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—— Abstract

Read-only memory (ROM) model is a classical model of computation to study time-space tradeoffs
of algorithms. A classical result on the ROM model is that any algorithm to sort n numbers
using O(s) words of extra space requires Q(n?/s) comparisons for lgn < s < n/lgn? and the
bound has also been recently matched by an algorithm. However, if we relax the model, we do
have sorting algorithms (say Heapsort) that can sort using O(nlgn) comparisons using O(lgn)
bits of extra space, even keeping a permutation of the given input sequence at anytime during
the algorithm.

We address similar relaxations for graph algorithms. We show that a simple natural relaxation
of ROM model allows us to implement fundamental graph search methods like BFS and DFS
more space efficiently than in ROM. By simply allowing elements in the adjacency list of a vertex
to be permuted, we show that, on an undirected or directed connected graph G having n vertices
and m edges, the vertices of G can be output in a DFS or BFS order using O(lgn) bits of extra
space and O(n®lgn) time. Thus we obtain similar bounds for reachability and shortest path
distance (both for undirected and directed graphs). With a little more (but still polynomial)
time, we can also output vertices in the lez-DFS order. As reachability in directed graphs (even
in DAGs) and shortest path distance (even in undirected graphs) are NL-complete, and lex-DFS
is P-complete, our results show that our model is more powerful than ROM if L # P.

En route, we also introduce and develop algorithms for another relaxation of ROM where
the adjacency lists of the vertices are circular lists and we can modify only the heads of the
lists. Here we first show a linear time DFS implementation using n + O(lgn) bits of extra space.
Improving the extra space exponentially to only O(lgn) bits, we also obtain BFS and DFS albeit
with a slightly slower running time. Both the models we propose maintain the graph structure
throughout the algorithm, only the order of vertices in the adjacency list changes. In sharp
contrast, for BFS and DFS, to the best of our knowledge, there are no algorithms in ROM that
use even O(n'~¢) bits of extra space; in fact, implementing DFS using en bits for ¢ < 1 has been
mentioned as an open problem. Furthermore, DFS (BFS, respectively) algorithms using n + o(n)
(o(n), respectively) bits of extra use Reingold’s [JACM, 2008] or Barnes et al’s reachability
algorithm [SICOMP, 1998] and hence have high runtime. Our results can be contrasted with the
recent result of Buhrman et al. [STOC, 2014] which gives an algorithm for directed st-reachability
on catalytic Turing machines using O(Ign) bits with catalytic space O(n?1gn) and time O(n?).

1 This work was partially supported by JST CREST Grant Number JPMJCR1402, Japan.
2 We use lg to denote logarithm to the base 2.
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1 Introduction

Motivated by the rapid growth of huge data set (“big data”), space efficient algorithms
are becoming increasingly important than ever before. The proliferation of specialized
handheld devices and embedded systems that have a limited supply of memory provide
another motivation to consider space efficient algorithms. To design space-efficient algorithms
in general, several models of computation have been proposed. Among them, the following
two computational models have received considerable attention in the literature.
In the read-only memory (ROM) model, we assume that the input is given in a read-only
memory. The output of an algorithm is written on a separate write-only memory, and the
output can not be read or modified again. In addition to the input and output media, a
limited random access workspace is available. Early work on this model was on designing
lower bounds [14, 15, 16], for designing algorithms for selection and sorting [26, 38, 43,
49, 50, 52] and problems in computational geometry [6, 9, 12, 25, 30]. Recently there has
been interest on space-efficient graph algorithms [7, 10, 11, 22, 23, 24, 37, 44, 45].
In the in-place model, the input elements are given in an array, and the algorithm may
use the input array as working space. Hence the algorithm may modify the array during
its execution. After the execution, all the input elements should be present in the array
(maybe in a permuted order) and the output maybe put in the same array or sent to an
output stream. The extra space usage during the execution of the algorithm is limited to
O(lgn) bits. A prominent example of an in-place algorithm is the classic heap-sort. Other
than in-place sorting [42], searching [40, 51] and selection [47], many in-place algorithms
were designed in areas such as computational geometry [17] and stringology [41].

Apart from these models, researchers have also considered (semi)-streaming models [3,
39, 49] for designing space-efficient algorithms. Very recently the following two new models
were introduced in the literature with the same objective.

Chan et al. [27] introduced the restore model which is a more relaxed version of read-only
memory (and a restricted version of the in-place model), where the input is allowed to be
modified, but at the end of the computation, the input has to be restored to its original
form. They also gave space efficient algorithms for selection and sorting on integer arrays
in this model. This has motivation, for example, in scenarios where the input (in its
original form) is required by some other application.

Buhrman et al. [18, 19, 46] introduced and studied the catalytic-space model where a

small amount (typically O(Ign) bits) of clean space is provided along with some large

additional auxiliary space, with the condition that the additional space is initially in an
arbitrary, possibly incompressible, state and must be returned to this state when the
computation is finished. The input is assumed to be given in ROM. Thus this model can
be thought of as having an auxiliary storage that needs to be ‘restored’ in contrast to the
model by Chan et al. [27] where the input array has to be ‘restored’. They show various
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interesting complexity theoretic consequences in this model and designed space-efficient
algorithms in comparison with the ROM model for a few combinatorial problems.

1.1 Previous work on space efficient graph algorithms

Even though these models were introduced in the literature with the aim of designing
and/or implementing various algorithms space efficiently, space efficient graph algorithms
have been designed only in the (semi)-streaming and the ROM model. In the streaming and
semi-streaming models, researchers have studied several basic and fundamental algorithmic
problems such as connectivity, minimum spanning tree, matching. See [48] for a comprehensive
survey in this field. Research on these two models (i.e., streaming and semi-streaming) is
relatively new and has been going on for the last decade or so whereas the study in ROM
could be traced back to almost 40 years. In fact there is already a rich history of designing
space efficient algorithms in the read-only memory model. The complexity class L is the class
containing decision problems that can be solved by a deterministic Turing machine using only
logarithmic amount of work space for computation. There are several important algorithmic
results [31, 34, 35, 36] for this class, the most celebrated being Reingold’s method [55] for
checking st-reachability in an undirected graph, i.e., to determine if there is a path between
two given vertices s and ¢. NL is the non-deterministic analogue of L and it is known that
the st-reachability problem for directed graphs is NL-complete (with respect to log space
reductions). Using Savitch’s algorithm [5], this problem can be solved in n© (&™)
O(lg2 n) bits of extra space. Savitch’s algorithm is very space efficient but its running time
is superpolynomial. Among the deterministic algorithms running in polynomial time for
directed st-reachability, the most space efficient algorithm is due to Barnes et al. [13] who

time using

gave a slightly sublinear space (using n/ 20(Vign) bits) algorithm for this problem running in
polynomial time. We know of no better polynomial time algorithm for this problem with
better space bound. Moreover, the space used by this algorithm matches a lower bound on
space for solving directed st-reachability on a restricted model of computation called Node
Naming Jumping Automata on Graphs (NNJAG’s) [28, 33]. This model was introduced
especially for the study of directed st-reachability and most of the known sublinear space
algorithms for this problem can be implemented on it. Thus, to design any polynomial time
ROM algorithm taking space less than n/ 20(V1s7) pitg requires radically new ideas. Recently
there has been some improvement in the space bound for some special classes of graphs like
planar and H-minor free graphs [8, 20]. A drawback for all these algorithms using small
space i.e., sublinear number of bits, is that their running time is often some polynomial of
high degree. This is not surprising as Tompa [57] showed that for directed st-reachability, if
the number of bits available is o(n) then some natural algorithmic approaches to the problem
require super-polynomial time.

Motivated by these impossibility results from complexity theory and inspired by the
practical applications of these fundamental graph algorithms, recently there has been a surge
of interest in improving the space complexity of the fundamental graph algorithms without
paying too much penalty in the running time i.e., reducing the working space of the classical
graph algorithms to O(n) bits with little or no penalty in running time. Thus the goal is to
design space-efficient yet reasonably time-efficient graph algorithms on the ROM. Generally
most of the classical linear time graph algorithms take O(nlgn) bits. Recently Asano et
al. [7] gave an O(mlgn) time algorithm using O(n) bits, and another implementation taking
n 4 o(n) bits (using Reingold’s or Barnes et al’s reachability algorithm) but using high
polynomial running time. Later, time bound was improved to O(mlglgn) still using O(n)
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bits in [37]. For sparse graphs, the time bound is further improved in [10, 22] to optimal O(m)
using still O(n) bits of space. Improving on the classical linear time implementation of BFS
which uses O(nlgn) bits of space, recent space efficient algorithms [10, 37, 44] have resulted
in a linear time algorithm using nlg3 + o(n) bits. We know of no algorithm for BFS using
n + o(n) bits and O(mlg°n) (or even O(mn)) time for some constant ¢ in ROM. The only
BFS algorithm taking sublinear space uses n/ 201z n) pitg [13] and has a high polynomial
runtime. A few other space efficient algorithms for fundamental graph problems like checking
strong connectivity [37], biconnectivity and performing st-numbering [22], recognizing chordal
and outerplanar graphs [24, 45] were also designed very recently.

1.2 In-place model for graph algorithms

In order to break these inherent space bound barriers and obtain reasonably time and space
efficient graph algorithms, we want to relax the limitations of ROM. And the most natural
and obvious candidate in this regard is the classical in-place model. Thus our main objective
is to initiate a systematic study of efficient in-place (i.e., using O(lgn) bits of extra space)
algorithms for graph problems. To the best of our knowledge, this has not been done in
the literature before. Our first goal towards this is to properly define models for in-place
graph algorithms. As in the case of the standard in-place model, we need to ensure that the
graph (adjacency) structure remains intact throughout the algorithm. Let G = (V, E) be
the input graph with n = |V|, m = |E|, and assume that the vertex set V of G is the set
V ={1,2,--- ,n}. To describe these models, we assume that the input graph representation
consists of two parts: (i) an array V of length n, where V[i] stores a pointer to the adjacency
list of vertex i, and (ii) a list of singly linked lists, where the i-th list consists of a singly
linked list containing all the neighbors of vertex ¢ with V[i] pointing to the head of the list.
In the ROM model, we assume that both these components cannot be modified. In our
relaxed models, we assume that one of these components can be modified in a limited way.
This gives rise to two different models which we define next.

Implicit model. The most natural analogue of in-place model allows any two elements in
the adjacency list of a vertex to be swapped (in O(1) time assuming that we have access to
the nodes storing those elements in the singly linked list). The adjacency “structure” of the
representation does not change; only the values stored can be swapped. (One may restrict
this further to allow only elements in adjacent nodes to be swapped. Most of our algorithms
work with this restriction.) We call it the implicit model inspired by the notion of implicit
data structures [51].

Rotate model. In this model, we assume that only the pointers stored in the array V can
be modified, that too in a limited way - to point to any node in the adjacency list, instead of
always pointing to the first node. In space-efficient setting, since we do not have additional
space to store a pointer to the beginning of the adjacency list explicitly, we assume that
the second component of the graph representation consists of a list of circular linked lists
(instead of singly linked lists) — i.e., the last node in the adjacency list of each vertex points
to the first node (instead of storing a null pointer). We call the element pointed to by the
pointer as the front of the list, and a unit cost rotate operation changes the element pointed
to by the pointer to the next element in the list.

Thus the rotate model corresponds to keeping the adjacency lists in read-only memory
and allowing (limited) updates on the pointer array that points to these lists. And, the
implicit model corresponds to the reverse case, where we keep the pointer array in read-only
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memory and allow swaps on the adjacency lists/arrays. A third alternative especially for the
implicit model is to assume that the input graph is represented as an adjacency array, i.e.,
adjacency lists are stored as arrays instead of singly linked lists (see [22, 37, 45] for some
results using this model); and we allow here that any two elements in the adjacency array
can be swapped. In this model, some of our algorithms have improved performance in time.

1.3 Definitions, computational complexity and notations

We study some basic and fundamental graph problems in these models. In what follows we
provide the definitions and state the computational complexity of these problems. For the
DFS problem, there have been two versions studied in the literature. In the lexicographically
smallest DFS or lex-DFS problem, when DFS looks for an unvisited vertex to visit in an
adjacency list, it picks the “first” unvisited vertex where the “first” is with respect to the
appearance order in the adjacency list. The resulting DFS tree will be unique. In contrast
to lex-DFS, an algorithm that outputs some DFS numbering of a given graph, treats an
adjacency list as a set, ignoring the order of appearance of vertices in it, and outputs a
vertex ordering T such that there exists some adjacency ordering R such that T is the
DFS numbering with respect to R. We say that such a DFS algorithm performs general-
DFS. Reif [54] has shown that lex-DFS is P-complete (with respect to log-space reductions)
implying that a logspace algorithm for lex-DF'S results in the collapse of complexity classes
P and L. Anderson et al. [4] have shown that even computing the leftmost root-to-leaf path
of the lex-DFS tree is P-complete. For many years, these results seemed to imply that the
general-DF'S problem, that is, the computation of any DFS tree is also inherently sequential.
However, Aggarwal et al. [1, 2] proved that the general-DFS problem can be solved much
more efficiently, and it is in RNC. Whether the general-DFS problem is in NC is still open.
As is standard in the design of space-efficient algorithms [10, 37], while working with
directed graphs, we assume that the graphs are given as in/out (circular) adjacency lists
i.e., for a vertex v, we have the (circular) lists of both in-neighbors and out-neighbors of v.
We assume the word RAM model of computation where the machine consists of words of
size w in Q(lgn) bits and any logical, arithmetic and bitwise operation involving a constant
number of words takes O(1) time. We count space in terms of number of extra bits used by
the algorithm other than the input, and this quantity is referred as “extra space” and “space”
interchangeably throughout the paper. By a path of length d, we mean a simple path on d
edges. By deg(x) we mean the degree of the vertex x. In directed graphs, it should be clear
from the context whether that denotes out-degree or in-degree. By a BFS/DFS traversal
of the input graph G, as in [7, 10, 22, 37, 44|, we refer to reporting the vertices of G in the
BFS/DFS ordering, i.e., in the order in which the vertices are visited for the first time.

1.4 Our Results
Depth-first Search. In the rotate model, we show the following in Sections 2.1, 2.2 and 2.3.

» Theorem 1. Let G be a directed or an undirected graph, and £ < n be the mazimum depth

of the DFS tree starting at a source vertex s. Then in the rotate model, the vertices of G can

be output in

(a) the lex-DFS order in O(m +n) time using nlg3 + O(1g> n) bits of extra space,

(b) a general-DFS order in O(m + n) time using n + O(lgn) bits of extra space, and

(c) a general-DFS order in O(m?/n+mf) time for an undirected graph and in O(m(n+ (?))
time for directed graphs using O(lgn) bits of extra space. For this algorithm, we assume
that s can reach all other vertices.

13:5
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In the implicit model, we obtain polynomial time implementations for lex-DFS and general-
DFS using O(lgn) bits of extra space. For lex-DFS; this is conjectured to be unlikely in
ROM as the problem is P-complete [54]. In particular, we show the following in Section 4.

» Theorem 2. Let G be a directed or an undirected graph with a source vertex s and £ < n

be the maximum depth of any DFS tree starting at s that can reach all other vertices. Then

in the implicit model, using O(1gn) bits of extra space, the vertices of G can be output in

(a) the lex-DFS order in O(m3/n* + ¢m?/n) time if G is given in adjacency list and in
O(m?21gn/n) time if G is given in adjacency array for undirected graphs. For directed
graphs our algorithm takes O(m?(n + (?)/n) time if G is given in adjacency list and
O(mlgn(n + ¢€?)) time if G is given in adjacency array;

(b) a general-DFS traversal order in O(m?/n) time if the input graph G is given in an
adjacency list and in O(m?(1gn)/n + mllgn)) time if it is given in an adjacency array.

In sharp contrast, for space efficient algorithms for DFS in ROM, the landscape looks
markedly different. To the best of our knowledge, there are no DFS algorithms in general
graphs in ROM that use O(n!~¢) bits. In fact, an implementation of DFS taking cn bits for
¢ < 1 has been proposed as an open problem in [7].

Breadth-first Search. In the rotate model, we show the following.

» Theorem 3. (#)3 Let G be a directed or an undirected graph, and £ < n be the depth of
the BES tree starting at the source vertexr s. Then in the rotate model, the vertices of G can
be output in a BFS order in

(a) O(m + ntl?) time using n + O(Ign) bits of extra space, and
(b) O(ml + nt?) time using O(Ign) bits of extra space. Here we assume that the source
vertex can reach all other vertices.

In the implicit model, we can match the runtime of BFS from rotate model, and do better
in some special classes of graphs. In particular, we show the following.

» Theorem 4. (W) Let G be a directed or an undirected graph with a source vertex that can
reach all other vertices by a distance of at most £ < n. Then in the implicit model, using
O(lgn) bits of extra space, the vertices of G can be output in a BFS order in

(a) O(m + ntl?) time;
(b) the runtime can be improved to O(m + nf) time if there are no degree 2 vertices;

(c) the runtime can be improved to O(m) if the degree of every vertex is at least 21gn + 3.

Similar to DFS, to the best of our knowledge, there are no polynomial time BFS algorithms
in ROM that use even O(n'~¢) bits. On the other hand, we don’t hope to have a BFS
algorithm (for both undirected and directed graphs) using O(lgn) bits of extra space in
ROM as the problem is NL-complete [5].

Minimum Spanning Tree (MST). We also study the problem of reporting the edges of a
MST of a given undirected connected graph GG and we show the following.

3 Proofs of results marked with (#) appear in the full version [21].
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» Theorem 5. (&) A minimum spanning tree of a given undirected weighted graph G can be
found using O(lgn) bits of extra space and in

(a) O(mn) time in the rotate model,

(b) O(mn?) time in the implicit model if G is given in an adjacency list, and

(c) O(mnlgn) time in the implicit model when G is represented in an adjacency array.

Note that by the results of [53, 55], we already know log-space algorithms for MST in
ROM but again the drawback of those algorithms is their large time complexity. On the
other hand, our algorithms have relatively small polynomial running time, simplicity, making
it an appealing choice in applications with strict space constraints.

1.5 Techniques

Our implementations follow (variations of) the classical algorithms for BF'S and DFS that use

three colors (white, gray and black), but avoid the use of stack (for DF'S) and queue (for BFS).

In the rotate model, we first observe that in the usual search algorithms one can dispense with
the extra data structure space of pointers maintaining the search tree (while retaining the
linear number of bits and a single bit per vertex in place of the full unvisited/visited /explored
array) simply by rotating each circular adjacency lists to move the parent or a (typically
the currently explored) child to the beginning of the list to help navigate through the tree
during the forward or the backtracking step, i.e. by changing the pointer from the vertex
to the list of its adjacencies by one node at a time. This retains the basic efficiency of the
search strategies. The nice part of this strategy is that the total number of rotations also
can be bounded. To reduce the extra space from linear to logarithmic, it is noted that one
can follow the vertices based on the current rotations at each vertex to determine the visited
status of a vertex, i.e. these algorithms use the rotate operation in a non-trivial way to
move elements within the lists to determine the color of the vertices as well. However, the
drawback is that to do so could require moving up (or down) the full height of the implicit
search tree. This yields polynomial rather than (near-)linear time algorithms.

In the implicit model, we use the classical bit encoding trick used in the development of
the implicit data structures [51]. We encode one (or two) bit(s) using a sequence of two (or
three respectively) distinct numbers. To encode a single bit b using two distinct values x and
y with & < y, we store the sequence z,y if b = 0, and y, x otherwise. Similarly, permuting
three distinct values z,y, 2z with x < y < z, we can represent six combinations. We can
choose any of the four combinations to represent up to 4 colors (i.e. two bits). Generalizing
this further, we can encode a pointer taking lgn bits using 21gn distinct elements where
reading or updating a bit takes constant time, and reading or updating a pointer takes
O(lgn) time. This also is the reason for the requirement of vertices with degree at least 3 or

21lgn + 3 for faster algorithms, which will become clear in the description of the algorithms.

1.6 Consequences of our BFS and DFS results

There are many interesting and surprising consequences of our results for BFS and DFS in
both the rotate and implicit model. In what follows, we mention a few of them. See the full
version [21] for the complete discussion on the consequences of our results.
For directed st-reachability, as mentioned previously, the most space efficient polynomial
time algorithm [13] uses n/ 20(V1en) pits, Tn sharp contrast, we obtain efficient (timewise)
log-space algorithms for this problem in both the rotate and implicit models (as a corollary
of our directed graph DFS/BFS results). In terms of workspace this is exponentially
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better than the best known polynomial time algorithm [13] for this problem in ROM.
For us, this provides one of the main motivations to study this model. A somewhat
incomparable result obtained recently by Buhrman et al. [18, 46] where they designed an
algorithm for directed st-reachability on catalytic Turing machines in space O(lgn) with
catalytic space O(n?lgn) and time O(n?).

Problems like directed st-reachability [5], distance [56] which asks whether a given G
(directed, undirected or even directed acyclic) contains a path of length at most k from s
to t, are NL-complete i.e., no deterministic log-space algorithm is known. But in both the
rotate and implicit models, we design log-space algorithms for them. Assuming L # NL,
these results show that probably both our models with log-space are stronger than NL.

The lex-DF'S problem (both in undirected and directed graphs) is P-complete [54], and
thus polylogarithmic space algorithms are unlikely to exist in the ROM model. But we
show an O(lgn) space algorithm in the implicit model for lex-DFS. This implies that,
probably the implicit model is even more powerful than the rotate model. It could even
be possible that every problem in P can be computed using log-space in the implicit
model. A result of somewhat similar flavor is obtained recently Buhrman et al. [18, 46]
where they showed that any function in TC! can be computed using catalytic log-space,
i.e., TC! C CSPACE(lgn). Note that TC! contains L, NL and even other classes that are
conjectured to be different from L.

For a large number of NP-hard graph problems, the best algorithms in ROM run in
exponential time and polynomial space. We show that using just logarithmic amount of
space, albeit using exponential time, we can design algorithms for those NP-hard problems
in both of our models under some restrictions. This gives an exponential improvement
over the ROM space bounds for these problems. In constrast, no NP-hard problem can
be solved in the ROM model using O(lgn) bits unless P=NP. We discuss the details in
the full version [21].

2 DFS algorithms in the rotate model

We first describe our space-efficient algorithms for DF'S in the rotate model proving Theorem 1.

2.1 Proof of Theorem 1(a) for undirected graphs

We begin by describing our algorithm for undirected graphs, and later mention the changes
required for directed graphs. In the normal exploration of DFS (see for example, Cormen et
al. [29]) we use three colors. Every vertex v is white initially while it has not been discovered
yet, becomes gray when DFS discovers v for the first time, and is colored black when it is
finished i.e., all its neighbors have been explored completely.

We maintain a color array C' of length n that stores the color of each vertex at any
point in the algorithm. In the rest of the paper, when we say we scan the adjacency list of
some vertex v, what we mean is, we create a temporary pointer pointing to the current first
element of the list and move this temporary pointer until we find the desired element. Once
we get that element we actually rotate the list so that the desired element now is at the front
of the list. We start DFS at the starting vertex, say s, changing its color from white to gray
in the color array C. Then we scan the adjacency list of s to find the first white neighbor,
say w. We keep rotating the list to bring w to the front of s’s adjacency list (as the one
pointed to by the head V[s]), color w gray in the color array C and proceed to the next step
(i.e. to explore w’s adjacency list). This is the first forward step of the algorithm. In general,
at any step during the execution of the algorithm, whenever we arrive at a gray vertex u
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(either from one of u’s black children or when u’s color is changed from white to gray in the
current step), we scan u’s adjacency list to find the first white vertex. (i) If we find such a
vertex, say v, then we rotate u’s list to make v as the first element, and change the color of v
to gray. (ii) If we do not find any white vertex, then we change the color of u to black, and
backtrack to its parent. To identify u’s parent, we use the following lemma.

» Lemma 6. (#) Suppose w is a node that just became black. Then its parent p is the unique
vertex in w’s list which is (a) gray and (b) whose current list has w in the first position.

So, the parent can be found by scanning the w’s list, to find a neighbor p that is colored
gray such that the first element in p’s list is w. This completes the description of the
backtracking step. Once we backtrack to p, we find the next white vertex (as in the forward
step) and continue until all the vertices of G are explored. Other than some constant number
of variables, clearly the space usage is only for storing the color array C. Since C' is of length
n where each element has 3 possible values, C' can be encoded using nlg3 + O(lg2 n) bits,
so that the i-th element in C' can be read and updated in O(1) time [32]. So overall space
required is nlg3 + O(lg? n) bits. It is easy to see that at most two full rotations of each of
the list may happen during the execution of the algorithm (first one to explore all the white
neighbors and the second one to determine that there are no more white neighbors) resulting
in a linear time lex-DFS algorithm. We discuss the lex-DF'S algorithm for the directed graphs
in the full version of the paper [21].

2.2 Proof of Theorem 1(b) for undirected graphs

To improve the space further, we replace the color array C with a bit array visited[l, ..., n]

which stores a 0 for an unvisited vertex (white), and a 1 for a visited vertex (gray or black).

First we need a test similar to that in the statement of Lemma 6 without the distinction of
gray and black vertices to find the parent of a node. Due to the invariant we have maintained,
every internal vertex of the DFS tree will point to (i.e. have as first element in its list) its
current last child. So the nodes that could potentially have node w in its first position are
its parent, and any of its children which is a leaf. Hence we modify the forward step in the
following way.

Whenever we visit an unvisited vertex v for the first time from another vertex « (hence,
u is the parent of v in the DFS tree and w’s list has v in the first position), we, as before,
mark v as visited and in addition to that, we rotate v’s list to bring u to the front (during
this rotation, we do not mark any intermediate nodes as visited). Then we continue as before
(by finding the first unvisited vertex and bringing it to the front) in the forward step. Now
the following invariants are easy to see and are useful.

Invariants: During the exploration of DFS, in the (partial) DFS tree

1. any internal vertex has the first element in its list as its current last child; and

2. for any leaf vertex of the DFS tree, the first element in its list is its parent.

The first invariant is easy to see as we always keep the current explored vertex (child) as the
first element in the list. For leaves, the first time we encounter them, we make its parent as
the first element in the forward direction. Then we discover that it has no unvisited vertices
in its list, and so we make a full rotation and bring the parent to the front again. The
following lemma provides a test to find the parent of a node.

> Lemma 7. (M) Let w be a node that has just become black. Then its parent p is the first
vertex x in w’s list whose current adjacency list has w in the first position.
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Once we backtrack to p, we find the next white vertex, and continue until all the vertices
of G are explored. Overall this procedure takes linear time. As we rotate the list to bring
the parent of a node, before exploring its white neighbors, we are not guaranteed to explore
the first white vertex in its original list, and hence we loose the lexicographic property. We
provide our DFS algorithm for directed graphs in the full version [21].

2.3 Proof of Theorem 1(c) for undirected graphs

Now to decrease the space to O(lgn), we dispense with the color/visited array, and give tests
to determine white, gray and black vertices. For now, assume that we can determine the color
of a vertex. The forward step is almost the same as before except performing the update
in the color array. I.e., whenever we visit a white vertex v for the first time from another
vertex u (hence u is the parent of v), we rotate v’s list to bring u to the front. Then we
continue to find the first white vertex to explore. We maintain the following invariants. (i)
any gray vertex has the first element in its list as its last child in the (partial) DFS tree; (ii)
any black vertex has its parent as the first element in its list. We also store the depth of the
current node in a variable d, which is incremented by 1 every time we discover a white vertex
and decremented by 1 whenever we backtrack. We maintain the maximum depth the DFS
has attained using a variable max. At a generic step during the execution of the algorithm,
assume that we are at a vertex z’s list, let p be x’s parent and let y be a vertex in x’s list.
We need to determine the color of y and continue the DFS based on the color of y. We use
the following characterization.

» Lemma 8. (&) Suppose the DFS has explored starting from a source vertex s, up to a
vertex x at level d. Let p be x’s parent. Note that both s and x are gray in the normal coloring
procedure. Let max be the mazimum level of any vertex in the partial DFS exploration. Let
y be a vertex in x’s list. Then,

1. y is gray (i.e., (x,y) is a back edge, and y is an ancestor of x) if and only if we can reach
y from s by following through the gray child (which is at the front of a gray node’s list)
path in at most d steps.

2. y is black (i.e., (z,y) is a back edge, and x is an ancestor of y) if and only if

there is a path P of length at most (max — d) from y to x (obtained by following
through the first elements of the lists of every vertex in the path, starting from y), and
let z be the node before x in the path P. The node z appears after p in x’s list.

3. y is white if y is not gray or black.

Now, if we use the above claim to test for colors of vertices, testing for gray takes at
most d steps. Testing for black takes at most (max — d) steps to find the path, and at
most deg(z) steps to determine whether p appears before. Thus for each vertex in z’s list,
we spend time proportional to max + deg(z). So, the overall runtime of the algorithm is
> ey deg(v)(deg(v) + €) = O(m?/n + ml), where ¢ is the maximum depth of DFS tree.
Maintaining the invariants for the gray and black vertices are also straightforward. We
provide the details of our log-space algorithm for directed graphs in the full version [21].

3 Simulation of algorithms for rotate model in the implicit model

The following result captures the overhead incurred while simulating any rotate model
algorithm in the implicit model.



S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti

» Theorem 9. (W) Let D be the mazimum degree of G. Then any algorithm running in
t(m,n) time in the rotate model can be simulated in the implicit model in (i) O(D - t(m,n))
time when G is given in an adjacency list, and (i) O(lg D - t(m,n)) time when G is given
in an adjacency array. Furthermore, let r,(m,n) denote the number of rotations made in
v’s (whose degree is d,,) list, and f(m,n) be the remaining number of operations. Then any
algorithm running in t(m,n) = f(m,n) 4+ > cy 7o(m,n) time in the rotate model can be
simulated in the implicit model in (i) O(f(m,n) +>_ oy mo(m,n) - d,) time when G is given
in an adjacency list, and (ii) O(f(m,n) + >, oy ro(m,n)lgd,) time when G is given in an
adjacency array.

Most of our algorithms in the implicit model use these simulations often with some enhance-
ments and tricks to obtain better running time bounds for some specific problems.

4 DFS algorithms in the implicit model — proof of Theorem 2

To obtain a lex-DFS algorithm, we implement the O(lgn)-bit DFS algorithm in the rotate
model, described in Section 2.3, with a simple modification. First, note that in this algorithm
(in the rotate model), we bring the parent of a vertex to the front of its adjacency list (by
performing rotations) when we visit a vertex for the first time. Subsequently, we explore
the remaining neighbors of the vertex in the left-to-right order. Thus, for each vertex, if its
parent in the DFS were at the beginning of its adjacency list, then this algorithm would result
in a lex-DFS algorithm. Now, to implement this algorithm in the implicit model, whenever
we need to bring the parent to the front, we simply bring it to the front without changing
the order of the other neighbors. Subsequently, we simulate each rotation by moving all
the elements in the adjacency list circularly. As mentioned in Section 3, this results in an
algorithm whose running time is O(>", oy, dy(dy + £) - dy) = O(m?®/n?® + ¢m? /n) if the graph
is given in an adjancecy list and in O3,y do(dy + £) - 1gd,) = O(m?*(1gn)/n + mllign))
when the graph is given in the form of an adjacency array. This proves Theorem 2(a) for
undirected graphs. The results for the directed case follow from simulating the corresponding
results for the directed graphs.

To prove the result mentioned in Theorem 2(b), we implement the linear-time DFS
algorithm of Theorem 1 for the rotate model that uses n + O(lgn) bits. This results in an
algorithm that runs in O(3", .y d2 + n) = O(m?/n) time (or in O, oy dvlgdy +n) =
O(mlgm + n) time, when the graph is given as an adjacency array representation), using
n+ O(lgn) bits. We reduce the space usage of the algorithm to O(lgn) bits by encoding the
visited /unvisited bit for each vertex with degree at least 2 within its adjacency list (and not
maintaining this bit for degree-1 vertices). We describe the details below.

Whenever a node is visited for the first time in the algorithm for the rotated list model,
we bring its parent to the front of its adjacency list. In the remaining part of the algorithm,
we process each of its other adjacent vertices while rotating the adjacency list, untill the
parent comes to the front again. Thus, for each vertex v with degree d,,, we need to rotate
v’s adjacency list O(d,) times. In the implicit model, we also bring the parent to the front
when a vertex is visited for the first time, for any vertex with degree at least 3. We use
the second and third elements in the adjacency list to encode the visited /unvisited bit. But
instead of rotating the adjacency list circularly, we simply scan through the adjacency list
from left to right everytime we need to find the next unvisited vertex in its adjacency list.
This requires O(d,,) time for a vertex v with degree d,,. We show how to handle vertices with
degree at most 2 separately.
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As before, we can deal with the degree-1 vertices without encoding visited /unvisited bit
as we encounter those vertices only once during the algorithm. For degree-2 vertices, we
initially (at preprocessing stage) encode the bit 0 using the two elements in their adjacency
arrays — to indicate that they are unvisited. When a degree-2 vertex is visited for the first
time from a neighbor z, we move to its other neighbor — continuing the process as long as we
encounter degree-2 vertices until we reach a vertex y with degree at least 3. If y is already
visited, then we output the path consisting of all the degree-2 vertices and backtrack to z. If
y is not visited yet, then we output the path up to y, and continue the search from y, and
after marking y as visited. In both cases, we also mark all the degree-2 nodes as visited (by
swapping the two elements in each of their adjacency arrays).

During the preprocessing, for each vertex with degree at least 3, we ensure that the
second and third elements in its adjacency list encode the bit 0 (to mark it unvisited). We
maintain the invariant that for any vertex with degree at least 3, as long as it is not visited,
the second and third elements in its adjacency array encode the bit 0; and after the vertex is
visited, its parent (in the DFS tree) is at the front of its adjacency array, and the second
and third elements in its adjacency array encode the bit 1. Thus, when we visit a node v
with degree at least 3 for the first time, we bring its parent to the front, and then swap the
second and third elements in the adjacency list, if needed, to mark it as visited. The total
running time of this algorithm is bounded by Y, .\, d2 = O(m?/n).

We can implement the above DFS algorithm even faster when the input graph is given in
an adjacency array representation. We deal with vertices with degree at most 2 exactly as
before. For a vertex v with degree at least 3, we bring its parent to the front and swap the
second and third elements to mark the node as visited (as before) whenever v is visited for
the first time. We then sort the remaining elements, if any, in the adjacency array, in-place
(using the linear-time in-place radix sort algorithm [42]), and implement the rotations on the
remaining part of the array as described in Section 3. The total running time of this algorithm

is bounded by »° \ dylgd, = O(mlgm + n). This completes the proof of Theorem 2(b).

5 Concluding remarks

Our initial motivation was to get around the limitations of ROM to obtain a reasonable
model for graphs in which we can obtain space efficient algorithms. We achieved that by
introducing two new frameworks and obtained efficient (of the order of O(n31gn)) algorithms
using O(lgn) bits of space for fundamental graph search procedures. We also discussed
various applications of our DFS/BFS results, and it is not surprising that many corollaries
would follow as they are the backbone of many algorithms. We showed that some of these
results also translate to improved space efficient algorithms in ROM (by simulating the rotate
model algorithms in ROM with a pointer per list). With some effort, we can obtain log
space algorithm for MST. These results can be contrasted with the state of the art results in
ROM that take almost linear bits for some of these problems other than having large runtime
bounds. We believe that our work is the first step towards designing efficient in-place graph
algorithms and it will inspire further investigation into designing such algorithms for other
graph problems. One future direction would also be to improve the running times of our
algorithms. As in the case of most of the earlier space-efficient graph algorithms, we only
consider adjacency list and array representation. It’s not clear how to define in-place model
for adjacency matrix. Another challenging direction would be to design efficient algorithms
that also restore the initial input representation at the end of the execution of the algorithm.
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Surprisingly we could design log-space algorithm for some P-complete problems, and so it

is important to understand the power of our models. Towards that we discovered that we
can even obtain log-space algorithms for some NP-hard graph problems. More specifically,
we defined graph subset problems and obtained log-space exponential time algorithms for

problems belonging to this class in [21]. One interesting future direction would be to

determine the exact computational power of these models along with exploring the horizon of

interesting complexity theoretic consequences of problems in these models. Unlike the ROM

model, it’s not clear how one can define an in-place model which is closed under composition.
We leave this as a challenging open problem.
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