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Abstract
We give upper and lower asymptotic bounds for the left tail and for the right tail of the continuous
limiting QuickSort density f that are nearly matching in each tail. The bounds strengthen results
from a paper of Svante Janson (2015) concerning the corresponding distribution function F .
Furthermore, we obtain similar upper bounds on absolute values of derivatives of f of each order.
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1 Introduction

Let Xn denote the (random) number of comparisons when sorting n distinct numbers using
the algorithm QuickSort. Clearly X0 = 0, and for n ≥ 1 we have the recurrence relation

Xn
L= XUn−1 +X∗n−Un + n− 1,

where L= denotes equality in law (i.e., in distribution); Xk
L= X∗k ; the random variable Un is

uniformly distributed on {1, . . . , n}; and Un, X0, . . . , Xn−1, X∗0 , . . . , X∗n−1 are all independent.
It is well known that

EXn = 2 (n+ 1)Hn − 4n,

where Hn is the nth harmonic number Hn :=
∑n
k=1 k

−1 and (from a simple exact expression)
that VarXn = (1 + o(1))(7− 2π2

3 )n2. To study distributional asymptotics, we first center
and scale Xn as follows:

Zn = Xn − EXn

n
.
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Using the Wasserstein d2-metric, Rösler [8] proved that Zn converges to Z weakly as n→∞.
Using a martingale argument, Régnier [7] proved that the slightly renormalized n

n+1Zn
converges to Z in Lp for every finite p, and thus in distribution; equivalently, the same
conclusions hold for Zn. The random variable Z has everywhere finite moment generating
function with EZ = 0 and VarZ = 7 −

(
2π2/3

)
. Moreover, Z satisfies the distributional

identity

Z
L= UZ + (1− U)Z∗ + g(U).

On the right, Z∗ L= Z; U is uniformly distributed on (0, 1); U,Z,Z∗ are independent; and

g(u) := 2u ln u+ 2(1− u) ln(1− u) + 1.

Further, the distributional identity together with the condition that EZ (exists and) vanishes
characterizes the limiting Quicksort distribution; this was first shown by Rösler [8] under
the additional condition that VarZ <∞, and later in full by Fill and Janson [1].

Fill and Janson [2] derived basic properties of the limiting QuickSort distribution L(Z).
In particular, they proved that L(Z) has a (unique) continuous density f which is everywhere
positive and infinitely differentiable, and for every k ≥ 0 that f (k) is bounded and enjoys
superpolynomial decay in both tails, that is, for each p ≥ 0 and k ≥ 0 there exists a finite
constant Cp,k such that

∣∣f (k)(x)
∣∣ ≤ Cp,k|x|−p for all x ∈ R.

In this paper, we study asymptotics of f(−x) and f(x) as x→∞. Janson [3] concerned
himself with the corresponding asymptotics for the distribution function F and wrote this:
“Using non-rigorous methods from applied mathematics (assuming an as yet unverified
regularity hypothesis), Knessl and Szpankowski [4] found very precise asymptotics of both
the left tail and the right tail.” Janson specifies these Knessl–Szpankowski asymptotics for F
in his equations (1.6)–(1.7). But Knessl and Szpankowski actually did more, producing
asymptotics for f , which were integrated by Janson to get corresponding asymptotics for F .
We utilize the same abbreviation γ := (2− 1

ln 2 )−1 as Janson [3]. With the same constant c3
as in (1.6) of [3], the density analogues of (1.6) (omitting the middle expression) and (1.7)
of [3] are that, as x→∞, Knessl and Szpankowski [4] find

f(−x) = exp
[
−eγx+c3+o(1)

]
(1)

for the left tail and

f(x) = exp[−x ln x− x ln ln x+ (1 + ln 2)x+ o(x)] (2)

for the right tail.
We will come as close to these non-rigorous results for the density as Janson [3] does

for the distribution function and we also obtain corresponding asymptotic upper bounds
for absolute values of derivatives of the density. Although our asymptotics for f imply the
asymptotics for F in Janson’s Theorem 1.1, it is important to note that in the case of upper
bounds (but not lower bounds) we use his results in the proofs of ours.

The next two theorems are our main results.

I Theorem 1.1. Let γ := (2− 1
ln 2 )−1. As x→∞, the limiting QuickSort density function f

satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ f(−x) ≤ exp

[
−eγx+O(1)

]
, (3)

exp[−x ln x− x ln ln x+O(x)] ≤ f(x) ≤ exp[−x ln x+O(x)]. (4)
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I Theorem 1.2. Given an integer k ≥ 0, as x → ∞ the kth derivative of the limiting
QuickSort density function f satisfies∣∣∣f (k)(−x)

∣∣∣ ≤ exp
[
−eγx+O(1)

]
, (5)∣∣∣f (k)(x)

∣∣∣ ≤ exp[−x ln x+O(x)]. (6)

I Remark. The non-rigorous arguments of Knessl and Szpankowski [4] suggest that the
following asymptotics as x→∞ obtained by repeated formal differentiation of (1)–(2) are
correct for every k ≥ 0:

f (k)(−x) = exp
[
−eγx+c3+o(1)

]
, (7)

f (k)(x) = (−1)k exp[−x ln x− x ln ln x+ (1 + ln 2)x+ o(x)]. (8)

But these remain conjectures for now. Unfortunately, for k ≥ 1 we don’t even know how
to identify rigorously the asymptotic signs of f (k)(∓x)! Concerning k = 1, it has long been
conjectured that f is unimodal. This would of course imply that f ′(−x) > 0 and f ′(x) < 0
for sufficiently large x.

As already mentioned, Fill and Janson [2] proved that or each p ≥ 0 and k ≥ 0 there
exists a finite constant Cp,k such that

∣∣f (k)(x)
∣∣ ≤ Cp,k|x|−p for all x ∈ R. Our technique for

proving the upper bounds in Theorems 1.1 and 1.2 is to use explicit bounds on the constants
Ck := C0,k together with the Landau–Kolmogorov inequality (see, for example, [9]).

Our extended abstract is organized as follows. In Section 2 we deal with preliminaries: We
restate (to render this extended abstract self-contained) the asymptotic results of Janson [3,
Theorem 1.1], bound Ck explicitly in terms of k, review the Landau–Kolmogorov inequality,
and recall an integral equation for f that is the starting point for our lower-bound results. In
Section 3 we establish the left-tail upper bounds on |f (k)| for k ≥ 0 claimed in (3) and (5). In
Section 4, we establish the right-tail upper bounds on |f (k)| for k ≥ 0 claimed in (4) and (6).
Sections 5 and 6 derive the stated lower bounds on the left and right tails, respectively, of f
using an iterative approach similar to that of Janson [3] for the distribution function.

2 Preliminaries

2.1 Janson’s asymptotic bounds on F

The upper bounds in the following main Theorem 1.1 of Janson [3] are used in our proof of
the upper bounds in our Theorems 1.1 and 1.2.

I Proposition 2.1. Let γ := (2− 1
ln 2 )−1. As x→∞, the limiting QuickSort distribution

function F satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ F (−x) ≤ exp

[
−eγx+O(1)

]
, (9)

exp[−x ln x− x ln ln x+O(x)] ≤ 1− F (x) ≤ exp[−x ln x+O(x)]. (10)

2.2 Explicit constant bounds for absolute derivatives
We also make use of the following two results extracted from [2, Theorem 2.1 and (3.3)].

I Lemma 2.2. Let φ denote the characteristic function corresponding to f . Then for every
real p ≥ 0 we have

|φ(t)| ≤ 2p
2+6p|t|−p for all t ∈ R.

AofA 2018



21:4 On the Tails of the Limiting QuickSort Density

I Lemma 2.3. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt.

Using these two results, it is now easy to bound f (k).

I Proposition 2.4. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 2k

2+10k+17.

Proof. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt

≤ 1
2π

[∫
|t|>1
|t|k |φ(t)| dt+

∫
|t|≤1
|t|k |φ(t)| dt

]

≤ 1
2π

[∫
|t|>1

2(k+2)2+6(k+2)t−2 dt+
∫
|t|≤1
|t|k dt

]

≤ 1
π

[
2k

2+10k+16 + 1
k + 1

]
≤ 2k

2+10k+17,

as desired. J

2.3 Landau–Kolmogorov inequality

For an overview of the Landau–Kolmogorov inequality, see [6, Chapter 1]. Here we state
a version of the inequality well-suited to our purposes; see [5] and [9, display (21) and the
display following (17)].

I Lemma 2.5. Let n ≥ 2, and suppose h : (0,∞) → R has n derivatives. If h and h(n)

are both bounded, then for 1 ≤ k < n so is h(k). Moreover, there exist constants cn,k (not
depending on h) such that the supremum norm ‖ · ‖ satisfies

‖h(k)‖ ≤ cn,k ‖h‖1−(k/n) ‖h(n)‖k/n, 1 ≤ k < n.

Further, for 1 ≤ k ≤ n/2 the best constants cn,k satisfy

cn,k ≤ n(1/2)[1−(k/n)](n− k)−1/2
(
e2n

4k

)k
≤
(
e2n

4k

)k
.

2.4 An integral equation for f

Fill and Janson [2, Theorem 4.1 and (4.2)] produced an integral equation satisfied by f ,
namely,

f(x) =
∫ 1

u=0

∫
z∈R

f(z) f
(
x− g(u)− (1− u)z

u

)
1
u
dz du. (11)
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3 Left Tail Upper Bound for Absolute Derivatives

The left-tail upper bound (5) in Theorem 1.2 can be written in the equivalent form that, for
each fixed integer k ≥ 0, we have

lim sup
x→∞

(
γx− ln

[
− ln

∣∣∣f (k)(−x)
∣∣∣]) <∞, (12)

just as Janson’s left-tail upper-bound on F in (9) can be written

lim sup
x→∞

(γx− ln [− lnF (−x)]) <∞. (13)

In this section we prove (5) ≡ (12) in the strengthened form LHS(3.1) ≤ LHS(3.2), for which
the following proposition is clearly sufficient.

I Proposition 3.1. For each fixed k ≥ 0 we have

lim sup
x→∞

(
− ln

[
− ln

∣∣∣f (k)(−x)
∣∣∣]+ ln[− lnF (−x)]

)
≤ 0. (14)

Proof. Choosing any x and applying the Landau–Kolmogorov inequality Lemma 2.5 to the
function h defined for t ≥ 0 by h(t) := F (−x− t), we find for 0 ≤ k ≤ (n/2)− 1 that∣∣∣f (k)(−x)

∣∣∣ ≤ sup
t≥x

∣∣∣f (k)(−t)
∣∣∣

≤
[

e2n

4(k + 1)

]k+1

[F (−x)]1−[(k+1)/n]
[
sup
t≥x

∣∣∣f (n−1)(−t)
∣∣∣](k+1)/n

.

For n ≥ 2 we can bound the last supremum using Proposition 2.4 simply by

2(n−1)2+10(n−1)+17 = 2n
2+8n+8 ≤ 27n2

. (15)

Thus the argument of the lim sup in (14) can be bounded above by

− ln
[
1− k + 1

n
− ln ak + (k + 1)(7n ln 2 + lnn)

− lnF (−x)

]
,

with ak := [e2/(4(k + 1))]k+1. Letting n ≡ n(x)→∞ with n(x) = o(eγx) and again using
the upper bound from (9), the claimed inequality follows. J

4 Right Tail Upper Bound for Absolute Derivatives

In this section we establish the next proposition, a right-tail analogue of Proposition 3.1,
which [by Janson’s right-tail upper bound on F in (10)] implies the following strengthened
form of (6):

lim sup
x→∞

x−1
(
x ln x+ ln

∣∣∣f (k)(x)
∣∣∣) ≤ lim sup

x→∞
x−1 (x ln x+ ln [1− F (x)]) <∞.

I Proposition 4.1. For each fixed k ≥ 0 we have

lim sup
x→∞

x−1
(

ln
∣∣∣f (k)(x)

∣∣∣− ln [1− F (x)]
)
≤ 0. (16)

AofA 2018
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Proof. Proceeding as in the proof of Proposition 3.1, for any x and any 0 ≤ k ≤ (n/2)− 1
we have∣∣∣f (k)(x)

∣∣∣ ≤ [ e2n

4(k + 1)

]k+1

[1− F (x)]1−[(k+1)/n]
[
sup
t≥x

∣∣∣f (n−1)(t)
∣∣∣](k+1)/n

;

we again bound the third factor by (15).
Thus the argument of the lim sup in (16) can be bounded above by

x−1[k+1
n (− ln[1− F (x)]) + ln ak + (k + 1)(7n ln 2 + lnn)],

again with ak := [e2/(4(k+1))]k+1. Letting n ≡ n(x) satisfy n(x) = ω(log x) and n(x) = o(x),
and now using the right-tail lower bound on F from (10), the claimed inequality follows. J

5 Left Tail Lower Bound on f

Our iterative approach to finding the left tail lower bound on f is similar to the method
used by Janson [3] for F . The following lemma gives us an inequality that is essential in this
section; as we shall see, it is established from a recurrence inequality. For z ≥ 0 define

mz :=
(

min
x∈[−z,0]

f (x)
)
∧ 1.

I Lemma 5.1. Given ε ∈ (0, 1/10), let a ≡ a(ε) := −g
( 1

2 − ε
)
> 0. Then for any integer

k ≥ 2 we have

mka ≥
(
2ε3m2a

)2k−2

.

We delay the proof of Lemma 5.1 in order to show next how the lemma leads us to the
desired lower bound in (3) on the left tail of f by using the same technique as in [3] for F .

I Proposition 5.2. As x→∞ we have

ln f(−x) ≥ −eγx+ln ln x+O(1).

Proof. By Lemma 5.1, for x > a we have

f(−x) ≥ mx ≥ m
(⌈x
a

⌉
a
)
≥
(
2ε3m2a

)2dx/ae−2

≥
(
2ε3m2a

)2x/a
,

provided ε is sufficiently small that 2ε3m2a < 1. The same as Janson [3], we pick ε = x−1/2

and, setting γ = (2− 1
ln 2 )−1, get 1

a = γ
ln 2 +O(x−1) and

ln f(−x) ≥ 2
γ

ln 2x+O(1) · ln
(
2ε3m2a

)
= eγx+O(1) ·

(
− 3

2 ln x+ lnm2a + ln 2
)

≥ −eγx+ln ln x+O(1). J

Now we go back to prove Lemma 5.1:

Proof of Lemma 5.1. By the integral equation (11) satisfied by f (and symmetry in u about
u = 1/2), for arbitrary z and a we have

f(−z − a) = 2
∫ 1/2

u=0

∫
y∈R

f(y)f
(
−z − a− g(u)− (1− u)y

u

)
1
u
dy du. (17)
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Since f is everywhere positive, we can get a lower bound on f(−z − a) by restricting the
range of integration in (17). Therefore,

f(−z − a) ≥ 2
∫ 1/2

u= 1
2−

ε
2

∫ −z+ε2

y=−z
f(y)f

(
−z − a− g(u)− (1− u)y

u

)
1
u
dy du. (18)

We claim that in this integral region, we have −z−a−g(u)−(1−u)y
u ≥ −z, which is equivalent

to y+ z ≤ −a−g(u)
1−u . Here is a proof. Observe that when ε is small enough and u ∈ [ 1

2 −
ε
2 ,

1
2 ],

we have

−a− g(u)
1− u ≥

g
( 1

2 − ε
)
− g

( 1
2 −

ε
2
)

1
2 + ε

2

≥
ε
2
∣∣g′( 1

2 −
ε
2
)∣∣

1
2 + ε

2
= ε

1 + ε

∣∣∣∣2 ln
(

1− 2ε
1 + ε

)∣∣∣∣
≥ 4ε2

(1 + ε)2 ≥ ε
2.

Also, in this integral region we have y + z ≤ ε2. So we conclude that y + z ≤ −a−g(u)
1−u .

Next, we claim that −z−a−g(u)−(1−u)y
u ≤ 0 in this integral region if z is large enough.

Here is a proof. Let −z−a−g(u)−(1−u)y
u = −z + δ with δ ≥ 0. Then in the integral region we

have 0 ≤ y + z = −a−g(u)−uδ
1−u . Therefore

δ ≤ −a− g(u)
u

≤
−a− g

( 1
2
)

1
2 −

ε
2

= 2
1− ε

[
g

(
1
2 − ε

)
− g

(
1
2

)]
≤ 2ε

1− ε

∣∣∣∣2 ln
(

1− 4ε
1 + 2ε

)∣∣∣∣
≤ 19ε2,

where the last inequality can be verified to hold for ε < 1/10. That means if we pick z large
enough, for example, z ≥ 20ε2, then −z−a−g(u)−(1−u)y

u = −z + δ will be negative. It can also
be verified that a ≥ 30ε2 for ε < 1/10.

Now consider ε < 1/10, an integer k ≥ 3, z ∈ [(k − 2)a, (k − 1)a], and x = z + a ∈
[(k − 1)a, ka]. Noting z ≥ a ≥ 30ε2 > 20ε2, by (18) we have

f(−x) ≥ 2 · ε2 ·m
2
z · ε2 · 2 ≥ 2ε3m2

(k−1)a.

Further, for x ∈ [0, (k − 1)a] we have

f (−x) ≥ m(k−1)a > 2ε3m2
(k−1)a

since 2ε3 < 1 and m(k−1)a ≤ 1 by definition. Combine these two facts, we can conclude that
for x ∈ [0, ka] we have f (−x) ≥ 2ε3m2

(k−1)a. This implies the recurrence inequality

mka ≥ 2ε3m2
(k−1)a.

The desired inequality follows by iterating:

mka ≥
(
2ε3
)2k−2−1

m2k−2

2a ≥
(
2ε3 ·m2a

)2k−2

. J

AofA 2018
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6 Right Tail Lower Bound on f

Once again we use an iterative approach to derive our right-tail lower bound. The following
key lemma is established from a recurrence inequality. Define

c := 2[F (1)− F (0)] ∈ (0, 2)

and

mz := min
x∈[0,z]

f(x), z ≥ 0.

I Lemma 6.1. Suppose b ∈ [0, 1) and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b.
Then for any integer k ≥ 1 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have

m2+kb ≥ (cδ)k−1m3.

We delay the proof of Lemma 6.1 in order to show next how the lemma leads us to the
desired lower bound in (4) on the right tail of f .

I Proposition 6.2. As x→∞ we have

f(x) ≥ exp[−x ln x− x ln ln x+O(x)].

Proof. Given x ≥ 3 suitably large, we will show next that we can apply Lemma 6.1 for
suitably chosen b > 0 and δ and k = d(x− 2)/be ≥ 2. Then, by the lemma,

f(x) ≥ m2+kb ≥ (cδ)k−1m3 ≥ (cδ)(x−2)/bm3, (19)

and we will use (19) to establish the proposition.
We make the same choices of δ and b as in [3, Sec. 4], namely, δ = 1/(x ln x) and

b = 1− (2/ ln x). To apply Lemma 6.1, we need to check that g(δ) ≥ b and 2 + (k − 1)b ≤
[g(δ) − b]/δ, for the latter of which it is sufficient that x ≤ [g(δ) − b]/δ. Indeed, if x is
sufficiently large, then

g(δ) ≥ 1 + 3δ ln δ = 1− 3
x ln x (ln x+ ln ln x) ≥ 1− 4

x ,

where the elementary first inequality is (4.1) in [3], and so

g(δ)− b ≥ 2
ln x −

4
x ≥

1
ln x > 0

and

g(δ)− b
δ

≥ 1/ ln x
1/(x ln x) = x.

Finally, we use (19) to establish the proposition. Indeed,

− ln f(x) ≤ x−2
b ln( 1

cδ )− lnm3

≤ x
1−(2/ ln x) [ln(x ln x) + ln( 1

c )]− lnm3

= x
1−(2/ ln x) ln(x ln x) +O(x).



J. A. Fill and W. Hung 21:9

But
x

1− (2/ ln x) ln(x ln x)

= x

[
1 + 2

ln x +O

(
1

(log x)2

)]
(ln x+ ln ln x)

= (x ln x)
[
1 + 2

ln x +O

(
1

(log x)2

)](
1 + ln ln x

ln x

)
= (x ln x)

[
1 + ln ln x

ln x + 2
ln x + 2 ln ln x

(ln x)2 +O

(
1

(log x)2

)]
= x ln x+ x ln ln x+ 2x+ 2x ln ln x

ln x +O

(
x

log x

)
= x ln x+ x ln ln x+O(x).

So

− ln f(x) ≤ x ln x+ x ln ln x+O(x),

as claimed. J

Now we go back to prove Lemma 6.1, but first we need two preparatory results.

I Lemma 6.3. Suppose z ≥ 2, b ≥ 0, and δ ∈ (0, 1/2) satisfy g(δ) ≥ b and z ≤ [g(δ)− b]/δ.
Then

f(z + b) ≥ c δ mz.

Proof. By the integral equation (11) satisfied by f (and symmetry in u about u = 1/2), for
arbitrary z and b we have

f(z + b) = 2
∫ 1/2

u=0

∫
y∈R

f(y)f
(
z + b− g(u)− (1− u)y

u

)
1
u
dy du.

Since f is positive everywhere, a lower bound on f (z + b) can be achieved by shrinking the
region of integration:

f (z + b) ≥ 2
∫ δ

u=0

∫ z

y=0
f(y)f

(
z + b− g(u)− (1− u)y

u

)
1
u
dy du

≥ 2mz

∫ δ

u=0

∫ z

y=0
f

(
z + b− g(u)− (1− u)y

u

)
1
u
dy du

= 2mz

∫ δ

u=0

∫ z+b−g(u)
u

ξ=z+ b−g(u)
u

f(ξ) 1
1− u dξ du. (20)

The equality comes from a change of variables. We next claim that the integral of
integration for ξ contains (0, z − 1), and then the desired result follows. Indeed, if u ∈ (0, δ)
and ξ ∈ (0, z − 1) then

ξ < z − 1 < z−1
u ≤

z+b−g(u)
u ,

where the last inequality holds because b ≥ 0 and g(u) ≤ 1; and, because g(u) ≥ g(δ) and
g(δ) ≥ b and z ≤ [g(δ)− b]/δ, we have

ξ > 0 = z + b−g(u)
u − [z + b−g(u)

u ] ≥ z + b−g(u)
u − [z + b−g(δ)

u ]

≥ z + b−g(u)
u − [z + b−g(δ)

δ ] ≥ z + b−g(u)
u . J

AofA 2018
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I Lemma 6.4. Suppose b ≥ 0 and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b. Then
for any integer k ≥ 2 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have

m2+kb ≥ c δ m2+(k−1)b.

Proof. For y ∈ [2 + (k − 1)b, 2 + kb], application of Lemma 6.3 with z = y − b yields

f(y) ≥ c δ my−b ≥ c δ m2+(k−1)b.

Also, for y ∈ [0, 2 + (k − 1)b] we certainly have

f(y) ≥ m2+(k−1)b > c δm2+(k−1)b.

The result follows. J

We are now ready to complete this section by proving Lemma 6.1.

Proof of Lemma 6.1. By iterating the recurrence inequality of Lemma 6.4, it follows that

m2+kb ≥ (c δ)k−1m2+b.

Lemma 6.1 then follows since b < 1. J
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