# Patterns in Random Permutations Avoiding Some Other Patterns 

Svante Janson ${ }^{1}$<br>Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden svante.janson@math.uu.se

(D) https://orcid.org/0000-0002-9680-2790


#### Abstract

Consider a random permutation drawn from the set of permutations of length $n$ that avoid a given set of one or several patterns of length 3 . We show that the number of occurrences of another pattern has a limit distribution, after suitable scaling. In several cases, the limit is normal, as it is in the case of unrestricted random permutations; in other cases the limit is a non-normal distribution, depending on the studied pattern. In the case when a single pattern of length 3 is forbidden, the limit distributions can be expressed in terms of a Brownian excursion.

The analysis is made case by case; unfortunately, no general method is known, and no general pattern emerges from the results.


2012 ACM Subject Classification Mathematics of computing $\rightarrow$ Permutations and combinations, Mathematics of computing $\rightarrow$ Probabilistic representations

Keywords and phrases Random permutations, patterns, forbidden patterns, limit in distribution, U-statistics

Digital Object Identifier 10.4230/LIPIcs.AofA.2018.6
Category Keynote Speakers
Related Version https://arxiv.org/abs/1804.06071

## 1 Introduction

Let $\mathfrak{S}_{n}$ be the set of permutations of $[n]:=\{1, \ldots, n\}$, and $\mathfrak{S}_{*}:=\bigcup_{n \geq 1} \mathfrak{S}_{n}$. If $\sigma=$ $\sigma_{1} \cdots \sigma_{m} \in \mathfrak{S}_{m}$ and $\pi=\pi_{1} \cdots \pi_{n} \in \mathfrak{S}_{n}$, then an occurrence of $\sigma$ in $\pi$ is a subsequence $\pi_{i_{1}} \cdots \pi_{i_{m}}$, with $1 \leq i_{1}<\cdots<i_{m} \leq n$, that has the same order as $\sigma$, i.e., $\pi_{i_{j}}<\pi_{i_{k}} \Longleftrightarrow$ $\sigma_{j}<\sigma_{k}$ for all $j, k \in[m]$. We let $n_{\sigma}(\pi)$ be the number of occurrences of $\sigma$ in $\pi$, and note that

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{m}} n_{\sigma}(\pi)=\binom{n}{m} \tag{1}
\end{equation*}
$$

for every $\pi \in \mathfrak{S}_{n}$. For example, an inversion is an occurrence of 21 , and thus $n_{21}(\pi)$ is the number of inversions in $\pi$.

We say that $\pi$ avoids another permutation $\tau$ if $n_{\tau}(\pi)=0$. Let

$$
\begin{equation*}
\mathfrak{S}_{n}(\tau):=\left\{\pi \in \mathfrak{S}_{n}: n_{\tau}(\pi)=0\right\} \tag{2}
\end{equation*}
$$

[^0]the set of permutations of length $n$ that avoid $\tau$. More generally, for any set $T=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ of permutations, let
\[

$$
\begin{equation*}
\mathfrak{S}_{n}(T)=\mathfrak{S}_{n}\left(\tau_{1}, \ldots, \tau_{k}\right):=\bigcap_{i=1}^{k} \mathfrak{S}_{n}\left(\tau_{i}\right) \tag{3}
\end{equation*}
$$

\]

the set of permutations of length $n$ that avoid all $\tau_{i} \in T$. We also let $\mathfrak{S}_{*}(T):=\bigcup_{n=1}^{\infty} \mathfrak{S}_{n}(T)$ be the set of $T$-avoiding permutations of arbitrary length.

The classes $\mathfrak{S}_{*}(\tau)$ and, more generally, $\mathfrak{S}_{*}(T)$ have been studied for a long time. For examples relevant to analysis of algorithms, see e.g. [13, Exercise 2.2.1-5] ( $\pi$ can be obtained by a stack if and only if $\pi \in \mathfrak{S}_{n}(312)$; equivalently: $\pi$ is stack-sortable if and only if $\pi \in \mathfrak{S}_{n}(312)$ ); [13, Exercise 2.2.1-10,11] and [17] ( $\pi$ is deque-sortable if and only if $\pi$ $\pi \in \mathfrak{S}_{n}(2431,4231) ;[16]$ ( $\pi$ can be sorted by 2 parallel queues if and only if $\pi \in \mathfrak{S}_{n}(321)$. Further examples are given in [15], Exercises $6.19 \times(321)$, y (312), ee (321), ff (312), ii (231), оо (132), xx (321); $6.25 \mathrm{~g}(321) ; 6.39 \mathrm{k}$, $\mathrm{l}(\{2413,3142\}), \mathrm{m}(\{1342,1324\}) ; 6.47 \mathrm{a}$ (\{4231, 3412\}); 6.48 (1342). See also [3].

In particular, one classical problem is to enumerate the sets $\mathfrak{S}_{n}(T)$, either exactly or asymptotically, see e.g. [3, Chapters 4-5] and [14].

The general problem that concerns us is to take a fixed set $T$ of one or several permutations and let $\boldsymbol{\pi}_{T ; n}$ be a uniformly random $T$-avoiding permutation, i.e., a uniformly random element of $\mathfrak{S}_{n}(T)$, and then study the asymptotic distribution of the random variable $n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)$ (as $n \rightarrow \infty$ ) for some other fixed permutation $\sigma$. (Only $\sigma$ that are themselves $T$-avoiding are interesting, since otherwise $n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)=0$.)

Here we study the cases when $T$ is a set of permutations of length 3 . The cases when $T$ contains a permutation of length $\leq 2$ are trivial, since then there is at most one permutation in $\mathfrak{S}_{n}(T)$ for any $n$. The case of forbidding one or several permutations of length $\geq 4$ seems much more complicated, but there are recent impressive results for $\mathfrak{S}_{n}(2413,3142)$ (separable permutations) by Bassino, Bouvel, Féray, Gerin, and Pierrot [2], with generalizations to some other classes in [1].

There are $2^{6}=64$ sets $T$ of permutations of length 3 . Of these, every $T$ that contains $\{123,321\}$, and every $T$ with $|T| \geq 4$ is trivial, in the sense that $\mathfrak{S}_{n}(T)$ contains at most 2 elements for any $n \geq 5$ (see [14]). Ignoring these cases, there are $1+6+14+16=37$ remaining cases (with $|T|=0,1,2,3$, respectively), and by symmetries, see Appendix A, these reduce to $1+2+4+4=11$ non-equivalent cases, which are treated in Sections 2-12. For further details, see [12], [8], [9], [10]; these papers also contain further references to related work, and to some of the many papers by various authors that study other properties of random $\tau$-avoiding permutations.

The cases studied here, i.e., the non-trivial cases with $T \subset \mathfrak{S}_{3}$, all have asymptotic distributions of one of the following two types.
I. Normal limits: For every $\sigma \in \mathfrak{S}_{*}(T)$, there exists constants $\alpha, \beta, \gamma$ such that, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)-\beta n^{\alpha}}{n^{\alpha-1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \gamma^{2}\right), \tag{4}
\end{equation*}
$$

with convergence of all moments. Furthermore, assuming $|\sigma| \geq 2, \gamma^{2}>0$, so the limit is not deterministic, except possibly for one $\sigma \in \mathfrak{S}_{m}(T)$ for each length $m \geq 2$.
In particular, $\mathbb{E} n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right) \sim \beta n^{\alpha}$. Note that (4) implies concentration, in the sense

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)}{\mathbb{E} n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)} \xrightarrow{\mathrm{p}} 1 . \tag{5}
\end{equation*}
$$

Table 1 The table shows whether $n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)$ has limits of type I or II; furthermore, the exponent $\alpha=\alpha(\sigma)$ is given in the column for the type. The last column shows the exceptional cases, if any, where the asymptotic variance vanishes. $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$ is a Catalan number; $F_{n+1}$ is a Fibonacci number $\left(F_{0}=0, F_{1}=1\right) ; s_{n-1}$ is a Schröder number; $D(\sigma)$ is the number of descents and $B(\sigma)$ is the number of blocks in $\sigma$.

| $T$ | $\left\|\mathfrak{S}_{n}(T)\right\|$ | type I | type II | as. variance $=0$ |
| :---: | :---: | :---: | :---: | :---: |
| $\emptyset$ | $n!$ | $\|\sigma\|$ |  |  |
| $\{132\}$ | $C_{n}$ |  | $(\|\sigma\|+D(\sigma)) / 2$ | $m \cdots 1$ |
| $\{321\}$ | $C_{n}$ |  | $(\|\sigma\|+B(\sigma)) / 2$ | $1 \cdots m$ |
| $\{132,312\}$ | $2^{n-1}$ | $\|\sigma\|$ |  |  |
| $\{231,312\}$ | $2^{n-1}$ | $B(\sigma)$ |  | $1 \cdots m$ |
| $\{231,321\}$ | $2^{n-1}$ | $B(\sigma)$ |  | $1 \cdots m$ |
| $\{132,321\}$ | $\binom{n}{2}+1$ |  | $\|\sigma\|$ |  |
| $\{231,312,321\}$ | $F_{n+1}$ | $B(\sigma)$ |  | $1 \cdots m$ |
| $\{132,231,312\}$ | $n$ |  | $\|\sigma\|$ |  |
| $\{132,231,321\}$ | $n$ |  | $\|\sigma\|-1$ or $\|\sigma\|$ | $1 \cdots m$ |
| $\{132,213,321\}$ | $n$ |  | $\|\sigma\|$ |  |
| $\{2413,3142\}$ | $s_{n-1}$ |  | $\|\sigma\|$ |  |

II. Non-normal limits without concentration: For every $\sigma \in \mathfrak{S}_{*}(T)$, there exists a constant $\alpha$ such that

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)}{n^{\alpha}} \xrightarrow{\mathrm{d}} W_{\sigma}, \tag{6}
\end{equation*}
$$

with convergence of all moments, for some random variable $W_{\sigma}>0$. Hence, also

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)}{\mathbb{E} n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)} \xrightarrow{\mathrm{d}} W_{\sigma}^{\prime} \tag{7}
\end{equation*}
$$

with convergence of all moments, for some random variable $W_{\sigma}^{\prime}>0$ (necessarily with $\mathbb{E} W_{\sigma}^{\prime}=1$ ). Furthermore, assuming $|\sigma| \geq 2$, $\operatorname{Var} W_{\sigma}>0$, so $W_{\sigma}$ and $W_{\sigma}^{\prime}$ are not deterministic, except possibly for one $\sigma \in \mathfrak{S}_{m}(T)$ for each length $m \geq 2$.
Remark. In all cases studied here, if there are any exceptional $\sigma \in \mathfrak{S}_{*}(T)$ with $\sigma \geq 2$ such that the limit in (4) or (6) is deterministic, i.e., the asymptotic variance is 0 , then the exceptional $\sigma$ are either all identity permutations $1 \cdots m$, or all decreasing permutations $m \cdots 1$. Furthermore, these exceptional cases arise because almost all of the $\binom{n}{|\sigma|}$ patterns in $\boldsymbol{\pi}_{T ; n}$ of length $|\sigma|$ are occurrences of $\sigma$; more precisely, $\mathbb{E}\left(\binom{n}{|\sigma|}-n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)\right)=O\left(n^{|\sigma|-1}\right)$ for the exceptional cases of type I and $O\left(n^{|\sigma|-1 / 2}\right)$ for the cases of type II. (It follows that (5) holds also for the latter.)

We summarize the results for $T$ consisting of permutations of length 3 in Table 1 ; for reference, we include the number $\left|\mathfrak{S}_{n}(T)\right|$ of $T$-avoiding permutations of length $n$, see e.g. [13, Exercises 2.2.1-4,5], [15, Exercise 6.19ee,ff], [3, Corollary 4.7], and [14]. We include also the case $T=\{2413,3142\}$ from [2]; see [17] for the enumeration.

We see no obvious pattern in the existence of limits of type I or II in Table 1. Moreover, the proofs, sketched below, are done case by case; we have not succeeded to prove any general results, treating all (or at least some) forbidden sets $T$ at the same time.

- Remark. We do not know whether a general set of forbidden permutations $T$ has limits in distribution of $n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right)$ (after normalization) at all, and even if limits exist, there is no known reason implying that they have to be of type I or II above; other types of limits are conceivable.

Remark. The non-normal limits in the cases $\{132\},\{321\}$ and $\{2413,3142\}$ can all be expressed as functionals of a Brownian excursion e, see [8, 9, 2]. However, the expressions in these three cases are, in general, quite different (and obtained by quite different arguments), so there is no obvious hope for a unification. (The other cases of non-normal limits in Table 1 are different, and of a more elementary kind.)

### 1.1 Some notation

Let $\iota=\iota_{n}$ be the identity permutation of length $n$.
If $\sigma \in \mathfrak{S}_{m}$ and $\tau \in \mathfrak{S}_{n}$, their composition $\sigma * \tau \in \mathfrak{S}_{m+n}$ is defined by letting $\tau$ act on $[m+1, m+n]$ in the natural way; more formally, $\sigma * \tau=\pi \in \mathfrak{S}_{m+n}$ where $\pi_{i}=\sigma_{i}$ for $1 \leq i \leq m$, and $\pi_{j+m}=\tau_{j}+m$ for $1 \leq j \leq n$. We say that a permutation $\pi \in \mathfrak{S}_{*}$ is decomposable if $\pi=\sigma * \tau$ for some $\sigma, \tau \in \mathfrak{S}_{*}$, and indecomposable otherwise; we also call an indecomposable permutation a block.

It is easy to see that any permutation $\pi \in \mathfrak{S}_{*}$ has a unique decomposition $\pi=\pi_{1} * \cdots * \pi_{\ell}$ into indecomposable permutations (blocks) $\pi_{1}, \ldots, \pi_{\ell}$; we call these the blocks of $\pi$. (These are useful to characterize the permutations in some of the classes below.)

## 2 No restriction, $T=\emptyset$

As a background, consider first the case $T=\emptyset$, so $\mathfrak{S}_{n}(T)=\mathfrak{S}_{n}$; the set of all $n$ ! permutations of length $n$. It is well-known, see Bóna $[4,5]$ and [12, Theorem 4.1], that if $\boldsymbol{\pi}_{n}$ is a uniformly random permutation in $\mathfrak{S}_{n}$, then $n_{\sigma}\left(\boldsymbol{\pi}_{n}\right)$ has an asymptotic normal distribution as $n \rightarrow \infty$ for every fixed permutation $\sigma$ :

- Theorem 1 (Bóna [4, 5]). If $|\sigma|=m \geq 2$ then, as $n \rightarrow \infty$, for some $\gamma^{2}>0$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{n}\right)-\frac{1}{m!}\binom{n}{m}}{n^{m-1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \gamma^{2}\right) . \tag{8}
\end{equation*}
$$

Sketch of proof. A random permutation $\boldsymbol{\pi}_{n}$ can be obtained by taking i.i.d. random variables $X_{1}, \ldots, X_{n} \sim U(0,1)$ and considering their ranks. Then

$$
\begin{equation*}
n_{\sigma}\left(\boldsymbol{\pi}_{n}\right)=\sum_{i_{1}<\cdots<i_{m}} f\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tag{9}
\end{equation*}
$$

for a suitable (indicator) function $f$. This sum is an asymmetric $U$-statistic, and the result follows by general results on $U$-statistics, see [6] and [11].

- Remark. The asymptotic variance $\gamma^{2}$ depends on $\sigma$. It can be calculated explicitly, and the same holds for all parameters $\gamma^{2}$ (or $\mu$ ) in the limit theorems below. Moreover, the convergence (8) holds with convergence of all moments, and it holds jointly for any set of $\sigma$; also this holds for all later limit theorems too.


## 3 Avoiding 132

Consider next the cases when $T$ consists of a single permutation of length 3 . The symmetries in Appendix A leave two non-equivalent cases. In this section we avoid $T=\{132\}$; equivalent cases are $\{213\},\{231\},\{312\}$. Recall that the standard Brownian excursion $\mathbf{e}(x)$ is a random non-negative function on $[0,1]$. Let

$$
\begin{equation*}
\lambda(\sigma):=|\sigma|+D(\sigma) \tag{10}
\end{equation*}
$$

## S. Janson

where $D(\sigma)$ is the number of descents in $\sigma$, i.e., indices $i$ such that $\sigma_{i}>\sigma_{i+1}$ or (as a convenient convention) $i=|\sigma|$. Note that $1 \leq D(\sigma) \leq|\sigma|$, and thus

$$
\begin{equation*}
|\sigma|+1 \leq \lambda(\sigma) \leq 2|\sigma| \tag{11}
\end{equation*}
$$

with the extreme values $\lambda(\sigma)=|\sigma|+1$ if and only if $\sigma=1 \cdots k$, and $\lambda(\sigma)=2|\sigma|$ if and only if $\sigma=k \cdots 1$, for some $k=|\sigma|$.

- Theorem 2 ([8]). There exist strictly positive random variables $\Lambda_{\sigma}$ such that as $n \rightarrow \infty$,

$$
\begin{equation*}
n_{\sigma}\left(\boldsymbol{\pi}_{132 ; n}\right) / n^{\lambda(\sigma) / 2} \xrightarrow{\mathrm{~d}} \Lambda_{\sigma} . \tag{12}
\end{equation*}
$$

Sketch of proof. The analysis is based on a well-known bijection with binary trees and Dyck paths, and the, also well-known, convergence in distribution of random Dyck paths to a Brownian excursion. For (not so simple) details, see [8].

The limit variables $\Lambda_{\sigma}$ in Theorem 2 can be expressed as functionals of a Brownian excursion $\mathbf{e}(x)$, see [8]; the description is, in general, rather complicated, but some cases are simple. Moments of the variables $\Lambda_{\sigma}$ can be calculated by a recursion formula given in [8].

- Example 3. In the special case $\sigma=12, \Lambda_{12}=\sqrt{2} \int_{0}^{1} \mathbf{e}(x) \mathrm{d} x$, see [8, Example 7.6]; this is (apart from the factor $\sqrt{2}$ ) the well-known Brownian excursion area, see e.g. [7] and the references there.

For the number $n_{21}$ of inversions, we thus have

$$
\begin{equation*}
\frac{\binom{n}{2}-n_{21}\left(\boldsymbol{\pi}_{132 ; n}\right)}{n^{3 / 2}}=\frac{n_{12}\left(\boldsymbol{\pi}_{132 ; n}\right)}{n^{3 / 2}} \xrightarrow{\mathrm{~d}} \Lambda_{12}=\sqrt{2} \int_{0}^{1} \mathbf{e}(x) \mathrm{d} x . \tag{13}
\end{equation*}
$$

By symmetries, see Appendix A, the left-hand side can also be seen as the number of inversions $n_{21}\left(\boldsymbol{\pi}_{231 ; n}\right)$ or $n_{21}\left(\boldsymbol{\pi}_{312 ; n}\right)$, normalized by $n^{3 / 2}$, where we instead avoid 231 or 312 .

## 4 Avoiding 321

In this section we avoid $T=\{321\}$. The case $T=\{123\}$ is equivalent.
$\mathfrak{S}_{n}(321)$ is treated in detail in [9]. As for $\mathfrak{S}_{n}(132)$ in Section 3, the analysis is based on a well-known bijection with Dyck paths, but the details are very different, and so are in general the resulting limit distributions.

- Theorem 4 ([9]). Let $\sigma \in \mathfrak{S}_{*}(321)$. Let $m:=|\sigma|$, and suppose that $\sigma$ has $\ell$ blocks of lengths $m_{1}, \ldots, m_{\ell}$. Then, as $n \rightarrow \infty$,

$$
\begin{equation*}
n_{\sigma}\left(\boldsymbol{\pi}_{321 ; n}\right) / n^{(m+\ell) / 2} \xrightarrow{\mathrm{~d}} W_{\sigma} \tag{14}
\end{equation*}
$$

for a positive random variable $W_{\sigma}$ that can be represented as

$$
\begin{equation*}
W_{\sigma}=w_{\sigma} \int_{0<t_{1}<\cdots<t_{\ell}<1} \mathbf{e}\left(t_{1}\right)^{m_{1}-1} \cdots \mathbf{e}\left(t_{\ell}\right)^{m_{\ell}-1} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{\ell}, \tag{15}
\end{equation*}
$$

where $w_{\sigma}$ is positive constant.
Sketch of proof. As for Theorem 2, the analysis is based on a bijection with Dyck paths, and the convergence in distribution of random Dyck paths to a Brownian excursion. For details, see [8].

In this case, we have an explicit general formula (15) for the limit variables. On the other hand, we do not know how to compute even the mean $\mathbb{E} W_{\sigma}$ in general; see [9] for calculations in various special cases.

- Example 5. Let $\sigma=21$. Then $w_{21}=2^{-1 / 2}$, see [9], and thus (14)-(15), with $\ell=1$ and $m_{1}=m=2$, yield for the number of inversions,

$$
\begin{equation*}
\frac{n_{21}\left(\boldsymbol{\pi}_{321 ; n}\right)}{n^{3 / 2}} \xrightarrow{\mathrm{~d}} 2^{-1 / 2} \int_{0}^{1} \mathbf{e}(x) \mathrm{d} x . \tag{16}
\end{equation*}
$$

Note that the limit in (16) differs from the one in (13) by a factor 2.

## 5 Avoiding \{132,312\}

In this section we avoid $T=\{132,312\}$. Equivalent sets are $\{132,231\},\{213,231\},\{213,312\}$.

- Theorem 6. For any $m \geq 2$ and $\sigma \in \mathfrak{S}_{m}(132,312)$, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{132,312 ; n}\right)-2^{1-m} n^{m} / m!}{n^{m-1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \gamma^{2}\right) . \tag{17}
\end{equation*}
$$

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent formulation) that a permutation $\pi$ belongs to the class $\mathfrak{S}_{*}(132,312)$ if and only if every entry $\pi_{i}$ is either a maximum or a minimum. We encode a permutation $\pi \in \mathfrak{S}_{n}(132,312)$ by a sequence $\xi_{2}, \ldots, \xi_{n} \in\{ \pm 1\}^{n-1}$, where $\xi_{j}=1$ if $\pi_{j}$ is a maximum in $\pi$, and $\xi_{j}=-1$ if $\pi_{j}$ is a minimum. This is a bijection, and hence the code for a uniformly random $\boldsymbol{\pi}_{132,312 ; n}$ has $\xi_{2}, \ldots, \xi_{n}$ i.i.d. with the symmetric Bernoulli distribution $\mathbb{P}\left(\xi_{j}=1\right)=\mathbb{P}\left(\xi_{j}=-1\right)=\frac{1}{2}$.

Let $\sigma \in \mathfrak{S}_{m}(132,312)$ have the code $\eta_{2}, \ldots, \eta_{m}$. Then $\pi_{i_{1}} \cdots \pi_{i_{m}}$ is an occurrence of $\sigma$ in $\pi$ if and only if $\xi_{i_{j}}=\eta_{j}$ for $2 \leq j \leq m$. Consequently, $n_{\sigma}\left(\boldsymbol{\pi}_{132,312 ; n}\right)$ is a $U$-statistic

$$
\begin{equation*}
n_{\sigma}\left(\boldsymbol{\pi}_{132,312 ; n}\right)=\sum_{i_{1}<\cdots<i_{m}} f\left(\xi_{i_{1}}, \ldots, \xi_{i_{m}}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(\xi_{1}, \ldots, \xi_{m}\right):=\prod_{j=2}^{m} 1\left\{\xi_{j}=\eta_{j}\right\} \tag{19}
\end{equation*}
$$

Note that $f$ does not depend on the first argument.
The result now follows from the theory of $U$-statistics [6], [11].

- Example 7. For the number of inversions, we have $\sigma=21$ and $m=2, \eta_{2}=-1$. A calculation yields $\mu=\frac{1}{2}$ and $\gamma^{2}=\frac{1}{12}$, and thus Theorem 6 yields

$$
\begin{equation*}
\frac{n_{21}\left(\boldsymbol{\pi}_{132,312 ; n}\right)-n^{2} / 4}{n^{3 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \frac{1}{12}\right), \tag{20}
\end{equation*}
$$

## 6 Avoiding \{231,312\}

In this section we avoid $T=\{231,312\}$. The only equivalent set is $\{132,213\}$.

- Theorem 8. Let $\sigma \in \mathfrak{S}_{m}(231,312)$ have block lengths $\ell_{1}, \ldots, \ell_{b}$. Then, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{231,312 ; n}\right)-n^{b} / b!}{n^{b-1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \gamma^{2}\right) . \tag{21}
\end{equation*}
$$

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that $a$ permutation $\pi$ belongs to the class $\mathfrak{S}_{*}(231,312)$ if and only if every block in $\pi$ is decreasing, i.e., of the type $\ell(\ell-1) \cdots 21$ for some $\ell$. Hence there exists exactly one block of each length $\ell \geq 1$, and a permutation $\pi \in \mathfrak{S}_{*}(231,312)$ can be encoded by its sequence of block length. In this section, let $\pi_{\ell_{1}, \ldots, \ell_{b}}$ denote the permutation in $\mathfrak{S}_{*}(231,312)$ with block lengths $\ell_{1}, \ldots, \ell_{b}$.

A uniformly random permutation $\pi_{231,312 ; n}$ can be generated as $\pi_{L_{1}, \ldots, L_{B}}$, where the block lengths $L_{1}, \ldots, L_{B}$ are obtained from an infinite i.i.d. sequence $L_{1}, L_{2}, \cdots \sim \operatorname{Ge}\left(\frac{1}{2}\right)$, stopped at $B$ such that $L_{1}+\cdots+L_{B} \geq n$, and then adjusting $L_{B}$ such that $L_{1}+\cdots+L_{B}=n$.

Let $\sigma \in \mathfrak{S}_{*}(231,312)$ have block lengths $\ell_{1}, \ldots, \ell_{b}$, so that $\sigma=\pi_{\ell_{1}, \ldots, \ell_{b}}$. Then,

$$
\begin{equation*}
n_{\sigma}\left(\pi_{L_{1}, \ldots, L_{B}}\right)=\sum_{1 \leq i_{1}<\cdots<i_{b} \leq B} \prod_{j=1}^{b}\binom{L_{i_{j}}}{\ell_{i}} \tag{22}
\end{equation*}
$$

This is again a kind of $U$-statistic, but it is based on the sequence $L_{1}, \ldots, L_{B}$ of random length $B$, obtained by stopping the infinite sequence $L_{i}$. Nevertheless, general results for $U$-statistics cover this modification and yield the result, see [11].

- Example 9. For the number of inversions, we have $\sigma=21$ and $b=1, \ell_{1}=2$. A calculation yields $\gamma^{2}=6$, and Theorem 8 yields

$$
\begin{equation*}
\frac{n_{21}\left(\boldsymbol{\pi}_{231,312 ; n}\right)-n}{n^{1 / 2}} \xrightarrow{\mathrm{~d}} N(0,6) \tag{23}
\end{equation*}
$$

## 7 Avoiding \{231, 321\}

In this section we avoid $T=\{231,321\}$. Equivalent sets are $\{123,132\},\{123,213\},\{312,321\}$.

- Theorem 10. Let $\sigma \in \mathfrak{S}_{m}(231,321)$ have block lengths $\ell_{1}, \ldots, \ell_{b}$, and let $b_{1}$ be the number of blocks of length $\ell_{i}=1$. Then, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{231,321 ; n}\right)-2^{b_{1}-b} n^{b} / b!}{n^{b-1 / 2}} \stackrel{\mathrm{~d}}{\longrightarrow} N\left(0, \gamma^{2}\right) \tag{24}
\end{equation*}
$$

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that $a$ permutation $\pi$ belongs to the class $\mathfrak{S}_{*}(231,321)$ if and only if every block in $\pi$ is of the type $\ell 12 \cdots(\ell-1)$ for some $\ell$. Thus, as in Section 6, a permutation in $\mathfrak{S}_{*}(231,321)$ is determined by its block lengths, and these can be arbitrary. Hence, a uniformly random $\boldsymbol{\pi}_{231,321 ; n}$ has block lengths $L_{1}, \ldots, L_{B}$ with the same distribution as in Section 6. Letting now $\sigma$ be the permutation in $\mathfrak{S}_{*}(231,321)$ with block lengths $\ell_{1}, \ldots, \ell_{b}, n_{\sigma}\left(\boldsymbol{\pi}_{231,321 ; n}\right)$ is a function of the block lengths $L_{1}, \ldots, L_{B}$ that is similar (but not identical) to (22). This time some lower order terms appear, but they may be neglected, and the remainder is a $U$-statistic similar to the one in the proof of Theorem 8, and the result follows in the same way.

- Example 11. For the number of inversions, we have $\sigma=21$ and $b=1, \ell_{1}=2, b_{1}=0$. A calculation yields $\gamma^{2}=1 / 4$, and Theorem 10 yields

$$
\begin{equation*}
\frac{n_{21}\left(\boldsymbol{\pi}_{231,321 ; n}\right)-n / 2}{n^{1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \frac{1}{4}\right) . \tag{25}
\end{equation*}
$$

In fact, in this special case it can be seen that we have the exact distribution

$$
\begin{equation*}
n_{21}\left(\boldsymbol{\pi}_{231,321 ; n}\right) \sim \operatorname{Bi}\left(n-1, \frac{1}{2}\right) \tag{26}
\end{equation*}
$$

## 8 Avoiding \{132, 321\}

In this section we avoid $T=\{132,321\}$. Equivalent sets are $\{123,231\},\{123,312\},\{213,321\}$.
It was shown in $\left[14\right.$, Proposition 13] that a permutation $\pi$ belongs to $\mathfrak{S}_{*}(132,321)$ if and only if either $\pi=\iota_{n}$ for some $n$, or $\pi=\pi_{k, \ell, m}$ for some $k, \ell \geq 1$ and $m \geq 0$, where, in this section,

$$
\begin{equation*}
\pi_{k, \ell, m}:=(\ell+1, \ldots, \ell+k, 1, \ldots, \ell, k+\ell+1, \ldots, k+\ell+m) \in \mathfrak{S}_{k+\ell+m} \tag{27}
\end{equation*}
$$

Recall that the Dirichlet distribution $\operatorname{Dir}(1,1,1)$ is the uniform distribution on the simplex $\left\{(x, y, z) \in \mathbb{R}_{+}^{3}: x+y+z=1\right\}$.

- Theorem 12. Let $\sigma \in \mathfrak{S}_{*}(132,321)$. Then the following hold as $n \rightarrow \infty$.
(i) If $\sigma=\pi_{i, j, p}$ for some $i, j, p$, then

$$
\begin{equation*}
n^{-(i+j+p)} n_{\sigma}\left(\boldsymbol{\pi}_{132,321 ; n}\right) \xrightarrow{\mathrm{d}} W_{i, j, p}:=\frac{1}{i!j!p!} X^{i} Y^{j} Z^{p}, \tag{28}
\end{equation*}
$$

where $(X, Y, Z) \sim \operatorname{Dir}(1,1,1)$.
(ii) If $\sigma=\iota_{i}$, then

$$
\begin{equation*}
n^{-i} n_{\sigma}\left(\boldsymbol{\pi}_{132,321 ; n}\right) \xrightarrow{\mathrm{d}} W_{i}:=\frac{1}{i!}\left((X+Z)^{i}+(Y+Z)^{i}-Z^{i}\right), \tag{29}
\end{equation*}
$$

with $(X, Y, Z) \sim \operatorname{Dir}(1,1,1)$ as in $i$.
Sketch of proof. For asymptotic results, we may ignore the case when $\boldsymbol{\pi}_{132,321 ; n}=\iota_{n}$. Conditioning on $\boldsymbol{\pi}_{132,321 ; n} \neq \iota_{n}$, we have $\boldsymbol{\pi}_{132,321 ; n}=\pi_{K, L, n-K-L}$, where $K$ and $L$ are random with ( $K, L$ ) uniformly distributed over the set $\{K, L \geq 1: K+L \leq n\}$. As $n \rightarrow \infty$, we thus have

$$
\begin{equation*}
\left(\frac{K}{n}, \frac{L}{n}, \frac{n-K-L}{n}\right) \xrightarrow{\mathrm{d}}(X, Y, Z) \sim \operatorname{Dir}(1,1,1) . \tag{30}
\end{equation*}
$$

If $\sigma=\pi_{i, j, p}$ for some $i, j, p$, then it is easily seen that

$$
\begin{equation*}
n_{\sigma}\left(\pi_{k, \ell, m}\right)=\binom{k}{i}\binom{\ell}{j}\binom{m}{p} . \tag{31}
\end{equation*}
$$

Similarly, if $\sigma=\iota_{i}$, then, by inclusion-exclusion,

$$
\begin{equation*}
n_{\sigma}\left(\pi_{k, \ell, m}\right)=\binom{k+m}{i}+\binom{\ell+m}{i}-\binom{m}{i} . \tag{32}
\end{equation*}
$$

These exact formulas and (30) yield the results.

- Corollary 13. The number of inversions has the asymptotic distribution

$$
\begin{equation*}
n^{-2} n_{21}\left(\boldsymbol{\pi}_{132,321 ; n}\right) \xrightarrow{\mathrm{d}} W:=X Y, \tag{33}
\end{equation*}
$$

with $(X, Y)$ as above; the limit variable $W$ has density function

$$
\begin{equation*}
2 \log (1+\sqrt{1-4 x})-2 \log (1-\sqrt{1-4 x}), \quad 0<x<1 / 4 \tag{34}
\end{equation*}
$$

and moments

$$
\begin{equation*}
\mathbb{E} W^{r}=2 \frac{r!^{2}}{(2 r+2)!}, \quad r>0 . \tag{35}
\end{equation*}
$$

## 9 Avoiding \{231,312,321\}

We proceed to sets of three forbidden patterns. In this section we avoid $T=\{231,312,321\}$.
An equivalent set is $\{123,132,213\}$.

- Theorem 14. Let $\sigma \in \mathfrak{S}_{m}(231,312,321)$ have block lengths $\ell_{1}, \ldots, \ell_{b}$. Then, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{\sigma}\left(\boldsymbol{\pi}_{231,312,321 ; n}\right)-\mu n^{b} / b!}{n^{b-1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0, \gamma^{2}\right), \tag{36}
\end{equation*}
$$

for some constants $\mu$ and $\gamma^{2}$.
Sketch of proof. It was shown in [14, Proposition 15*] (in an equivalent form) that $a$ permutation $\pi$ belongs to the class $\mathfrak{S}_{*}(231,312,321)$ if and only if every block in $\pi$ is decreasing and has length $\leq 2$, i.e., every block is 1 or 21 . Hence, a permutation $\pi \in \mathfrak{S}_{n}(231,312,321)$ is uniquely determined by its sequence of block lengths $L_{1}, \ldots, L_{B}$, where each $L_{i} \in\{1,2\}$ and $L_{1}+\cdots+L_{B}=n$.

Let $p:=(\sqrt{5}-1) / 2$, the golden ratio, so that $p+p^{2}=1$. Let $X$ be a random variable with the distribution

$$
\begin{equation*}
\mathbb{P}(X=1)=p, \quad \mathbb{P}(X=2)=p^{2} \tag{37}
\end{equation*}
$$

Consider an i.i.d. sequence $X_{1}, X_{2}, \ldots$ of copies of $X$, and let $S_{k}:=\sum_{i=1}^{k} X_{i}$. Let further $B(n):=\min \left\{k: S_{k} \geq n\right\}$. Then, conditioned on $S_{B(n)}=n$, the sequence $X_{1}, \ldots, X_{B(n)}$ has the same distribution as the sequence $L_{1}, \ldots, L_{B}$ of block lengths of a uniformly random permutation $\boldsymbol{\pi}_{231,312,321 ; n}$.

Consequently, $n_{\sigma}\left(\boldsymbol{\pi}_{231,312,321 ; n}\right)$ can be expressed as a $U$-statistic based on $X_{1}, \ldots, X_{B}$, conditioned as above. This conditioning does not affect the asymptotic distribution, see [11], and the result follows again by general results for $U$-statistics.

- Example 15. For the number of inversions, $\sigma=21$ we have $b=1$. A calculation yields $\mu=1-p=(3-\sqrt{5}) / 2$ and $\gamma^{2}=5^{-3 / 2}$. Consequently,

$$
\begin{equation*}
\frac{n_{21}\left(\boldsymbol{\pi}_{231,312,321 ; n}\right)-\frac{3-\sqrt{5}}{2} n}{n^{1 / 2}} \xrightarrow{\mathrm{~d}} N\left(0,5^{-3 / 2}\right) \tag{38}
\end{equation*}
$$

## 10 Avoiding \{132,231,312\}

In this section we avoid $\{132,231,312\}$. Equivalent sets are $\{132,213,231\},\{132,213,312\}$, $\{213,231,312\}$.

It was shown in $\left[14\right.$, Proposition $\left.16^{*}\right]$ (in an equivalent form) that $\mathfrak{S}_{n}(132,231,312)=$ $\left\{\pi_{k, n-k}: 1 \leq k \leq n\right\}$, where, in this section,

$$
\begin{equation*}
\pi_{k, \ell}:=(k, \ldots, 1, k+1, \ldots, k+\ell) \in \mathfrak{S}_{k+\ell}, \quad k \geq 1, \ell \geq 0 \tag{39}
\end{equation*}
$$

- Theorem 16. Let $\sigma \in \mathfrak{S}_{*}(132,231,312)$. Then the following hold as $n \rightarrow \infty$, with $U \sim$ $\mathrm{U}(0,1)$.
(i) If $\sigma=\pi_{k, m-k}$ with $2 \leq k \leq m$, then

$$
\begin{equation*}
n^{-m} n_{\sigma}\left(\boldsymbol{\pi}_{132,231,312 ; n}\right) \xrightarrow{\mathrm{d}} W_{k, m-k}:=\frac{1}{k!(m-k)!} U^{k}(1-U)^{m-k} \tag{40}
\end{equation*}
$$

(ii) If $\sigma=\pi_{1, m-1}=\iota_{m}$, then

$$
\begin{align*}
n^{-m} n_{\sigma}\left(\boldsymbol{\pi}_{132,231,312 ; n}\right) \xrightarrow{\mathrm{d}} W_{1, m-1} & :=\frac{1}{(m-1)!} U(1-U)^{m-1}+\frac{1}{m!}(1-U)^{m} \\
& =\frac{1}{m!}(1+(m-1) U)(1-U)^{m-1} \tag{41}
\end{align*}
$$

Sketch of proof. The random $\boldsymbol{\pi}_{132,231,312 ; n}=\pi_{K, n-K}$, where $K \in[n]$ is uniformly random. Obviously, as $n \rightarrow \infty$,

$$
\begin{equation*}
K / n \xrightarrow{\mathrm{~d}} U \sim \mathrm{U}(0,1) . \tag{42}
\end{equation*}
$$

Furthermore, if $\sigma=\pi_{k, \ell}$, then it is easy to see that

$$
n_{\sigma}\left(\pi_{K, n-K}\right)= \begin{cases}\binom{K}{k}\binom{n-K}{\ell}, & k \geq 2  \tag{43}\\ K\binom{n-K}{\ell}+\binom{n-K}{\ell+1}, & k=1\end{cases}
$$

The results follow.

- Corollary 17. The number of inversions has the asymptotic distribution

$$
\begin{equation*}
n^{-2} n_{21}\left(\boldsymbol{\pi}_{132,231,312 ; n}\right) \xrightarrow{\mathrm{d}} W:=U^{2} / 2 \tag{44}
\end{equation*}
$$

with $U \sim \mathrm{U}(0,1)$. Thus, $2 W \sim B\left(\frac{1}{2}, 1\right)$, and $W$ has moments

$$
\begin{equation*}
\mathbb{E} W^{r}=\frac{1}{2^{r}(2 r+1)}, \quad r>0 \tag{45}
\end{equation*}
$$

## 11 Avoiding \{132,231,321\}

In this section we avoid $\{132,231,321\}$. Equivalent sets are $\{123,132,231\},\{123,213,312\}$, $\{213,312,321\},\{123,132,312\},\{123,213,231\},\{132,312,321\},\{213,231,321\}$.

It was shown in [14, Proposition $16^{*}$ ] (in an equivalent form) that $\mathfrak{S}_{n}(132,231,321)=$ $\left\{\pi_{k, n-k}: 1 \leq k \leq n\right\}$, where, in this section,

$$
\begin{equation*}
\pi_{k, \ell}:=(k, 1, \ldots, k-1, k+1, \ldots, k+\ell) \in \mathfrak{S}_{k+\ell}, \quad k \geq 1, \ell \geq 0 \tag{46}
\end{equation*}
$$

- Theorem 18. Let $\sigma \in \mathfrak{S}_{*}(132,231,321)$. Then the following hold as $n \rightarrow \infty$, with $U \sim$ $\mathrm{U}(0,1)$.
(i) If $\sigma=\pi_{k, m-k}$ with $2 \leq k \leq m$, then

$$
\begin{equation*}
n^{-(m-1)} n_{\sigma}\left(\boldsymbol{\pi}_{132,231,321 ; n}\right) \xrightarrow{\mathrm{d}} W_{k, m-k}:=\frac{1}{(k-1)!(m-k)!} U^{k-1}(1-U)^{m-k} . \tag{47}
\end{equation*}
$$

(ii) If $\sigma=\pi_{1, m-1}=\iota_{m}$, then

$$
\begin{equation*}
n^{-m} n_{\sigma}\left(\boldsymbol{\pi}_{132,231,321 ; n}\right)=\frac{1}{m!}+O\left(n^{-1}\right) \xrightarrow{\mathrm{p}} \frac{1}{m!} . \tag{48}
\end{equation*}
$$

Sketch of proof. The random permutation $\pi_{132,231,321 ; n}=\pi_{K, n-K}$, where $K \in[n]$ is uniformly random. The results follow similarly to the proof of Theorem 16.

- Corollary 19. The number of inversions $n_{21}\left(\boldsymbol{\pi}_{132,231,321 ; n}\right)$ has a uniform distribution on $\{0, \ldots, n-1\}$, and thus the asymptotic distribution

$$
\begin{equation*}
n^{-1} n_{21}\left(\boldsymbol{\pi}_{132,231,321 ; n}\right) \xrightarrow{\mathrm{d}} U \sim \mathrm{U}(0,1) . \tag{49}
\end{equation*}
$$

## S. Janson

## 12 Avoiding \{132,213,321\}

In this section we avoid $\{132,213,321\}$. An equivalent sets is $\{123,231,312\}$.
It was shown in [14, Proposition $16^{*}$ ] (in an equivalent form) that $\mathfrak{S}_{n}(132,213,321)=$ $\left\{\pi_{k, n-k}: 1 \leq k \leq n\right\}$, where, in this section,

$$
\begin{equation*}
\pi_{k, \ell}:=(\ell+1, \ldots, \ell+k, 1, \ldots, \ell) \in \mathfrak{S}_{k+\ell}, \quad k \geq 1, \ell \geq 0 . \tag{50}
\end{equation*}
$$

Theorem 20. Let $\sigma \in \mathfrak{S}_{*}(132,213,321)$. Then the following hold as $n \rightarrow \infty$, with $U \sim$ $\mathrm{U}(0,1)$.
(i) If $\sigma=\pi_{k, m-k}$ with $1 \leq k \leq m-1$, then

$$
\begin{equation*}
n^{-m} n_{\sigma}\left(\boldsymbol{\pi}_{132,213,321 ; n}\right) \xrightarrow{\mathrm{d}} W_{k, m-k}:=\frac{1}{k!(m-k)!} U^{k}(1-U)^{m-k} . \tag{51}
\end{equation*}
$$

(ii) If $\sigma=\pi_{m, 0}=\iota_{m}$, then

$$
\begin{equation*}
n^{-m} n_{\sigma}\left(\boldsymbol{\pi}_{132,213,321 ; n}\right) \xrightarrow{\mathrm{d}} W_{m, 0}:=\frac{1}{m!}\left(U^{m}+(1-U)^{m}\right) . \tag{52}
\end{equation*}
$$

Sketch of proof. Similarly to the proof of Theorem 16.

- Corollary 21. The number of inversions has the asymptotic distribution

$$
\begin{equation*}
n^{-2} n_{21}\left(\boldsymbol{\pi}_{132,213,321 ; n}\right) \xrightarrow{\mathrm{d}} W:=U(1-U), \tag{53}
\end{equation*}
$$

with $U \sim \mathrm{U}(0,1)$. Thus, $4 W \sim B\left(1, \frac{1}{2}\right)$, and $W$ has moments

$$
\begin{equation*}
\mathbb{E} W^{r}=\frac{\Gamma(r+1)^{2}}{\Gamma(2 r+2)}, \quad r>0 . \tag{54}
\end{equation*}
$$

## - References

1 Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and Adeline Pierrot. Universal limits of substitution-closed permutation classes. Preprint, arXiv:1706.08333, 2017.
2 Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, and Adeline Pierrot. The Brownian limit of separable permutations. Preprint, arXiv:1602.04960, 2016.
3 Miklós Bóna. Combinatorics of Permutations. Chapman \& Hall/CRC, Boca Raton, FL, 2004.

4 Miklós Bóna. The copies of any permutation pattern are asymptotically normal. Preprint, arXiv:0712.2792, 2007.
5 Miklós Bóna. On three different notions of monotone subsequences. In Permutation patterns, volume 376 of London Math. Soc. Lecture Note Ser., pages 89-114. Cambridge Univ. Press, Cambridge, 2010.
6 Svante Janson. Gaussian Hilbert Spaces. Cambridge University Press, Cambridge, 1997.
7 Svante Janson. Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Probab. Surv., 4:80-145, 2007.
8 Svante Janson. Patterns in random permutations avoiding the pattern 132. Combin. Probab. Comput., 26(1):24-51, 2017.
9 Svante Janson. Patterns in random permutations avoiding the pattern 321. Preprint, arXiv:1709.08427, 2017.
10 Svante Janson. Patterns in random permutations avoiding some sets of multiple patterns. Preprint, arXiv:1804.06071, 2018.

11 Svante Janson. Renewal theory for asymmetric $U$-statistics. Preprint, arXiv:1804.05509, 2018.

12 Svante Janson, Brian Nakamura, and Doron Zeilberger. On the asymptotic statistics of the number of occurrences of multiple permutation patterns. J. Comb., 6(1-2):117-143, 2015.
13 Donald E. Knuth. The Art of Computer Programming. Vol. 1. Addison-Wesley, Reading, MA, third edition, 1997.
14 Rodica Simion and Frank W. Schmidt. Restricted permutations. European J. Combin., 6(4):383-406, 1985.
15 Richard P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge, 1999.
16 Robert Tarjan. Sorting using networks of queues and stacks. J. Assoc. Comput. Mach., 19:341-346, 1972.
17 Julian West. Generating trees and the Catalan and Schröder numbers. Discrete Math., 146(1-3):247-262, 1995.

## A Symmetries

For any permutation $\pi=\pi_{1} \cdots \pi_{n}$, define its inverse $\pi^{-1}$ in the usual way, and its reversal and complement by

$$
\begin{align*}
& \pi^{r}:=\pi_{n} \cdots \pi_{1},  \tag{55}\\
& \pi^{c}:=\left(n+1-\pi_{1}\right) \cdots\left(n+1-\pi_{n}\right) \tag{56}
\end{align*}
$$

These three operations generate a group $\mathfrak{G}$ of 8 symmetries (isomorphic to the dihedral group $\left.D_{4}\right)$. It is easy to see that for any symmetry $\mathrm{s} \in \mathfrak{G}$,

$$
\begin{equation*}
n_{\sigma^{\mathrm{s}}}\left(\pi^{\mathrm{s}}\right)=n_{\sigma}(\pi) \tag{57}
\end{equation*}
$$

Thus, if we define $T^{\mathrm{s}}:=\left\{\tau^{\mathrm{s}}: \tau \in T\right\}$, then

$$
\begin{equation*}
\mathfrak{S}_{n}\left(T^{\mathrm{s}}\right)=\left\{\pi^{\mathrm{s}}: \pi \in \mathfrak{S}_{n}(T)\right\} \tag{58}
\end{equation*}
$$

and, for any permutation $\sigma$,

$$
\begin{equation*}
n_{\boldsymbol{\sigma}^{\mathrm{s}}}\left(\boldsymbol{\pi}_{T^{\mathrm{s}} ; n}\right) \stackrel{\mathrm{d}}{=} n_{\sigma}\left(\boldsymbol{\pi}_{T ; n}\right) \tag{59}
\end{equation*}
$$

We say that the sets of forbidden permutations $T$ and $T^{\mathrm{s}}$ are equivalent, and note that (59) implies that it suffices to consider one set $T$ in each equivalence class $\left\{T^{\mathrm{s}}: \mathrm{s} \in \mathfrak{G}\right\}$.


[^0]:    1 Partly supported by the Knut and Alice Wallenberg Foundation
    

