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Abstract
Asymptotic expansions for the Taylor coefficients of the Lagrangean form φ(z) = zf(φ(z)) are
examined with a focus on the calculations of the asymptotic coefficients. The expansions are
simple and useful, and we discuss their use in some enumerating sequences in trees, lattice paths
and planar maps.
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1 Introduction

Singularity analysis and saddle-point method represent the two major standard approaches
used in analytic combinatorics to compute the asymptotics of, say the Taylor coefficients
[zn]φ(z) for large n; see [9, Chap. VI & VII]. The choice of which method to use depends
crucially on the growth order of the functions in question near the dominant singularity or
the saddle-point. The general principle is to apply the saddle-point method when the growth
order of f near the saddle-point is large (e.g., log φ(z)� (log |1− z|)1+ε) and to apply the
singularity analysis otherwise. In most cases, only one of the two works if one is interested
in more precise asymptotic approximations. The Lagrangean form (frequently encountered
in diverse areas; see [9, §A.6])

φ(z) = zf(φ(z)) (1)
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with both φ and f analytic functions, is one of the few situations in which both methods
apply, and the key tool bridging the two different approaches is the Lagrange Inversion
Formula [9, §A.6]

[zn]φ(z) = n−1[tn−1]f(t)n (n > 1). (2)

This form of large powers shows generally that saddle-point method is a good candidate
for deriving the corresponding asymptotics, while the functional form (1) favors the use of
singularity analysis (coupling with the implicit function theorem).

For the purpose of more precise asymptotics, we assume the following conditions.

C1 (nonnegativity and aperiodicity) aj := [tj ]f(t) > 0 for every j > 0 and gcd{j : aj >
0} = 1;

C2 (analyticity) f is analytic in |z| < R for 0 < R 6∞;
C3 (sub-criticality) there exists an r ∈ (0, R) such that rf ′(r) = f(r).

Note that the conditions C1 and C3 imply that

a0 = f(0) =
∑
j>2

(j − 1)ajrj > 0.

Note further that the condition C3 fails when f is linear, namely, f(z) = a0 + a1z, which
gives rise to

φ(z) = a0z

1− a1z
=⇒ [zn]φ(z) = a0a

n−1
1 .

Under the conditions C1–C3, it is known, by singularity analysis or saddle-point method,
that (see [9, §IV.7] or [13, 14])

[zn]φ(z) ∼ C n− 3
2 ρ−n, where ρ := r

f(r) and C :=

√
f(r)

2πf ′′(r) .

The aim of this extended abstract is to examine the asymptotic expansions of the
Lagrangean form (1). In particular, we will prove the following theorem, which can be
regarded as an alternative version of Theorem VI.6 in [9, §VI.7] with the coefficients not just
“computable” but by a more precise formula. Also we prefer the use of binomial coefficients
to negative powers of n.

I Theorem 1. Assume that φ and f satisfy (1). Then, under the conditions C1–C3, we
have

[zn]φ(z) ∼ ρ−n
∑
k>0

c2k+1

(
n− k − 3

2
n

)
, (3)

where the coefficients cj’s are expressible in yet another Lagrangean form

ck = k−1[vk−1]F (v)k, with F (v) := −
(1− (r+v)f(r)

rf(r+v)

v2

)− 1
2

(k > 1). (4)

This succinct expression for ck shows that the Lagrangean form (1) is not only useful for
computing the Taylor expansion of φ at z = 0 (as is most commonly used), but also at
the dominant singularity in subcritical situations (the latter is little known). The singular
Lagrangean form (4) can further be used to derive the asymptotic behavior of ck (although in
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most cases the sub-criticality condition C3 fails), which in turn will be helpful in determining
the number of terms used in order to reduce the numerical errors; see Section 4–6 for the
discussion of some examples.

Let τ :=
√

2f(r)
f ′′(r) . Then we have (with fj := f (j)(r))

c1
τ

= −1 and c3
τ3 = − 1

8r2 −
f2

4f0
+ f3

4rf2
− 5f2

3
72f2

2
+ f4

24f2
.

While the expressions of ck are becoming messy as k increases, the neat expression (4) is not
commonly available in most asymptotic expansions and reflects certain intrinsic properties of
the Lagrangean form (1).

The asymptotic expansion (3) is to be compared with the usual one (see [9, Theorem VI.6]):

[zn]φ(z) ∼ ρ−n
∑
k>0

dkn
−k− 3

2 , (5)

where the coefficients dk can be computed recursively but no simple expression such as (4) is
available; see for example the next section for the usual constructive procedures to compute
dk. Alternatively, we can convert (3) to (5) by the following argument. Recall first Euler’s
reflection formula(

n− k − 3
2

n

)
=

Γ
(
n− k − 1

2
)

n!Γ
(
−k − 1

2
) =

(−1)k+1Γ
(
k + 3

2
)

π
·

Γ
(
n− k − 1

2
)

Γ(n+ 1) . (6)

Then we need the following asymptotic expansion.

I Lemma 2 ([17]). For α ∈ C

Γ(z + α)
Γ(z) ∼

∑
j>0

λj(α)zα−j (|z| → ∞),

uniformly for | arg(z)| 6 π − ε, ε > 0. Here λ0(α) = 1 and

λj(α) = 1
j

∑
06l<j

(
α− l

j + 1− l

)
λl(α) (j > 1).

This expression of λj(α) is simpler than that given in [8, Proposition 1]. Applying Lemma 2
to (6), we obtain(

n− k − 3
2

n

)
∼

(−1)k+1Γ
(
k + 3

2
)

π

∑
j>0

λj
(
−k − 1

2
)
n−k−

3
2−j ,

from which we deduce the relation between dk and ck, which in turn results in the effective
version (5) of [9, Theorem VI.6].

I Theorem 3. Assume that φ and f satisfy (1). Then, under the conditions C1–C3, the
expansion (5) holds with

dk = 1
π

∑
06j6k

(−1)jc2j+1Γ
(
j + 3

2
)
λk−j

(
−j − 1

2
)

(k > 0). (7)

In view of the computational complexity of the coefficients, the expansion (3) is preferable
and recommended for most numerical purposes because the binomial coefficients can be
easily computed in most softwares.

AofA 2018
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On the other hand, the expansion (3) can be extended to a more general context of the
form (or Lagrange-Bürmann formula)

[zn]G(φ(z)) = n−1[tn−1]G′(t)f(t)n (n > 1).

I Theorem 4. Let G be an analytic function in |z| 6 r. Under the conditions C1–C3, we
have

[zn]G(φ(z)) ∼ ρ−n
∑
k>0

e2k+1

(
n− k − 3

2
n

)
, (8)

where ek = k−1[vk−1]G′(r + v)F (v)k for k > 1.

Since e1 = −G′(r)τ , we see that e1 = 0 when G′(r) = 0 (very common in the context of
planar maps [1]), and we then get the n− 5

2 -asymptotics

[zn]G(φ(z)) ∼ ρ−n
∑
k>0

e2k+3

(
n− k − 5

2
n

)
,

where in particular (with Gj = G(j)(r)) e3
τ3 = −G3

6 −
G2
2r + f3G2

6f2
. The usefulness of the two

expansions (3) and (8) will be demonstrated through a few examples of trees and planar
maps.

In the next section, we give a procedure to compute the coefficients dk in (5). Then we
prove (3) and (8) in Section 3. Some applications are discussed in the remaining sections.

2 An asymptotic expansion by saddle-point method

For comparison and for more methodological interest, we derive (5) in this section by a
direct saddle-point method. Since the analysis is standard (see [9, 14]), we focus on the
computation of the asymptotic coefficients dk as follows.
1. Compute first the expansion f(rev) =

∑
k>0 d

[1]
k v

k, where (S(k, j) being Stirling numbers
of the second kind)

d
[1]
k = 1

k!
∑

06j6k
S(k, j)f (j)(r)rj (k > 0).

2. Expand log f(rev) =
∑
k>0 d

[2]
k v

k, where d[2]
0 = log f(r) and

d
[2]
k =

d
[1]
k

f(r) −
1

kf(r)
∑

16j<k
jd

[2]
j d

[1]
k−j (k > 2).

By rf ′(r) = r, we see that d[2]
1 = 1 and d[2]

2 = r2f ′′(r)
2f(r) .

3. Now expand

exp
(
vx+ 1

2d[2]
2

∑
j>1

d
[2]
j+2v

j+3xj
)

=
∑
k>0

d
[3]
k (v)xk,

where d[3]
0 = 1 and

d
[3]
k (v) = v

k
d

[3]
k−1(v) + 1

2d[2]
2 k

∑
16j6k

jvj+2d
[2]
j+2d

[3]
k−j(v) (k > 1).

Note that d[3]
k (v) contains only powers of v with the same parity as k of degree 3k.
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4. Then, with σ := r
√

f ′′(r)
f(r) ,

[zn−1]f(z)n ∼ r1−nf(r)n√
2πnσ

1 +
∑
k>1

d
[4]
k

σ2knk

 ,

where

d
[4]
k := 1√

2π

∫ ∞
−∞

e−
1
2 t

2
d

[3]
2k(it) dt =

∑
06j63k

(−1)j (2j)!
j!2j [v2j ]d[3]

2k(v).

Thus, by comparing with (5), we have (with τ :=
√

2f(r)
f ′′(r) )

dk = r√
2π σ2k+1

d
[4]
k = τ2k+1

2k+ 1
2 r2k

d
[4]
k . (9)

A non-recursive procedure is possible via Bell polynomials but not simpler; see [7] and
the references therein. In particular (with fj := f (j)(r)), d1 = 1

8 −
3r2f2
8f0

+ rf3
4f2
− r2f2

3
24f2

2
+ r2f4

8f2
.

For larger k the expressions of dn become very messy.

3 An asymptotic expansion by singularity analysis

We prove (3) and (8) in this section by singularity analysis. As in the previous section, we
focus on the computations of ck, the analytic justification being done as in [9, Theorem VI.6].
Following the exposition there, the idea starts from the equation (writing w = φ(z))

ρ− z = r

f(r) −
w

f(w) . (10)

Then invert (10) by expanding w in terms of ρ− z. For convenience, we find that it is simpler
to use the expansion

1− wf(r)
rf(w) =

∑
j>2

bj(w − r)j . (11)

In particular, we have (with fj = f (j)(r))

b2 = f2

2f0
, b3 = −b2

r
+ f3

6f0
, b4 = −b3

r
− f2

2
4f2

0
+ f4

24f0
.

Now write w = r + t, and rearrange the expansion (11) as

f(r + t)− f(r)
r

(r + t) = f(r + t)
∑
j>2

bjt
j ,

which then leads to the recurrence

bm = fm
m!f0

−
∑

26j6m−2
bm−j

fj
f0j!

− bm−1

r
(m > 3).

These coefficients can be computed in linear time (in m) once the derivatives of f at r are
available.

AofA 2018
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Let ∆ :=
√

1− z. We now examine the local behavior of ∆ for z ∼ 1 by first inverting
the relation

∆2 = 1− (r + t)f(r)
rf(r + t) =

∑
j>2

bjt
j ,

or

∆2 = t2
∑
j>0

bj+2t
j =⇒ t = ∆F (t), (12)

where

F (t) := −
(∑
j>0

bj+2t
j
)− 1

2 = −
(1− (r+t)f(r)

rf(r+t)

t2

)− 1
2

.

Interestingly, this is again of a Lagrangean form, and we see that

t =
∑
k>1

ck∆k,

where ck is given in (4). Then we are led to the singular expansion

t = φ(ρz)− r =
∑
k>1

ck(1− z) k
2 ,

which is convergent in a neighborhood of unity excluding the branch-cut [1,∞) (the exact
range depending on the zeros or singularities of F ). Then, by singularity analysis, we obtain
(3).

The proof for (8) is similar, because

G(φ(ρz)) = G(r + t) = G(r) +
∑
k>1

ek∆k.

4 Applications I: [zn]φ(z) and the n−3
2 -asymptotics

We discuss in this section the use of our asymptotic expansions in some popular counting
sequences in combinatorics.

The following simple observation is useful for justifying sub-criticality of the Lagrangean
form (1); see also [9, Proposition IV.5] for a slightly more general version.

I Lemma 5 (Sub-criticality). Let the radius of convergence of the series f(z) =
∑
j>0 ajz

j

be R > 0 with a0 > 0 and aj > 0 for j > 1. If f is not linear and limz→R f(z)→∞, then
the condition C3 is satisfied, namely, there exists an r ∈ (0, R) such that rf ′(r) = f(r).

Proof. Consider the function g(z) := z
f(z) , which is well-defined at least in [0, R). Since

g(0) = 0 (because a0 > 0) and limz→R g(z) → 0, by Rolle’s Theorem, there exists an
r ∈ (0, R) such that g′(r) = 0. But g′(r) = 0 is equivalent to rf ′(r)− f(r) = 0. J

In particular, if f is a rational function of z with nonnegative Taylor coefficients, then the
Lagrangean form (1) is always sub-critical. For example, f(z) = 1

1−z gives the Catalan
numbers φ(z) = 1−

√
1−4z
2 (A000108 in Sloane’s OEIS). We see that no further treatment is

needed because the singular expansion contains only one term.

https://oeis.org/A000108
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Motzkin numbers (A001006).

Consider now the Motzkin numbers with f(z) = 1 + z + z2 and

φ(z) = 1− z −
√

1− 2z − 3z2

2z . (13)

Note that zf ′(z)− f(z) = z2 − 1, implying that r = 1 and ρ = 1
3 . Thus

[zn]φ(z) =
∑

06j6bn−1
2 c

(n− 1)!
j!(j + 1)!(n− 1− 2j)! ∼ 3n

∑
k>0

c2k+1

(
n− k − 3

2
n

)
. (14)

For finite k, the coefficients ck can be readily computed by (4) with F (v) = −
√

3 + 3v + v2.
We observe that while the asymptotics of the left-hand side of (14) remains less visible even
for the exponential order, that of the right-hand side is transparent if we regard the binomial
factor as decreasing powers in n. Furthermore, the right-hand side is a direct consequence of
Theorem 1, and thus even without any explicit formula for [zn]φ(z), which is often the case,
we can still apply the expansion (3) and obtain very effective approximations.

We now look at the large k-asymptotics of ck. Note that vF ′(v) − F (v) = 3(2+v)
3
√

3+3v+v2 ,
which equals zero when v = −2, and has a pair of conjugate singularities at − 3

2 ±
√

3
2 i with

modulus
√

3 < 2, so the Lagrangean form (12) is not sub-critical (and thus the saddle-point
at −2 is not dominant). Indeed, by the closed-form expression (13) of φ, we have

t = ∆F (t) =⇒ t =
3∆2 −∆

√
3(4−∆2)

2(1−∆2) .

This implies that

c2k+1 = −
√

3

1− 2
∑

16j6k

(
2j − 2
j − 1

)
16−j

j

 = −3
2 +O

(
k−

3
2 16−k

)
.

Thus they can be replaced by − 3
2 for moderate values of k (depending on the desired degree

of precision).

Schröder numbers (A001003).

In this case, we have f(z) = 1−z
1−2z and

φ(z) = 1 + z −
√

1− 6z + z2

4 , (15)

implying that r = 1− 1√
2 <

1
2 , ρ = r

f(r) = 3− 2
√

2, and φ has the dominant singularity at

3− 2
√

2. Furthermore, F (v) = −r
√

1√
2 − v, and therefore the equation vF ′(v) = F (v) has a

solution at v =
√

2 > 1√
2 lying outside the circle where F is analytic. So the Lagrangean

form t = ∆F (t) is not sub-critical. On the other hand, t can be solved in terms of ∆ as

t = ∆F (t) =⇒ t = −
(
√

2− 1)2∆2 + (
√

2− 1)∆
√

(
√

2− 1)2∆2 + 4
√

2
4 .

Thus

c2k+1 = [∆2k+1]t = (−1)k+1

2 3
4

(
k − 3

2
k

)
2− 5

2k(
√

2− 1)2k+1.

AofA 2018
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We get the same k− 3
2 -asymptotics for the coefficients ck even though t = ∆F (t) is not

sub-critical. Note that c2k+1 are asymptotic to c′k− 3
2 ρ−kc for large k, where ρc ≈ 32.97,

meaning that they converge exponentially to zero. By the closed-form expression for Schröder
numbers, we have the asymptotic expansion

[zn]φ(z) = 1
n

∑
06j6n−2

(
n− 2
j

)(
n

j + 1

)
2n−2−j ∼ (3 + 2

√
2)n

∑
k>0

c2k+1

(
n− k − 3

2
n

)
.

Again, the right-hand side is preferable for large-n numerics and the numerical fits are very
good even for small values of n. For example, for n = 10,

∣∣ [zn]φ(z)
(3+2

√
2)n
− c1

(
n− 3

2
n

)∣∣ 6 6.2× 10−6.
The same approach applies to many other sequences with f a polynomial or a rational

form. Indeed, several hundred of sequences were found in OEIS whose generating functions
satisfy the Lagrangean form (1) with polynomial or rational f . Some of these will be compiled
and discussed in the journal version.

5 Applications II: [zn]G(φ(z)) and the n−5
2 -asymptotics

A map is an embedding of a connected planar multigraph on the sphere, up to orientation
preserving homeomorphism. Asymptotic enumeration of planar maps often features a
universal n− 5

2 -behavior, in contrast to n− 3
2 for that of trees; see [1, 2] for more information

and references. Given a class M of maps, let mn denote the number of maps in M with n
edges. Let M(z) :=

∑
n>0mnz

n be the generating function of mn, which is specified by the
Lagrangean form

M(z) = G(φ(z)), φ(z) = zf(φ(z)). (16)

As the number of different types of maps is huge (see, e.g., [2, 4, 10, 11, 12, 18]), we content
ourselves in this extended abstract only with the discussion of Table 2 in [1] (a total of
14 examples reformatted below with a correction for M2) for representative asymptotic
patterns, focusing on the calculations of the asymptotic coefficients ek, a missing facet in
most previous publications. See [1] for precise definitions of the diverse terms used here (such
as non-separable, bridgeless, singular, irreducible, etc.).

Incremental maps

We first categorize the 14 examples into two groups according to the availability for the
counting function mn = rnmn−1 for some rational function rn—such a counting formula
entails a Markovian property and in turn an incremental construction procedure. This group
includes (see the following tables) the six examples M1,M2,M3,B1,T1 and T2. Note that
M2 = T2; see [3]. Since the application of our expansions is straightforward, we omit the
details of the expansions.

type of
maps

M1

general

M2

bridgeless
= T2

triangulations

M3

non-separable
B1

bipartite

T1

singular
triangulations

f(z) 3(1 + z)2 (1 + z)4 (1 + z)3 2(1 + z)2 2(1 + z3)

[zn]φ(z)
or φ(z)

3n

n+1

(2n
n

)
1

3n+1

(4n
n

)
1

2n+1

(3n
n

)
2n

n+1

(2n
n

)
2n

2n+1

(3n
n

)
OEIS(φ) A005159 A002293 A001764 A151374 A153231

https://oeis.org/A005159
https://oeis.org/A002293
https://oeis.org/A001764
https://oeis.org/A151374
https://oeis.org/A153231
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type of
maps

M1

general

M2

bridgeless
= T2

triangulations

M3

non-separable
B1

bipartite

T1

singular
triangulations

G(z) z(2−z)
3 (1 − z)(1 + z)2 z(2+z−z2)

(1+z)3
z(2−z)

4
z(1−z)

2

[zn]G(φ(z)) 2·3n(2n)!
n!(n+2)!

2·(4n+1)!
(n+1)!(3n+2)!

2(3n)!
(n+1)!(2n+1)!

3·2n−1(2n)!
n!(n+2)!

2n(3n)!
(n+1)!(2n+1)!

OEIS(G(φ)) A000168 A000260 A000139 A000257 A000309

r 1 1
3

1
2 1 1

2

ρ 1
12

27
256

4
27 8 2

27

F (t) −(2 + t) −
√

3(4+3t)2

9
√

32+16t+3t2
− (3+2t)

3
2

2
√

9+2t −(2 + t) − (3+2t)
3
2

2
√

9+2t

G
′
(r + v) − 2

3v −v(4 + 3v) −32v
(3+2v)3 − 1

2v −v

Non-incremental maps

The remaining eight maps are further divided into two sub-groups:
(1) [zn]f(z) > 0: M4, M6, and T3;
(2) [zn]f(z) contains negative coefficients: M5,B2,B3,B4, and B5.
Our theorems in the introduction are directly applicable to the first sub-group, and can be
readily modified for the second for which the condition C1 (nonnegativity of coefficients)
fails.

Non-incremental maps with [zn]f(z) > 0
Similar to the incremental maps given above, we summarize the major properties of the three
non-incremental maps in the following table.

type of
maps

M4

simple
M6

3-connected
T3

irreducible triangulations

f(z) (3+z)2

3−z
1

1−z
1

(1−z)2

[zn]φ(z)
or φ(z)

3−
√

1−8z
2(1+z)

1
n

(2n−2
n−1

) (3n+1)!
(n+1)!(2n+1)!

OEIS(φ) A062062 A000108 A006013

G(z) z(9−3z−z2)
27

z5(1−z−z2)
(1+z)3(1+z−z2)

z(1−z−z2)
(1−z)(1+z)2

OEIS(G(φ)) A022558 A000287 A000256

r 1 1
2

1
3

ρ 1
8

1
4

4
27

F (t) − 4+t
3 − 1

2
−2

3
√

3(1−t)

G
′
(r + v) −v(4+v)

9 −
2v(1+2v)4

(
167 + 176v − 24v2

−64v3 − 16v4

)
(3+2v)4(5−4v2)2

−729v
(2−3v)2(4+3v)3
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We consider only the simple maps M4 with f(z) = (3+z)2

3−z and G(z) = z(9−3z−z2)
27 . In

this case, φ is given by

φ(z) = 3
2 ·

1− 2z −
√

1− 8z
1 + z

,

implying that

G(φ(z)) = −1 + 4
1 + z

+ 18
(1 + z)2 −

27
2(1 + z)3 + (1− 8z) 3

2

2(1 + z)3 , (17)

which then gives

[zn]G(φ(z)) = (−1)n
(

1
2 −

9
4 n−

27
4 n2

)
+ 1

2
∑

06j6n

(
j + 2

2

)
(−1)j

(
n− j − 5

2
n− j

)
8n−j ,

for n > 1. On the other hand, we also have, by Lagrange inversion formula,

[zn]G(φ(z)) = 2
∑

06j<n

(2n+ 1)!(2n− j − 2)!(n− 2j + 1)
n!j!(n− 1− j)!(2n− j + 2)! (n > 1).

The main difference is that the former expands at z = 1
8 , while the latter at the origin.

On the other hand, without relying on the explicit forms, we also have (with ∆ =
√

1− z)

F (t) = −4 + t

3 =⇒ t = − 4∆
3 + ∆ =⇒ G(φ( z8 )) = −1 + 32

3 + ∆2 −
64

(3 + ∆)3 .

We then obtain the same singular expansion as above, which is convergent in the region with
|1− 8z| < 9. It follows that

[zn]G(φ(z)) ∼ 8n
∑
k>0

e2k+3

(
n− k − 5

2
n

)
, where e2k+3 = 1

2

(
8
9

)3(
k + 2

2

)
9−k.

Non-incremental maps with [zn]f(z) ≶ 0
The remaining five cases are listed below.

type of
maps

M5

non-separable
simple

B2

bipartite
simple

B3

bipartite
bridgeless

B4

bipartite
non-separable

B5

bipartite
non-separable

simple
f(z) (1+z)6

(1+2z)2
8(1+z)2

4+2z−z2
(2+z)6

32(1+z)2
32(1+z)2

(4+2z−z2)2
128(1+z)2

(4+2z−z2)3

G(z) z(1+z−z2)
(1+z)3

z(2−z)
4

z2(8+4z−4z2−z3)
32(1+z)2

z(2−z)
4

z(2−z)
4

OEIS(G(φ)) − − − A069728 A298358
r 1

2 1 1 1 1
ρ 128

729
5

32
128
729

25
128

25
512

F (t) (?)1 −
√

5(2+t)√
9+4t (?)2 −t (?)3

G′(r + v) −64v(1+v)
9 − 1

2v − v(1+v)(v+3)2(7+3v)
32(2+v)3 − 1

2v − 1
2v

https://oeis.org/A069728
https://oeis.org/A298358
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Here (?)1 := −(3+2t)3
√

1215+2862t+2160t2+576t3+64t4 , (?)2 := −2(3+t)3
√

1215+1431t+540t2+72t3+4t4 , and (?)3 :=
−5
√

5(2+t)√
425+300t−60t2−60t3+4t4+4t5 .
We now show how to extend the same analysis to the cases when [zn]f(z) contains

negative coefficients. From the viewpoint of the saddle-point method, a sufficient condition
replacing the condition C1 is as follows (see also [6]):

C1’ (Concentration of |f(z)|)

f(r) > 0 for 0 < r < R and |f(reiθ)| < f(r) for 0 < |θ| < π. (18)

Briefly, this condition implies, by the saddle-point method, that the major contribution
to the integral representation of [tn−1]G′(r + t)f(t)n comes from a small neighborhood of
t = r, and in turn that the asymptotic expansion (8) holds.

B2: simple bipartite maps

In this case, f and G are given by f(z) = 8(1+z)2

4+2z−z2 and G(z) := 1
4z(2− z); thus r = 1, ρ = 5

32 ,
and

F (t) = −
√

5(2 + t)√
9 + 4t

.

We can check the condition C1’ by elementary calculus and then derive the expansion (8); in
particular, we have

1√
5

(
5
32

)n
[zn]G(φ(z)) ∼ 50

243

(
n− 5

2
n

)
+ 1100

59049

(
n− 7

2
n

)
+ · · · .

Whether the left-hand side is easy to compute or not is irrelevant here. Also we can compute
e2k+3 by the following closed-form expression

e2k+3 = 2 · 5k+ 3
2

(2k + 3)32k+3

∑
06j62k+1

(
k + j + 1

2
j

)(
2k + 3
j + 2

)(
−8

9

)j
(k > 0).

The same technique applies to B4 and B5, but not to M5 and B3 because the condition
C1’ fails when z is near − 1

2 (for M5) and near −1 (for B3) because of polar singularities there.
However, we can modify suitably the integration contour so as to avoid the polar singularities
and prove that the contribution comes principally from z ∼ r in the corresponding Cauchy
integral. So we still get the expansions (8) for both cases; we omit the details here.

6 Applications III: Other examples

Due to a space constraint, we mention in this section only two interesting examples for which
our expansions apply.

The number of rooted 3-connected bicubic maps of 2n vertices (see [15, 16] and A298358)
is given by

mn = 3
n− 1 [zn−1]g(z)f(z)n,
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where f(z) = (1+2z)2

(1+z−z2)3 and g(z) = z3(1−2z)
(1+2z)(1+z−z2) . By modifying our expansions (the

condition C1’ holds), we have

mn ∼
3n
n− 1

(
512
125

)n∑
k>0

e2k+3

(
n− k − 5

2
n

)
,

where

ek := 1
k

[tk−1]g
( 1

2 + t
)( −5

√
5(1 + t)√

425− 240t2 + 64t4 + 600t− 480t3 + 128t5

)k
.

The number of labeled rooted trees of subsets of an n-set (see [5] or A005172) is given
by [zn]G(φ(z)), where φ = zf(φ) with f(z) = z

1−ez+log(2ez−1) and G(z) = ez − 1.
Interestingly, all coefficients [zn]f(z) are positive for 1 6 n 6 47, but negative coefficients
appear from n = 48 on. By checking the conditions C1’, C2 and C3, we then obtain (8)
with

F (t) = −
√

2 log 2− 1 t√
2 log 2 + 3(et − 1)− 2 log(3et − 1)

.

Then we deduce that (with r = log 3
2 )

G(r + t) = 2
3

(
T
(
e−1−(log 2− 1

2 )∆2
)
− 1
)
,

where T (z) =
∑
n>1

nn−1

n! zn denotes the generating function for Cayley trees.
All examples treated in [16] can be dealt with by our expansions. Consider, as in [16],
the asymptotics of the Stirling numbers of the second kind:{

2n
n

}
= (2n)!

n! [z2n](ez − 1)n = (2n)!
(n− 1)! ·

1
n

[zn−1]z−1f(z)n,

where f(z) := ez−1
z . Although G = log z is not analytic at z = 0, we can still apply the

same expansion (8) and obtain

(n− 1)!
(2n)!

{
2n
n

}
∼ ρ−n

∑
j>0

e2j+1

(
n− j − 3

2
n

)
,

where r = 2 − T (2e−2), ρ = r
f(r) , and ek = k−1[tk−1](r + t)−1F (t)k for k > 1. The

Stirling numbers of the first kind with f = −z−1 log(1− z) is similar.
Other examples in [16] include the relations

1
n · (n− 1)!2

∑
06k<n

{
n− 1
k

}
(n− 1 + k)! = 1

n
[zn−1](2− ez)−n

1
n

∑
06k<n

(
n

k

)(
2n− 2− k
n− 1

)
(−1)k2n−k = 1

n
[zn−1] (1 + z)n(1− 2z)n

(1 + z)2 ,

and the following table for the form [zn]g(z)f(z)n:
g f g f

1 (1− 3
8z + 1

24z
2)−1 1 (1−

√
3z + z2)−1

1 (1− z − z2)−1 1 1
2 (1 + ez)

z(1− z)−1 eαz z(1− z)−α−1 ez

(1− αz)−1 ez (1− z)−1 (1 + z)α

− log(1− 3z) (1 + z)4 −z(1− z)−1 log(1− z) ez

https://oeis.org/A005172
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