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Abstract
Consider a random permutation drawn from the set of permutations of length n that avoid a
given set of one or several patterns of length 3. We show that the number of occurrences of
another pattern has a limit distribution, after suitable scaling. In several cases, the limit is
normal, as it is in the case of unrestricted random permutations; in other cases the limit is a
non-normal distribution, depending on the studied pattern. In the case when a single pattern of
length 3 is forbidden, the limit distributions can be expressed in terms of a Brownian excursion.

The analysis is made case by case; unfortunately, no general method is known, and no general
pattern emerges from the results.
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1 Introduction

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=
⋃
n≥1 Sn. If σ =

σ1 · · ·σm ∈ Sm and π = π1 · · ·πn ∈ Sn, then an occurrence of σ in π is a subsequence
πi1 · · ·πim , with 1 ≤ i1 < · · · < im ≤ n, that has the same order as σ, i.e., πij < πik ⇐⇒
σj < σk for all j, k ∈ [m]. We let nσ(π) be the number of occurrences of σ in π, and note
that∑

σ∈Sm

nσ(π) =
(
n

m

)
, (1)

for every π ∈ Sn. For example, an inversion is an occurrence of 21, and thus n21(π) is the
number of inversions in π.

We say that π avoids another permutation τ if nτ (π) = 0. Let

Sn(τ) := {π ∈ Sn : nτ (π) = 0}, (2)
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the set of permutations of length n that avoid τ . More generally, for any set T = {τ1, . . . , τk}
of permutations, let

Sn(T ) = Sn(τ1, . . . , τk) :=
k⋂
i=1

Sn(τi), (3)

the set of permutations of length n that avoid all τi ∈ T . We also let S∗(T ) :=
⋃∞
n=1 Sn(T )

be the set of T -avoiding permutations of arbitrary length.
The classes S∗(τ) and, more generally, S∗(T ) have been studied for a long time. For

examples relevant to analysis of algorithms, see e.g. [13, Exercise 2.2.1-5] (π can be obtained
by a stack if and only if π ∈ Sn(312); equivalently: π is stack-sortable if and only if
π ∈ Sn(312)); [13, Exercise 2.2.1-10,11] and [17] (π is deque-sortable if and only if π
π ∈ Sn(2431, 4231); [16] (π can be sorted by 2 parallel queues if and only if π ∈ Sn(321).
Further examples are given in [15], Exercises 6.19 x (321), y (312), ee (321), ff (312), ii
(231), oo (132), xx (321); 6.25 g (321); 6.39 k, l ({2413, 3142}), m ({1342, 1324}); 6.47 a
({4231, 3412}); 6.48 (1342). See also [3].

In particular, one classical problem is to enumerate the sets Sn(T ), either exactly or
asymptotically, see e.g. [3, Chapters 4–5] and [14].

The general problem that concerns us is to take a fixed set T of one or several permutations
and let πT ;n be a uniformly random T -avoiding permutation, i.e., a uniformly random element
of Sn(T ), and then study the asymptotic distribution of the random variable nσ(πT ;n) (as
n→∞) for some other fixed permutation σ. (Only σ that are themselves T -avoiding are
interesting, since otherwise nσ(πT ;n) = 0.)

Here we study the cases when T is a set of permutations of length 3. The cases when T
contains a permutation of length ≤ 2 are trivial, since then there is at most one permutation
in Sn(T ) for any n. The case of forbidding one or several permutations of length ≥ 4 seems
much more complicated, but there are recent impressive results for Sn(2413, 3142) (separable
permutations) by Bassino, Bouvel, Féray, Gerin, and Pierrot [2], with generalizations to some
other classes in [1].

There are 26 = 64 sets T of permutations of length 3. Of these, every T that contains
{123, 321}, and every T with |T | ≥ 4 is trivial, in the sense that Sn(T ) contains at most
2 elements for any n ≥ 5 (see [14]). Ignoring these cases, there are 1 + 6 + 14 + 16 = 37
remaining cases (with |T | = 0, 1, 2, 3, respectively), and by symmetries, see Appendix A,
these reduce to 1 + 2 + 4 + 4 = 11 non-equivalent cases, which are treated in Sections 2–12.
For further details, see [12], [8], [9], [10]; these papers also contain further references to
related work, and to some of the many papers by various authors that study other properties
of random τ -avoiding permutations.

The cases studied here, i.e., the non-trivial cases with T ⊂ S3, all have asymptotic
distributions of one of the following two types.

I. Normal limits: For every σ ∈ S∗(T ), there exists constants α, β, γ such that, as n→∞,

nσ(πT ;n)− βnα

nα−1/2
d−→ N

(
0, γ2), (4)

with convergence of all moments. Furthermore, assuming |σ| ≥ 2, γ2 > 0, so the limit is
not deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.
In particular, Enσ(πT ;n) ∼ βnα. Note that (4) implies concentration, in the sense

nσ(πT ;n)
Enσ(πT ;n)

p−→ 1. (5)



S. Janson 6:3

Table 1 The table shows whether nσ(πT ;n) has limits of type I or II; furthermore, the exponent
α = α(σ) is given in the column for the type. The last column shows the exceptional cases, if any,
where the asymptotic variance vanishes. Cn := 1

n+1

(2n
n

)
is a Catalan number; Fn+1 is a Fibonacci

number (F0 = 0, F1 = 1); sn−1 is a Schröder number; D(σ) is the number of descents and B(σ) is
the number of blocks in σ.

T |Sn(T )| type I type II as. variance = 0
∅ n! |σ|
{132} Cn (|σ|+D(σ))/2 m · · · 1
{321} Cn (|σ|+B(σ))/2 1 · · ·m
{132, 312} 2n−1 |σ|
{231, 312} 2n−1 B(σ) 1 · · ·m
{231, 321} 2n−1 B(σ) 1 · · ·m
{132, 321}

(
n
2

)
+ 1 |σ|

{231, 312, 321} Fn+1 B(σ) 1 · · ·m
{132, 231, 312} n |σ|
{132, 231, 321} n |σ| − 1 or |σ| 1 · · ·m
{132, 213, 321} n |σ|
{2413, 3142} sn−1 |σ|

II. Non-normal limits without concentration: For every σ ∈ S∗(T ), there exists a constant
α such that

nσ(πT ;n)
nα

d−→Wσ, (6)

with convergence of all moments, for some random variable Wσ > 0. Hence, also
nσ(πT ;n)
Enσ(πT ;n)

d−→W ′σ, (7)

with convergence of all moments, for some random variable W ′σ > 0 (necessarily with
EW ′σ = 1). Furthermore, assuming |σ| ≥ 2, VarWσ > 0, so Wσ and W ′σ are not
deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.

I Remark. In all cases studied here, if there are any exceptional σ ∈ S∗(T ) with σ ≥ 2
such that the limit in (4) or (6) is deterministic, i.e., the asymptotic variance is 0, then the
exceptional σ are either all identity permutations 1 · · ·m, or all decreasing permutations
m · · · 1. Furthermore, these exceptional cases arise because almost all of the

(
n
|σ|
)
patterns in

πT ;n of length |σ| are occurrences of σ; more precisely, E
((

n
|σ|
)
− nσ(πT ;n)

)
= O

(
n|σ|−1) for

the exceptional cases of type I and O
(
n|σ|−1/2) for the cases of type II. (It follows that (5)

holds also for the latter.)
We summarize the results for T consisting of permutations of length 3 in Table 1; for

reference, we include the number |Sn(T )| of T -avoiding permutations of length n, see e.g.
[13, Exercises 2.2.1-4,5], [15, Exercise 6.19ee,ff], [3, Corollary 4.7], and [14]. We include also
the case T = {2413, 3142} from [2]; see [17] for the enumeration.

We see no obvious pattern in the existence of limits of type I or II in Table 1. Moreover,
the proofs, sketched below, are done case by case; we have not succeeded to prove any general
results, treating all (or at least some) forbidden sets T at the same time.
I Remark. We do not know whether a general set of forbidden permutations T has limits
in distribution of nσ(πT ;n) (after normalization) at all, and even if limits exist, there is no
known reason implying that they have to be of type I or II above; other types of limits are
conceivable.

AofA 2018
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I Remark. The non-normal limits in the cases {132}, {321} and {2413, 3142} can all be
expressed as functionals of a Brownian excursion e, see [8, 9, 2]. However, the expressions in
these three cases are, in general, quite different (and obtained by quite different arguments),
so there is no obvious hope for a unification. (The other cases of non-normal limits in Table 1
are different, and of a more elementary kind.)

1.1 Some notation
Let ι = ιn be the identity permutation of length n.

If σ ∈ Sm and τ ∈ Sn, their composition σ ∗ τ ∈ Sm+n is defined by letting τ act on
[m + 1,m + n] in the natural way; more formally, σ ∗ τ = π ∈ Sm+n where πi = σi for
1 ≤ i ≤ m, and πj+m = τj + m for 1 ≤ j ≤ n. We say that a permutation π ∈ S∗ is
decomposable if π = σ ∗ τ for some σ, τ ∈ S∗, and indecomposable otherwise; we also call an
indecomposable permutation a block.

It is easy to see that any permutation π ∈ S∗ has a unique decomposition π = π1 ∗ · · · ∗π`
into indecomposable permutations (blocks) π1, . . . , π`; we call these the blocks of π. (These
are useful to characterize the permutations in some of the classes below.)

2 No restriction, T = ∅

As a background, consider first the case T = ∅, so Sn(T ) = Sn; the set of all n! permutations
of length n. It is well-known, see Bóna [4, 5] and [12, Theorem 4.1], that if πn is a uniformly
random permutation in Sn, then nσ(πn) has an asymptotic normal distribution as n→∞
for every fixed permutation σ:

I Theorem 1 (Bóna [4, 5]). If |σ| = m ≥ 2 then, as n→∞, for some γ2 > 0,

nσ(πn)− 1
m!
(
n
m

)
nm−1/2

d−→ N
(
0, γ2). (8)

Sketch of proof. A random permutation πn can be obtained by taking i.i.d. random variables
X1, . . . , Xn ∼ U(0, 1) and considering their ranks. Then

nσ(πn) =
∑

i1<···<im

f
(
Xi1 , . . . , Xim

)
(9)

for a suitable (indicator) function f . This sum is an asymmetric U -statistic, and the result
follows by general results on U -statistics, see [6] and [11]. J

I Remark. The asymptotic variance γ2 depends on σ. It can be calculated explicitly, and
the same holds for all parameters γ2 (or µ) in the limit theorems below. Moreover, the
convergence (8) holds with convergence of all moments, and it holds jointly for any set of σ;
also this holds for all later limit theorems too.

3 Avoiding 132

Consider next the cases when T consists of a single permutation of length 3. The symmetries
in Appendix A leave two non-equivalent cases. In this section we avoid T = {132}; equivalent
cases are {213}, {231}, {312}. Recall that the standard Brownian excursion e(x) is a random
non-negative function on [0, 1]. Let

λ(σ) := |σ|+D(σ) (10)
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where D(σ) is the number of descents in σ, i.e., indices i such that σi > σi+1 or (as a
convenient convention) i = |σ|. Note that 1 ≤ D(σ) ≤ |σ|, and thus

|σ|+ 1 ≤ λ(σ) ≤ 2|σ|, (11)

with the extreme values λ(σ) = |σ|+ 1 if and only if σ = 1 · · · k, and λ(σ) = 2|σ| if and only
if σ = k · · · 1, for some k = |σ|.

I Theorem 2 ([8]). There exist strictly positive random variables Λσ such that as n→∞,

nσ(π132;n)/nλ(σ)/2 d−→ Λσ. (12)

Sketch of proof. The analysis is based on a well-known bijection with binary trees and Dyck
paths, and the, also well-known, convergence in distribution of random Dyck paths to a
Brownian excursion. For (not so simple) details, see [8]. J

The limit variables Λσ in Theorem 2 can be expressed as functionals of a Brownian
excursion e(x), see [8]; the description is, in general, rather complicated, but some cases are
simple. Moments of the variables Λσ can be calculated by a recursion formula given in [8].

I Example 3. In the special case σ = 12, Λ12 =
√

2
∫ 1

0 e(x) dx, see [8, Example 7.6]; this
is (apart from the factor

√
2) the well-known Brownian excursion area, see e.g. [7] and the

references there.
For the number n21 of inversions, we thus have(
n
2
)
− n21(π132;n)
n3/2 = n12(π132;n)

n3/2
d−→ Λ12 =

√
2
∫ 1

0
e(x) dx. (13)

By symmetries, see Appendix A, the left-hand side can also be seen as the number of
inversions n21(π231;n) or n21(π312;n), normalized by n3/2, where we instead avoid 231 or 312.

4 Avoiding 321

In this section we avoid T = {321}. The case T = {123} is equivalent.
Sn(321) is treated in detail in [9]. As for Sn(132) in Section 3, the analysis is based

on a well-known bijection with Dyck paths, but the details are very different, and so are in
general the resulting limit distributions.

I Theorem 4 ([9]). Let σ ∈ S∗(321). Let m := |σ|, and suppose that σ has ` blocks of
lengths m1, . . . ,m`. Then, as n→∞,

nσ(π321;n)/n(m+`)/2 d−→Wσ (14)

for a positive random variable Wσ that can be represented as

Wσ = wσ

∫
0<t1<···<t`<1

e(t1)m1−1 · · · e(t`)m`−1 dt1 · · · dt`, (15)

where wσ is positive constant.

Sketch of proof. As for Theorem 2, the analysis is based on a bijection with Dyck paths,
and the convergence in distribution of random Dyck paths to a Brownian excursion. For
details, see [8]. J

AofA 2018
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In this case, we have an explicit general formula (15) for the limit variables. On the
other hand, we do not know how to compute even the mean EWσ in general; see [9] for
calculations in various special cases.

I Example 5. Let σ = 21. Then w21 = 2−1/2, see [9], and thus (14)–(15), with ` = 1 and
m1 = m = 2, yield for the number of inversions,

n21(π321;n)
n3/2

d−→ 2−1/2
∫ 1

0
e(x) dx. (16)

Note that the limit in (16) differs from the one in (13) by a factor 2.

5 Avoiding {132,312}

In this section we avoid T = {132, 312}. Equivalent sets are {132, 231}, {213, 231}, {213, 312}.

I Theorem 6. For any m ≥ 2 and σ ∈ Sm(132, 312), as n→∞,

nσ(π132,312;n)− 21−mnm/m!
nm−1/2

d−→ N
(
0, γ2). (17)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent formulation) that
a permutation π belongs to the class S∗(132, 312) if and only if every entry πi is either
a maximum or a minimum. We encode a permutation π ∈ Sn(132, 312) by a sequence
ξ2, . . . , ξn ∈ {±1}n−1, where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is a minimum.
This is a bijection, and hence the code for a uniformly random π132,312;n has ξ2, . . . , ξn i.i.d.
with the symmetric Bernoulli distribution P(ξj = 1) = P(ξj = −1) = 1

2 .
Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · ·πim is an occurrence of σ in

π if and only if ξij = ηj for 2 ≤ j ≤ m. Consequently, nσ(π132,312;n) is a U -statistic

nσ(π132,312;n) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
, (18)

where

f
(
ξ1, . . . , ξm

)
:=

m∏
j=2

1{ξj = ηj}. (19)

Note that f does not depend on the first argument.
The result now follows from the theory of U -statistics [6], [11]. J

I Example 7. For the number of inversions, we have σ = 21 and m = 2, η2 = −1. A
calculation yields µ = 1

2 and γ2 = 1
12 , and thus Theorem 6 yields

n21(π132,312;n)− n2/4
n3/2

d−→ N
(
0, 1

12
)
, (20)

6 Avoiding {231,312}

In this section we avoid T = {231, 312}. The only equivalent set is {132, 213}.

I Theorem 8. Let σ ∈ Sm(231, 312) have block lengths `1, . . . , `b. Then, as n→∞,

nσ(π231,312;n)− nb/b!
nb−1/2

d−→ N
(
0, γ2). (21)
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Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 312) if and only if every block in π is decreasing,
i.e., of the type `(` − 1) · · · 21 for some `. Hence there exists exactly one block of each
length ` ≥ 1, and a permutation π ∈ S∗(231, 312) can be encoded by its sequence of block
lengths. In this section, let π`1,...,`b

denote the permutation in S∗(231, 312) with block
lengths `1, . . . , `b.

A uniformly random permutation π231,312;n can be generated as πL1,...,LB
, where the

block lengths L1, . . . , LB are obtained from an infinite i.i.d. sequence L1, L2, · · · ∼ Ge( 1
2 ),

stopped at B such that L1 + · · ·+LB ≥ n, and then adjusting LB such that L1 + · · ·+LB = n.
Let σ ∈ S∗(231, 312) have block lengths `1, . . . , `b, so that σ = π`1,...,`b

. Then,

nσ
(
πL1,...,LB

)
=

∑
1≤i1<···<ib≤B

b∏
j=1

(
Lij
`i

)
. (22)

This is again a kind of U -statistic, but it is based on the sequence L1, . . . , LB of random
length B, obtained by stopping the infinite sequence Li. Nevertheless, general results for
U -statistics cover this modification and yield the result, see [11]. J

I Example 9. For the number of inversions, we have σ = 21 and b = 1, `1 = 2. A calculation
yields γ2 = 6, and Theorem 8 yields

n21(π231,312;n)− n
n1/2

d−→ N(0, 6). (23)

7 Avoiding {231, 321}

In this section we avoid T = {231, 321}. Equivalent sets are {123, 132}, {123, 213}, {312, 321}.

I Theorem 10. Let σ ∈ Sm(231, 321) have block lengths `1, . . . , `b, and let b1 be the number
of blocks of length `i = 1. Then, as n→∞,

nσ(π231,321;n)− 2b1−bnb/b!
nb−1/2

d−→ N
(
0, γ2). (24)

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 321) if and only if every block in π is of the type
`12 · · · (`− 1) for some `. Thus, as in Section 6, a permutation in S∗(231, 321) is determined
by its block lengths, and these can be arbitrary. Hence, a uniformly random π231,321;n has
block lengths L1, . . . , LB with the same distribution as in Section 6. Letting now σ be the
permutation in S∗(231, 321) with block lengths `1, . . . , `b, nσ(π231,321;n) is a function of the
block lengths L1, . . . , LB that is similar (but not identical) to (22). This time some lower
order terms appear, but they may be neglected, and the remainder is a U -statistic similar to
the one in the proof of Theorem 8, and the result follows in the same way. J

I Example 11. For the number of inversions, we have σ = 21 and b = 1, `1 = 2, b1 = 0. A
calculation yields γ2 = 1/4, and Theorem 10 yields

n21(π231,321;n)− n/2
n1/2

d−→ N(0, 1
4 ). (25)

In fact, in this special case it can be seen that we have the exact distribution

n21(π231,321;n) ∼ Bi
(
n− 1, 1

2
)
. (26)

AofA 2018
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8 Avoiding {132, 321}

In this section we avoid T = {132, 321}. Equivalent sets are {123, 231}, {123, 312}, {213, 321}.
It was shown in [14, Proposition 13] that a permutation π belongs to S∗(132, 321) if and

only if either π = ιn for some n, or π = πk,`,m for some k, ` ≥ 1 and m ≥ 0, where, in this
section,

πk,`,m := (`+ 1, . . . , `+ k, 1, . . . , `, k + `+ 1, . . . , k + `+m) ∈ Sk+`+m. (27)

Recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform distribution on the simplex
{(x, y, z) ∈ R3

+ : x+ y + z = 1}.

I Theorem 12. Let σ ∈ S∗(132, 321). Then the following hold as n→∞.
(i) If σ = πi,j,p for some i, j, p, then

n−(i+j+p)nσ(π132,321;n) d−→Wi,j,p := 1
i! j! p!X

iY jZp, (28)

where (X,Y, Z) ∼ Dir(1, 1, 1).
(ii) If σ = ιi, then

n−inσ(π132,321;n) d−→Wi := 1
i!
(
(X + Z)i + (Y + Z)i − Zi

)
, (29)

with (X,Y, Z) ∼ Dir(1, 1, 1) as in i.

Sketch of proof. For asymptotic results, we may ignore the case when π132,321;n = ιn.
Conditioning on π132,321;n 6= ιn, we have π132,321;n = πK,L,n−K−L, where K and L are
random with (K,L) uniformly distributed over the set {K,L ≥ 1 : K + L ≤ n}. As n→∞,
we thus have(K

n
,
L

n
,
n−K − L

n

)
d−→ (X,Y, Z) ∼ Dir(1, 1, 1). (30)

If σ = πi,j,p for some i, j, p, then it is easily seen that

nσ(πk,`,m) =
(
k

i

)(
`

j

)(
m

p

)
. (31)

Similarly, if σ = ιi, then, by inclusion-exclusion,

nσ(πk,`,m) =
(
k +m

i

)
+
(
`+m

i

)
−
(
m

i

)
. (32)

These exact formulas and (30) yield the results. J

I Corollary 13. The number of inversions has the asymptotic distribution

n−2n21(π132,321;n) d−→W := XY, (33)

with (X,Y ) as above; the limit variable W has density function

2 log
(
1 +
√

1− 4x
)
− 2 log

(
1−
√

1− 4x
)
, 0 < x < 1/4, (34)

and moments

EW r = 2 r!2

(2r + 2)! , r > 0. (35)
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9 Avoiding {231,312,321}

We proceed to sets of three forbidden patterns. In this section we avoid T = {231, 312, 321}.
An equivalent set is {123, 132, 213}.

I Theorem 14. Let σ ∈ Sm(231, 312, 321) have block lengths `1, . . . , `b. Then, as n→∞,

nσ(π231,312,321;n)− µnb/b!
nb−1/2

d−→ N
(
0, γ2), (36)

for some constants µ and γ2.

Sketch of proof. It was shown in [14, Proposition 15∗] (in an equivalent form) that a
permutation π belongs to the class S∗(231, 312, 321) if and only if every block in π is decreasing
and has length ≤ 2, i.e., every block is 1 or 21. Hence, a permutation π ∈ Sn(231, 312, 321)
is uniquely determined by its sequence of block lengths L1, . . . , LB, where each Li ∈ {1, 2}
and L1 + · · ·+ LB = n.

Let p := (
√

5− 1)/2, the golden ratio, so that p+ p2 = 1. Let X be a random variable
with the distribution

P(X = 1) = p, P(X = 2) = p2. (37)

Consider an i.i.d. sequence X1, X2, . . . of copies of X, and let Sk :=
∑k
i=1 Xi. Let further

B(n) := min{k : Sk ≥ n}. Then, conditioned on SB(n) = n, the sequence X1, . . . , XB(n) has
the same distribution as the sequence L1, . . . , LB of block lengths of a uniformly random
permutation π231,312,321;n.

Consequently, nσ(π231,312,321;n) can be expressed as a U -statistic based on X1, . . . , XB ,
conditioned as above. This conditioning does not affect the asymptotic distribution, see [11],
and the result follows again by general results for U -statistics. J

I Example 15. For the number of inversions, σ = 21 we have b = 1. A calculation yields
µ = 1− p = (3−

√
5)/2 and γ2 = 5−3/2. Consequently,

n21(π231,312,321;n)− 3−
√

5
2 n

n1/2
d−→ N

(
0, 5−3/2). (38)

10 Avoiding {132,231,312}

In this section we avoid {132, 231, 312}. Equivalent sets are {132, 213, 231}, {132, 213, 312},
{213, 231, 312}.

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 312) =
{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (k, . . . , 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (39)

I Theorem 16. Let σ ∈ S∗(132, 231, 312). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 2 ≤ k ≤ m, then

n−mnσ(π132,231,312;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (40)
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(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,312;n) d−→W1,m−1 := 1
(m− 1)!U(1− U)m−1 + 1

m! (1− U)m

= 1
m!
(
1 + (m− 1)U

)
(1− U)m−1. (41)

Sketch of proof. The random π132,231,312;n = πK,n−K , where K ∈ [n] is uniformly random.
Obviously, as n→∞,

K/n
d−→ U ∼ U(0, 1). (42)

Furthermore, if σ = πk,`, then it is easy to see that

nσ
(
πK,n−K

)
=


(
K
k

)(
n−K
`

)
, k ≥ 2,

K
(
n−K
`

)
+
(
n−K
`+1

)
, k = 1.

(43)

The results follow. J

I Corollary 17. The number of inversions has the asymptotic distribution

n−2n21(π132,231,312;n) d−→W := U2/2 (44)

with U ∼ U(0, 1). Thus, 2W ∼ B( 1
2 , 1), and W has moments

EW r = 1
2r(2r + 1) , r > 0. (45)

11 Avoiding {132,231,321}

In this section we avoid {132, 231, 321}. Equivalent sets are {123, 132, 231}, {123, 213, 312},
{213, 312, 321}, {123, 132, 312}, {123, 213, 231}, {132, 312, 321}, {213, 231, 321}.

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 321) =
{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (k, 1, . . . , k − 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (46)

I Theorem 18. Let σ ∈ S∗(132, 231, 321). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 2 ≤ k ≤ m, then

n−(m−1)nσ(π132,231,321;n) d−→Wk,m−k := 1
(k − 1)! (m− k)!U

k−1(1− U)m−k. (47)

(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,321;n) = 1
m! +O

(
n−1) p−→ 1

m! . (48)

Sketch of proof. The random permutation π132,231,321;n = πK,n−K , where K ∈ [n] is
uniformly random. The results follow similarly to the proof of Theorem 16. J

I Corollary 19. The number of inversions n21(π132,231,321;n) has a uniform distribution on
{0, . . . , n− 1}, and thus the asymptotic distribution

n−1n21(π132,231,321;n) d−→ U ∼ U(0, 1). (49)
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12 Avoiding {132,213,321}

In this section we avoid {132, 213, 321}. An equivalent sets is {123, 231, 312}.
It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 213, 321) =

{πk,n−k : 1 ≤ k ≤ n}, where, in this section,

πk,` := (`+ 1, . . . , `+ k, 1, . . . , `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (50)

I Theorem 20. Let σ ∈ S∗(132, 213, 321). Then the following hold as n→∞, with U ∼
U(0, 1).
(i) If σ = πk,m−k with 1 ≤ k ≤ m− 1, then

n−mnσ(π132,213,321;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (51)

(ii) If σ = πm,0 = ιm, then

n−mnσ(π132,213,321;n) d−→Wm,0 := 1
m!
(
Um + (1− U)m

)
. (52)

Sketch of proof. Similarly to the proof of Theorem 16. J

I Corollary 21. The number of inversions has the asymptotic distribution

n−2n21(π132,213,321;n) d−→W := U(1− U), (53)

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 1
2 ), and W has moments

EW r = Γ(r + 1)2

Γ(2r + 2) , r > 0. (54)
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A Symmetries

For any permutation π = π1 · · ·πn, define its inverse π−1 in the usual way, and its reversal
and complement by

πr := πn · · ·π1, (55)
πc := (n+ 1− π1) · · · (n+ 1− πn). (56)

These three operations generate a group G of 8 symmetries (isomorphic to the dihedral group
D4). It is easy to see that for any symmetry s ∈ G,

nσs(πs) = nσ(π). (57)

Thus, if we define T s := {τ s : τ ∈ T}, then

Sn(T s) = {πs : π ∈ Sn(T )}, (58)

and, for any permutation σ,

nσs(πT s;n) d= nσ(πT ;n). (59)

We say that the sets of forbidden permutations T and T s are equivalent, and note that (59)
implies that it suffices to consider one set T in each equivalence class {T s : s ∈ G}.
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