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Abstract
This paper considers the communication over a quantum multiple-unicast network where r sender-
receiver pairs communicate independent quantum states. We concretely construct a quantum
network code for the quantum multiple-unicast network as a generalization of the code [Song
and Hayashi, arxiv:1801.03306, 2018] for the quantum unicast network. When the given node
operations are restricted to invertible linear operations between bit basis states and the rates of
transmissions and interferences are restricted, our code certainly transmits a quantum state for
each sender-receiver pair by n-use of the network asymptotically, which guarantees no information
leakage to the other users. Our code is implemented only by the coding operation in the senders
and receivers and employs no classical communication and no manipulation of the node operations.
Several networks that our code can be applied are also given.
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1 Introduction

When we transmit information via network, it is useful to make codes by reflecting the network
structure. Such type of coding is called network coding and was initiated by Ahlswede et
al. [1]. This topic has been extensively researched by many researchers. Network coding
employs computation-and-forward in intermediate nodes instead of the naive routing method
in traditional network communication. For the quantum network, the paper [5] started the
discussion of the quantum network coding, and many papers [2, 9–12] have advanced the
study of quantum network coding.

In the network coding, unicast network is the most basic network model that the entire
network is used by a sender and a receiver. As one of the remarkable achievements of network
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10:2 Quantum Network Code for Multiple-Unicast Network with QIL Operations

coding for the unicast network, on the classical linear network with malicious adversaries,
the papers [6, 7] proposed codes that implement the classical communication by asymptotic
n-use of the network. In [6, 7], when the transmission rate m in absence of attacks is at
least the maximum rate a of attack (i.e., a < m), the codes in [6, 7] implement the rate
m− a communication asymptotically. As a quantum generalization of the codes in [6, 7], the
paper [14] constructed a quantum network code that transmits a quantum state correctly
and secretly by asymptotic n-use of the network. Similarly to [6, 7], when the transmission
rate m without attacks is at least twice of the maximum number a of the attacked edges (i.e.,
2a < m), the code in [14] implements the rate m−2a quantum communication asymptotically.

However, since a network is used by several users in general, it is needed to treat the
network model with multiple users instead of the unicast network. For this purpose, the
multiple-unicast network has been researched, in which disjoint r sender-receiver pairs
(S1, T1), . . . , (Sr, Tr) communicate over a network. The paper [8] studied a quantum network
code for the multiple-unicast network. The code in [8] transmits a state successfully for
each use of the network. However, [8] has a limitation that the code should manipulate the
node operations in the network and therefore the code depends on the network structure. In
addition, the code in [8] requires the free use of the classical communication.

This paper proposes a quantum network code for the multiple-unicast network which is a
generalization of the unicast quantum network code in [14] and overcomes the shortcomings
of the multiple-unicast quantum network code in [8]. In the same way as [14], the given node
operations are invertible linear with respect to the bit basis states, which is called quantum
invertible linear operations described in Section 2, our code requires the asymptotic n-use
of the network for the correct transmission of the state, and the encoding and decoding
operations are performed on the input and output quantum systems of the n-use of the
network, respectively. On the other hand, differently from [8], our code can be implemented
without any manipulation of the network operations and any classical communication.
Moreover, our code makes no information leakage asymptotically from a sender Si to the
receivers other than Ti because the correctness of the transmitted state guarantees no
information leakage [13].

To discuss the achievable rate by our code, we consider the situation that the input states
of all senders are the bit basis states. Then, our network can be considered as a classical
network, called bit classical network, because a bit basis state is transformed to another bit
basis state by our quantum node operations. In the bit classical network, we assume that
when the inputs of the senders other than Si are to zero, the transmission rate from Si to Ti
is mi, which is the same as the number of outgoing edges of Si and incoming edges of Ti.
Also, when we define the interference rate by the rate of the transmitted information to Ti
from the senders other than Si, we assume that the interference rate to Ti is at most ai in
the bit classical network. In the same way, in case that the input states of all senders are
set to the phase basis states (defined in Section 2), we call the network as phase classical
network. In the phase classical network, we also assume that the transmission rate from Si to
Ti is mi when the inputs of the senders other than Si are zero. Also, the interference rate to
Ti is at most a′i in the phase classical network. Under these constraints, if ai + a′i < mi, our
code achieves the rate mi − ai − a′i quantum communication from Si to Ti asymptotically.

To help the understanding of the rates described above, we explain the achievable
transmission rate from S1 to T1 in the network in Fig. 1. The bit and the phase classical
networks (Fig. 1b and Fig. 1c) are determined from the quantum network (Fig. 1a) (see
Section 2). When X ′1 = X ′2 = Y ′1 = Y ′2 = 0, the transmission rates from S1 to T1 are 2 for
both networks, i.e., m1 = 2, which is also the number of outgoing edges of S1 and incoming
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Figure 1 Toy example of a multiple-unicast network. In quantum network (a), |·〉b denote bit
basis states and L(A1) is the network operation (see Section 2). The network (b) and (c) is the bit
and phase classical networks of the quantum network (a).

edges of T1. Also, the interference rates from S2 to T1 are 1 and 0 for the bit and the phase
classical networks, respectively. On this network, if our code from S1 to T1 with the rates
(m1, a1, a

′
1) = (2, 1, 0) is constructed, the conditions a1 ≥ 1, a′1 ≥ 0 and a1 + a′1 < m1 are

satisfied, and therefore our code implements the rate m1− a1− a′1 = 1 quantum transmission
from S1 to T1 asymptotically.

In the practical sense, our code can cope with the node malfunctions in the following
case: on the multiple-unicast network with quantum invertible linear operations, the network
operations are well-determined so that there is no interference between all sender-receiver
pairs, but three broken nodes apply quantum invertible linear operations different from the
determined ones. Moreover, let the transmission rate m1 without interferences from S1 to
T1 be 100 and the number of outgoing edges of the three broken nodes be 4. In this case,
3× 4 = 12 outgoing edges of the three broken nodes transmit the unexpected information
which implies the bit (phase) interference rate is at most 12. Therefore, by our code with
m1 = 100 and a1, a

′
1 > 12, the sender S1 can transmit quantum states to the receiver T1

correctly with the rate 100− a1 − a′1 < 76 by asymptotically many uses of the network.
The remaining of this paper is organized as follows. Section 2 introduces the formal

description of the quantum multiple-unicast network with quantum invertible linear operations.
Section 3 gives the main results of this paper. Based on the preliminaries in Section 4, Section
5 concretely constructs our code with the free use of negligible rate shared randomness. The
encoder and decoder of our code is given in this section. Section 6 analyzes the correctness
of the code in Section 5. Then, Section 7 constructs our code without the assumption of
shared randomness by attaching the secret and correctable communication protocol [15] to
the code given in Section 5, which proves the main result given in Section 3. Section 8 gives
several examples of the network that our code can be applied. Section 9 is the conclusion of
this paper.

2 Quantum Network with Invertible Linear Operations

Our code is designed on the quantum network which is a generalization of a classical
multiple-unicast network. In this section, we first introduce the multiple-unicast network
with classical invertible linear operations and generalize this network as a network with
quantum invertible linear operations. The node operations introduced in this section are
identical to the operations in [14, Section II].

TQC 2018
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2.1 Classical Network with Invertible Linear Operations
First, we describe the multiple-unicast network with classical invertible linear operations.
The network topology is given as a directed Graph G = (V,E). The r senders and r receivers
are given as r source nodes S1, . . . , Sr and r terminal nodes T1, . . . , Tr. The sender Si has
mi outgoing edges and the receiver Ti has mi incoming edges. Define m := m1 + · · ·+mr.
The intermediate nodes are numbered from 1 to c (= |V | − 2r) accordingly to the order of
the transmission. The intermediate node numbered t has the same number kt of incoming
and outgoing edges where 1 ≤ kt ≤ m.

Next, we describe the transmission and the operations on this network. Each edge
sends an element of the finite field Fq where q is a power of a prime number p. The t-th
node operation is described as an invertible linear operation At from the information on kt
incoming edges to that of kt outgoing edges. Since node operations are invertible linear, the
entire network operation is written as K = Ac · · ·A1 ∈ Fm×mq . For the network operation K,
we introduce the following notation:

K :=


K1,1 K1,2 · · · K1,r
K2,1 K2,2 · · · K2,r
...

. . .
...

Kr,1 Kr,2 · · · Kr,r

 , Ki,j ∈ Fmi×mj
q .

Then, Ki,j is the network operation from Si to Tj . We assume rankKi,i = mi which means
the information from Si to Ti is completely transmitted if there is no interference.

When the network inputs by senders S1, . . . , Sr are x1 ∈ Fm1
q , . . . , xr ∈ Fmr

q , the output
yi ∈ Fmi

q at the receiver Ti (i = 1, . . . , r) is written as

yi =
r∑
j=1

Ki,jxj = Ki,ixi +Kiczic , (1)

Kic :=[Ki,1 · · · Ki,i−1 Ki,i+1 · · · Ki,r] ∈ Fmi×(m−mi)
q ,

zic :=[xT
1 · · · xT

i−1 xT
i+1 · · · xT

r ]T ∈ Fm−mi
q .

The second term Kiczic of (1) is called the interference to Ti, and rankKic is called the rate
of the interference to Ti.

Consider the n-use of the above network. When the inputs by senders S1, ..., Sr are
X1 ∈ Fm1×n

q , . . . , Xr ∈ Fmr×n
q , the output Yi ∈ Fmi×n

q at the receiver Ti (i = 1, . . . , r) is

Yi =
r∑
j=1

Ki,jXj = Ki,iXi +KicZic ,

Zic :=[XT
1 · · · XT

i−1 XT
i+1 · · · XT

r ]T ∈ F(m−mi)×n
q .

2.2 Quantum Network with Invertible Linear Operations
We generalize the multiple-unicast network with classical invertible linear operations to the
network with quantum invertible linear operations. In this quantum network, the network
topology is the same graph G = (V,E). Each edge transmits a quantum system H which is
q-dimensional Hilbert space spanned by the bit basis {|x〉b}x∈Fq

. In n-use of the network,
we treat the quantum system H⊗mi×n spanned by the bit basis {|X〉b}X∈Fmi×n

q
. The sender

Si sends a quantum system HSi
:= H⊗mi×n and the receiver Ti receives a quantum system

HTi := H⊗mi×n

To describe the quantum node operation, we define the following quantum operations.
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I Definition 2.1 (Quantum Invertible Linear Operation). For invertible matrices A ∈ Fm×mq

and B ∈ Fn×nq , two unitaries L(A) and R(B) are defined for any X ∈ Fm×nq as

L(A)|X〉b := |AX〉b, R(B)|X〉b := |XB〉b.

The operations L(A) and R(B) are called quantum invertible linear operations.

The t-th node operation is given as L(At) and it is called quantum invertible linear
operation. The entire network operation is written as the unitary L(K) = L(Ac · · ·A1) =
L(Ac) · · · L(A1). When a state ρ on HS1 ⊗ · · · ⊗ HSr

is transmitted by senders S1, . . . , Sr,
the network output σTi

at HTi
is written as

σTi
:= Tr

T1,...,Ti−1,Ti+1,...,Tr

L(K)ρL(K)†,

where TrT1,...,Ti−1,Ti+1,...,Tr
is the partial trace on the systemHT1 ⊗ . . .⊗HTi−1 ⊗HTi+1 ⊗ . . .⊗

HTr
.
When the input state on the network is |M〉b on HS1 ⊗ · · · ⊗ HSr

, this quantum network
can be considered as the classical network in Subsection 2.1. In the same way as the classical
network, we assume rankKi,i = mi which means Si transmits any bit basis states completely
to Ti if the input states on source nodes Sj (j 6= i) are zero bit basis states. Similarly,
rankKic is called the rate of the bit interference to Ti.

We can discuss the interference similarly on the phase basis {|z〉p}z∈Fq defined in [3, Section
8.1.2] by

|z〉p := 1
√
q

∑
x∈Fq

ω− tr xz|x〉b,

where ω := exp 2πi
p and tr y := TrMy (y ∈ Fq) with the multiplication map My : x 7→ yx

identifying the finite field Fq with the vector space Ftp. For the analysis of the phase basis
interference, we give Lemma 2.2 which explains how node operations L(At) are applied to
the phase basis states.

I Lemma 2.2 ( [14, Appendix A]). Let A ∈ Fm×mq and B ∈ Fn×nq be invertible matrices. For
any M ∈ Fm×nq , we have

L(A)|M〉p = |(AT)−1M〉p, R(B)|M〉p = |M(BT)−1〉p.

For notational convenience, we denote Â := (AT)−1. When the input state is a phase basis
state |M〉p onHS1 ⊗ · · ·⊗HSr

, the network operation L(K) is applied by L(K)|M〉p = |K̂M〉p.
In this case, this quantum network can also be considered as a classical network with network
operation K̂ = Âc · · · Â1. Then, K̂i,j is defined from K̂ in the same way as Ki,j .

K̂ :=


K̂1,1 K̂1,2 · · · K̂1,r

K̂2,1 K̂2,2 · · · K̂2,r
...

. . .
...

K̂r,1 K̂r,2 · · · K̂r,r

 , K̂i,j ∈ Fmi×mj
q ,

K̂ic :=[K̂i,1 · · · K̂i,i−1 K̂i,i+1 · · · K̂i,r].

Similarly to the condition rankKi,i = mi, we also assume rank K̂i,i = mi. We also call
rank K̂ic the rate of phase interference to Ti. The transmission rates from Si to Ti are
summarized in Table 1.

TQC 2018
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Table 1 Definitions of Information Rates.

Rate Meaning

mi = rankKi,i = rank K̂i,i Bit (phase) transmission rates from Si to Ti without interference
rankKic Rate of interference to Ti

rank K̂ic Rate of phase interference to Ti

ai Maximum rate of bit interference to Ti

a′i Maximum rate of phase interference to Ti

3 Main Results

In this section, we propose two main theorems of this paper. The two theorems state the
existence of our code with and without negligible rate shared randomness, respectively. The
codes stated in the theorems are concretely constructed in Section 5 and 7, respectively. The
theorems are stated with respect to the completely mixed state ρmix and the entanglement
fidelity F 2

e (ρ, κ) := 〈x|κ⊗ ιR(|x〉〈x|)|x〉 for the quantum channel κ and a purification |x〉 of
the state ρ.

I Theorem 3.1. Consider the transmission from the sender Si to the receiver Ti over
a quantum multiple-unicast network with quantum invertible linear operations given in
Section 2. Let mi be the bit and phase transmission rates from Si to Ti without interferences
(mi = rankKi,i = rank K̂i,i), and ai, a′i be the upper bounds of the bit and phase interferences,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i). When the condition ai + a′i < mi holds and the
sender Si and receiver Ti can share the randomness whose rate is negligible in comparison
with the block-length n, there exists a quantum network code whose rate is mi−ai−a′i and the
entanglement fidelity F 2

e (ρmix, κi) satisfies n(1− F 2
e (ρmix, κi))→ 0 where κi is the quantum

code protocol from sender Si to receiver Ti.

Section 5 constructs the code stated in Theorem 3.1 and Section 6 shows that this
code has the performance in Theorem 3.1. Note that this code does not depend on the
detailed network structure, but depends only on the information rates mi, ai and a′i. As
explained in [14, Section III], our code has no information leakage from the condition
n(1− F 2

e (ρmix, κi))→ 0.
Although Theorem 3.1 assumed the free use of the negligible rate shared randomness, it is

possible to design the code of the same performance without negligible rate shared randomness
as follows. The paper [15] gives the secret and correctable classical network communication
protocol for the classical network with malicious attacks, when the transmission rate is more
than the sum of the rate of attacks and the rate of information leakage. By applying the
protocol in [15] to our quantum network with bit basis states, the negligible rate shared
randomness can be generated. By this method, we have the following Theorem 3.2 and the
details are explained in Section 7.

I Theorem 3.2. Consider the transmission from the sender Si to the receiver Ti over
a quantum multiple-unicast network with quantum invertible linear operations given in
Section 2. Let mi be the bit and phase transmission rates from Si to Ti without interferences
(mi = rankKi,i = rank K̂i,i), and ai, a′i be the upper bounds of the bit and phase interferences,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i). When ai + a′i < mi, there exists a quantum
network code whose rate is mi − ai − a′i and the entanglement fidelity F 2

e (ρmix, κi) satisfies
n(1− F 2

e (ρmix, κi))→ 0 where κi is the quantum code protocol from sender Si to receiver Ti.
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Quantum Network
(Multiple-Unicast)

Encoder

(Private Randomness Ui,1)

Decoderρi DSRi
i (σTi

)

(Shared Randomness SRi)

ESRi,Ri

i (ρi) σTi

S1...
Si

...

Sr

T1...
Ti

...
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Figure 2 Overview of code protocol from a sender Si to a receiver Ti. States ρi and DSRi
i (σTi )

are in code space H′code.

4 Preliminaries for Code Construction

Before code construction, we prepare the extended quantum system, notations, and CSS
code used in our code.

4.1 Extended Quantum System

Although the unit quantum system for the network transmission is H, our code is constructed
based on the extended quantum system H′ described below.

First, dependently on the block-length n, we choose a power q′ := qα to satisfy n ·
(n′)mi/(q′)mi−max{ai,ai} → 0 (e.g. q′ = O(n1+(max{ai,a

′
i}+2)/(mi−max{ai,a

′
i})) ) where n′ :=

n/α. Let Fq′ be the α-dimensional field extension of Fq. Similarly, let H′ := H⊗α be the
quantum system spanned by {|x〉b}x∈Fq′ . Then, the n-use of the network over H can be
considered as the n′-use of the network over H′. The quantum invertible linear operations
(Definition 2.1) can also be defined for invertible matrices A′ ∈ Fm×mq′ and B′ ∈ Fn×nq′ as

L′(A)|X〉b = |AX〉b, R′(B)|X〉b = |XB〉b, for any X ∈ Fm×nq′ .

4.2 Notations for Quantum Systems and States in Our Code

We introduce notations used in our code. By the n-use of the network, the sender Si
transmits the system HSi

= H⊗mi×n and the receiver Ti receives the system HTi
=

H⊗mi×n, which are identical to H′⊗mi×n′ . We partition the quantum system H′⊗mi×n′ as
H′A⊗H

′
B ⊗H

′
C := H′⊗mi×mi ⊗H′⊗mi×mi ⊗H′⊗mi×(n′−2mi). Furthermore, we partition the

systems H′A,H′B,H′C by

H′A = H′A1⊗H
′
A2⊗H

′
A3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a

′
i×mi ,

H′B = H′B1⊗H
′
B2⊗H

′
B3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a

′
i×mi ,

H′C = H′C1⊗H′C2⊗H′C3 := H′⊗ai×(n′−2mi)⊗H′⊗(mi−ai−a′i)×(n′−2mi)⊗H′⊗a
′
i×(n′−2mi) .

For states |φ〉 ∈ H′A1, |ψ〉 ∈ H
′
A2, and |ϕ〉 ∈ H′A3, the tensor product state in H′A is

TQC 2018
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denoted as |φ〉|ψ〉
|ϕ〉

 := |φ〉 ⊗ |ψ〉 ⊗ |ϕ〉 ∈ H′A . (2)

The bit or phase basis state of (X,Y, Z) ∈ Fai×mi

q′ × F(mi−ai−a′i)×mi

q′ × Fa
′
i×mi

q′ is denoted as∣∣∣∣∣∣
XY
Z

〉
b

:=

 |X〉b|Y 〉b
|Z〉b

 ,
∣∣∣∣∣∣
XY
Z

〉
p

:=

 |X〉p|Y 〉p
|Z〉p

 . (3)

We also introduce notations for the states in H′B and H′C in the same way as (2) and (3). In
the following, we denote the k × l zero matrix as 0k,l.

4.3 CSS Code in Our Code
In our code construction, we use the CSS code defined in this subsection which is similarly
defined from [14, Subsection IV-B]. Define two classical codes C1, C2 ⊂ Fmi×(n′−2mi)

q′ which
satisfy C1 ⊃ C⊥2 as

C1 :=


0ai,n′−2mi

X2
X3

 ∈ Fmi×(n′−2mi)
q′

∣∣∣∣X2 ∈ F(mi−ai−a′i)×(n′−2mi)
q′ , X3 ∈ Fa

′
i×(n′−2mi)
q′

,
C2 :=


 X1

X2
0a′

i
,n′−2mi

 ∈ Fmi×(n′−2mi)
q′

∣∣∣∣X1 ∈ Fai×(n′−2mi)
q′ , X2 ∈ F(mi−ai−a′i)×(n′−2mi)

q′

.
For any [M1] ∈ C1/C

⊥
2 whereM1 ∈ F(mi−ai−a′i)×(n′−2mi)

q′ , define the quantum state |[M1]〉b ∈
HC by

|[M1]〉b := 1√
|C⊥2 |

∑
Y ∈C⊥2

∣∣∣∣∣∣
0ai,n′−2mi

M1
0a′

i
,n′−2mi

+ Y

〉
b

=

|0ai,n′−2mi
〉b

|M1〉b
|0a′

i
,n′−2mi

〉p

 .
With the above definitions, the code space is given as H′code := H′C2 = H′⊗(mi−ai−a′i)×(n′−2mi)

and a pure state |φ〉 ∈ H′code is encoded as a superposition of the states |[M1]〉b in this CSS
code by|0ai,n′−2mi

〉b
|φ〉

|0a′
i
,n′−2mi

〉p

 ∈ HC .
5 Code Construction with Negligible Rate Shared Randomness

In this section, we construct our code that allows a sender Si to transmit a state ρi on
H′code = H′⊗(mi−ai−a′i)×(n′−2mi) correctly to a receiver Ti by n-use of the network when the
encoder and decoder share the negligible rate random variable SRi := (Ri, Vi).

The encoder and decoder are defined depending on the private randomness Ui,1 owned
by encoder and the randomness SRi shared between the encoder and decoder. These
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random variables are uniformly chosen from the values or matrices satisfying the following
respective conditions: the variable Ri := (Ri,1, Ri,2) ∈ F(mi−ai)×mi

q′ × F(mi−a′i)×mi

q′ satisfies
rankRi,1 = mi − ai and rankRi,2 = mi − a′i, the random variable Vi := (Vi,1, . . . , Vi,4mi

)
consists of 4mi values Vi,1, . . . , Vi,4mi ∈ F4mi

q′ and the random variable Ui,1 ∈ Fmi×mi

q′ satisfies
rankUi,1 = mi.

Next, we construct the encoder ESRi,Ui,1
i and decoder DSRi

i . Depending on SRi and
Ui,1, the encoder ESRi,Ui,1

i of the sender Si is defined as an isometry channel from H′code
to HSi = H′⊗mi×n′ . Depending on SRi, the decoder DSRi

i of the receiver Ti is defined as
a TP-CP map from HTi

= H′⊗mi×n′ to H′code. Note that the randomness SRi is shared
between the encoder and the decoder. Because SRi consists of αmi(2mi − ai − a′i + 4)
elements of Fq, the size of the shared randomness SRi is sublinear with respect to n (i.e.,
negligible).

5.1 Encoder ESRi,Ui,1
i of the sender Si

The encoder ESRi,Ui,1
i consists of three steps. In the following, we describe the encoding of

the state |φ〉 in H′code.

Step E1 The isometry map URi
i,0 encodes the state |φ〉 with the CSS code defined in

Subsection 4.3 and the quantum systems H′A and H′B as

|φ1〉 := URi
i,0 |φ〉 =

∣∣∣∣∣∣
0ai,mi

Ri,1

〉
b

⊗

∣∣∣∣∣∣
 Ri,2

0a′
i
,mi

〉
p

⊗

|0ai,mi
〉b

|φ〉
|0a′

i
,mi
〉p

 ∈ H′A⊗H′B ⊗H′C = HSi
.

Step E2 By quantum invertible linear operation L′(Ui,1), the encoder maps |φ1〉 to
|φ2〉 := L′(Ui,1)|φ1〉.

Step E3 From random variable Vi = (Vi,1, . . . , Vi,4mi
), define matrices Qi,1;j,k :=

(Vi,k)j , Qi,2;j,k := (Vi,mi+k)j for 1 ≤ j ≤ n′ − 2mi, 1 ≤ k ≤ mi, and Qi,3;j,k :=
(Vi,2mi+k)j , Qi,4;j,k := (Vi,3mi+k)j for 1 ≤ j, k ≤ mi. With these matrices, define the
matrix UVi

i,2 ∈ Fn
′×n′
q′ as

UVi
i,2 :=

 Imi 0mi,mi 0mi,n′−2mi

QT
i,3Qi,4 Imi

0mi,n′−2mi

0n′−2mi,mi
0n′−2mi,mi

In′−2mi

 ·
 Imi 0mi,mi 0mi,n′−2mi

0mi,mi
Imi

QT
i,2

0n′−2mi,mi
0n′−2mi,mi

In′−2mi


·

 Imi
0mi,mi

0mi,n′−2mi

0mi,mi
Imi

0mi,n′−2mi

Qi,1 0n′−2mi,mi In′−2mi

 ,
where Id is the identity matrix of size d. By quantum invertible linear operation
R′(UVi

i,2), the encoder maps |φ2〉 to R′(UVi
i,2)|φ2〉.

By above three steps, the encoder ESRi,Ui,1
i is described as an isometry map

ESRi,Ui,1
i : |φ〉 7→ R′(UVi

i,2)L′(Ui,1)URi
i,0 |φ〉 ∈ HSi

.
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5.2 Decoder DSRi
i of the receiver Ti

Decoder DSRi
i consists of two steps. In the following, we describe the decoding of the state

|ψ〉 ∈ HTi .

Step D1 Since (UVi
i,2)−1 can be constructed from shared randomness Vi by

(UVi
i,2)−1 =

 Imi
0mi,mi

0mi,n′−2mi

0mi,mi Imi 0mi,n′−2mi

−Qi,1 0n′−2mi,mi
In′−2mi

 ·
 Imi

0mi,mi
0mi,n′−2mi

0mi,mi Imi −QT
i,2

0n′−2mi,mi
0n′−2mi,mi

In′−2mi


·

 Imi
0mi,mi

0mi,n′−2mi

−QT
i,3Qi,4 Imi

0mi,n′−2mi

0n′−2mi,mi
0n′−2mi,mi

In′−2mi

 ,
the decoder applies the reverse operation R′(UVi

i,2)† = R′((UVi
i,2)−1) of Step E3 as

|ψ1〉 := R′(UVi
i,2)†|ψ〉.

Step D2 Perform the bit and phase basis measurements on H′A and H′B, respectively,
and let Oi,1, Oi,2 ∈ Fmi×mi

q′ be the respective measurement outcomes. By Gaussian
elimination, find invertible matrices DRi,1,Oi,1

i,1 , D
Ri,2,Oi,2
i,2 ∈ Fmi×mi

q′ satisfying

PWi,1D
Ri,1,Oi,1
i,1 Oi,1 =

0ai,mi

Ri,1

 , PWi,2D
Ri,2,Oi,2
i,2 Oi,2 =

 Ri,2

0a′
i
,mi

 . (4)

where PW is the projection from Fmi

q′ to the subspace W , the subspace Wi,1 consists
of the vectors whose 1-st, . . . , ai-th elements are zero and the subspace Wi,2 consists
of the vectors whose (mi − a′i + 1)-st, . . . , mi-th elements are zero. The case of
non-existence of DRi,1,Oi,1

i,1 nor DRi,2,Oi,2
i,2 means decoding failure, which implies that

the decoder performs no more operations. Also, when DRi,1,Oi,1
i,1 and DRi,2,Oi,2

i,2 are not
determined uniquely, the decoder chooses DRi,1,Oi,1

i,1 and D
Ri,2,Oi,2
i,2 deterministically

depending on Oi,1, Ri,1 and Oi,2, Ri,2, respectively.
Based on DRi,1,Oi,1

i,1 and DRi,2,Oi,2
i,2 found by (4), the decoder applies L′(DRi,1,Oi,1

i,1 ) and

L′(D̂Ri,2,Oi,2
i,2 ) consecutively to |ψ1〉, and the resultant state on Hcode is the output of

Step D2. Then, Step D2 is written as the following TP-CP map DRi
i :

DRi
i (|ψ1〉〈ψ1|) := Tr

C1,C3

∑
Oi,1,Oi,2∈F

mi×mi
q′

U
Ri,Oi,1,Oi,2
D σOi,1,Oi,2(URi,Oi,1,Oi,2

D )†,

where the matrices URi,Oi,1,Oi,2
D and σOi,1,Oi,2 are defined as

U
Ri,Oi,1,Oi,2
D :=L′(D̂Ri,2,Oi,2

i,2 )L′(DRi,1,Oi,1
i,1 ),

σOi,1,Oi,2 := Tr
A,B
|ψ1〉〈ψ1|(|Oi,1〉bb〈Oi,1| ⊗ |Oi,2〉pp〈Oi,2| ⊗ IC),

with the identity operator IC on HC .
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By above two steps, the decoder DSRi
i is described as

DSRi
i (|ψ〉〈ψ|) := DRi

i

(
R′(UVi

i,2)†|ψ〉〈ψ|R′(UVi
i,2)
)
.

Since the size of the shared randomness SRi is sublinear with respect to n, our code is
implemented with negligible rate shared randomness.

6 Correctness of Our Code

In this section, we confirm that our code correctly transmits the state from the sender Si to
the receiver Ti. As is mentioned in Section 3, we show the condition n(1−F 2

e (ρmix, κi))→ 0
which implies the correctness of our code.

First, we describe the quantum code protocol κi from Si to Ti, which is an integration of
the encoding, transmission, and decoding. The encoding and decoding in κi is given by the
probabilistic mixture of the code in Section 5 depending on the uniformly chosen random
variables SRi and Ui,1. Then, the code protocol κi is written as, for the state ρi on H′code,

κi(ρi) :=
∑

SRi,Ui,1

1
N
DSRi
i

(
Tr

T1,...,Ti−1,Ti+1,...,Tr

L(K)
(
ESRi,Ui,1
i (ρi)⊗ ρic

)
L(K)†

)
,

where ρic is the state in HS1 ⊗ · · · ⊗ HSi−1 ⊗HSi+1 ⊗ · · · ⊗ HSr
of senders other than Si,

and N := q′
4mi + |{Ui,1 ∈ Fmi×mi

q′ | rankUi,1 = mi}| + |{Ri,1 ∈ F(mi−ai)×mi

q′ | rankRi,1 =
mi − ai}|+ |{Ri,2 ∈ F(mi−a′i)×mi

q′ | rankRi,1 = mi − a′i}|.
As explained in [14, Section IV], 1− F 2

e (ρmix, κi) is upper bounded by the sum of the bit
error probability and the phase error probability. The bit error probability is the probability
that a bit basis state |X〉b ∈ H

′
code is sent but the bit basis measurement outcome on the

decoder output is not X. In the similar way, the phase error probability is defined for the
phase basis. We will show in Subsections 6.2 and 6.3 that the bit and phase error probabilities

are upper bounded by O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−ai

})
and O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−a′
i

})
, respectively.

Therefore, we have

n(1− F 2
e (ρmix, κi)) ≤ nO

(
max

{ 1
q′
,

(n′)mi

(q′)mi−max{ai,a′i}

})
. (5)

Since q′ is taken in Section 4 to satisfy n·(n′)mi

(q′)mi−max{ai,a′
i
} → 0, the RHS of (5) converges to 0

and therefore n(1− F 2
e (ρmix, κi))→ 0. This completes the proof of Theorem 3.1.

6.1 Notation and Lemmas for Bit and Phase Error Probabilities
In this subsection, we prepare a notation and lemmas for proving the upper bounds of the bit
and phase error probabilities. The upper bounds of these probabilities are shown separately
in Subsections 6.2 and 6.3.

We introduce the notation X := (XA, XB, XC) ∈ Fk×mi

q′ × Fk×mi

q′ × Fk×(n′−2mi)
q′ for

X ∈ Fk×n
′

q′ with arbitrary positive integer k. Also, we prepare the following lemmas.

I Lemma 6.1. For integers d0 ≥ d1 + d2, let W1 ⊂ Fd0
q′ be a d1-dimensional subspace and

W2 ⊂ Fd0
q′ be a d2-dimensional subspace. Assume the following three conditions.

(Γ1) W1 ∩W2 = {0d0,1}.
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(Γ2) Let m̄ ≥ d1 + d2. The vectors x1, . . . , xm̄ ∈ W1 and y1, . . . , ym̄ ∈ W2 satisfy

span((x1, y1), . . . , (xm̄, ym̄)) =W1 ⊕W2.

(Γ3) Let W ′1 ⊂ Fd0
q′ be a d1-dimensional subspace and r1, . . . , rm̄ ∈ W ′1. There exists an

invertible linear map A :W ′1 →W1 which maps

[x1, . . . , xm̄] = A[r1, . . . , rm̄].

Then, the following two statements hold.
(∆1) There exists invertible linear map D : Fd0

q′ → Fd0
q′ that

PW′1D[(x1, y1), . . . , (xm̄, ym̄)] = A−1[x1, . . . , xm̄] = [r1, . . . , rm̄]. (6)

(∆2) For the above linear map D, it holds for any x ∈ W1 and y ∈ W2 that

PW′1D(x, y) = A−1x. (7)

Proof. First, we show the item (∆1). Let W3 be a subspace of Fd0
q′ that satisfies W1 ⊕W2 ⊕

W3 = Fd0
q′ . If D is defined as D|W1 = A−1 and D|W2⊕W3(W2 ⊕W3) =W ′⊥1 , we obtain (6),

i.e., (∆1) from

PW′1D((xi, yi)) = PW′1(D|W1(xi) +D|W2⊕W3(yi)) = A−1xi = ri.

Next, we show that the item (∆2). Since arbitrary (x, y) ∈ W1 ⊕ W2 is spanned by
(x1, y1), . . . , (xm̄, ym̄), Eq. (6) implies (7), which yields (∆2). J

I Lemma 6.2 ( [14, Lemma 7.1]). For integers da ≥ db + dc, fix a db-dimensional subspace
W ⊂ Fda

q′ , and randomly choose a dc-dimensional subspace R ⊂ Fda

q′ with the uniform
distribution. Then, we have

Pr[W ∩R = {0da,1}] = 1−O(q′db+dc−da−1).

I Lemma 6.3. For d ≥ d′,

Pr
[
rank[t1, . . . , td] = d′

∣∣∣ t1, . . . , td ∈ Fd
′

q′

]
≥ 1−O

(
1
q′

)
.

Proof. From d ≥ d′, we have

Pr
[
rank[t1, . . . , td] = d′

∣∣∣ t1, . . . , td ∈ Fd
′

q′

]
≥ Pr

[
rank[t1, . . . , td′ ] = d′

∣∣∣ t1, . . . , td′ ∈ Fd
′

q′

]
. (8)

On the other hand, the RHS of (8) is equivalent to the probability to choose d′ independent
vectors in Fd′q′ :

Pr
[
rank[t1, . . . , td′ ] = d′

∣∣∣ t1, . . . , td′ ∈ Fd
′

q′

]
= q′

d′

q′d
′ ·
q′
d′ − q′

q′d
′ · · · q

′d′ − q′d
′−1

q′d
′ = 1−O

(
1
q′

)
.

By combining the above inequality and equality, we have the lemma. J

I Lemma 6.4 ( [14, Lemmas 7.2 and 7.4]). For the random matrix UVi
i,2 defined in Step E3,

we have

max
0n′,1 6=x∈Fn′

q′

Pr[xT((UVi
i,2)−1)A=01,mi

] ≤
(n′−2mi

q′

)mi

,

max
0n′,1 6=x∈Fn′

q′

Pr[xT((ÛVi
i,2)−1)B=01,mi

] ≤
(n′−2mi

q′

)mi

.
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6.2 Bit Error Probability
In this subsection, we show that when arbitrary bit basis state |M〉b ∈ H′code is the input
state of the sender Si, the original message M is correctly recovered with probability at least
1−O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−ai

})
.

Step 1: We derive a necessary condition for correct decoding of the original message M in
bit basis. When arbitrary bit basis state |M〉b ∈ H′code is the input state of the sender Si,
the encoded state is written as

ESRi,Ri

i (|M〉b) =
∑

Ē1∈F
mi×mi
q′

,Ē2∈F
a′

i
×(n′−2mi)

q′

∣∣∣∣∣∣Ui,1
 0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

UVi
i,2

〉
b

,

where we ignore the normalizing factors and phase factors.
Note that bit state measurement on network output system HTi = H′⊗mi×n′i commutes

with the decoding operation DSRi
i on HTi

. Therefore, in the analysis of the bit error
probability, we take the method to perform bit state measurement to HTi

first, and then
apply the decoding operation corresponding to DSRi

i , instead of decoding first and performing
bit state measurement.

By performing the bit basis measurement to the network output σTi = κi(|M〉bb〈M |), we
have the following measurement outcome Y :

Y = Ki,iUi,1

 0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

UVi
i,2 +KicZ,

where Ē1 ∈ Fmi×mi

q′ , Ē2 ∈ Fa
′
i×(n′−2mi)
q′ and Z ∈ F(m−mi)×n′

q′ . By Step D1, Y is decoded to

Ȳ = Y (UVi
i,2)−1 = Ki,iUi,1

0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

+KicZ(UVi
i,2)−1.

The measurement outcome Oi,1 in Step D2 is

Oi,1 = Ȳ A = Ki,iUi,1

0ai,mi

Ri,1

+ (KicZ(UVi
i,2)−1)A.

Since the decoder knows Oi,1 and Ri,1, the matrix DRi,1,Oi,1
i,1 is found by Gaussian elimination

to the left equation of (4) which is written as

PWi,1D
Ri,1,Oi,1
i,1 Oi,1 =PWi,1D

Ri,1,Oi,1
i,1

Ki,iUi,1

0ai,mi

Ri,1

+ (KicZ(UVi
i,2)−1)A

=

0ai,mi

Ri,1

 . (9)

Therefore, if the matrix DRi,1,Oi,1
i,1 derived in (9) satisfies the following equation

PWi,1D
Ri,1,Oi,1
i,1 Ȳ C=PWi,1D

Ri,1,Oi,1
i,1

Ki,iUi,1

0ai,n′−2mi

M

Ē2

+(KicZ(UVi
i,2)−1)C

=

0ai,n′−2mi

M

Ē2

 , (10)

the original message M is correctly recovered.
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Step 2: In the next step, we show that the conditions (Γ1), (Γ2) and (Γ3) of Lemma 6.1 in
the following case imply Eq. (10);

W1 := col

Ki,iUi,1

0ai,mi

Ri,1

, W2 := col
(
KicZ(UVi

i,2)−1), W ′1 :=Wi,1, m̄ := mi,

[x1, . . . , xm̄] := Ki,iUi,1

0ai,mi

Ri,1

 , [y1, . . . , ym̄] := (KicZ(UVi
i,2)−1)A,

[r1, . . . , rm̄] :=

0ai,mi

Ri,1

 , A := (Ki,iUi,1)|W′1 , (d0, d1, d2) := (mi,mi − ai, rankKicZ),

where col(T ) of the matrix T is the column space of T and Wi,1 is defined in Step D2 of
Subsection 5.2.

Applying Lemma 6.1, we show that Eq. (10) holds if the conditions (Γ1), (Γ2) and
(Γ3) are satisfied. Assume that (Γ1), (Γ2) and (Γ3) are satisfied. Then, the condition (∆1)
holds which implies the existence of DRi,1,Oi,1

i,1 in (9). Moreover, (∆2) implies that for any
r ∈ W ′1, y ∈ W2 and x = Ki,iUi,1r ∈ W1, it holds

PW′1D
Ri,1,Oi,1
i,1 (x+ y) = A−1x =

(
(Ki,iUi,1)|W′1

)−1(Ki,iUi,1r) = r,

and this yields (10).

Step 3: In the third step, we show that the relations (Γ1), (Γ2) and (Γ3) hold at least with
probability 1−O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−ai

})
, which proves the desired statement by combining

the conclusion of Steps 1 and 2.

Step 3-1: In this substep, we show that the probability satisfying (Γ1), (Γ2) and (Γ3) is
obtained by

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] = Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)], (11)

where the condition (Γ2′) is given as
(Γ2′) rankKicZ((UVi

i,2)−1)A = rankKicZ.
Eq. (11) is derived by the following reductions:

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] (a)= Pr[(Γ1) ∩ (Γ2)] (b)= Pr[(Γ1)] · Pr[(Γ2)|(Γ1)]
(c)= Pr[(Γ1)] · Pr[(Γ2) ∩ (Γ2′)|(Γ1)] (d)= Pr[(Γ1)] · Pr[(Γ2′)|(Γ1)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)]
(e)= Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)].

The equality (a) follows from the fact that (Γ3) is always satisfied for A defined in Step 2,
and (b) and (d) are trivial. (c) is obtained because (Γ2′) is a necessary condition for (Γ2).
Since span(y1, . . . , ym̄) =W2 is a necessary condition for (Γ2) in Lemma 6.1, the condition
(Γ2′) is also necessary for (Γ2) from

rankKicZ((UVi
i,2)−1)A=rank(KicZ(UVi

i,2)−1)A=dimspan(y1, . . . , ym̄)

=dimW2 =rankKicZ(UVi
i,2)−1 =rankKicZ.

The equality (e) follows from the fact that (Γ1) and (Γ2′) are independent, which will be
shown by Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)] in Step 3-2.
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Step 3-2: In this step, we prove Pr[(Γ1)] ≥ 1 − O(1/q′) and Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)].
Fix Ri,1 and UVi

i,2. Then, W1 is randomly chosen d1-dimensional subspace under uniform
distribution and W2 is fixed d2-dimensional subspace. Therefore, Lemma 6.2 can be applied
with (da, db, dc,W) := (d0, d2, d1,W2) and Pr[(Γ1)] = 1 − O(q′d2+d1−d0−1) ≥ 1 − O(1/q′).
On the other hand, since Pr[(Γ1)] does not depend on UVi

i,2 but Pr[(Γ2)] depends only on
UVi
i,2, we have Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)].

Step 3-3: In this step, we show Pr[(Γ2′)] ≥ 1 − n′mi

q′mi−ai
. The condition (Γ2′) holds if

and only if xTKicZ((UVi
i,2)−1)A 6= 01,mi

for any vector x ∈ Fmi

q′ satisfying xTKicZ 6= 01,n′

(considering Kic , Z and ((UVi
i,2)−1)A as linear maps on row vector spaces, this is equivalent

that ((UVi
i,2)−1)A has trivial kernel {01,n′} for the image of KicZ). Therefore, by applying

Lemma 6.4 for all distinct xTKicZ which is not zero vector, we have

Pr[(Γ2′)] ≥ 1− q′rankKicZ
(
n′ − 2mi

q′

)mi

≥ 1− q′ai

(
n′ − 2mi

q′

)mi

≥ 1− n′mi

q′mi−ai
.

Step 3-4: Now we evaluate the probability Pr[(Γ2)|(Γ2′) ∩ (Γ1)] ≥ 1 − O(1/q′−1). Fix
the random variable UVi

i,2 so that (Γ2′) holds in the following. Define matrices Tx =
[xi(1), . . . , xi(d1+d2)], Ty = [yi(1), . . . , yi(d1+d2)] and T = Tx + Ty ∈ Fd0×(d1+d2)

q′ where
i : {1, . . . , d1 + d2} → {1, . . . , m̄} is an injective index function such that yi(1), . . . , yi(d2) are
linearly independent i.e., rank Ty = d2. Then, we have

Pr
[
(Γ2)|(Γ2′)∩(Γ1)

]
≥Pr[span

(
(xi(1),yi(1)),. . . , (xi(d1+d2), yi(d1+d2))

)
=W1⊕W2 |(Γ2′)∩(Γ1)]

(a)= Pr
[
rank T = d1+d2 | (Γ2′)∩(Γ1)

]
= Pr

[
kerT = {0d1+d2,1} | (Γ2′) ∩ (Γ1)

]
(b)= Pr

[
kerTx ∩ kerTy = {0d1+d2,1} | (Γ2′) ∩ (Γ1)

]
,

where (a) follows from span
(
(xi(1), yi(1)), . . . , (xi(d1+d2), yi(d1+d2))

)
⊂ W1 ⊕ W2, and (b)

follows from the condition (Γ1). Since rank Tx ≤ d1 follows from its definition and the
dimension of kerTy is d1, the condition rank Tx = d1 is a necessary condition for kerTx ∩
kerTy = {0d1+d2,1}. Therefore, we have

Pr[kerTx ∩ kerTy = {0d1+d2,1} | (Γ2′) ∩ (Γ1)]
= Pr[kerTx ∩ kerTy | rank Tx = d1 ∩ (Γ2′) ∩ (Γ1)] · Pr[rank Tx = d1 | (Γ2′) ∩ (Γ1)]. (12)

By applying Lemma 6.2 for (da, db, dc,W) := (d1 +d2, d1 =dim kerTy, d2 =dim kerTx, kerTy),
the first multiplicand of (12) equals to 1−O(1/q′−1). From Pr[rank Tx = d1 | (Γ2′) ∩ (Γ1)] ≥
Pr
[

rank[t1, . . . , td1+d2 ] = d1 | t1, . . . , td1+d2 ∈ Fd1
q′

]
and Lemma 6.3, the second multiplicand

of (12) is greater than or equal to 1 − O(1/q′−1). Therefore, Pr[(Γ2)|(Γ2′) ∩ (Γ1)] ≥ 1 −
O(1/q′−1).

In summary, we obtain

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] = Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)]

≥
(

1−O
(

1
q′

))
·
(

1− n′mi

q′mi−ai

)
·
(

1−O
(

1
q′

))
= 1−O

(
max

{ 1
q′
,

(n′)mi

(q′)mi−ai

})
.

6.3 Phase Error Probability
In this subsection, we show that the original message M ′ in the phase basis is correctly

recovered with probability at least 1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
.
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Step 1: We derive a necessary condition for correct decoding of the original message M ′ in
phase basis. For the analysis of the phase error probability, we apply the same discussion
as the bit error probability. When a phase basis state |M ′〉p ∈ H′code is the input state of
sender Si, the encoded state is written as

ESRi,Ri

i (|M ′〉p) =
∑

Ē′1∈F
mi×mi
q′

,Ē′2∈F
ai×(n′−2mi)
q′

∣∣∣∣∣∣Ûi,1
 Ē′1

Ri,2
Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

 ÛVi
i,2

〉
p

,

where we ignore normalizing factors and phase factors.
Since phase basis measurement and decoding operation DSRi

i commutes, we first apply
phase basis measurement, and then decode the measurement outcome for the analysis of
the phase error probability. Then, the phase basis measurement outcome Y ′ on the network
output of Ti is written as

Y ′ = K̂i,iÛi,1

 Ē′1
Ri,2

Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

 ÛVi
i,2 + K̂icZ,

where Ē′1 ∈ Fmi×mi

q′ , Ē′2 ∈ Fai×(n′−2mi)
q′ and Z ∈ F(m−mi)×n′

q′ . By Step D1, Y ′ is decoded to

Ȳ ′ = Y ′(ÛVi
i,2)−1 = K̂i,iÛi,1

 Ē′1
Ri,2

Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

+ K̂icZ(ÛVi
i,2)−1.

By Step D2, the measurement outcome Oi,2 is given as Oi,2 = Ȳ ′B = K̂i,iÛi,1

 Ri,2

0a′
i
,mi

 +

(K̂icZ(ÛVi
i,2)−1)B, and DRi,2,Oi,2

i,2 is found by Gaussian elimination to the right equation of (4)
which is written as

PWi,2D
Ri,2,Oi,2
i,2 Oi,2 =PWi,2D

Ri,2,Oi,2
i,2

K̂i,iÛi,1

 Ri,2

0a′
i
,mi

+(K̂icZ(ÛVi
i,2)−1)B

=

 Ri,2

0a′
i
,mi

 . (13)

Thus, the correct estimate of M ′ is obtained when the following relation holds for DRi,2,Oi,2
i,2

derived in (13):

PWi,2D
Ri,2,Oi,2
i,2 Ȳ ′C=PWi,2D

Ri,2,Oi,2
i,2

K̂i,iÛi,1

 Ē′2
M ′

0a′
i
,n′−2mi

+(K̂icZ(ÛVi
i,2 )−1)C

=

 Ē′2
M ′

0a′
i
,n′−2mi

. (14)

Step 2: In the next step, we show that the equation (14) holds with probability at least

1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
, which shows the desired statement by combining Step 1.

In the same way as Subsection 6.2, the conditions (Γ1), (Γ2) and (Γ3) of Lemma 6.1 in
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the following case imply Eq. (14);

W1 := col

K̂i,iÛi,1

 Ri,2

0a′
i
,mi

, W2 := col
(
K̂icZ(ÛVi

i,2)−1
)
, W ′1 :=Wi,2, m̄ := mi,

[x1, . . . , xm̄] := K̂i,iÛi,1

 Ri,2

0a′
i
,mi

 , [y1, . . . , ym̄] := (K̂icZ(ÛVi
i,2)−1)B,

[r1, . . . , rm̄] :=

 Ri,2

0a′
i
,mi

 , A := (K̂i,iÛi,1)|W′1 , (d0, d1, d2) := (mi,mi − a′i, rank K̂icZ),

where Wi,2 is defined in Step D2 of Subsection 5.2. Also, in the same way, the conditions

(Γ1), (Γ2) and (Γ3) holds with probability at least 1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
.

7 Code Construction Without Free Classical Communication

We show that our code in Theorem 3.1 can be implemented without the assumption of
negligible rate shared randomness. The paper [15] shows the following Proposition 7.1 by
constructing a secret and correctable classical communication protocol for the classical unicast
linear network. Due to the relation between the phase error and the information leakage
in the bit basis [4, Lemma 5.9], we find that the dimension of leaked information is a′i in
the information transmission from the sender Si to the receiver Ti. We apply Proposition
7.1 to the sender-receiver pair (Si, Ti) with c1 := ai and c2 := a′i. Therefore, the protocol of
Proposition 7.1 can be implemented in our multiple-unicast network by preparing the input
state of Si in the bit basis. By attaching Proposition 7.1 to our code in the above method,
we can implement our code satisfying Theorem 3.2.

I Proposition 7.1 ( [15, Theorem 1]). Let q1 be the size of the finite field which is the
information unit of the network edges. We assume the inequality c1 + c2 < c0 for the classical
network where c0 is the transmission rate from the sender S to the receiver T , c1 is the
rate of noise injection, and c2 is the rate of information leakage. Define q2 := qc0

1 . Then,
there exists a k-bit transmission protocol of block-length n1 := c0(c0 − c2 + 1)k over Fq2 such
that Perr ≤ kc0/q2 and I(M ;E) = 0, where Perr is the error probability and I(M ;E) is the
mutual information between the message M ∈ Fk2 and the leaked information E.

The proof of Theorem 3.2 takes a similar method to the proof of [14, Theorem 3.2].

Proof of Theorem 3.2. To construct the code satisfying the conditions of Theorem 3.2,
we generate the shared randomness SRi by Proposition 7.1 and then apply the code in
Section 5. To apply Proposition 7.1 in our quantum network, we prepare the input state as
a bit basis state. Given a block-length n, we take q1 = qβ such that β = b 2 log2 log2 n

mi log2 q
c i.e.,

q2/(logn)2 = qmi
1 /(logn)2 → 1, and q′ = qα such that α = b (mi+2) log2 n

log2 q
c i.e., q′/nmi+2 → 1.

First, by the protocol of Proposition 7.1 with (c0, c1, c2) := (mi, ai, a
′
i), the sender Si

and the receiver Ti share the randomness SRi. Since SRi consists of mi(2mi − ai − a′i + 4)
elements of Fq′ , the number of bits to be shared is

k = dmi(2mi − ai − a′i + 4) log2 q
′e =

⌈
mi(2mi − ai − a′i + 4)

⌊
(mi + 2) log2 n

log2 q

⌋
log2 q

⌉
≤ dmi(mi + 2)(2mi − ai − a′i + 4) log2 ne.

TQC 2018
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The error probability is Perr≤ (mi/q
mi
1 )·dmi(mi+2)(2mi−ai−a′i+4) log2 ne=O

(
log2 n

(log2 n)2

)
→

0, and the block-length over Fq is

n1 =mi(mi−a′i+1)kβ≤mi(mi−a′i+1) ·dmi(mi+2)(2mi−ai−a′i+4) log2 ne·
⌊

2 log2 log2 n

mi log2 q

⌋
,

which implies n1/n→ 0. Therefore, the sharing protocol is implemented with negligible rate
uses of the network.

Next, we apply the code in Section 5 with the extended field of size q′ and n2 := n− n1
uses of the network. The relation n2/n = (n− n1)/n→ 1 holds and therefore the field size
q′ satisfies n2 · (n′2)mi/(q′)mi−max{ai,ai} → 0 where n′2 := n2/α. Thus, this code implements
the code in Theorem 3.2. J

8 Examples of Network

In this section, we give several network examples that our code can be applied.
First, as the most trivial case, if rankKi,i = mi and any distinct sender-receiver pairs do

not interfere with each other, i.e, Ki,j (i 6= j) are zero matrices, the network operation K is
a block matrix. This is the case where each pair independently communicates. In this case,
our code is implemented with the rate mi.

8.1 Simple Network in Fig. 1
In the network in Fig. 1, the network and node operations are described as

K =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , K̂ =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

 , A1 =
[
1 1
0 1

]
.

When we consider the transmission from S1 to T1, the rates of bit and phase interferences are

rankK1c = rank
[
0 0
1 0

]
= 1, rank K̂1c = rank

[
0 0
0 0

]
= 0.

In this network, by constructing our code with (m1, a1, a
′
1) := (2, 1, 0), our coding protocol

transmits the state of rate m1 − a1 − a′1 = 1 asymptotically from S1 to T1.

8.2 Network with Bit Interference from One Sender
As a generalization of the network in Fig. 1, consider the case where the network consists of
two sender-receiver pairs, and there is no bit interference from the sender S1 to receiver T2.
The network operation of this network can be described by L(K) with

K =
[
K1,1 K1,2

0m2,m1 K2,2

]
, K̂ =

[
(KT

1,1)−1 0m1,m2

−(KT
2,2)−1KT

1,2(KT
1,1)−1 (KT

2,2)−1

]
.

In this network, there is no phase interference from the sender S2 to receiver T1, and
the other two rates rankK1,2 and rank(KT

2,2)−1KT
1,2(KT

1,1)−1 coincide from rankK1,2 =
rankKT

1,2 = rank(KT
2,2)−1KT

1,2(KT
1,1)−1. Therefore, by implementing our code with ai, a

′
i

(i = 1, 2) satisfying rankK1,2 ≤ a1, a
′
2 < mi and a′1 = a2 := 0, each sender-receiver pair can

transmit the states.
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Moreover, we generalize the above network for arbitrary r sender-receiver pairs where the
interferences are generated only from one sender S1. In this network, the network operation
is given by the unitary operator L(K) with K defined as follows:

K =


K1,1 K1,2 K1,3 · · · K1,r

0m2,m1 K2,2 0m2,m3 · · · 0m2,mr

...
...

...
. . .

...
0mr,m1 0mr,m2 0mr,m3 · · · Kr,r

 ,

K̂ =


(KT

1,1)−1 0m1,m2 0m1,m3 · · · 0m1,mr

−(KT
2,2)−1KT

1,2(KT
1,1)−1 (KT

2,2)−1 0m2,m3 · · · 0m1,mr

...
...

...
. . .

...
−(KT

r,r)−1KT
1,r(KT

1,1)−1 0mr,m2 0mr,m3 · · · (KT
r,r)−1

 ,
where the ranks of mi × mi matrices Ki,i are mi, resepctively. In this network, if ai, a′i
(i = 1, . . . , r) are set to a1 ≥ rank[K1,2 K1,3 · · · K1,r], a′i ≥ rankK1,i (i = 2, . . . , r), and
a′1 = a2 = a3 = · · · = ar ≥ 0 and the condition ai + a′i < mi holds, the sender Si can send to
the receiver Ti the rate mi − ai − a′i state asymptotically by our code.

8.3 Network with Two Way Bit Interferences
In this subsection, we consider the code implementation over the network described as follows:
The size q is 3, there exists two pairs (S1, T1) and (S2, T2) in the network, S1, S2, T1, T2 are
connected to three edges, and the network operation is given by L(K) of

K =
[
K1,1 K1,2
K2,1 K2,2

]
=


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , K̂ =


2 0 0 2 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−2 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Then, differently from the previous examples, there are bit interferences both from S1 to T2
and from S2 to T1 because K1,2 and K2,1 are not zero matrix.

In the above network, we construct our code for S1 to T1 with (m1, a1, a
′
1) := (3, 1, 1).

Then, our code implements the rate mi − ai − a′i = 3− 1− 1 = 1 quantum communication
asymptotically from the relations

rankK11 =rank K̂11 =m1 =3, rankK1c =rank

[
1 0 0
0 0 0
0 0 0

]
=1, rank K̂1c =rank

[
2 0 0
0 0 0
0 0 0

]
=1.

9 Conclusion

In this paper, we have proposed a quantum network code for the multiple-unicast network
with quantum invertible linear operations. As the constraints of information rates, we
assumed that the bit and phase transmission rates from Si to Ti without interference are mi

(mi = rankKi,i = rank K̂i,i), the upper bounds of the bit and phase interferences are ai, a′i,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i), and ai + a′i < mi holds. Under these constraints,
our code achieves the rate mi − ai − a′i quantum communication by asymptotic n-use of the
network. The negligible rate shared randomness plays a crucial role in our code, and it is
realized by attaching the protocol in [15].

TQC 2018
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Our code can be applied for the multiple-unicast network with the malicious adversary.
When the eavesdropper attacks at most a′′i edges connected with the sender Si and the
receiver Ti, if ai + a′i + 2a′′i < mi holds, our code implements the rate mi − ai − a′i − 2a′′i
quantum communications asymptotically. This fact can be shown by integrating the methods
in this paper and [14].
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