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Abstract
We study stabilizer circuits that use non-stabilizer qubits and Z-measurements to produce other
non-stabilizer qubits. These productions are successful when the correct measurement outcome
occurs, but when the opposite outcome is observed, the non-stabilizer input qubit is potentially
destroyed. In preceding work [arXiv:1803.06081 (2018)] we introduced protocols able to recreate
the expensive non-stabilizer input qubit when the two-qubit stabilizer circuit has an unsuccessful
measurement outcome. Such protocols potentially allow a deep computation to recover from
such failed measurements without the need to repeat the whole prior computation. Possible
complications arise when the recovery protocol itself suffers from a failed measurement. To deal
with this, we need to use nested recovery protocols. Here we give a precise analysis of the potential
advantage of such recovery protocols as we examine its optimal nesting depth. We show that if
the expensive input qubit has cost d, then typically a depth O(log d) recovery protocol is optimal,
while a certain special case has optimal depth O(

√
d). We also show that the recovery protocol

can achieve a cost reduction by a factor of at most two over circuits that do not use recovery.
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1 Introduction

In [21] we saw another treatment of two-qubit stabilizer circuits for recovery purposes on a
select set of input states. Here, we give a more thorough assessment of its potential to better
determine its influence on quantum computations.

As of now, such studies are still necessary to address one major difficulty to building
quantum computers, and that is the large overhead required to ensure a reliable system for
handling noise [10]. Over the course of a long computation, a quantum state may encounter
unwanted influences from the outside (the environment) and from within (faulty parts)
that affect the qubits in undesirable ways. Any realistic solution must include quantum
error correction and fault-tolerance to prevent an uncontrollable spread of errors, and often,
stabilizer operations which consist of Clifford group unitaries, Pauli measurements, and ancilla
|0〉 preparation are considered a viable option to serve as the foundation of a fault-tolerant
scheme. One of their most memorable characteristics is perhaps that which is famously
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stated in the Gottesman-Knill theorem: that stabilizer operations are efficiently simulable on
classical computers. On the other hand, it also means stabilizer operations are inadequate
for universal quantum computation (UQC).

To resolve this, Bravyi and Kitaev introduced magic state distillation [5]. It is a technique
in which noisy magic states are distilled to a higher quality, then consumed to implement
quantum gates outside the Clifford group of operations e.g. π/4 phase rotation T . This is
entirely sufficient for UQC since any non-Clifford gate with stabilizer operations is enough to
form a universal basis. Many improvements have appeared since its debut [4, 6, 8, 9, 11, 15, 16],
but even more impressive is that some of these recent proposals [6, 8, 11, 15] support the
distillation of multiple kinds of magic qubits, which enables the implementation of other
non-Clifford gates and yields richer bases. Related work on circuit synthesis has also surged,
using number theory as the foundation for designing efficient algorithms over universal gate
sets [1, 2, 3, 18, 20]. For single qubit unitaries, optimal usage of T -gates is possible [14, 19].

Research originating from state distillation and gate synthesis has inspired other studies
on stabilizer operations. One such example [21] expanded on ideas from [9, 12, 17] to produce
some interesting results. In particular, van Dam and Wong [21] (and indirectly by Reichardt
[17]) found that any stabilizer procedure generating a single qubit output from a two-qubit
input can be realized by a postselected stabilizer circuit of single qubit Clifford gates and at
most one CNOT or SWAP. Then for those involving a CNOT, there exist “recovery circuits”
that essentially recycle a stabilizer circuit output back into a reusable form. Such operations
pair nicely with processes that inject magic states toward the tail end of a long and expensive
computation. Thus if the original state preparation is an extremely costly endeavor, recovery
circuits provide a welcome alternative. For the moment, two conditions are required for
recovery circuits to be of service: (1) the two-qubit input is a product state, and (2) one of
the qubits is pure.

In this paper, we continue the evaluation of recovery circuits. Specifically we pursue
a more rigorous examination of a nested recovery protocol previously described in [21] to
answer questions about its optimal nesting depth. Though the current applications for such a
recovery technique are limited, we cannot rule out the possibility of similarly defined recovery
operations for larger stabilizer circuits and inputs. For that reason, it is worthwhile to know
how helpful the nested recovery protocol will be even in the two-qubit domain. Through
our analysis, we learn that for an initial preparation cost of about d, a protocol of depth
O(log d) is optimal in generic situations, while the depth is allowed to grow to O(

√
d) in one

special case (Theorem 16). Under this assumption, we discover up to a factor of two savings
is achievable over a protocol that ignores recovery (Theorem 17).

2 Background

This section covers the main concepts and notation. We refer the reader to [21] for a more
detailed account on the subjects presented in Subsections 2.2 and 2.3.

2.1 Pauli Matrices and Stabilizer Circuits
The Pauli group consists of n-qubit Pauli operators on the four matrices

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

An n-qubit stabilizer state is then a simultaneous +1 eigenstate of n independent and
commuting operators from the Pauli group; there are six such states when n = 1. The
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normalizer of the Pauli group is known as the Clifford group and is generated by the
Controlled-NOT (CNOT), Hadamard (H), and Phase (P ) gates. The matrices of these three
operators are

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H = 1√
2

[
1 1
1 −1

]
, P =

[
1 0
0 i

]
. (2)

A stabilizer circuit is therefore a quantum circuit of CNOT, H, P gates and measurements
in the Z-basis. In a quantum circuit diagram, we use

Z
×
×

to represent a Z-measurement and a qubit swap, respectively.

2.2 Postselected Two-to-One Stabilizer Circuits
To reiterate, the following terminology appear in [21].

I Definition 1 (postselected two-to-one stabilizer circuit). A postselected two-to-one stabilizer
circuit (C, b) is a two-qubit quantum circuit that implements a Clifford unitary C, followed
by a Z-measurement on the second qubit with an outcome b ∈ {0, 1}.

I Definition 2 (probability and output). Let (C, b) be a postselected two-to-one stabilizer
circuit and let ρ be a two-qubit state. Then the probability Qb of outcome b on the transformed
state CρC† is Qb(C, ρ) = Tr((I ⊗ 〈b|)CρC†(I ⊗ |b〉)). If Qb(C, ρ) > 0, then the output Φb of
a postselected circuit (C, b) on an input ρ is

Φb(C, ρ) = (I ⊗ 〈b|)CρC†(I ⊗ |b〉)
Qb(C, ρ) . (3)

The expression run circuit C shall mean an application of unitary C on the initial state
ρ, followed by a Z-measurement on the second qubit; circuit C shall reference the stabilizer
circuit piece only of the postselected circuit (C, b), including the measurement gate. Because
different postselected stabilizer circuits may produce the same output on a given input state
ρ, we have the following definition.

I Definition 3 (equivalent postselected two-to-one stabilizer circuits). Two postselected two-
to-one stabilizer circuits (C1, b1) and (C2, b2) are Clifford equivalent, (C1, b1) ∼ (C2, b2), if
and only if there is a single qubit Clifford gate G such that for all two-qubit states ρ, we
have the equality

(I ⊗ 〈b1|)C1ρC
†
1(I ⊗ |b1〉) = G(I ⊗ 〈b2|)C2ρC

†
2(I ⊗ |b2〉)G†. (4)

Note that a Clifford equivalence implies that the probabilities of observing a b1 or b2 are
the same for the two circuits i.e. Qb1(C1, ρ) = Qb2(C2, ρ). The two postselected circuits are
equivalent, (C1, b1) ≡ (C2, b2), if and only if G = I in Equation 4.

We can classify a postselected circuit (C, b) into one of three types. More precisely, there
are always single qubit Clifford gates G1 and G2 such that either (C, b) ∼ (I ⊗ G1, 0), or
(C, b) ∼ ((I ⊗G1)SWAP, 0), or (C, b) ∼ (CNOT(G1 ⊗G2), 0). If we know (C, b) ∼ (C ′, b′),
where C ′ is one of three previous forms, then (C, 1− b) ∼ ((I ⊗X)C ′, b′) ≡ (C ′, 1− b′). A
summary of the configurations is provided in Figure 1. Depending on the type of circuit and
input we are dealing with, (C, b) may be eligible for a recovery circuit [21].

TQC 2018
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G1 • G3

G2 Z 0

(a)

G1

G2 Z 0

(b)

× G1

× G2 Z 0

(c)

Figure 1 Any stabilizer procedure generating a single qubit output from a two-qubit input can
be implemented by a postselected stabilizer circuit (C, b) taking on one of the three forms above.
The exact single qubit Clifford gates G1, G2, and G3 depend on C and b and are not unique.

2.3 Recovery Circuits
If ρ is the product state ϕ ⊗ |ψ〉〈ψ|, then only postselected circuits of the kind (C, b) ∼
(CNOT(G1 ⊗G2), 0) qualify for a recovery circuit. For convenience, we use ψ in place of the
density matrix |ψ〉〈ψ| from this point on.

I Definition 4 (interacting postselected circuit). A postselected two-to-one stabilizer circuit
(C, b) is interacting if and only if there are single qubit Clifford gates G1 and G2 such
that (C, b) ∼ (CNOT(G1 ⊗ G2), 0). We say circuit C is interacting if and only if (C, 0) is
interacting.

I Definition 5 (recovery circuit). Let (C, b) be an interacting postselected circuit. Then a
postselected two-to-one stabilizer circuit (C ′, b′) is a recovery circuit of (C, b) if and only if
for all two-qubit states ϕ⊗ ψ, we have ϕ = Φb′ (C ′,Φ1−b(C,ϕ⊗ ψ)⊗ ψ).

Thus if an outcome b is more desirable than 1 − b, we say an interacting circuit C
is successful if the measurement on C(ϕ ⊗ ψ)C† yields b and unsuccessful otherwise. If
unsuccessful, then given a recovery circuit (C ′, b′) of (C, b), we may run circuit C ′ on
the input state described above to try and recover ϕ. There is also a relatively simple
construction to acquire a recovery circuit. If (C, b) ∼ (CNOT(G1 ⊗G), 0) for single qubit
Clifford gates G1 and G, then there is a third Clifford gate G2 satisfying (C, 1 − b) ≡
((G†2 ⊗ I)CNOT(G1 ⊗G), 1). We may then use this to design a recovery circuit (C ′, 0) of
(C, b), where C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) [21].

The success probabilities of circuits C and C ′ on their respective input are also interrelated.
If we start with a two qubit state ϕ1 ⊗ ψ, then the probability of recovering ϕ1 is

Q0(C ′,Φ1−b(C,ϕ1 ⊗ ψ)⊗ ψ) = (1− z2)/4
1−Qb(C,ϕ1 ⊗ ψ) (5)

where z = 〈ψ|G†ZG|ψ〉. More than one recovery circuit of (C, b) exists, but all recovery
circuits of (C, b) are equivalent to each other and hence have the same recovery success rate.
Furthermore, recovery circuits are interacting postselected circuits as well, leading to the
following corollary [21].

I Corollary 6. Every recovery circuit (C ′, b′) has its own recovery circuit (C ′′, b′′).

Finally, there is a Clifford gate G such that Φ1−b(C,ϕ1 ⊗ ψ) = Gϕ1G
† whenever |ψ〉 is a

stabilizer qubit [21]. Since the output is essentially ϕ1, recovery circuits are no longer helpful
for this combination of input qubits.

3 Depth k Protocol with Recovery

Suppose our goal is to produce the output of a postselected circuit (C1, b1) on a two-qubit
state ϕ1⊗ψ. By Corollary 6, we can derive a depth k protocol on k−1 interacting postselected
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0 1 i− 1 i i+ 1 k − 1 k

L(i) 1− L(i)

Figure 2 The behavior of a depth k protocol corresponds to a random walk on integers {0, . . . , k}
and starts at position 1. The random walk ends upon reaching 0 or k, with 0 representing success
and k representing failure. The transition from i to i− 1 is the success probability of the i-th circuit
Ci from the protocol.

circuits such that (Ci+1, bi+1) is a recovery circuit of (Ci, bi). We may assume without loss
of generality a desirable outcome bi = 0 for all k − 1 circuits. Thus when circuit C1 is
unsuccessful i.e. measure a 1, we fall back on circuit C2. If circuit C2 is also unsuccessful, we
depend on circuit C3, and so on all the way down to circuit Ck−1. In more detail, our depth
k protocol works as follows:
1. Let ϕ1 ⊗ ψ be the initial state, and let (C1, 0), . . . , (Ck−1, 0) be interacting postselected

circuits such that (Ci+1, 0) is a recovery circuit of (Ci, 0).
2. Run circuit C1 on ϕ1 ⊗ψ. If we measure 0, then we declare success. Otherwise, let ϕ2 be

the output of (C1, 1) on ϕ1 ⊗ ψ.
3. Run circuit C2 on ϕ2 ⊗ ψ. If we measure 0, then we recover ϕ1 and we repeat step 2.

Otherwise we get the output ϕ3 of (C2, 1) on ϕ2 ⊗ ψ.
4. Repeat step 3 as necessary for other circuits Ci. That is, let ϕi be the output of (Ci−1, 1)

on ϕi−1⊗ψ. Run circuit Ci on ϕi⊗ψ. On measuring 0, the output is ϕi−1 and we rerun
circuit Ci−1 on ϕi−1 ⊗ ψ. Otherwise, we proceed with circuit Ci+1 on ϕi+1 ⊗ ψ.

5. If circuit Ck−1 is unsuccessful on ϕk−1 ⊗ ψ, then we declare failure and stop.

We repeat this setup on k−1 circuits until we secure the output qubit ϕ0 = Φ0(C1, ϕ1⊗ψ).
By involving more than one circuit, we prolong our attempts at gaining ϕ0 while reducing
the number of times we rerun the prior computation on new copies of ϕ1. As pointed out by
the simulations in [21], we expect the protocol is more useful when ϕ1 is the result of a long
and resource intensive preparation procedure. The depth k affects the amount of resource
qubits |ψ〉 our protocol consumes on each invocation. We give a more thorough explanation
on how to choose k later in the paper.

We may view the process of generating ϕ0 as a random walk on k + 1 integers {0, . . . , k},
starting at location 1. A step onto 0 signals success, and a step onto k indicates failure. The
success probability of circuit Ci is the left step transition probability from position i to i− 1.
Not surprisingly, we can compute the recovery probability for every circuit C2 to Ck−1 if
we know the first success probability Q0(C1, ϕ1 ⊗ ψ). The next lemma is an extension of
Equation 5.

I Lemma 7. Consider a series of k − 1 interacting postselected circuits (Ci, 0) such that
(Ci+1, 0) is a recovery circuit of (Ci, 0). Then given a two-qubit state ϕ1 ⊗ ψ and outputs
ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success probability of each circuit Ci is

L(i) = Q0(Ci, ϕi ⊗ ψ) =


Q0(C1, ϕ1 ⊗ ψ) if i = 1
(1− z2)/4

1− L(i− 1) if i ∈ {2, . . . , k − 1}
(6)

where z ∈ {〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, 〈ψ|Z|ψ〉}.

TQC 2018
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Proof. We primarily need to explain why the numerator stays the same at every step i,
since we can infer the form from Equation 5. Suppose (C1, 1) ≡ ((G†2⊗ I)CNOT(G1⊗G), 1),
where G, G1, and G2 are single qubit Clifford gates. This means

(C1, 0) ∼ (CNOT(G1 ⊗G), 0) (7)

(C2, 0) ≡ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0). (8)

Next, there is a Clifford gate G3 such that (C2, 1) ≡ ((G†3 ⊗ I)CNOT(G2 ⊗ G), 1), which
implies (C3, 0) ≡ ((G†2 ⊗ I)CNOT(G3 ⊗ G), 0). Continuing in this manner, we find single
qubit Clifford gates Gi and G†i+1 satisfying

(Ci, 1) ≡ ((G†i+1⊗)CNOT(Gi ⊗G), 1) (9)

(Ci+1, 0) ≡ ((G†i ⊗ I)CNOT(Gi+1 ⊗G), 0) (10)

for all i ≥ 1. We study the effects of each postselected circuit (Ci, 1) on ϕi ⊗ ψ and (Ci+1, 0)
on ϕi+1 ⊗ ψ via the equivalent postselected circuits just described.

Consider the qubits |ψ′〉 = G|ψ〉 and ϕ′i = GiϕiG
†
i . From our Gi+1 selection, this means

ϕ′i+1 = Φ1(CNOT, ϕ′i ⊗ ψ′) = Gi+1ϕi+1G
†
i+1 (11)

ϕ′i = Φ0(CNOT, ϕ′i+1 ⊗ ψ′). (12)

Observe that both gates Gi and G†i+1 to the control qubit in ((G†i+1 ⊗ I)CNOT(Gi ⊗G), 1)
are always neutralized by the recovery circuit ((G†i ⊗ I)CNOT(Gi+1⊗G), 0). In other words,
at each step i, we always apply CNOT on qubits ϕ′i and |ψ′〉 as if the rotations by Gi and
G†i+1 never took place. In the last section (and [21]), we saw (C1, 0) ∼ (CNOT(G1 ⊗G, 0)
and (C2, 0) ∼ (CNOT(G2⊗G, 0) pave the way to Equation 5. We apply the same arguments
between (Ci, 0) and (Ci+1, 0) to obtain the recurrence above. J

We can also narrow the success probability of each circuit Ci to a more specific range.

I Lemma 8. Consider a series of k − 1 interacting postselected circuits (Ci, 0) such that
(Ci+1, 0) is a recovery circuit of (Ci, 0). Then given a two-qubit state ϕ1 ⊗ ψ and outputs
ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success probability of each circuit Ci is bounded above and
below by

1−
√

1− 4λ
2 ≤ L(i) = Q0(Ci, ϕi ⊗ ψ) ≤ 1 +

√
1− 4λ
2 (13)

where λ = (1− z2)/4 and z ∈ {〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, 〈ψ|Z|ψ〉}.

Proof. Assume Ci = CNOT for simplicity. Then z = 〈ψ|Z|ψ〉 and zi = Tr(Zϕi). This gives

1− |z|
2 ≤ L(i) = 1 + ziz

2 ≤ 1 + |z|
2 (14)

since zi ∈ [−1, 1]. But we can also say

1 +
√

1− 4λ
2 = 1 + |z|

2 ,
1−
√

1− 4λ
2 = 1− |z|

2 (15)

which implies the inequality. J

We only care for positive values of λ = (1− z2)/4 ≤ 1/4. It equals zero if z = ±1, which
occurs whenever |ψ〉 undergoes a Clifford rotation G such that G|ψ〉 = |0〉 or |1〉 prior to
CNOT (see proof to Lemma 7 for greater details). Moreover, as 1 − z2 = x2 + y2 for the
Block vector (x, y, z) of G|ψ〉, we may interpret λ as the reduced overlap that G|ψ〉 makes
with the XY -plane.
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4 Performance Analysis of Protocol

We consume a certain number of |ψ〉 qubits every time we run the protocol. The amount we
expend varies with the depth k, so it is imperative we find the ideal depth to minimize our
|ψ〉 usage.

4.1 Expected Cost
We first need to know the resource requirements of our protocol. To facilitate the presentation
of our results, observe that abstractly our protocol is essentially a sequence of numbers L(1),
. . ., L(k − 1), generated entirely by a recurrence relation L(i) defined on two real numbers
which we call λ and γ. The depth k only serves to indicate a stopping point when generating
that sequence, so our protocol is basically controlled by three parameters (λ, γ, k). We will
usually say that an instance of our protocol is set according to an assignment on these three
values. As we alluded to a moment ago, λ is the reduced XY -overlap of resource qubit |ψ〉,
and γ is the starting success probability Q0(C1, ϕ1 ⊗ ψ). However, if we want to treat λ and
γ simply as real numbers, we need these two parameters to comply with certain constraints
for the L(i) numbers to be valid probabilities. Definition 9 brings together all relevant details
about λ and γ that are necessary to define a difference equation adhering to Lemma 8.

I Definition 9 (probability specification and boundary). Given real numbers (λ, γ), let

α = 1 +
√

1− 4λ
2 , β = 1− α = 1−

√
1− 4λ
2 . (16)

Then (λ, γ) is a probability specification if and only if 0 ≤ λ ≤ 1/4 and β ≤ γ ≤ α. A
probability specification is restricted if and only if 0 < λ < 1/4 and β < γ < α. The values
(α, β) are the boundaries of the probability specification.

I Definition 10 (intermediate functions and rde). Let (λ, γ) be a probability specification
and let (α, β) be its boundaries. The following are the intermediate functions of (λ, γ):

A1(i) = αi − βi, A2(i) = αi + βi, Bj(i) = Aj(i+ 1)− γAj(i), (17)

and the following is a rational difference equation (rde) on (λ, γ):

L(i) = λB1(i− 2)
B1(i− 1) =

γ if i = 1
λ

1− L(i− 1) otherwise.
(18)

As the name implies, the purpose of the intermediate functions is to help us build smaller
results leading up to our main propositions. We also realize right away that because L(i) is
a rational difference equation on a probability specification (λ, γ), the boundaries α and β
are fixed points of L(i). We end up with a similar situation to λ = 0. When α = γ > 1/2,
this suggests either input qubit |ψ〉 or ϕ1 is a stabilizer state, and we have an analogous
implication with β = γ < 1/2. Hence we define a restricted probability specification as
satisfying both 0 < λ < 1/4 and β < γ < α. On the other hand, λ = 1/4 means γ no longer
has the freedom to take on more than one value.

I Lemma 11. There is only one probability specification with λ = 1/4. It forces β = γ =
α = 1/2, which leads to L(i) = 1/2.

There are three ingredients to computing a protocol’s expected cost.

TQC 2018
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I Definition 12 (startup cost, success probability (of protocol), and expected demand). Consider
a depth k protocol that starts by running circuit C1 on a two-qubit state ϕ1 ⊗ ψ. Then we
define the following quantities of the protocol:
i. startup cost: cost to prepare one ϕ1 qubit relative to the cost of one |ψ〉 qubit
ii. success probability (of protocol): probability of declaring success before declaring failure
iii. expected demand: expected number of |ψ〉 states used in each execution, regardless of

the final success or fail outcome.

I Definition 13 (expected cost). The expected cost of a depth k protocol is determined by
N = (d+ s)/p, where d is the startup cost, p is the protocol’s success probability, and s is
the expected demand.

In the next lemma, we present the success probability and expected demand of a protocol
in the general situation.

I Lemma 14. Let A1(i) and B2(i) be intermediate functions of a restricted probability
specification (λ, γ). Then the success probability p and expected demand s of a protocol set to
(λ, γ) and depth k are

p = γA1(k − 1)
A1(k) , s = A1(k − 1) (γ − 2λ) + (k − 1)A1(1)B2(k − 1)

(A1(1))2
A1(k)

. (19)

Proof. As we mentioned earlier, we model our protocol as a random walk on the integers
{0, . . . , k}. Since we are dealing with a restricted probability specification, we look towards
Lemma 27 of Appendix B. Plugging i = 1 into the equations returns the solutions above. J

A protocol given an assignment of (λ, γ, k) behaves quite differently when λ = 1/4 versus
the more general (λ, γ) a restricted probability specification. Because we have to treat the
protocol specially when λ = 1/4, we end up with two expected cost equations.

I Lemma 15. The expected cost of a protocol with startup cost d and set to a restricted
probability specification (λ, γ) and depth k is

N(k) = dA1(k)
γA1(k − 1) + (k − 1)B2(k − 1)

γA1(1)A1(k − 1) + γ − 2λ
γ (A1(1))2 (20)

where A1(i) and B2(i) are intermediate functions of (λ, γ). The expected cost of a protocol
with λ = 1/4 is

N(k) = k2 + kd− k
k − 1 . (21)

Proof. The proof is straightforward from N(k) = (d+s)/p, where s = k−1 and p = (k−1)/k
when λ = 1/4 by Lemma 28, and by Lemma 14 when (λ, γ) is a restricted probability
specification. J

4.2 Minimizing Expected Cost
We want to find the integer k ≥ 2 that minimizes the expected cost N(k). That is, we wish
to solve Nopt = mink∈{2,3,...}N(k) and determine the depth kopt such that Nopt = N(kopt).
Fortunately, there is evidence to suggest N(k) has a single critical point. Figure 3 shows the
expected cost for several protocol instances set to varying restricted probability specifications
(λ, γ) and startup costs d. The examples provide a convincing argument to assume N(k) has
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Figure 3 This figure contains plots of the expected cost N(k) for three choices of the reduced
XY -overlap λ ∈ (0, 1/4) and varying starting probabilities γ. Although the curve of γ = 0.84355 for
λ = 1/8 appear to reach a constant, the close-up in the top right graph suggests otherwise. Notice
how every curve has a minimum at a point k > 1 before a region of continuous increase. Equation 23
indicates that the rate of change eventually reaches a nonzero positive constant.

a single minimum. This means if we find the point kmin that minimizes N(k), we can easily
find kopt.

There is a good reason to running kopt − 1 circuits: if the depth k is too small, then we
are stopping prematurely and not taking full advantage of the recovery ability of two-qubit
stabilizer circuits; if k is too large, then we are putting more work into running the recovery
than it is to start over.

4.2.1 Optimal Depth: Generic Case
Given the nature of the expected cost functions from Lemma 15, we devote most of our
efforts to answering kopt for a protocol set to a restricted probability specification (λ, γ). By
the end, we propose that kopt scales logarithmically with respect to the startup cost d. Let
(α, β) be the boundaries of (λ, γ). Then the first derivative in its entirety is

N ′(k) =−
ln(α/β)

(
(α− β)2d+ (k − 1)(1− 2γ)

)
(α− β)

(
1− (β/α)k−1

)(
(α/β)k−1 − 1

)
γ

+

(
α+ (β/α)k−1

β −
(

1 + (β/α)k−1
)
γ
)

(α− β)
(

1− (β/α)k−1
)
γ

(22)

Seeing how N ′(k) is transcendental, we rely on a combination of numerical and analytical
approaches to justify our claim. A quick look at the limits of N ′(k) reveals its behavior falls
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Figure 4 The data for kmin suggests a protocol set to a restricted probability specification should
use O(log d) circuits to keep costs to a minimum, where d is the startup cost.

within our expectations. That is, N ′(k)→ −∞ as k → 1+ and

lim
k→∞

N ′(k) = lim
k→∞

(
α+ (β/α)k−1

β −
(

1 + (β/α)k−1
)
γ
)

(α− β)
(

1− (β/α)k−1
)
γ

= α− γ
(α− β) γ > 0 (23)

since β < γ < α. The first term in Equation 22 also zeroes out as a consequence of β < α.
This is typical of a function with at least one minimum. If we let k′ = k − 1 and make some
rearrangements, then we rewrite N ′(k) as

N ′(k′) =−
ln(α/β)

(
(α− β)2

d+ (1− 2γ) k′
)

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

+ (α− γ) (α/β)k
′
+ (γ − β) (β/α)k

′
− α+ β

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

. (24)

We come up with a lower bound of N ′(k′) by dropping the term (γ − β)(β/α)k′ ≤ 1:

N ′lb(k′) =
(α− γ) (α/β)k

′
− α+ β − ln(α/β)

(
(α− β)2

d+ (1− 2γ) k′
)

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

(25)

which may be used to locate an upper bound of kmin. Starting with N ′lb(k′) = 0, we get(
α

β

)k′

= ln
(
α

β

)(
1− 2γ
α− γ

)
k′ + ln (α/β) (α− β)2

d+ α− β
α− γ

. (26)
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Making the substitution

−t = k′ + ln (α/β) (α− β)2
d+ α− β

ln (α/β) (1− 2γ) (27)

turns Equation 26 into

t

(
α

β

)t
= − 1

t0

(
α

β

)− t1
t0

(28)

where

t0 = ln
(
α

β

)(
1− 2γ
α− γ

)
, t1 = ln (α/β) (α− β)2

d+ α− β
α− γ

. (29)

The solution t to Equation 28 indicates that

kmin ≤ kup = −
W

(
− ln (α/β)

t0

(
α

β

)− t1
t0

)
ln (α/β) − t1

t0
+ 1 (30)

where W is the Lambert W function. If in addition γ = 1/2, then N ′(k′) = 0 is easier to
solve, leading to

kup =
ln
(

ln (α/β) (α− β)2
d+ α− β

)
− ln (α− 1/2)

ln (α/β) + 1. (31)

Figure 4 contains plots of kmin found using conventional optimization techniques. Aside
from smaller values of the startup cost d, the graphs provide a compelling case that kopt =
O(log d). Equation 31 is a good starting point to begin a search for the exact value of kopt.

4.2.2 Optimal Depth: Special Case

The derivative of N(k) when λ = 1/4 is much simpler by comparison: N ′(k) = (k−1)2−d
(k−1)2 .

The roots are 1±
√
d, of which only one is positive. From what we can gather, the optimal

depth has a sublinear relationship with respect to the startup cost in both domains.

I Theorem 16. Let d be the startup cost of a protocol set to a probability specification (λ, γ).
Then the optimal depth is kopt = min(d1 +

√
de, b1 +

√
dc) when λ = 1/4 and O(log d) when

(λ, γ) is a restricted probability specification.

4.3 Cost Ratio
To determine the effectiveness of our recovery, we compare N(2) – the method with no
recovery whatsoever – against N(kopt). We look at N(2)/N(kopt) under the assumptions of
Theorem 16.

I Theorem 17. Let kopt be the optimal depth of a protocol with startup cost d. Then

lim
d→∞

N(2)
N(kopt)

≤ 2. (32)
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Proof. We consider a restricted probability specification (λ, γ) first. Let (α, β) be its
boundaries and let A1(i), B2(i) be its intermediate functions. Given that N(2) = (d+ 1)/γ,
the exact ratio is

N(2)
N(k) = (d+ 1)A1(k − 1) (A1(1))2

dA1(k) (A1(1))2 + (k − 1)B2(k − 1)A1(1) + (γ − 2λ)A1(k − 1)
. (33)

In addition to A1(i) ≤ 1 and B2(i) ≤ 2 for all integers i ≥ 0, we can factor out αk−1 from
the top and bottom to say

N(2)
N(kopt)

=
(A1(1))2

(
1− (β/α)kopt−1

)
(d+ 1)

(A1(1))2
(

1− (β/α)kopt
)
αd+O(kopt)

(34)

where we ignore lower order terms in the denominator. Since in this case kopt = O(log d)
and β < α, our conclusion now is more apparent:

lim
d→∞

(A1(1))2
(

1− (β/α)O(log d)
) (

1 + 1
d

)
(A1(1))2

(
1− (β/α)O(log d)

)
α+ O(log d)

d

= 1
α
. (35)

A protocol with uniform success probabilities L(i) = 1/2 is very much the same. For
simplicity, we use kmin = 1 +

√
d:

lim
d→∞

N(2)
N(kmin) = lim

d→∞

2d
√
d+ 2

√
d

d
√
d+ 2d+

√
d

= 1
α

(36)

since α = 1/2. J

4.4 Potential Improvements with Commonly Used Resource Qubits
According to Theorem 17, the best scenario is when λ = 1/4, which translates to α = 1/2 and
an expected cost reduction by up to half. We achieve this when performing phase rotations
with a single CNOT and |ψ〉 = |θ〉 = (|0〉+ eiθ)/

√
2 at angles 0 < θ < π/2 and θ 6= π/4. The

probability of rotating in either +θ or −θ direction is both 1/2. An alternative to recovery
is to try a correction with |2θ〉. This shifts the cost to preparing |2θ〉 from two |θ〉 qubits
but turns out to be actually less optimal. Observe that if we fail with |2θ〉, then we need to
prepare |22θ〉, and so on up to some max power of 2 exponent j. Since the optimal depth is
about

√
d for startup cost d, the gap between 2j and

√
d may be large, meaning this is worse

than following the recovery protocol directly.
One particular example that may benefit are the V -basis gate implementations from [1].

For the non-Clifford operation

V3 = 1 + 2i√
5

[
1 0
0 − 3

5 − i
4
5

]
, (37)

the idea is to inject |θ1〉 such that cos(θ1) = 7
√

2/10 and sin(θ1) =
√

2/10. Bocharov,
Gurevich, and Svore [1] show that single qubit unitary approximations in the Clifford+V
universal basis has the potential to be lower than Clifford+T , where T is the π/4 phase
rotation. If we have a long sequence of Clifford+V gates Ul · · ·U1, then including recovery
for the V gate implementations around Ul may prove helpful. More research is needed to
determine one way or the other.

Previous work [21] also lists one concrete example in which the recovery protocol improves
the average |H〉 cost, where H|H〉 = |H〉 is a magic state. The procedure is provided in
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|H〉 • |q1〉

|H〉 Z 0
⇒
|H〉 • |q2〉

|q1〉 H Z 0
⇒
|q2〉 H • |q3〉

|H〉 Z 0

Figure 5 Approach to generate |q3〉 with three postselected circuits and four |H〉 states as seen
in [21]. Adding recovery for the last two-qubit circuit lowers the average |H〉 usage.

Figure 5 for self-containment. In particular, the method without recovery uses 10.04 |H〉
qubits on average, but reduces slightly to about 9.45 with recovery. This represents a change
of about 5.9%. If we now consider an even longer chain of postselected circuits to prepare an
arbitrary resource ϕ1 from |H〉 states, Theorem 17 says the savings grows more to about
17%. This is assuming (C1, 0) ≡ (CNOT, 0) and |ψ〉 = |H〉 to yield α ≈ 0.8536. Direct use of

|T 〉〈T | = 1
2

[
I + 1√

3
(X + Y + Z)

]
, (38)

the +1 eigenstate of eiπ/4PH, in (CNOT, 0) means 1/α ≈ 1.267. But as far as we know,
there are yet to be significant applications that directly use |T 〉 besides to create |π/6〉 [5].
This starts from |T 〉 ⊗ |T 〉, so our recovery operation is not beneficial in this use case.

5 Conclusion

We have proposed a protocol built on the recovery potential of two-qubit stabilizer circuits
that has the capacity to lower the expected costs of obtaining some target qubit over the
naive approach. To be of greater practical value, one direction of interest is how the protocol
holds up in the face of noisy |ψ〉, since the errors may spread to ϕi and accumulate as it
passes through each circuit Ci. A numerical study with |H〉 states in [9] shows a decay for
certain error rates, but whether this observation is retained for arbitrary non-stabilizer |ψ〉
states is unknown. A related question is how the optimal depth is affected by the presence
of errors, where we expect kopt to decrease but by what amount.

In the long run, we predict our results are less likely to have a direct impact on current and
future state distillation schemes, and are more suited toward resource intensive computations
that require the injection of already finely distilled non-stabilizer states. Namely, that we
have one resource qubit |ψ〉, and another relatively more costly ϕ1, which may be entangled
with another system and for which we have spent much effort to obtain. At the moment, we
can only identify such setups to have any cost improvement when factoring in our approach.
However we hope that our demonstration can serve as a starting point for an investigation
into the reversibility of larger n-to-k stabilizer circuits on arbitrary non-stabilizer states |ψ〉,
and the viability of such operations for resource optimization.
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A Identities on Definition 10 Intermediate Functions

Appendix B relies heavily on the next lemma.

I Lemma 18. Let (λ, γ) be a restricted probability specification. Then we have the following
identities on its intermediate functions Aj(i) and Bj(i):
i. Aj(i+ 1) = Aj(i)− λAj(i− 1)
ii. Bj(i+ 1) = Bj(i)− λBj(i− 1)
iii. A1(j)A1(i) = A2(j + i)− λiA2(j − i)
iv. A2(j)A1(i) = A1(j + i)− λiA1(j − i)
v. B1(i)A1(i+ 1)A1(1) + λB1(2i) = B1(2i+ 2)− 2λi+1A1(1) + γλiA1(1)
vi. B1(j − i)A1(i) = B2(j)− λiB2(j − 2i)
vii. λiA2(j − 2i)A1(1) +A2(j − i+ 1)A1(i) = A2(j − i)A1(i+ 1)
viii. λiB2(j − 2i− 1)A1(1) +B2(j − i)A1(i) = B2(j − i− 1)A1(i+ 1)

Proof. Note that λ = αβ and A2(1) = α+ β = 1 for boundaries (α, β) of (λ, γ). The first
equation is obvious from Aj(i)−λAj(i−1) = αi+ (−1)jβi−αiβ− (−1)jαβi, and the second
one follows immediately. The next two are just as easy to prove. The fifth identity looks a
little more involved, but we just need to show

B1(i)A1(i+ 1) = A1(i+ 1)A1(i+ 1)− γA1(i+ 1)A1(i) (39)
= A2(2i+ 2)− 2λi+1 − γA2(2i+ 1) + γλi (40)
= B2(2i+ 1)− 2λi+1 + γλi (41)

B2(2i+ 1)A1(1) = A2(2i+ 2)A1(1)− γA2(2i+ 1)A1(1) (42)
= A1(2i+ 3)− λA1(2i+ 1)− γA1(2i+ 2) + γλA1(2i) (43)
= B1(2i+ 2)− λB1(2i) (44)

and the result becomes clear. The following covers (vi):

B1(j − i)A1(i) = A1(j − i+ 1)A1(i)− γA1(j − i)A1(i) (45)
= A2(j + 1)− λiA2(j − 2i+ 1)− γA2(j) + γλiA2(j − 2i) (46)
= B2(j)− λiB2(j − 2i) (47)

while (vii) is based on (iv):

λiA2(j − 2i)A1(1) +A2(j − i+ 1)A1(i) = αiβi (A1(j − 2i+ 1)− αβA1(j − 2i− 1))
+A1(j + 1)− αiβiA1(j − 2i+ 1) (48)

= A1(j + 1)− αi+1βi+1A1(j − 2i− 1) (49)
= A2(j − i)A1(i+ 1). (50)

The last one is a consequence of (vii). J

B Random Walk Modeling of Depth k Protocol

We model our depth k protocol as a 1-dimensional random walk on the integers {0, . . . , k},
with Equation 18 as the left step probability at each location on the number line. Every
time we execute the protocol, we start a random walk at location i = 1. When we obtain
Φ0(C1, ϕ1 ⊗ ψ), this represents a step onto the left boundary 0.

Random walk processes have been studied extensively in [7] and [13]. We borrow two
functions from [7] to compute certain aspects about our protocol.

TQC 2018



8:16 Recovery Circuits II: Analysis

I Definition 19 (success probability of random walk). Consider a random walk over the
integers {0, . . . , k}. Define P (i) to be the probability that the walk, starting at i, successfully
reaches 0 before it reaches k. Then the P (i) probabilities are described by

P (i) =


1 if i = 0
0 if i = k

L(i)P (i− 1) + (1− L(i))P (i+ 1) otherwise
(51)

where L(i) is the probability of a left step from i to i− 1.

I Definition 20 (expected number of steps in random walk). Similar to Definition 19, define
S(i) to be the expected number of steps that the walk, starting at i, takes to reach 0 or k.
Then the S(i) expectations are described by

S(i) =
{

0 if i = 0 or i = k

L(i)S(i− 1) + (1− L(i))S(i+ 1) + 1 otherwise
(52)

where L(i) is the probability of a left step from i to i− 1.

We solve for the closed-form expressions of P (i) and S(i) with Equation 18 as the
transition. Because of Lemma 11, there are two sets of solutions based on the nature of L(i),
which we present in Lemmas 27 and 28. We start with the general framework for computing
P (i) and S(i) individually as it appears in [13].

A 1-dimensional random walk on integers {0, . . . , k} is also called an absorbing Markov
chain, where the endpoints 0 and k serve as absorbing states. It has k − 1 transient
(non-absorbing) states, and we may write down the transition matrix in canonical form as

2︷︸︸︷ k − 1︷︸︸︷ I O

U V

} 2}
k − 1

(53)

where O contains all zeroes and I is the 2× 2 identity. Each row sums to 1, and the first and
second rows represent transitions from the left and right boundaries. The block matrices U
and V contain transition probabilities from transient to absorbing and transient to transient
states, respectively. We arrange the rows and columns of V such that

Vi,j =


L(i) if j = i− 1
R(i) if j = i+ 1
0 otherwise

(54)

where L(i) is the probability from i to i− 1 and R(i) = 1− L(i). It has nonzero entries only
at places immediately adjacent to the main diagonal. The U matrix is mostly zeroes with
the exception of two spots: U1,1 = L(1) and Uk−1,2 = R(k − 1). As an example,

1 0 0 0 0
0 1 0 0 0

L(1) 0 0 R(1) 0
0 0 L(2) 0 R(2)
0 R(3) 0 L(3) 0

 (55)

is the canonical transition matrix of a random walk with k = 4.
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At the heart of proving Lemma 27 is the inverse E = (I−V )−1 known as the fundamental
matrix. According to [13], we may use E to obtain P (i) = (EU)i,1 and S(i) = (E~1)i, where
~1 is a column vector of ones. If S(i) is an expectation in the number of steps taken, then the
variance is (2E− I)E~1− Sq(E~1), where Sq(E~1) squares each entry of E~1. The fundamental
matrix basically allows us to gather a number of meaningful statistics that we may want
when evaluating a Markov chain.

The generic form of E = (I − V )−1 for the random walk can be found through various
derivations, but regardless of which method we use, we may write an entry of the matrix in
terms of the following recurrences:

F (i) = F (i− 1)− L(i)R(i− 1)F (i− 2), F (0) = 1, F (−1) = 0 (56)
F (i, k) = F (i+ 1, k)−R(i)L(i+ 1)F (i+ 2, k), F (k, k) = 1, F (k + 1, k) = 0. (57)

The F (i, k) function mirrors F (i), with k acting as the base. To give an example, if k = 4
and we start with

[
I − V I

]
=

 1 −R(1) 0 1 0 0
−L(2) 1 −R(2) 0 1 0

0 −L(3) 1 0 0 1

 (58)

then Gaussian elimination eventually yields

E =



F (2, 4)F (0)
F (1, 4)

R(1)F (3, 4)F (0)
F (1, 4)

R(2)R(1)F (4, 4)F (0)
F (1, 4)

L(2)F (3, 4)F (0)
F (1, 4)

F (3, 4)F (1)
F (1, 4)

R(2)F (4, 4)F (1)
F (1, 4)

L(3)L(2)F (4, 4)F (0)
F (1, 4)

L(3)F (4, 4)F (1)
F (1, 4)

F (4, 4)F (2)
F (1, 4)


(59)

as our inverse. Substituting Equation 18 into the matrix leads to Lemma 23, but to realize
this, we prove some identities on F (i) and F (i, k) to make the algebra easier to handle later.

I Lemma 21. Let F (i) = F (i− 1)−αβ F (i− 2) with initial conditions F (−1) = 0, F (0) = 1
and positive real numbers α, β such that α+ β = 1. Then

F (i) =
i∑

j=0
αi−jβj = αi + αi−1β + . . .+ αβi−1 + βi. (60)

Moreover, (α− β)F (i) = αi+1 − βi+1.

Proof. We prove the lemma by induction on i. The base cases are trivial to see: the first is
an empty sum, and the second is a single term. Assuming F (l) is true for all l < i, then

F (i) = (α+ β)
i−1∑
j=0

αi−1−jβj − αβ
i−2∑
j=0

αi−2−jβj (61)

=
i−1∑
j=0

αi−jβj + β

i−2∑
j=0

αi−1−jβj − β
i−2∑
j=0

αi−1−jβj + βi (62)

=
i∑

j=0
αi−jβj . (63)
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For the second identity,

(α− β)F (i) = αi+1 +
i−1∑
j=0

αi−jβj+1 −
i−1∑
j=0

αi−jβj+1 − βi+1 = αi+1 − βi+1 (64)

which finishes the proof. J

I Lemma 22. Let α, β be positive real numbers such that α+β = 1. Let k ≥ 2 be an integer.
Then the two recurrences

F (i) = F (i− 1)− αβ F (i− 2), F (0) = 1, F (−1) = 0 (65)
F (i, k) = F (i+ 1, k)− αβF (i+ 2, k), F (k, k) = 1, F (k + 1, k) = 0 (66)

are related by F (i, k) = F (k − i).

Proof. The induction goes in decreasing values of i. Immediately, we see F (k + 1, k) =
F (−1) = 0 and F (k, k) = F (0) = 1. Assuming F (j, k) = F (k − j) holds for all j > i, then

F (i, k) = F (i+ 1, k)− αβF (i+ 2, k) (67)
= F (k − (i+ 1))− αβF (k − (i+ 2)) (68)
= F (k − i− 1)− αβF (k − i− 2) = F (k − i). (69)

This completes the proof. J

Lemmas 23 and 24 describe what the fundamental matrix E will be in our application.

I Lemma 23. Let L(i) be an rde on a restricted probability specification (λ, γ). If L(i)
determines the left step probabilities of a random walk over {0, . . . , k}, then the following
describes the entries of the fundamental matrix E:

Ei,j =


λi−jA1(k − i)A1(j)B1(j − 1)

A1(1)A1(k)B1(i− 1) if i ≥ j

A1(k − j)A1(i)B1(j − 1)
A1(1)A1(k)B1(i− 1) otherwise

(70)

where A1(i) and B1(i) are intermediate functions of (λ, γ).

Proof. Let (α, β) be the boundaries of (λ, γ). After we adapt the example matrix in Equation
59 with Equation 18, we check if what we get for E is in fact the inverse of I − V (the block
matrix V comes from the canonical representation of the transition matrix).

The non-recursive formulas of L(i) and R(i) are

L(i) = λB1(i− 2)
B1(i− 1) , R(i) = B1(i)

B1(i− 1) . (71)

The pattern in Equation 59 suggests

Ei,j =



F (j + 1, k)F (i− 1)
F (1, k)

j−1∏
l=i

R(l) if i < j

F (i+ 1, k)F (i− 1)
F (1, k)

if i = j

F (i+ 1, k)F (j − 1)
F (1, k)

i∏
l=j+1

L(l) if i > j.

(72)
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If we combine L(i)R(i− 1) = λ = αβ, Lemma 21, Lemma 22, and

i∏
l=j+1

L(l) = λi−jB1(j − 1)
B1(i− 1) ,

j−1∏
l=i

R(l) = B1(j − 1)
B1(i− 1) (73)

then we obtain Equation 70 above.
We validate Ei,j as the last step in our proof. All rows and columns of I − V have at

most three non-zero entries, all lying near the main diagonal. When we examine row i of
I − V and column j of E such that i < j, we get

((I − V )E)i,j = − λB1(i− 2)
B1(i− 1)

A1(k − j)A1(i− 1)B1(j − 1)
A1(1)A1(k)B1(i− 2)

+ A1(k − j)A1(i)B1(j − 1)
A1(1)A1(k)B1(i− 1)

− B1(i)
B1(i− 1)

A1(k − j)A1(i+ 1)B1(j − 1)
A1(1)A1(k)B1(i) = 0 (74)

by Lemma 18(i). The special case i = 1 < j involves only two terms, but the result remains
the same since A1(2) = A1(1). The other situations follow similarly, where ((I − V )E)i,j = 1
when i = j and ((I − V )E)i,j = 0 when i > j. The same logic applies for E(I − V ). J

I Lemma 24. The fundamental matrix E for a uniform random walk over {0, . . . , k} is

Ei,j =


2 (k − i) j

k
if i ≥ j

2 (k − j) i
k

otherwise.
(75)

Proof. We have F (i) = (i+ 1)/2i as a consequence of α = β = 1/2 by Lemma 11. For i < j,

Ei,j = F (j + 1, k)F (i− 1)
F (1, k)

j−1∏
l=i

R(l) = k − j
2k−j−1

i

2i−1
2k−1

k

1
2j−i = (k − j) i

2−1k
. (76)

The other case is similar. J

Given matrix E, we sum across row i to compute the expected steps S(i). We separate
the summation into two parts, one from column 1 to column i and another from i + 1 to
k − 1. We show a couple identities on these two smaller sums before the final proof.

I Lemma 25. Let A1(i) and B1(i) be intermediate functions of a restricted probability
specification (λ, γ). Then for all integers i ≥ 0,

J1(i) =
i∑

j=0
λi−jB1(j)A1(j + 1) = B1(2i+ 2)

A1(1) − ((2i+ 3)λ− (i+ 1)γ)λi. (77)

Proof. Recognizing A1(3) = A2(2)A1(1) + λA1(1) and A1(2) = A1(1), we can show

J1(0) = A1(3)− γA1(2)
A1(1) − 3λ+ γ (78)

= A1(1) (A2(2) + λ− γ)
A1(1) − 3λ+ γ (79)

= A2(2)− 2λ = A1(1)A1(1). (80)
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This acts as a base case for an induction on J1(i) = λJ1(i − 1) + B1(i)A1(i + 1). If we
continue forward, then

J1(i) = B1(i)A1(i+ 1) + λB1(2i)
A1(1) − ((2i+ 1)λ− iγ)λi (81)

= B1(2i+ 2)
A1(1) − 2λi+1 + γλi − (2i+ 1)λi+i + iγλi (82)

as a result of Lemma 18(v). J

I Lemma 26. Let A1(i) and B2(i) be intermediate functions of a restricted probability
specification (λ, γ). Let k ≥ 2 be an integer. Then for all integers i ≥ 1,

J2(i) =
i∑

j=1
B1(k − j − 1)A1(j) = (i+ 1)B2(k − 1)− A1(i+ 1)

A1(1) B2(k − i− 1). (83)

Proof. Again, we give a proof by induction. Starting with i = 1,

J2(1) = B1(k − 1− 1)A1(1) +B2(k − 1)−B2(k − 1) (84)

= 2B2(k − 1)− A1(1) (B2(k − 1) + λB2(k − 3))
A1(1) (85)

= 2B2(k − 1)− A1(2)
A1(1)B2(k − 2) (86)

using Lemma 18. Assuming J2(j) is true for all j < i, let us look at

J2(i) = B1(k − i− 1)A1(i) + J2(i− 1) (87)

= B1(k − i− 1)A1(i) + iB2(k − 1)− A1(i)
A1(1)B2(k − i). (88)

By Lemma 18(vi), we end up with

J2(i) = (i+ 1)B2(k − 1)− λiB2(k − 2i− 1)− A1(i)
A1(1)B2(k − i). (89)

After gathering the last two terms under a common denominator, the numerator becomes

−λiB2(k − 2i− 1)A1(1)−B2(k − i)A1(i) = −B2(k − i− 1)A1(i+ 1) (90)

due to Lemma 18(viii). J

We are ready to solve Equations 51 and 52.

I Lemma 27. If the left step probabilities of a random walk over {0, . . . , k} are determined
by an rde on a restricted probability specification (λ, γ), then the following are solutions to
Equations 51 and 52 of the random walk:

P (i) = A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1) (91)

S(i) =
A1(k − i)

(
γλi−1 − 2λi

)
i+ (k − i)A1(i)B2(k − 1)

A1(1)A1(k)B1(i− 1) (92)

where A1(i) and Bj(i) are intermediate functions of (λ, γ).
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Proof. More formally,

S(i) =
k−1∑
j=1

Ei,j = A1(k − i)J1(i− 1) +A1(i)J2(k − i− 1)
A1(1)A1(k)B1(i− 1) (93)

where J1(i− 1) and J2(k − i− 1) are defined in Lemmas 25 and 26. Note that J2(k − i− 1)
starts the summation index from the right end of fundamental matrix E and moves inward.
With the help of

A1(i)B2(i) = A1(i)A2(i+ 1)− γA1(i)A2(i) (94)
= A1(2i+ 1)− γA1(2i)− λiA1(1) (95)
= B1(2i)− λiA1(1) (96)

and Lemma 18, we arrive at

A1(i)J2(k − i− 1) = (k − i)A1(i)B2(k − 1)− A1(k − i)
A1(1) B1(2i) + λiA1(k − i). (97)

Then combining it with

A1(k − i)J1(i− 1) = A1(k − i)
A1(1) B1(2i)−A1(k − i) ((2i+ 1)λ− iγ)λi−1 (98)

we see that a couple terms cancel out, leaving Equation 92 as desired.
The derivation of P (i) from E is easier to obtain. Recall that P (i) = (EU)i,1, where U

is a (k − 1)× 2 matrix with U1,1 = γ and 0 for the rest of column 1. As such,

P (i) = γEi,1 = A1(k − i)A1(1)B1(0)γλi−1

A1(1)A1(k)B1(i− 1) = A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1) (99)

since B1(0) = A1(1). J

I Lemma 28. The solutions to Equations 51 and 52 are P (i) = (k− i)/k and S(i) = ki− i2
for a uniform random walk over {0, . . . , k}.

Proof. The solutions are already discussed in [7], but we can reach the same conclusion by
way of Lemma 24. Accordingly,

S(i) =
i∑

j=1

2 (k − i) j
k

+
k−1∑
j=i+1

2 (k − j) i
k

(100)

= 2 (k − i)
k

(i+ 1) i
2 + 2i

k

(k − i) (k − i− 1)
2 (101)

= (i+ 1 + k − i− 1) (k − i) i
k

= ki− i2. (102)

The P (i) solution is simpler to derive. J
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