the heap: for example, constants, null, and new expressions on
the right hand side of an assignment “kill” access-paths reachable from the left-hand side.

There are two statement forms that require special care that do not appear in Figure 8.
First, Legato handles assignments with a get() right-hand side with the environment
transformer from Section 3.3 extended to support access paths instead of variables. For an

J. Toman and D. Grossman 24:11

assignment of the form v = get`(), Legato uses the following transformer:4

λe.λ〈v′.π〉.


̂̀ if v′ ≡ v̂̀n+1 if e(v′.π) ≡ ̂̀n ∧ v′ 6≡ v
e(v′.π) o.w.

The second statement form, heap writes such as v1.f = v2, is handled conservatively.
Legato uses strong updates only for access paths with the v1.f prefix. After the heap-write,
the abstract value reachable from some access path v1.f.π is precisely the value reachable
from v2.π. However, an access path that only may alias with v1.f is weakly updated. A weak
update of the access path v3.π

′ to the abstract value ̂̀n takes the meet of the current value
of v3.π

′ with ̂̀n. Given the definition of the label lattice, this treatment of weak updates
means that an access-path v.π “updated” via aliasing cannot be updated at all: the new
value must exactly match the existing value of the access-path or the access-path may have
no value at all, represented by >.

Formally, Legato assigns a heap write statement v1.f = v2 the environment transformer:

λe.λ〈v.π〉.


e(v2.π

′) if v.π ≡ v1.f.π
′

e(v2.π
′) u e(v.π) if v.π 6≡ v1.f.π

′ ∧mayAlias(v.π, v1.f.π
′)

e(v.π) o.w.

Resolving the mayAlias query is an orthogonal concern to the Legato analysis. In our
implementation we use an off-the-shelf, interprocedural, flow- and context-sensitive may alias
analysis (Section 5.1).

4 Interprocedural Analysis

The interprocedural version of Legato is a non-trivial extension of the intraprocedural
analysis from the previous section. There are two main extensions to the core analysis.
First, Legato soundly accounts for transitive resource accesses. A transitive resource access
refers to when a method m() returns the result of an invocation of get`(); the analysis must
distinguish between abstract values produced by separate invocations of m(). In addition, to
analyze realistic Java code, Legato precisely models dynamic dispatch. If a method call
m() may dynamically dispatch to one of several possible implementations, Legato soundly
combines the unique abstract values returned by each implementation without sacrificing
precision.

Definitions. For presentation purposes only, we begin by making the simplifying assumption
that all methods are static (i.e., all call sites have one unique callee), a method has a single
formal parameter p, all methods end with a single return statement, and method calls are
always on the right hand side of an assignment. We extend the grammar for expressions and
statements as follows:

expr ::= . . . | mk(a) stmt ::= . . . | return a

4 In our formalism, we assume that get() returns a primitive value, and thus the environment will only
contain mappings for v.ε.

ECOOP 2018

24:12 Legato

Transformers for a method invocation: v1 = mk(v2)→ m(p){. . . ; return r}
Call-to-start Exit-to-return Call-to-return

λe.λ〈v′.π〉

{
e(v2.π) if v′ ≡ p
> o.w.

λe.λ〈v′.π〉


ρ(e(p.π))

if v′ ≡ v2

∧π 6≡ ε
ρ(e(r.π)) if v′ ≡ v1

> o.w.

λe.λ〈v′.π〉


> if v′ ≡ v1

>
if v′ ≡ v2

∧π 6≡ ε
τ(e(v′.π)) o.w.

Figure 9 Interprocedural environment transformers. The names of the columns correspond to
the transformer names in the original IDE paper. ρ is a function that transforms values that flow
out of a method. τ transforms values propagated over method calls. We will define these methods
later in the section. The analysis allows for strong updates to heap locations reachable from the
argument of a method, although the base variable retains its value from the caller.

1 m() {
2 while ? do a = get1() end;
3 return a
4 }
5 b = m2();
6 c = m3()

Figure 10 A non-trivial interprocedural resource access.

All method calls are labeled: these sets of labels do not overlap with get() expression
labels. We will continue to use ` to denote an arbitrary get() expression label, and k to
denote a call site label. We will use the same notation for method call labels used in ARVs
(i.e., 1̂) as we did for get() labels in Section 3: context will make clear which type of label
we mean.

The interprocedural environment transformers used by Legato are mostly standard in
the mapping of dataflow symbols into and out of methods. For a method call v1 = m(v2) to
m(p){. . .}, the access-path v2.π in the calling context is mapped to p.π in the callee method.
Dataflow symbols that flow out of a method call (via heap locations reachable from formal
arguments, or return statements) are mapped back into the caller environment. Finally,
information local to the caller that does not flow through the method call to m is propagated
over the method call.5 Legato’s analysis is non-standard only in how values are transformed
across method boundaries. Values that flow out of a method are transformed by the function
ρ and values propagated over a method call are transformed by τ . We define these functions
in this section. The full environment transformers are given in Figure 9.

4.1 Transitive Resource Accesses
In a language with methods, a single primed get() label is no longer sufficient to uniquely
identify a resource access at some point in time. Consider the code sample in Figure 10.
After line 5, the value in b comes from the most recent invocation of get1(). However, after m

is called again on line 6, the value in b comes from an execution of get1() at some arbitrary
point in the past. A single-primed label is unable to represent this situation. Leaving the
value of 1̂ in b after the second call to m is unsound, and using the ⊥ value is imprecise. In
general, transitive resource access may occur any arbitrary depth in the call-graph.

5 For readers familiar with the IDE framework, these three components correspond to the call-to-start,
exit-to-return-site, and call-to-return-site transformers respectively.

J. Toman and D. Grossman 24:13

To precisely handle scenarios like the one in Figure 10, Legato generalizes the primed
label ARV into strings of such labels. Unlike a single get() label, which identifies resource
accesses relative to the current point in a programs execution, call-strings encode resource
accesses relative to other program events: specifically, method invocations. For example, in
the above example, the abstract resource version stored in b can be precisely identified by
“the most recent invocation of get1() that occurred during the most recent invocation of m
at call site 2”. The call-strings used as ARVs can precisely encode statements of this form.

A call-string takes the form k̂1
p
· k̂2

q
· · · k̂m

r
· ̂̀n, where ̂̀ is a primed get() label and each

k̂i is a primed call site label. Call-strings are interpreted recursively; s · k̂n represents the
(n+ 1)th most recent invocation of mk() relative to the program point encoded in the prefix
s. The string s · ̂̀n has an analogous interpretation. If s is the empty string, the label is
interpreted relative to the current point of execution. For example, the resource stored in b

from Figure 10 can be represented by the ARV 2̂ · 1̂, which has the interpretation given above.
As in the intraprocedural analysis, two distinct call-strings encode different invocations of a
resource access, and thus their meet returns bottom. The lattice on call-strings is a constant,
flat lattice on call-strings, which is a natural generalization of the lattice on individual labels.

When a value with call-string s flows out of a method m from the invocation mk(), k̂ is
prepended onto the string s. In other words, for a method call v = mk(), ρ , λs.k̂ · s. The
prepended label encodes that the access represented by s occurs relative to the most recent
invocation of m at k. Prepending k̂ also distinguishes transitive accesses that occurred while
executing mk() from those resulting from other calls of m().

The intraprocedural fragment of Legato remains primarily unchanged. Transitive
resource accesses within a loop are handled with a priming mechanism similar to the one
used for get() expressions. A string with k̂ at the head that is propagated over the method
call v = mk() has a prime added to k̂. We define propagate over method transformer as:

τ , λs.

{
k̂n+1 · s′ if s ≡ k̂n · s′

s o.w.

The justification for this transformation is identical to the one provided for values that flow
over get() invocations. The added prime indicates any accesses that occurred relative to mk()
now originate one more invocation of mk() in the past. Recursion is treated conservatively but
does not require special handling in our analysis. Two iterations of the analysis through a
recursive cycle will generate two strings, s and s · s, the meet of which is ⊥, ensuring fixpoint.

Soundness. We now informally argue for the soundness of the above approach. Recall
from Section 3.4 that the soundness of Legato relies on a distinctness invariant, which
states that if two values are derived from distinct resource accesses Legato must assign
different abstract resource versions to those values. To simplify the following argument, we
will assume that only a single value is returned from the callee via a return statement (the
argument for values returned via the heap generalizes naturally from the following).

Let us assume the distinctness invariant holds for all values in the caller and callee
environments, i.e., values from different invocations of get() are assigned different ARVs.
Let us then show the invariant holds after the callee returns to the caller. First, it is
immediate that the call-to-return transformer τ preserves distinctness for values in the caller
environment. Next, suppose the value returned from the callee is derived from some resource
access that occurred during the execution of the callee. To preserve the invariant, we must
then show that the returned value is given a distinct ARV in the caller. By prepending the
label of the call site and priming all ARVs that already contain that label, distinctness is
ensured.

ECOOP 2018

24:14 Legato

4.2 Dynamic Dispatch and Path-Sensitivity
Legato is not path-sensitive in general; as mentioned in Section 3.2 the abstract value of
a variable from multiple branches are met at control-flow join points potentially yielding
false positives. A key exception is Legato’s handling of dynamic dispatch. In Java and
other object-oriented languages, a method call m may dispatch to different implementations
depending on the runtime type of the receiver object. In general, it is impossible to predict
the precise runtime type of the receiver object for every call site, so a program’s static
call-graph has edges to every possible implementation m1,m2, . . . ,mn of m at the call site
mk(). If Legato treated multiple return flows like control-flow constructs such as if and
while, the analysis would be sound but unacceptably imprecise.

Legato handles dynamic dispatch path-sensitively by aggregating results from each
distinct concrete callee into a single, non-⊥ ARV. Although the resulting ARV encodes
multiple, potentially incompatible resource accesses, Legato ensures that all accesses
represented by the ARV come from different concrete callees of a single virtual call site.
As only one concrete callee is invoked per execution of a virtual call site, only one access
represented in an ARV may be realized at runtime. Thus, combining results from different
concrete implementations into a single ARV does not allow for violations of at-most-once.

Multiple resource accesses are represented by generalizing the call-string representation
from the previous subsection into tries, which encode sets of call-strings. Leaf nodes of the
trie are labeled with primed get() labels, and interior nodes with primed call site labels.
The children of a call site node labeled k̂n represent the possible results returned from the
(n+1)th most recent invocation of the call site with label k. A path through the trie implicitly
defines a call-string with the same interpretation as given in Section 4.1. The call-string
representation of the previous subsection is a degenerate case of the trie representation where
each node has only one child.

Formally, we write k̂n · [b1 7→ t1, b2 7→ t2, . . .] to represent a call site node k̂n with children
t1, t2, . . . reachable along branches with ids b1, b2, . . . The branch ids are unique within each
call site node and correspond to a potential callee. We call the branch id to child mapping
the branch map, and writeM to denote an arbitrary mapping.

We extend the return transformer ρ as follows. On return from a concrete implementation
mp to the call site mk(), ρ , λs.k̂ · [p 7→ s]. That is, the ARV s is extended with a new
call site root node labeled k̂ that has a single child with branch id p. In the caller, these
single-child ARVs are aggregated into a single node that represents all possible results from
each callee. Similarly, we update the function τ as follows:

τ , λs.

{
k̂n+1 · M if s ≡ k̂n · M
s o.w.

Combining ARVs from different invocations of the same virtual call site or different call
sites yields ⊥. To combine ARVs representing results from the same invocation of a call site,
the branch maps of the ARVs are met pointwise by branch id. As is standard, unmapped
branch ids in either map are assumed to have the value >. However, if the meet of any
branch is ⊥ then the entire meet operator yields ⊥. That is, a violation of at-most-once in
one possible callee yields an overall inconsistent result. An example return flow and meet is
shown in Figure 11. Formally, the full meet operator for trie ARVs is as follows:

în · M1 u ĵp · M2 =
{
în · M′ if i = j ∧ n = p ∧M′ 6= ⊥ whereM′ ,M1 uM2

⊥ o.w.

J. Toman and D. Grossman 24:15

𝑏

෠2෠1 ෠3

෠1 ෠2

⊓

෠3

෠1

𝑏

𝑎

class C1 {
d() {
return get2();

}
}

class C2 {
d() {
return get3();

}
}

v = c.d1();

෠2

෠3

𝑎

𝜆𝑠. ෠1 ⋅ 𝑏 ↦ 𝑠 ෠3

𝜆𝑠. ෠1 ⋅ 𝑎 ↦ 𝑠 ෠2

Figure 11 Example of Legato’s handling of dynamic dispatch. v = c.d1() may dispatch to
either implementation in C1 or C2. The dashed lines illustrate the return flows, and are annotated
with the return flow function applied by the analysis. The two single-child ARVs are met to produce
the trie on the right. a and b are the branch ids assigned to the callees C1.d and C2.d respectively.

4.3 Effectively Identity Flows
Prepending labeled nodes on all return flows can cause imprecision. For example, consider:

1 idA(i) { return i }
2 idB(j) { return j }
3 x = get1();
4 y = id2(x)

where id may dispatch to one of idA or idB. In this example, x is assigned 1̂ and y is assigned
2̂ · [a 7→ 1̂, b 7→ 1̂]. According to the lattice, these two values are distinct and may not be
safely combined, despite being identical. This issue arises because the invocation of id is
unnecessary to identify the resource access that flows to y, nor does the behavior of the two
possible callees of id differ. We call a scenario like the above an effectively identity flow.

Legato handles effectively identity flows by detecting when the standard meet operator
would produce ⊥, and refining the ARVs to eliminate any effectively identity flows. Call-site
nodes are added on return from a method invocationm() to either identify transitive resources
accesses (Section 4.1) or to differentiate behavior of multiple callees at m() (Section 4.2).
Conversely, if all callees exhibit the same behavior and no transitive resource accesses occur
within the callm(), call site nodes added on return flow fromm() are, by definition, redundant.
Legato cannot add labels on return only when necessary to disambiguate different resource
accesses. Such an approach would require non-distributive environment transformers, which
are unsuitable for use with the IDE framework upon which Legato is built.

Based on this intuitive definition of effectively identity flows, we define a refinement
operation R, which traverses the ARV trie, and iteratively removes redundant nodes. After
the operation is complete, only the nodes and corresponding labels necessary to either
distinguish a resource access or differentiate multiple callees’ behavior are left in the trie.
We first formally define effectively identity flows (EIF) and initial refinement operation R0
for the single dispatch case (Section 4.3.1). The definitions of EIFs and the full refinement
operation, R, for dynamic dispatch (Section 4.3.2) build upon these definitions.

4.3.1 Effectively Identity Flows and Single Dispatch
As a simplification, we consider call-strings with no primes: the operations and sets defined
here can be easily extended to ignore primes on call labels. For every method m, let AS(m)
denote the set of transitively reachable, unprimed, call site and get() labels of m. Further,
for each call site label k we denote the method invoked at k as CSk. A call-string s contains

ECOOP 2018

24:16 Legato

an EIF if there exists a suffix k̂ · s′ such that there exists a ĵ in s′ such that j /∈ AS(CSk).
The existence of ĵ indicates that the ARV must have been returned out of some method
other than those called by CSk, and, by definition, the access represented by the ARV must
therefore have occurred in some method other than those called by k̂. Thus, k̂ is irrelevant
for the purposes of identifying the resource access encoded in the ARV.

The initial refinement operation, R0, follows from this definition. Let s be a call-string,
k̂ the first label in s involved in an effectively identity flow, and ĵ be defined as above.
Finally, let s′′ be the suffix of s that starts with ĵ (inclusive). Given these definitions:
R0(s) , R0(s′′). The refinement operation is defined inductively: in the base case where s
contains no identity flows the refinement operation is defined to be R0(s) , s. Intuitively, the
refinement operation iteratively strips off substrings of labels that form effectively identity
flows until reaching the suffix of labels that are necessary to distinguish the resource access.

4.3.2 Effectively Identity Flows and Path-Sensitivity
In the presence of ARV branching, we must extend the definition of effectively identity flows
presented above. In the single-dispatch case, call site nodes were necessary only to precisely
represent transitive accesses; nodes that did not fulfill this purpose could be removed. In the
presence of branching, a call site node may also be required to precisely combine otherwise
incompatible method call results. Thus, a call site node is part of an effectively identity flow
iff it is not required to identify accesses within a method call (as before) and it does not
differentiate two or more otherwise incompatible method results.

We define an effectively identity flow in the presence of branching as follows. Each node
encodes a finite set of strings, with each string corresponding to labels on a path from
the node to the leaves of the ARV trie. Passing through a call site node î along branch b
corresponds to îb. We will denote the set of call-strings for a node n with n\. Similarly a
call-string ARV can be trivially converted into a trie ARV as follows:

Ĵib · sK , î · [b 7→ JsK] ĴiK , î

Given these definitions, an ARV contains an effectively identity flow if there exists a
call site node n ≡ k̂ · M that satisfies two conditions. First, every call-string k̂b · s ∈ n\

contains an effectively identity flow according to the definition in Section 4.3.1 originating
at k. In other words, the call site node k̂ is unnecessary to identify any resource accesses
within the call at k. The second condition is

d
s∈n\JR0(s)K 6= ⊥. That is, after removing

the call site node k̂, it must be possible to meet the resulting ARVs without producing a
violation of at-most-once. For nodes that satisfy this condition, the full refinement operation
is: R(n) , R(

d
s∈n\JR0(s)K). The base case for nodes that cannot be refined is R(n) , n.

Similarly to the single-dispatch case, the refinement operation traverses the ARV trie,
stripping redundant nodes and collapsing redundant branches.

4.4 Application Level Concurrency
The at-most-once condition obviates reasoning about concurrent resource updates, but
Legato must still account for concurrency within an application. Legato is not sound in
the presence of data races: we assume that all mutable, shared state is accessed within a
lock protected region. Thus, outside of synchronized regions, each thread reads only values
previously written by that thread. However, within a synchronization region, a thread may
observe values written by any other thread. Legato conservatively assigns heap locations
read in synchronization regions the abstract version ̂̀, where ` is a fresh, distinct label.

J. Toman and D. Grossman 24:17

In other words, synchronization primitives havoc the abstract resource versions potentially
shared among threads.

5 Implementation and Challenges

We implemented Legato as a prototype tool for Java programs. We used the Soot framework
[47] for parsing bytecode and call-graph construction. We built the Legato analysis on
an extended version of the Heros framework [7]. Although we state our analysis in terms
of access paths for simplicity of presentation, we actually operate on access graphs [21] a
generalization of access paths. Access paths can only represent heap locations accessible via
a finite number of field references. In contrast, access graphs compactly encode a potentially
infinite set of paths through the heap. The analysis presented here extends naturally from
access paths to access graphs.

To resolve uses of the Java reflection API, we relied on the heuristics present in the
underlying Soot framework. However, we also found all of the applications in our evaluation
suite provided a mechanisms for one method to invoke another based on an application-specific
URL recorded in a static configuration file. We found that, like many uses of Java reflection
[46, 2], these mechanisms are almost always used with static strings. Following the technique
outlined in [46], where possible we use these strings to statically resolve these implicit calls to
a direct call to a single method. When these heuristics fail, we soundly resolve to all possible
callees. Unlike the Java reflection API, which must consider all methods/constructors as
possible targets, the set of potential callees was small enough that this over-approximate
approach was feasible in practice.

We do not include the full Java Class Library (JCL) in our analysis for performance
reasons. This exclusion is only a source of imprecision in our analysis. For certain methods
(e.g., members of the collections framework) we provide highly precise summaries. For
unsummarized methods, Legato conservatively propagates information from arguments to
return values/receiver objects similar to TaintDroid [16].

5.1 Alias Queries
To resolve the mayAlias queries on heap writes (see Section 3.5), we use a demand-driven,
context and flow-sensitive alias resolution [41]. A single alias query must complete within a
user-configurable time limit; if this budget is exceeded, Legato reports the configuration
value as lost into the heap similar to the approach taken by Torlak and Chandra [44]. This
was not a source of any false positives in our evaluation. We take a similar approach on flows
of resources into static fields. Static fields are global references that persist throughout the
entire lifetime of the program. We conservatively flag any write of a resource derived value
that flows into a static field. This dramatically improved our alias resolution time and did
not lead to many false positives.

5.2 Resource Model
The analysis described in Sections 3 and 4 is stated in terms of only one external resource.
Our implementation handles multiple resources by operating over maps from resource names
to individual ARVs. For generality, our implementation is parameterized over the resource
access model of an application. A model defines the resource access sites in an application,
and for each site returns the set of resource names potentially accessed at that site. The
soundness and precision of Legato depends on the choice resource model: a model that

ECOOP 2018

24:18 Legato

omits some access sites may cause Legato to miss potential bugs. Similarly, an overly coarse
model will be sound but likely imprecise in practice. However, in our evaluation we found
that resource access sites are easy to identify in practice; we describe the resource models
used in for our evaluation in Section 6.

The resource model used with Legato is unconstrained in the choice of resource names.
This flexibility enables the use of an imprecise model when resources may alias, or when
the exact name of resources cannot be determined precisely at analysis time. Under an
imprecise resource model, all access sites that may access the same concrete external resource
are mapped to a common abstract resource name. For example, all accesses to files with
the extension .txt may be mapped to the logical resource name *.txt. A similar approach
may be used when two or more resources interact or share state, i.e., resources with distinct
names that share state may be given the same abstract resource name.

5.3 Context-Sensitivity
Each call site of a method m may call the method with different abstract input values.
However, the IDE framework computes the values within m by taking the meet over all
abstract inputs. This leads to imprecision in the following scenario:

1 do_print (a) {
2 print(a);
3 }
4 do_print (get1());
5 do_print (get2());

The standard value computation within do_print would assign a the value 1̂ u 2̂ = ⊥ which
is imprecise. Initial versions of Legato used the context-insensitive value computation
provided in Heros [7], but our results were impractically imprecise.

To overcome this imprecision, the Legato implementation extends the value computation
phase of Heros to make it context-sensitive. We require an initial context and a context
extension operator. At a call site to method m, the context of the call site C is extended with
the extension operator, yielding the context C ′ for values computed within m originating
from context C. The original value computation pass of the IDE framework is then executed
for the method body with respect to the new context.

In our instantiation, we use an adaptive, k-limited call-string context scheme similar to
that in [35]. To trade-off precision and scalability, we initially run the value analysis pass with
all contexts limited to length 1. If Legato derives the value ⊥ for some method parameter
p in context C, it consults the corresponding argument values in all incoming contexts. If
the argument in each incoming contexts is non-⊥, Legato infers that the ⊥ value computed
for p was due to insufficient context-sensitivity. Legato then adaptively increases the
context-sensitivity for all such call sites, and then re-runs the value computation phase. This
process is repeated until no ⊥ parameter values arise due to insufficient context-sensitivity,
although we impose an configurable artificial maximum length (6 in our experiments) to
ensure termination. In our experiments, this limiting was the source of only 3 false positives.

The approach described above is necessarily more expensive than the original IDE
framework, which runs only one value computation phase. In practice, the context-sensitive
value computation phase does not significantly contribute to analysis time for two reasons.
First, Legato needs only a handful of value computation phases to either rule out false
positives from insufficient context-sensitivity or reach the configured limit. Second, within
each value computation phase, values are computed within a method using context-insensitive
summary functions, which are generated in an initial pass of the IDE analysis. These summary

J. Toman and D. Grossman 24:19

Table 1 Measures of application complexity in the evaluation suite. # IR Statements is the
count across all methods of statements in the intermediate representation used by Soot.

Program Classes Methods Call Graph Edges # IR Statements Options
snipsnap 643 3,318 20,079 68,841 19
vqwiki 506 5,019 43,211 145,891 73
jforum 528 3,075 15,607 41,319 48

subsonic 886 4,578 20,768 67,615 44
mvnforum 938 10,548 132,712 409,847 90

personalblog 371 1,427 8,186 25,514 16
ginp 205 1,011 8,100 26,448 7

pebble 576 2,989 20,646 66,477 7
roller 853 4,735 30,229 95,439 29

blojsom 471 1,782 15,846 26,786 67

functions are symbolic abstractions of the method behavior on all possible input values.
As a result, there is no need to re-analyze a method under each new context, which keeps
recomputing values under new contexts relatively inexpensive.

5.4 Limitations

A fundamental limitation of our analysis is that we do not consider any possible synchroniza-
tion between resource updates and resource accesses or between multiple resource accesses.
This limitation will only yield false positives, as this means our analysis may be overly
conservative in considering a program’s resource accesses. Our prototype could, with modest
effort, include annotations to indicate an access always returns the same abstract version or
multiple access sites return the same abstract version.

Our analysis soundness is stated only in terms of direct information flow, i.e., we ignore
the effects of implicit flow. Thus, Legato will fail to detect when two or more accesses of
the same resource indirectly flow to a program value. We experimented with a version of the
analysis that considered implicit flow but, as is common [22], the ratio of false positives to
true positives was overwhelming.

As mentioned above, Legato relies on the Soot analysis framework for call-graph
construction, reflection resolution, type hierarchy construction, etc. Thus, Legato is sound
modulo the soundness of the underlying Soot framework implementation.

6 Evaluation

To evaluate Legato, we focused on the issue of consistency in the presence of dynamic
configuration updates. A dynamic configuration update (DCU) is a configuration change
that occurs at run time that takes effect without program restart. We chose this problem as
representative of the broader problem of consistent dynamic resource usage, as we are unaware
of any existing static analysis that is capable of effectively addressing this problem. The
only tool we are aware of in this area is our prior work on Staccato [43], which is a dynamic
analysis that may yield false negatives. In addition, Staccato Legato is parameterized over
the dynamic resource being analyzed.

We are interested in the following questions:

ECOOP 2018

24:20 Legato

Does Legato find dynamic resource consistency errors in the analyzed applications with
a reasonable ratio of true to false positives?
Are the time and memory requirements to run Legato reasonable?

Experimental Setup. We evaluated Legato on 10 Java server applications. A summary
of the applications and metrics related to code base and call graph size (as measures of
application complexity) can be found in Table 1. We selected these applications from three
sources. Subsonic and JForum come from our prior work on Staccato we include them for
comparison with prior results.6 Personalblog, Snipsnap, Roller, and Pebble are from the
Stanford SecuriBench suite [28], a set of commonly analyzed web apps [29, 23].7 Finally,
we also used applications from prior work by Tripp et al. on TAJ [46], a taint analysis for
web applications. We used all projects from TAJ’s evaluation that satisfied the following
conditions: a) the source code is publicly available, b) the project is a single, self-contained
application, and c) the application supports dynamic configuration updates. The applications
satisfying these conditions are VQWiki, MVNForum, Ginp, and Blojsom. Where possible,
we used the same versions of the projects as those used in the original TAJ paper.

The dynamically configurable options of every application may be changed by an admin-
istrator at any point while processing a request. Across all our applications, applications
accessed the configuration by reading from a global, in-memory map. When the configu-
ration is changed by an administrator (either via the web interface or editing the on-disk
configuration file) a thread in the application updates the in-memory configuration map.
This thread runs concurrently with request handler threads that read from the configuration
map.

Given this implementation pattern, we treated each individual option as a separate
resource that can change at any moment. Every application accessed configuration options
by either passing static strings to a key-value API (e.g., Config.getValue("db-password")) or
calling option-specific getter methods (e.g., Config.getDBPassword()). We implemented generic
resource models for these two access patterns. When analyzing an application, we specialized
the appropriate model with an application-specific configuration YAML file which described
the application’s configuration API. The longest such file was only 195 lines. The number of
options tracked for each application are included in Table 1.

All of the applications in our evaluation were written to run in a Java Servlet container
[32]. To soundly model these applications, we generated driver programs based on the
servlet container specification and used sound stub implementations of the servlet API. For
heavily used parts of the Java Class Library, such as the collection and database APIs, we
used hand written summaries. For other methods without implementations, we used the
over-approximation of method behavior discussed in Section 5.

We performed two experiments. To measure the effectiveness of Legato, we ran the
analysis on each evaluation program, and recorded all at-most-once violations reported by
the analysis. We then manually classified these reports as either a true bug or false positive.
(Where possible, we reported any true bugs we found to the original developers.)

To measure the performance of Legato, we ran the analysis 5 times for each application
while collecting timing and memory usage information. We break down the time of the
analysis into three components: call-graph construction time, alias query resolution time,

6 Staccato was also applied to Openfire, but was used only to detect out-of-date configurations, an
orthogonal issue to consistency.

7 The SecuriBench suite contains 9 applications, but the remaining 5 do not support DCU.

J. Toman and D. Grossman 24:21

Table 2 Bug reports from Legato. TP and FP are the numbers of true and false positives
respectively. The last four columns record sources of false positives: PS is path-insensitivity, SYN
is the conservative handling of synchronization, and SF is the conservative handling of static fields
discussed in Section 5. O counts causes not included in the above categories, and includes imprecision
due lack of application-, library-, or framework-knowledge. t\o indicates no reports due to timeout.

Project TP FP PS SYN SF O
jforum 4 14 2 1 3 8
ginp 7 1 0 0 1 0
vqwiki 12 8 2 4 1 1
snipsnap 2 2 1 0 1 0
pebble 0 4 3 0 0 1
subsonic 31 12 1 9 2 0

personalblog 1 3 3 0 0 0
roller 6 5 1 0 1 3

mvnforum 2 27 19 0 0 8
blojsom t\o t\o t\o t\o t\o t\o

and core analysis time, and report the average of these times. To measure the memory
requirements of Legato, we sampled the heap size of the JVM every second. We intentionally
avoid garbage collection before sampling the heap size. We found that excessive garbage
collection caused an artificially high number of alias query timeouts, which ultimately skewed
the analysis results and reported memory requirements.

All experiments were run on AWS EC2 m4.xlarge instances with 4 virtual CPUs at
2.4GHz, using the OpenJDK VM version 1.7.0_131, with 10GB of memory allocated to the
JVM. We limited all aliasing queries to ten seconds, and set a 15 minute timeout for each
run of the analysis.

6.1 Analysis Effectiveness
The results of running Legato on programs in our evaluation suite are shown in Table 2.
Legato successfully completed within the 15 minute budget on 9 of the 10 applications in our
evaluation suite (we discuss the reason for Blojsom’s timeout below). Of the 9 applications
on which Legato completed, the analysis found bugs in 8. Although the false positive ratio
is relatively high, we were able to classify the results with minimal effort as many of the false
positives were obvious. In many cases (84.6% of column PS) Legato detected that it lost
precision due to control-flow join and automatically flagged the result as a potential false
positive. We also exploited that ARVs are traces of flows from access to report sites to help
interpret errors reported by our tool. We were able to find these bugs with a simple resource
model (Section 5.2) and without being experts in the programs.

There are potentially two sources of false positives: imprecision in the analysis and the
at-most-once condition being too strong for application specific reasons. In practice, we
found that all false positives were the result of imprecision in the analysis. The primary
source of imprecision was the lack of general path-sensitivity in the analysis (column PS).
For example, almost all of the path-sensitivity false positives in MVNForum (16) were the
result of identical code being cloned across different branches of conditional statements. The
second largest source of false positives was the conservative handling of code that required
application-, library-, or framework-specific domain knowledge to precisely model (included
in column O). For example, 8 false positives in the O column of JForum are due to imprecise

ECOOP 2018

24:22 Legato

1 // Instance (1)
2 request . setAttribute ("url", config . getUrl ());
3 request . setAttribute (" baseurl ", config . getUrl ());
4 // Instance (2)
5 String url = "/space/" + encode (snip. getName ());
6 url += "/" + encode (att. getName ()));
7 // ...
8 String encode (String toEncode) {
9 String encodedSpace = config . getEncodedSpace ();

10 return toEncode . replace (" ", encodedSpace);
11 }

Figure 12 Two simplified examples of the “double read” pattern found in Snipsnap.

1 List <String > getPodcastUrls () {
2 List <String > toReturn = new List < >();
3 for (...) {
4 String baseUrl = // ...
5 int port = config . getStreamPort ();
6 toReturn .add(rewriteWithPort (baseUrl , port));
7 }
8 return toReturn ;
9 }

Figure 13 A correlated access found in Subsonic, where the "streamPort" option is aggregated
into the toReturn variable.

models of Java’s reflection API. Our control-flow graph contained a control-flow edge from
the return-site of a Method.invoke reflective invocation to a MethodNotFoundException exception
handler, when the represented control-flow path is actually unrealizable.

6.1.1 Sample Bugs
We now highlight some of the bugs found and discuss broad patterns we noticed in our results.
Many bugs arose from three patterns: 1) two sequential accesses to the same configuration
option, 2) using a configuration option in a loop, and 3) storing configuration derived data
in a global cache that was not cleared on update.

Double Reads. We found 4 instances of applications immediately combining two successive
reads of the same option. Two simplified instances we found in the Snipsnap program are
shown in Figure 12. In the first instance, config.getUrl() returns a URL based on the
dynamically configurable option specifying the location of the web application. If this option
changes between the two accesses, the request object’s attributes will contain URLs pointing
to two different locations. This could cause confusion for the user as only a subset of links
on the page returned by Snipsnap would be valid.

The second instance is similar as the two invocations of encode both access the dynamically
configured encodedSpace option. In this instance, the URL returned to the user will contain
a mix of incorrectly and correctly encoded spaces. As with the first instance, this bug can
cause links in the returned page to mysteriously fail to work.

The author of Snipsnap confirmed that these two instances corresponded to true bugs, but
declined to fix them due to age of the project, lack of active deployments, and the author’s
judgment that the bugs were not serious enough to warrant a fix [20].

J. Toman and D. Grossman 24:23

Correlated Accesses within Loops. Out of the 65 true reports, 21 were instances of
correlated accesses of configuration options within a loop. We counted instances where a
value derived from a configuration option read within a loop is aggregated with configuration-
derived values from previous iterations of the same loop. The aggregated value is therefore
derived from multiple accesses of the same option, violating our at-most-once condition. The
priming approach described in Section 3.3 was crucial to detect these bugs.

A simplified example of this pattern, found in Subsonic, is shown in Figure 13. The URLs
computed by the method are used to generate an XML file served to podcast subscription
clients. If some of the URLs generated by the method have inconsistent port numbers, the
subscription client end-user would be presented with a handful of podcasts that fail to work.
Further, unlike broken links on a webpage, the generated XML file is likely never seen by the
end-user and thus it may not be obvious that a refresh may solve the problem.

We also found this pattern in other applications in our benchmark suite. For example,
in MVNForum, a web forum application, the email module may send messages to multiple
recipients, but constructs each message in different iterations of a loop. During each loop
iteration, MVNForum reads configuration options that specify the message’s sender name
and address, which may yield a batch of messages with inconsistent sender information.

Finally, we found an example in VQWiki, a wiki web application, that potentially led to
a corrupted search index. While constructing the index, VQWiki executes a loop to generate
the set of documents to add to the index. Each loop iteration reads a configuration option
that controls the location of the application’s data files; this value is then stored in the
indexed document. If the value of the option were to change between loop iterations, the
index would be corrupted and only recover on the next complete index rebuild.

Caching in Static Fields. As explained in Section 5.1, to avoid expensive alias queries
for static fields while retaining soundness, we issue a report for each static field to which
resource-derived information flows. This rough heuristic identified 4 instances where the
at-most-once condition was violated due to caching.

For example, JForum (another forum application) can replace tokens in user text with
embedded images of emojis. The URLs for these emojis, as with all URLs generated
by JForum, are computed based on the dynamically configurable location of the forum
application. JForum lazily computes the URL for every available emoji, then caches the
results in a static field. However, if the administrator changes the base location of the
application, this cache is not cleared. As a result, all links and images post-update will use
the new location except for the emojis, which will be broken. Refreshing the page will not fix
this issue as it requires the administrator to manually clear the emoji URL cache or restart
the application.

In another more serious example, we found an instance in Roller where the login component
cached whether password encryption was enabled in a static field populated at startup.
However, user administration actions (e.g., update user, create user, etc.) always read the
most up-to-date version of this flag, and encrypt passwords as appropriate. Thus, after
changing this flag, any new users created by the administrator would be unable to log in
until the entire application was restarted.

Other Patterns. We found multiple cases where configuration derived values were stored
into the heap in one method, and then later combined with another configuration derived
value in another method. A minimized example of this pattern, found in Ginp, is shown
in Figure 14. Like most of the web applications in our evaluation, Ginp uses Java Servlet

ECOOP 2018

24:24 Legato

1 // in doStartTag
2 this.cols = horiz / Config . getThumbSize ();
3 this.rows = vert / Config . getThumbSize ();
4 // in doAfterBody
5 if(count - start >= this.rows * this.cols)
6 showPicture = false
7 // in _jspService (autogenerated)
8 int _j_0 = _jspx_getpictures . doStartTag ();
9 // 41 lines of auto - generated code

10 int _e = _jspx_getpictures . doAfterBody ();

Figure 14 Inconsistency bug found in Ginp. Detecting this bug requires precisely modeling
framework code, and handling flows through method calls and the heap.

Pages (JSP), a dialect of HTML which allows mixing arbitrary Java code and user defined
tags (such as <ginp:getpictures.../>). At page rendering time, JSP pages are transpiled
into Java code and compiled. User defined tags are transformed into a sequence of calls to
programmer defined callbacks. However, programmers generally only interact with the JSP
source code and do not see the intermediate code containing the callback invocations.

The bug found by Legato involved one such user-defined tag. In one callback (doStartTag,
lines 2 and 3), the same configuration option is read twice and stored into two seemingly
unrelated heap locations. However, in a second callback (doAfterBody, lines 5 and 6) these
two values are incorrectly combined to decide a loop condition. Finding this bug required
precisely tracing the two abstract resource versions interprocedurally through the heap.

In another example, found in JForum, an SMTP mail session is constructed using the
value of the dynamically configured mail host and then stored into an object field. In another
method, this session is used to construct a transport, again using the value of the mail host
option. If the mail host option changes between these two calls, the transport may try to
connect to a mail host different from that of the mail session, which could cause the mail
sending process to fail. Further, we confirmed that if the mail sending process failed with an
exception, the messages to be sent were dropped and never resent.

Finally, we found a bug in Subsonic that relied on the application level concurrency
approach described in Section 4.4. In this instance, a web request would initiate an update of
an in-memory list of remote clients. However, this list was protected by a synchronized block.
Legato concluded that a configuration-derived value placed in the list could be mixed with
other configuration-derived values that originated from other threads.

Comparison with Staccato. To validate the effectiveness of our analysis, we compared the
bugs found by Legato with those found by Staccato. A direct comparison is impossible,
as Staccato uses slightly different correctness conditions, unsound heuristics not present in
Legato, and also detects different types of errors orthogonal to the at-most-once condition.
However, the 4 bugs found by Staccato in JForum and Subsonic that correspond to our
at-most-once condition were detected by Legato. This finding partially validates that the
bugs found by Legato correspond to true DCU bugs.

6.2 Performance
The results of our performance experiments are shown in Figure 16. Of the 10 applications, 9
finished within the 15 minute time limit, and 6 took less than a minute. For all applications
in our evaluation suite, the 10GB heap limit was sufficient: the smallest peak heap size we

J. Toman and D. Grossman 24:25

1 Request req = ...;
2 Response resp = ...;
3 HashMap context = new HashMap ();
4 for(Plugin p : plugins) {
5 p. process (req , resp , context);
6 }
7 sendResponse (resp);

Figure 15 Sketch of code pattern that
caused Legato to time out while analyzing
Blojsom.

sn
ip

sn
ap

vq
w

ik
i

jfo
ru

m

su
bs

on
ic

m
vn

fo
ru

m

pe
rs

on
al

bl
og

gi
np

pe
bb

le

ro
lle

r

bl
oj

so
m

0

100

200

300

400

500

600

700

800

900

Ti
m

e
(s

ec
s)

Analysis
Alias Resolution
Call-Graph

Figure 16 Analysis times for the evalua-
tion targets.

observed was 0.5GB while analyzing Ginp and the largest was 7.5GB on MVNForum.
We now discuss the cause of Blojsom’s timeout. The vast majority of Blojsom’s 15

minute analysis budget was spent resolving alias queries. We found these expensive alias
queries were caused by a problematic code pattern, which we sketch in Figure 15. Blojsom
delegates the majority of request processing and application logic to 79 different plugins
which are called via interface methods in a for loop during request processing (lines 4–6).
To track per-request state, a shared HashMap context is also passed to each plugin; many
plugins write configuration information into this map. To find all aliases of context, the alias
resolver must explore all backwards paths of execution through the loop. Unfortunately, the
megamorphic callsite on line 5 causes an explosion in the paths that must be explored, which
quickly overwhelms the alias resolver. We could potentially address this issue by using a less
precise approach to aliases, at the cost of overall analysis result quality.

7 Related Work

Typestate Analysis and Affine Type Systems. The phrase at-most-once often evokes linear
(or more accurately, affine) type systems [49, 18, 45, 8, 13]. Both linear and affine type
systems restrict how often a value may be used. Linear type systems guarantee that values
may not be duplicated or destroyed, which enforces an exactly-once use discipline. Affine
type systems allow destruction, which enforces an at-most-once use discipline. In contrast,
under the at-most-once condition resources may be accessed multiple times, and may copied
and re-used by the program. The at-most-once restriction only requires that each value
depends only on at most one resource access.

Similar to linear and affine types, typestate analyses [42, 14, 50, 12, 17, 34] focus on
verifying that the use of some object or resource follows a specific protocol. For example,
the motivating example given in the original typestate paper by Strom et al. [42] is to
verify that file handles are not written to after being closed. These access protocols are
generally expressed in terms of an abstract state assigned to each object, and a set of
methods or operations that cause transitions of object state according to some automaton.

ECOOP 2018

24:26 Legato

The at-most-once condition is difficult to accurately capture using this framework. Although
it would be possible to design an automaton to enforce that each resource was used exactly
once during a value’s computation, this condition is stricter than Legato’s.

External Resources. There has been considerable effort into analyzing and understanding
the external resources used by an application. For example, in the database community,
recent work by Linares-Vásquez et al. [26] has looked at generating descriptions of how
applications interact with databases. In a related work, Maule et al. among others [37, 30]
have looked at evaluating the impact of database changes on applications. For configurable
software understanding how software behaves under different configurations remains an
active area of research [39, 24, 38]. Existing research on software configuration consistency
has primarily focused on ensuring consistency between related configuration options. For
example, Nadi et al. [33] examined constraints between compile-time configuration options
for the Linux kernel. We consider this orthogonal to the consistency issues discussed here.

In addition to the above work on static external resources, verifying consistent behavior
in the presence of dynamic, external resources has also been an active area of research. There
has been considerable work in the security field to prevent vulnerabilities due to malicious,
concurrent changes of the filesystem [36, 6, 31, 9].

Several decades of database research on transactions and isolation has focused on ensuring
that applications interact consistently with the database. For example, serializeable isolation
[5] can prevent check-then-act errors within a transaction by determining when a concurrent
update has invalidated a previous read. Although this isolation can prevent consistency errors
due to concurrent updates, empirical research performed by Bailis et al. [1] has shown that
applications that eschew database level transactions (specifically Ruby on Rails applications)
struggle to maintain consistency in the presence of concurrent writers.

To find errors in dynamic configuration update implementations (the instantiation con-
sidered in Section 5), our prior work on the Staccato dynamic analysis checks for correctness
violations in applications with configuration changes at runtime [43]. One of the two correct-
ness conditions checked by Staccato closely mirrors our at-most-once condition. However,
Staccato does not consider multiple reads of the same option to be an error provided the
same value is returned on each access. Thus, when considering multiple accesses on the same
value, the at-most-once condition of Legato can be stricter than that checked by Staccato.

8 Conclusion

We presented Legato, a novel static analysis for detecting consistency violations in ap-
plications that use external resources. Legato verifies the at-most-once condition, which
requires that all values depend on at most one access to each external resource. Legato
efficiently checks this condition without explicitly modeling concurrency by using abstract
resource versions. We demonstrated the effectiveness of this approach on 10 real-world Java
applications that utilize dynamically changing configuration options.

References

1 Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. Coordination avoidance in database systems. Proceedings of the VLDB Endowment,
8(3), 2014.

J. Toman and D. Grossman 24:27

2 Paulo Barros, Suzanne Just, Renéand Millstein, Paul Vines, Werner Dietl, and Michael D
Ernst. Static analysis of implicit control flow: Resolving java reflection and android intents.
In ASE, 2015.

3 Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded programs
from arbitrary program contexts. In OOPSLA, 2014.

4 Arthur J Bernstein, Philip M Lewis, and Shiyong Lu. Semantic conditions for correctness
at different isolation levels. In Data Engineering, 2000.

5 Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency control and
recovery in database systems. Addison-Wesley Pub. Co. Inc., Reading, MA, 1987.

6 Matt Bishop and Michael Dilger. Checking for race conditions in file accesses. Computing
systems, 2(2), 1996.

7 Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In State of the
Art in Java Program analysis, 2012.

8 Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object
encapsulation. In POPL, 2003.

9 Xiang Cai, Rucha Lale, Xincheng Zhang, and Robert Johnson. Fixing races for good:
Portable and reliable unix file-system race detection. In Information, Computer and Com-
munications Security, 2015.

10 Sagar Chaki, Edmund Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and Karen
Yorav. Efficient verification of sequential and concurrent c programs. Formal Methods in
System Design, 25(2-3):129–166, 2004.

11 Sagar Chaki, Edmund Clarke, Nicholas Kidd, Thomas Reps, and Tayssir Touili. Verifying
concurrent message-passing c programs with recursive calls. In TACAS, 2006.

12 Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program verification in
polynomial time. In PLDI, 2002.

13 Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
In PLDI, 2001.

14 Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, 2004.
15 Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In

PLDI, 1994.
16 William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Lan-

don P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. TOCS,
32(2), 2014.

17 Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. TOSEM, 17(2), 2008.

18 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1), 1987.
19 Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of lisp-like structures.

In POPL, 1979.
20 Matthias L. Jugel. Personal Communication, 2017.
21 Uday P Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis using

access graphs. TOPLAS, 30(1), 2007.
22 Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t live

with ‘em, can’t live without ‘em. In Information Systems Security, 2008.
23 Johannes Lerch, Johannes Späth, Eric Bodden, and Mira Mezini. Access-path abstraction:

Scaling field-sensitive data-flow analysis with unbounded access paths. In ASE, 2015.
24 Max Lillack, Christian Kästner, and Eric Bodden. Tracking load-time configuration options.

In ASE, 2014.
25 Yu Lin. Automated refactoring for Java concurrency. PhD thesis, University of Illinois at

Urbana-Champaign, 2015.

ECOOP 2018

24:28 Legato

26 Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys Poshyvanyk. Doc-
umenting database usages and schema constraints in database-centric applications. In
ISSTA, 2016.

27 Peng Liu, Omer Tripp, and Xiangyu Zhang. Flint: fixing linearizability violations. In
OOPLSA, 2014.

28 Ben Livshits. Standford securibench suite. http://suif.stanford.edu/~livshits/
securibench/, 2017.

29 Benjamin Livshits. Improving software security with precise static and runtime analysis.
PhD thesis, Stanford University, 2006.

30 Andy Maule, Wolfgang Emmerich, and David S Rosenblum. Impact analysis of database
schema changes. In ICSE, 2008.

31 William S. McPhee. Operating system integrity in os/vs2. IBM Systems Journal, 13(3),
1974.

32 Rajiv Mordani and Shing Wai Chan. Java servlet specification, 2009.
33 Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Mining config-

uration constraints: Static analyses and empirical results. In ICSE, 2014.
34 Nomair A. Naeem and Ondrej Lhotak. Typestate-like analysis of multiple interacting

objects. In OOPSLA, 2008.
35 Mayur Hiru Naik. Effective Static Race Detection For Java. PhD thesis, Stanford, 2008.
36 Mathias Payer and Thomas R. Gross. Protecting applications against tocttou races by

user-space caching of file metadata. In VEE, 2012.
37 Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-evolution of schema

and code in database applications. In FSE, 2013.
38 Ariel Rabkin and Randy Katz. Static extraction of program configuration options. In ICSE,

2011.
39 Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter. Using

symbolic evaluation to understand behavior in configurable software systems. In ICSE,
2010.

40 Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. Theor. Comput. Sci., 167(1-2), 1996.

41 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java. In Shriram Krishna-
murthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Pro-
gramming (ECOOP 2016), volume 56 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2016/6116, doi:
10.4230/LIPIcs.ECOOP.2016.22.

42 Robert E Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering, 12, 1986.

43 John Toman and Dan Grossman. Staccato: A Bug Finder for Dynamic Configuration
Updates. In ECOOP, 2016.

44 Emina Torlak and Satish Chandra. Effective interprocedural resource leak detection. In
ICSE, 2010.

45 Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL, 2011.
46 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. Taj:

Effective taint analysis of web applications. In PLDI, 2009.
47 Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and

Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it feasible? In
Compiler Construction, 2000.

48 David Van Horn and Matthew Might. Abstracting abstract machines. In ICFP, 2010.

http://suif.stanford.edu/~livshits/securibench/
http://suif.stanford.edu/~livshits/securibench/
http://drops.dagstuhl.de/opus/volltexte/2016/6116
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22

J. Toman and D. Grossman 24:29

49 Philip Wadler. Linear types can change the world. In IFIP TC, 1990.
50 Daniel M Yellin and Robert E Strom. Protocol specifications and component adaptors.

TOPLAS, 19(2), 1997.

A Appendix: Soundness

A.1 Preliminaries
Although the environment transformers presented in the main paper gave semantics as
denotations from statements to environment transformers, the IDE framework of Sagiv et
al. assigns transformers to edges in the program control flow graph. Following the notation
of Sagiv et al. in [40], assume we have a function M : E∗ → (Env → Env), which maps
an edge in the program control-flow graph to an environment transformer. This function
naturally extends to paths of edges by composing the environment transformers for each
successive edge in a path.

The solution computed by the IDE framework is the meet-over-all-paths solution,8 defined
for a distinguished start node s0 and start environment Ω as:

MOP (n) ,
l

p∈path(s0,n)

M(p)(Ω)

In other words, the meet-over-all-paths the meet of applying the transformers for every path
from s0 to n to the start environment Ω.

Our proofs exploit this path-based paradigm: we give the abstract and concrete instru-
mented semantics as assignments of transformers to edges. It is easy to see the correspondence
to the transformers presented in the paper.

A.2 Concrete Instrumented Semantics
We first define the domain of concrete instrumented states as: S = (X → P(N))× N, where
X is the finite domain of variables that appear in a given program. We denote a concrete
instrumented state of type S with 〈env, c〉. The instrumented semantics are given by the
following assignment of transformers of type S → S to edges in the program supergraph:

if e then s1 else s2 → s1 , id (1)
if e then s1 else s2 → s2 , id (2)

while e do s end → s , id (3)
while e do s end → s′ , id (4)

skip→ s , id (5)
x = y → s , λ〈env, c〉.〈env[x 7→ env[y]], c〉 (6)
x = c→ s , λ〈env, c〉.〈env[x 7→ ∅], c〉 (7)

x = y + z → s , λ〈env, c〉.〈env[x 7→ env[y] ∪ env[z]], c〉 (8)
x = get`() → s , λ〈env, c〉.〈env[x 7→ {c}], c+ 1〉 (9)

8 Technically, when considering interprocedural programs, the IDE framework computes the meet-over-
all-valid-paths solution. As we do not consider methods in this section, we instead state our proofs
using the simpler notion of meet-over-all-paths.

ECOOP 2018

24:30 Legato

Where the edge in Equation (1) refers to the edge from the conditional header to the node
corresponding to the branch statement s1, and similarly for Equation (2) and the false branch
s2. The edge in Equation (3) corresponds to when the loop condition is true, and the loop
body executed, whereas the edge in Equation (4) is when the loop condition is false and the
loop is skipped. All other edges refer to the (unique) edge from a statement to its successor
in the supergraph.

Define C(p) as the composition of the transformers corresponding to each edge in the
path p. Let Ω be the initial instrumented state, defined to be: 〈λ_.∅, 0〉.

A.3 Abstract Semantics
Let the domain of primed labels presented in the paper be denoted by L = ̂̀n ∪ {>,⊥}. The
environments used in the paper are of type Ŝ = X → L. We will denote environments of
type Ŝ with ênv. The distributive environment transformers in the paper are equivalent to
the transformers of type Ŝ → Ŝ assigned to the edges in the supergraph:

if e then s1 else s2 → s1 , id (10)
if e then s1 else s2 → s2 , id (11)

while e do s end → s , id (12)
while e do s end → s′ , id (13)

skip→ s , id (14)
x = y → s , λênv.ênv[x 7→ ênv[y]] (15)
x = c→ s , λênv.ênv[x 7→ >] (16)

x = y + z → s , λênv.ênv[x 7→ ênv[y] u ênv[z]] (17)

x = get`() → s , λenv.λv.


̂̀ if v ≡ v′̂̀n+1 if env(v′) ≡ ̂̀n
env(v′) o.w.

(18)

Where the edges have the same interpretation as those given for the concrete semantics.
At first glance, the use of id for loops and conditionals may appear incorrect. However,
because the IDE framework computes the meet over all paths solution, the final result of
the analysis takes the meet of all paths through a conditional, giving us the same effect. A
similar observation applies for computing loop fixpoints.

Let A(p) be the composition of the environment transformers corresponding to each edge
in the path p, and let the initial abstract state Ω be defined to be >

Ŝ
, i.e., an environment

that maps all variables to >.

A.4 Proof
Define the invariant relation for two states as follows, 〈env, c〉 ∼ ênv iff the following
conditions hold:

∀x.|env[x]| > 1⇒ ênv[x] = ⊥ (Invariant 1)
∀x, y,m, n.m 6= n ∧ env[x] = {m}∧env[y] = {n} ⇒ ênv[x] 6= ênv[y] ∨ ênv[x] = ⊥ ∨ ênv[y] = ⊥

(Invariant 2)
∀x.env[x] 6= ∅ ⇔ ênv[x] 6= > (Invariant 3)

J. Toman and D. Grossman 24:31

We now show that:

I Theorem 1.

∀n, n′, p, p′.p′ ≡ p ◦ n ◦ n′ ∧ p′ ∈ path(s, n′) ∧ C(p ◦ n)(Ω) ∼ A(p ◦ n)(Ω)
⇒ C(p′)(Ω) ∼ A(p′)(Ω)

Theorem 1 states that if the invariant holds for the two environments yielded by the
transformers along the path p ◦ n, the invariant still holds after applying the respective
transformers for the edge n→ n′.

Proof. Let C(p ◦ n)(Ω) = 〈env, c〉 and A(p ◦ n)(Ω) = ênv, and let C(p′)(Ω) = 〈env′, c′〉
and A(p′)(Ω) = ênv

′. We assume 〈env, c〉 ∼ ênv and must show that 〈env′, c′〉 ∼ ênv
′. We

proceed on the type of edge n→ n′ that makes up the final component of the path p′.
Cases (1), (2), (3), (4), (5), (6), (7): Trivial
Case (8): It suffices to show that after executing the environment transformer all invariants

hold for the variable x on the left-hand side of the assignment.

Invariant 1 If |env[y]| > 1 or |env[z]| > 1 then by definition of ∼, ênv[y] = ⊥ or
ênv[z] = ⊥, and by the definition of meet, ênv′[x] = ênv[y] u ênv[z] = ⊥, preserving
the invariant. Consider the case now where |env[y]| = 1∧|env[z]| = 1∧env[y] 6= env[z].
Then by the definition of ∼, ênv[y] 6= ênv[z] or one or both of ênv[y] and ênv[z] is ⊥.
In either case, ênv′[x] = ênv[y] u ênv[z] = ⊥, again preserving the invariant.

Invariant 2 If env′[x] = {m} = env[y] ∪ env[z], then either:
1. env[y] = {m} and env[z] = {m}. Then by invariant 3, we have that ênv[y] 6= >

and ênv[z] 6= >. If either ênv[y] or ênv[z] is ⊥, then ênv′[x] = ⊥ and the condition
is trivially satisfied. Similarly, if ênv[y] and ênv[z] are distinct, non-⊥ values, then
ênv
′[x] will be ⊥ and again the invariant is trivially satisfied. Finally, consider

the case where ênv[y] = ênv[z]. Then ênv
′[x] = ênv[y] = ênv[z], and thus the

invariant must hold by transitivity of equality and the invariant relation on the
input environments.

2. env[y] = {m} and env[z] = ∅. Then invariant 3 implies that ênv[y] 6= > and
ênv[z] = >, whence ênv′[x] = ênv[y]. If ênv[y] = ⊥ then the invariant is trivially
satisfied, otherwise the invariant holds from the transitivity of equality and the
invariant on the input environments.

3. env[y] = ∅ and env[z] = {m} follows from symmetric reasoning to the above.
Invariant 3 If env′[x] 6= ∅, then env[y] 6= ∅ ∨ env[z] 6= ∅. By invariant 3 on the input

environments, this implies that ênv[y] 6= > ∨ ênv[z] 6= >. By the definition of meet,
we must have ênv′[x] 6= > as required.
To establish the other direction of the bi-implication, it suffies to show that env′[x] =
∅ ⇒ ênv

′[x] = >. If env′[x] = ∅, then env[y] = ∅∧ env[z] = ∅, whence by the invariant
on the input environments, we have ênv[y] = >∧ ênv[y] = >. As >u> = >, we have
the desired result.

Case (9): We again establish the invariants post assignment.
Invariants 1 and 3 Trivial.
Invariant 2 By simple proof by contradiction, it can be shown that c is greater than any

version number that appears in env. Thus, as env′[x] = {c} is distinct from all other
singleton version sets, it suffices to show that ênv′[x] is likewise distinct from all other
abstract versions. As the environment transformer in (18) adds a prime to existing

ECOOP 2018

24:32 Legato

values of the form ̂̀n, this ensures that ênv′[x] = ̂̀ is unique within ênv′. Finally, for
y 6= x, the priming process preserves inequality between abstract resource versions,
ensuring the invariant holds. J

I Corollary 2. ∀n, p.p ∈ path(s, n)⇒ C(p)(Ω) ∼ A(p)(Ω)

Proof. By straightforward induction on path length and application of Theorem 1. J

We can now state the main soundness result:

I Theorem 3. ∀p, n, x.p ∈ path(s, n) ∧ |C(p)(Ω)[x]| > 1⇒
[d

q∈path(s,n) A(q)(Ω)
]
[x] = ⊥

In other words, Theorem 3 states that if any execution, at some point in the program a
variable is derived from multiple versions of the resource, the analysis derives ⊥ for that
variable at that point.

Proof. Observe that if, for some x, |C(p)(Ω)[x]| > 1, then A(p)(Ω)[x] = ⊥ by Theorem 2,
and by the definition of meet,

d
q∈path(s,n) A(q)(Ω)[x] = ⊥ J

Definite Reference Mutability
Ana Milanova1

Dept. of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY, USA
milanova@cs.rpi.edu

Abstract
Reference immutability type systems such as Javari and ReIm ensure that a given reference
cannot be used to mutate the referenced object. These systems are conservative in the sense that
a mutable reference may be mutable due to approximation.

In this paper, we present ReM (for definite Re[ference] M[utability]). It separates mutable
references into (1) definitely mutable, and (2) maybe mutable, i.e., references whose mutability is
due to inherent approximation. In addition, we propose a CFL-reachability system for reference
immutability, and prove that it is equivalent to ReIm/ReM, thus building a novel framework for
reasoning about correctness of reference immutability type systems. We have implemented ReM
and applied it on a large benchmark suite. Our results show that approximately 86.5% of all
mutable references are definitely mutable.

2012 ACM Subject Classification Theory of computation → Program analysis, Software and
its engineering → General programming languages

Keywords and phrases reference immutability, type inference, CFL-reachability, precision

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.25

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.7

Acknowledgements We thank the ECOOP 2018 PC and AEC for valuable suggestions, and the
National Science Foundation for supporting our work through NSF grant 1319384.

1 Introduction

Reference immutability ensures that a readonly reference cannot be used to modify the state
of the object, including its transitively reachable state. For example, in the code below

1 Date md = new Date();
2 readonly Date rd = md;
3 rd.setTime(1);
4 md.setTime(1);

the Date object cannot be modified through the readonly reference rd, however, the same
object can be be modified through the mutable reference md.

Reference immutability has a wide variety of applications. It can enrich method specifica-
tions. It can help prevent errors due to unwanted aliasing and unwanted object mutation, as
well as errors due to concurrency. It can enable compiler and runtime optimizations as well
as reasoning about more complex properties such as method purity and object immutability.
One application that has not received attention (to the best of our knowledge), is the impact

1 This work was partially supported by NSF grant 1319384.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Ana Milanova;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 25; pp. 25:1–25:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:milanova@cs.rpi.edu
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.25
http://dx.doi.org/10.4230/DARTS.4.3.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Definite Reference Mutability

of reference immutability on “flow systems”. Flow systems track and prevent flow from
positive references to negative ones:

1 a = b;
2 positive X x = ... ;
3 a.f = x;
4 negative X y = b.f;

Many interesting analyses fall into this category, most notably approximate computing
systems (e.g., EnerJ [28]), which prevent flow of approximate values into precise ones, and
taint systems, which prevent flow from sensitive sources to untrusted sinks (e.g., [29, 17]).
Unfortunately, the natural subtyping negative <: positive is unsound in the presence of
mutable references [3]. (In the above example, had we allowed for such subtyping, reference
a could have been positive, b could have been negative, and the program would have type
checked.) Therefore, flow systems disallow subtyping for reference types [29, 28, 12], forcing
equality constraints at reference type assignments instead of the more precise subtyping
constraints. Reference immutability can alleviate the imprecision arising from equality
constraints – if the left-hand-side of the assignment is readonly, then subtyping is safe
– allowing for more correct programs to type check. In summary, because of its many
applications, reference immutability has been studied extensively [34, 39, 2, 40, 18, 13, 22],
and it remains important to continue research in the area.

Javari [34] is the state-of-the art in reference immutability. ReIm [18] has similar
core semantics but is less expressive and therefore simpler. In this paper we focus on
ReIm because of its simplicity and clarity; we believe that our treatment extends to other
reference immutability systems. Standard reference immutability systems, like Javari and
ReIm capture what we call definite immutability – a readonly reference is truly immutable.
However, a mutable reference may be truly mutable, or it may be mutable because of inherent
approximation. ReIm (and Javari) approximate in the handling of structure-transmitted
dependences [25] (i.e., flow through heap objects). For example, in the code below

x.f = y; ... w = z.f; w.g = ...

reference y is mutable. However, it is not necessarily mutable: if x and z refer to the same
object o, then y is indeed mutable; if they refer to different objects, then it is not mutable (at
least not because of the update to w). The system does not reason about aliasing, and errs on
the safe side marking y mutable. ReIm (and Javari) handle call-transmitted dependences [25]
precisely. In the code below, id is the standard “identity” function that returns its argument.

x = id(y); // x is readonly
z = id(w); // z is mutable

Reference y is readonly, and w is mutable. The system properly transmits mutability without
mixing the two call sites.

The key contribution of our paper is reasoning about approximation. We propose a new
type system ReM (for definite Re[ference] M[utability]). ReM captures definite immutability,
and in addition it captures definite mutability – a mutable reference is now definitely mutable.
We note that our use of “definitely mutable” is somewhat inaccurate. Of course, whether
a given reference is ever mutated is undecidable for various reasons, e.g., it is undecidable
whether a given statement is executed, or whether a given path is executed. We use it
in the sense of definitely mutable according to CFL-reachability, which is a highly precise

A. Milanova 25:3

model of data dependence [25] and analyses are unlikely to improve upon it. ReM captures
approximation explicitly by introducing the maybe qualifier. In the earlier example

x.f = y; ... w = z.f; w.g = ...

y is now maybe mutable. A key result is that empirically, approximation has limited impact
– only about 13% of all ReIm-mutable references (about 6% of all references) are maybe
mutable, leading to a conclusion that ReIm and ReM are precise, and therefore can be used
to power client analyses.

Another contribution of our paper is the interpretation of reference immutability in terms
of Context Free Language reachability, commonly referred to as CFL-reachability [27, 26, 25].
We propose a CFL-reachability system for inference of reference immutability, and prove that
it is equivalent to the ReIm/ReM inference system, thus building a framework for reasoning
about correctness, and proving ReIm and ReM correct. To the best of our knowledge, ReIm
has not been proven correct, even though it has been used to power client analyses [17, 32].
We plan to extend our system for reasoning about approximation and correctness to flow
systems [29, 28, 18, 17]. A CFL-reachability interpretation is beneficial for several reasons:
(1) it defines the semantics of reference immutability type systems in terms of intuitive
and well-known concepts, which may lead to wider applicability of reference immutability
type systems in software engineering, and (2) it provides a framework for reasoning about
approximation and correctness, not only for reference immutability type systems, but for the
larger class of flow type systems as well.

This paper makes the following contributions.
We present ReM, a novel type system for reference immutability. ReM captures explicitly
definite mutability (in the CFL-reachability sense), and approximation.
We interpret reference immutability in terms of CFL-reachability, and prove ReIm and
ReM correct.
We present an implementation and evaluation. We show that ReIm and ReM are
precise – only 13% of mutable references (6% of all references) are maybe mutable. The
implementation is publicly available online and has been evaluated and accepted by the
ECOOP Artifact Evaluation committee.

The rest of the paper is organized as follows. Sect. 2 presents the mutability semantics
based on CFL-reachability. Sect. 3 interprets ReIm in terms of the mutability semantics,
and presents the novel system ReM. Sect. 4 establishes equivalence between the systems
in Sects. 2 and 3. Sect. 5 presents the empirical evaluation, Sect. 6 discusses related work,
and Sect. 7 concludes.

2 Mutability Semantics

2.1 Flow Graph
The mutability semantics builds a flow graph G that represents flow (data) dependences
between variables. The nodes in the graph are program variables, e.g., x, y, this, and field
access expressions, e.g., x.f, y.f, this.f. The edges capture flow from one variable/field access
expression, to another. The goal is to capture deep reference (im)mutability with data
dependence paths in G. For example, in

x = y; z = x; z.f = w

ECOOP 2018

25:4 Definite Reference Mutability

cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t | x = y | x.f = y | y = x.f | x = y.m(z) statement
t ::= q C qualified type

Figure 1 Syntax. C and D are class names, f is a field name, m is a method name, and x, y, and
z are names of local variables, formal parameters, or parameter this. As in the code examples, this is
explicit. Qualifiers q range over ReIm/ReM qualifiers (defined in Sect. 3).

y is mutable, because there is a path in G from y to z, which is the receiver of the update at
field write z.f = w. Throughout the paper we refer to receivers at field writes as updates.

We restrict our core language to a “named form” in the style of Vaziri et al. [35, 10].
The language models Java with the syntax in Fig. 1, where the results of instantiations,
field accesses, and method calls, are immediately stored in a variable. Without loss of
generality, we assume that methods have parameter this, and exactly one other formal
parameter. Features not strictly necessary are omitted from the formalism, but they are
handled correctly in the implementation.

An assignment statement contributes a direct (i.e., intraprocedural) edge as follows:

x = y ⇒ y d−→ x

It represents flow from variable y to variable x. Therefore, if x is an update, i.e., there is field
write x.g = z, the direct edge propagates mutability to reference y.

A field write statement x.f = y contributes a direct edge from y to the field access node
x.f, and an approximate edge from x.f to every x′.f ∈ G, where x′.f is the right-hand-side of a
field read y′ = x′.f. (Without loss of generality we may assume x′ 6= x.)

x.f = y ⇒ y d−→ x.f a
99K x′.f

We elaborate upon approximate edges shortly. A field read statement y′ = x′.f contributes
direct edges as follows:

y′ = x′.f ⇒ x′ d−→ x′.f d−→ y′

Edge x′ d−→ x′.f accounts for deep (im)mutability. It links x′ to y′, propagating mutability
back to x′ when y′ is update.

Therefore, together a pair of field write x.f = y and field read y′ = x′.f contribute a triple

x.f = y, y′ = x′.f ⇒ y d−→ x.f a
99K x′.f d−→ y′

creating a path from y to y′. It models flow through heap objects while completely avoiding
heap objects. In terms of Reps’ terminology [25], our mutability semantics, like ReIm, models
structure (i.e., heap)-transmitted dependences approximately.

The approximate edge makes approximation explicit. The approximate path from y to y′
propagates mutability from y′ back to y, but “with an asterisk”. This is maybe mutability –
if x.f and x′.f are aliases because x and x′ point to the same object, then y is truly mutable,
however, if they are not aliases, y is not mutable due to this path. ReIm (and other reference
immutability systems) overapproximate, and mark y mutable. A key insight of our work is
that the impact of approximate paths is quite muted. Generally, when there is an approximate

A. Milanova 25:5

1 class DateCell {
2 Date date;
3

4 DateCell(DateCell this, Date p) {
5 this.date = p;
6 }
7 Date getDate(DateCell this) {
8 return this.date;
9 }

10 void cellSetHours(DateCell this) {
11 Date md = this.getDate();
12 md.setHours(1);
13 }
14 int cellGetHours(DateCell this) {
15 Date rd = this.getDate();
16 int hour = rd.getHours();
17 return hour;
18 }
19

20 public static void main(String[] args) {
21 Date d = new Date();
22 DateCell dc = new DateCell(d);
23 ...
24 }
25 }

d pDateCell thisDateCell.date

thisgetDate.date thisgetDate

thisSetHours

thisGetHours

retgetDate

md

rd

(11

(15

)11

)15

(22

d d

d

a

Figure 2 Running example. Code (adapted from Huang et al. [18]) and corresponding graph.

path from a reference y to an update, there is also a direct path from y to an update, and y
would have become mutable regardless of the approximate path.

A method call (method entry) creates the expected call edges from actual arguments to
formal parameters:

i : x = y.m(z) ⇒ y (i−→ this z (i−→ p

Here this and p are the parameters of the compile-time target of the call. The standard
CFL-reachability annotation (i marks call entry at call site i. A method return (method
exit) creates a return edge from the return value to the left-hand-side of the call assignment:

i : x = y.m(z) ⇒ ret)i−→ x

The standard CFL-reachability annotation)i marks a return at site i. In terms of Reps’
terminology, the semantics models call-transmitted dependences precisely.

ECOOP 2018

25:6 Definite Reference Mutability

E ::= R′ | R | C | M

R′ ::= R C

R ::=)i |)i M |)i R | M R

C ::= (i | (i M | (i C | M C

M ::= d | (i M)i | M M

Figure 3 A context-free grammar for exact paths, i.e., paths that account (solely) for call-
transmitted dependences. M captures matched-parentheses strings, e.g., (i d)i, C captures strings
with one or more outstanding calls, e.g., (i d (j d)j , and R and R′ capture strings with one or more
outstanding returns, e.g., d)j .

Since the goal is to capture dependences between variables, the semantics eschews objects
and object creation. Fig. 2 shows an example including all kinds of statements and their
corresponding edges.

2.2 Paths in Flow Graph

We classify paths in G into two categories: (1) exact paths, which do not contain approximate
edges, and (2) approximate paths, which contain approximate edges. In our running example
in Fig. 2, thisgetDate rd is an exact path, while d md is an approximate path. (We use
squiggle arrows to denote multi-edge paths.) Not all paths in G are well-formed, and
different well-formed paths have different meaning.

2.2.1 Exact Paths

Fig. 3 defines a context-free grammar that classifies exact paths into 3 categories. This
grammar is standard in CFL-reachability theory. There is an M -path from node n to node
u if and only if the edge annotations on the path form a string in the language described
by M . M -paths are paths with matched parentheses. For example, path thisGetHours rd is
an M -path. However, thisGetHours md is not a well-formed path because call edge (15 and
return edge)11 do not match.

There is a C-path from n to u if and only if the edges from n to u form a string in the
language described by C. More intuitively, these are paths with outstanding call edges. For
example, thisGetHours retgetDate is a C-path. With respect to reference immutability, if there
is an M -path or a C-path from x (or from x.f) to an update, then x (or x.f) is definitely
mutable, in the sense that analysis generally cannot improve from mutable. Because M -paths
and C-paths have the same effect, from now on we refer to them as M |C-paths.

The third category is R-paths. There is an R-path from n to u if and only if the edges
form a string in R or R′. That is, the path starts with outgoing return edges, and it may
or may not descend into a call path before reaching u. For example, thisgetDate md is
an R-path. With respect to reference immutability, if there is an R-path from x (or x.f)
to an update, then x (or x.f) is polymorphic. It is mutable in some contexts of invocation
of the enclosing method, and readonly in other. For example, thisgetDate and retgetDate are
polymorphic. They are interpreted as mutable when getDate is called from cellSetHours, and
they are interpreted as readonly when getDate is called from cellGetHours.

A. Milanova 25:7

2.2.2 Approximate Paths
The following grammar rules capture approximate paths:

A ::= a | a E | a A | E A

There is an A-path from n to u if and only if the edges form a string in A. Pictorially, an
A-path consists of exact paths and approximate edges. For example,

n
E
 · a
99K · E

 · a
99K · E

 u

is an A-path, and so is

n
a
99K · E

 · a
99K u

The only mandatory component of the A-path is the one approximate edge.
A-paths fall into two categories, (M |C)A-paths, and RA-paths determined by the leading

exact path:
(1) if the leading exact path is an M |C-path, then there is a (M |C)A-path. For example,

d (20−→ pDateCell
d−→ thisDateCell.date a

99K thisDateCell.date d−→ retgetDate
)9−→ md

is a (M |C)A-path.
(2) if the leading exact path is an R-path, then there is an RA-path. For the rest of the

paper we use the term R-path to denote both the exact R-path and the RA-path as they
have the same effect for our purposes.

Standard reference immutability type systems (e.g., ReIm), conservatively mark mutable
every reference x, such that there is a (M |C)A-path from x to an update. As we mentioned
earlier, an approximate path introduces uncertainty rather than definite mutability. The
key observation of our work is the following. The majority of references x that exhibit an
A-path from x to an update, also exhibit a “parallel” M -path or C-path to a (potentially
different) update. Therefore, x is indeed definitely mutable and the A-path has no ill impact;
an analysis that attempts to handle A-paths, i.e., structure-transmitted dependences, more
precisely would not do better regarding x. Roughly speaking, our analysis separates the
A-paths that do exhibit a “parallel” path to an update, from the A-paths that do not, thus
separating references that are definitely mutable, from ones that are maybe mutable. If an
analysis that treats structure-transmitted dependences more precisely is to realize precision
improvement, the improvement is bounded by the number of maybe mutable references.

3 Type Systems

This section presents two reference immutability type systems, Huang et al.’s [18] ReIm, and
our novel proposal ReM. ReIm captures definite reference immutability, that is, readonly
references in ReIm are guaranteed immutable, however, mutable references are not necessarily
mutable. ReM captures definite immutability and definite mutability – in ReM readonly
references are still guaranteed immutable, and in addition, mutable references are guaranteed
mutable (in the CFL-reachability sense).

The reader may wonder why one needs type-based reference immutability like ReIm and
Javari, when one has a clear semantics expressed in terms of standard CFL-reachability.
First, type-based reference immutability is studied extensively in the literature [34, 39, 40,

ECOOP 2018

25:8 Definite Reference Mutability

18, 13, 22]; its connection to CFL-reachability brings new insights. Second, type-based
reference immutability allows programmers to specify immutability requirements with type
qualifiers, e.g., readonly x, and take advantage of systems such as JSR 308 and the Checker
Framework (https://checkerframework.org/) to check these immutability requirements;
such requirements cannot be easily expressed or checked using CFL-reachability. Third, type
systems promote modularity, while CFL-based systems are typically whole-program analyses.
Yet another advantage comes when reasoning about complexity. While CFL-reachability is
O(N3), ReIm/ReM inference is O(N2), where N is the program size.

Sect. 3.1 outlines ReIm, largely following Huang et al. [18]. We add a new interpretation
in terms of our mutability semantics. Sect. 3.2 builds ReM upon the discussion in Sect. 3.1.
Sect. 3.3 discusses type inference for ReIm and ReM.

3.1 ReIm

3.1.1 ReIm Qualifiers

The ReIm type system has three immutability qualifiers: mutable, readonly, and poly. We
explain the qualifiers in terms of the mutability semantics defined in Sect. 2.

mutable: A mutable reference x can be used to mutate the referenced object. This is the
implicit and only option in standard object-oriented languages. In terms of our mutability
semantics, a mutable reference denotes an M |C-path, or a (M |C)A-path from x to an
update.
readonly: readonly captures “deep” immutability. A readonly reference x cannot be used to
mutate the referenced object nor anything it references. All of the following are forbidden:

x.f = y
x.set(z) where set sets a field of its receiver x
z = id(x); z.f = w
y = x.f; y.g = z

In terms of the mutability semantics, a readonly reference means that there does not exist
either an exact or an approximate path to an update.
poly: This qualifier expresses polymorphism over immutability. poly denotes that a
reference is interpreted as mutable in some contexts, and it is interpreted as immutable in
other contexts. The enclosing method does not mutate the reference, however, mutation
to the reference or one of its components may happen after return. In terms of the
mutability semantics, a poly reference denotes that there is an R-path from x to an update
– the reference “flows” out of its enclosing method where it is mutated in some caller
context.

The subtyping relation between the qualifiers is

mutable <: poly <: readonly

where q1 <: q2 denotes q1 is a subtype of q2. For example, it is allowed to assign a mutable
reference to a poly or readonly one, but it is not allowed to assign a readonly reference to a
poly or mutable one.

A. Milanova 25:9

(tassign)
Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)
Γ(x) = qx qx = mutable Γ(y) = qy

typeof (f) = qf qy <: qx B qf

Γ ` x.f = y

(tread)
Γ(x) = qx Γ(y) = qy

typeof (f) = qf qx B qf <: qy

Γ ` y = x.f

(tcall)
Γ(x) = qx Γ(y) = qy Γ(z) = qz

typeof (m) = qthis, qp → qret

qy <: qx B qthis qz <: qx B qp

qx B qret <: qx

Γ ` x = y.m(z)

Figure 4 Typing rules. Function typeof retrieves the qualifiers of fields and methods. Γ is a type
environment that maps variables to their immutability qualifiers.

3.1.2 Typing Rules

ReIm is independent of the Java type system, which allows us to specify typing rules solely
over type qualifiers q. The typing rules, following [18] are presented in Fig. 4. Rule (TASSIGN)

is straightforward. It requires that the left-hand-side is a supertype of the right-hand-side.
The system does not enforce object immutability and only mutable objects are created. The
object creation rule becomes redundant and we omit it, just as we did in Sect. 2.

Rules (TREAD), (TWRITE) and (TCALL) make use of viewpoint adaptation, a concept from
Universe Types [8, 9, 7]. Viewpoint adaptation of a type q′ from the point of view of another
type q, results in the adapted type q′′. This is written as q B q′ = q′′.

Below, we explain viewpoint adaptation in terms of the mutability semantics. At field
accesses (TREAD) and (TWRITE) B adapts the field f from the viewpoint of (context of) the
receiver. Viewpoint adaptation at field access handles structure-transmitted dependences,
approximately. At method calls B adapts formal parameters and the return value from the
point of view of the variable at the left-hand-side of the call assignment. This variable captures
the calling context i. Viewpoint adaptation at calls handles call-transmitted dependences,
precisely.

Notably, ReIm restricts fields to readonly or poly. Javari [34] does allow for mutable fields,
increasing expressiveness and allowing Javari to express common idioms such as caching.
However, mutable fields complicates the system. Declaring a field mutable in Javari excludes
it from the state of the enclosing object, and adaptation of a mutable field requires special

ECOOP 2018

25:10 Definite Reference Mutability

treatment, as discussed in [34, 18]. One can similarly allow mutable fields in ReIm/ReM.
However, we are interested in type inference, and allowing mutable fields would create
ambiguity: if a field access expression x.f is inferred mutable, do we infer that field f is
mutable and is excluded from the state of a readonly x, or do we infer that f is just a “regular”
field and a mutable x.f signals deep mutation of x and x must be mutable? Restricting
fields to {readonly, poly} chooses the latter, as there is no way to know, without programmer
annotations, which fields are caches and thus excluded from the object state. Javarifier [23],
Javari’s inference tool, makes the same choice. Javari is more expressive than ReIm, but its
“inferable” semantics appears to be the same as ReIm’s: Huang et al. [18] report essentially
identical inference result for Javarifier and ReIm.

Following [18], we define B as follows:

_ B mutable = mutable
_ B readonly = readonly
q B poly = q

The underscore denotes a “don’t care” value. Qualifiers mutable and readonly do not depend
on the viewpoint. Qualifier poly depends on the viewpoint (context), and is substituted by
that viewpoint (context).

Let us take a closer look at rules (TWRITE) and (TREAD). For a pair of field write x.f = y
and field read y′ = x′.f, the rules entail the following constraints:

qy <: qx B qf qx′ B qf <: qy′

Suppose y′ is an update, i.e., there is statement y′.f = z, and qy′ is thus mutable. Therefore,
qf must be poly. First, recall that qf ∈ {readonly, poly}. Since readonly adapts to readonly,
qx′ B qf <: mutable does not type check, locking qf = poly. (TWRITE) sets qx, the type of the
receiver to mutable. This serves two purposes in ReIm, (1) to account for the update of x,
and (2) to account for the structure-transmitted dependence, i.e, the approximate path from
y to the (eventual) update y′. Thus, qx B qf evaluates to mutable, forcing qy to be mutable as
well. As mentioned earlier, ReIm handles approximate paths conservatively. If there is an
(M |C)A-path from a reference y to an update, then ReIm’s rules force y to be mutable, as is
the case above, even though x and x′ may refer to different runtime objects.

Now, consider rule (TCALL). Function typeof retrieves the type of compile-time target
m. qthis is the type of parameter this, qp is the type of the formal parameter, and qret is
the type of the return. Rule (TCALL) requires qx B qret <: qx, which accounts for R-paths.
The constraint disallows the return value of m from being readonly when there is a call
to m, x = y.m(z), where left-hand-side x is mutable. Only if the left-hand-sides of all call
assignments to m are readonly, can the return type of m be readonly; otherwise, it is poly. A
programmer can annotate the return type of m as mutable. However, this typing is pointless,
as it unnecessarily forces local variables and parameters in m to become mutable when they
may remain less restrictively poly. In Fig. 2, md = this.getDate(); entails constraint

qmd B qretgetDate <: qmd ≡ mutableB qretgetDate <: mutable

leading to qretgetDate = poly. This accounts for the R-path from ret to the update through md.
Continuing with the example, the field read in DateCell.getDate (line 8) entails constraint

qthisgetDate B qdate <: qretgetDate

leading to qthisgetDate = poly, which accounts for the R-path from thisgetDate to the update md.

A. Milanova 25:11

Additionally, rule (TCALL) requires qy <: qx B qthis. When qthis is readonly or mutable, its
adapted value is the same. Thus, when qthis is mutable (e.g., due to this.f = 0 in m),

qy <: qx B qthis becomes qy <: mutable

which disallows qy from being anything but mutable, as expected. This accounts for C-
and CA-paths. The interesting case is when qthis is poly. A poly parameter this reflects a
dependence between this and ret of m, such as the one in Fig. 2:

Date getDate(Date this) { ret = this.date; }

It allows the this object (or some part of it, in our example the date part of it), to be
modified in caller context, after m’s return. The type system entails that whenever there is
intraprocedural dependence between this and ret, we have

qthis <: qret.

Recall that when there exists a context where the left-hand-side variable x is mutated, qret
must be poly. Therefore, constraint qthis <: qret forces qthis to be poly (assuming that this is
not mutated in the context of its enclosing method). Rule (TCALL) adds the 2 constraints
“around” qthis <: qret to capture call-transmitted dependences:

qy <: qx B qthis qthis <: qret qx B qret <: qx

When m is called in a mutable context, i.e., qx is mutable, qy becomes mutable, as expected.
Conversely, when m is called in a readonly context, i.e., qx is readonly, qx B qthis evaluates to
readonly, leaving qy unchanged. In terms of our mutability semantics, this behavior captures
M - and MA-paths.

3.2 ReM
We now present the ReM type system, which builds upon ReIm.

3.2.1 ReM Qualifiers
The ReM type system adds to the set of ReIm qualifiers, and changes the meaning of some
of the ReIm qualifiers. There are 5 qualifiers in ReM: ReIm’s mutable, readonly and poly, and
two new, maybe and polymaybe. Again, we interpret the qualifiers in terms of the mutability
semantics defined in Sect. 2.

mutable: A mutable reference x is now definitely mutable. It denotes that there is an
(M |C)-path from x to an update.
readonly: A readonly reference x has the same meaning as in ReIm, i.e., there is neither
an exact nor an approximate path to an update.
maybe: A maybe reference denotes that there is a (M |C)A-path to an update, but there
is no R-path to an update.
poly: A poly reference now denotes that there is an R-path to an update, but there is no
(M |C)A-path.
polymaybe: A polymaybe reference denotes that there is an R-path to update, and a
(M |C)A-path to update.

The subtyping hierarchy is as follows:

maybe
mutable <: polymaybe <: <: readonly

poly

ECOOP 2018

25:12 Definite Reference Mutability

3.2.2 Typing Rules
ReM rules extend ReIm. There are two extensions: (1) viewpoint adaptation must account
for new qualifiers maybe and polymaybe, and (2) rule (TWRITE) must account for approximate
paths.

Viewpoint adaptation rules from Sect. 3.1 remain in effect. We add two new rules:

_ B maybe = maybe
q B polymaybe = (q B poly) ∧maybe

Notation ∧ stands for the standard meet operation: the result of q1 ∧ q2 is the greatest lower
bound of q1 and q2 in the lattice of ReM types above.

Since field and return types are restricted to {readonly, poly}, adaptation of maybe or
polymaybe happens only when adapting parameters at method calls.

Recall that a maybe parameter p denotes a (M |C)A-path from p. Thus, call x = y.m(z)
creates an (M |C)A path from z (a CA-path to be precise). Rule (TCALL) requires

qz <: qx B qp ≡ qz <: maybe

which accounts for the (M |C)A-path from z.
Now recall that a polymaybe parameter p denotes an R-path to update, and an (M |C)A-

path to a (possibly different) update. These paths entail paths from z: one through ret,
depending on the left-hand-side of the call assignment, and an (M |C)A path. Rule (TCALL)

applies viewpoint adaptation of qp, essentially recording the more conservative choice at the
caller. Consider (TCALL) constraint

qz <: qx B qp.

Suppose that x is readonly, and there is no path from the left-hand-side of the call assignment
x to update (that is, the R-path from p is due to a different call site). Then there is no new
path from z to update through p ret)i−→ x. However, there is an (M |C)A-path from z to
update. Viewpoint adaptation accounts for it:

qz <: (readonly B poly) ∧ maybe ≡ qz <: maybe

Conversely, suppose x is mutable, and there is an M |C-path from x to update. Then the
R-path leads to an M |C-path from z to update. Viewpoint adaptation accounts for this:

qz <: (mutableB poly) ∧ maybe ≡ qz <: mutable

Consider the more detailed example:

1 class A {
2 ...
3 C m(A this, B p) {
4 C c = this.f;
5 p.g = c;
6 return c;
7 }
8

A. Milanova 25:13

9 public static void main(String[] args) {
10 ...
11 C c1 = a1.m(b);
12 c1.setField();
13 ...
14 C c2 = a2.m(b);
15 int i = c2.getField();
16
17 }
18 }

thism.f thism

a1

a2

retm

c1 // is mutable

c2 // is readonly

(11

(14

)11

)14

d d

d

c
d

p.g q.g // is mutable
a

The R-path from thism to c1, entails qthis <: poly, while the (M |C)A-path through p.g
entails qthism <: maybe. Thus, qthism = polymaybe. At call 11 we have

qa1 <: qc1 B qthism ≡ qa1 <: qc1 B polymaybe.

Since qc1 is mutable, polymaybe adapts to mutable, setting qa1 to mutable. On the other hand,
at call 14 we have

qa2 <: qc2 B qthism ≡ qa2 <: qc2 B polymaybe ≡ qa2 <: maybe.

Thus, since qc2 is readonly, the meet is maybe, and qa2 is precisely maybe.
We now change rule (TWRITE) to account for approximate paths:

(twrite)
Γ(x) = qx qx = mutable Γ(y) = qy

typeof (f) = qf qy <: maybeB qf

Γ ` x.f = y

qx remains mutable to account for the direct update on x. However, instead of adapting
by mutable context as in ReIm, we adapt by maybe. This reflects the approximate path,
which ReIm conservatively made mutable. If qf is readonly, then the maybe-mutability of
x does not affect y. If qf is poly, that reflects an update to some f, and qy <: maybeB poly
propagates the “maybe” update to y.

3.3 Type Inference
Type inference for both ReIm and ReM proceeds as outlined in [16, 18] and earlier in [19, 33].
We present novel treatment in terms of dataflow frameworks, and include necessary extensions
for ReM.

The inference operates on mappings from keys to values S. The keys in the mapping are
(1) local variables and parameters, (2) fields, and (3) method returns. The values in the

ECOOP 2018

25:14 Definite Reference Mutability

mapping are sets of type qualifiers. For instance, S(x) = {poly, mutable} in ReIm means the
type of reference x can be poly or mutable.

S is initialized as follows. S(ret) = S(f) = {readonly, poly} for all return values ret and
fields f. The rest of the variables are initialized to the universal set of qualifiers U , which
is {readonly, poly, mutable} in ReIm, and {readonly, maybe, poly, polymaybe, mutable} in ReM.
For the rest of this paper we use U to refer to either ReIm or ReM. We denote the initial
mapping by S0.

The inference iterates over all statements s in the program and removes qualifiers
inconsistent with the typing rule for s from S. More precisely, let s consist of variables
v1, v2, ...vk and let s entail transfer function c(s). Applying c(s) removes each q1 from
S(v1) when there are no qualifiers q2 ∈ S(v2), ... qk ∈ S(vk), such that q1, q2, ...qk make s

type check; then it removes all q2 from S(v2), etc. For example, consider s: y = x.f and
corresponding rule (TREAD) triggering constraint qx B qf <: qy. Let S(x), S(f) and S(y) be as
follows:

S(x) S(f) S(y)
{maybe, polymaybe, mutable} {readonly, poly} {poly, polymaybe, mutable}

c(s) removes maybe from S(x) because there does not exist qf ∈ S(f) and qy ∈ S(y) that
satisfy maybeB qf <: qy. Similarly, it removes readonly from S(f). After application of c(s):

S′(x) S′(f) S′(y)
{polymaybe, mutable} {poly} {poly, polymaybe, mutable}

One can easily prove that, given S0 as shown, c(s) only need look at the left-hand-side of
the constraint, i.e., the right-hand-side always remains unchanged.

The inference analysis iterates over the statements in the program and removes qualifiers
from the sets until it reaches a fixpoint. The problem fits into the standard monotone
dataflow framework [1, 20]. The lattice Lv for variables v is

{maybe, polymaybe, mutable}
{mutable} > {polymaybe, mutable} > > U

{poly, polymaybe, mutable}

and the dataflow lattice L is the product lattice of all Lv lattices, which is standard. Initializing
all variables to U corresponds to initializing with the 0 of the lattice. The function space is
L→ L and is monotone. This is a theorem that one can easily show by case-by-case analysis
of each c(s). Therefore, the result of fixpoint iteration is the maximal fixpoint solution. Call
this solution SFix . Yet the fixpoint solution is a mapping from references to sets. The actual
mapping from references to types is derived as follows: for each reference x we pick the
maximal element of SFix(x) according to the following ranking, which mirrors the subtyping
lattice:

maybe
readonly > > polymaybe > mutable

poly

Importantly, the maximal element exists because each SFix(x) is an element of Lv. We
denote this typing by max(SFix), and call it the maximal typing.

The following propositions state that (1) the maximal typing type checks, and (2) the
maximal typing is the “best typing”. (Note that setting all references to mutable also type
checks, but makes up a useless typing.)

A. Milanova 25:15

I Proposition 1. ReIm’s max(SFix) and ReM’s max(SFix) always type check.

Proof Sketch. The proof for ReIm is given in [18]. The proof for ReM proceeds by
case-by-case analysis. The most difficult case arises at qz <: qx B qp. Let SFix(p) =
{poly, polymaybe, mutable} and SFix(z) = {maybe, polymaybe, mutable}. SFix(x) must be
either {maybe, polymaybe, mutable} or {readonly, maybe, poly, polymaybe, mutable}. If it were
any other set, then maybe would have been removed from S(z) during fixpoint iteration.
Combinations qz = maybe, qx = maybe, qp = poly, and qz = maybe, qx = readonly, qp = poly,
maximal typings under the two cases, both typecheck.

A more general statement is true. For every S that satisfies the equations of the dataflow
frameowork, typing max(S) type checks. J

Previous work in [16] formalized the notion of “best typing” for ownership type systems,
specifically Ownership types [5] and Universe Types [8], by using a heuristic ranking over
typings. This formalization applies to ReIm/ReM, as well as other ownership-like type
systems, e.g., AJ [35] and EnerJ [28]. Below we extend the treatment of [16] to ReM.

We say that T is a valid typing if T type checks. Objective function o ranks valid typings.
o takes a valid typing T and returns a tuple of numbers. For ReIm, o is as follows:

oReIm(T) = (|T−1(readonly)|, |T−1(poly)|, |T−1(mutable)|)

The tuples are ordered lexicographically. We have T1 > T2 iff T1 has more readonly references
than T2, or T1 and T2 have the same number of readonly references, but T1 has more poly
references than T2. The preference ranking over typings is based on ranking over qualifiers:
naturally, we prefer readonly over poly and mutable, and poly over mutable.

ReM’s objective function is the following:

oReM (T) = (|T−1(readonly)|, |T−1(poly)|+ |T−1(maybe)|, |T−1(polymaybe)|, |T−1(mutable)|)

Again the tuples are ordered based on the natural ranking over qualifiers: readonly is the
most preferred, followed by poly and maybe, which are equally preferred, and so on. The
following proposition establishes that the maximal typing is the best typing.

I Proposition 2. Let o be the objective function over valid typings (either oReIm over ReIm,
or oReM over ReM). o(max(SFix)) > o(T) holds for every valid typing T 6= max(SFix).

Proof Sketch. The fact that the maximal typing is the “best typing”, follows from the
properties of monotone dataflow frameworks. Let S be another solution of the dataflow
framework. (It is easy to see that if T is valid typing, it must be contained into a solution of the
dataflow framework.) Since S > SFix by virtue of SFix being the maximal fixpoint solution,
for every variable x S(x) ≥ SFix(x), and there exist variables y such that S(y) > SFix(y).
Thus, oReM (max(SFix)) > oReM (max(S)). J

4 Equivalence

This section formally links the mutability semantics and the maximal typing. Specifically,
we establish equivalence between CFL-reachability, as outlined in Sect. 2, and the maximal
typing as outlined in Sect. 3.3 and previous work [16, 18, 19, 33].

Fig. 5 states the algorithms for CFL-reachability and type inference explicitly. Cfl
initializes graph G to ∅, then iterates over the program statements adding paths to updates,
until no more paths can be added. Types initializes S to the 0 of the lattice, then iterates
over the statements, removing qualifiers from S until no more qualifiers can be removed. To

ECOOP 2018

25:16 Definite Reference Mutability

1: procedure Cfl
2: G = ∅
3: Add u

M
 u to G for all updates u

4: while G changes do
5: for each s in Program do
6: Edge(e(s))
7: end for
8: end while
9: end procedure

1: procedure Edge(n t−→ n′)
2: for each n′

N
 u ∈ G do

3: Add n
t⊕N
 u to G

4: end for
5: end procedure

1: procedure Types
2: S(n) = U

3: S(n) = {mutable} for all updates n

4: while S changes do
5: for each s in Program do
6: Constraint(c(s))
7: end for
8: end while
9: end procedure

1: procedure Constraint(l <: r)
2: Remove each ql from S(l)
3: if @ qr ∈ S(r) s.t. ql <: qr

4: end procedure

Figure 5 Algorithm Cfl initializes G, then iterates over program statements s adding edges
as specified in Sect. 2.1. Algorithm Types initializes S, then iterates over program statements s

removing qualifies from S as specified in Sect. 3.3. The algorithms elide details to highlight the
“parallel” structure of the two systems.

emphasize the parallel structure, Fig. 5 simplifies the presentation. Most notably, recall that
according to Sect. 2 field read y′ = x′.f accounts for two edges:

y′ = x′.f ⇒ x′ d−→ x′.f d−→ y′

Even though Fig. 5 shows a single invocation of Edge, in fact Cfl processes two edges, first
x′.f d−→ y′, followed by x′ d−→ x′.f. Similarly, Cfl processes multiple edges at field writes
x.f = y: for each field read y′ = x′.f, such that x′.f ∈ G, it processes x.f a

99K x′.f, followed by
y d−→ x.f.

Another detail elided from Fig. 5 is the meaning of t, N and concatenation operator
⊕. t ranges over the terminals: (i,)i, d, and a. N ranges over the kinds of paths: M |C,
(M |C)A, and R. Concatenation t⊕N applies the grammar rules, and in all but one case, is
straightforward:

(i ⊕M |C = M |C
(i ⊕ (M |C)A = (M |C)A
)i ⊕_ = R

d⊕N = N

a⊕_ = (M |C)A

(i ⊕ R is the difficult case, because it applies rule M ::= (i M)i. Edge applies concatenation
(i ⊕ R when processing call edge z (i−→ p and p R

 u ∈ G. (Here p is the parameter of the
compile-time target method of the call.) p R

 u ∈ G entails

p M
 ret)j−→ x N

 u

where ret is the return value of the target method, and x is some left-hand-side of a call
assignment. Note that p M

 ret)j−→ x are not explicitly in G, but x N
 u is in G. There are

two cases. If there is no edge)j such that j = i, then (i ⊕ R adds no new paths; the R-path
from p is due to a different call site. Otherwise, that is, when j = i, concatenation adds
z N
 u to G.

A. Milanova 25:17

Let us illustrate Cfl and Edge, and Types and Constraint in parallel. Consider

y = x; z = y; z.f = w

Calling Edge on y d−→ z, which corresponds to statement z = y, leads to path y M
 z in

G. Subsequently calling Edge on edge x d−→ y leads to concatenation of d and M and
path x M

 z. There are two M -paths, x to z and y to z, as expected. Analogously, calling
Constraint on qy <: qz, which corresponds to statement z = y, removes all qualifiers but
mutable from S(y). Subsequently calling Constraint on qx <: qy removes all qualifiers but
mutable from S(x). S(x) = {mutable}, and S(y) = {mutable} mirror the two M -paths that
Cfl finds.

The most interesting case arises (as it has been the case throughout the paper), when
adding a call edge. Consider code

y = id(x); y = z; z.f = w

and assume y M
 z and p R

 z are already in G. Concatenation breaks the R-path p R
 z

into p M
 ret)i−→ y M

 z. Since (i and)i match, it adds path x M
 z. Analogously, for Types

assume S(p) = {poly, polymaybe, mutable} and S(y) = {mutable}. Calling Constraint on
qx <: qy B qp removes all qualifiers but mutable from S(x), which directly corresponds to the
M -path from x to z that Cfl finds.

To formally establish equivalence we use the bisumulation methodology for proving
equivalence between two systems A and B [36, 6]. The methodology requires that we
establish a relation that relates states in A to those in B. In our case, A is constructed
by CFL-reachability inference (Algorithm Cfl), and B is constructed by type inference
(Algorithm Types). Our approach defines an explicit equivalence relation between the states
in A, captured by G, and those in B, captured by S. Intuitively, assume algorithms Cfl
and Types run in “parallel”. To show equivalence we must show that processing s in each
system maintains equivalence.

We state two definitions that form the basis of equivalence. Informally, Def. 3 states that
for every path from n to update u in G, n is correspondingly typed in S. In Def. 3 n stands
for either a variable node x, or field access node x.f.

I Definition 3. (Soundness) G⇒ S if and only if

1. n
M |C
 u ∈ G ⇒ max(S(n)) <: mutable

2. n
R
 u ∈ G ⇒ max(S(n)) <: poly

3. n
(M |C)A
 u ∈ G ⇒ max(S(n)) <: maybe

Def. 4 states that n’s maximal type in S implies a corresponding path in G. For example,
maximal typing polymaybe must imply that there are both an R-path and a (M |C)A-path
in G, but there is no M |C-path.

I Definition 4. (Precision) S ⇒ G if and only if

1. max(S(x)) = mutable ⇒ ∃ x M |C
 u ∈ G

2. max(S(x)) = polymaybe ⇒ ∃ x R
 u ∈ G ∧ ∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

3. max(S(x)) = poly ⇒ ∃ x R
 u ∈ G ∧ ¬∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

4. max(S(x)) = maybe ⇒ ¬∃ x R
 u ∈ G ∧ ∃ x (M |C)A

 u ∈ G ∧ ¬∃ x M |C
 u ∈ G

5. max(S(x)) = readonly ⇒ no path from x in G

6. max(S(x.f)) = readonly ⇒ no path from x.f in G

ECOOP 2018

25:18 Definite Reference Mutability

I Definition 5. (Equivalence) G ' S if and only if G⇒ S and S ⇒ G.

Let the following Hoare triple denote parallel execution of Edge and Constraint on
statement s:

{G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′}

Our key result is the following theorem:

I Theorem 6. If G ' S and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
G′ ' S′.

Proof Sketch. As expected, the proof is by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

Clearly, the statement holds after initialization, lines 2-3 in Cfl and lines 2-3 in Types. The
inductive step requires case-by-case analysis of each s.

To prove correctness, we must show that given G⇒ S, after the execution of Edge(e(s))
and Constraint(c(s)), G′ ⇒ S′ still holds. We outline the most difficult case, Edge(z (i−→ p)
|| Constraint(qz <: qx B qp) (method call naturally brakes into three steps). Consider
z (i−→ p ⊕ p R

 u. Let x be the left-hand-side at call assignment i. If there does not exist
a path x N

 u ∈ G, then no new paths are added to G′ and G′ ⇒ S′ holds. If there exists
x N
 u ∈ G, then a new path z N

 u is added to G′. We must show that S′(z) reflects
N according to Def. 3 (e.g., if N is an M |C-path, then z is mutable). By the inductive
hypothesis p R

 u ∈ G⇒ max(S(p)) <: poly. Similarly, the N -path entails appropriate S(x):
if N is an M |C path, then S(x) = {mutable}, if N is an R path then max(S(x)) <: poly,
and if N is a (M |C)A-path, then max(S(x)) <: maybe. Constraint qz <: qx B qp removes
qualifiers from S(z). For example, if N is M |C, then S(x) = {mutable}, and it is easy to
see that max(S(x))Bmax(S(p)) <: mutable. Thus max(S′(z)) <: mutable, as needed. We
enumerate all cases in Sect. A (Proofs).

In the other direction, we must show that if S ⇒ G holds, after the execution of Edge
and Constraint on s, S′ ⇒ G′ still holds. Consider the analogous case, Edge(z (i−→ p)
|| Constraint(qz <: qx B qp), and the following values of S(x), S(p) and S(z) (only the
maximal element shown):

S(x) S(p) S(z)
{ readonly, ... { maybe, ... { readonly, ...

Constraint qz <: qx B qp “lowers” S(z) into S′(z) = {maybe, ...}. By the inductive hypothesis,
S(x) and S(p) entail that there are no paths from x in G, no paths from z in G, and only a
(M |C)A-path from p. Therefore, Edge(z (i−→ p) adds an (M |C)A-path from z in G′, and no
other kind of path. Thus, max(S′(z)) = maybe ⇒ z (M |C)A

 u, as expected. We enumerate
all cases in Sect. A (Proofs). J

For clarity, we omitted method overriding. It is handled in both the mutability semantics
and type inference, and equivalence still holds. Concretely, if m′ overrides m we add

qthism
d−→ qthism′ qpm

d−→ qpm′ qretm′
d−→ qretm

to G. Analogously, we require

typeof (m′) <: typeof (m)

A. Milanova 25:19

which entails

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

which leads to the standard function subtyping constraints:

qthism <: qthism′ qpm <: qpm′ qretm′ <: qretm

Our implementation handles function subtyping.

5 Empirical Results

We implemented ReM on top of ReIm. (ReIm is publicly available.) Soot is the underlying
platform, and Jimple is the underlying intermediate representation. We evaluate ReM on
DaCapo, plus the benchmarks used in Javarifier [23] and ReIm [18]. There are 13 whole
programs, and 8 libraries:

DaCapo suite DaCapo-2006-10MR.
JOlden is a classical suite of 10 small whole programs (Javarifier and ReIm).
ejc-3.2.0 is the Java Compiler for the Eclipse IDE (Javarifier and ReIm).
javad is a Java disassembler program (ReIm).
tinySQL-1.1 is a database engine (Javarifier and ReIm).
htmlparser-1.4 is an HTML parser library (Javarifier and ReIm).
commons-pool-1.2 is an object pooling library (ReIm).
jtds-1.0 is a JDBC driver (ReIm).
jdbm-1.0 is a transactional engine (ReIm).
jdbf-0.0.1 is an object-oriented mapping system (ReIm).
java.lang and java.util are the packages from JDK 1.7.0_75.

All benchmarks are analyzed with JDK 1.7. On whole programs, our analysis relies
on the standard Class Hierarchy Analysis (CHA)-based reachability in Soot, which pulls
in all relevant packages according to CHA. ReIm/ReM analyzes all these packages. All
experiments are done on a MacBook Pro 2.8 GHz Intel Core i7 and 16GB of RAM using
default VM settings for everything, including maximal heap size.

Tab. 1 presents the results of running ReM inference on the benchmarks. On average, only
6.4% of all references are inferred as maybe or polymaybe. They make up only about 13.6%
of all ReIm-mutable references while the remaining 86.4% are definitely mutable. To assess
the impact of the intermediate representation, Soot’s Jimple, which creates a significant
number of temporary local variables, we computed statistics on parameter and returns (no
local variables). The results show that 5.8% of all references are maybe or polymaybe, and
approximately 84% of all ReIm-mutable parameters and returns are definitely mutable. These
result is very similar, suggesting that the intermediate representation does not lead to an
overestimation of the number of definitely mutable references. (In fact, our investigation
suggests that it may lead to an underestimation, as we explain shortly.) Running times
do not exceed 90 seconds, with most benchmarks completing in under 60 seconds on the
commodity laptop described earlier.

In addition to the benchmarks from Tab. 1 we ran our analysis on Avrora, Batik and
Sunflow from DaCapo-9.12-MR1-bach; these are whole-program benchmarks were added to

ECOOP 2018

25:20 Definite Reference Mutability

Table 1 Inference results for ReM. Annotatable References includes all variables of reference
type, including locals, parameters, returns, and fields. It does not include variables of primitive
type. Column #Readonly shows the number of references inferred as readonly, #Poly shows the
number of variables inferred as poly, and #Maybe/#polymaybe shows the number of maybe and
polymaybe references, respectively. Column #Mutable shows the number of mutable references,
which are now definitely mutable. In parentheses is the percentage of definitely mutable references
over of all potentially mutable ones: #Mutable/(#Maybe+#Polymaybe+#Mutable).

Annotatable References
Benchmark #Readonly #Poly #Maybe/ #Mutable Time

#Polymaybe (sec.)

antlr 15751 1029 1198/2 12552 (91.3%) 64.3
bloat 12567 2299 3880/56 18844 (82.7%) 36.1
chart 31640 4973 7570/139 32063 (80.6%) 79.3
eclipse 16945 4117 2613/36 12807 (82.9%) 39.1
fop 47411 5563 5578/66 35564 (86.3%) 89.0
hsqldb 29907 4282 3673/31 26054 (87.6%) 66.8
luindex 5465 686 750/11 4604 (85.8%) 30.1
lusearch 6296 945 1019/16 5344 (83.8%) 30.2
pmd 37758 4605 5248/96 34096 (86.5%) 78.4
xalan 21254 3337 2853/63 19771 (87.1%) 75.4

jolden 1208 281 206/0 1069 (83.8%) 29.0
javad 796 45 15/0 417 (96.5%) 26.5
ejc 29062 8202 3612/174 24768 (86.7%) 49.3
tinySQL 6115 665 638/7 3585 (84.8%) 28.1
htmlparser 7787 1215 1049/12 4904 (82.2%) 29.2
commons-pool 847 25 222/0 640 (74.2%) 27.1
jdbm 1134 317 322/9 1584 (82.7%) 28.8
jdbf 4017 312 289/2 2379 (89.1%) 58.6
jtds 8628 825 587/25 5738 (90.4%) 32.5
java.lang 3336 350 249/1 4721 (95.0%) 29.5
java.util 3216 376 309/0 4758 (93.9%) 30.9
Average 86.4%

DaCapo 2006 for the 2009 suite. Our analysis reports that on average 84.5% of ReIm-mutable
references are definitely mutable, which is in line with Tab. 1.2

The results demonstrate that ReM and ReIm are precise and scalable. They can be
used to power inference for approximate computing (e.g. EnerJ [28] and Rely [4]), taint
analysis (e.g., DroidInfer [17]), and method purity [18], as well as other client analyses. Even
if one designed a more complex system that handled structure-transmitted dependences more
precisely, by employing a powerful alias analysis for example, improvement would be at most
5-6% of all references being promoted from mutable (12-13% of ReIm’s mutable references).
ReM/ReIm’s complexity is O(N2), which leads to fast running times.

Finally, to better understand the results, we examined all 15 maybe references from javad,
and 15 randomly selected maybe references from ejc. We looked to identify definite paths to
mutation, or more precisely, we examined y d−→ x.f a

99K x′.f d−→ y′ and attempted to prove

2 We omitted Tomcat, H2 and the Treadsoap benchmarks from DaCapo-9.12-MR1-bach as these are
complex client-server programs and we were unable to set the analysis in time for the publication
deadline. Recent work in this space [14] omits these program as well. Also due to timing, DaCapo 2009
was not included in Artifact Evaluation.

A. Milanova 25:21

that there exist a runtime object o such that x points to o, x′ points to o, and the value of
x.f indeed flows to x′.f. We immediately identified such definite paths in 16 out of 30 cases.
The remaining 14 cases exhibited difficult data and control flow, and we could not identify
definite paths. A typical case of obvious definite paths was the following. Consider this
typical code for initializing an array field f:

1 f = new X[10];
2 for (int i=0; i<cnt; i++)
3 f[i] = new X();
4 ...

This code snippet is translated into the following Jimple:

1 r1 = newarray (X)[10];
2 this.f = r1;
3 ...
4 r2 = this.f;
5 x = new X();
6 r2[i] = x;

Mutation of the array is captured by the approximate path, and the maybe typing of r1. This
case leads to an overestimation of the number of maybe variables and the following simple
optimization reduces the number of maybe/polymaybe references. Specifically, at each field
write this.f = r1 we add constraint qr1 <: qm.this.f where m is the enclosing method and m.this.f
is a dummy variable. Similarly, at each field read r2 = this.f we add constraint qm.this.f <: qr2.
Thus, when r2 is mutable or poly/polymaybe, mutable or poly/polymaybe propagates through
qm.this.f , and the analysis demotes r1 to mutable or polymaybe. Tab. 2 shows the results of this
optimization – on average 87.3% of mutable references are now definitely mutable. As with
DaCapo 2009 the optimization was added for the final version and was not part of Artifact
Evaluation.

Another source of maybe mutability is containers. E.g., in

1 class Container {
2 Data data;
3 void set(Container this, Data p) {
4 this.data = p;
5 }
6 Data get(Container this) {
7 return this.data;
8 }
9 }

parameter p of set is rightfully maybe mutable. p and the data object will be mutable in
some clients of Container and readonly in others.

6 Related Work

The most closely related work is Huang et al.’s ReIm and ReImInfer [18]. Our work builds
upon ReIm and ReImInfer but extends them in two directions. First, we build a theoretical
framework that interprets ReIm and ReM in terms of CFL-reachability, and we prove them
correct within this simple framework. To the best of our knowledge, ReIm has not been
proven correct even though it has been used to power client analyses [17, 32]. Second, we
propose ReM and definite mutability, which extends the expressive power of ReIm, and also,

ECOOP 2018

25:22 Definite Reference Mutability

Table 2 Results after optimization. 87.3% of ReIm-mutable references are definitely mutable.

Annotatable References
Benchmark #Readonly #Poly #Maybe/ #Mutable Time

#PolyOrMaybe (sec.)

antlr 15751 1029 1093/6 12653 (92.0%) 128.2
bloat 12567 2299 3683/68 19029 (83.5%) 38.1
chart 31640 4973 7329/154 32289 (81.2%) 86.5
eclipse 16945 4118 2473/46 12937 (83.7%) 38.3
fop 47411 5563 5235/93 35880 (87.1%) 93.2
hsqldb 29907 4282 3303/37 26418 (88.8%) 86.8
luindex 5465 686 677/13 4675(87.1%) 31.6
lusearch 6296 945 932/17 5430 (85.1%) 35.9
pmd 37758 4605 4989/106 34345 (87.1%) 83.3
xalan 21254 3337 2634/71 19982 (88.1%) 79.8

jolden 1208 281 187/9 1080 (84.6%) 29.0
javad 796 45 3/0 429 (99.3%) 28.4
ejc 29062 8202 3146/194 25214 (88.3%) 51.7
tinySQL 6115 665 608/7 3615 (85.5%) 118.7
htmlparser 7787 1215 1023/12 4930(82.6%) 114.1
commons-pool 847 25 222/0 642 (74.5%) 25.6
jdbm 1134 317 293/9 1613(84.2%) 28.4
jdbf 4017 312 281/2 2387 (89.4%) 116.3
jtds 8628 825 552/25 5773(90.1%) 36.7
java.lang 3336 350 217/1 4753(95.6%) 34.1
java.util 3216 376 276/0 4791 (94.6%) 37.1
Average 87.3%

establishes a bound on (im)precision. Our empirical results show that ReIm/ReM are highly
precise and highly scalable.

Reference immutability has been an active area of research for many years. Tschantz et
al. propose Javari [34] and Javari’s inference tool Javarifier [23]. Javari is more expressive
and more complex than ReIm, but the inferable features are essentially the same. (Huang
et al. report that Javarifier and ReImInfer produce essentially the same result.) Zibin et
al’s IGJ [39] and OIGJ [40] are type systems that support reference immutability and object
immutability. Haack and Poll [15] propose a type system for object immutability as well.
Gordon et al. [13] propose a reference immutability system for safe parallelism. Potanin
et al. [22] survey work on reference and object immutability, and method purity. As it is
standard, these systems support definite immutability (like ReIm). They do not attempt to
estimate precision (imprecision), or connect reference immutability and CFL-reachability.

Artzi et al. [2] propose a hybrid static and dynamic analysis for inference of parameter
reference immutability. In contrast, our work focuses on static analysis.

Salcianu and Rinard’s JPPA [31] and Pearce’s JPure [21] infer method purity for Java.
ReIm/ReM is more general, in the sense that it enables reasoning about method purity, as
well as other client analyses (e.g., EnerJ [28] and DroidInfer [17]). The fact that ReIm/ReM
is precise, suggests that client analyses would be precise as well.

CFL-reachability is a standard program analysis framework [25]. Rehof and Fahndrich [24]
connect type-based flow analysis and CFL-reachability. This is similar to our interpretation
of type-based reference immutability in terms of CFL-reachability. However, Rehof and
Fahndrich do not discuss mutable references and it is unclear how they handle such references
or structure-transmitted dependences. Fahndrich et al. [11] apply the theory of [24] to build

A. Milanova 25:23

a context-sensitive Steensgard-style points-to analysis for C, thus using equality constraints
instead of subtyping constraints. (Equality constraints is the standard approach to the
handling of mutable references [29, 28, 12], as we mention earlier.) Our work focuses
specifically on reference immutability and reasoning about its precision. The result that
ReIm/ReM is precise, indicates that they can be incorporated into flow analyses [29, 28, 12,
17].

Sridharan and Bodik [30] present refinement-based points-to analysis for Java using
CFL-reachability. Xu et al. [37] improve the scalability of CFL-reachability-based points-to
analysis. These works focus on points-to analysis and require heap abstraction. Therefore,
they inherit known issues with reflection. Type-based reference immutability and the parallel
CFL-reachability analysis avoid heap abstraction and thus, they completely avoid issues due
to reflective object creation (x = Class.forName("className").newInstance()), for free. We
still face issues with reflective method invocation (getMethod). However, reflective object
creation is by far most common, and has been studied extensively in the points-to analysis
community. Recent work by Zhang and Su [38] propose new approximation algorithms
based on CFL-reachability that can handle both structure-transmitted and call transmitted
dependences precisely. Our work focuses on type-based reference immutability, for which
handling of structure-transmitted dependences approximately appears sufficient.

7 Conclusion

We presented ReM, a novel reference immutability type system. ReM separated potentially
mutable references into definitely mutable, and maybe mutable, i.e., references that may be
mutable due to inherent approximation. In addition, we proposed a CFL-reachability system
for reference immutability, thus building a novel framework for reasoning about correctness
of reference immutability type systems. We implemented ReM and showed that about 86.5%
of all potentially mutable references were definitely mutable.

References
1 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Bo-
ston, MA, USA, 2006.

2 Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. Combined static and dy-
namic mutability analysis. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 104–113, New York, NY,
USA, 2007. ACM. doi:10.1145/1321631.1321649.

3 Joseph A. Bank, Andrew C. Myers, and Barbara Liskov. Parameterized types for java.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’97, pages 132–145, New York, NY, USA, 1997. ACM.
doi:10.1145/263699.263714.

4 Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative reliabil-
ity for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, pages 33–52, 2013.

5 David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’98, pages 48–64, New
York, NY, USA, 1998. ACM. doi:10.1145/286936.286947.

ECOOP 2018

http://dx.doi.org/10.1145/1321631.1321649
http://dx.doi.org/10.1145/263699.263714
http://dx.doi.org/10.1145/286936.286947

25:24 Definite Reference Mutability

6 Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimulation equival-
ence. In Automatic Verification Methods for Finite State Systems, International Work-
shop, Grenoble, France, June 12-14, 1989, Proceedings, pages 11–23, 1989. doi:10.1007/
3-540-52148-8_2.

7 Dave Cunningham, Werner Dietl, Sophia Drossopoulou, Adrian Francalanza, Peter Müller,
and Alexander J. Summers. Formal methods for components and objects. In Frank S. Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul Roever, editors, Formal Methods
for Components and Objects, 6th International Symposium, FMCO 2007, Amsterdam, The
Netherlands, October 24-26, 2007, Revised Lectures, chapter Universe Types for Topology
and Encapsulation, pages 72–112. Springer-Verlag, Berlin, Heidelberg, 2008. doi:10.1007/
978-3-540-92188-2_4.

8 Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

9 Werner Dietl and Peter Müller. Runtime universe type inference. In IWACO, pages 72–80,
2007. URL: http://sct.ethz.ch/projects/student_docs/Frank_Lyner/Frank_Lyner_
MA_paper.pdf.

10 Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and Jan
Vitek. A data-centric approach to synchronization. ACM Transactions on Programming
Languages and Systems, 34(1):1–48, apr 2012.

11 Manuel Fähndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive flow analysis
using instantiation constraints. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, PLDI ’00, pages 253–263, New York,
NY, USA, 2000. ACM. doi:10.1145/349299.349332.

12 Robert Fuhrer, Frank Tip, Adam Kieżun, Julian Dolby, and Markus Keller. Efficiently
refactoring java applications to use generic libraries. In Proceedings of the 19th European
Conference on Object-Oriented Programming, ECOOP’05, pages 71–96, Berlin, Heidelberg,
2005. Springer-Verlag. doi:10.1007/11531142_4.

13 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’12, pages 21–40, New York, NY, USA, 2012. ACM. doi:10.1145/
2384616.2384619.

14 Neville Grech and Yannis Smaragdakis. P/taint: unified points-to and taint analysis.
PACMPL, 1(OOPSLA):102:1–102:28, 2017. doi:10.1145/3133926.

15 Christian Haack and Erik Poll. Type-based object immutability with flexible initial-
ization. In Proceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, Genoa, pages 520–545, Berlin, Heidelberg, 2009. Springer-Verlag.
doi:10.1007/978-3-642-03013-0_24.

16 Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking
of object ownership. In Proceedings of the 26th European Conference on Object-Oriented
Programming, ECOOP’12, pages 181–206, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-31057-7_9.

17 Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise taint analysis
for android. In Proceedings of the 2015 International Symposium on Software Testing and
Analysis, ISSTA 2015, pages 106–117, New York, NY, USA, 2015. ACM. doi:10.1145/
2771783.2771803.

18 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer:
Checking and inference of reference immutability and method purity. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems Lan-

http://dx.doi.org/10.1007/3-540-52148-8_2
http://dx.doi.org/10.1007/3-540-52148-8_2
http://dx.doi.org/10.1007/978-3-540-92188-2_4
http://dx.doi.org/10.1007/978-3-540-92188-2_4
http://sct.ethz.ch/projects/student_docs/Frank_Lyner/Frank_Lyner_MA_paper.pdf
http://sct.ethz.ch/projects/student_docs/Frank_Lyner/Frank_Lyner_MA_paper.pdf
http://dx.doi.org/10.1145/349299.349332
http://dx.doi.org/10.1007/11531142_4
http://dx.doi.org/10.1145/2384616.2384619
http://dx.doi.org/10.1145/2384616.2384619
http://dx.doi.org/10.1145/3133926
http://dx.doi.org/10.1007/978-3-642-03013-0_24
http://dx.doi.org/10.1007/978-3-642-31057-7_9
http://dx.doi.org/10.1007/978-3-642-31057-7_9
http://dx.doi.org/10.1145/2771783.2771803
http://dx.doi.org/10.1145/2771783.2771803

A. Milanova 25:25

guages and Applications, OOPSLA ’12, pages 879–896, New York, NY, USA, 2012. ACM.
doi:10.1145/2384616.2384680.

19 Adam Kiezun, Michael D. Ernst, Frank Tip, and Robert M. Fuhrer. Refactoring for para-
meterizing java classes. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 437–446, Washington, DC, USA, 2007. IEEE Computer So-
ciety. doi:10.1109/ICSE.2007.70.

20 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.
Springer-Verlag New York, Inc., 1999.

21 David J. Pearce. Jpure:: A modular purity system for java. In Proceedings of the 20th In-
ternational Conference on Compiler Construction: Part of the Joint European Conferences
on Theory and Practice of Software, CC’11/ETAPS’11, pages 104–123, Berlin, Heidelberg,
2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1987237.1987247.

22 Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. Immutability. In Aliasing
in Object-Oriented Programming, volume 7850 of LNCS, pages 233–269. Springer-Verlag,
apr 2013.

23 Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference
immutability. In Proceedings of the 22Nd European Conference on Object-Oriented Pro-
gramming, ECOOP ’08, pages 616–641, Berlin, Heidelberg, 2008. Springer-Verlag. doi:
10.1007/978-3-540-70592-5_26.

24 Jakob Rehof and Manuel Fähndrich. Type-base flow analysis: From polymorphic subtyping
to cfl-reachability. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’01, pages 54–66, New York, NY, USA, 2001.
ACM. doi:10.1145/360204.360208.

25 Thomas Reps. Undecidability of context-sensitive data-independence analysis. ACM Trans-
actions on Programming Languages and Systems, 22(1):162—-186, 2000.

26 Thomas W. Reps. Program analysis via graph reachability. Information & Software Tech-
nology, 40(11-12):701–726, 1998. doi:10.1016/S0950-5849(98)00093-7.

27 Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 49–61, 1995. doi:10.1145/199448.199462.

28 Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. Enerj: approximate data types for safe and general low-power computation.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 164–174,
2011.

29 Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format
string vulnerabilities with type qualifiers. In Proceedings of the 10th Conference on USENIX
Security Symposium - Volume 10, SSYM’01, pages 16–16, Berkeley, CA, USA, 2001.
USENIX Association. URL: http://dl.acm.org/citation.cfm?id=1267612.1267628.

30 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis
for java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 387–400, New York, NY, USA, 2006. ACM.
doi:10.1145/1133981.1134027.

31 Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for java programs.
In Proceedings of the 6th International Conference on Verification, Model Checking, and Ab-
stract Interpretation, VMCAI’05, pages 199–215, Berlin, Heidelberg, 2005. Springer-Verlag.
doi:10.1007/978-3-540-30579-8_14.

32 Rishi Surendran and Vivek Sarkar. Automatic parallelization of pure method calls via con-
ditional future synthesis. In Proceedings of the 2016 ACM SIGPLAN International Con-

ECOOP 2018

http://dx.doi.org/10.1145/2384616.2384680
http://dx.doi.org/10.1109/ICSE.2007.70
http://dl.acm.org/citation.cfm?id=1987237.1987247
http://dx.doi.org/10.1007/978-3-540-70592-5_26
http://dx.doi.org/10.1007/978-3-540-70592-5_26
http://dx.doi.org/10.1145/360204.360208
http://dx.doi.org/10.1016/S0950-5849(98)00093-7
http://dx.doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=1267612.1267628
http://dx.doi.org/10.1145/1133981.1134027
http://dx.doi.org/10.1007/978-3-540-30579-8_14

25:26 Definite Reference Mutability

ference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, pages 20–38, New York, NY, USA, 2016. ACM. doi:10.1145/2983990.2984035.

33 Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and Bjorn De
Sutter. Refactoring using type constraints. ACM Transactions on Programming Languages
and Systems, 33(3):1–47, 2011. doi:10.1145/1961204.1961205.

34 Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to
java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 211–230, New
York, NY, USA, 2005. ACM. doi:10.1145/1094811.1094828.

35 Mandana Vaziri, Frank Tip, Julian Dolby, Christian Hammer, and Jan Vitek. A type
system for data-centric synchronization. In Proceedings of the 24th European Confer-
ence on Object-oriented Programming, ECOOP’10, pages 304–328, Berlin, Heidelberg, 2010.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1883978.1884000.

36 Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. Verifying equivalence
of database-driven applications. Proc. ACM Program. Lang., 2(POPL):56:1–56:29, dec 2017.
doi:10.1145/3158144.

37 Guoqing Xu, Atanas Rountev, and Manu Sridharan. Scaling cfl-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages 98–122, Ber-
lin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-03013-0_6.

38 Qirun Zhang and Zhendong Su. Context-sensitive data-dependence analysis via linear
conjunctive language reachability. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 344–358, New York, NY, USA,
2017. ACM. doi:10.1145/3009837.3009848.

39 Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kie, un, and Michael D.
Ernst. Object and reference immutability using java generics. In Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE ’07, pages 75–84, New
York, NY, USA, 2007. ACM. doi:10.1145/1287624.1287637.

40 Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership
and immutability in generic java. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages
598–617, New York, NY, USA, 2010. ACM. doi:10.1145/1869459.1869509.

A Proofs

Our main theorem follows from the following two lemmas.

I Lemma 7. If G ⇒ S and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
G′ ⇒ S′.

Proof. The proof relies on the fact that viewpoint adaptation preserves subtyping. That is,
for each x, x′ and p, x <: x′ ⇒ xBp <: x′Bp. Also, for each x, p and p′, p <: p′ ⇒ xBp <: xBp′.
Therefore, for each x, x′, p, and p′, x <: x′ ∧ p <: p′ ⇒ x B p <: x′ B p′.

We proceed by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

and case by case analysis.
Consider the most difficult case, case 1: s is x = y.m(z). Naturally, it breaks into 3 smaller

cases, (1) z (i−→ p, (2) y (i−→ this and (3) ret)i−→ x. (2) is analogous to (1).

http://dx.doi.org/10.1145/2983990.2984035
http://dx.doi.org/10.1145/1961204.1961205
http://dx.doi.org/10.1145/1094811.1094828
http://dl.acm.org/citation.cfm?id=1883978.1884000
http://dx.doi.org/10.1145/3158144
http://dx.doi.org/10.1007/978-3-642-03013-0_6
http://dx.doi.org/10.1145/3009837.3009848
http://dx.doi.org/10.1145/1287624.1287637
http://dx.doi.org/10.1145/1869459.1869509

A. Milanova 25:27

For (1), suppose Edge adds z (i⊕M |C
 u to G′. By the inductive hypothesis, p M |C

 u implies
max(S(p)) <: mutable. The corresponding constraint qz <: qxBqp sets max(S′(z)) = mutable.
Similarly, p (M |C)A

 u ⇒ max(S(p)) <: maybe and constraint qz <: qx B qp leads to
qz <: qx Bmaybe <: maybe by the above theorem. Thus, max(S′(z)) <: maybe, as needed.
Now, suppose that (1) adds z (i⊕R

 u to G′. This entails max(S(ret)) <: poly. If x M |C
 u ∈ G

then max(S(x)) <: mutable, leading to max(S′(z)) <: mutable. If x (M |C)A
 u ∈ G then

max(S(x)) <: maybe, leading to max(S′(z)) = maybe, as needed. If x R
 u ∈ G then

max(S(x)) <: poly; constraint qz <: qx B qp ≡ qz <: poly B poly leads to max(S′(z)) <: poly,
as needed.

For (3), suppose Edge adds ret)i⊕N
 u to G′. This happens only if there is x N

 u ∈ G.
Therefore by the inductive hypothesis max(S(x)) 6= readonly, and therefore, constraint
qx B ret <: qx entails that max(S′(ret)) <: poly, as needed.

Case 2: s is x = y is straightforward.
Case 3: s is x.f = y. Suppose Edge processes approximate edge x.f a

99K x′.f followed by
direct edge y d−→ x.f. Edge adds to G′ only if x′.f in G, which by the inductive hypothesis
entails S(f) = {poly}. Thus, max(S(x.f)) evaluates to mutable, and the desired subtyping
is preserved (even though this typing is not precise). Furthermore, field write constraint
qy <: qx B qf evaluates to qy <: maybeB poly, meaning that max(S(y)) <: maybe as needed
to account for the (M |C)A-path from y in G′.

Finally, consider case 4: s is y = x.f. There is new path in G′ only if there is a path in G

from y. If there is a path from y, then max(S(y)) 6= readonly. The constraint for field write
qx B qf <: qy entails max(S(f)) = poly and max(S(x)) <: max(S(y)). Therefore, max(S(x.f))
and max(S(x)) reflect the new paths through y. J

I Lemma 8. If S ⇒ G and {G, S} Edge(e(s)) || Constraint(c(s)) {G′, S′} then
S′ ⇒ G′.

Proof. The proof is by induction on the number of applications of

Edge(e(s)) || Constraint(c(s))

We begin with the most difficult case, case 1: s is x = y.m(z).
The tables below examine all cases for parameter constraint qz <: qx B qp. Constraint

qy <: qx B qthis is completely analogous. For brevity, sets S show only the maximal element.
For example, when

S(x) = {readonly, ... S(p) = {maybe, ... S(z) = {readonly, ...

the constraint qz <: qx B qp removes readonly and poly from S(z) resulting in:

S′(z) = {maybe, ...

To preserve precision, we must show that after execution of the parallel Edge operation, there
exist only an (M |C)A-path from z to an update. The last column of the table enumerates
the paths from z: added by Edge(z (i−→ p) given S(x) and S(p), and existing ones in G.
Continuing with the example, (M |C)A[p] + none[ret] + none[z] reads as follows: (1) an
(M |C)A-path is added through p (the inductive hypothesis S ⇒ G entails that the maybe
typing of p implies an (M |C)A-path from p), and no paths are added through ret and x
(again, the maybe typing implies that there is no path through ret and x), and (2) there are

ECOOP 2018

25:28 Definite Reference Mutability

no existing paths from z (due to the readonly typing of z in S). Therefore, there is only an
(M |C)A-path from z, and this case preserves precision.

The cases of S(z) = {mutable} and S(p) = {readonly, ...} are not shown because neither
of these cases triggers change to S, and it is trivial to argue S′ ⇒ G′.

The following table enumerates the cases for S(x) = {readonly, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ readonly, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ readonly, { poly, none[p] + none[x]
{ readonly, NO CHANGE +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, NO CHANGE +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ readonly, { polymaybe, (M |C)A[p]+none[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

The table below enumerates the cases for S(x) = {maybe, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ maybe, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ maybe, { poly, none[p]+(M |C)A[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ maybe, { polymaybe, (M |C)A[p]+(M |C)A[x]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

A. Milanova 25:29

The table below enumerates the cases for S(x) = {poly, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ poly, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ poly, { poly, none[p]+R[x]
{ readonly, { poly, +none[z]
{ maybe, { polymaybe +(M |C)A[z]
{ poly, NO CHANGE +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ poly, { polymaybe, (M |C)A[p]+R[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

The table below enumerates the cases for S(x) = {polymaybe, ...}:

S(x) S(p) S(z) S′(z) G, Edge(z (i−→ p)

{ polymaybe, { maybe, (M |C)A[p]+none[ret]
{ readonly, { maybe, +none[z]
{ maybe, NO CHANGE +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ polymaybe, { poly, none[p]+R[x]+(M |C)A[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

{ polymaybe, { polymaybe, (M |C)A[p]+(M |C)A[x]+R[x]
{ readonly, { polymaybe, +none[z]
{ maybe, { polymaybe, +(M |C)A[z]
{ poly, { polymaybe, +R[z]
{ polymaybe, NO CHANGE +(M |C)A[z] + R[z]

Consider constraint qx B qret <: qx. If S(x) is {readonly, ...} then there is no change to S

and no change to G, and the statement holds. If S(ret) is {poly}, then, there is no change to
S and Edge “adds” a path already in G, resulting in no change in G as well. Let S(x) be
any other value but {readonly, ...} and let S(ret) be {readonly, ...}. S′(ret) becomes {poly}
implying an R-path. Since S(x) is of any other value but {readonly, ...}, this means that a
path from x to update, x N

 u does exist in G, and Edge(ret)i−→ x) results in R path from
ret in G′. Therefore, the theorem holds.

Consider case 2, s is x = y. We enumerate all possibilities analogously. Again we omit
the cases when S(x) = {mutable, ...} as well as the case when S(y) = {readonly, ...}, as they
are trivial.

ECOOP 2018

25:30 Definite Reference Mutability

S(x) S(y) S′(y) G, Edge(y d−→ x)
{ maybe, { readonly, { maybe, (M |C)A[x]+none[y]

{ maybe, NO CHANGE (M |C)A[x]+(M |C)A[y]
{ poly, { polymaybe, (M |C)A[x]+R[y]
{ polymaybe, NO CHANGE (M |C)A[x]+(M |C)A[y]+R[y]

{ poly, { readonly, { poly, R[x]+none[y]
{ maybe, { polymaybe, R[x]+(M |C)A[y]
{ poly, NO CHANGE R[x]+R[y]
{ polymaybe, NO CHANGE R[x]+(M |C)A[y]+R[y]

{ polymaybe, { readonly, { polymaybe, (M |C)A[x]+R[x]+none[y]
{ maybe, { polymaybe, (M |C)A[x]+R[x]+(M |C)A[y]
{ poly, { polymaybe, (M |C)A[x]+R[x]+R[y]
{ polymaybe, NO CHANGE (M |C)A[x]+R[x]+(M |C)A[y]+R[y]

Now consider case 3, s is x.f = y, and corresponding constraints qy <: maybe B qf . If
f is readonly, then maybe B qf is readonly, and there is no change in S. By the inductive
hypothesis, x′.f being readonly implies that there does not exist a read x′.f such that there is
a path from x′.f to update in G. Thus, no path is added to G′ through x.f thus preserving
the paths from y and the theorem. If f is poly, then y becomes maybe, or lower in S′, thus
properly accounting for the (M |C)A-path from y through x.f that appears in G′.

Finally, consider case 4. s is y′ = x′.f. If f is readonly, then there does not exist a path
from x′.f in G. If y′ is not readonly, then there exists a path form y′. Thus, f becomes poly in
S′, and x′ <: y′ in S′. In G′, there are new paths from x′.f and x reflecting S′. J

Efficient Reflection String Analysis via Graph
Coloring
Neville Grech
Dept. of Informatics and Telecommunications, University of Athens, Greece
and Dept. of Computer Science, University of Malta, Malta
me@nevillegrech.com

George Kastrinis
Dept. of Informatics and Telecommunications, University of Athens, Greece
gkastrinis@di.uoa.gr

Yannis Smaragdakis
Dept. of Informatics and Telecommunications, University of Athens, Greece
yannis@smaragd.org

Abstract
Static analyses for reflection and other dynamic language features have recently increased in
number and advanced in sophistication. Most such analyses rely on a whole-program model of
the flow of strings, through the stack and heap. We show that this global modeling of strings
remains a major bottleneck of static analyses and propose a compact encoding, in order to battle
unnecessary complexity. In our encoding, strings are maximally merged if they can never serve
to differentiate class members in reflection operations. We formulate the problem as an instance
of graph coloring and propose a fast polynomial-time algorithm that exploits the unique features
of the setting (esp. large cliques, leading to hundreds of colors for realistic programs). The
encoding is applied to two different frameworks for string-guided Java reflection analysis from
past literature and leads to significant optimization (e.g., a ∼ 2x reduction in the number of
string-flow inferences), for a whole-program points-to analysis that uses strings.

2012 ACM Subject Classification Software and its engineering→ Compilers, Theory of compu-
tation → Program analysis, Software and its engineering → General programming languages

Keywords and phrases reflection, static analysis, graph coloring

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.26

Acknowledgements We gratefully acknowledge funding by the European Research Council, grant
307334 (SPADE), a Facebook Research and Academic Relations award, and an Oracle Labs col-
laborative research grant. In addition, the research work disclosed is partially funded by the
REACH HIGH Scholars Program – Post-Doctoral Grants. The grant is part-financed by the
European Union, Operational Program II, Cohesion Policy 2014-2020 (Investing in human capi-
tal to create more opportunities and promote the wellbeing of society - European Social Fund).
Grants.

1 Introduction

Reflection is a language feature that enables the dynamic discovery of an object’s type
structure (e.g., its fields and supported methods) and full access to the object’s state and
functionality through dynamically-discovered members. Reflection is not merely one of
the dynamic features of a statically-typed language but typically the backbone connecting
all dynamic features. For instance, in Java, the most common facility for dynamic code

© Neville Grech, George Kastrinis, and Yannis Smaragdakis;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 26; pp. 26:1–26:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@nevillegrech.com
mailto:gkastrinis@di.uoa.gr
mailto:yannis@smaragd.org
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Efficient Reflection String Analysis via Graph Coloring

generation is the dynamic proxy pattern [26] (recently estimated to appear in 21% of open-
source Java programs [17]), which requires the use of reflection in order to provide a generic
implementation of an interface.

Modeling reflection has been a challenge for the static analysis of languages like Java
and C#. Ignoring reflection operations during static analysis is one of the top causes of
analysis unsoundness [22]. (Or, equivalently, one of the most common assumptions in any
claim of soundness for an analysis is the lack of reflection.) Modeling reflection operations
statically has attracted much recent research effort [7,18,19,21,23,30,34]. Virtually all of
these models have a similar general structure, first explored by Livshits et al. [21,23]: they
model reflection in the context of a whole-program value-flow analysis (such as a points-to
analysis, with a full model of the heap) so that the flow of parameters of reflective actions
can be approximated. The initial such parameters are merely string values. For instance, a
call to java.lang.Class.getMethod() takes as argument the name of the method to be looked
up dynamically. By examining the flow of string values (which may partially match class,
method, or field names) into reflective calls, the analysis can do a first approximation of the
effects of reflective actions. This model can then be refined with extra information, such as
the use patterns of objects produced via reflection.

Static analysis for reflection, therefore, crucially depends on modeling the flow of string
constants. For instance, consider a string constant "put" that flows into a string concatenation
operation (possibly with statically-unknown parameters), whose result flows to a getMethod
call. The constant string yields significant information as to which method(s) may be selected
dynamically. Such information is typically the differentiator between an infeasibly imprecise
static analysis and one that can reliably guess an overapproximation of reflection results.

Tracking strings through a whole-program analysis can be very expensive, however. Type
filtering is ineffective, since the String type is not elaborated into more detailed subtypes in
most languages. This observation holds for a vast array of whole-program static analyses and
is surprising in scope. For instance a context-insensitive analysis of the avrora DaCapo-Bach
benchmark in the Doop framework [30] computes a points-to set of 2.9 million strings and
just 2 million regular objects. Similar effects are found throughout other static analyses that
model reflection: a 0-1-CFA analysis with reflection support on the IBM Wala library [7],
over a medium-sized benchmark (antlr, from the DaCapo 2006 suite), yields a total points-to
set with 6.7 million strings and just 1.7 million non-strings objects (i.e., all other object
types together). This effect is surprising: an analysis that only incidentally models the flow
of strings (in order to model reflection operations) ends up being dominated by string values,
in comparison to all other objects whose flow is the real analysis target.

In this paper, we propose a technique for collapsing string constants so that they impose
minimal overhead in a whole-program value-flow analysis, yet retain their ability to act as
member selectors for all reflection operations. Specifically, we model the problem of merging
string constants as a graph coloring problem. Two strings cannot be merged if they can be
used as selectors of distinct class members in the same reflection operation. This is denoted
by making the strings be neighbor nodes in a conflict (a.k.a. interference) graph, which we
then attempt to color. Any coloring of the graph yields different values for any two neighbors,
i.e., conflicting string constants. Colors are then used as values in the whole-program static
analysis, instead of string constants. In this way, a color can designate any of a finite set of
merged strings.

The graph coloring approach has several nuances, both theoretical and experimental.
First, our setting suggests the need for a very fast (certainly polynomial time) coloring
algorithm, which can, however, tolerate suboptimal coloring results: The optimal coloring

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:3

still yields numbers of colors up to several hundreds, due to the existence of large cliques
in the interference graph. (The cliques are due to conflicts between all members of a class,
including all members declared in supertypes, all the way up to java.lang.Object. A deep
class hierarchy can easily result in string constants being able to select several hundreds of
members from the same class object.) We present a fast, near-linear-time, coloring algorithm
that performs very well in this setting. As a second consideration, string merging can
theoretically introduce some imprecision, due to spurious data flows in the static analysis.
We find experimentally that no imprecision arises in practice, strongly validating the appeal
of the string merging insight.

The string merging approach is orthogonal to other reflection analysis, string interning,
etc. techniques commonly employed in the literature. Concretely, string merging complements
any standard reflection analysis algorithm: the same reflection algorithm still applies, but
for fewer abstract string constants. Similarly, the technique is agnostic to how compactly
strings are represented at the low level.

We apply the string merging approach to the Doop and SOLAR program analysis
frameworks, which employ different static analyses for reflection [19, 30]. The technique
yields a size reduction of ∼ 2x for points-to sets with string values, or a reduction of ∼ 1.5x
in the total sizes of computed value sets. This translates to proportional savings for any
further analyses as well as a speedup of ∼20% for the base points-to analysis. Importantly,
these improvements are orthogonal and assumption-less, shrinking the input of an analysis
and transparently benefiting any analysis algorithm, setup, or analyzed program, with no
pitfalls or drawbacks in other respects.

In all, our work makes the following contributions:
It identifies a rather surprising problem in whole-program analysis that models reflection:
string values feature disproportionately in value-flow results, such as points-to sets.
It proposes the merging of strings that cannot differentiate members in the same class,
and formulates the problem as an instance of graph coloring.
It shows that a simple but fast graph coloring algorithm is well-suited to the specifics of
the problem instance.
It validates the approach in standard analysis frameworks and quantifies the benefit.

2 Illustration and Intuition

We illustrate (in simplified terms) the insight that our approach exploits, with the example
of Figure 1.

A program contains several (10) string constants ("bar", "fro", etc.), which can be used
as selectors for fields and methods of all available classes. An undirected conflict graph is
produced, where two constants are neighbors iff they are substrings of the names of different
fields or different methods of the same class. (In the full setting, class members also include
all supertype members. However, in this example no type has a non-trivial supertype and
members of the trivial superclass java.lang.Object are ignored for the sake of simplicity.) A
single string constant has the potential to be used via reflection to select members of different
classes—e.g., "bar" can potentially be used to select either Foob:bar() or Tolk:barahir().
Neither possibility can be precluded a priori, since it is the analysis of value flow itself that
will determine how these strings get concatenated with others and to which reflection calls
they flow.

By coloring the conflict graph (in the standard “graph coloring” sense, of different colors
for neighbors), we can merge string constants together without losing any of their ability
to be used as selectors in reflection operators. In the example, an optimal graph coloring

ECOOP 2018

26:4 Efficient Reflection String Analysis via Graph Coloring

class Foob {
 int foo;
 void bar() {...}
 void baz() {...}
}

class Info {
 int frotz;
 int grue;
 String zork(){...}
}

class Tolk {
 int frodo;
 void gandalf() {...}
 void barahir() {...}
}

"bar" ... "fro" ... "zork" ... "gand" ... "foo" ... "baz" ... "gru" ... "frotz" ... "alf" ... "barah"

"bar" Foob:bar()
Tolk:barahir()

"gand"
Tolk:gandalf()

"foo" Foob:foo

"baz" Foob:baz()

"alf" Tolk:gandalf()

"fro" Info:frotz
Tolk:frodo

"zork" Info:zork()

"bara" Tolk:barahir()

"frotz" Info:frotz

"gru" Info:grue

Figure 1 Illustration of approach: sample classes (top) are accessed via reflection, from a program
with 10 (sub)string constants (middle). This induces a conflict graph (bottom): two string constants
conflict if they can refer to distinct members of the same type (i.e., method or field) inside the same
class. The graph is 2-colorable, so just 2 values can be kept instead of the initial 10. An example
coloring is shown: bold vs. non-bold strings.

uses just two colors—e.g., consider the bold and non-bold strings as having different colors.
Any whole-program static analysis can then be performed with merely two artificial string
constant objects, one for each color, in place of the original string constants. The first
object effectively denotes either "bar" or "fro" or "bara" or "frotz", while the second stands
for either "zork" or "gand" or "foo" or "baz" or "alf" or "gru". Subsequent analysis of a
reflection operation will then proceed as before, e.g., knowing that either "bar" or "fro" or
"bara" or "frotz" is used as an argument to a getField() call on an Info class object is as
good as knowing which exact string constant was used: only field "frotz" can be selected.

In this way, the analysis needs to track the flow of a lot fewer values. The end results of
a realistic whole-program analysis stop being unduly dominated by string objects.

There are several subtleties in the general approach. The idea of merging strings that
cannot refer to members of the same class is simple in dynamic execution terms. In static
analysis, however, there are some complicating factors that we explore in the next sections.
Briefly:

Although most published static analyses for reflection employ common base reasoning
(Section 3) there are significant differences. Some algorithms track the flow of substrings
(known as substring analysis), others only track strings that completely match class names
or member names. Some algorithms use backward reasoning based on information other

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:5

than string matches (e.g., examining the further uses of the return value of a reflective
operation). The approach is mostly orthogonal to these variations but may need slight
adaptation to avoid accidental interference. Additionally, not all string constants should
be merged. For instance, string constants that match class names should not be merged:
they are the primary selectors in reflection logic. Section 5 discusses such topics in more
detail.
Due to independent static analysis imprecision, string merging is not guaranteed to
produce identical results as an original analysis that uses full string constants. A string
constant can be spuriously computed to flow to a reflection operation over an incompatible
class object. Before merging, the spurious flow could fail to find a matching member,
whereas after merging it may do so. Such accidental imprecision, although uncommon, can
be solved – Section 5 describes solutions as applied to two reflection analysis frameworks.
In our experiments (Section 6), we have not found string merging to introduce any
practical imprecision in static analysis: precision metrics, such as methods called by each
site, remain identical.

3 Static Analysis with Reflection

The context of our work is a standard scheme that integrates Java reflection reasoning
in a static analysis that tracks the flow of objects inter-procedurally. We discuss it first
(Section 3.1) and then present variations (Section 3.2).

3.1 Inter-Procedural Reflection Analysis
Most static analyses for reflection [18,19,21,23,30,34] employ variations of a scheme originally
due to Livshits et al. [21,23]. This standard scheme is based on computing the flow of objects
in mutual recursion with the computation of the effects of reflection actions. A value-flow
analysis (e.g., a standard points-to analysis, for all reference variables in a program) gives
information to the reflection analysis and vice versa. This interplay of analyses is necessary
because the different elements of reflective actions can be distributed throughout the program.
Consider a typical pattern of reflection use:

String className = ... ;1

Class c = Class.forName(className);2

Object o = c.newInstance();3

String methodName = ... ;4

Method m = c.getMethod(methodName, ...);5

m.invoke(o, ...);6

All of the above statements can occur in distant program locations, across different
methods, invoked through virtual calls from multiple sites, etc. Thus, a whole-program
analysis with an understanding of heap objects is required to track reflection. This suggest
the idea that reflection analysis can leverage points-to analysis—it is a client for points-to
information. At the same time, points-to analysis needs the results of reflection analysis—e.g.,
to determine which method gets invoked in the last line of the above example, or what objects
each of the example’s local variables point to. Thus, under the Livshits et al. approach,
reflection analysis and points-to analysis become mutually recursive.

This mutual recursion is typically captured in simple logical rules in the Datalog language.
Datalog is ideal in that a) its computation model is based on the recursive specification of
logical relations; b) it has already been used in a large amount of static analysis research
work (e.g., [4, 11,14,16,20,25,27,29,32,33]).

ECOOP 2018

26:6 Efficient Reflection String Analysis via Graph Coloring

V is a set of variables
H is a set of heap object abstractions
M is a set of methods
S is a set of method signatures (including name)
I is a set of instructions (e.g., invocation sites)
T is a set of class types
N is the set of natural numbers
Call(i: I, sig: S) # instruction i is a call sig(...).
AssignRetValue(i: I, v: V) # instruction i is a return v.
ActualArg(i: I, n: N, v: V) # the n-th parameter of call instruction i is local var v.
HeapType(h: H, t: T) # object h has type t.
Lookup(sig: S, t: T, m: M) # in type t there is a method m with signature sig.
ConstantForClass(h: H, t: T) # string object h matches name of class/type t.
ConstantForMethod(h: H, sig: S) # string object h matches name of method sig.
ReifiedClass(t: T, h: H) # special object h represents the class object of type t.
ReifiedObject(i: I, t: T, h: H) # special object h represents objects of type t

allocated with a newInstance call at invocation site i.
ReifiedMethod(sig: S, h: H) # special object h represents the reflection object for

method signature sig.

Figure 2 Input domains and relations representing the input program.

Computation in Datalog consists of monotonic logical inferences that apply to produce
more facts until fixpoint. A Datalog rule “C(z,x) ← A(x,y), B(y,z).” means that if A(x,y)
and B(y,z) are both true, then C(z,x) can be inferred.

We consider the core of the analysis algorithm on the features of the above example:
creating a reflective object representing a class (a class object) given a name string (li-
brary method Class.forName), creating a new object given a class object (library method
Class.newInstance), retrieving a reflective method object given a class object and a signature
(library method Class.getMethod), and reflectively calling a virtual method on an object
(library method Method.invoke). This treatment ignores several other APIs (e.g., we show
method lookups but not field lookups), which are handled similarly.

The analysis takes as input the relations (i.e., tables filled with information from the
program text) shown in Figure 2. Using these inputs, the Livshits et al. reflection analysis
can be expressed as a four-rule addition to any points-to analysis. The rest of the points-to
analysis (not shown here—see e.g., [11, 15,32]) supplies more rules for computing a relation
VarPointsTo(v: V, h: H) and a relation CallGraphEdge(i: I, m: M). Intuitively, the
traditional points-to part of the joint analysis is responsible for computing how heap objects
flow inter-procedurally through the program, while the added rules contribute only the
reflection handling. We explain the rules below.

VarPointsTo(r, h)←
Call(i, "Class.forName"), ActualArg(i, 0, p), AssignRetValue(i, r),
VarPointsTo(p, c), ConstantForClass(c, t), ReifiedClass(t, h).

The first rule models a forName call, which returns a class object given a string representing
the class name. The rule says that if the first argument (0-th parameter, since forName is
a static method) of a forName call points to an object that is a string constant, then the
types, t, that match that constant are retrieved. Assuming the result of the forName call
at instruction i is assigned to a local variable r, and the reflection object for a t is h, r is
inferred to point to h.

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:7

VarPointsTo(r, h)←
Call(i, "Class.newInstance"), ActualArg(i, 0, v), VarPointsTo(v, hc),
ReifiedClass(t, hc), AssignRetValue(i, r), ReifiedObject(i, t, h).

The above rule reads: if the receiver object, hc, of a newInstance call is a class object for
class t, and the newInstance call is assigned to variable r , then make r point to the special
(i.e., invented) allocation site h that designates objects of type t allocated at the newInstance
call site.

VarPointsTo(r, hm)←
Call(i, "Class.getMethod"), ActualArg(i, 0, b), ActualArg(i, 1, p),
AssignRetValue(i, r), VarPointsTo(b, hc), ReifiedClass(t, hc),
VarPointsTo(p, c), ConstantForMethod(c, s),
Lookup(t, s, _), ReifiedMethod(s, hm).

The above rule gives semantics to getMethod calls. It states that if such a call is made
with receiver b (for “base”) and first argument p (the string encoding the desired method’s
signature), and if the analysis has already determined the objects that b and p may point to,
then, assuming p points to a string constant encoding a signature, s, that exists inside the
type that b points to (“_” stands for “any” value), the variable r holding the result of the
getMethod call points to the reflective object, hm, for this method signature.

CallGraphEdge(i, m)←
Call(i, "Method.invoke"), ActualArg(i, 0, b), ActualArg(i, 1, p),
VarPointsTo(b, hm), ReifiedMethod(s, hm),
VarPointsTo(p, h), HeapType(h, t), Lookup(t, s, m).

Finally, all reflection information can contribute to inferring more call-graph edges. The last
rule encodes that an edge can be inferred from the invocation site, i, of a reflective invoke
call to a method m, if the receiver, b, of the invoke (0th parameter) points to a reflective
object encoding a method signature, and the argument, p, of the invoke (1st parameter)
points to an object, h, of a class in which the lookup of the signature produces method m.

3.2 Variations
Several enhancements and variations of this general reflection analysis scheme have been
employed in past work. We summarize them below, since we will need to refer to them in
later sections.

Complex mechanisms for substring flow and matching can be used, instead of matching full
class and method names. Consider the first of the previous rules, handling Class.forName
calls. The rule uses predicate ConstantForClass, which could well encode a substring
match instead of a full match of the class name. The complication will then be to
propagate strings through concatenation operations, so that the VarPointsTo relation
(the main value-flow relation of the analysis) computes the flow of substrings throughout
the program. (That is, when a string constant is in a points-to set, this signifies that the
analysis computes that the run-time value is the result of concatenating some prefix and
suffix to the string constant.) This tends to put more pressure on the size of the points-to
set as string information is allowed to flow through more avenues.
The base rules show a forward analysis, where string values need to be completely
determined for the result of a reflective operation to be modeled. Every one of the four
rules is predicated on a past VarPointsTo result that establishes that a parameter points
to a certain string that matches other rule conditions. An alternative is to analyze how
the results of reflective operations are used in further code—i.e., to perform a backward
analysis. There are many sources of such backward analysis information [18,19,30]. For

ECOOP 2018

26:8 Efficient Reflection String Analysis via Graph Coloring

a simple case [21], if the result of a c.newInstance call is cast to a type T, then T gives a
strong hint on the value of reflective class object c. This is particularly useful when c
has been produced by using external sources (e.g., strings from a file or the network) so
that its value cannot be determined by normal forward analysis. The same technique
can also be used to get higher precision, by cross-validating the inferences of forward and
backward reflection analysis before allowing them to affect the rest of the analysis.
The base scheme shown (see 3rd rule of previous section) uses strings as method selectors
only when the analysis has determined the containing class. This may not be necessary,
however: a string matching a method name may be descriptive enough to determine
both the method and the containing class. Such reasoning is typically performed under
further qualifications of precision. For instance, the rule may only fire if the method name
matches very few methods in the whole program and/or if the method name is a constant
that is close to the reflective operation (e.g., in the same method), to avoid imprecision.

4 String Merging via Coloring

Our approach consists of merging string constants that occur in the program text. As
illustrated in Section 2, strings can be merged if they cannot serve to distinguish members of
the same class. This agrees with the main forward logic of static reflection analysis, as seen
in the 3rd rule of Section 3.1: a string denoting a member name is only used for known class
objects. (Exceptions are discussed in Section 5.)

The string-merging approach operates before inter-procedural analysis is performed. Ef-
fectively, the analysis input is pre-processed so that the domain H of heap object abstractions
gets shrunk: abstract objects representing string constants are merged, while all others remain
unchanged. The inter-procedural reflection and value-flow (i.e., points-to) analysis then
proceeds unchanged, over the optimized domain. The pre-processing also entails correctly
updating all input predicates (e.g., ConstantForMethod) so that a merged string value
can serve to select all members that its constituents can represent.

The more interesting aspects of the technique concern how the string-merging decision is
made. As we saw, the problem can be viewed as an instance of standard graph coloring, on
an undirected interference/conflict graph with nodes representing all string constants in the
program text. Two strings are neighbors iff they match distinct members (of the same kind,
i.e., both fields or both methods) in the same class.

Optimal graph coloring is an NP-hard problem. There are, however, strong reasons why
our setting is a good fit for algorithms that yield more colors (i.e., do suboptimal merging)
but are very fast.

The minimum number of colors required is large. The input graph contains large cliques
of nodes, because of classes with several hundreds of members. Such classes arise due to
inheritance hierarchies, since inherited members of a class need to be taken into account
for reflective lookups. All strings matching members of such a class form a clique: any two
of them are connected in the interference graph, so all of them need to be kept distinct.
Even just considering classes in the Java system libraries, cliques of size in the hundreds
arise.
Based on this observation, the best that an optimal algorithm can hope to achieve is
a reduction of string constant values from the several thousands (as typical in a large
Java program) to the few hundreds. Therefore, a sub-optimal coloring can still capture
a lot of the benefit—even twice as many colors as the optimal number represent a
substantial reduction in the number of string constants that the static analysis needs to
track throughout the program code.

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:9

The benefit from string merging is not proportional to the reduction in the number of
string constants. The benefit is, instead, reflected well by the reduction of the size of
the VarPointsTo relation. For instance, if the number of string constants tracked
by the analysis drops by a factor of 100 (i.e., on average 100 original string constants
are mapped to each color and merged) the ensuing reduction in the complexity of the
string-tracking analysis will be much more modest—typically well below 10. Benefits
arise only when merged strings would have been inferred to be members of the same
points-to set. However, most points-to sets in an analysis are small, containing at most
a handful of members. In the worst case, if a variable were to point to a single string
constant in the original analysis, no benefit would arise: the string constant would merely
be replaced by a merged representative, but the points-to set would still be of size 1.
Per the above, the benefit of optimal graph coloring is tiny in our setting. Conversely,
the speed of the coloring algorithm is crucial. String merging (i.e., graph coloring) is a
pre-processing step, whose running time burdens the static analysis itself.

Accordingly, we employ a near-linear-time greedy algorithm for coloring the interference
graph of string constants. The coloring (or “numbering”) algorithm specification is simple:
1. Compile an undirected graph G = {V, E} where V represents the original string constants

and E represents the conflicts between string constants.
2. Apply any total ordering relation ≤ defined over V to each edge E and direct each edge

according to this. This produces a directed acyclic graph G′ = {V, E′}.
3. For each v ∈ V , its color is established by computing the maximum distance from any

root (i.e., node in V with zero in-degree) in G′.

In practice the ordering ≤ of strings can be arbitrary (e.g., lexicographic, or numeric by
internal index, or random id) and an efficient implementation to establish the maximum
distance to a root is to examine strings in a topological order over G′. Therefore each string
s in V is examined only after all its predecessors t. We give string s color (i.e., number) i,
where i is one higher than the maximum color of any predecessor.

The numbering step trivially gives different numbers to conflicting string constants: for
every two conflicting nodes, one will be below the other in the total ordering, so they cannot
have the same maximum distance from a root node. Using a standard implementation of
topological sorting with a min-heap data structure, the resulting algorithm runs in time
O(e · log(n)), where e = |E| (the number of graph edges) and n = |V | (the number of string
constants). (Each edge needs to be traversed upon examination of its source node, in order
to update the color bound of the edge’s target node.)

In the worst case, this numbering algorithm would yield suboptimal colorings—e.g., if the
greatest element of one clique, per the ≤ ordering, is the least element of the next, the two
cliques cannot reuse colors. However, such adversarial input is unlikely if one picks ordering
≤ randomly. Even a lexicographic ordering ≤ of strings yields consistently good results
due to the nature of our setting: the strings are used for reflection analysis, therefore they
need to match original, unobfuscated names of class members. (Reflection on obfuscated
member names is not possible, since all string manipulation—e.g., concatenation or substring
matching—gets invalidated.) Human-written member names are distributed fairly well
lexicographically, so that different classes have members at dispersed points in the global
ordering.

Figure 3 shows the above logic in Datalog with stratified aggregation (all ranges of
min/max aggregators are computed before the aggregation needs to take place). We reuse
relations from Section 3.1 and again only refer to methods—extending to also include field

ECOOP 2018

26:10 Efficient Reflection String Analysis via Graph Coloring

DeclaringType(m: M, t: T) # member m is declared or inherited by type t.
LessThan(s1: H, s2: H) # string constant s1 is @ s2 .
ColorAtLeast(s: H, n: N) # string constant s needs a color of at least n.
ColorEq(s: H, n: N) # string constant s will be assigned color n.
RepresentativeForColor(s: H, n: N) # string constant s will represent color n.

LessThan(string1, string2)←
ConstantForMethod(string1, m1), DeclaringType(m1, class),
ConstantForMethod(string2, m2), DeclaringType(m2, class),
m1 6= m2 , string1 < string2 .

ColorAtLeast(string, 0)← ConstantForMethod(string, _).

ColorAtLeast(string1, n + 1)←
LessThan(string2, string1), ColorAtLeast(string2, n).

ColorEq(string, max(n))← ColorAtLeast(string, n).

RepresentativeForColor(min(string), n)← ColorEq(string, n).

Figure 3 An extra input relation, computed relations, and Datalog rules for string coloring
algorithm.

members is trivial. The final rule performs an arbitrary aggregation/choice of a representative
string constant, among the ones in the input, to stand for all string constants with the same
color in the reduced input domain, H. This is a simplified version of the logic used in our
actual implementation.

Note that the straightforward realization of these rules in a Datalog engine will likely
have worst-case quadratic complexity, instead of the O(e · log(n)) bound for the algorithm im-
plemented with a heap data structure. In practice, this effect can be mitigated with standard
Datalog optimization techniques. Although the LessThan relation is worst-case quadratic,
it is also local, since a string will only conflict with a small number of others, i.e., up to a
constant. We can define a more economical intermediate relation, ImmediatelyLessThan,
based on LessThan, and compute ColorAtLeast more efficiently using it.

With either a direct implementation or minimal optimization effort of Datalog rules, the
running time of the algorithm for sets of string constants in realistic Java applications is
virtually instantaneous, i.e., entirely negligible compared to subsequent analysis time.

5 Practical Applications of Technique

The essence of our technique, described in the previous section, is a good illustration of the
principles, but it ignores several realistic semantic complications. Additional development
is needed to integrate this technique to existing real world analyses without sacrificing
soundness and precision.

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:11

5.1 Combining Forward with Backward Analyses to Counter
Imprecision

String merging, when combined with (unavoidable) static analysis imprecision, is not guaran-
teed to produce identical results as an original analysis that uses full string constants. String,
Method or Class constants could be spuriously computed to flow to a reflection operation
producing statically inferred behavior that was not meant to happen at runtime. Before
merging string constants, the spurious flow could fail to find matching spurious members,
whereas after merging it may do so. Here, backward analyses [18,19,21,30] come into play
to correct virtually all precision issues.
String a = "zork"; // i.e. {gru, alf, baz, foo, gand, zork};1

2

Class cls = unknown() ? Foob.getClass() : Info.getClass();3

4

Method m = cls.getMethod(a); // m = zork or baz ?5

String s = (String) m.invoke(); // m = zork!6

In the example above, in the original program, variable a is assigned to string "zork" at
line 1. Assuming a class structure as presented in Figure 1, our technique substitutes "zork"
with another object that represents any of the following strings: "gru", "alf", "baz",
"foo", "gand", "zork". At line 3, a conditional assignment with unknown predicate causes
the static analysis to consider that m could either be class Foob or class Info. At line 5, in the
original program we get method zork from the classes pointed by variable cls. Unfortunately,
in the transformed program, the representative of "zork" matches both Info.zork and
Foob.baz. Although some imprecision is introduced here, the analysis has means to reverse
this. Since the method in m is invoked in the next line and the return value is cast, the
analysis infers that m would not contain Foob.baz but just Info.zork, which is the only of
the two methods that returns a String. (The astute reader will note that this is not a 100%
sound treatment, however real world reflection analysis tools need to manage and balance
precision, soundness and scalability.) In this way, a backward analysis serves the role of
cross-validating forward analysis results to negate imprecision. Similarly, since Info.zork is
only defined in class Info, the backward analysis also informs the forward analysis of class
constants to infer that variable cls only contains class Info.

In practice, backward analyses like the ones demonstrated in this example are necessary
to maintain a precise analysis whether or not our string coloring technique is applied, and
indeed both state-of-the-art static reflection analysis frameworks on which our technique was
applied (Doop [4] and SOLAR [19]) enable these enhancements by default.

5.2 High Confidence Inferences
Although in practice most reflection inferences involve forward and backward analyses, this is
not always the case. In Doop, string constants that originate locally and flow to a reflective
operation sink locally are treated as high-confidence inferences, and thus do not require
confirmation from backward analysis. For instance, we can take the following example:
String a = in.readline(); // not statically known1

2

Class cls = Class.forName(a);3

4

Method m = cls.getMethod("zork"); // cls must be Info for this to work5

6

In the original program, we are not able to statically determine the string passed to
variable a on line 1. However, if the analysis can determine with high confidence that a

ECOOP 2018

26:12 Efficient Reflection String Analysis via Graph Coloring

method in this unknown class matches "zork" then this inference is used to determine
that cls points to the class Info. Merging "zork" with other strings interferes with this
mechanism. By nature, high confidence inferences need to be carried out under strict,
syntactically apparent conditions, thus limiting their applicability. These same conditions
can also be picked up in the string merging pre-analysis. For instance, in Doop, only strings
that originate in the same method where a matching reflective operation is performed are
used for high confidence inferences. A solution we implemented for this scenario is to perform
a more selective string merging—if a string can flow to a local reflective operation, that string
is not merged.

5.3 Selective Unsoundness
Selective unsoundness in the design of static reflection analysis can also cause challenges to
our technique. For instance, typical reflection analyses exclude strings that are not meaningful
enough to determine class names. A common substring (for instance “Impl”) can match
several classes. Using such strings to resolve class names naturally leads to imprecision in
the analysis. A sensible heuristic in this case is to not perform static reflection analysis on
strings that match more than some arbitrary number of classes. When strings are represented
by their color, each color encodes multiple strings, matching methods or fields. (Note that
a string can sometimes match both a method and a class.) Therefore the string coloring
technique is at odds with the selective unsoundness heuristic: a merged string may be filtered
out in other analysis reasoning. In this case, the solution we adopted was to not merge string
constants if they can match classes. Alternatively, one can include strings that match classes
to conflict graphs and have these all in the same clique—each color at most would represent
one string that matches a class.

Design decisions and heuristics similar to these are present throughout real-world reflection
analyses, which implies that any analysis optimization that may introduce imprecision could
also introduce unsoundness.

6 Evaluation

We implemented our string coloring algorithm and applied our general technique to the most
recent development version of the Doop [4] static analysis framework. We have also applied
our technique to the SOLAR pointer and reflection analysis framework [19]. Both Doop and
SOLAR are full-featured and handle most complex semantic aspects of the Java language,
such as reflection, implicit initialization, exceptions, and more.

On both frameworks, we only needed to perform minimal modifications to their logic
to apply this technique. Most of the modifications that we made are optimizations and
additional indexing in the reflection logic. These simple optimizations were applied after we
discovered that the additional load on the backward analyses necessitated better indexes.
These modifications were applied to both the baseline configuration and the string coloring
configuration, so both configurations benefited from these performance improvements. On
both frameworks, we compare the performance of the analysis with and without string
coloring enabled.

This evaluation intends to answer the following research questions:
RQ1 Does the presented technique enhance the efficiency of static analysis?
RQ2 Does the technique compromise the quality of the static analysis? In terms of:

RQ2.1 Soundness.
RQ2.2 Precision.

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:13

RQ3 Does our fast string coloring algorithm perform as-predicted, in terms of coloring
effectiveness and its translation to string-merging effectiveness?

To answer these research questions, we employ the following metrics:
Var points-to. The size of the VarPointsTo relation, on both application and library code.

This metric strongly correlates with relevant static analysis time. This is by far the
largest relation that is produced as output by the analysis, and describes what stack
variables point to. The cost of any further use of analysis results is likely to be highly
correlated to the size of VarPointsTo.

Heap points-to. The cumulative size of all heap relations, i.e., instance field points-to, static
field points-to and array index points-to. These form the second largest relation produced
by the analysis, and describes what heap objects point-to.

Relevant static analysis time. The time required to run our static pointer analysis. This
includes the time to run the graph coloring algorithm and all associated overheads when
this is enabled.

Call graph size. We compare the sizes of call graphs before and after our optimization is
applied. A smaller call graph indicates unsoundness, while a larger indicates imprecision
and can answer RQ2.

Var points-to string. The size of the var points-to relation subset containing only strings as
heap objects.

Size of largest clique. The size of the largest clique in the string conflict graph.
Number of colors. The total number of colors applied to the string conflict graph.

The metrics are established through the use of existing tools, applied to benchmarks from
the DaCapo 9.12-Bach Java benchmark suite [2] in the case of the Doop framework. In the
case of the SOLAR framework, we use the same subset of the DaCapo 2006 benchmarks used
in the original SOLAR evaluation [19]. Both static analysis frameworks use the PA-Datalog
engine, a publicly available, stripped-down version of the commercial LogicBlox Datalog
engine. Both frameworks are run with full-featured static handling of reflection. All our
run times are established on an idle machine with an Intel Xeon E5-2687W v4 3.00GHz
with up to 512 GB of RAM. All experiments had a cutoff time of 6 hours. (This is merely a
practical time-budgeting limit. We have occasionally let several instances of heavy analyses
run for longer but have not observed analyses that terminate in under 10 hours if they do
not terminate in 6.) Timings reported are from a single run, but repeat runs show very low
variation (up to about 5%, typically much lower).

Notably, all analyses operate on an already economical representation of string constants.
Strings are interned and represented in all relations via a 22-bit identifier. (This means that
the maximum string pool size is 222 = 4194304, which is still three orders of magnitude
larger than the number of string constants arising in our benchmarks, as we shall see in
Figure 10.) Furthermore, all experiments are conducted with all other standard string
merging approaches enabled: all strings that cannot be used for reflection (i.e., that do not
match class, method, or field names) are merged into a single, nondescript abstract string.

The Doop framework is flexible with respect to context sensitivity, so we configure it
with several flavors:
insens: No context sensitivity.
1call: A 1-call-site sensitive analysis (heap insensitive). This is also known as 1-CFA [28].
2type+H: A 2-type-sensitive analysis [31] with a 1-type-sensitive heap.
2obj+H: A 2-object sensitive analysis with 1-object sensitive heap.

ECOOP 2018

26:14 Efficient Reflection String Analysis via Graph Coloring

The SOLAR framework is configured to use a selective 2-type-sensitive+heap. This adds
call-site sensitivity for static methods to a 2-type-sensitive analysis. This is the kind of
context sensitivity that SOLAR is tuned for [19].

6.1 RQ1: Performance and Efficiency Gains
As shown in Figure 4, the technique achieves an average analysis speedup of about 20% on
the Doop framework. The running time includes all overheads (including pre-processing
of the input) and shows benefits throughout all analysis configurations. This captures well
the overall deployment mode of the string-merging optimization: the benefit is orthogonal
to any other optimizations or analysis options, consistently applicable, and without adding
potential downsides.

Running time reduction of the main analysis is only one aspect of the benefit, however.
Memory is often a bottleneck for analyzing applications. Figure 5 demonstrates the reduction
in memory footprint of the whole analysis database. Our approach shows a larger benefit for
this metric, especially with larger analyses, such as the 2-object-sensitive+heap analysis (as
there are fewer constant overheads).

Since points-to analysis is mainly used as a general substrate by higher-level analysis
clients, the benefit to these is the overall size reduction of the data they import: the points-to
sets for local variables (var points-to, Figure 6) and for heap object references (heap points-to,
Figure 7). The sizes of these relations typically drop by factors of 1.5x or higher, across all
benchmarks and different context sensitivities.

Similar results can be seen for the SOLAR reflection analysis framework, in Figure 8.
Notice that, overall, the technique yields slightly less benefit for SOLAR. This is mostly
attributed to the fact that SOLAR does not perform substring analysis—only strings fully
matching member names are tracked by the analysis. Core reflection analysis coverage
improvements such as substring analysis increase the size of the points-to set substantially
since strings are allowed to flow in and out through string factory operations such as
StringBuilder.append and StringBuilder.toString respectively.

6.2 RQ2: Precision and Soundness
Throughout our evaluation, the string coloring technique compromises neither precision nor
soundness, since either of these conditions hold in both implementations:

Forward and backward analyses in reflection must agree with each other—this drastically
improves precision in reflection analysis, whether or not our technique is applied.
High-confidence inferences (not requiring both forward and backward analyses) are limited
by some condition that allows a preprocessing step to select which strings should be
merged and which should not.

Experimentally, we have verified that both precision and soundness are preserved when
our technique is enabled. One (of the many) metrics we employ to quantify precision and
soundness is the number of call-graph edges (projected context-insensitively). A smaller
call-graph is due to unsoundness, while a larger one is due to imprecision. Call-graph edge
numbers are shown in Figure 9, and, as we can see, remain virtually identical.

6.3 RQ3: Effectiveness of Coloring Algorithm and String Merging
The graph coloring algorithm of Section 4 is very inexpensive. Figure 10 reports running
times for the DaCapo Bach benchmarks, at less than a second to run on average. These

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:15

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
speedup

427
394
8%

919
829
11%

443
405
9%

599
512
17%

ba
tik

original
coloring
speedup

331
289
15%

626
531
18%

1076
879
22%

1657
1376
20%

ec
lip

se original
coloring
speedup

321
306
5%

599
503
19%

492
445
11%

926
741
25%

h2

original
coloring
speedup

386
317
22%

753
470
60%

2621
2128
23%

14535
13694
6%

jy
th
on original

coloring
speedup

17305
15659
11%

-
-
-%

-
-
-%

-
-
-%

lu
in
de

x original
coloring
speedup

166
100
66%

221
201
10%

148
138
7%

213
186
15%

lu
se
ar
ch original

coloring
speedup

152
135
13%

188
167
13%

150
140
7%

210
179
17%

pm
d original

coloring
speedup

240
175
37%

344
305
13%

271
250
8%

469
433
8%

su
nfl

ow original
coloring
speedup

328
264
24%

498
466
7%

293
267
10%

402
334
20%

xa
la
n original

coloring
speedup

385
351
10%

883
627
41%

817
666
23%

1877
1482
27%

average speedup 21% 21% 13% 17%

Figure 4 Points-to analysis time in seconds, including overheads of graph coloring. Empty values
indicate the analysis did not terminate within six hours.

numbers likely include several extra overheads (since they are inside a Datalog engine, where
reasoning is performed as database table joins) but are still entirely negligible compared to
the subsequent static analysis.

We also need to evaluate experimentally how effective the algorithm is, in terms of the
number of colors it produces. Figure 10 shows this number of colors, also giving the size
of the largest clique in the string-conflict graph (which is a lower bound even for optimal
coloring) and the total number of string constants, i.e., nodes in the graph. The algorithm
achieves significant reduction factors (mean 6.5x, i.e., 6.5 strings on average are merged
into one) leaving little benefit for an algorithm that achieves tighter coloring. The largest
clique for most benchmarks is the same (size 176), which is an artifact of the way the
DaCapo benchmarks are packaged, with common libraries and a common harness among
many benchmarks.

Contrasting Figure 10 with the earlier Figures 6-7 illustrates the numbers involved in our
setting: relatively few string constants (in the thousands) result in tens of millions of extra
points-to facts for the analysis, since they propagate to several points-to sets each.

ECOOP 2018

26:16 Efficient Reflection String Analysis via Graph Coloring

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
ratio

2419
2076
1.17x

4639
3905
1.19x

2401
1940
1.24x

2923
2243
1.30x

ba
tik

original
coloring
ratio

2798
2336
1.20x

4851
3714
1.31x

6622
5195
1.27x

8361
6805
1.23x

ec
lip

se original
coloring
ratio

3006
2646
1.14x

4930
4128
1.19x

3540
3124
1.13x

6090
4645
1.31x

h2

original
coloring
ratio

3100
2260
1.37x

7309
3711
1.97x

14722
10207
1.44x

46377
34277
1.35x

jy
th
on original

coloring
ratio

42659
37286
1.14x

-
-
-

-
-
-

-
-
-

lu
in
de

x original
coloring
ratio

941
800
1.18x

1502
1227
1.22x

979
861
1.14x

1362
1080
1.26x

lu
se
ar
ch original

coloring
ratio

941
808
1.16x

1505
1254
1.20x

974
862
1.13x

1354
1105
1.23x

pm
d original

coloring
ratio

1772
1500
1.18x

2877
2239
1.28x

1928
1701
1.13x

2903
2408
1.21x

su
nfl

ow original
coloring
ratio

1813
1568
1.16x

2949
2494
1.18x

1919
1690
1.14x

2145
1879
1.14x

xa
la
n original

coloring
ratio

3751
2788
1.35x

7920
5004
1.58x

6730
4894
1.38x

12245
8996
1.36x

average ratio 1.20x 1.35x 1.22x 1.27x

Figure 5 Memory footprint (in KB). Empty values indicate the analysis did not terminate within
six hours.

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:17

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
ratio

23256
17587
1.32x

106429
88507
1.20x

24257
15355
1.58x

31118
18950
1.64x

ba
tik

original
coloring
ratio

23035
15480
1.49x

83980
60202
1.39x

85499
59352
1.44x

106435
80094
1.33x

ec
lip

se original
coloring
ratio

18178
13258
1.37x

68590
52717
1.30x

29365
21421
1.37x

66516
42516
1.56x

h2

original
coloring
ratio

31745
18549
1.71x

129704
56162
2.31x

211418
129666
1.63x

576222
397483
1.45x

jy
th
on original

coloring
ratio

514245
481310
1.07x

-
-
-

-
-
-

-
-
-

lu
in
de

x original
coloring
ratio

7322
4802
1.52x

21934
16047
1.37x

7524
4844
1.55x

13800
8486
1.63x

lu
se
ar
ch original

coloring
ratio

7490
4938
1.52x

21733
16109
1.35x

7558
5018
1.51x

13673
8947
1.53x

pm
d original

coloring
ratio

11638
7118
1.64x

42510
28513
1.49x

14489
9963
1.45x

30456
21297
1.43x

su
nfl

ow original
coloring
ratio

15209
10708
1.42x

52802
41000
1.29x

16475
11000
1.50x

19202
13623
1.41x

xa
la
n original

coloring
ratio

32664
18169
1.80x

132560
74031
1.79x

94050
59405
1.58x

180099
125325
1.44x

average ratio 1.49x 1.50x 1.51x 1.49x

Figure 6 Var points-to size (in thousands). Empty values indicate the analysis did not terminate
within six hours.

As discussed in Section 4, merging string constants does not translate into proportional
shrinking of string points-to sets, because many original points-to sets would not contain
multiple merged strings. (The median points-to set size is 1 for many analysis settings, which
allows no shrinking in most cases!) To quantify the actual reduction in string-flow inferences,
we show in Figure 11 the change (for the Doop framework) in the size of points-to sets
containing strings, i.e., the number of total tuples in the VarPointsTo relation where the
target object is a string. (This includes points-to inferences where the string object is not
a constant but a completely unknown run-time value. However, the majority of the tuples
concern variables that points to constant strings. This does not necessarily mean that the
variable is inferred to have a constant string value, just that the constant string is a substring
of the run-time value.)

As Figure 11 shows, string merging significantly shrinks the number of point-to inferences
for strings, by roughly a factor of 2, thus capturing the majority of the potential benefit.
Again, the reduction is mostly consistent throughout all the benchmarks analyzed under
different context sensitivities. Interestingly, the overall reductions in points-to set sizes comes

ECOOP 2018

26:18 Efficient Reflection String Analysis via Graph Coloring

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
ratio

3756
2455
1.53x

2041
1373
1.49x

864
562
1.54x

657
474
1.39x

ba
tik

original
coloring
ratio

3025
1641
1.84x

1921
1119
1.72x

2956
2029
1.46x

2459
1901
1.29x

ec
lip

se original
coloring
ratio

2894
1892
1.53x

1789
1246
1.44x

1329
974
1.36x

1408
996
1.41x

h2

original
coloring
ratio

5252
2320
2.26x

2722
915
2.97x

2965
1881
1.58x

5425
3867
1.40x

jy
th
on original

coloring
ratio

45002
38388
1.17x

-
-
-

-
-
-

-
-
-

lu
in
de

x original
coloring
ratio

924
528
1.75x

569
382
1.49x

309
201
1.54x

343
252
1.36x

lu
se
ar
ch original

coloring
ratio

952
550
1.73x

569
388
1.47x

309
207
1.49x

341
261
1.31x

pm
d original

coloring
ratio

1562
825
1.89x

1034
595
1.74x

876
695
1.26x

930
778
1.20x

su
nfl

ow original
coloring
ratio

2210
1339
1.65x

1073
725
1.48x

607
408
1.49x

433
350
1.24x

xa
la
n original

coloring
ratio

6002
2980
2.01x

4096
2006
2.04x

5857
3652
1.60x

4168
3173
1.31x

average ratio 1.74x 1.76x 1.48x 1.32x

Figure 7 Heap points-to (in thousands). Empty values indicate the analysis did not terminate
within six hours.

about due to different reasons in context-insensitive versus highly context-sensitive settings.
In a context-insensitive setting, strings flow less precisely, so there are more opportunities
for merged strings to appear in the same variables. In a highly context-sensitive setting,
strings also make up some of the context components, and so we also see fewer references
for other object types in the points-to set. We also see that strings are flowing with more
precision so there is slightly less gain due to merging different strings in the same variables.
Overall, these factors seem to balance themselves out and we see a consistent reduction of
the points-to set for all levels of context sensitivity.

7 Related Work

There are two directions of related work: specialized graph coloring algorithms and static
analyses for reflection. The former are less related to our approach, for a variety of reasons.
First, our graphs have no recognized special properties. Second, most specialized graph
coloring algorithms are still trying for (near-)optimal coloring, since they apply to a setting

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:19

relevant analysis time (s) speedup var points-to (000’) reduction
antrl original 409 25406

coloring 348 18% 22890 10%
chart original 2498 187903

coloring 2195 14% 160398 15%
eclipse original 683 65905

coloring 599 14% 55204 16%
fop original 2330 150955

coloring 2181 7% 133686 11%
pmd original 1064 70871

coloring 916 16% 50570 29%

Figure 8 Performance improvements of our technique on the SOLAR analysis framework,
demonstrated on the subset of the DaCapo 2006 benchmarks used in previous SOLAR work.

where tight coloring yields benefits. We have the luxury of a setting where some additional
number of colors makes hardly any difference in the overall benefit. Therefore, coloring
simplicity and efficiency become paramount.

Some of the best-known graph coloring results with applications in programming languages
can be found in the register allocation literature. Gupta et al. [12] give a fast coloring algorithm
based on clique separators, i.e., cliques whose removal would disconnect the graph. In a
relatively recent and prominent representative of specialized graph coloring approaches, Hack
and Goos [13] give an optimal algorithm for register allocation of SSA-form programs, by
showing that such programs have chordal interference graphs.

Fully analyzing reflection has been attracting attention for a long time. Multiple ap-
proaches have been proposed in the past in an effort to tackle the efficiency, soundness, and
precision concerns of such an analysis.

As discussed in Section 3.1, Livshits et al. introduced the idea that reflection analysis
and pointer analysis have to work together in order to be effective [21, 23]. They also
identify points in a given program where user input affects the resolution of reflective targets
and subsequently give the user the option to provide appropriate specifications for the
aforementioned points. Additionally, they provide an automated, more conservative and
sometimes less precise approach in which type casts applied to the results of reflective
allocations are used in order to infer the possible values of said allocated objects.

Other work [18, 24, 30] builds on the latter concept and introduces more sophisticated
backward or use-based analyses in the context of Javascript and Java respectively. When
objects are retrieved from unknown code (including through reflection), the analysis tries to
infer the object’s properties based on the way that it is used in the code text (generalizing to
more language constructs other than type casts, e.g., string literals used in a Class.getField
invocation).

Backward and forward analysis techniques are combined in great variation. For instance,
Smaragdakis et al. [30] generalize the backward-information pattern by allowing for inference
to arbitrarily cross method boundaries. This backward propagation technique might have
adverse effects on precision under certain conditions. To that end, the authors also introduced
a forward propagation approach in which type casts on unknown reflection object are used
to invent a new object of the correct type at that point that will flow normally in subsequent
code. This is a converse compromise since it will not affect the properties of the unknown
reflection object.

ECOOP 2018

26:20 Efficient Reflection String Analysis via Graph Coloring

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
difference

115445
115295
< 1%

109226
109076
< 1%

97504
97519
< 0.1%

96618
96633
< 0.1%

ba
tik

original
coloring
difference

135479
135479
nil

128730
128730
nil

121031
121031
nil

120086
120086
nil

ec
lip

se original
coloring
difference

94375
94375
nil

88553
88553
nil

76758
76758
nil

76212
76212
nil

h2

original
coloring
difference

126378
126378
nil

115731
115731
nil

109814
109814
nil

108127
108127
nil

jy
th
on original

coloring
difference

6278831
6276704
< 0.1%

-
-
nil

-
-
nil

-
-
nil

lu
in
de

x original
coloring
difference

64580
64580
nil

60435
60435
nil

55802
55802
nil

55808
55808
nil

lu
se
ar
ch original

coloring
difference

64748
64748
nil

60391
60391
nil

55551
55551
nil

55572
55572
nil

pm
d original

coloring
difference

74154
74154
nil

69904
69904
nil

63704
63704
nil

63100
63100
nil

su
nfl

ow original
coloring
difference

100394
100274
< 1%

94964
94844
< 1%

84609
84610
< 0.1%

84062
84063
< 0.1%

xa
la
n original

coloring
difference

119042
119042
nil

109191
109191
nil

99748
99748
nil

98263
98263
nil

Figure 9 Number of call-graph edges. Empty values indicate the analysis did not terminate
within six hours.

Li et al. [19] developed SOLAR in which they apply three design novelties. Firstly,
they use a lazy heap modeling on reflective allocation sites. Secondly, they introduce a
collective inference for related reflective calls. Finally, they have in place an automatic
identification of problematic reflective calls that potentially could threaten their analysis in
terms of soundness, precision and scalability.

Techniques have also been proposed in order to tackle the scalability issues of a full
fledged string analysis that is usually part of a reflection analysis. The most common practice
is to merge string literals found in the program text into a single object (e.g., SMUSH_STRINGS
in Wala [7]). The exception to this are string constants that are a possible match with class,
method or field names and so could potentially appear in a reflective call. Those literals
need to be analyzed with the normal precision of the analysis at hand.

Aydin et al. [1] and Bultan [5] introduced sophisticated string analyses in the context of
web applications. The former developed a constraint solver that, given a string constraint,
constructs an automaton that accepts all solutions that satisfy the constraint. The latter
approach extracts client- and server-side input validation and sanitization functions and
models them as deterministic finite automata (DFA) using symbolic fixpoint computations

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:21

Coloring
Time (s) Colors Largest

Clique
String

Constants
Compression

Ratio
avrora 0.4 228 176 1768 7.8x
batik 0.6 249 176 2140 8.6x

eclipse 0.8 404 196 1836 4.5x
h2 1.4 348 176 2151 6.2x

jython 0.5 279 183 2456 8.8x
luindex 0.1 191 176 711 3.7x
lusearch 0.1 191 176 704 3.7x

pmd 0.4 232 176 1852 8.0x
sunflow 1.9 230 176 1636 7.1x
xalan 0.5 424 260 2724 6.4x
Mean 0.7 6.5x

Figure 10 Various performance metrics of coloring algorithm.

with the aim of identifying errors in input validation and sanitization code. A different
advanced technique for string analysis has been presented by Christensen et al. [6]. They
analyze complex string expressions and abstract them via a context-free grammar that is
then widened to a regular language. Reflection is one of their examples but they only apply
it to small benchmarks. In the context of analyzing Android applications, DroidSafe [8]
employs the JSA String Analyzer [6]. JSA is a flow-sensitive and context-insensitive static
analysis that includes a model of common operations on Java’s String type. For a given
string reference, the analysis computes a multi-level automaton representing all possible
string values. DroidSafe uses JSA as a first pass (only on application code) to resolve
values for string references that are arguments to the Android API. It, subsequently, converts
each resolved automaton to a regular expression that represents the possible values of a
string value. Generally, more precise string analyses are better suited for sensitive semantic
domains and more localized application, rather than whole-program reflection analysis and
arbitrary substring flow over the heap and call stack.

Traditionally, an alternative approach of handling reflection in static analysis has been the
integration of user input or dynamic information along the facts inferred in a static way. A
state-of-the-art example in that direction is the Tamiflex tool [3] which observes the reflective
calls in an actual execution of the program and rewrites the original code to a version
without reflection calls. Another hybrid dynamic-static technique is presented by Grech
et al. [9] in HeapDL. The tool gathers dynamic information in the form of heap snapshots
taken during program execution. Subsequently, such dynamic information is supplied to
a static analysis to enhance its capabilities, substantially counteracting unsoundness with
minimum intrusion to the analysis logic. Another application of this approch is to improve the
scalability [10] of the analysis by replacing static reasoning with dynamic information. The
use of these tools [9,10] significantly increases the number of reflective string constants in the
analysis environment, which makes the techniques presented in this paper even more effective.
Although, hybrid static-dynamic techniques are a practical approach, it is unrealistic to
expect that reflection will yield the same results in different program executions, given that
such a runtime variability is the fuel of any reflective feature.

ECOOP 2018

26:22 Efficient Reflection String Analysis via Graph Coloring

insens 1call 2type+H 2obj+H

av
ro
ra original

coloring
ratio

10390
4730
2.20x

36174
18300
1.98x

19470
10567
1.84x

17706
9099
1.95x

ba
tik

original
coloring
ratio

13544
5989
2.26x

45280
21502
2.11x

55379
29231
1.89x

38459
17332
2.22x

ec
lip

se original
coloring
ratio

12324
7404
1.66x

45265
29392
1.54x

26222
18278
1.43x

47104
28001
1.68x

h2

original
coloring
ratio

19114
5918
3.23x

102602
29060
3.53x

148192
66440
2.23x

286138
121101
2.36x

jy
th
on original

coloring
ratio

37436
10764
3.48x

-
-
-

-
-
-

-
-
-

lu
in
de

x original
coloring
ratio

5111
2592
1.97x

15461
9574
1.61x

5869
3190
1.84x

6231
3238
1.92x

lu
se
ar
ch original

coloring
ratio

5301
2749
1.93x

15475
9851
1.57x

5863
3322
1.76x

6080
3465
1.75x

pm
d original

coloring
ratio

8550
4030
2.12x

29199
15202
1.92x

12067
7540
1.60x

12456
6314
1.97x

su
nfl

ow original
coloring
ratio

8992
4495
2.00x

28021
16241
1.73x

13592
8118
1.67x

9283
5681
1.63x

xa
la
n original

coloring
ratio

25998
11503
2.26x

105773
47244
2.24x

84695
50050
1.69x

113149
68774
1.65x

average ratio 2.31x 2.02x 1.77x 1.90x

Figure 11 String var points-to (in thousands). Empty values indicate the analysis did not
terminate within six hours.

8 Conclusion and Future Work

Reflection analysis has become a mainstream feature of modern whole-program analysis
tools. Since applications and libraries in the Java ecosystem use reflection for generality
and configurability, it is necessary to use reflection analysis to get a good level of program
analysis coverage. On the other hand, reflection analysis is also responsible for the main
performance bottleneck in whole-program analysis tools. It needs to statically track string
constants that can refer to class members, which tend to dominate analyses’ points-to sets.
There are not many statically-detectable hints within the semantics of the language to limit
string flow.

The approach presented in this paper improves the performance of a static analysis
by maximally encoding reflection string constants using graph coloring. Our technique
compiles an interference graph of strings, and colors this graph using a fast, almost linear-
time algorithm as a simple preprocessing step to encode string constants prior to static
analysis. We find that string merging using graph coloring is an uncompromising technique

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:23

for addressing some of the inefficiency of static analyses, for all kinds of context-sensitive
and context-insensitive analyses and across multiple reflection analysis approaches.

With some adaptations, our technique can lend itself to other similar applications. For
instance the technique could apply to the analysis of dynamically typed languages (where
many more operations are encoded with reflection-like functionality) or to more specific
domains such as the tracking of string constants matching intents in Android applications.

References

1 Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model counting for
string constraints. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided
Verification: 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I, pages 255–272, Cham, 2015. Springer International Pub-
lishing. doi:10.1007/978-3-319-21690-4_15.

2 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Port-
land, Oregon, USA, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.
doi:10.1145/1167473.1167488.

3 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming re-
flection: Aiding static analysis in the presence of reflection and custom class loaders. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011, ICSE ’11, pages 241–250, New York, NY,
USA, 2011. ACM. doi:10.1145/1985793.1985827.

4 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In Proc. of the 24th Annual ACM SIGPLAN Conf. on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’09, New York,
NY, USA, 2009. ACM.

5 Tevfik Bultan. String analysis for vulnerability detection and repair. In Proceedings of the
22Nd International Symposium on Model Checking Software - Volume 9232, SPIN 2015,
pages 3–9, New York, NY, USA, 2015. Springer-Verlag New York, Inc. doi:10.1007/
978-3-319-23404-5_1.

6 Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis
of string expressions. In Static Analysis, 10th International Symposium, SAS 2003, San
Diego, CA, USA, June 11-13, 2003, Proceedings, SAS ’03, pages 1–18. Springer, 2003.
doi:10.1007/3-540-44898-5_1.

7 Stephen J. Fink et al. WALA UserGuide: PointerAnalysis. http://wala.sourceforge.
net/wiki/index.php/UserGuide:PointerAnalysis#Contexts_for_Reflection, 2013.

8 Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. Information flow analysis of android ap-
plications in droidsafe. In 22nd Annual Network and Distributed System Se-
curity Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society, 2015. URL: http://www.internetsociety.org/doc/
information-flow-analysis-android-applications-droidsafe.

ECOOP 2018

http://dx.doi.org/10.1007/978-3-319-21690-4_15
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1007/978-3-319-23404-5_1
http://dx.doi.org/10.1007/978-3-319-23404-5_1
http://dx.doi.org/10.1007/3-540-44898-5_1
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis#Contexts_for_Reflection
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis#Contexts_for_Reflection
http://www.internetsociety.org/doc/information-flow-analysis-android-applications-droidsafe
http://www.internetsociety.org/doc/information-flow-analysis-android-applications-droidsafe

26:24 Efficient Reflection String Analysis via Graph Coloring

9 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Heaps
don’t lie: Countering unsoundness with heap snapshots. Proc. ACM Program. Lang., 1:1–
27, 2017. doi:10.1145/3133892.

10 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Shooting
from the heap: Ultra-scalable static analysis with heap snapshots. In International Sym-
posium on Software Testing and Analysis (ISSTA), ISSTA ’18, New York, NY, USA, 2018.
ACM. doi:10.1145/3213846.3213860.

11 Salvatore Guarnieri and Benjamin Livshits. GateKeeper: mostly static enforcement of
security and reliability policies for Javascript code. In Proc. of the 18th USENIX Security
Symposium, SSYM’ 09, pages 151–168, Berkeley, CA, USA, 2009. USENIX Association.
URL: http://dl.acm.org/citation.cfm?id=1855768.1855778.

12 R. Gupta, M. L. Soffa, and T. Steele. Register allocation via clique separators. In
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design
and Implementation, PLDI ’89, pages 264–274, New York, NY, USA, 1989. ACM. doi:
10.1145/73141.74842.

13 Sebastian Hack and Gerhard Goos. Optimal register allocation for ssa-form programs in
polynomial time. Inf. Process. Lett., 98(4):150–155, may 2006. doi:10.1016/j.ipl.2006.
01.008.

14 George Kastrinis and Yannis Smaragdakis. Efficient and effective handling of exceptions
in Java points-to analysis. In Compiler Construction - 22nd International Conference, CC
2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, CC ’13, pages 41–60. Springer,
2013. doi:10.1007/978-3-642-37051-9_3.

15 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to anal-
ysis. In Proc. of the 2013 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, PLDI ’13, New York, NY, USA, 2013. ACM.

16 Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots,
Michael Carbin, and Christopher Unkel. Context-sensitive program analysis as database
queries. In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 13-15, 2005, Baltimore, Maryland, USA, PODS
’05, pages 1–12, New York, NY, USA, 2005. ACM. URL: http://dl.acm.org/citation.
cfm?id=1065167, doi:10.1145/1065167.1065169.

17 Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for static analysis
of Java reflection – literature review and empirical study. In Proceedings of the 39th Inter-
national Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017.

18 Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection resolution for
Java. In Proc. of the 28th European Conf. on Object-Oriented Programming, ECOOP ’14,
pages 27–53. Springer, 2014. doi:10.1007/978-3-662-44202-9.

19 Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis. In San-
drine Blazy and Thomas Jensen, editors, Static Analysis - 22nd International Symposium,
SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings, SAS ’15, pages 162–180.
Springer, 2015. doi:10.1007/978-3-662-48288-9_10.

20 Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, PLDI ’11, pages 590–601, New
York, NY, USA, 2011. ACM. doi:10.1145/1993498.1993567.

21 Benjamin Livshits. Improving Software Security with Precise Static and Runtime Analysis.
PhD thesis, Stanford University, December 2006.

http://dx.doi.org/10.1145/3133892
http://dx.doi.org/10.1145/3213846.3213860
http://dl.acm.org/citation.cfm?id=1855768.1855778
http://dx.doi.org/10.1145/73141.74842
http://dx.doi.org/10.1145/73141.74842
http://dx.doi.org/10.1016/j.ipl.2006.01.008
http://dx.doi.org/10.1016/j.ipl.2006.01.008
http://dx.doi.org/10.1007/978-3-642-37051-9_3
http://dl.acm.org/citation.cfm?id=1065167
http://dl.acm.org/citation.cfm?id=1065167
http://dx.doi.org/10.1145/1065167.1065169
http://dx.doi.org/10.1007/978-3-662-44202-9
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1145/1993498.1993567

N. Grech, G. Kastrinis, and Y. Smaragdakis 26:25

22 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Ama-
ral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dim-
itrios Vardoulakis. In defense of soundiness: A manifesto. Commun. ACM, 58(2):44–46,
jan 2015. doi:10.1145/2644805.

23 Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for Java. In Proc.
of the 3rd Asian Symp. on Programming Languages and Systems, pages 139–160. Springer,
2005. doi:10.1007/11575467_11.

24 Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013, FSE ’13, pages 499–509. ACM, 2013. URL: http://dl.
acm.org/citation.cfm?id=2491411, doi:10.1145/2491411.2491417.

25 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. In
Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, PLDI ’06, pages 308–
319, New York, NY, USA, 2006. ACM. doi:10.1145/1133981.1134018.

26 Oracle. Proxy (Java Platform SE 8), 2016. URL: http://docs.oracle.com/javase/8/
docs/api/java/lang/reflect/Proxy.html.

27 Thomas W. Reps. Demand interprocedural program analysis using logic databases. In
R. Ramakrishnan, editor, Applications of Logic Databases, pages 163–196. Kluwer Academic
Publishers, 1994.

28 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, may 1991.

29 Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and Trends®
in Programming Languages, 2(1):1–69, 2015. doi:10.1561/2500000014.

30 Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
sound static handling of Java reflection. In Proc. of the Asian Symp. on Programming
Languages and Systems, APLAS ’15. Springer, 2015.

31 Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your contexts well:
Understanding object-sensitivity. In Proc. of the 38th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL ’11, pages 17–30, New York, NY, USA, 2011.
ACM.

32 John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using Datalog with
binary decision diagrams for program analysis. In Proc. of the 3rd Asian Symp. on Program-
ming Languages and Systems, pages 97–118. Springer, 2005. doi:10.1007/11575467_8.

33 John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation 2004, Washington, DC, USA, June
9-11, 2004, PLDI ’04, pages 131–144, New York, NY, USA, 2004. ACM. doi:10.1145/
996841.996859.

34 Yifei Zhang, Tian Tan, Yue Li, and Jingling Xue. Ripple: Reflection analysis for android
apps in incomplete information environments. In Gail-Joon Ahn, Alexander Pretschner,
and Gabriel Ghinita, editors, Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24,
2017, pages 281–288. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3029806,
doi:10.1145/3029806.3029814.

ECOOP 2018

http://dx.doi.org/10.1145/2644805
http://dx.doi.org/10.1007/11575467_11
http://dl.acm.org/citation.cfm?id=2491411
http://dl.acm.org/citation.cfm?id=2491411
http://dx.doi.org/10.1145/2491411.2491417
http://dx.doi.org/10.1145/1133981.1134018
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1145/996841.996859
http://dx.doi.org/10.1145/996841.996859
http://dl.acm.org/citation.cfm?id=3029806
http://dx.doi.org/10.1145/3029806.3029814

	p000-frontmatter
	Message from the Chairs
	Message from the President of AITO
	ECOOP 2018 Conference Organization
	External Reviewers

	p001-Mogk
	Introduction
	REScala from the User Perspective
	Faults
	Shared Calendar Application in REScala

	Fault-tolerant Application State
	Managing Distributed State
	Error Propagation
	Implementation
	Evaluation
	Non-invasive Fault Tolerance
	Performance Evaluation
	Threats to Validity

	Related Work
	Conclusion

	p002-Inoue
	Introduction
	Contributions

	ContextWorkflow Constructs.
	Example: Explorer Robot
	Interruptible and Compensable Workflow
	Interruption and Context
	Nested Workflow and Programmable Compensations
	Checkpoint
	Blocking Context Checking

	Operational Semantics of Core ContextWorkflow
	Syntax
	Big-Step Semantics
	Properties
	Discussion

	Monadic embedding to Scala
	Free monad transformers
	ContextWorkflow Monad
	Auxiliary Definitions
	Types of Suspended Workflows
	Monadic interpreter
	Stack Safety
	Atomicity
	Abnormal Termination and Exceptions in Scala

	Related Work
	Conclusions
	Appendix
	Hiding Type Parameters for Simplicity
	Derivation Example
	Proofs of Properties

	p003-Prokopec
	Introduction
	Programming Model
	Use Cases
	Formal Semantics
	Implementation
	Preliminaries
	Runtime Model
	Transformation
	Exception handling
	Optimizations

	Performance Evaluation
	Related Work
	Conclusion
	Additional coroutine-based implementations

	p004-Ntzik
	Introduction
	POSIX File-system Primer
	POSIX File-systems
	Concurrent Behaviour: the unlink operation

	TaDA-Refine Specification Examples
	Operations on links
	I/O operations on regular files

	TaDA-Refine Client Reasoning I: Lock Files
	TADA-Refine Specification Language and Refinement Calculus
	The Specification Language
	The Refinement Calculus
	Derived Hybrid Specification Statement

	TaDA-Refine Client Reasoning II: Context Invariants
	Related Work
	Conclusions & Future Work

	p005-Lam
	Introduction
	Background
	Categorization of Forum Posts
	Study Setup
	Subject-collection Procedure
	Analysis Tools
	Collected Subjects

	Study Results
	RQ1. Assumptions, Assertions, and Attributes
	Assumption Usage
	Assertion Usage
	Attribute Usage
	Implications

	RQ2. Non-primitive Parameters
	Non-primitive Parameter Usage
	Promoting Receiver Object
	Implications

	RQ3. PUT Design Patterns and Bad Smells
	PUT Design Patterns
	Code Duplication in PUTs
	Unnecessary Conditional Statements in PUTs
	Hard-coded Test Data in PUTs
	Implications

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion

	p006-Chen
	Introduction
	Motivation
	Approach
	Function Optimization
	Feature Extraction
	Labeling
	Imbalanced Instance Processing
	Predictive Model

	Library Optimization
	Optimization Tuning
	Program-Splitter
	Local-Optimizer

	Experimental Study
	Tools and Libraries
	Subjects
	Experimental Setup
	Verifiability
	Threats to Validity
	Results and Analysis
	RQ1: Performance Comparison
	RQ2: Impact of Training and Testing Time Limits
	RQ3: Contribution of Function/Library Optimization
	RQ4: Impact of Machine Learning Algorithms

	Discussion
	Promising Direction
	Impact of Random Search Heuristic and Caching

	Related Work
	Symbolic Execution
	Code Transformation

	Conclusion

	p007-Mezzetti
	Introduction
	A Preliminary Experimental Study of Breaking Changes
	Motivating Example
	Overview
	Public API Discovery
	Dynamic Access Paths
	Types
	Instrumented Interpreter

	Type Regression Testing
	Evaluation
	Related Work
	Conclusion

	p008-Li
	Introduction
	Background
	The Actor model
	Actors in Akka
	Problem Description

	Actor Language
	Syntax
	Concrete Semantics

	Message Flow Graph Construction
	Analysis Semantics
	MFG Construction Algorithm
	Optimizations

	Test Generation
	Semantics Of Actor Operations In BSE
	Path Exploration In BSE

	Implementation
	Evaluation
	Results on MFG Construction
	Results on Test Generation
	Target Coverage
	Bug Detection

	Related Work
	Conclusion
	Semantics of Local Computations in MFG Analysis
	Semantics Of Local Computations In BSE

	p009-Bi
	Introduction
	Overview
	First-Class Classes in JavaScript
	A Glance at Typed First-Class Traits in SEDEL

	Typed First-Class Traits
	Traits in SEDEL
	Two Roles of Traits in SEDEL
	Trait Types and Trait Requirements
	Traits with Parameters and First-Class Traits
	Detecting and Resolving Conflicts in Trait Composition
	Disjoint Polymorphism and Dynamic Composition

	Formalizing Typed First-Class Traits
	Syntax
	Semantics
	Type Soundness and Coherence

	Case Study: Modularizing Language Components
	Object Algebras and Extensible Visitors in SEDEL
	Case Study Overview
	Evaluation

	Related Work
	Conclusion

	p010-Kruger
	Introduction
	Related Work
	Languages for Specifying and Checking API Properties
	Inference/Mining of API-usage specifications
	Detecting Misuses of Security APIs

	An Example of a Secure Usage of Crypto APIs
	CrySL Syntax
	Design Decisions Behind CrySL
	Mandatory Sections in a CrySL Rule
	Optional Sections in a CrySL Rule

	CrySL Formal Semantics
	Basic Definitions
	Runtime Semantics
	Individual Object Traces
	Interaction of Object Traces

	Detecting Misuses of Crypto APIs
	Implementation
	CrySL
	CogniCrypt_sast

	Evaluation
	Precision and Recall (RQ1)
	Types of Misuses (RQ2)
	Performance (RQ3)
	Comparison to Existing Tools (RQ4)
	Threats to Validity

	Conclusion

	p011-Kaki
	Introduction
	An Informal Overview of Broom
	Using Regions in Broom

	Featherweight Broom
	Syntax
	Types and Well-formedness
	Operational Semantics and Type Safety

	Type Inference
	Region Parameterization for Classes
	Region Parameterization for Methods and Function Types
	Constraint Generation
	The Constraint Solver
	Soundness and Completeness: Discussion
	Modularity Aspects of Type Inference

	Implementation and Evaluation
	Related Work
	Appendix
	Static Semantics
	Operational Semantics
	Constraint Generation Rules

	p012-Chung
	Introduction
	Background
	A Family of Gradually Typed Languages and their Litmus Test
	A Common Surface Language
	Litmus
	Discussion

	KafKa: A Core Calculus
	Syntax and Semantics
	Method Invocation
	Run-time Casts

	Type soundness
	Discussion

	Translating Gradual Type Systems
	Class Translation
	Expression Translation
	Example
	Discussion

	Conclusion

	p013-Campos
	Introduction
	DOL by Example
	Bank Account
	Binary Search Tree

	The DOL Language
	Syntax
	Additional Syntax Not Available to Programmers
	Static Semantics
	Subtyping
	Typing

	Operational Semantics

	Type Soundness
	Algorithmic Typechecking
	Related Work and Discussion

	p014-Oostvogels
	Introduction
	Programming with Inter-property Constraints
	Definition of interfaces with constraints
	Object creation
	Property access
	Property updates

	Verifying Constraints in TypeScript
	Object literals have to satisfy constraints
	Constraints dictate property presence
	Explicit property presence tests
	Interface–interface compatibility
	Updated objects have to satisfy constraints

	TypeScript_{IPC}: A Variant of TypeScript with Constraints
	Syntax
	Type System
	Property lookup
	Assignment Compatibility
	Creating and updating
	Sequence typing

	Operational Semantics of TypeScript_{IPC}
	Soundness
	Related Work
	Future Work
	Conclusion

	p015-deLiguoro
	Introduction
	The Mailbox Calculus
	A Mailbox Type System
	Mailbox Types
	Dependency Graphs
	Typing Rules
	Properties of well-typed processes

	Examples
	Actors using futures
	Master-workers parallelism
	Encoding of binary sessions
	Encoding of sessions with forks and joins

	Related Work
	Concluding Remarks

	p016-Qunaibit
	Motivation
	Background
	Heterogeneous Programming Frameworks
	Interpreters and Virtual Machines

	The MegaGuards System
	Overview
	Lightweight Pre-assessment
	Guards Optimization
	Type Stability Analysis
	MegaGuards-Specialized AST
	Bounds Check Optimization
	Mega Guards Insertion

	Parallel Analysis and Execution
	Dependence Analysis
	Kernel Code Generation
	Thread Mapping
	Kernel Data Management
	Kernel Execution and Device Selection
	Execution of A Cached Kernel

	Guards-optimized Sequential Execution
	Implementation Capabilities and Limitations

	Evaluation
	Experimental Setup
	Effect of Guards Optimization
	Parallel Execution Performance and Complexity Analysis
	Characteristics of Kernels
	Parallel Execution Performance
	Peak Performance with Various Input Sizes
	Performance of MegaGuards on Each Run Step
	Scalability
	Effect of Kernel Data Management

	Related Work
	Type Inference and Guards Optimization
	Heterogeneous Programming in Dynamic Languages
	Auto-Parallelization for Dynamic Languages

	Conclusions

	p017-Bell
	Introduction
	Design
	Lazy Heap Traversal
	Invariants
	Algorithm for checkpointing
	Algorithm for rolling-back
	Thread safety
	Optimizations

	Implementation
	Class modifications and instrumentation
	Changing object types
	Static Fields
	Wrapping arrays and non-instrumentable types
	Finding the Root References
	Stack references
	Limitations

	Experimental Evaluation
	Microbenchmarks
	Macrobenchmarks
	Transactional benchmarks

	Case Studies
	Fuzzing and Test Generation
	Checkpoint/Rollback as an Application Service
	Other Applications

	Related Work
	Conclusion
	Full pseudo-code for the checkpoint/rollback algorithm

	p018-Gascon-Samson
	Introduction
	Motivation
	System Model
	ThingsMigrate Manager
	ThingsMigrate Runtime

	Approach
	Assumptions
	Motivating Example
	Challenges
	Problem Statement
	Phase 1: Code Instrumentation
	Phase 2: Snapshotting and Migrating
	Phase 3: Code Restoration
	Limitations

	Implementation
	Experimental Validation
	Experimental Setup
	Experiment 1: Code Instrumentation
	Experiment 2: Performance Overhead
	Experiment 3: Multiple Migrations
	Summary

	Case Study: Motion Detector
	Experimental Setup
	Results

	Related Work
	Conclusion and Future Work
	ThingsJS and ThingsMigrate
	Architecture
	Implementation as an Open-Source Project

	Web Dashboard
	Interface Overview
	Main Features

	p019-Gu
	Introduction
	Illustrative Example
	Dynamic Software Updating and Its Challenges
	Object Transformation Using Method Invocation History
	Synthesizing the Equivalent Invocation History

	Approach Overview
	Inverse Program Synthesis
	Symbolic Execution of AOTES
	Program and Execution Definitions
	Inverse Method Synthesis
	Loop and Recursion

	Execution Synthesis
	Online Synthesis of Invocation Histories
	Realizing Object Transformations

	Implementation
	Experiments
	Real-world Updates
	Value Change: Tomcat dd741c
	Name Change: FTP 5d5592
	Type Change: FTP f8110b
	Complex Change: SSHD 009d83

	Micro Benchmark
	Discussion

	Related Work
	Dynamic Software Updating
	Program and Execution Synthesis

	Conclusion

	p020-Wang
	Introduction
	A Running Example: Drawable Deck
	Problem 1: Basic Unintentional Method Conflicts
	Problem and Possible Workarounds
	FHJ's solution

	Problem 2: Dynamic Dispatching
	FHJ's solution

	Problem 3: Overriding on Individual Branches
	Potential solutions/workarounds in existing languages
	FHJ's solution
	Terminology
	A peek at the hierarchical dispatching algorithm

	Formalization
	Syntax
	Notations
	Interfaces
	Methods
	Expressions & Values

	Subtyping and Typing Rules
	Subtyping
	Type-checking

	Small-step Semantics and Propagation
	Semantic Rules
	Propagation Rules

	Key Algorithms and Type-Soundness
	The Method Lookup Algorithm in mbody
	Finding the Most Specific Origin: findOrigin
	Finding the Most Specific Overriding: findOverride
	Other Auxiliaries
	Properties

	Discussion
	Abstract Methods
	Orthogonal & Non-Orthogonal Extensions
	Loosening the Model: Reject Early or Reject Later?

	Related Work
	Mainstream Multiple Inheritance Models
	Resolving Unintentional Method Conflicts
	Hierarchical Dispatch in SELF
	Formalization Based on Featherweight Java

	Conclusion
	Appendix
	Proofs
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 4

	p021-Ancona
	Introduction
	Inference systems with corules
	Infinite behaviour by corules
	Infinite behaviour by standard techniques
	Equivalence between the two semantics
	A simple imperative Java-like language
	Related work
	Conclusion
	A coalgebraic view
	Proofs
	Auxiliary definitions and additional examples for the imperative Java-like language

	p022-Bi
	Introduction
	Overview
	Motivation: Family Polymorphism
	The Expression Problem, NeColus Style
	Disjoint Intersection Types and Ambiguity
	Logical Relations for Coherence

	NeColus: Syntax and Semantics
	Syntax
	Declarative Subtyping
	Typing of NeColus
	Elaboration Semantics
	Comparison with lambda_i

	Coherence
	In Search of Coherence
	Logical Relations
	Establishing Coherence
	Some Interesting Corollaries

	Algorithmic Subtyping
	The Subtyping Algorithm
	Correctness of the Algorithm

	Related Work
	Conclusions and Future Work
	Some Definitions
	Full Type System of NeColus
	Full Type System of lambda_c

	p023-Smaragdakis
	Introduction
	Analysis Illustration
	Soundness and Design Decisions Overview
	Background and Illustrating Design Decisions
	Soundness Assumptions

	Defensive Analysis, Informally
	A Model of Defensive Analysis
	Preliminaries
	Analysis Structure
	Reasoning

	Implementation and Discussion
	Evaluation
	Related Work
	Conclusions

	p024-Toman
	Introduction
	At-Most-Once Problems
	The Legato Analysis
	Preliminaries
	The Basic Analysis
	Loops
	Soundness
	Fields and the Heap

	Interprocedural Analysis
	Transitive Resource Accesses
	Dynamic Dispatch and Path-Sensitivity
	Effectively Identity Flows
	Effectively Identity Flows and Single Dispatch
	Effectively Identity Flows and Path-Sensitivity

	Application Level Concurrency

	Implementation and Challenges
	Alias Queries
	Resource Model
	Context-Sensitivity
	Limitations

	Evaluation
	Analysis Effectiveness
	Sample Bugs

	Performance

	Related Work
	Conclusion
	Appendix: Soundness
	Preliminaries
	Concrete Instrumented Semantics
	Abstract Semantics
	Proof

	p025-Milanova
	Introduction
	Mutability Semantics
	Flow Graph
	Paths in Flow Graph
	Exact Paths
	Approximate Paths

	Type Systems
	ReIm
	ReIm Qualifiers
	Typing Rules

	ReM
	ReM Qualifiers
	Typing Rules

	Type Inference

	Equivalence
	Empirical Results
	Related Work
	Conclusion
	Proofs

	p026-Grech
	Introduction
	Illustration and Intuition
	Static Analysis with Reflection
	Inter-Procedural Reflection Analysis
	Variations

	String Merging via Coloring
	Practical Applications of Technique
	Combining Forward with Backward Analyses to Counter Imprecision
	High Confidence Inferences
	Selective Unsoundness

	Evaluation
	RQ1: Performance and Efficiency Gains
	RQ2: Precision and Soundness
	RQ3: Effectiveness of Coloring Algorithm and String Merging

	Related Work
	Conclusion and Future Work

